at for-next 67 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MMZONE_H 3#define _LINUX_MMZONE_H 4 5#ifndef __ASSEMBLY__ 6#ifndef __GENERATING_BOUNDS_H 7 8#include <linux/spinlock.h> 9#include <linux/list.h> 10#include <linux/list_nulls.h> 11#include <linux/wait.h> 12#include <linux/bitops.h> 13#include <linux/cache.h> 14#include <linux/threads.h> 15#include <linux/numa.h> 16#include <linux/init.h> 17#include <linux/seqlock.h> 18#include <linux/nodemask.h> 19#include <linux/pageblock-flags.h> 20#include <linux/page-flags-layout.h> 21#include <linux/atomic.h> 22#include <linux/mm_types.h> 23#include <linux/page-flags.h> 24#include <linux/local_lock.h> 25#include <linux/zswap.h> 26#include <asm/page.h> 27 28/* Free memory management - zoned buddy allocator. */ 29#ifndef CONFIG_ARCH_FORCE_MAX_ORDER 30#define MAX_PAGE_ORDER 10 31#else 32#define MAX_PAGE_ORDER CONFIG_ARCH_FORCE_MAX_ORDER 33#endif 34#define MAX_ORDER_NR_PAGES (1 << MAX_PAGE_ORDER) 35 36#define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES) 37 38#define NR_PAGE_ORDERS (MAX_PAGE_ORDER + 1) 39 40/* 41 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 42 * costly to service. That is between allocation orders which should 43 * coalesce naturally under reasonable reclaim pressure and those which 44 * will not. 45 */ 46#define PAGE_ALLOC_COSTLY_ORDER 3 47 48enum migratetype { 49 MIGRATE_UNMOVABLE, 50 MIGRATE_MOVABLE, 51 MIGRATE_RECLAIMABLE, 52 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 53 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES, 54#ifdef CONFIG_CMA 55 /* 56 * MIGRATE_CMA migration type is designed to mimic the way 57 * ZONE_MOVABLE works. Only movable pages can be allocated 58 * from MIGRATE_CMA pageblocks and page allocator never 59 * implicitly change migration type of MIGRATE_CMA pageblock. 60 * 61 * The way to use it is to change migratetype of a range of 62 * pageblocks to MIGRATE_CMA which can be done by 63 * __free_pageblock_cma() function. 64 */ 65 MIGRATE_CMA, 66#endif 67#ifdef CONFIG_MEMORY_ISOLATION 68 MIGRATE_ISOLATE, /* can't allocate from here */ 69#endif 70 MIGRATE_TYPES 71}; 72 73/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */ 74extern const char * const migratetype_names[MIGRATE_TYPES]; 75 76#ifdef CONFIG_CMA 77# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 78# define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA) 79# define is_migrate_cma_folio(folio, pfn) (MIGRATE_CMA == \ 80 get_pfnblock_flags_mask(&folio->page, pfn, MIGRATETYPE_MASK)) 81#else 82# define is_migrate_cma(migratetype) false 83# define is_migrate_cma_page(_page) false 84# define is_migrate_cma_folio(folio, pfn) false 85#endif 86 87static inline bool is_migrate_movable(int mt) 88{ 89 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE; 90} 91 92/* 93 * Check whether a migratetype can be merged with another migratetype. 94 * 95 * It is only mergeable when it can fall back to other migratetypes for 96 * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c. 97 */ 98static inline bool migratetype_is_mergeable(int mt) 99{ 100 return mt < MIGRATE_PCPTYPES; 101} 102 103#define for_each_migratetype_order(order, type) \ 104 for (order = 0; order < NR_PAGE_ORDERS; order++) \ 105 for (type = 0; type < MIGRATE_TYPES; type++) 106 107extern int page_group_by_mobility_disabled; 108 109#define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1) 110 111#define get_pageblock_migratetype(page) \ 112 get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK) 113 114#define folio_migratetype(folio) \ 115 get_pfnblock_flags_mask(&folio->page, folio_pfn(folio), \ 116 MIGRATETYPE_MASK) 117struct free_area { 118 struct list_head free_list[MIGRATE_TYPES]; 119 unsigned long nr_free; 120}; 121 122struct pglist_data; 123 124#ifdef CONFIG_NUMA 125enum numa_stat_item { 126 NUMA_HIT, /* allocated in intended node */ 127 NUMA_MISS, /* allocated in non intended node */ 128 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 129 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 130 NUMA_LOCAL, /* allocation from local node */ 131 NUMA_OTHER, /* allocation from other node */ 132 NR_VM_NUMA_EVENT_ITEMS 133}; 134#else 135#define NR_VM_NUMA_EVENT_ITEMS 0 136#endif 137 138enum zone_stat_item { 139 /* First 128 byte cacheline (assuming 64 bit words) */ 140 NR_FREE_PAGES, 141 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */ 142 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE, 143 NR_ZONE_ACTIVE_ANON, 144 NR_ZONE_INACTIVE_FILE, 145 NR_ZONE_ACTIVE_FILE, 146 NR_ZONE_UNEVICTABLE, 147 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */ 148 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 149 /* Second 128 byte cacheline */ 150 NR_BOUNCE, 151#if IS_ENABLED(CONFIG_ZSMALLOC) 152 NR_ZSPAGES, /* allocated in zsmalloc */ 153#endif 154 NR_FREE_CMA_PAGES, 155#ifdef CONFIG_UNACCEPTED_MEMORY 156 NR_UNACCEPTED, 157#endif 158 NR_VM_ZONE_STAT_ITEMS }; 159 160enum node_stat_item { 161 NR_LRU_BASE, 162 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 163 NR_ACTIVE_ANON, /* " " " " " */ 164 NR_INACTIVE_FILE, /* " " " " " */ 165 NR_ACTIVE_FILE, /* " " " " " */ 166 NR_UNEVICTABLE, /* " " " " " */ 167 NR_SLAB_RECLAIMABLE_B, 168 NR_SLAB_UNRECLAIMABLE_B, 169 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 170 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 171 WORKINGSET_NODES, 172 WORKINGSET_REFAULT_BASE, 173 WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE, 174 WORKINGSET_REFAULT_FILE, 175 WORKINGSET_ACTIVATE_BASE, 176 WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE, 177 WORKINGSET_ACTIVATE_FILE, 178 WORKINGSET_RESTORE_BASE, 179 WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE, 180 WORKINGSET_RESTORE_FILE, 181 WORKINGSET_NODERECLAIM, 182 NR_ANON_MAPPED, /* Mapped anonymous pages */ 183 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 184 only modified from process context */ 185 NR_FILE_PAGES, 186 NR_FILE_DIRTY, 187 NR_WRITEBACK, 188 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 189 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 190 NR_SHMEM_THPS, 191 NR_SHMEM_PMDMAPPED, 192 NR_FILE_THPS, 193 NR_FILE_PMDMAPPED, 194 NR_ANON_THPS, 195 NR_VMSCAN_WRITE, 196 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 197 NR_DIRTIED, /* page dirtyings since bootup */ 198 NR_WRITTEN, /* page writings since bootup */ 199 NR_THROTTLED_WRITTEN, /* NR_WRITTEN while reclaim throttled */ 200 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */ 201 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */ 202 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */ 203 NR_KERNEL_STACK_KB, /* measured in KiB */ 204#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK) 205 NR_KERNEL_SCS_KB, /* measured in KiB */ 206#endif 207 NR_PAGETABLE, /* used for pagetables */ 208 NR_SECONDARY_PAGETABLE, /* secondary pagetables, KVM & IOMMU */ 209#ifdef CONFIG_IOMMU_SUPPORT 210 NR_IOMMU_PAGES, /* # of pages allocated by IOMMU */ 211#endif 212#ifdef CONFIG_SWAP 213 NR_SWAPCACHE, 214#endif 215#ifdef CONFIG_NUMA_BALANCING 216 PGPROMOTE_SUCCESS, /* promote successfully */ 217 PGPROMOTE_CANDIDATE, /* candidate pages to promote */ 218#endif 219 /* PGDEMOTE_*: pages demoted */ 220 PGDEMOTE_KSWAPD, 221 PGDEMOTE_DIRECT, 222 PGDEMOTE_KHUGEPAGED, 223#ifdef CONFIG_HUGETLB_PAGE 224 NR_HUGETLB, 225#endif 226 NR_VM_NODE_STAT_ITEMS 227}; 228 229/* 230 * Returns true if the item should be printed in THPs (/proc/vmstat 231 * currently prints number of anon, file and shmem THPs. But the item 232 * is charged in pages). 233 */ 234static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item) 235{ 236 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 237 return false; 238 239 return item == NR_ANON_THPS || 240 item == NR_FILE_THPS || 241 item == NR_SHMEM_THPS || 242 item == NR_SHMEM_PMDMAPPED || 243 item == NR_FILE_PMDMAPPED; 244} 245 246/* 247 * Returns true if the value is measured in bytes (most vmstat values are 248 * measured in pages). This defines the API part, the internal representation 249 * might be different. 250 */ 251static __always_inline bool vmstat_item_in_bytes(int idx) 252{ 253 /* 254 * Global and per-node slab counters track slab pages. 255 * It's expected that changes are multiples of PAGE_SIZE. 256 * Internally values are stored in pages. 257 * 258 * Per-memcg and per-lruvec counters track memory, consumed 259 * by individual slab objects. These counters are actually 260 * byte-precise. 261 */ 262 return (idx == NR_SLAB_RECLAIMABLE_B || 263 idx == NR_SLAB_UNRECLAIMABLE_B); 264} 265 266/* 267 * We do arithmetic on the LRU lists in various places in the code, 268 * so it is important to keep the active lists LRU_ACTIVE higher in 269 * the array than the corresponding inactive lists, and to keep 270 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 271 * 272 * This has to be kept in sync with the statistics in zone_stat_item 273 * above and the descriptions in vmstat_text in mm/vmstat.c 274 */ 275#define LRU_BASE 0 276#define LRU_ACTIVE 1 277#define LRU_FILE 2 278 279enum lru_list { 280 LRU_INACTIVE_ANON = LRU_BASE, 281 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 282 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 283 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 284 LRU_UNEVICTABLE, 285 NR_LRU_LISTS 286}; 287 288enum vmscan_throttle_state { 289 VMSCAN_THROTTLE_WRITEBACK, 290 VMSCAN_THROTTLE_ISOLATED, 291 VMSCAN_THROTTLE_NOPROGRESS, 292 VMSCAN_THROTTLE_CONGESTED, 293 NR_VMSCAN_THROTTLE, 294}; 295 296#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 297 298#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 299 300static inline bool is_file_lru(enum lru_list lru) 301{ 302 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 303} 304 305static inline bool is_active_lru(enum lru_list lru) 306{ 307 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 308} 309 310#define WORKINGSET_ANON 0 311#define WORKINGSET_FILE 1 312#define ANON_AND_FILE 2 313 314enum lruvec_flags { 315 /* 316 * An lruvec has many dirty pages backed by a congested BDI: 317 * 1. LRUVEC_CGROUP_CONGESTED is set by cgroup-level reclaim. 318 * It can be cleared by cgroup reclaim or kswapd. 319 * 2. LRUVEC_NODE_CONGESTED is set by kswapd node-level reclaim. 320 * It can only be cleared by kswapd. 321 * 322 * Essentially, kswapd can unthrottle an lruvec throttled by cgroup 323 * reclaim, but not vice versa. This only applies to the root cgroup. 324 * The goal is to prevent cgroup reclaim on the root cgroup (e.g. 325 * memory.reclaim) to unthrottle an unbalanced node (that was throttled 326 * by kswapd). 327 */ 328 LRUVEC_CGROUP_CONGESTED, 329 LRUVEC_NODE_CONGESTED, 330}; 331 332#endif /* !__GENERATING_BOUNDS_H */ 333 334/* 335 * Evictable pages are divided into multiple generations. The youngest and the 336 * oldest generation numbers, max_seq and min_seq, are monotonically increasing. 337 * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An 338 * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the 339 * corresponding generation. The gen counter in folio->flags stores gen+1 while 340 * a page is on one of lrugen->folios[]. Otherwise it stores 0. 341 * 342 * A page is added to the youngest generation on faulting. The aging needs to 343 * check the accessed bit at least twice before handing this page over to the 344 * eviction. The first check takes care of the accessed bit set on the initial 345 * fault; the second check makes sure this page hasn't been used since then. 346 * This process, AKA second chance, requires a minimum of two generations, 347 * hence MIN_NR_GENS. And to maintain ABI compatibility with the active/inactive 348 * LRU, e.g., /proc/vmstat, these two generations are considered active; the 349 * rest of generations, if they exist, are considered inactive. See 350 * lru_gen_is_active(). 351 * 352 * PG_active is always cleared while a page is on one of lrugen->folios[] so 353 * that the aging needs not to worry about it. And it's set again when a page 354 * considered active is isolated for non-reclaiming purposes, e.g., migration. 355 * See lru_gen_add_folio() and lru_gen_del_folio(). 356 * 357 * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the 358 * number of categories of the active/inactive LRU when keeping track of 359 * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits 360 * in folio->flags. 361 */ 362#define MIN_NR_GENS 2U 363#define MAX_NR_GENS 4U 364 365/* 366 * Each generation is divided into multiple tiers. A page accessed N times 367 * through file descriptors is in tier order_base_2(N). A page in the first tier 368 * (N=0,1) is marked by PG_referenced unless it was faulted in through page 369 * tables or read ahead. A page in any other tier (N>1) is marked by 370 * PG_referenced and PG_workingset. This implies a minimum of two tiers is 371 * supported without using additional bits in folio->flags. 372 * 373 * In contrast to moving across generations which requires the LRU lock, moving 374 * across tiers only involves atomic operations on folio->flags and therefore 375 * has a negligible cost in the buffered access path. In the eviction path, 376 * comparisons of refaulted/(evicted+protected) from the first tier and the 377 * rest infer whether pages accessed multiple times through file descriptors 378 * are statistically hot and thus worth protecting. 379 * 380 * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the 381 * number of categories of the active/inactive LRU when keeping track of 382 * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in 383 * folio->flags. 384 */ 385#define MAX_NR_TIERS 4U 386 387#ifndef __GENERATING_BOUNDS_H 388 389struct lruvec; 390struct page_vma_mapped_walk; 391 392#define LRU_GEN_MASK ((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF) 393#define LRU_REFS_MASK ((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF) 394 395#ifdef CONFIG_LRU_GEN 396 397enum { 398 LRU_GEN_ANON, 399 LRU_GEN_FILE, 400}; 401 402enum { 403 LRU_GEN_CORE, 404 LRU_GEN_MM_WALK, 405 LRU_GEN_NONLEAF_YOUNG, 406 NR_LRU_GEN_CAPS 407}; 408 409#define LRU_REFS_FLAGS (BIT(PG_referenced) | BIT(PG_workingset)) 410 411#define MIN_LRU_BATCH BITS_PER_LONG 412#define MAX_LRU_BATCH (MIN_LRU_BATCH * 64) 413 414/* whether to keep historical stats from evicted generations */ 415#ifdef CONFIG_LRU_GEN_STATS 416#define NR_HIST_GENS MAX_NR_GENS 417#else 418#define NR_HIST_GENS 1U 419#endif 420 421/* 422 * The youngest generation number is stored in max_seq for both anon and file 423 * types as they are aged on an equal footing. The oldest generation numbers are 424 * stored in min_seq[] separately for anon and file types as clean file pages 425 * can be evicted regardless of swap constraints. 426 * 427 * Normally anon and file min_seq are in sync. But if swapping is constrained, 428 * e.g., out of swap space, file min_seq is allowed to advance and leave anon 429 * min_seq behind. 430 * 431 * The number of pages in each generation is eventually consistent and therefore 432 * can be transiently negative when reset_batch_size() is pending. 433 */ 434struct lru_gen_folio { 435 /* the aging increments the youngest generation number */ 436 unsigned long max_seq; 437 /* the eviction increments the oldest generation numbers */ 438 unsigned long min_seq[ANON_AND_FILE]; 439 /* the birth time of each generation in jiffies */ 440 unsigned long timestamps[MAX_NR_GENS]; 441 /* the multi-gen LRU lists, lazily sorted on eviction */ 442 struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 443 /* the multi-gen LRU sizes, eventually consistent */ 444 long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 445 /* the exponential moving average of refaulted */ 446 unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS]; 447 /* the exponential moving average of evicted+protected */ 448 unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS]; 449 /* the first tier doesn't need protection, hence the minus one */ 450 unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS - 1]; 451 /* can be modified without holding the LRU lock */ 452 atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; 453 atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; 454 /* whether the multi-gen LRU is enabled */ 455 bool enabled; 456 /* the memcg generation this lru_gen_folio belongs to */ 457 u8 gen; 458 /* the list segment this lru_gen_folio belongs to */ 459 u8 seg; 460 /* per-node lru_gen_folio list for global reclaim */ 461 struct hlist_nulls_node list; 462}; 463 464enum { 465 MM_LEAF_TOTAL, /* total leaf entries */ 466 MM_LEAF_YOUNG, /* young leaf entries */ 467 MM_NONLEAF_FOUND, /* non-leaf entries found in Bloom filters */ 468 MM_NONLEAF_ADDED, /* non-leaf entries added to Bloom filters */ 469 NR_MM_STATS 470}; 471 472/* double-buffering Bloom filters */ 473#define NR_BLOOM_FILTERS 2 474 475struct lru_gen_mm_state { 476 /* synced with max_seq after each iteration */ 477 unsigned long seq; 478 /* where the current iteration continues after */ 479 struct list_head *head; 480 /* where the last iteration ended before */ 481 struct list_head *tail; 482 /* Bloom filters flip after each iteration */ 483 unsigned long *filters[NR_BLOOM_FILTERS]; 484 /* the mm stats for debugging */ 485 unsigned long stats[NR_HIST_GENS][NR_MM_STATS]; 486}; 487 488struct lru_gen_mm_walk { 489 /* the lruvec under reclaim */ 490 struct lruvec *lruvec; 491 /* max_seq from lru_gen_folio: can be out of date */ 492 unsigned long seq; 493 /* the next address within an mm to scan */ 494 unsigned long next_addr; 495 /* to batch promoted pages */ 496 int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 497 /* to batch the mm stats */ 498 int mm_stats[NR_MM_STATS]; 499 /* total batched items */ 500 int batched; 501 bool can_swap; 502 bool force_scan; 503}; 504 505/* 506 * For each node, memcgs are divided into two generations: the old and the 507 * young. For each generation, memcgs are randomly sharded into multiple bins 508 * to improve scalability. For each bin, the hlist_nulls is virtually divided 509 * into three segments: the head, the tail and the default. 510 * 511 * An onlining memcg is added to the tail of a random bin in the old generation. 512 * The eviction starts at the head of a random bin in the old generation. The 513 * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes 514 * the old generation, is incremented when all its bins become empty. 515 * 516 * There are four operations: 517 * 1. MEMCG_LRU_HEAD, which moves a memcg to the head of a random bin in its 518 * current generation (old or young) and updates its "seg" to "head"; 519 * 2. MEMCG_LRU_TAIL, which moves a memcg to the tail of a random bin in its 520 * current generation (old or young) and updates its "seg" to "tail"; 521 * 3. MEMCG_LRU_OLD, which moves a memcg to the head of a random bin in the old 522 * generation, updates its "gen" to "old" and resets its "seg" to "default"; 523 * 4. MEMCG_LRU_YOUNG, which moves a memcg to the tail of a random bin in the 524 * young generation, updates its "gen" to "young" and resets its "seg" to 525 * "default". 526 * 527 * The events that trigger the above operations are: 528 * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD; 529 * 2. The first attempt to reclaim a memcg below low, which triggers 530 * MEMCG_LRU_TAIL; 531 * 3. The first attempt to reclaim a memcg offlined or below reclaimable size 532 * threshold, which triggers MEMCG_LRU_TAIL; 533 * 4. The second attempt to reclaim a memcg offlined or below reclaimable size 534 * threshold, which triggers MEMCG_LRU_YOUNG; 535 * 5. Attempting to reclaim a memcg below min, which triggers MEMCG_LRU_YOUNG; 536 * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG; 537 * 7. Offlining a memcg, which triggers MEMCG_LRU_OLD. 538 * 539 * Notes: 540 * 1. Memcg LRU only applies to global reclaim, and the round-robin incrementing 541 * of their max_seq counters ensures the eventual fairness to all eligible 542 * memcgs. For memcg reclaim, it still relies on mem_cgroup_iter(). 543 * 2. There are only two valid generations: old (seq) and young (seq+1). 544 * MEMCG_NR_GENS is set to three so that when reading the generation counter 545 * locklessly, a stale value (seq-1) does not wraparound to young. 546 */ 547#define MEMCG_NR_GENS 3 548#define MEMCG_NR_BINS 8 549 550struct lru_gen_memcg { 551 /* the per-node memcg generation counter */ 552 unsigned long seq; 553 /* each memcg has one lru_gen_folio per node */ 554 unsigned long nr_memcgs[MEMCG_NR_GENS]; 555 /* per-node lru_gen_folio list for global reclaim */ 556 struct hlist_nulls_head fifo[MEMCG_NR_GENS][MEMCG_NR_BINS]; 557 /* protects the above */ 558 spinlock_t lock; 559}; 560 561void lru_gen_init_pgdat(struct pglist_data *pgdat); 562void lru_gen_init_lruvec(struct lruvec *lruvec); 563bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw); 564 565void lru_gen_init_memcg(struct mem_cgroup *memcg); 566void lru_gen_exit_memcg(struct mem_cgroup *memcg); 567void lru_gen_online_memcg(struct mem_cgroup *memcg); 568void lru_gen_offline_memcg(struct mem_cgroup *memcg); 569void lru_gen_release_memcg(struct mem_cgroup *memcg); 570void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid); 571 572#else /* !CONFIG_LRU_GEN */ 573 574static inline void lru_gen_init_pgdat(struct pglist_data *pgdat) 575{ 576} 577 578static inline void lru_gen_init_lruvec(struct lruvec *lruvec) 579{ 580} 581 582static inline bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw) 583{ 584 return false; 585} 586 587static inline void lru_gen_init_memcg(struct mem_cgroup *memcg) 588{ 589} 590 591static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg) 592{ 593} 594 595static inline void lru_gen_online_memcg(struct mem_cgroup *memcg) 596{ 597} 598 599static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg) 600{ 601} 602 603static inline void lru_gen_release_memcg(struct mem_cgroup *memcg) 604{ 605} 606 607static inline void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid) 608{ 609} 610 611#endif /* CONFIG_LRU_GEN */ 612 613struct lruvec { 614 struct list_head lists[NR_LRU_LISTS]; 615 /* per lruvec lru_lock for memcg */ 616 spinlock_t lru_lock; 617 /* 618 * These track the cost of reclaiming one LRU - file or anon - 619 * over the other. As the observed cost of reclaiming one LRU 620 * increases, the reclaim scan balance tips toward the other. 621 */ 622 unsigned long anon_cost; 623 unsigned long file_cost; 624 /* Non-resident age, driven by LRU movement */ 625 atomic_long_t nonresident_age; 626 /* Refaults at the time of last reclaim cycle */ 627 unsigned long refaults[ANON_AND_FILE]; 628 /* Various lruvec state flags (enum lruvec_flags) */ 629 unsigned long flags; 630#ifdef CONFIG_LRU_GEN 631 /* evictable pages divided into generations */ 632 struct lru_gen_folio lrugen; 633#ifdef CONFIG_LRU_GEN_WALKS_MMU 634 /* to concurrently iterate lru_gen_mm_list */ 635 struct lru_gen_mm_state mm_state; 636#endif 637#endif /* CONFIG_LRU_GEN */ 638#ifdef CONFIG_MEMCG 639 struct pglist_data *pgdat; 640#endif 641 struct zswap_lruvec_state zswap_lruvec_state; 642}; 643 644/* Isolate for asynchronous migration */ 645#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 646/* Isolate unevictable pages */ 647#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) 648 649/* LRU Isolation modes. */ 650typedef unsigned __bitwise isolate_mode_t; 651 652enum zone_watermarks { 653 WMARK_MIN, 654 WMARK_LOW, 655 WMARK_HIGH, 656 WMARK_PROMO, 657 NR_WMARK 658}; 659 660/* 661 * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. Two additional lists 662 * are added for THP. One PCP list is used by GPF_MOVABLE, and the other PCP list 663 * is used by GFP_UNMOVABLE and GFP_RECLAIMABLE. 664 */ 665#ifdef CONFIG_TRANSPARENT_HUGEPAGE 666#define NR_PCP_THP 2 667#else 668#define NR_PCP_THP 0 669#endif 670#define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1)) 671#define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP) 672 673/* 674 * Flags used in pcp->flags field. 675 * 676 * PCPF_PREV_FREE_HIGH_ORDER: a high-order page is freed in the 677 * previous page freeing. To avoid to drain PCP for an accident 678 * high-order page freeing. 679 * 680 * PCPF_FREE_HIGH_BATCH: preserve "pcp->batch" pages in PCP before 681 * draining PCP for consecutive high-order pages freeing without 682 * allocation if data cache slice of CPU is large enough. To reduce 683 * zone lock contention and keep cache-hot pages reusing. 684 */ 685#define PCPF_PREV_FREE_HIGH_ORDER BIT(0) 686#define PCPF_FREE_HIGH_BATCH BIT(1) 687 688struct per_cpu_pages { 689 spinlock_t lock; /* Protects lists field */ 690 int count; /* number of pages in the list */ 691 int high; /* high watermark, emptying needed */ 692 int high_min; /* min high watermark */ 693 int high_max; /* max high watermark */ 694 int batch; /* chunk size for buddy add/remove */ 695 u8 flags; /* protected by pcp->lock */ 696 u8 alloc_factor; /* batch scaling factor during allocate */ 697#ifdef CONFIG_NUMA 698 u8 expire; /* When 0, remote pagesets are drained */ 699#endif 700 short free_count; /* consecutive free count */ 701 702 /* Lists of pages, one per migrate type stored on the pcp-lists */ 703 struct list_head lists[NR_PCP_LISTS]; 704} ____cacheline_aligned_in_smp; 705 706struct per_cpu_zonestat { 707#ifdef CONFIG_SMP 708 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 709 s8 stat_threshold; 710#endif 711#ifdef CONFIG_NUMA 712 /* 713 * Low priority inaccurate counters that are only folded 714 * on demand. Use a large type to avoid the overhead of 715 * folding during refresh_cpu_vm_stats. 716 */ 717 unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; 718#endif 719}; 720 721struct per_cpu_nodestat { 722 s8 stat_threshold; 723 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS]; 724}; 725 726#endif /* !__GENERATING_BOUNDS.H */ 727 728enum zone_type { 729 /* 730 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able 731 * to DMA to all of the addressable memory (ZONE_NORMAL). 732 * On architectures where this area covers the whole 32 bit address 733 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller 734 * DMA addressing constraints. This distinction is important as a 32bit 735 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit 736 * platforms may need both zones as they support peripherals with 737 * different DMA addressing limitations. 738 */ 739#ifdef CONFIG_ZONE_DMA 740 ZONE_DMA, 741#endif 742#ifdef CONFIG_ZONE_DMA32 743 ZONE_DMA32, 744#endif 745 /* 746 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 747 * performed on pages in ZONE_NORMAL if the DMA devices support 748 * transfers to all addressable memory. 749 */ 750 ZONE_NORMAL, 751#ifdef CONFIG_HIGHMEM 752 /* 753 * A memory area that is only addressable by the kernel through 754 * mapping portions into its own address space. This is for example 755 * used by i386 to allow the kernel to address the memory beyond 756 * 900MB. The kernel will set up special mappings (page 757 * table entries on i386) for each page that the kernel needs to 758 * access. 759 */ 760 ZONE_HIGHMEM, 761#endif 762 /* 763 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains 764 * movable pages with few exceptional cases described below. Main use 765 * cases for ZONE_MOVABLE are to make memory offlining/unplug more 766 * likely to succeed, and to locally limit unmovable allocations - e.g., 767 * to increase the number of THP/huge pages. Notable special cases are: 768 * 769 * 1. Pinned pages: (long-term) pinning of movable pages might 770 * essentially turn such pages unmovable. Therefore, we do not allow 771 * pinning long-term pages in ZONE_MOVABLE. When pages are pinned and 772 * faulted, they come from the right zone right away. However, it is 773 * still possible that address space already has pages in 774 * ZONE_MOVABLE at the time when pages are pinned (i.e. user has 775 * touches that memory before pinning). In such case we migrate them 776 * to a different zone. When migration fails - pinning fails. 777 * 2. memblock allocations: kernelcore/movablecore setups might create 778 * situations where ZONE_MOVABLE contains unmovable allocations 779 * after boot. Memory offlining and allocations fail early. 780 * 3. Memory holes: kernelcore/movablecore setups might create very rare 781 * situations where ZONE_MOVABLE contains memory holes after boot, 782 * for example, if we have sections that are only partially 783 * populated. Memory offlining and allocations fail early. 784 * 4. PG_hwpoison pages: while poisoned pages can be skipped during 785 * memory offlining, such pages cannot be allocated. 786 * 5. Unmovable PG_offline pages: in paravirtualized environments, 787 * hotplugged memory blocks might only partially be managed by the 788 * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The 789 * parts not manged by the buddy are unmovable PG_offline pages. In 790 * some cases (virtio-mem), such pages can be skipped during 791 * memory offlining, however, cannot be moved/allocated. These 792 * techniques might use alloc_contig_range() to hide previously 793 * exposed pages from the buddy again (e.g., to implement some sort 794 * of memory unplug in virtio-mem). 795 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create 796 * situations where ZERO_PAGE(0) which is allocated differently 797 * on different platforms may end up in a movable zone. ZERO_PAGE(0) 798 * cannot be migrated. 799 * 7. Memory-hotplug: when using memmap_on_memory and onlining the 800 * memory to the MOVABLE zone, the vmemmap pages are also placed in 801 * such zone. Such pages cannot be really moved around as they are 802 * self-stored in the range, but they are treated as movable when 803 * the range they describe is about to be offlined. 804 * 805 * In general, no unmovable allocations that degrade memory offlining 806 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range()) 807 * have to expect that migrating pages in ZONE_MOVABLE can fail (even 808 * if has_unmovable_pages() states that there are no unmovable pages, 809 * there can be false negatives). 810 */ 811 ZONE_MOVABLE, 812#ifdef CONFIG_ZONE_DEVICE 813 ZONE_DEVICE, 814#endif 815 __MAX_NR_ZONES 816 817}; 818 819#ifndef __GENERATING_BOUNDS_H 820 821#define ASYNC_AND_SYNC 2 822 823struct zone { 824 /* Read-mostly fields */ 825 826 /* zone watermarks, access with *_wmark_pages(zone) macros */ 827 unsigned long _watermark[NR_WMARK]; 828 unsigned long watermark_boost; 829 830 unsigned long nr_reserved_highatomic; 831 unsigned long nr_free_highatomic; 832 833 /* 834 * We don't know if the memory that we're going to allocate will be 835 * freeable or/and it will be released eventually, so to avoid totally 836 * wasting several GB of ram we must reserve some of the lower zone 837 * memory (otherwise we risk to run OOM on the lower zones despite 838 * there being tons of freeable ram on the higher zones). This array is 839 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl 840 * changes. 841 */ 842 long lowmem_reserve[MAX_NR_ZONES]; 843 844#ifdef CONFIG_NUMA 845 int node; 846#endif 847 struct pglist_data *zone_pgdat; 848 struct per_cpu_pages __percpu *per_cpu_pageset; 849 struct per_cpu_zonestat __percpu *per_cpu_zonestats; 850 /* 851 * the high and batch values are copied to individual pagesets for 852 * faster access 853 */ 854 int pageset_high_min; 855 int pageset_high_max; 856 int pageset_batch; 857 858#ifndef CONFIG_SPARSEMEM 859 /* 860 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 861 * In SPARSEMEM, this map is stored in struct mem_section 862 */ 863 unsigned long *pageblock_flags; 864#endif /* CONFIG_SPARSEMEM */ 865 866 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 867 unsigned long zone_start_pfn; 868 869 /* 870 * spanned_pages is the total pages spanned by the zone, including 871 * holes, which is calculated as: 872 * spanned_pages = zone_end_pfn - zone_start_pfn; 873 * 874 * present_pages is physical pages existing within the zone, which 875 * is calculated as: 876 * present_pages = spanned_pages - absent_pages(pages in holes); 877 * 878 * present_early_pages is present pages existing within the zone 879 * located on memory available since early boot, excluding hotplugged 880 * memory. 881 * 882 * managed_pages is present pages managed by the buddy system, which 883 * is calculated as (reserved_pages includes pages allocated by the 884 * bootmem allocator): 885 * managed_pages = present_pages - reserved_pages; 886 * 887 * cma pages is present pages that are assigned for CMA use 888 * (MIGRATE_CMA). 889 * 890 * So present_pages may be used by memory hotplug or memory power 891 * management logic to figure out unmanaged pages by checking 892 * (present_pages - managed_pages). And managed_pages should be used 893 * by page allocator and vm scanner to calculate all kinds of watermarks 894 * and thresholds. 895 * 896 * Locking rules: 897 * 898 * zone_start_pfn and spanned_pages are protected by span_seqlock. 899 * It is a seqlock because it has to be read outside of zone->lock, 900 * and it is done in the main allocator path. But, it is written 901 * quite infrequently. 902 * 903 * The span_seq lock is declared along with zone->lock because it is 904 * frequently read in proximity to zone->lock. It's good to 905 * give them a chance of being in the same cacheline. 906 * 907 * Write access to present_pages at runtime should be protected by 908 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of 909 * present_pages should use get_online_mems() to get a stable value. 910 */ 911 atomic_long_t managed_pages; 912 unsigned long spanned_pages; 913 unsigned long present_pages; 914#if defined(CONFIG_MEMORY_HOTPLUG) 915 unsigned long present_early_pages; 916#endif 917#ifdef CONFIG_CMA 918 unsigned long cma_pages; 919#endif 920 921 const char *name; 922 923#ifdef CONFIG_MEMORY_ISOLATION 924 /* 925 * Number of isolated pageblock. It is used to solve incorrect 926 * freepage counting problem due to racy retrieving migratetype 927 * of pageblock. Protected by zone->lock. 928 */ 929 unsigned long nr_isolate_pageblock; 930#endif 931 932#ifdef CONFIG_MEMORY_HOTPLUG 933 /* see spanned/present_pages for more description */ 934 seqlock_t span_seqlock; 935#endif 936 937 int initialized; 938 939 /* Write-intensive fields used from the page allocator */ 940 CACHELINE_PADDING(_pad1_); 941 942 /* free areas of different sizes */ 943 struct free_area free_area[NR_PAGE_ORDERS]; 944 945#ifdef CONFIG_UNACCEPTED_MEMORY 946 /* Pages to be accepted. All pages on the list are MAX_PAGE_ORDER */ 947 struct list_head unaccepted_pages; 948#endif 949 950 /* zone flags, see below */ 951 unsigned long flags; 952 953 /* Primarily protects free_area */ 954 spinlock_t lock; 955 956 /* Write-intensive fields used by compaction and vmstats. */ 957 CACHELINE_PADDING(_pad2_); 958 959 /* 960 * When free pages are below this point, additional steps are taken 961 * when reading the number of free pages to avoid per-cpu counter 962 * drift allowing watermarks to be breached 963 */ 964 unsigned long percpu_drift_mark; 965 966#if defined CONFIG_COMPACTION || defined CONFIG_CMA 967 /* pfn where compaction free scanner should start */ 968 unsigned long compact_cached_free_pfn; 969 /* pfn where compaction migration scanner should start */ 970 unsigned long compact_cached_migrate_pfn[ASYNC_AND_SYNC]; 971 unsigned long compact_init_migrate_pfn; 972 unsigned long compact_init_free_pfn; 973#endif 974 975#ifdef CONFIG_COMPACTION 976 /* 977 * On compaction failure, 1<<compact_defer_shift compactions 978 * are skipped before trying again. The number attempted since 979 * last failure is tracked with compact_considered. 980 * compact_order_failed is the minimum compaction failed order. 981 */ 982 unsigned int compact_considered; 983 unsigned int compact_defer_shift; 984 int compact_order_failed; 985#endif 986 987#if defined CONFIG_COMPACTION || defined CONFIG_CMA 988 /* Set to true when the PG_migrate_skip bits should be cleared */ 989 bool compact_blockskip_flush; 990#endif 991 992 bool contiguous; 993 994 CACHELINE_PADDING(_pad3_); 995 /* Zone statistics */ 996 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 997 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; 998} ____cacheline_internodealigned_in_smp; 999 1000enum pgdat_flags { 1001 PGDAT_DIRTY, /* reclaim scanning has recently found 1002 * many dirty file pages at the tail 1003 * of the LRU. 1004 */ 1005 PGDAT_WRITEBACK, /* reclaim scanning has recently found 1006 * many pages under writeback 1007 */ 1008 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 1009}; 1010 1011enum zone_flags { 1012 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks. 1013 * Cleared when kswapd is woken. 1014 */ 1015 ZONE_RECLAIM_ACTIVE, /* kswapd may be scanning the zone. */ 1016 ZONE_BELOW_HIGH, /* zone is below high watermark. */ 1017}; 1018 1019static inline unsigned long wmark_pages(const struct zone *z, 1020 enum zone_watermarks w) 1021{ 1022 return z->_watermark[w] + z->watermark_boost; 1023} 1024 1025static inline unsigned long min_wmark_pages(const struct zone *z) 1026{ 1027 return wmark_pages(z, WMARK_MIN); 1028} 1029 1030static inline unsigned long low_wmark_pages(const struct zone *z) 1031{ 1032 return wmark_pages(z, WMARK_LOW); 1033} 1034 1035static inline unsigned long high_wmark_pages(const struct zone *z) 1036{ 1037 return wmark_pages(z, WMARK_HIGH); 1038} 1039 1040static inline unsigned long promo_wmark_pages(const struct zone *z) 1041{ 1042 return wmark_pages(z, WMARK_PROMO); 1043} 1044 1045static inline unsigned long zone_managed_pages(struct zone *zone) 1046{ 1047 return (unsigned long)atomic_long_read(&zone->managed_pages); 1048} 1049 1050static inline unsigned long zone_cma_pages(struct zone *zone) 1051{ 1052#ifdef CONFIG_CMA 1053 return zone->cma_pages; 1054#else 1055 return 0; 1056#endif 1057} 1058 1059static inline unsigned long zone_end_pfn(const struct zone *zone) 1060{ 1061 return zone->zone_start_pfn + zone->spanned_pages; 1062} 1063 1064static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) 1065{ 1066 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); 1067} 1068 1069static inline bool zone_is_initialized(struct zone *zone) 1070{ 1071 return zone->initialized; 1072} 1073 1074static inline bool zone_is_empty(struct zone *zone) 1075{ 1076 return zone->spanned_pages == 0; 1077} 1078 1079#ifndef BUILD_VDSO32_64 1080/* 1081 * The zone field is never updated after free_area_init_core() 1082 * sets it, so none of the operations on it need to be atomic. 1083 */ 1084 1085/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 1086#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 1087#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 1088#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 1089#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 1090#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 1091#define LRU_GEN_PGOFF (KASAN_TAG_PGOFF - LRU_GEN_WIDTH) 1092#define LRU_REFS_PGOFF (LRU_GEN_PGOFF - LRU_REFS_WIDTH) 1093 1094/* 1095 * Define the bit shifts to access each section. For non-existent 1096 * sections we define the shift as 0; that plus a 0 mask ensures 1097 * the compiler will optimise away reference to them. 1098 */ 1099#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 1100#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 1101#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 1102#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 1103#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 1104 1105/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 1106#ifdef NODE_NOT_IN_PAGE_FLAGS 1107#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 1108#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF) ? \ 1109 SECTIONS_PGOFF : ZONES_PGOFF) 1110#else 1111#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 1112#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF) ? \ 1113 NODES_PGOFF : ZONES_PGOFF) 1114#endif 1115 1116#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 1117 1118#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 1119#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 1120#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 1121#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 1122#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 1123#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 1124 1125static inline enum zone_type page_zonenum(const struct page *page) 1126{ 1127 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT); 1128 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 1129} 1130 1131static inline enum zone_type folio_zonenum(const struct folio *folio) 1132{ 1133 return page_zonenum(&folio->page); 1134} 1135 1136#ifdef CONFIG_ZONE_DEVICE 1137static inline bool is_zone_device_page(const struct page *page) 1138{ 1139 return page_zonenum(page) == ZONE_DEVICE; 1140} 1141 1142/* 1143 * Consecutive zone device pages should not be merged into the same sgl 1144 * or bvec segment with other types of pages or if they belong to different 1145 * pgmaps. Otherwise getting the pgmap of a given segment is not possible 1146 * without scanning the entire segment. This helper returns true either if 1147 * both pages are not zone device pages or both pages are zone device pages 1148 * with the same pgmap. 1149 */ 1150static inline bool zone_device_pages_have_same_pgmap(const struct page *a, 1151 const struct page *b) 1152{ 1153 if (is_zone_device_page(a) != is_zone_device_page(b)) 1154 return false; 1155 if (!is_zone_device_page(a)) 1156 return true; 1157 return a->pgmap == b->pgmap; 1158} 1159 1160extern void memmap_init_zone_device(struct zone *, unsigned long, 1161 unsigned long, struct dev_pagemap *); 1162#else 1163static inline bool is_zone_device_page(const struct page *page) 1164{ 1165 return false; 1166} 1167static inline bool zone_device_pages_have_same_pgmap(const struct page *a, 1168 const struct page *b) 1169{ 1170 return true; 1171} 1172#endif 1173 1174static inline bool folio_is_zone_device(const struct folio *folio) 1175{ 1176 return is_zone_device_page(&folio->page); 1177} 1178 1179static inline bool is_zone_movable_page(const struct page *page) 1180{ 1181 return page_zonenum(page) == ZONE_MOVABLE; 1182} 1183 1184static inline bool folio_is_zone_movable(const struct folio *folio) 1185{ 1186 return folio_zonenum(folio) == ZONE_MOVABLE; 1187} 1188#endif 1189 1190/* 1191 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty 1192 * intersection with the given zone 1193 */ 1194static inline bool zone_intersects(struct zone *zone, 1195 unsigned long start_pfn, unsigned long nr_pages) 1196{ 1197 if (zone_is_empty(zone)) 1198 return false; 1199 if (start_pfn >= zone_end_pfn(zone) || 1200 start_pfn + nr_pages <= zone->zone_start_pfn) 1201 return false; 1202 1203 return true; 1204} 1205 1206/* 1207 * The "priority" of VM scanning is how much of the queues we will scan in one 1208 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 1209 * queues ("queue_length >> 12") during an aging round. 1210 */ 1211#define DEF_PRIORITY 12 1212 1213/* Maximum number of zones on a zonelist */ 1214#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 1215 1216enum { 1217 ZONELIST_FALLBACK, /* zonelist with fallback */ 1218#ifdef CONFIG_NUMA 1219 /* 1220 * The NUMA zonelists are doubled because we need zonelists that 1221 * restrict the allocations to a single node for __GFP_THISNODE. 1222 */ 1223 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */ 1224#endif 1225 MAX_ZONELISTS 1226}; 1227 1228/* 1229 * This struct contains information about a zone in a zonelist. It is stored 1230 * here to avoid dereferences into large structures and lookups of tables 1231 */ 1232struct zoneref { 1233 struct zone *zone; /* Pointer to actual zone */ 1234 int zone_idx; /* zone_idx(zoneref->zone) */ 1235}; 1236 1237/* 1238 * One allocation request operates on a zonelist. A zonelist 1239 * is a list of zones, the first one is the 'goal' of the 1240 * allocation, the other zones are fallback zones, in decreasing 1241 * priority. 1242 * 1243 * To speed the reading of the zonelist, the zonerefs contain the zone index 1244 * of the entry being read. Helper functions to access information given 1245 * a struct zoneref are 1246 * 1247 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 1248 * zonelist_zone_idx() - Return the index of the zone for an entry 1249 * zonelist_node_idx() - Return the index of the node for an entry 1250 */ 1251struct zonelist { 1252 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 1253}; 1254 1255/* 1256 * The array of struct pages for flatmem. 1257 * It must be declared for SPARSEMEM as well because there are configurations 1258 * that rely on that. 1259 */ 1260extern struct page *mem_map; 1261 1262#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1263struct deferred_split { 1264 spinlock_t split_queue_lock; 1265 struct list_head split_queue; 1266 unsigned long split_queue_len; 1267}; 1268#endif 1269 1270#ifdef CONFIG_MEMORY_FAILURE 1271/* 1272 * Per NUMA node memory failure handling statistics. 1273 */ 1274struct memory_failure_stats { 1275 /* 1276 * Number of raw pages poisoned. 1277 * Cases not accounted: memory outside kernel control, offline page, 1278 * arch-specific memory_failure (SGX), hwpoison_filter() filtered 1279 * error events, and unpoison actions from hwpoison_unpoison. 1280 */ 1281 unsigned long total; 1282 /* 1283 * Recovery results of poisoned raw pages handled by memory_failure, 1284 * in sync with mf_result. 1285 * total = ignored + failed + delayed + recovered. 1286 * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted. 1287 */ 1288 unsigned long ignored; 1289 unsigned long failed; 1290 unsigned long delayed; 1291 unsigned long recovered; 1292}; 1293#endif 1294 1295/* 1296 * On NUMA machines, each NUMA node would have a pg_data_t to describe 1297 * it's memory layout. On UMA machines there is a single pglist_data which 1298 * describes the whole memory. 1299 * 1300 * Memory statistics and page replacement data structures are maintained on a 1301 * per-zone basis. 1302 */ 1303typedef struct pglist_data { 1304 /* 1305 * node_zones contains just the zones for THIS node. Not all of the 1306 * zones may be populated, but it is the full list. It is referenced by 1307 * this node's node_zonelists as well as other node's node_zonelists. 1308 */ 1309 struct zone node_zones[MAX_NR_ZONES]; 1310 1311 /* 1312 * node_zonelists contains references to all zones in all nodes. 1313 * Generally the first zones will be references to this node's 1314 * node_zones. 1315 */ 1316 struct zonelist node_zonelists[MAX_ZONELISTS]; 1317 1318 int nr_zones; /* number of populated zones in this node */ 1319#ifdef CONFIG_FLATMEM /* means !SPARSEMEM */ 1320 struct page *node_mem_map; 1321#ifdef CONFIG_PAGE_EXTENSION 1322 struct page_ext *node_page_ext; 1323#endif 1324#endif 1325#if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT) 1326 /* 1327 * Must be held any time you expect node_start_pfn, 1328 * node_present_pages, node_spanned_pages or nr_zones to stay constant. 1329 * Also synchronizes pgdat->first_deferred_pfn during deferred page 1330 * init. 1331 * 1332 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to 1333 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG 1334 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT. 1335 * 1336 * Nests above zone->lock and zone->span_seqlock 1337 */ 1338 spinlock_t node_size_lock; 1339#endif 1340 unsigned long node_start_pfn; 1341 unsigned long node_present_pages; /* total number of physical pages */ 1342 unsigned long node_spanned_pages; /* total size of physical page 1343 range, including holes */ 1344 int node_id; 1345 wait_queue_head_t kswapd_wait; 1346 wait_queue_head_t pfmemalloc_wait; 1347 1348 /* workqueues for throttling reclaim for different reasons. */ 1349 wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE]; 1350 1351 atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */ 1352 unsigned long nr_reclaim_start; /* nr pages written while throttled 1353 * when throttling started. */ 1354#ifdef CONFIG_MEMORY_HOTPLUG 1355 struct mutex kswapd_lock; 1356#endif 1357 struct task_struct *kswapd; /* Protected by kswapd_lock */ 1358 int kswapd_order; 1359 enum zone_type kswapd_highest_zoneidx; 1360 1361 int kswapd_failures; /* Number of 'reclaimed == 0' runs */ 1362 1363#ifdef CONFIG_COMPACTION 1364 int kcompactd_max_order; 1365 enum zone_type kcompactd_highest_zoneidx; 1366 wait_queue_head_t kcompactd_wait; 1367 struct task_struct *kcompactd; 1368 bool proactive_compact_trigger; 1369#endif 1370 /* 1371 * This is a per-node reserve of pages that are not available 1372 * to userspace allocations. 1373 */ 1374 unsigned long totalreserve_pages; 1375 1376#ifdef CONFIG_NUMA 1377 /* 1378 * node reclaim becomes active if more unmapped pages exist. 1379 */ 1380 unsigned long min_unmapped_pages; 1381 unsigned long min_slab_pages; 1382#endif /* CONFIG_NUMA */ 1383 1384 /* Write-intensive fields used by page reclaim */ 1385 CACHELINE_PADDING(_pad1_); 1386 1387#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1388 /* 1389 * If memory initialisation on large machines is deferred then this 1390 * is the first PFN that needs to be initialised. 1391 */ 1392 unsigned long first_deferred_pfn; 1393#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1394 1395#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1396 struct deferred_split deferred_split_queue; 1397#endif 1398 1399#ifdef CONFIG_NUMA_BALANCING 1400 /* start time in ms of current promote rate limit period */ 1401 unsigned int nbp_rl_start; 1402 /* number of promote candidate pages at start time of current rate limit period */ 1403 unsigned long nbp_rl_nr_cand; 1404 /* promote threshold in ms */ 1405 unsigned int nbp_threshold; 1406 /* start time in ms of current promote threshold adjustment period */ 1407 unsigned int nbp_th_start; 1408 /* 1409 * number of promote candidate pages at start time of current promote 1410 * threshold adjustment period 1411 */ 1412 unsigned long nbp_th_nr_cand; 1413#endif 1414 /* Fields commonly accessed by the page reclaim scanner */ 1415 1416 /* 1417 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED. 1418 * 1419 * Use mem_cgroup_lruvec() to look up lruvecs. 1420 */ 1421 struct lruvec __lruvec; 1422 1423 unsigned long flags; 1424 1425#ifdef CONFIG_LRU_GEN 1426 /* kswap mm walk data */ 1427 struct lru_gen_mm_walk mm_walk; 1428 /* lru_gen_folio list */ 1429 struct lru_gen_memcg memcg_lru; 1430#endif 1431 1432 CACHELINE_PADDING(_pad2_); 1433 1434 /* Per-node vmstats */ 1435 struct per_cpu_nodestat __percpu *per_cpu_nodestats; 1436 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS]; 1437#ifdef CONFIG_NUMA 1438 struct memory_tier __rcu *memtier; 1439#endif 1440#ifdef CONFIG_MEMORY_FAILURE 1441 struct memory_failure_stats mf_stats; 1442#endif 1443} pg_data_t; 1444 1445#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 1446#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 1447 1448#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 1449#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) 1450 1451static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) 1452{ 1453 return pgdat->node_start_pfn + pgdat->node_spanned_pages; 1454} 1455 1456#include <linux/memory_hotplug.h> 1457 1458void build_all_zonelists(pg_data_t *pgdat); 1459void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order, 1460 enum zone_type highest_zoneidx); 1461bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 1462 int highest_zoneidx, unsigned int alloc_flags, 1463 long free_pages); 1464bool zone_watermark_ok(struct zone *z, unsigned int order, 1465 unsigned long mark, int highest_zoneidx, 1466 unsigned int alloc_flags); 1467bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 1468 unsigned long mark, int highest_zoneidx); 1469/* 1470 * Memory initialization context, use to differentiate memory added by 1471 * the platform statically or via memory hotplug interface. 1472 */ 1473enum meminit_context { 1474 MEMINIT_EARLY, 1475 MEMINIT_HOTPLUG, 1476}; 1477 1478extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 1479 unsigned long size); 1480 1481extern void lruvec_init(struct lruvec *lruvec); 1482 1483static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec) 1484{ 1485#ifdef CONFIG_MEMCG 1486 return lruvec->pgdat; 1487#else 1488 return container_of(lruvec, struct pglist_data, __lruvec); 1489#endif 1490} 1491 1492#ifdef CONFIG_HAVE_MEMORYLESS_NODES 1493int local_memory_node(int node_id); 1494#else 1495static inline int local_memory_node(int node_id) { return node_id; }; 1496#endif 1497 1498/* 1499 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 1500 */ 1501#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 1502 1503#ifdef CONFIG_ZONE_DEVICE 1504static inline bool zone_is_zone_device(struct zone *zone) 1505{ 1506 return zone_idx(zone) == ZONE_DEVICE; 1507} 1508#else 1509static inline bool zone_is_zone_device(struct zone *zone) 1510{ 1511 return false; 1512} 1513#endif 1514 1515/* 1516 * Returns true if a zone has pages managed by the buddy allocator. 1517 * All the reclaim decisions have to use this function rather than 1518 * populated_zone(). If the whole zone is reserved then we can easily 1519 * end up with populated_zone() && !managed_zone(). 1520 */ 1521static inline bool managed_zone(struct zone *zone) 1522{ 1523 return zone_managed_pages(zone); 1524} 1525 1526/* Returns true if a zone has memory */ 1527static inline bool populated_zone(struct zone *zone) 1528{ 1529 return zone->present_pages; 1530} 1531 1532#ifdef CONFIG_NUMA 1533static inline int zone_to_nid(struct zone *zone) 1534{ 1535 return zone->node; 1536} 1537 1538static inline void zone_set_nid(struct zone *zone, int nid) 1539{ 1540 zone->node = nid; 1541} 1542#else 1543static inline int zone_to_nid(struct zone *zone) 1544{ 1545 return 0; 1546} 1547 1548static inline void zone_set_nid(struct zone *zone, int nid) {} 1549#endif 1550 1551extern int movable_zone; 1552 1553static inline int is_highmem_idx(enum zone_type idx) 1554{ 1555#ifdef CONFIG_HIGHMEM 1556 return (idx == ZONE_HIGHMEM || 1557 (idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM)); 1558#else 1559 return 0; 1560#endif 1561} 1562 1563/** 1564 * is_highmem - helper function to quickly check if a struct zone is a 1565 * highmem zone or not. This is an attempt to keep references 1566 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 1567 * @zone: pointer to struct zone variable 1568 * Return: 1 for a highmem zone, 0 otherwise 1569 */ 1570static inline int is_highmem(struct zone *zone) 1571{ 1572 return is_highmem_idx(zone_idx(zone)); 1573} 1574 1575#ifdef CONFIG_ZONE_DMA 1576bool has_managed_dma(void); 1577#else 1578static inline bool has_managed_dma(void) 1579{ 1580 return false; 1581} 1582#endif 1583 1584 1585#ifndef CONFIG_NUMA 1586 1587extern struct pglist_data contig_page_data; 1588static inline struct pglist_data *NODE_DATA(int nid) 1589{ 1590 return &contig_page_data; 1591} 1592 1593#else /* CONFIG_NUMA */ 1594 1595#include <asm/mmzone.h> 1596 1597#endif /* !CONFIG_NUMA */ 1598 1599extern struct pglist_data *first_online_pgdat(void); 1600extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 1601extern struct zone *next_zone(struct zone *zone); 1602 1603/** 1604 * for_each_online_pgdat - helper macro to iterate over all online nodes 1605 * @pgdat: pointer to a pg_data_t variable 1606 */ 1607#define for_each_online_pgdat(pgdat) \ 1608 for (pgdat = first_online_pgdat(); \ 1609 pgdat; \ 1610 pgdat = next_online_pgdat(pgdat)) 1611/** 1612 * for_each_zone - helper macro to iterate over all memory zones 1613 * @zone: pointer to struct zone variable 1614 * 1615 * The user only needs to declare the zone variable, for_each_zone 1616 * fills it in. 1617 */ 1618#define for_each_zone(zone) \ 1619 for (zone = (first_online_pgdat())->node_zones; \ 1620 zone; \ 1621 zone = next_zone(zone)) 1622 1623#define for_each_populated_zone(zone) \ 1624 for (zone = (first_online_pgdat())->node_zones; \ 1625 zone; \ 1626 zone = next_zone(zone)) \ 1627 if (!populated_zone(zone)) \ 1628 ; /* do nothing */ \ 1629 else 1630 1631static inline struct zone *zonelist_zone(struct zoneref *zoneref) 1632{ 1633 return zoneref->zone; 1634} 1635 1636static inline int zonelist_zone_idx(struct zoneref *zoneref) 1637{ 1638 return zoneref->zone_idx; 1639} 1640 1641static inline int zonelist_node_idx(struct zoneref *zoneref) 1642{ 1643 return zone_to_nid(zoneref->zone); 1644} 1645 1646struct zoneref *__next_zones_zonelist(struct zoneref *z, 1647 enum zone_type highest_zoneidx, 1648 nodemask_t *nodes); 1649 1650/** 1651 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 1652 * @z: The cursor used as a starting point for the search 1653 * @highest_zoneidx: The zone index of the highest zone to return 1654 * @nodes: An optional nodemask to filter the zonelist with 1655 * 1656 * This function returns the next zone at or below a given zone index that is 1657 * within the allowed nodemask using a cursor as the starting point for the 1658 * search. The zoneref returned is a cursor that represents the current zone 1659 * being examined. It should be advanced by one before calling 1660 * next_zones_zonelist again. 1661 * 1662 * Return: the next zone at or below highest_zoneidx within the allowed 1663 * nodemask using a cursor within a zonelist as a starting point 1664 */ 1665static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z, 1666 enum zone_type highest_zoneidx, 1667 nodemask_t *nodes) 1668{ 1669 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx)) 1670 return z; 1671 return __next_zones_zonelist(z, highest_zoneidx, nodes); 1672} 1673 1674/** 1675 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 1676 * @zonelist: The zonelist to search for a suitable zone 1677 * @highest_zoneidx: The zone index of the highest zone to return 1678 * @nodes: An optional nodemask to filter the zonelist with 1679 * 1680 * This function returns the first zone at or below a given zone index that is 1681 * within the allowed nodemask. The zoneref returned is a cursor that can be 1682 * used to iterate the zonelist with next_zones_zonelist by advancing it by 1683 * one before calling. 1684 * 1685 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is 1686 * never NULL). This may happen either genuinely, or due to concurrent nodemask 1687 * update due to cpuset modification. 1688 * 1689 * Return: Zoneref pointer for the first suitable zone found 1690 */ 1691static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 1692 enum zone_type highest_zoneidx, 1693 nodemask_t *nodes) 1694{ 1695 return next_zones_zonelist(zonelist->_zonerefs, 1696 highest_zoneidx, nodes); 1697} 1698 1699/** 1700 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 1701 * @zone: The current zone in the iterator 1702 * @z: The current pointer within zonelist->_zonerefs being iterated 1703 * @zlist: The zonelist being iterated 1704 * @highidx: The zone index of the highest zone to return 1705 * @nodemask: Nodemask allowed by the allocator 1706 * 1707 * This iterator iterates though all zones at or below a given zone index and 1708 * within a given nodemask 1709 */ 1710#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1711 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \ 1712 zone; \ 1713 z = next_zones_zonelist(++z, highidx, nodemask), \ 1714 zone = zonelist_zone(z)) 1715 1716#define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \ 1717 for (zone = zonelist_zone(z); \ 1718 zone; \ 1719 z = next_zones_zonelist(++z, highidx, nodemask), \ 1720 zone = zonelist_zone(z)) 1721 1722 1723/** 1724 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 1725 * @zone: The current zone in the iterator 1726 * @z: The current pointer within zonelist->zones being iterated 1727 * @zlist: The zonelist being iterated 1728 * @highidx: The zone index of the highest zone to return 1729 * 1730 * This iterator iterates though all zones at or below a given zone index. 1731 */ 1732#define for_each_zone_zonelist(zone, z, zlist, highidx) \ 1733 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 1734 1735/* Whether the 'nodes' are all movable nodes */ 1736static inline bool movable_only_nodes(nodemask_t *nodes) 1737{ 1738 struct zonelist *zonelist; 1739 struct zoneref *z; 1740 int nid; 1741 1742 if (nodes_empty(*nodes)) 1743 return false; 1744 1745 /* 1746 * We can chose arbitrary node from the nodemask to get a 1747 * zonelist as they are interlinked. We just need to find 1748 * at least one zone that can satisfy kernel allocations. 1749 */ 1750 nid = first_node(*nodes); 1751 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; 1752 z = first_zones_zonelist(zonelist, ZONE_NORMAL, nodes); 1753 return (!zonelist_zone(z)) ? true : false; 1754} 1755 1756 1757#ifdef CONFIG_SPARSEMEM 1758#include <asm/sparsemem.h> 1759#endif 1760 1761#ifdef CONFIG_FLATMEM 1762#define pfn_to_nid(pfn) (0) 1763#endif 1764 1765#ifdef CONFIG_SPARSEMEM 1766 1767/* 1768 * PA_SECTION_SHIFT physical address to/from section number 1769 * PFN_SECTION_SHIFT pfn to/from section number 1770 */ 1771#define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1772#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1773 1774#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1775 1776#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1777#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1778 1779#define SECTION_BLOCKFLAGS_BITS \ 1780 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1781 1782#if (MAX_PAGE_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS 1783#error Allocator MAX_PAGE_ORDER exceeds SECTION_SIZE 1784#endif 1785 1786static inline unsigned long pfn_to_section_nr(unsigned long pfn) 1787{ 1788 return pfn >> PFN_SECTION_SHIFT; 1789} 1790static inline unsigned long section_nr_to_pfn(unsigned long sec) 1791{ 1792 return sec << PFN_SECTION_SHIFT; 1793} 1794 1795#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1796#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1797 1798#define SUBSECTION_SHIFT 21 1799#define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT) 1800 1801#define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT) 1802#define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT) 1803#define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1)) 1804 1805#if SUBSECTION_SHIFT > SECTION_SIZE_BITS 1806#error Subsection size exceeds section size 1807#else 1808#define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT)) 1809#endif 1810 1811#define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION) 1812#define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK) 1813 1814struct mem_section_usage { 1815 struct rcu_head rcu; 1816#ifdef CONFIG_SPARSEMEM_VMEMMAP 1817 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION); 1818#endif 1819 /* See declaration of similar field in struct zone */ 1820 unsigned long pageblock_flags[0]; 1821}; 1822 1823void subsection_map_init(unsigned long pfn, unsigned long nr_pages); 1824 1825struct page; 1826struct page_ext; 1827struct mem_section { 1828 /* 1829 * This is, logically, a pointer to an array of struct 1830 * pages. However, it is stored with some other magic. 1831 * (see sparse.c::sparse_init_one_section()) 1832 * 1833 * Additionally during early boot we encode node id of 1834 * the location of the section here to guide allocation. 1835 * (see sparse.c::memory_present()) 1836 * 1837 * Making it a UL at least makes someone do a cast 1838 * before using it wrong. 1839 */ 1840 unsigned long section_mem_map; 1841 1842 struct mem_section_usage *usage; 1843#ifdef CONFIG_PAGE_EXTENSION 1844 /* 1845 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use 1846 * section. (see page_ext.h about this.) 1847 */ 1848 struct page_ext *page_ext; 1849 unsigned long pad; 1850#endif 1851 /* 1852 * WARNING: mem_section must be a power-of-2 in size for the 1853 * calculation and use of SECTION_ROOT_MASK to make sense. 1854 */ 1855}; 1856 1857#ifdef CONFIG_SPARSEMEM_EXTREME 1858#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1859#else 1860#define SECTIONS_PER_ROOT 1 1861#endif 1862 1863#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1864#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1865#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1866 1867#ifdef CONFIG_SPARSEMEM_EXTREME 1868extern struct mem_section **mem_section; 1869#else 1870extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1871#endif 1872 1873static inline unsigned long *section_to_usemap(struct mem_section *ms) 1874{ 1875 return ms->usage->pageblock_flags; 1876} 1877 1878static inline struct mem_section *__nr_to_section(unsigned long nr) 1879{ 1880 unsigned long root = SECTION_NR_TO_ROOT(nr); 1881 1882 if (unlikely(root >= NR_SECTION_ROOTS)) 1883 return NULL; 1884 1885#ifdef CONFIG_SPARSEMEM_EXTREME 1886 if (!mem_section || !mem_section[root]) 1887 return NULL; 1888#endif 1889 return &mem_section[root][nr & SECTION_ROOT_MASK]; 1890} 1891extern size_t mem_section_usage_size(void); 1892 1893/* 1894 * We use the lower bits of the mem_map pointer to store 1895 * a little bit of information. The pointer is calculated 1896 * as mem_map - section_nr_to_pfn(pnum). The result is 1897 * aligned to the minimum alignment of the two values: 1898 * 1. All mem_map arrays are page-aligned. 1899 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT 1900 * lowest bits. PFN_SECTION_SHIFT is arch-specific 1901 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the 1902 * worst combination is powerpc with 256k pages, 1903 * which results in PFN_SECTION_SHIFT equal 6. 1904 * To sum it up, at least 6 bits are available on all architectures. 1905 * However, we can exceed 6 bits on some other architectures except 1906 * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available 1907 * with the worst case of 64K pages on arm64) if we make sure the 1908 * exceeded bit is not applicable to powerpc. 1909 */ 1910enum { 1911 SECTION_MARKED_PRESENT_BIT, 1912 SECTION_HAS_MEM_MAP_BIT, 1913 SECTION_IS_ONLINE_BIT, 1914 SECTION_IS_EARLY_BIT, 1915#ifdef CONFIG_ZONE_DEVICE 1916 SECTION_TAINT_ZONE_DEVICE_BIT, 1917#endif 1918 SECTION_MAP_LAST_BIT, 1919}; 1920 1921#define SECTION_MARKED_PRESENT BIT(SECTION_MARKED_PRESENT_BIT) 1922#define SECTION_HAS_MEM_MAP BIT(SECTION_HAS_MEM_MAP_BIT) 1923#define SECTION_IS_ONLINE BIT(SECTION_IS_ONLINE_BIT) 1924#define SECTION_IS_EARLY BIT(SECTION_IS_EARLY_BIT) 1925#ifdef CONFIG_ZONE_DEVICE 1926#define SECTION_TAINT_ZONE_DEVICE BIT(SECTION_TAINT_ZONE_DEVICE_BIT) 1927#endif 1928#define SECTION_MAP_MASK (~(BIT(SECTION_MAP_LAST_BIT) - 1)) 1929#define SECTION_NID_SHIFT SECTION_MAP_LAST_BIT 1930 1931static inline struct page *__section_mem_map_addr(struct mem_section *section) 1932{ 1933 unsigned long map = section->section_mem_map; 1934 map &= SECTION_MAP_MASK; 1935 return (struct page *)map; 1936} 1937 1938static inline int present_section(struct mem_section *section) 1939{ 1940 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1941} 1942 1943static inline int present_section_nr(unsigned long nr) 1944{ 1945 return present_section(__nr_to_section(nr)); 1946} 1947 1948static inline int valid_section(struct mem_section *section) 1949{ 1950 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1951} 1952 1953static inline int early_section(struct mem_section *section) 1954{ 1955 return (section && (section->section_mem_map & SECTION_IS_EARLY)); 1956} 1957 1958static inline int valid_section_nr(unsigned long nr) 1959{ 1960 return valid_section(__nr_to_section(nr)); 1961} 1962 1963static inline int online_section(struct mem_section *section) 1964{ 1965 return (section && (section->section_mem_map & SECTION_IS_ONLINE)); 1966} 1967 1968#ifdef CONFIG_ZONE_DEVICE 1969static inline int online_device_section(struct mem_section *section) 1970{ 1971 unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE; 1972 1973 return section && ((section->section_mem_map & flags) == flags); 1974} 1975#else 1976static inline int online_device_section(struct mem_section *section) 1977{ 1978 return 0; 1979} 1980#endif 1981 1982static inline int online_section_nr(unsigned long nr) 1983{ 1984 return online_section(__nr_to_section(nr)); 1985} 1986 1987#ifdef CONFIG_MEMORY_HOTPLUG 1988void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1989void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1990#endif 1991 1992static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1993{ 1994 return __nr_to_section(pfn_to_section_nr(pfn)); 1995} 1996 1997extern unsigned long __highest_present_section_nr; 1998 1999static inline int subsection_map_index(unsigned long pfn) 2000{ 2001 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION; 2002} 2003 2004#ifdef CONFIG_SPARSEMEM_VMEMMAP 2005static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 2006{ 2007 int idx = subsection_map_index(pfn); 2008 struct mem_section_usage *usage = READ_ONCE(ms->usage); 2009 2010 return usage ? test_bit(idx, usage->subsection_map) : 0; 2011} 2012#else 2013static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 2014{ 2015 return 1; 2016} 2017#endif 2018 2019#ifndef CONFIG_HAVE_ARCH_PFN_VALID 2020/** 2021 * pfn_valid - check if there is a valid memory map entry for a PFN 2022 * @pfn: the page frame number to check 2023 * 2024 * Check if there is a valid memory map entry aka struct page for the @pfn. 2025 * Note, that availability of the memory map entry does not imply that 2026 * there is actual usable memory at that @pfn. The struct page may 2027 * represent a hole or an unusable page frame. 2028 * 2029 * Return: 1 for PFNs that have memory map entries and 0 otherwise 2030 */ 2031static inline int pfn_valid(unsigned long pfn) 2032{ 2033 struct mem_section *ms; 2034 int ret; 2035 2036 /* 2037 * Ensure the upper PAGE_SHIFT bits are clear in the 2038 * pfn. Else it might lead to false positives when 2039 * some of the upper bits are set, but the lower bits 2040 * match a valid pfn. 2041 */ 2042 if (PHYS_PFN(PFN_PHYS(pfn)) != pfn) 2043 return 0; 2044 2045 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 2046 return 0; 2047 ms = __pfn_to_section(pfn); 2048 rcu_read_lock_sched(); 2049 if (!valid_section(ms)) { 2050 rcu_read_unlock_sched(); 2051 return 0; 2052 } 2053 /* 2054 * Traditionally early sections always returned pfn_valid() for 2055 * the entire section-sized span. 2056 */ 2057 ret = early_section(ms) || pfn_section_valid(ms, pfn); 2058 rcu_read_unlock_sched(); 2059 2060 return ret; 2061} 2062#endif 2063 2064static inline int pfn_in_present_section(unsigned long pfn) 2065{ 2066 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 2067 return 0; 2068 return present_section(__pfn_to_section(pfn)); 2069} 2070 2071static inline unsigned long next_present_section_nr(unsigned long section_nr) 2072{ 2073 while (++section_nr <= __highest_present_section_nr) { 2074 if (present_section_nr(section_nr)) 2075 return section_nr; 2076 } 2077 2078 return -1; 2079} 2080 2081/* 2082 * These are _only_ used during initialisation, therefore they 2083 * can use __initdata ... They could have names to indicate 2084 * this restriction. 2085 */ 2086#ifdef CONFIG_NUMA 2087#define pfn_to_nid(pfn) \ 2088({ \ 2089 unsigned long __pfn_to_nid_pfn = (pfn); \ 2090 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 2091}) 2092#else 2093#define pfn_to_nid(pfn) (0) 2094#endif 2095 2096void sparse_init(void); 2097#else 2098#define sparse_init() do {} while (0) 2099#define sparse_index_init(_sec, _nid) do {} while (0) 2100#define pfn_in_present_section pfn_valid 2101#define subsection_map_init(_pfn, _nr_pages) do {} while (0) 2102#endif /* CONFIG_SPARSEMEM */ 2103 2104#endif /* !__GENERATING_BOUNDS.H */ 2105#endif /* !__ASSEMBLY__ */ 2106#endif /* _LINUX_MMZONE_H */