Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MMZONE_H
3#define _LINUX_MMZONE_H
4
5#ifndef __ASSEMBLY__
6#ifndef __GENERATING_BOUNDS_H
7
8#include <linux/spinlock.h>
9#include <linux/list.h>
10#include <linux/list_nulls.h>
11#include <linux/wait.h>
12#include <linux/bitops.h>
13#include <linux/cache.h>
14#include <linux/threads.h>
15#include <linux/numa.h>
16#include <linux/init.h>
17#include <linux/seqlock.h>
18#include <linux/nodemask.h>
19#include <linux/pageblock-flags.h>
20#include <linux/page-flags-layout.h>
21#include <linux/atomic.h>
22#include <linux/mm_types.h>
23#include <linux/page-flags.h>
24#include <linux/local_lock.h>
25#include <linux/zswap.h>
26#include <asm/page.h>
27
28/* Free memory management - zoned buddy allocator. */
29#ifndef CONFIG_ARCH_FORCE_MAX_ORDER
30#define MAX_PAGE_ORDER 10
31#else
32#define MAX_PAGE_ORDER CONFIG_ARCH_FORCE_MAX_ORDER
33#endif
34#define MAX_ORDER_NR_PAGES (1 << MAX_PAGE_ORDER)
35
36#define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES)
37
38#define NR_PAGE_ORDERS (MAX_PAGE_ORDER + 1)
39
40/*
41 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
42 * costly to service. That is between allocation orders which should
43 * coalesce naturally under reasonable reclaim pressure and those which
44 * will not.
45 */
46#define PAGE_ALLOC_COSTLY_ORDER 3
47
48enum migratetype {
49 MIGRATE_UNMOVABLE,
50 MIGRATE_MOVABLE,
51 MIGRATE_RECLAIMABLE,
52 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
53 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
54#ifdef CONFIG_CMA
55 /*
56 * MIGRATE_CMA migration type is designed to mimic the way
57 * ZONE_MOVABLE works. Only movable pages can be allocated
58 * from MIGRATE_CMA pageblocks and page allocator never
59 * implicitly change migration type of MIGRATE_CMA pageblock.
60 *
61 * The way to use it is to change migratetype of a range of
62 * pageblocks to MIGRATE_CMA which can be done by
63 * __free_pageblock_cma() function.
64 */
65 MIGRATE_CMA,
66#endif
67#ifdef CONFIG_MEMORY_ISOLATION
68 MIGRATE_ISOLATE, /* can't allocate from here */
69#endif
70 MIGRATE_TYPES
71};
72
73/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
74extern const char * const migratetype_names[MIGRATE_TYPES];
75
76#ifdef CONFIG_CMA
77# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
78# define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
79# define is_migrate_cma_folio(folio, pfn) (MIGRATE_CMA == \
80 get_pfnblock_flags_mask(&folio->page, pfn, MIGRATETYPE_MASK))
81#else
82# define is_migrate_cma(migratetype) false
83# define is_migrate_cma_page(_page) false
84# define is_migrate_cma_folio(folio, pfn) false
85#endif
86
87static inline bool is_migrate_movable(int mt)
88{
89 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
90}
91
92/*
93 * Check whether a migratetype can be merged with another migratetype.
94 *
95 * It is only mergeable when it can fall back to other migratetypes for
96 * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c.
97 */
98static inline bool migratetype_is_mergeable(int mt)
99{
100 return mt < MIGRATE_PCPTYPES;
101}
102
103#define for_each_migratetype_order(order, type) \
104 for (order = 0; order < NR_PAGE_ORDERS; order++) \
105 for (type = 0; type < MIGRATE_TYPES; type++)
106
107extern int page_group_by_mobility_disabled;
108
109#define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
110
111#define get_pageblock_migratetype(page) \
112 get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
113
114#define folio_migratetype(folio) \
115 get_pfnblock_flags_mask(&folio->page, folio_pfn(folio), \
116 MIGRATETYPE_MASK)
117struct free_area {
118 struct list_head free_list[MIGRATE_TYPES];
119 unsigned long nr_free;
120};
121
122struct pglist_data;
123
124#ifdef CONFIG_NUMA
125enum numa_stat_item {
126 NUMA_HIT, /* allocated in intended node */
127 NUMA_MISS, /* allocated in non intended node */
128 NUMA_FOREIGN, /* was intended here, hit elsewhere */
129 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
130 NUMA_LOCAL, /* allocation from local node */
131 NUMA_OTHER, /* allocation from other node */
132 NR_VM_NUMA_EVENT_ITEMS
133};
134#else
135#define NR_VM_NUMA_EVENT_ITEMS 0
136#endif
137
138enum zone_stat_item {
139 /* First 128 byte cacheline (assuming 64 bit words) */
140 NR_FREE_PAGES,
141 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
142 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
143 NR_ZONE_ACTIVE_ANON,
144 NR_ZONE_INACTIVE_FILE,
145 NR_ZONE_ACTIVE_FILE,
146 NR_ZONE_UNEVICTABLE,
147 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
148 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
149 /* Second 128 byte cacheline */
150 NR_BOUNCE,
151#if IS_ENABLED(CONFIG_ZSMALLOC)
152 NR_ZSPAGES, /* allocated in zsmalloc */
153#endif
154 NR_FREE_CMA_PAGES,
155#ifdef CONFIG_UNACCEPTED_MEMORY
156 NR_UNACCEPTED,
157#endif
158 NR_VM_ZONE_STAT_ITEMS };
159
160enum node_stat_item {
161 NR_LRU_BASE,
162 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
163 NR_ACTIVE_ANON, /* " " " " " */
164 NR_INACTIVE_FILE, /* " " " " " */
165 NR_ACTIVE_FILE, /* " " " " " */
166 NR_UNEVICTABLE, /* " " " " " */
167 NR_SLAB_RECLAIMABLE_B,
168 NR_SLAB_UNRECLAIMABLE_B,
169 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
170 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
171 WORKINGSET_NODES,
172 WORKINGSET_REFAULT_BASE,
173 WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
174 WORKINGSET_REFAULT_FILE,
175 WORKINGSET_ACTIVATE_BASE,
176 WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
177 WORKINGSET_ACTIVATE_FILE,
178 WORKINGSET_RESTORE_BASE,
179 WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
180 WORKINGSET_RESTORE_FILE,
181 WORKINGSET_NODERECLAIM,
182 NR_ANON_MAPPED, /* Mapped anonymous pages */
183 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
184 only modified from process context */
185 NR_FILE_PAGES,
186 NR_FILE_DIRTY,
187 NR_WRITEBACK,
188 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
189 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
190 NR_SHMEM_THPS,
191 NR_SHMEM_PMDMAPPED,
192 NR_FILE_THPS,
193 NR_FILE_PMDMAPPED,
194 NR_ANON_THPS,
195 NR_VMSCAN_WRITE,
196 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
197 NR_DIRTIED, /* page dirtyings since bootup */
198 NR_WRITTEN, /* page writings since bootup */
199 NR_THROTTLED_WRITTEN, /* NR_WRITTEN while reclaim throttled */
200 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */
201 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */
202 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */
203 NR_KERNEL_STACK_KB, /* measured in KiB */
204#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
205 NR_KERNEL_SCS_KB, /* measured in KiB */
206#endif
207 NR_PAGETABLE, /* used for pagetables */
208 NR_SECONDARY_PAGETABLE, /* secondary pagetables, KVM & IOMMU */
209#ifdef CONFIG_IOMMU_SUPPORT
210 NR_IOMMU_PAGES, /* # of pages allocated by IOMMU */
211#endif
212#ifdef CONFIG_SWAP
213 NR_SWAPCACHE,
214#endif
215#ifdef CONFIG_NUMA_BALANCING
216 PGPROMOTE_SUCCESS, /* promote successfully */
217 PGPROMOTE_CANDIDATE, /* candidate pages to promote */
218#endif
219 /* PGDEMOTE_*: pages demoted */
220 PGDEMOTE_KSWAPD,
221 PGDEMOTE_DIRECT,
222 PGDEMOTE_KHUGEPAGED,
223#ifdef CONFIG_HUGETLB_PAGE
224 NR_HUGETLB,
225#endif
226 NR_VM_NODE_STAT_ITEMS
227};
228
229/*
230 * Returns true if the item should be printed in THPs (/proc/vmstat
231 * currently prints number of anon, file and shmem THPs. But the item
232 * is charged in pages).
233 */
234static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
235{
236 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
237 return false;
238
239 return item == NR_ANON_THPS ||
240 item == NR_FILE_THPS ||
241 item == NR_SHMEM_THPS ||
242 item == NR_SHMEM_PMDMAPPED ||
243 item == NR_FILE_PMDMAPPED;
244}
245
246/*
247 * Returns true if the value is measured in bytes (most vmstat values are
248 * measured in pages). This defines the API part, the internal representation
249 * might be different.
250 */
251static __always_inline bool vmstat_item_in_bytes(int idx)
252{
253 /*
254 * Global and per-node slab counters track slab pages.
255 * It's expected that changes are multiples of PAGE_SIZE.
256 * Internally values are stored in pages.
257 *
258 * Per-memcg and per-lruvec counters track memory, consumed
259 * by individual slab objects. These counters are actually
260 * byte-precise.
261 */
262 return (idx == NR_SLAB_RECLAIMABLE_B ||
263 idx == NR_SLAB_UNRECLAIMABLE_B);
264}
265
266/*
267 * We do arithmetic on the LRU lists in various places in the code,
268 * so it is important to keep the active lists LRU_ACTIVE higher in
269 * the array than the corresponding inactive lists, and to keep
270 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
271 *
272 * This has to be kept in sync with the statistics in zone_stat_item
273 * above and the descriptions in vmstat_text in mm/vmstat.c
274 */
275#define LRU_BASE 0
276#define LRU_ACTIVE 1
277#define LRU_FILE 2
278
279enum lru_list {
280 LRU_INACTIVE_ANON = LRU_BASE,
281 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
282 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
283 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
284 LRU_UNEVICTABLE,
285 NR_LRU_LISTS
286};
287
288enum vmscan_throttle_state {
289 VMSCAN_THROTTLE_WRITEBACK,
290 VMSCAN_THROTTLE_ISOLATED,
291 VMSCAN_THROTTLE_NOPROGRESS,
292 VMSCAN_THROTTLE_CONGESTED,
293 NR_VMSCAN_THROTTLE,
294};
295
296#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
297
298#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
299
300static inline bool is_file_lru(enum lru_list lru)
301{
302 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
303}
304
305static inline bool is_active_lru(enum lru_list lru)
306{
307 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
308}
309
310#define WORKINGSET_ANON 0
311#define WORKINGSET_FILE 1
312#define ANON_AND_FILE 2
313
314enum lruvec_flags {
315 /*
316 * An lruvec has many dirty pages backed by a congested BDI:
317 * 1. LRUVEC_CGROUP_CONGESTED is set by cgroup-level reclaim.
318 * It can be cleared by cgroup reclaim or kswapd.
319 * 2. LRUVEC_NODE_CONGESTED is set by kswapd node-level reclaim.
320 * It can only be cleared by kswapd.
321 *
322 * Essentially, kswapd can unthrottle an lruvec throttled by cgroup
323 * reclaim, but not vice versa. This only applies to the root cgroup.
324 * The goal is to prevent cgroup reclaim on the root cgroup (e.g.
325 * memory.reclaim) to unthrottle an unbalanced node (that was throttled
326 * by kswapd).
327 */
328 LRUVEC_CGROUP_CONGESTED,
329 LRUVEC_NODE_CONGESTED,
330};
331
332#endif /* !__GENERATING_BOUNDS_H */
333
334/*
335 * Evictable pages are divided into multiple generations. The youngest and the
336 * oldest generation numbers, max_seq and min_seq, are monotonically increasing.
337 * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An
338 * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the
339 * corresponding generation. The gen counter in folio->flags stores gen+1 while
340 * a page is on one of lrugen->folios[]. Otherwise it stores 0.
341 *
342 * A page is added to the youngest generation on faulting. The aging needs to
343 * check the accessed bit at least twice before handing this page over to the
344 * eviction. The first check takes care of the accessed bit set on the initial
345 * fault; the second check makes sure this page hasn't been used since then.
346 * This process, AKA second chance, requires a minimum of two generations,
347 * hence MIN_NR_GENS. And to maintain ABI compatibility with the active/inactive
348 * LRU, e.g., /proc/vmstat, these two generations are considered active; the
349 * rest of generations, if they exist, are considered inactive. See
350 * lru_gen_is_active().
351 *
352 * PG_active is always cleared while a page is on one of lrugen->folios[] so
353 * that the aging needs not to worry about it. And it's set again when a page
354 * considered active is isolated for non-reclaiming purposes, e.g., migration.
355 * See lru_gen_add_folio() and lru_gen_del_folio().
356 *
357 * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the
358 * number of categories of the active/inactive LRU when keeping track of
359 * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits
360 * in folio->flags.
361 */
362#define MIN_NR_GENS 2U
363#define MAX_NR_GENS 4U
364
365/*
366 * Each generation is divided into multiple tiers. A page accessed N times
367 * through file descriptors is in tier order_base_2(N). A page in the first tier
368 * (N=0,1) is marked by PG_referenced unless it was faulted in through page
369 * tables or read ahead. A page in any other tier (N>1) is marked by
370 * PG_referenced and PG_workingset. This implies a minimum of two tiers is
371 * supported without using additional bits in folio->flags.
372 *
373 * In contrast to moving across generations which requires the LRU lock, moving
374 * across tiers only involves atomic operations on folio->flags and therefore
375 * has a negligible cost in the buffered access path. In the eviction path,
376 * comparisons of refaulted/(evicted+protected) from the first tier and the
377 * rest infer whether pages accessed multiple times through file descriptors
378 * are statistically hot and thus worth protecting.
379 *
380 * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the
381 * number of categories of the active/inactive LRU when keeping track of
382 * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in
383 * folio->flags.
384 */
385#define MAX_NR_TIERS 4U
386
387#ifndef __GENERATING_BOUNDS_H
388
389struct lruvec;
390struct page_vma_mapped_walk;
391
392#define LRU_GEN_MASK ((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF)
393#define LRU_REFS_MASK ((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF)
394
395#ifdef CONFIG_LRU_GEN
396
397enum {
398 LRU_GEN_ANON,
399 LRU_GEN_FILE,
400};
401
402enum {
403 LRU_GEN_CORE,
404 LRU_GEN_MM_WALK,
405 LRU_GEN_NONLEAF_YOUNG,
406 NR_LRU_GEN_CAPS
407};
408
409#define LRU_REFS_FLAGS (BIT(PG_referenced) | BIT(PG_workingset))
410
411#define MIN_LRU_BATCH BITS_PER_LONG
412#define MAX_LRU_BATCH (MIN_LRU_BATCH * 64)
413
414/* whether to keep historical stats from evicted generations */
415#ifdef CONFIG_LRU_GEN_STATS
416#define NR_HIST_GENS MAX_NR_GENS
417#else
418#define NR_HIST_GENS 1U
419#endif
420
421/*
422 * The youngest generation number is stored in max_seq for both anon and file
423 * types as they are aged on an equal footing. The oldest generation numbers are
424 * stored in min_seq[] separately for anon and file types as clean file pages
425 * can be evicted regardless of swap constraints.
426 *
427 * Normally anon and file min_seq are in sync. But if swapping is constrained,
428 * e.g., out of swap space, file min_seq is allowed to advance and leave anon
429 * min_seq behind.
430 *
431 * The number of pages in each generation is eventually consistent and therefore
432 * can be transiently negative when reset_batch_size() is pending.
433 */
434struct lru_gen_folio {
435 /* the aging increments the youngest generation number */
436 unsigned long max_seq;
437 /* the eviction increments the oldest generation numbers */
438 unsigned long min_seq[ANON_AND_FILE];
439 /* the birth time of each generation in jiffies */
440 unsigned long timestamps[MAX_NR_GENS];
441 /* the multi-gen LRU lists, lazily sorted on eviction */
442 struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
443 /* the multi-gen LRU sizes, eventually consistent */
444 long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
445 /* the exponential moving average of refaulted */
446 unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS];
447 /* the exponential moving average of evicted+protected */
448 unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS];
449 /* the first tier doesn't need protection, hence the minus one */
450 unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS - 1];
451 /* can be modified without holding the LRU lock */
452 atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
453 atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
454 /* whether the multi-gen LRU is enabled */
455 bool enabled;
456 /* the memcg generation this lru_gen_folio belongs to */
457 u8 gen;
458 /* the list segment this lru_gen_folio belongs to */
459 u8 seg;
460 /* per-node lru_gen_folio list for global reclaim */
461 struct hlist_nulls_node list;
462};
463
464enum {
465 MM_LEAF_TOTAL, /* total leaf entries */
466 MM_LEAF_YOUNG, /* young leaf entries */
467 MM_NONLEAF_FOUND, /* non-leaf entries found in Bloom filters */
468 MM_NONLEAF_ADDED, /* non-leaf entries added to Bloom filters */
469 NR_MM_STATS
470};
471
472/* double-buffering Bloom filters */
473#define NR_BLOOM_FILTERS 2
474
475struct lru_gen_mm_state {
476 /* synced with max_seq after each iteration */
477 unsigned long seq;
478 /* where the current iteration continues after */
479 struct list_head *head;
480 /* where the last iteration ended before */
481 struct list_head *tail;
482 /* Bloom filters flip after each iteration */
483 unsigned long *filters[NR_BLOOM_FILTERS];
484 /* the mm stats for debugging */
485 unsigned long stats[NR_HIST_GENS][NR_MM_STATS];
486};
487
488struct lru_gen_mm_walk {
489 /* the lruvec under reclaim */
490 struct lruvec *lruvec;
491 /* max_seq from lru_gen_folio: can be out of date */
492 unsigned long seq;
493 /* the next address within an mm to scan */
494 unsigned long next_addr;
495 /* to batch promoted pages */
496 int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
497 /* to batch the mm stats */
498 int mm_stats[NR_MM_STATS];
499 /* total batched items */
500 int batched;
501 bool can_swap;
502 bool force_scan;
503};
504
505/*
506 * For each node, memcgs are divided into two generations: the old and the
507 * young. For each generation, memcgs are randomly sharded into multiple bins
508 * to improve scalability. For each bin, the hlist_nulls is virtually divided
509 * into three segments: the head, the tail and the default.
510 *
511 * An onlining memcg is added to the tail of a random bin in the old generation.
512 * The eviction starts at the head of a random bin in the old generation. The
513 * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes
514 * the old generation, is incremented when all its bins become empty.
515 *
516 * There are four operations:
517 * 1. MEMCG_LRU_HEAD, which moves a memcg to the head of a random bin in its
518 * current generation (old or young) and updates its "seg" to "head";
519 * 2. MEMCG_LRU_TAIL, which moves a memcg to the tail of a random bin in its
520 * current generation (old or young) and updates its "seg" to "tail";
521 * 3. MEMCG_LRU_OLD, which moves a memcg to the head of a random bin in the old
522 * generation, updates its "gen" to "old" and resets its "seg" to "default";
523 * 4. MEMCG_LRU_YOUNG, which moves a memcg to the tail of a random bin in the
524 * young generation, updates its "gen" to "young" and resets its "seg" to
525 * "default".
526 *
527 * The events that trigger the above operations are:
528 * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD;
529 * 2. The first attempt to reclaim a memcg below low, which triggers
530 * MEMCG_LRU_TAIL;
531 * 3. The first attempt to reclaim a memcg offlined or below reclaimable size
532 * threshold, which triggers MEMCG_LRU_TAIL;
533 * 4. The second attempt to reclaim a memcg offlined or below reclaimable size
534 * threshold, which triggers MEMCG_LRU_YOUNG;
535 * 5. Attempting to reclaim a memcg below min, which triggers MEMCG_LRU_YOUNG;
536 * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG;
537 * 7. Offlining a memcg, which triggers MEMCG_LRU_OLD.
538 *
539 * Notes:
540 * 1. Memcg LRU only applies to global reclaim, and the round-robin incrementing
541 * of their max_seq counters ensures the eventual fairness to all eligible
542 * memcgs. For memcg reclaim, it still relies on mem_cgroup_iter().
543 * 2. There are only two valid generations: old (seq) and young (seq+1).
544 * MEMCG_NR_GENS is set to three so that when reading the generation counter
545 * locklessly, a stale value (seq-1) does not wraparound to young.
546 */
547#define MEMCG_NR_GENS 3
548#define MEMCG_NR_BINS 8
549
550struct lru_gen_memcg {
551 /* the per-node memcg generation counter */
552 unsigned long seq;
553 /* each memcg has one lru_gen_folio per node */
554 unsigned long nr_memcgs[MEMCG_NR_GENS];
555 /* per-node lru_gen_folio list for global reclaim */
556 struct hlist_nulls_head fifo[MEMCG_NR_GENS][MEMCG_NR_BINS];
557 /* protects the above */
558 spinlock_t lock;
559};
560
561void lru_gen_init_pgdat(struct pglist_data *pgdat);
562void lru_gen_init_lruvec(struct lruvec *lruvec);
563bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw);
564
565void lru_gen_init_memcg(struct mem_cgroup *memcg);
566void lru_gen_exit_memcg(struct mem_cgroup *memcg);
567void lru_gen_online_memcg(struct mem_cgroup *memcg);
568void lru_gen_offline_memcg(struct mem_cgroup *memcg);
569void lru_gen_release_memcg(struct mem_cgroup *memcg);
570void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid);
571
572#else /* !CONFIG_LRU_GEN */
573
574static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
575{
576}
577
578static inline void lru_gen_init_lruvec(struct lruvec *lruvec)
579{
580}
581
582static inline bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
583{
584 return false;
585}
586
587static inline void lru_gen_init_memcg(struct mem_cgroup *memcg)
588{
589}
590
591static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg)
592{
593}
594
595static inline void lru_gen_online_memcg(struct mem_cgroup *memcg)
596{
597}
598
599static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg)
600{
601}
602
603static inline void lru_gen_release_memcg(struct mem_cgroup *memcg)
604{
605}
606
607static inline void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
608{
609}
610
611#endif /* CONFIG_LRU_GEN */
612
613struct lruvec {
614 struct list_head lists[NR_LRU_LISTS];
615 /* per lruvec lru_lock for memcg */
616 spinlock_t lru_lock;
617 /*
618 * These track the cost of reclaiming one LRU - file or anon -
619 * over the other. As the observed cost of reclaiming one LRU
620 * increases, the reclaim scan balance tips toward the other.
621 */
622 unsigned long anon_cost;
623 unsigned long file_cost;
624 /* Non-resident age, driven by LRU movement */
625 atomic_long_t nonresident_age;
626 /* Refaults at the time of last reclaim cycle */
627 unsigned long refaults[ANON_AND_FILE];
628 /* Various lruvec state flags (enum lruvec_flags) */
629 unsigned long flags;
630#ifdef CONFIG_LRU_GEN
631 /* evictable pages divided into generations */
632 struct lru_gen_folio lrugen;
633#ifdef CONFIG_LRU_GEN_WALKS_MMU
634 /* to concurrently iterate lru_gen_mm_list */
635 struct lru_gen_mm_state mm_state;
636#endif
637#endif /* CONFIG_LRU_GEN */
638#ifdef CONFIG_MEMCG
639 struct pglist_data *pgdat;
640#endif
641 struct zswap_lruvec_state zswap_lruvec_state;
642};
643
644/* Isolate for asynchronous migration */
645#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
646/* Isolate unevictable pages */
647#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
648
649/* LRU Isolation modes. */
650typedef unsigned __bitwise isolate_mode_t;
651
652enum zone_watermarks {
653 WMARK_MIN,
654 WMARK_LOW,
655 WMARK_HIGH,
656 WMARK_PROMO,
657 NR_WMARK
658};
659
660/*
661 * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. Two additional lists
662 * are added for THP. One PCP list is used by GPF_MOVABLE, and the other PCP list
663 * is used by GFP_UNMOVABLE and GFP_RECLAIMABLE.
664 */
665#ifdef CONFIG_TRANSPARENT_HUGEPAGE
666#define NR_PCP_THP 2
667#else
668#define NR_PCP_THP 0
669#endif
670#define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1))
671#define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP)
672
673/*
674 * Flags used in pcp->flags field.
675 *
676 * PCPF_PREV_FREE_HIGH_ORDER: a high-order page is freed in the
677 * previous page freeing. To avoid to drain PCP for an accident
678 * high-order page freeing.
679 *
680 * PCPF_FREE_HIGH_BATCH: preserve "pcp->batch" pages in PCP before
681 * draining PCP for consecutive high-order pages freeing without
682 * allocation if data cache slice of CPU is large enough. To reduce
683 * zone lock contention and keep cache-hot pages reusing.
684 */
685#define PCPF_PREV_FREE_HIGH_ORDER BIT(0)
686#define PCPF_FREE_HIGH_BATCH BIT(1)
687
688struct per_cpu_pages {
689 spinlock_t lock; /* Protects lists field */
690 int count; /* number of pages in the list */
691 int high; /* high watermark, emptying needed */
692 int high_min; /* min high watermark */
693 int high_max; /* max high watermark */
694 int batch; /* chunk size for buddy add/remove */
695 u8 flags; /* protected by pcp->lock */
696 u8 alloc_factor; /* batch scaling factor during allocate */
697#ifdef CONFIG_NUMA
698 u8 expire; /* When 0, remote pagesets are drained */
699#endif
700 short free_count; /* consecutive free count */
701
702 /* Lists of pages, one per migrate type stored on the pcp-lists */
703 struct list_head lists[NR_PCP_LISTS];
704} ____cacheline_aligned_in_smp;
705
706struct per_cpu_zonestat {
707#ifdef CONFIG_SMP
708 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
709 s8 stat_threshold;
710#endif
711#ifdef CONFIG_NUMA
712 /*
713 * Low priority inaccurate counters that are only folded
714 * on demand. Use a large type to avoid the overhead of
715 * folding during refresh_cpu_vm_stats.
716 */
717 unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
718#endif
719};
720
721struct per_cpu_nodestat {
722 s8 stat_threshold;
723 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
724};
725
726#endif /* !__GENERATING_BOUNDS.H */
727
728enum zone_type {
729 /*
730 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
731 * to DMA to all of the addressable memory (ZONE_NORMAL).
732 * On architectures where this area covers the whole 32 bit address
733 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
734 * DMA addressing constraints. This distinction is important as a 32bit
735 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
736 * platforms may need both zones as they support peripherals with
737 * different DMA addressing limitations.
738 */
739#ifdef CONFIG_ZONE_DMA
740 ZONE_DMA,
741#endif
742#ifdef CONFIG_ZONE_DMA32
743 ZONE_DMA32,
744#endif
745 /*
746 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
747 * performed on pages in ZONE_NORMAL if the DMA devices support
748 * transfers to all addressable memory.
749 */
750 ZONE_NORMAL,
751#ifdef CONFIG_HIGHMEM
752 /*
753 * A memory area that is only addressable by the kernel through
754 * mapping portions into its own address space. This is for example
755 * used by i386 to allow the kernel to address the memory beyond
756 * 900MB. The kernel will set up special mappings (page
757 * table entries on i386) for each page that the kernel needs to
758 * access.
759 */
760 ZONE_HIGHMEM,
761#endif
762 /*
763 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
764 * movable pages with few exceptional cases described below. Main use
765 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
766 * likely to succeed, and to locally limit unmovable allocations - e.g.,
767 * to increase the number of THP/huge pages. Notable special cases are:
768 *
769 * 1. Pinned pages: (long-term) pinning of movable pages might
770 * essentially turn such pages unmovable. Therefore, we do not allow
771 * pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
772 * faulted, they come from the right zone right away. However, it is
773 * still possible that address space already has pages in
774 * ZONE_MOVABLE at the time when pages are pinned (i.e. user has
775 * touches that memory before pinning). In such case we migrate them
776 * to a different zone. When migration fails - pinning fails.
777 * 2. memblock allocations: kernelcore/movablecore setups might create
778 * situations where ZONE_MOVABLE contains unmovable allocations
779 * after boot. Memory offlining and allocations fail early.
780 * 3. Memory holes: kernelcore/movablecore setups might create very rare
781 * situations where ZONE_MOVABLE contains memory holes after boot,
782 * for example, if we have sections that are only partially
783 * populated. Memory offlining and allocations fail early.
784 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
785 * memory offlining, such pages cannot be allocated.
786 * 5. Unmovable PG_offline pages: in paravirtualized environments,
787 * hotplugged memory blocks might only partially be managed by the
788 * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
789 * parts not manged by the buddy are unmovable PG_offline pages. In
790 * some cases (virtio-mem), such pages can be skipped during
791 * memory offlining, however, cannot be moved/allocated. These
792 * techniques might use alloc_contig_range() to hide previously
793 * exposed pages from the buddy again (e.g., to implement some sort
794 * of memory unplug in virtio-mem).
795 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
796 * situations where ZERO_PAGE(0) which is allocated differently
797 * on different platforms may end up in a movable zone. ZERO_PAGE(0)
798 * cannot be migrated.
799 * 7. Memory-hotplug: when using memmap_on_memory and onlining the
800 * memory to the MOVABLE zone, the vmemmap pages are also placed in
801 * such zone. Such pages cannot be really moved around as they are
802 * self-stored in the range, but they are treated as movable when
803 * the range they describe is about to be offlined.
804 *
805 * In general, no unmovable allocations that degrade memory offlining
806 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
807 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
808 * if has_unmovable_pages() states that there are no unmovable pages,
809 * there can be false negatives).
810 */
811 ZONE_MOVABLE,
812#ifdef CONFIG_ZONE_DEVICE
813 ZONE_DEVICE,
814#endif
815 __MAX_NR_ZONES
816
817};
818
819#ifndef __GENERATING_BOUNDS_H
820
821#define ASYNC_AND_SYNC 2
822
823struct zone {
824 /* Read-mostly fields */
825
826 /* zone watermarks, access with *_wmark_pages(zone) macros */
827 unsigned long _watermark[NR_WMARK];
828 unsigned long watermark_boost;
829
830 unsigned long nr_reserved_highatomic;
831 unsigned long nr_free_highatomic;
832
833 /*
834 * We don't know if the memory that we're going to allocate will be
835 * freeable or/and it will be released eventually, so to avoid totally
836 * wasting several GB of ram we must reserve some of the lower zone
837 * memory (otherwise we risk to run OOM on the lower zones despite
838 * there being tons of freeable ram on the higher zones). This array is
839 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
840 * changes.
841 */
842 long lowmem_reserve[MAX_NR_ZONES];
843
844#ifdef CONFIG_NUMA
845 int node;
846#endif
847 struct pglist_data *zone_pgdat;
848 struct per_cpu_pages __percpu *per_cpu_pageset;
849 struct per_cpu_zonestat __percpu *per_cpu_zonestats;
850 /*
851 * the high and batch values are copied to individual pagesets for
852 * faster access
853 */
854 int pageset_high_min;
855 int pageset_high_max;
856 int pageset_batch;
857
858#ifndef CONFIG_SPARSEMEM
859 /*
860 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
861 * In SPARSEMEM, this map is stored in struct mem_section
862 */
863 unsigned long *pageblock_flags;
864#endif /* CONFIG_SPARSEMEM */
865
866 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
867 unsigned long zone_start_pfn;
868
869 /*
870 * spanned_pages is the total pages spanned by the zone, including
871 * holes, which is calculated as:
872 * spanned_pages = zone_end_pfn - zone_start_pfn;
873 *
874 * present_pages is physical pages existing within the zone, which
875 * is calculated as:
876 * present_pages = spanned_pages - absent_pages(pages in holes);
877 *
878 * present_early_pages is present pages existing within the zone
879 * located on memory available since early boot, excluding hotplugged
880 * memory.
881 *
882 * managed_pages is present pages managed by the buddy system, which
883 * is calculated as (reserved_pages includes pages allocated by the
884 * bootmem allocator):
885 * managed_pages = present_pages - reserved_pages;
886 *
887 * cma pages is present pages that are assigned for CMA use
888 * (MIGRATE_CMA).
889 *
890 * So present_pages may be used by memory hotplug or memory power
891 * management logic to figure out unmanaged pages by checking
892 * (present_pages - managed_pages). And managed_pages should be used
893 * by page allocator and vm scanner to calculate all kinds of watermarks
894 * and thresholds.
895 *
896 * Locking rules:
897 *
898 * zone_start_pfn and spanned_pages are protected by span_seqlock.
899 * It is a seqlock because it has to be read outside of zone->lock,
900 * and it is done in the main allocator path. But, it is written
901 * quite infrequently.
902 *
903 * The span_seq lock is declared along with zone->lock because it is
904 * frequently read in proximity to zone->lock. It's good to
905 * give them a chance of being in the same cacheline.
906 *
907 * Write access to present_pages at runtime should be protected by
908 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of
909 * present_pages should use get_online_mems() to get a stable value.
910 */
911 atomic_long_t managed_pages;
912 unsigned long spanned_pages;
913 unsigned long present_pages;
914#if defined(CONFIG_MEMORY_HOTPLUG)
915 unsigned long present_early_pages;
916#endif
917#ifdef CONFIG_CMA
918 unsigned long cma_pages;
919#endif
920
921 const char *name;
922
923#ifdef CONFIG_MEMORY_ISOLATION
924 /*
925 * Number of isolated pageblock. It is used to solve incorrect
926 * freepage counting problem due to racy retrieving migratetype
927 * of pageblock. Protected by zone->lock.
928 */
929 unsigned long nr_isolate_pageblock;
930#endif
931
932#ifdef CONFIG_MEMORY_HOTPLUG
933 /* see spanned/present_pages for more description */
934 seqlock_t span_seqlock;
935#endif
936
937 int initialized;
938
939 /* Write-intensive fields used from the page allocator */
940 CACHELINE_PADDING(_pad1_);
941
942 /* free areas of different sizes */
943 struct free_area free_area[NR_PAGE_ORDERS];
944
945#ifdef CONFIG_UNACCEPTED_MEMORY
946 /* Pages to be accepted. All pages on the list are MAX_PAGE_ORDER */
947 struct list_head unaccepted_pages;
948#endif
949
950 /* zone flags, see below */
951 unsigned long flags;
952
953 /* Primarily protects free_area */
954 spinlock_t lock;
955
956 /* Write-intensive fields used by compaction and vmstats. */
957 CACHELINE_PADDING(_pad2_);
958
959 /*
960 * When free pages are below this point, additional steps are taken
961 * when reading the number of free pages to avoid per-cpu counter
962 * drift allowing watermarks to be breached
963 */
964 unsigned long percpu_drift_mark;
965
966#if defined CONFIG_COMPACTION || defined CONFIG_CMA
967 /* pfn where compaction free scanner should start */
968 unsigned long compact_cached_free_pfn;
969 /* pfn where compaction migration scanner should start */
970 unsigned long compact_cached_migrate_pfn[ASYNC_AND_SYNC];
971 unsigned long compact_init_migrate_pfn;
972 unsigned long compact_init_free_pfn;
973#endif
974
975#ifdef CONFIG_COMPACTION
976 /*
977 * On compaction failure, 1<<compact_defer_shift compactions
978 * are skipped before trying again. The number attempted since
979 * last failure is tracked with compact_considered.
980 * compact_order_failed is the minimum compaction failed order.
981 */
982 unsigned int compact_considered;
983 unsigned int compact_defer_shift;
984 int compact_order_failed;
985#endif
986
987#if defined CONFIG_COMPACTION || defined CONFIG_CMA
988 /* Set to true when the PG_migrate_skip bits should be cleared */
989 bool compact_blockskip_flush;
990#endif
991
992 bool contiguous;
993
994 CACHELINE_PADDING(_pad3_);
995 /* Zone statistics */
996 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
997 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
998} ____cacheline_internodealigned_in_smp;
999
1000enum pgdat_flags {
1001 PGDAT_DIRTY, /* reclaim scanning has recently found
1002 * many dirty file pages at the tail
1003 * of the LRU.
1004 */
1005 PGDAT_WRITEBACK, /* reclaim scanning has recently found
1006 * many pages under writeback
1007 */
1008 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
1009};
1010
1011enum zone_flags {
1012 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks.
1013 * Cleared when kswapd is woken.
1014 */
1015 ZONE_RECLAIM_ACTIVE, /* kswapd may be scanning the zone. */
1016 ZONE_BELOW_HIGH, /* zone is below high watermark. */
1017};
1018
1019static inline unsigned long wmark_pages(const struct zone *z,
1020 enum zone_watermarks w)
1021{
1022 return z->_watermark[w] + z->watermark_boost;
1023}
1024
1025static inline unsigned long min_wmark_pages(const struct zone *z)
1026{
1027 return wmark_pages(z, WMARK_MIN);
1028}
1029
1030static inline unsigned long low_wmark_pages(const struct zone *z)
1031{
1032 return wmark_pages(z, WMARK_LOW);
1033}
1034
1035static inline unsigned long high_wmark_pages(const struct zone *z)
1036{
1037 return wmark_pages(z, WMARK_HIGH);
1038}
1039
1040static inline unsigned long promo_wmark_pages(const struct zone *z)
1041{
1042 return wmark_pages(z, WMARK_PROMO);
1043}
1044
1045static inline unsigned long zone_managed_pages(struct zone *zone)
1046{
1047 return (unsigned long)atomic_long_read(&zone->managed_pages);
1048}
1049
1050static inline unsigned long zone_cma_pages(struct zone *zone)
1051{
1052#ifdef CONFIG_CMA
1053 return zone->cma_pages;
1054#else
1055 return 0;
1056#endif
1057}
1058
1059static inline unsigned long zone_end_pfn(const struct zone *zone)
1060{
1061 return zone->zone_start_pfn + zone->spanned_pages;
1062}
1063
1064static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
1065{
1066 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
1067}
1068
1069static inline bool zone_is_initialized(struct zone *zone)
1070{
1071 return zone->initialized;
1072}
1073
1074static inline bool zone_is_empty(struct zone *zone)
1075{
1076 return zone->spanned_pages == 0;
1077}
1078
1079#ifndef BUILD_VDSO32_64
1080/*
1081 * The zone field is never updated after free_area_init_core()
1082 * sets it, so none of the operations on it need to be atomic.
1083 */
1084
1085/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1086#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1087#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1088#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
1089#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
1090#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1091#define LRU_GEN_PGOFF (KASAN_TAG_PGOFF - LRU_GEN_WIDTH)
1092#define LRU_REFS_PGOFF (LRU_GEN_PGOFF - LRU_REFS_WIDTH)
1093
1094/*
1095 * Define the bit shifts to access each section. For non-existent
1096 * sections we define the shift as 0; that plus a 0 mask ensures
1097 * the compiler will optimise away reference to them.
1098 */
1099#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1100#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1101#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
1102#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1103#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1104
1105/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1106#ifdef NODE_NOT_IN_PAGE_FLAGS
1107#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
1108#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF) ? \
1109 SECTIONS_PGOFF : ZONES_PGOFF)
1110#else
1111#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
1112#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF) ? \
1113 NODES_PGOFF : ZONES_PGOFF)
1114#endif
1115
1116#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1117
1118#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1119#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1120#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
1121#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
1122#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
1123#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
1124
1125static inline enum zone_type page_zonenum(const struct page *page)
1126{
1127 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1128 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1129}
1130
1131static inline enum zone_type folio_zonenum(const struct folio *folio)
1132{
1133 return page_zonenum(&folio->page);
1134}
1135
1136#ifdef CONFIG_ZONE_DEVICE
1137static inline bool is_zone_device_page(const struct page *page)
1138{
1139 return page_zonenum(page) == ZONE_DEVICE;
1140}
1141
1142/*
1143 * Consecutive zone device pages should not be merged into the same sgl
1144 * or bvec segment with other types of pages or if they belong to different
1145 * pgmaps. Otherwise getting the pgmap of a given segment is not possible
1146 * without scanning the entire segment. This helper returns true either if
1147 * both pages are not zone device pages or both pages are zone device pages
1148 * with the same pgmap.
1149 */
1150static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1151 const struct page *b)
1152{
1153 if (is_zone_device_page(a) != is_zone_device_page(b))
1154 return false;
1155 if (!is_zone_device_page(a))
1156 return true;
1157 return a->pgmap == b->pgmap;
1158}
1159
1160extern void memmap_init_zone_device(struct zone *, unsigned long,
1161 unsigned long, struct dev_pagemap *);
1162#else
1163static inline bool is_zone_device_page(const struct page *page)
1164{
1165 return false;
1166}
1167static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1168 const struct page *b)
1169{
1170 return true;
1171}
1172#endif
1173
1174static inline bool folio_is_zone_device(const struct folio *folio)
1175{
1176 return is_zone_device_page(&folio->page);
1177}
1178
1179static inline bool is_zone_movable_page(const struct page *page)
1180{
1181 return page_zonenum(page) == ZONE_MOVABLE;
1182}
1183
1184static inline bool folio_is_zone_movable(const struct folio *folio)
1185{
1186 return folio_zonenum(folio) == ZONE_MOVABLE;
1187}
1188#endif
1189
1190/*
1191 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
1192 * intersection with the given zone
1193 */
1194static inline bool zone_intersects(struct zone *zone,
1195 unsigned long start_pfn, unsigned long nr_pages)
1196{
1197 if (zone_is_empty(zone))
1198 return false;
1199 if (start_pfn >= zone_end_pfn(zone) ||
1200 start_pfn + nr_pages <= zone->zone_start_pfn)
1201 return false;
1202
1203 return true;
1204}
1205
1206/*
1207 * The "priority" of VM scanning is how much of the queues we will scan in one
1208 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
1209 * queues ("queue_length >> 12") during an aging round.
1210 */
1211#define DEF_PRIORITY 12
1212
1213/* Maximum number of zones on a zonelist */
1214#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
1215
1216enum {
1217 ZONELIST_FALLBACK, /* zonelist with fallback */
1218#ifdef CONFIG_NUMA
1219 /*
1220 * The NUMA zonelists are doubled because we need zonelists that
1221 * restrict the allocations to a single node for __GFP_THISNODE.
1222 */
1223 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
1224#endif
1225 MAX_ZONELISTS
1226};
1227
1228/*
1229 * This struct contains information about a zone in a zonelist. It is stored
1230 * here to avoid dereferences into large structures and lookups of tables
1231 */
1232struct zoneref {
1233 struct zone *zone; /* Pointer to actual zone */
1234 int zone_idx; /* zone_idx(zoneref->zone) */
1235};
1236
1237/*
1238 * One allocation request operates on a zonelist. A zonelist
1239 * is a list of zones, the first one is the 'goal' of the
1240 * allocation, the other zones are fallback zones, in decreasing
1241 * priority.
1242 *
1243 * To speed the reading of the zonelist, the zonerefs contain the zone index
1244 * of the entry being read. Helper functions to access information given
1245 * a struct zoneref are
1246 *
1247 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
1248 * zonelist_zone_idx() - Return the index of the zone for an entry
1249 * zonelist_node_idx() - Return the index of the node for an entry
1250 */
1251struct zonelist {
1252 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
1253};
1254
1255/*
1256 * The array of struct pages for flatmem.
1257 * It must be declared for SPARSEMEM as well because there are configurations
1258 * that rely on that.
1259 */
1260extern struct page *mem_map;
1261
1262#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1263struct deferred_split {
1264 spinlock_t split_queue_lock;
1265 struct list_head split_queue;
1266 unsigned long split_queue_len;
1267};
1268#endif
1269
1270#ifdef CONFIG_MEMORY_FAILURE
1271/*
1272 * Per NUMA node memory failure handling statistics.
1273 */
1274struct memory_failure_stats {
1275 /*
1276 * Number of raw pages poisoned.
1277 * Cases not accounted: memory outside kernel control, offline page,
1278 * arch-specific memory_failure (SGX), hwpoison_filter() filtered
1279 * error events, and unpoison actions from hwpoison_unpoison.
1280 */
1281 unsigned long total;
1282 /*
1283 * Recovery results of poisoned raw pages handled by memory_failure,
1284 * in sync with mf_result.
1285 * total = ignored + failed + delayed + recovered.
1286 * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted.
1287 */
1288 unsigned long ignored;
1289 unsigned long failed;
1290 unsigned long delayed;
1291 unsigned long recovered;
1292};
1293#endif
1294
1295/*
1296 * On NUMA machines, each NUMA node would have a pg_data_t to describe
1297 * it's memory layout. On UMA machines there is a single pglist_data which
1298 * describes the whole memory.
1299 *
1300 * Memory statistics and page replacement data structures are maintained on a
1301 * per-zone basis.
1302 */
1303typedef struct pglist_data {
1304 /*
1305 * node_zones contains just the zones for THIS node. Not all of the
1306 * zones may be populated, but it is the full list. It is referenced by
1307 * this node's node_zonelists as well as other node's node_zonelists.
1308 */
1309 struct zone node_zones[MAX_NR_ZONES];
1310
1311 /*
1312 * node_zonelists contains references to all zones in all nodes.
1313 * Generally the first zones will be references to this node's
1314 * node_zones.
1315 */
1316 struct zonelist node_zonelists[MAX_ZONELISTS];
1317
1318 int nr_zones; /* number of populated zones in this node */
1319#ifdef CONFIG_FLATMEM /* means !SPARSEMEM */
1320 struct page *node_mem_map;
1321#ifdef CONFIG_PAGE_EXTENSION
1322 struct page_ext *node_page_ext;
1323#endif
1324#endif
1325#if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
1326 /*
1327 * Must be held any time you expect node_start_pfn,
1328 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
1329 * Also synchronizes pgdat->first_deferred_pfn during deferred page
1330 * init.
1331 *
1332 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
1333 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
1334 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
1335 *
1336 * Nests above zone->lock and zone->span_seqlock
1337 */
1338 spinlock_t node_size_lock;
1339#endif
1340 unsigned long node_start_pfn;
1341 unsigned long node_present_pages; /* total number of physical pages */
1342 unsigned long node_spanned_pages; /* total size of physical page
1343 range, including holes */
1344 int node_id;
1345 wait_queue_head_t kswapd_wait;
1346 wait_queue_head_t pfmemalloc_wait;
1347
1348 /* workqueues for throttling reclaim for different reasons. */
1349 wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE];
1350
1351 atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */
1352 unsigned long nr_reclaim_start; /* nr pages written while throttled
1353 * when throttling started. */
1354#ifdef CONFIG_MEMORY_HOTPLUG
1355 struct mutex kswapd_lock;
1356#endif
1357 struct task_struct *kswapd; /* Protected by kswapd_lock */
1358 int kswapd_order;
1359 enum zone_type kswapd_highest_zoneidx;
1360
1361 int kswapd_failures; /* Number of 'reclaimed == 0' runs */
1362
1363#ifdef CONFIG_COMPACTION
1364 int kcompactd_max_order;
1365 enum zone_type kcompactd_highest_zoneidx;
1366 wait_queue_head_t kcompactd_wait;
1367 struct task_struct *kcompactd;
1368 bool proactive_compact_trigger;
1369#endif
1370 /*
1371 * This is a per-node reserve of pages that are not available
1372 * to userspace allocations.
1373 */
1374 unsigned long totalreserve_pages;
1375
1376#ifdef CONFIG_NUMA
1377 /*
1378 * node reclaim becomes active if more unmapped pages exist.
1379 */
1380 unsigned long min_unmapped_pages;
1381 unsigned long min_slab_pages;
1382#endif /* CONFIG_NUMA */
1383
1384 /* Write-intensive fields used by page reclaim */
1385 CACHELINE_PADDING(_pad1_);
1386
1387#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1388 /*
1389 * If memory initialisation on large machines is deferred then this
1390 * is the first PFN that needs to be initialised.
1391 */
1392 unsigned long first_deferred_pfn;
1393#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1394
1395#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1396 struct deferred_split deferred_split_queue;
1397#endif
1398
1399#ifdef CONFIG_NUMA_BALANCING
1400 /* start time in ms of current promote rate limit period */
1401 unsigned int nbp_rl_start;
1402 /* number of promote candidate pages at start time of current rate limit period */
1403 unsigned long nbp_rl_nr_cand;
1404 /* promote threshold in ms */
1405 unsigned int nbp_threshold;
1406 /* start time in ms of current promote threshold adjustment period */
1407 unsigned int nbp_th_start;
1408 /*
1409 * number of promote candidate pages at start time of current promote
1410 * threshold adjustment period
1411 */
1412 unsigned long nbp_th_nr_cand;
1413#endif
1414 /* Fields commonly accessed by the page reclaim scanner */
1415
1416 /*
1417 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
1418 *
1419 * Use mem_cgroup_lruvec() to look up lruvecs.
1420 */
1421 struct lruvec __lruvec;
1422
1423 unsigned long flags;
1424
1425#ifdef CONFIG_LRU_GEN
1426 /* kswap mm walk data */
1427 struct lru_gen_mm_walk mm_walk;
1428 /* lru_gen_folio list */
1429 struct lru_gen_memcg memcg_lru;
1430#endif
1431
1432 CACHELINE_PADDING(_pad2_);
1433
1434 /* Per-node vmstats */
1435 struct per_cpu_nodestat __percpu *per_cpu_nodestats;
1436 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
1437#ifdef CONFIG_NUMA
1438 struct memory_tier __rcu *memtier;
1439#endif
1440#ifdef CONFIG_MEMORY_FAILURE
1441 struct memory_failure_stats mf_stats;
1442#endif
1443} pg_data_t;
1444
1445#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
1446#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
1447
1448#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
1449#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
1450
1451static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
1452{
1453 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
1454}
1455
1456#include <linux/memory_hotplug.h>
1457
1458void build_all_zonelists(pg_data_t *pgdat);
1459void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
1460 enum zone_type highest_zoneidx);
1461bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1462 int highest_zoneidx, unsigned int alloc_flags,
1463 long free_pages);
1464bool zone_watermark_ok(struct zone *z, unsigned int order,
1465 unsigned long mark, int highest_zoneidx,
1466 unsigned int alloc_flags);
1467bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1468 unsigned long mark, int highest_zoneidx);
1469/*
1470 * Memory initialization context, use to differentiate memory added by
1471 * the platform statically or via memory hotplug interface.
1472 */
1473enum meminit_context {
1474 MEMINIT_EARLY,
1475 MEMINIT_HOTPLUG,
1476};
1477
1478extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
1479 unsigned long size);
1480
1481extern void lruvec_init(struct lruvec *lruvec);
1482
1483static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
1484{
1485#ifdef CONFIG_MEMCG
1486 return lruvec->pgdat;
1487#else
1488 return container_of(lruvec, struct pglist_data, __lruvec);
1489#endif
1490}
1491
1492#ifdef CONFIG_HAVE_MEMORYLESS_NODES
1493int local_memory_node(int node_id);
1494#else
1495static inline int local_memory_node(int node_id) { return node_id; };
1496#endif
1497
1498/*
1499 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
1500 */
1501#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
1502
1503#ifdef CONFIG_ZONE_DEVICE
1504static inline bool zone_is_zone_device(struct zone *zone)
1505{
1506 return zone_idx(zone) == ZONE_DEVICE;
1507}
1508#else
1509static inline bool zone_is_zone_device(struct zone *zone)
1510{
1511 return false;
1512}
1513#endif
1514
1515/*
1516 * Returns true if a zone has pages managed by the buddy allocator.
1517 * All the reclaim decisions have to use this function rather than
1518 * populated_zone(). If the whole zone is reserved then we can easily
1519 * end up with populated_zone() && !managed_zone().
1520 */
1521static inline bool managed_zone(struct zone *zone)
1522{
1523 return zone_managed_pages(zone);
1524}
1525
1526/* Returns true if a zone has memory */
1527static inline bool populated_zone(struct zone *zone)
1528{
1529 return zone->present_pages;
1530}
1531
1532#ifdef CONFIG_NUMA
1533static inline int zone_to_nid(struct zone *zone)
1534{
1535 return zone->node;
1536}
1537
1538static inline void zone_set_nid(struct zone *zone, int nid)
1539{
1540 zone->node = nid;
1541}
1542#else
1543static inline int zone_to_nid(struct zone *zone)
1544{
1545 return 0;
1546}
1547
1548static inline void zone_set_nid(struct zone *zone, int nid) {}
1549#endif
1550
1551extern int movable_zone;
1552
1553static inline int is_highmem_idx(enum zone_type idx)
1554{
1555#ifdef CONFIG_HIGHMEM
1556 return (idx == ZONE_HIGHMEM ||
1557 (idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM));
1558#else
1559 return 0;
1560#endif
1561}
1562
1563/**
1564 * is_highmem - helper function to quickly check if a struct zone is a
1565 * highmem zone or not. This is an attempt to keep references
1566 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
1567 * @zone: pointer to struct zone variable
1568 * Return: 1 for a highmem zone, 0 otherwise
1569 */
1570static inline int is_highmem(struct zone *zone)
1571{
1572 return is_highmem_idx(zone_idx(zone));
1573}
1574
1575#ifdef CONFIG_ZONE_DMA
1576bool has_managed_dma(void);
1577#else
1578static inline bool has_managed_dma(void)
1579{
1580 return false;
1581}
1582#endif
1583
1584
1585#ifndef CONFIG_NUMA
1586
1587extern struct pglist_data contig_page_data;
1588static inline struct pglist_data *NODE_DATA(int nid)
1589{
1590 return &contig_page_data;
1591}
1592
1593#else /* CONFIG_NUMA */
1594
1595#include <asm/mmzone.h>
1596
1597#endif /* !CONFIG_NUMA */
1598
1599extern struct pglist_data *first_online_pgdat(void);
1600extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1601extern struct zone *next_zone(struct zone *zone);
1602
1603/**
1604 * for_each_online_pgdat - helper macro to iterate over all online nodes
1605 * @pgdat: pointer to a pg_data_t variable
1606 */
1607#define for_each_online_pgdat(pgdat) \
1608 for (pgdat = first_online_pgdat(); \
1609 pgdat; \
1610 pgdat = next_online_pgdat(pgdat))
1611/**
1612 * for_each_zone - helper macro to iterate over all memory zones
1613 * @zone: pointer to struct zone variable
1614 *
1615 * The user only needs to declare the zone variable, for_each_zone
1616 * fills it in.
1617 */
1618#define for_each_zone(zone) \
1619 for (zone = (first_online_pgdat())->node_zones; \
1620 zone; \
1621 zone = next_zone(zone))
1622
1623#define for_each_populated_zone(zone) \
1624 for (zone = (first_online_pgdat())->node_zones; \
1625 zone; \
1626 zone = next_zone(zone)) \
1627 if (!populated_zone(zone)) \
1628 ; /* do nothing */ \
1629 else
1630
1631static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1632{
1633 return zoneref->zone;
1634}
1635
1636static inline int zonelist_zone_idx(struct zoneref *zoneref)
1637{
1638 return zoneref->zone_idx;
1639}
1640
1641static inline int zonelist_node_idx(struct zoneref *zoneref)
1642{
1643 return zone_to_nid(zoneref->zone);
1644}
1645
1646struct zoneref *__next_zones_zonelist(struct zoneref *z,
1647 enum zone_type highest_zoneidx,
1648 nodemask_t *nodes);
1649
1650/**
1651 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1652 * @z: The cursor used as a starting point for the search
1653 * @highest_zoneidx: The zone index of the highest zone to return
1654 * @nodes: An optional nodemask to filter the zonelist with
1655 *
1656 * This function returns the next zone at or below a given zone index that is
1657 * within the allowed nodemask using a cursor as the starting point for the
1658 * search. The zoneref returned is a cursor that represents the current zone
1659 * being examined. It should be advanced by one before calling
1660 * next_zones_zonelist again.
1661 *
1662 * Return: the next zone at or below highest_zoneidx within the allowed
1663 * nodemask using a cursor within a zonelist as a starting point
1664 */
1665static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1666 enum zone_type highest_zoneidx,
1667 nodemask_t *nodes)
1668{
1669 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1670 return z;
1671 return __next_zones_zonelist(z, highest_zoneidx, nodes);
1672}
1673
1674/**
1675 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1676 * @zonelist: The zonelist to search for a suitable zone
1677 * @highest_zoneidx: The zone index of the highest zone to return
1678 * @nodes: An optional nodemask to filter the zonelist with
1679 *
1680 * This function returns the first zone at or below a given zone index that is
1681 * within the allowed nodemask. The zoneref returned is a cursor that can be
1682 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1683 * one before calling.
1684 *
1685 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1686 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1687 * update due to cpuset modification.
1688 *
1689 * Return: Zoneref pointer for the first suitable zone found
1690 */
1691static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1692 enum zone_type highest_zoneidx,
1693 nodemask_t *nodes)
1694{
1695 return next_zones_zonelist(zonelist->_zonerefs,
1696 highest_zoneidx, nodes);
1697}
1698
1699/**
1700 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1701 * @zone: The current zone in the iterator
1702 * @z: The current pointer within zonelist->_zonerefs being iterated
1703 * @zlist: The zonelist being iterated
1704 * @highidx: The zone index of the highest zone to return
1705 * @nodemask: Nodemask allowed by the allocator
1706 *
1707 * This iterator iterates though all zones at or below a given zone index and
1708 * within a given nodemask
1709 */
1710#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1711 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
1712 zone; \
1713 z = next_zones_zonelist(++z, highidx, nodemask), \
1714 zone = zonelist_zone(z))
1715
1716#define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
1717 for (zone = zonelist_zone(z); \
1718 zone; \
1719 z = next_zones_zonelist(++z, highidx, nodemask), \
1720 zone = zonelist_zone(z))
1721
1722
1723/**
1724 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1725 * @zone: The current zone in the iterator
1726 * @z: The current pointer within zonelist->zones being iterated
1727 * @zlist: The zonelist being iterated
1728 * @highidx: The zone index of the highest zone to return
1729 *
1730 * This iterator iterates though all zones at or below a given zone index.
1731 */
1732#define for_each_zone_zonelist(zone, z, zlist, highidx) \
1733 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1734
1735/* Whether the 'nodes' are all movable nodes */
1736static inline bool movable_only_nodes(nodemask_t *nodes)
1737{
1738 struct zonelist *zonelist;
1739 struct zoneref *z;
1740 int nid;
1741
1742 if (nodes_empty(*nodes))
1743 return false;
1744
1745 /*
1746 * We can chose arbitrary node from the nodemask to get a
1747 * zonelist as they are interlinked. We just need to find
1748 * at least one zone that can satisfy kernel allocations.
1749 */
1750 nid = first_node(*nodes);
1751 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
1752 z = first_zones_zonelist(zonelist, ZONE_NORMAL, nodes);
1753 return (!zonelist_zone(z)) ? true : false;
1754}
1755
1756
1757#ifdef CONFIG_SPARSEMEM
1758#include <asm/sparsemem.h>
1759#endif
1760
1761#ifdef CONFIG_FLATMEM
1762#define pfn_to_nid(pfn) (0)
1763#endif
1764
1765#ifdef CONFIG_SPARSEMEM
1766
1767/*
1768 * PA_SECTION_SHIFT physical address to/from section number
1769 * PFN_SECTION_SHIFT pfn to/from section number
1770 */
1771#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1772#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1773
1774#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1775
1776#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1777#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1778
1779#define SECTION_BLOCKFLAGS_BITS \
1780 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1781
1782#if (MAX_PAGE_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS
1783#error Allocator MAX_PAGE_ORDER exceeds SECTION_SIZE
1784#endif
1785
1786static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1787{
1788 return pfn >> PFN_SECTION_SHIFT;
1789}
1790static inline unsigned long section_nr_to_pfn(unsigned long sec)
1791{
1792 return sec << PFN_SECTION_SHIFT;
1793}
1794
1795#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1796#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1797
1798#define SUBSECTION_SHIFT 21
1799#define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1800
1801#define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1802#define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1803#define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1804
1805#if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1806#error Subsection size exceeds section size
1807#else
1808#define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1809#endif
1810
1811#define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1812#define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1813
1814struct mem_section_usage {
1815 struct rcu_head rcu;
1816#ifdef CONFIG_SPARSEMEM_VMEMMAP
1817 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1818#endif
1819 /* See declaration of similar field in struct zone */
1820 unsigned long pageblock_flags[0];
1821};
1822
1823void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1824
1825struct page;
1826struct page_ext;
1827struct mem_section {
1828 /*
1829 * This is, logically, a pointer to an array of struct
1830 * pages. However, it is stored with some other magic.
1831 * (see sparse.c::sparse_init_one_section())
1832 *
1833 * Additionally during early boot we encode node id of
1834 * the location of the section here to guide allocation.
1835 * (see sparse.c::memory_present())
1836 *
1837 * Making it a UL at least makes someone do a cast
1838 * before using it wrong.
1839 */
1840 unsigned long section_mem_map;
1841
1842 struct mem_section_usage *usage;
1843#ifdef CONFIG_PAGE_EXTENSION
1844 /*
1845 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1846 * section. (see page_ext.h about this.)
1847 */
1848 struct page_ext *page_ext;
1849 unsigned long pad;
1850#endif
1851 /*
1852 * WARNING: mem_section must be a power-of-2 in size for the
1853 * calculation and use of SECTION_ROOT_MASK to make sense.
1854 */
1855};
1856
1857#ifdef CONFIG_SPARSEMEM_EXTREME
1858#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1859#else
1860#define SECTIONS_PER_ROOT 1
1861#endif
1862
1863#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1864#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1865#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1866
1867#ifdef CONFIG_SPARSEMEM_EXTREME
1868extern struct mem_section **mem_section;
1869#else
1870extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1871#endif
1872
1873static inline unsigned long *section_to_usemap(struct mem_section *ms)
1874{
1875 return ms->usage->pageblock_flags;
1876}
1877
1878static inline struct mem_section *__nr_to_section(unsigned long nr)
1879{
1880 unsigned long root = SECTION_NR_TO_ROOT(nr);
1881
1882 if (unlikely(root >= NR_SECTION_ROOTS))
1883 return NULL;
1884
1885#ifdef CONFIG_SPARSEMEM_EXTREME
1886 if (!mem_section || !mem_section[root])
1887 return NULL;
1888#endif
1889 return &mem_section[root][nr & SECTION_ROOT_MASK];
1890}
1891extern size_t mem_section_usage_size(void);
1892
1893/*
1894 * We use the lower bits of the mem_map pointer to store
1895 * a little bit of information. The pointer is calculated
1896 * as mem_map - section_nr_to_pfn(pnum). The result is
1897 * aligned to the minimum alignment of the two values:
1898 * 1. All mem_map arrays are page-aligned.
1899 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1900 * lowest bits. PFN_SECTION_SHIFT is arch-specific
1901 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1902 * worst combination is powerpc with 256k pages,
1903 * which results in PFN_SECTION_SHIFT equal 6.
1904 * To sum it up, at least 6 bits are available on all architectures.
1905 * However, we can exceed 6 bits on some other architectures except
1906 * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available
1907 * with the worst case of 64K pages on arm64) if we make sure the
1908 * exceeded bit is not applicable to powerpc.
1909 */
1910enum {
1911 SECTION_MARKED_PRESENT_BIT,
1912 SECTION_HAS_MEM_MAP_BIT,
1913 SECTION_IS_ONLINE_BIT,
1914 SECTION_IS_EARLY_BIT,
1915#ifdef CONFIG_ZONE_DEVICE
1916 SECTION_TAINT_ZONE_DEVICE_BIT,
1917#endif
1918 SECTION_MAP_LAST_BIT,
1919};
1920
1921#define SECTION_MARKED_PRESENT BIT(SECTION_MARKED_PRESENT_BIT)
1922#define SECTION_HAS_MEM_MAP BIT(SECTION_HAS_MEM_MAP_BIT)
1923#define SECTION_IS_ONLINE BIT(SECTION_IS_ONLINE_BIT)
1924#define SECTION_IS_EARLY BIT(SECTION_IS_EARLY_BIT)
1925#ifdef CONFIG_ZONE_DEVICE
1926#define SECTION_TAINT_ZONE_DEVICE BIT(SECTION_TAINT_ZONE_DEVICE_BIT)
1927#endif
1928#define SECTION_MAP_MASK (~(BIT(SECTION_MAP_LAST_BIT) - 1))
1929#define SECTION_NID_SHIFT SECTION_MAP_LAST_BIT
1930
1931static inline struct page *__section_mem_map_addr(struct mem_section *section)
1932{
1933 unsigned long map = section->section_mem_map;
1934 map &= SECTION_MAP_MASK;
1935 return (struct page *)map;
1936}
1937
1938static inline int present_section(struct mem_section *section)
1939{
1940 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1941}
1942
1943static inline int present_section_nr(unsigned long nr)
1944{
1945 return present_section(__nr_to_section(nr));
1946}
1947
1948static inline int valid_section(struct mem_section *section)
1949{
1950 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1951}
1952
1953static inline int early_section(struct mem_section *section)
1954{
1955 return (section && (section->section_mem_map & SECTION_IS_EARLY));
1956}
1957
1958static inline int valid_section_nr(unsigned long nr)
1959{
1960 return valid_section(__nr_to_section(nr));
1961}
1962
1963static inline int online_section(struct mem_section *section)
1964{
1965 return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1966}
1967
1968#ifdef CONFIG_ZONE_DEVICE
1969static inline int online_device_section(struct mem_section *section)
1970{
1971 unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
1972
1973 return section && ((section->section_mem_map & flags) == flags);
1974}
1975#else
1976static inline int online_device_section(struct mem_section *section)
1977{
1978 return 0;
1979}
1980#endif
1981
1982static inline int online_section_nr(unsigned long nr)
1983{
1984 return online_section(__nr_to_section(nr));
1985}
1986
1987#ifdef CONFIG_MEMORY_HOTPLUG
1988void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1989void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1990#endif
1991
1992static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1993{
1994 return __nr_to_section(pfn_to_section_nr(pfn));
1995}
1996
1997extern unsigned long __highest_present_section_nr;
1998
1999static inline int subsection_map_index(unsigned long pfn)
2000{
2001 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
2002}
2003
2004#ifdef CONFIG_SPARSEMEM_VMEMMAP
2005static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
2006{
2007 int idx = subsection_map_index(pfn);
2008 struct mem_section_usage *usage = READ_ONCE(ms->usage);
2009
2010 return usage ? test_bit(idx, usage->subsection_map) : 0;
2011}
2012#else
2013static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
2014{
2015 return 1;
2016}
2017#endif
2018
2019#ifndef CONFIG_HAVE_ARCH_PFN_VALID
2020/**
2021 * pfn_valid - check if there is a valid memory map entry for a PFN
2022 * @pfn: the page frame number to check
2023 *
2024 * Check if there is a valid memory map entry aka struct page for the @pfn.
2025 * Note, that availability of the memory map entry does not imply that
2026 * there is actual usable memory at that @pfn. The struct page may
2027 * represent a hole or an unusable page frame.
2028 *
2029 * Return: 1 for PFNs that have memory map entries and 0 otherwise
2030 */
2031static inline int pfn_valid(unsigned long pfn)
2032{
2033 struct mem_section *ms;
2034 int ret;
2035
2036 /*
2037 * Ensure the upper PAGE_SHIFT bits are clear in the
2038 * pfn. Else it might lead to false positives when
2039 * some of the upper bits are set, but the lower bits
2040 * match a valid pfn.
2041 */
2042 if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
2043 return 0;
2044
2045 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2046 return 0;
2047 ms = __pfn_to_section(pfn);
2048 rcu_read_lock_sched();
2049 if (!valid_section(ms)) {
2050 rcu_read_unlock_sched();
2051 return 0;
2052 }
2053 /*
2054 * Traditionally early sections always returned pfn_valid() for
2055 * the entire section-sized span.
2056 */
2057 ret = early_section(ms) || pfn_section_valid(ms, pfn);
2058 rcu_read_unlock_sched();
2059
2060 return ret;
2061}
2062#endif
2063
2064static inline int pfn_in_present_section(unsigned long pfn)
2065{
2066 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2067 return 0;
2068 return present_section(__pfn_to_section(pfn));
2069}
2070
2071static inline unsigned long next_present_section_nr(unsigned long section_nr)
2072{
2073 while (++section_nr <= __highest_present_section_nr) {
2074 if (present_section_nr(section_nr))
2075 return section_nr;
2076 }
2077
2078 return -1;
2079}
2080
2081/*
2082 * These are _only_ used during initialisation, therefore they
2083 * can use __initdata ... They could have names to indicate
2084 * this restriction.
2085 */
2086#ifdef CONFIG_NUMA
2087#define pfn_to_nid(pfn) \
2088({ \
2089 unsigned long __pfn_to_nid_pfn = (pfn); \
2090 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
2091})
2092#else
2093#define pfn_to_nid(pfn) (0)
2094#endif
2095
2096void sparse_init(void);
2097#else
2098#define sparse_init() do {} while (0)
2099#define sparse_index_init(_sec, _nid) do {} while (0)
2100#define pfn_in_present_section pfn_valid
2101#define subsection_map_init(_pfn, _nr_pages) do {} while (0)
2102#endif /* CONFIG_SPARSEMEM */
2103
2104#endif /* !__GENERATING_BOUNDS.H */
2105#endif /* !__ASSEMBLY__ */
2106#endif /* _LINUX_MMZONE_H */