Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef LINUX_MM_INLINE_H
3#define LINUX_MM_INLINE_H
4
5#include <linux/atomic.h>
6#include <linux/huge_mm.h>
7#include <linux/mm_types.h>
8#include <linux/swap.h>
9#include <linux/string.h>
10#include <linux/userfaultfd_k.h>
11#include <linux/swapops.h>
12
13/**
14 * folio_is_file_lru - Should the folio be on a file LRU or anon LRU?
15 * @folio: The folio to test.
16 *
17 * We would like to get this info without a page flag, but the state
18 * needs to survive until the folio is last deleted from the LRU, which
19 * could be as far down as __page_cache_release.
20 *
21 * Return: An integer (not a boolean!) used to sort a folio onto the
22 * right LRU list and to account folios correctly.
23 * 1 if @folio is a regular filesystem backed page cache folio
24 * or a lazily freed anonymous folio (e.g. via MADV_FREE).
25 * 0 if @folio is a normal anonymous folio, a tmpfs folio or otherwise
26 * ram or swap backed folio.
27 */
28static inline int folio_is_file_lru(struct folio *folio)
29{
30 return !folio_test_swapbacked(folio);
31}
32
33static inline int page_is_file_lru(struct page *page)
34{
35 return folio_is_file_lru(page_folio(page));
36}
37
38static __always_inline void __update_lru_size(struct lruvec *lruvec,
39 enum lru_list lru, enum zone_type zid,
40 long nr_pages)
41{
42 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
43
44 lockdep_assert_held(&lruvec->lru_lock);
45 WARN_ON_ONCE(nr_pages != (int)nr_pages);
46
47 __mod_lruvec_state(lruvec, NR_LRU_BASE + lru, nr_pages);
48 __mod_zone_page_state(&pgdat->node_zones[zid],
49 NR_ZONE_LRU_BASE + lru, nr_pages);
50}
51
52static __always_inline void update_lru_size(struct lruvec *lruvec,
53 enum lru_list lru, enum zone_type zid,
54 long nr_pages)
55{
56 __update_lru_size(lruvec, lru, zid, nr_pages);
57#ifdef CONFIG_MEMCG
58 mem_cgroup_update_lru_size(lruvec, lru, zid, nr_pages);
59#endif
60}
61
62/**
63 * __folio_clear_lru_flags - Clear page lru flags before releasing a page.
64 * @folio: The folio that was on lru and now has a zero reference.
65 */
66static __always_inline void __folio_clear_lru_flags(struct folio *folio)
67{
68 VM_BUG_ON_FOLIO(!folio_test_lru(folio), folio);
69
70 __folio_clear_lru(folio);
71
72 /* this shouldn't happen, so leave the flags to bad_page() */
73 if (folio_test_active(folio) && folio_test_unevictable(folio))
74 return;
75
76 __folio_clear_active(folio);
77 __folio_clear_unevictable(folio);
78}
79
80/**
81 * folio_lru_list - Which LRU list should a folio be on?
82 * @folio: The folio to test.
83 *
84 * Return: The LRU list a folio should be on, as an index
85 * into the array of LRU lists.
86 */
87static __always_inline enum lru_list folio_lru_list(struct folio *folio)
88{
89 enum lru_list lru;
90
91 VM_BUG_ON_FOLIO(folio_test_active(folio) && folio_test_unevictable(folio), folio);
92
93 if (folio_test_unevictable(folio))
94 return LRU_UNEVICTABLE;
95
96 lru = folio_is_file_lru(folio) ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON;
97 if (folio_test_active(folio))
98 lru += LRU_ACTIVE;
99
100 return lru;
101}
102
103#ifdef CONFIG_LRU_GEN
104
105#ifdef CONFIG_LRU_GEN_ENABLED
106static inline bool lru_gen_enabled(void)
107{
108 DECLARE_STATIC_KEY_TRUE(lru_gen_caps[NR_LRU_GEN_CAPS]);
109
110 return static_branch_likely(&lru_gen_caps[LRU_GEN_CORE]);
111}
112#else
113static inline bool lru_gen_enabled(void)
114{
115 DECLARE_STATIC_KEY_FALSE(lru_gen_caps[NR_LRU_GEN_CAPS]);
116
117 return static_branch_unlikely(&lru_gen_caps[LRU_GEN_CORE]);
118}
119#endif
120
121static inline bool lru_gen_in_fault(void)
122{
123 return current->in_lru_fault;
124}
125
126static inline int lru_gen_from_seq(unsigned long seq)
127{
128 return seq % MAX_NR_GENS;
129}
130
131static inline int lru_hist_from_seq(unsigned long seq)
132{
133 return seq % NR_HIST_GENS;
134}
135
136static inline int lru_tier_from_refs(int refs)
137{
138 VM_WARN_ON_ONCE(refs > BIT(LRU_REFS_WIDTH));
139
140 /* see the comment in folio_lru_refs() */
141 return order_base_2(refs + 1);
142}
143
144static inline int folio_lru_refs(struct folio *folio)
145{
146 unsigned long flags = READ_ONCE(folio->flags);
147 bool workingset = flags & BIT(PG_workingset);
148
149 /*
150 * Return the number of accesses beyond PG_referenced, i.e., N-1 if the
151 * total number of accesses is N>1, since N=0,1 both map to the first
152 * tier. lru_tier_from_refs() will account for this off-by-one. Also see
153 * the comment on MAX_NR_TIERS.
154 */
155 return ((flags & LRU_REFS_MASK) >> LRU_REFS_PGOFF) + workingset;
156}
157
158static inline void folio_clear_lru_refs(struct folio *folio)
159{
160 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0);
161}
162
163static inline int folio_lru_gen(struct folio *folio)
164{
165 unsigned long flags = READ_ONCE(folio->flags);
166
167 return ((flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
168}
169
170static inline bool lru_gen_is_active(struct lruvec *lruvec, int gen)
171{
172 unsigned long max_seq = lruvec->lrugen.max_seq;
173
174 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
175
176 /* see the comment on MIN_NR_GENS */
177 return gen == lru_gen_from_seq(max_seq) || gen == lru_gen_from_seq(max_seq - 1);
178}
179
180static inline void lru_gen_update_size(struct lruvec *lruvec, struct folio *folio,
181 int old_gen, int new_gen)
182{
183 int type = folio_is_file_lru(folio);
184 int zone = folio_zonenum(folio);
185 int delta = folio_nr_pages(folio);
186 enum lru_list lru = type * LRU_INACTIVE_FILE;
187 struct lru_gen_folio *lrugen = &lruvec->lrugen;
188
189 VM_WARN_ON_ONCE(old_gen != -1 && old_gen >= MAX_NR_GENS);
190 VM_WARN_ON_ONCE(new_gen != -1 && new_gen >= MAX_NR_GENS);
191 VM_WARN_ON_ONCE(old_gen == -1 && new_gen == -1);
192
193 if (old_gen >= 0)
194 WRITE_ONCE(lrugen->nr_pages[old_gen][type][zone],
195 lrugen->nr_pages[old_gen][type][zone] - delta);
196 if (new_gen >= 0)
197 WRITE_ONCE(lrugen->nr_pages[new_gen][type][zone],
198 lrugen->nr_pages[new_gen][type][zone] + delta);
199
200 /* addition */
201 if (old_gen < 0) {
202 if (lru_gen_is_active(lruvec, new_gen))
203 lru += LRU_ACTIVE;
204 __update_lru_size(lruvec, lru, zone, delta);
205 return;
206 }
207
208 /* deletion */
209 if (new_gen < 0) {
210 if (lru_gen_is_active(lruvec, old_gen))
211 lru += LRU_ACTIVE;
212 __update_lru_size(lruvec, lru, zone, -delta);
213 return;
214 }
215
216 /* promotion */
217 if (!lru_gen_is_active(lruvec, old_gen) && lru_gen_is_active(lruvec, new_gen)) {
218 __update_lru_size(lruvec, lru, zone, -delta);
219 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, delta);
220 }
221
222 /* demotion requires isolation, e.g., lru_deactivate_fn() */
223 VM_WARN_ON_ONCE(lru_gen_is_active(lruvec, old_gen) && !lru_gen_is_active(lruvec, new_gen));
224}
225
226static inline bool lru_gen_add_folio(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
227{
228 unsigned long seq;
229 unsigned long flags;
230 unsigned long mask;
231 int gen = folio_lru_gen(folio);
232 int type = folio_is_file_lru(folio);
233 int zone = folio_zonenum(folio);
234 struct lru_gen_folio *lrugen = &lruvec->lrugen;
235
236 VM_WARN_ON_ONCE_FOLIO(gen != -1, folio);
237
238 if (folio_test_unevictable(folio) || !lrugen->enabled)
239 return false;
240 /*
241 * There are four common cases for this page:
242 * 1. If it's hot, i.e., freshly faulted in, add it to the youngest
243 * generation, and it's protected over the rest below.
244 * 2. If it can't be evicted immediately, i.e., a dirty page pending
245 * writeback, add it to the second youngest generation.
246 * 3. If it should be evicted first, e.g., cold and clean from
247 * folio_rotate_reclaimable(), add it to the oldest generation.
248 * 4. Everything else falls between 2 & 3 above and is added to the
249 * second oldest generation if it's considered inactive, or the
250 * oldest generation otherwise. See lru_gen_is_active().
251 */
252 if (folio_test_active(folio))
253 seq = lrugen->max_seq;
254 else if ((type == LRU_GEN_ANON && !folio_test_swapcache(folio)) ||
255 (folio_test_reclaim(folio) &&
256 (folio_test_dirty(folio) || folio_test_writeback(folio))))
257 seq = lrugen->max_seq - 1;
258 else if (reclaiming || lrugen->min_seq[type] + MIN_NR_GENS >= lrugen->max_seq)
259 seq = lrugen->min_seq[type];
260 else
261 seq = lrugen->min_seq[type] + 1;
262
263 gen = lru_gen_from_seq(seq);
264 flags = (gen + 1UL) << LRU_GEN_PGOFF;
265 /* see the comment on MIN_NR_GENS about PG_active */
266 mask = LRU_GEN_MASK;
267 /*
268 * Don't clear PG_workingset here because it can affect PSI accounting
269 * if the activation is due to workingset refault.
270 */
271 if (folio_test_active(folio))
272 mask |= LRU_REFS_MASK | BIT(PG_referenced) | BIT(PG_active);
273 set_mask_bits(&folio->flags, mask, flags);
274
275 lru_gen_update_size(lruvec, folio, -1, gen);
276 /* for folio_rotate_reclaimable() */
277 if (reclaiming)
278 list_add_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
279 else
280 list_add(&folio->lru, &lrugen->folios[gen][type][zone]);
281
282 return true;
283}
284
285static inline bool lru_gen_del_folio(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
286{
287 unsigned long flags;
288 int gen = folio_lru_gen(folio);
289
290 if (gen < 0)
291 return false;
292
293 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
294 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
295
296 /* for folio_migrate_flags() */
297 flags = !reclaiming && lru_gen_is_active(lruvec, gen) ? BIT(PG_active) : 0;
298 flags = set_mask_bits(&folio->flags, LRU_GEN_MASK, flags);
299 gen = ((flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
300
301 lru_gen_update_size(lruvec, folio, gen, -1);
302 list_del(&folio->lru);
303
304 return true;
305}
306
307static inline void folio_migrate_refs(struct folio *new, struct folio *old)
308{
309 unsigned long refs = READ_ONCE(old->flags) & LRU_REFS_MASK;
310
311 set_mask_bits(&new->flags, LRU_REFS_MASK, refs);
312}
313#else /* !CONFIG_LRU_GEN */
314
315static inline bool lru_gen_enabled(void)
316{
317 return false;
318}
319
320static inline bool lru_gen_in_fault(void)
321{
322 return false;
323}
324
325static inline bool lru_gen_add_folio(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
326{
327 return false;
328}
329
330static inline bool lru_gen_del_folio(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
331{
332 return false;
333}
334
335static inline void folio_migrate_refs(struct folio *new, struct folio *old)
336{
337
338}
339#endif /* CONFIG_LRU_GEN */
340
341static __always_inline
342void lruvec_add_folio(struct lruvec *lruvec, struct folio *folio)
343{
344 enum lru_list lru = folio_lru_list(folio);
345
346 if (lru_gen_add_folio(lruvec, folio, false))
347 return;
348
349 update_lru_size(lruvec, lru, folio_zonenum(folio),
350 folio_nr_pages(folio));
351 if (lru != LRU_UNEVICTABLE)
352 list_add(&folio->lru, &lruvec->lists[lru]);
353}
354
355static __always_inline
356void lruvec_add_folio_tail(struct lruvec *lruvec, struct folio *folio)
357{
358 enum lru_list lru = folio_lru_list(folio);
359
360 if (lru_gen_add_folio(lruvec, folio, true))
361 return;
362
363 update_lru_size(lruvec, lru, folio_zonenum(folio),
364 folio_nr_pages(folio));
365 /* This is not expected to be used on LRU_UNEVICTABLE */
366 list_add_tail(&folio->lru, &lruvec->lists[lru]);
367}
368
369static __always_inline
370void lruvec_del_folio(struct lruvec *lruvec, struct folio *folio)
371{
372 enum lru_list lru = folio_lru_list(folio);
373
374 if (lru_gen_del_folio(lruvec, folio, false))
375 return;
376
377 if (lru != LRU_UNEVICTABLE)
378 list_del(&folio->lru);
379 update_lru_size(lruvec, lru, folio_zonenum(folio),
380 -folio_nr_pages(folio));
381}
382
383#ifdef CONFIG_ANON_VMA_NAME
384/* mmap_lock should be read-locked */
385static inline void anon_vma_name_get(struct anon_vma_name *anon_name)
386{
387 if (anon_name)
388 kref_get(&anon_name->kref);
389}
390
391static inline void anon_vma_name_put(struct anon_vma_name *anon_name)
392{
393 if (anon_name)
394 kref_put(&anon_name->kref, anon_vma_name_free);
395}
396
397static inline
398struct anon_vma_name *anon_vma_name_reuse(struct anon_vma_name *anon_name)
399{
400 /* Prevent anon_name refcount saturation early on */
401 if (kref_read(&anon_name->kref) < REFCOUNT_MAX) {
402 anon_vma_name_get(anon_name);
403 return anon_name;
404
405 }
406 return anon_vma_name_alloc(anon_name->name);
407}
408
409static inline void dup_anon_vma_name(struct vm_area_struct *orig_vma,
410 struct vm_area_struct *new_vma)
411{
412 struct anon_vma_name *anon_name = anon_vma_name(orig_vma);
413
414 if (anon_name)
415 new_vma->anon_name = anon_vma_name_reuse(anon_name);
416}
417
418static inline void free_anon_vma_name(struct vm_area_struct *vma)
419{
420 /*
421 * Not using anon_vma_name because it generates a warning if mmap_lock
422 * is not held, which might be the case here.
423 */
424 anon_vma_name_put(vma->anon_name);
425}
426
427static inline bool anon_vma_name_eq(struct anon_vma_name *anon_name1,
428 struct anon_vma_name *anon_name2)
429{
430 if (anon_name1 == anon_name2)
431 return true;
432
433 return anon_name1 && anon_name2 &&
434 !strcmp(anon_name1->name, anon_name2->name);
435}
436
437#else /* CONFIG_ANON_VMA_NAME */
438static inline void anon_vma_name_get(struct anon_vma_name *anon_name) {}
439static inline void anon_vma_name_put(struct anon_vma_name *anon_name) {}
440static inline void dup_anon_vma_name(struct vm_area_struct *orig_vma,
441 struct vm_area_struct *new_vma) {}
442static inline void free_anon_vma_name(struct vm_area_struct *vma) {}
443
444static inline bool anon_vma_name_eq(struct anon_vma_name *anon_name1,
445 struct anon_vma_name *anon_name2)
446{
447 return true;
448}
449
450#endif /* CONFIG_ANON_VMA_NAME */
451
452static inline void init_tlb_flush_pending(struct mm_struct *mm)
453{
454 atomic_set(&mm->tlb_flush_pending, 0);
455}
456
457static inline void inc_tlb_flush_pending(struct mm_struct *mm)
458{
459 atomic_inc(&mm->tlb_flush_pending);
460 /*
461 * The only time this value is relevant is when there are indeed pages
462 * to flush. And we'll only flush pages after changing them, which
463 * requires the PTL.
464 *
465 * So the ordering here is:
466 *
467 * atomic_inc(&mm->tlb_flush_pending);
468 * spin_lock(&ptl);
469 * ...
470 * set_pte_at();
471 * spin_unlock(&ptl);
472 *
473 * spin_lock(&ptl)
474 * mm_tlb_flush_pending();
475 * ....
476 * spin_unlock(&ptl);
477 *
478 * flush_tlb_range();
479 * atomic_dec(&mm->tlb_flush_pending);
480 *
481 * Where the increment if constrained by the PTL unlock, it thus
482 * ensures that the increment is visible if the PTE modification is
483 * visible. After all, if there is no PTE modification, nobody cares
484 * about TLB flushes either.
485 *
486 * This very much relies on users (mm_tlb_flush_pending() and
487 * mm_tlb_flush_nested()) only caring about _specific_ PTEs (and
488 * therefore specific PTLs), because with SPLIT_PTE_PTLOCKS and RCpc
489 * locks (PPC) the unlock of one doesn't order against the lock of
490 * another PTL.
491 *
492 * The decrement is ordered by the flush_tlb_range(), such that
493 * mm_tlb_flush_pending() will not return false unless all flushes have
494 * completed.
495 */
496}
497
498static inline void dec_tlb_flush_pending(struct mm_struct *mm)
499{
500 /*
501 * See inc_tlb_flush_pending().
502 *
503 * This cannot be smp_mb__before_atomic() because smp_mb() simply does
504 * not order against TLB invalidate completion, which is what we need.
505 *
506 * Therefore we must rely on tlb_flush_*() to guarantee order.
507 */
508 atomic_dec(&mm->tlb_flush_pending);
509}
510
511static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
512{
513 /*
514 * Must be called after having acquired the PTL; orders against that
515 * PTLs release and therefore ensures that if we observe the modified
516 * PTE we must also observe the increment from inc_tlb_flush_pending().
517 *
518 * That is, it only guarantees to return true if there is a flush
519 * pending for _this_ PTL.
520 */
521 return atomic_read(&mm->tlb_flush_pending);
522}
523
524static inline bool mm_tlb_flush_nested(struct mm_struct *mm)
525{
526 /*
527 * Similar to mm_tlb_flush_pending(), we must have acquired the PTL
528 * for which there is a TLB flush pending in order to guarantee
529 * we've seen both that PTE modification and the increment.
530 *
531 * (no requirement on actually still holding the PTL, that is irrelevant)
532 */
533 return atomic_read(&mm->tlb_flush_pending) > 1;
534}
535
536#ifdef CONFIG_MMU
537/*
538 * Computes the pte marker to copy from the given source entry into dst_vma.
539 * If no marker should be copied, returns 0.
540 * The caller should insert a new pte created with make_pte_marker().
541 */
542static inline pte_marker copy_pte_marker(
543 swp_entry_t entry, struct vm_area_struct *dst_vma)
544{
545 pte_marker srcm = pte_marker_get(entry);
546 /* Always copy error entries. */
547 pte_marker dstm = srcm & (PTE_MARKER_POISONED | PTE_MARKER_GUARD);
548
549 /* Only copy PTE markers if UFFD register matches. */
550 if ((srcm & PTE_MARKER_UFFD_WP) && userfaultfd_wp(dst_vma))
551 dstm |= PTE_MARKER_UFFD_WP;
552
553 return dstm;
554}
555#endif
556
557/*
558 * If this pte is wr-protected by uffd-wp in any form, arm the special pte to
559 * replace a none pte. NOTE! This should only be called when *pte is already
560 * cleared so we will never accidentally replace something valuable. Meanwhile
561 * none pte also means we are not demoting the pte so tlb flushed is not needed.
562 * E.g., when pte cleared the caller should have taken care of the tlb flush.
563 *
564 * Must be called with pgtable lock held so that no thread will see the none
565 * pte, and if they see it, they'll fault and serialize at the pgtable lock.
566 *
567 * This function is a no-op if PTE_MARKER_UFFD_WP is not enabled.
568 */
569static inline void
570pte_install_uffd_wp_if_needed(struct vm_area_struct *vma, unsigned long addr,
571 pte_t *pte, pte_t pteval)
572{
573#ifdef CONFIG_PTE_MARKER_UFFD_WP
574 bool arm_uffd_pte = false;
575
576 /* The current status of the pte should be "cleared" before calling */
577 WARN_ON_ONCE(!pte_none(ptep_get(pte)));
578
579 /*
580 * NOTE: userfaultfd_wp_unpopulated() doesn't need this whole
581 * thing, because when zapping either it means it's dropping the
582 * page, or in TTU where the present pte will be quickly replaced
583 * with a swap pte. There's no way of leaking the bit.
584 */
585 if (vma_is_anonymous(vma) || !userfaultfd_wp(vma))
586 return;
587
588 /* A uffd-wp wr-protected normal pte */
589 if (unlikely(pte_present(pteval) && pte_uffd_wp(pteval)))
590 arm_uffd_pte = true;
591
592 /*
593 * A uffd-wp wr-protected swap pte. Note: this should even cover an
594 * existing pte marker with uffd-wp bit set.
595 */
596 if (unlikely(pte_swp_uffd_wp_any(pteval)))
597 arm_uffd_pte = true;
598
599 if (unlikely(arm_uffd_pte))
600 set_pte_at(vma->vm_mm, addr, pte,
601 make_pte_marker(PTE_MARKER_UFFD_WP));
602#endif
603}
604
605static inline bool vma_has_recency(struct vm_area_struct *vma)
606{
607 if (vma->vm_flags & (VM_SEQ_READ | VM_RAND_READ))
608 return false;
609
610 if (vma->vm_file && (vma->vm_file->f_mode & FMODE_NOREUSE))
611 return false;
612
613 return true;
614}
615
616#endif