at for-next 129 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MM_H 3#define _LINUX_MM_H 4 5#include <linux/errno.h> 6#include <linux/mmdebug.h> 7#include <linux/gfp.h> 8#include <linux/pgalloc_tag.h> 9#include <linux/bug.h> 10#include <linux/list.h> 11#include <linux/mmzone.h> 12#include <linux/rbtree.h> 13#include <linux/atomic.h> 14#include <linux/debug_locks.h> 15#include <linux/mm_types.h> 16#include <linux/mmap_lock.h> 17#include <linux/range.h> 18#include <linux/pfn.h> 19#include <linux/percpu-refcount.h> 20#include <linux/bit_spinlock.h> 21#include <linux/shrinker.h> 22#include <linux/resource.h> 23#include <linux/page_ext.h> 24#include <linux/err.h> 25#include <linux/page-flags.h> 26#include <linux/page_ref.h> 27#include <linux/overflow.h> 28#include <linux/sizes.h> 29#include <linux/sched.h> 30#include <linux/pgtable.h> 31#include <linux/kasan.h> 32#include <linux/memremap.h> 33#include <linux/slab.h> 34#include <linux/cacheinfo.h> 35 36struct mempolicy; 37struct anon_vma; 38struct anon_vma_chain; 39struct user_struct; 40struct pt_regs; 41struct folio_batch; 42 43extern int sysctl_page_lock_unfairness; 44 45void mm_core_init(void); 46void init_mm_internals(void); 47 48#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */ 49extern unsigned long max_mapnr; 50 51static inline void set_max_mapnr(unsigned long limit) 52{ 53 max_mapnr = limit; 54} 55#else 56static inline void set_max_mapnr(unsigned long limit) { } 57#endif 58 59extern atomic_long_t _totalram_pages; 60static inline unsigned long totalram_pages(void) 61{ 62 return (unsigned long)atomic_long_read(&_totalram_pages); 63} 64 65static inline void totalram_pages_inc(void) 66{ 67 atomic_long_inc(&_totalram_pages); 68} 69 70static inline void totalram_pages_dec(void) 71{ 72 atomic_long_dec(&_totalram_pages); 73} 74 75static inline void totalram_pages_add(long count) 76{ 77 atomic_long_add(count, &_totalram_pages); 78} 79 80extern void * high_memory; 81extern int page_cluster; 82extern const int page_cluster_max; 83 84#ifdef CONFIG_SYSCTL 85extern int sysctl_legacy_va_layout; 86#else 87#define sysctl_legacy_va_layout 0 88#endif 89 90#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 91extern const int mmap_rnd_bits_min; 92extern int mmap_rnd_bits_max __ro_after_init; 93extern int mmap_rnd_bits __read_mostly; 94#endif 95#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 96extern const int mmap_rnd_compat_bits_min; 97extern const int mmap_rnd_compat_bits_max; 98extern int mmap_rnd_compat_bits __read_mostly; 99#endif 100 101#ifndef DIRECT_MAP_PHYSMEM_END 102# ifdef MAX_PHYSMEM_BITS 103# define DIRECT_MAP_PHYSMEM_END ((1ULL << MAX_PHYSMEM_BITS) - 1) 104# else 105# define DIRECT_MAP_PHYSMEM_END (((phys_addr_t)-1)&~(1ULL<<63)) 106# endif 107#endif 108 109#include <asm/page.h> 110#include <asm/processor.h> 111 112#ifndef __pa_symbol 113#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 114#endif 115 116#ifndef page_to_virt 117#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 118#endif 119 120#ifndef lm_alias 121#define lm_alias(x) __va(__pa_symbol(x)) 122#endif 123 124/* 125 * To prevent common memory management code establishing 126 * a zero page mapping on a read fault. 127 * This macro should be defined within <asm/pgtable.h>. 128 * s390 does this to prevent multiplexing of hardware bits 129 * related to the physical page in case of virtualization. 130 */ 131#ifndef mm_forbids_zeropage 132#define mm_forbids_zeropage(X) (0) 133#endif 134 135/* 136 * On some architectures it is expensive to call memset() for small sizes. 137 * If an architecture decides to implement their own version of 138 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 139 * define their own version of this macro in <asm/pgtable.h> 140 */ 141#if BITS_PER_LONG == 64 142/* This function must be updated when the size of struct page grows above 96 143 * or reduces below 56. The idea that compiler optimizes out switch() 144 * statement, and only leaves move/store instructions. Also the compiler can 145 * combine write statements if they are both assignments and can be reordered, 146 * this can result in several of the writes here being dropped. 147 */ 148#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 149static inline void __mm_zero_struct_page(struct page *page) 150{ 151 unsigned long *_pp = (void *)page; 152 153 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */ 154 BUILD_BUG_ON(sizeof(struct page) & 7); 155 BUILD_BUG_ON(sizeof(struct page) < 56); 156 BUILD_BUG_ON(sizeof(struct page) > 96); 157 158 switch (sizeof(struct page)) { 159 case 96: 160 _pp[11] = 0; 161 fallthrough; 162 case 88: 163 _pp[10] = 0; 164 fallthrough; 165 case 80: 166 _pp[9] = 0; 167 fallthrough; 168 case 72: 169 _pp[8] = 0; 170 fallthrough; 171 case 64: 172 _pp[7] = 0; 173 fallthrough; 174 case 56: 175 _pp[6] = 0; 176 _pp[5] = 0; 177 _pp[4] = 0; 178 _pp[3] = 0; 179 _pp[2] = 0; 180 _pp[1] = 0; 181 _pp[0] = 0; 182 } 183} 184#else 185#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 186#endif 187 188/* 189 * Default maximum number of active map areas, this limits the number of vmas 190 * per mm struct. Users can overwrite this number by sysctl but there is a 191 * problem. 192 * 193 * When a program's coredump is generated as ELF format, a section is created 194 * per a vma. In ELF, the number of sections is represented in unsigned short. 195 * This means the number of sections should be smaller than 65535 at coredump. 196 * Because the kernel adds some informative sections to a image of program at 197 * generating coredump, we need some margin. The number of extra sections is 198 * 1-3 now and depends on arch. We use "5" as safe margin, here. 199 * 200 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 201 * not a hard limit any more. Although some userspace tools can be surprised by 202 * that. 203 */ 204#define MAPCOUNT_ELF_CORE_MARGIN (5) 205#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 206 207extern int sysctl_max_map_count; 208 209extern unsigned long sysctl_user_reserve_kbytes; 210extern unsigned long sysctl_admin_reserve_kbytes; 211 212extern int sysctl_overcommit_memory; 213extern int sysctl_overcommit_ratio; 214extern unsigned long sysctl_overcommit_kbytes; 215 216int overcommit_ratio_handler(const struct ctl_table *, int, void *, size_t *, 217 loff_t *); 218int overcommit_kbytes_handler(const struct ctl_table *, int, void *, size_t *, 219 loff_t *); 220int overcommit_policy_handler(const struct ctl_table *, int, void *, size_t *, 221 loff_t *); 222 223#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 224#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 225#define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio)) 226#else 227#define nth_page(page,n) ((page) + (n)) 228#define folio_page_idx(folio, p) ((p) - &(folio)->page) 229#endif 230 231/* to align the pointer to the (next) page boundary */ 232#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 233 234/* to align the pointer to the (prev) page boundary */ 235#define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE) 236 237/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 238#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 239 240static inline struct folio *lru_to_folio(struct list_head *head) 241{ 242 return list_entry((head)->prev, struct folio, lru); 243} 244 245void setup_initial_init_mm(void *start_code, void *end_code, 246 void *end_data, void *brk); 247 248/* 249 * Linux kernel virtual memory manager primitives. 250 * The idea being to have a "virtual" mm in the same way 251 * we have a virtual fs - giving a cleaner interface to the 252 * mm details, and allowing different kinds of memory mappings 253 * (from shared memory to executable loading to arbitrary 254 * mmap() functions). 255 */ 256 257struct vm_area_struct *vm_area_alloc(struct mm_struct *); 258struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 259void vm_area_free(struct vm_area_struct *); 260/* Use only if VMA has no other users */ 261void __vm_area_free(struct vm_area_struct *vma); 262 263#ifndef CONFIG_MMU 264extern struct rb_root nommu_region_tree; 265extern struct rw_semaphore nommu_region_sem; 266 267extern unsigned int kobjsize(const void *objp); 268#endif 269 270/* 271 * vm_flags in vm_area_struct, see mm_types.h. 272 * When changing, update also include/trace/events/mmflags.h 273 */ 274#define VM_NONE 0x00000000 275 276#define VM_READ 0x00000001 /* currently active flags */ 277#define VM_WRITE 0x00000002 278#define VM_EXEC 0x00000004 279#define VM_SHARED 0x00000008 280 281/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 282#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 283#define VM_MAYWRITE 0x00000020 284#define VM_MAYEXEC 0x00000040 285#define VM_MAYSHARE 0x00000080 286 287#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 288#ifdef CONFIG_MMU 289#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 290#else /* CONFIG_MMU */ 291#define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */ 292#define VM_UFFD_MISSING 0 293#endif /* CONFIG_MMU */ 294#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 295#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 296 297#define VM_LOCKED 0x00002000 298#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 299 300 /* Used by sys_madvise() */ 301#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 302#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 303 304#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 305#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 306#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 307#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 308#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 309#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 310#define VM_SYNC 0x00800000 /* Synchronous page faults */ 311#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 312#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 313#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 314 315#ifdef CONFIG_MEM_SOFT_DIRTY 316# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 317#else 318# define VM_SOFTDIRTY 0 319#endif 320 321#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 322#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 323#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 324#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 325 326#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 327#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 328#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 329#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 330#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 331#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 332#define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */ 333#define VM_HIGH_ARCH_BIT_6 38 /* bit only usable on 64-bit architectures */ 334#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 335#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 336#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 337#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 338#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 339#define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5) 340#define VM_HIGH_ARCH_6 BIT(VM_HIGH_ARCH_BIT_6) 341#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 342 343#ifdef CONFIG_ARCH_HAS_PKEYS 344# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 345# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 346# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 347# define VM_PKEY_BIT2 VM_HIGH_ARCH_2 348#if CONFIG_ARCH_PKEY_BITS > 3 349# define VM_PKEY_BIT3 VM_HIGH_ARCH_3 350#else 351# define VM_PKEY_BIT3 0 352#endif 353#if CONFIG_ARCH_PKEY_BITS > 4 354# define VM_PKEY_BIT4 VM_HIGH_ARCH_4 355#else 356# define VM_PKEY_BIT4 0 357#endif 358#endif /* CONFIG_ARCH_HAS_PKEYS */ 359 360#ifdef CONFIG_X86_USER_SHADOW_STACK 361/* 362 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of 363 * support core mm. 364 * 365 * These VMAs will get a single end guard page. This helps userspace protect 366 * itself from attacks. A single page is enough for current shadow stack archs 367 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c 368 * for more details on the guard size. 369 */ 370# define VM_SHADOW_STACK VM_HIGH_ARCH_5 371#endif 372 373#if defined(CONFIG_ARM64_GCS) 374/* 375 * arm64's Guarded Control Stack implements similar functionality and 376 * has similar constraints to shadow stacks. 377 */ 378# define VM_SHADOW_STACK VM_HIGH_ARCH_6 379#endif 380 381#ifndef VM_SHADOW_STACK 382# define VM_SHADOW_STACK VM_NONE 383#endif 384 385#if defined(CONFIG_X86) 386# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 387#elif defined(CONFIG_PPC64) 388# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 389#elif defined(CONFIG_PARISC) 390# define VM_GROWSUP VM_ARCH_1 391#elif defined(CONFIG_SPARC64) 392# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 393# define VM_ARCH_CLEAR VM_SPARC_ADI 394#elif defined(CONFIG_ARM64) 395# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 396# define VM_ARCH_CLEAR VM_ARM64_BTI 397#elif !defined(CONFIG_MMU) 398# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 399#endif 400 401#if defined(CONFIG_ARM64_MTE) 402# define VM_MTE VM_HIGH_ARCH_4 /* Use Tagged memory for access control */ 403# define VM_MTE_ALLOWED VM_HIGH_ARCH_5 /* Tagged memory permitted */ 404#else 405# define VM_MTE VM_NONE 406# define VM_MTE_ALLOWED VM_NONE 407#endif 408 409#ifndef VM_GROWSUP 410# define VM_GROWSUP VM_NONE 411#endif 412 413#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 414# define VM_UFFD_MINOR_BIT 38 415# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ 416#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 417# define VM_UFFD_MINOR VM_NONE 418#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 419 420/* 421 * This flag is used to connect VFIO to arch specific KVM code. It 422 * indicates that the memory under this VMA is safe for use with any 423 * non-cachable memory type inside KVM. Some VFIO devices, on some 424 * platforms, are thought to be unsafe and can cause machine crashes 425 * if KVM does not lock down the memory type. 426 */ 427#ifdef CONFIG_64BIT 428#define VM_ALLOW_ANY_UNCACHED_BIT 39 429#define VM_ALLOW_ANY_UNCACHED BIT(VM_ALLOW_ANY_UNCACHED_BIT) 430#else 431#define VM_ALLOW_ANY_UNCACHED VM_NONE 432#endif 433 434#ifdef CONFIG_64BIT 435#define VM_DROPPABLE_BIT 40 436#define VM_DROPPABLE BIT(VM_DROPPABLE_BIT) 437#elif defined(CONFIG_PPC32) 438#define VM_DROPPABLE VM_ARCH_1 439#else 440#define VM_DROPPABLE VM_NONE 441#endif 442 443#ifdef CONFIG_64BIT 444/* VM is sealed, in vm_flags */ 445#define VM_SEALED _BITUL(63) 446#endif 447 448/* Bits set in the VMA until the stack is in its final location */ 449#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY) 450 451#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 452 453/* Common data flag combinations */ 454#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 455 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 456#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 457 VM_MAYWRITE | VM_MAYEXEC) 458#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 459 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 460 461#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 462#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 463#endif 464 465#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 466#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 467#endif 468 469#define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK) 470 471#ifdef CONFIG_STACK_GROWSUP 472#define VM_STACK VM_GROWSUP 473#define VM_STACK_EARLY VM_GROWSDOWN 474#else 475#define VM_STACK VM_GROWSDOWN 476#define VM_STACK_EARLY 0 477#endif 478 479#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 480 481/* VMA basic access permission flags */ 482#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 483 484 485/* 486 * Special vmas that are non-mergable, non-mlock()able. 487 */ 488#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 489 490/* This mask prevents VMA from being scanned with khugepaged */ 491#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 492 493/* This mask defines which mm->def_flags a process can inherit its parent */ 494#define VM_INIT_DEF_MASK VM_NOHUGEPAGE 495 496/* This mask represents all the VMA flag bits used by mlock */ 497#define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT) 498 499/* Arch-specific flags to clear when updating VM flags on protection change */ 500#ifndef VM_ARCH_CLEAR 501# define VM_ARCH_CLEAR VM_NONE 502#endif 503#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 504 505/* 506 * mapping from the currently active vm_flags protection bits (the 507 * low four bits) to a page protection mask.. 508 */ 509 510/* 511 * The default fault flags that should be used by most of the 512 * arch-specific page fault handlers. 513 */ 514#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 515 FAULT_FLAG_KILLABLE | \ 516 FAULT_FLAG_INTERRUPTIBLE) 517 518/** 519 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 520 * @flags: Fault flags. 521 * 522 * This is mostly used for places where we want to try to avoid taking 523 * the mmap_lock for too long a time when waiting for another condition 524 * to change, in which case we can try to be polite to release the 525 * mmap_lock in the first round to avoid potential starvation of other 526 * processes that would also want the mmap_lock. 527 * 528 * Return: true if the page fault allows retry and this is the first 529 * attempt of the fault handling; false otherwise. 530 */ 531static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 532{ 533 return (flags & FAULT_FLAG_ALLOW_RETRY) && 534 (!(flags & FAULT_FLAG_TRIED)); 535} 536 537#define FAULT_FLAG_TRACE \ 538 { FAULT_FLAG_WRITE, "WRITE" }, \ 539 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 540 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 541 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 542 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 543 { FAULT_FLAG_TRIED, "TRIED" }, \ 544 { FAULT_FLAG_USER, "USER" }, \ 545 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 546 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 547 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \ 548 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" } 549 550/* 551 * vm_fault is filled by the pagefault handler and passed to the vma's 552 * ->fault function. The vma's ->fault is responsible for returning a bitmask 553 * of VM_FAULT_xxx flags that give details about how the fault was handled. 554 * 555 * MM layer fills up gfp_mask for page allocations but fault handler might 556 * alter it if its implementation requires a different allocation context. 557 * 558 * pgoff should be used in favour of virtual_address, if possible. 559 */ 560struct vm_fault { 561 const struct { 562 struct vm_area_struct *vma; /* Target VMA */ 563 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 564 pgoff_t pgoff; /* Logical page offset based on vma */ 565 unsigned long address; /* Faulting virtual address - masked */ 566 unsigned long real_address; /* Faulting virtual address - unmasked */ 567 }; 568 enum fault_flag flags; /* FAULT_FLAG_xxx flags 569 * XXX: should really be 'const' */ 570 pmd_t *pmd; /* Pointer to pmd entry matching 571 * the 'address' */ 572 pud_t *pud; /* Pointer to pud entry matching 573 * the 'address' 574 */ 575 union { 576 pte_t orig_pte; /* Value of PTE at the time of fault */ 577 pmd_t orig_pmd; /* Value of PMD at the time of fault, 578 * used by PMD fault only. 579 */ 580 }; 581 582 struct page *cow_page; /* Page handler may use for COW fault */ 583 struct page *page; /* ->fault handlers should return a 584 * page here, unless VM_FAULT_NOPAGE 585 * is set (which is also implied by 586 * VM_FAULT_ERROR). 587 */ 588 /* These three entries are valid only while holding ptl lock */ 589 pte_t *pte; /* Pointer to pte entry matching 590 * the 'address'. NULL if the page 591 * table hasn't been allocated. 592 */ 593 spinlock_t *ptl; /* Page table lock. 594 * Protects pte page table if 'pte' 595 * is not NULL, otherwise pmd. 596 */ 597 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 598 * vm_ops->map_pages() sets up a page 599 * table from atomic context. 600 * do_fault_around() pre-allocates 601 * page table to avoid allocation from 602 * atomic context. 603 */ 604}; 605 606/* 607 * These are the virtual MM functions - opening of an area, closing and 608 * unmapping it (needed to keep files on disk up-to-date etc), pointer 609 * to the functions called when a no-page or a wp-page exception occurs. 610 */ 611struct vm_operations_struct { 612 void (*open)(struct vm_area_struct * area); 613 /** 614 * @close: Called when the VMA is being removed from the MM. 615 * Context: User context. May sleep. Caller holds mmap_lock. 616 */ 617 void (*close)(struct vm_area_struct * area); 618 /* Called any time before splitting to check if it's allowed */ 619 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 620 int (*mremap)(struct vm_area_struct *area); 621 /* 622 * Called by mprotect() to make driver-specific permission 623 * checks before mprotect() is finalised. The VMA must not 624 * be modified. Returns 0 if mprotect() can proceed. 625 */ 626 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 627 unsigned long end, unsigned long newflags); 628 vm_fault_t (*fault)(struct vm_fault *vmf); 629 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order); 630 vm_fault_t (*map_pages)(struct vm_fault *vmf, 631 pgoff_t start_pgoff, pgoff_t end_pgoff); 632 unsigned long (*pagesize)(struct vm_area_struct * area); 633 634 /* notification that a previously read-only page is about to become 635 * writable, if an error is returned it will cause a SIGBUS */ 636 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 637 638 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 639 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 640 641 /* called by access_process_vm when get_user_pages() fails, typically 642 * for use by special VMAs. See also generic_access_phys() for a generic 643 * implementation useful for any iomem mapping. 644 */ 645 int (*access)(struct vm_area_struct *vma, unsigned long addr, 646 void *buf, int len, int write); 647 648 /* Called by the /proc/PID/maps code to ask the vma whether it 649 * has a special name. Returning non-NULL will also cause this 650 * vma to be dumped unconditionally. */ 651 const char *(*name)(struct vm_area_struct *vma); 652 653#ifdef CONFIG_NUMA 654 /* 655 * set_policy() op must add a reference to any non-NULL @new mempolicy 656 * to hold the policy upon return. Caller should pass NULL @new to 657 * remove a policy and fall back to surrounding context--i.e. do not 658 * install a MPOL_DEFAULT policy, nor the task or system default 659 * mempolicy. 660 */ 661 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 662 663 /* 664 * get_policy() op must add reference [mpol_get()] to any policy at 665 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 666 * in mm/mempolicy.c will do this automatically. 667 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 668 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 669 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 670 * must return NULL--i.e., do not "fallback" to task or system default 671 * policy. 672 */ 673 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 674 unsigned long addr, pgoff_t *ilx); 675#endif 676 /* 677 * Called by vm_normal_page() for special PTEs to find the 678 * page for @addr. This is useful if the default behavior 679 * (using pte_page()) would not find the correct page. 680 */ 681 struct page *(*find_special_page)(struct vm_area_struct *vma, 682 unsigned long addr); 683}; 684 685#ifdef CONFIG_NUMA_BALANCING 686static inline void vma_numab_state_init(struct vm_area_struct *vma) 687{ 688 vma->numab_state = NULL; 689} 690static inline void vma_numab_state_free(struct vm_area_struct *vma) 691{ 692 kfree(vma->numab_state); 693} 694#else 695static inline void vma_numab_state_init(struct vm_area_struct *vma) {} 696static inline void vma_numab_state_free(struct vm_area_struct *vma) {} 697#endif /* CONFIG_NUMA_BALANCING */ 698 699#ifdef CONFIG_PER_VMA_LOCK 700/* 701 * Try to read-lock a vma. The function is allowed to occasionally yield false 702 * locked result to avoid performance overhead, in which case we fall back to 703 * using mmap_lock. The function should never yield false unlocked result. 704 */ 705static inline bool vma_start_read(struct vm_area_struct *vma) 706{ 707 /* 708 * Check before locking. A race might cause false locked result. 709 * We can use READ_ONCE() for the mm_lock_seq here, and don't need 710 * ACQUIRE semantics, because this is just a lockless check whose result 711 * we don't rely on for anything - the mm_lock_seq read against which we 712 * need ordering is below. 713 */ 714 if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq)) 715 return false; 716 717 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0)) 718 return false; 719 720 /* 721 * Overflow might produce false locked result. 722 * False unlocked result is impossible because we modify and check 723 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq 724 * modification invalidates all existing locks. 725 * 726 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are 727 * racing with vma_end_write_all(), we only start reading from the VMA 728 * after it has been unlocked. 729 * This pairs with RELEASE semantics in vma_end_write_all(). 730 */ 731 if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) { 732 up_read(&vma->vm_lock->lock); 733 return false; 734 } 735 return true; 736} 737 738static inline void vma_end_read(struct vm_area_struct *vma) 739{ 740 rcu_read_lock(); /* keeps vma alive till the end of up_read */ 741 up_read(&vma->vm_lock->lock); 742 rcu_read_unlock(); 743} 744 745/* WARNING! Can only be used if mmap_lock is expected to be write-locked */ 746static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq) 747{ 748 mmap_assert_write_locked(vma->vm_mm); 749 750 /* 751 * current task is holding mmap_write_lock, both vma->vm_lock_seq and 752 * mm->mm_lock_seq can't be concurrently modified. 753 */ 754 *mm_lock_seq = vma->vm_mm->mm_lock_seq; 755 return (vma->vm_lock_seq == *mm_lock_seq); 756} 757 758/* 759 * Begin writing to a VMA. 760 * Exclude concurrent readers under the per-VMA lock until the currently 761 * write-locked mmap_lock is dropped or downgraded. 762 */ 763static inline void vma_start_write(struct vm_area_struct *vma) 764{ 765 int mm_lock_seq; 766 767 if (__is_vma_write_locked(vma, &mm_lock_seq)) 768 return; 769 770 down_write(&vma->vm_lock->lock); 771 /* 772 * We should use WRITE_ONCE() here because we can have concurrent reads 773 * from the early lockless pessimistic check in vma_start_read(). 774 * We don't really care about the correctness of that early check, but 775 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy. 776 */ 777 WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq); 778 up_write(&vma->vm_lock->lock); 779} 780 781static inline void vma_assert_write_locked(struct vm_area_struct *vma) 782{ 783 int mm_lock_seq; 784 785 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma); 786} 787 788static inline void vma_assert_locked(struct vm_area_struct *vma) 789{ 790 if (!rwsem_is_locked(&vma->vm_lock->lock)) 791 vma_assert_write_locked(vma); 792} 793 794static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached) 795{ 796 /* When detaching vma should be write-locked */ 797 if (detached) 798 vma_assert_write_locked(vma); 799 vma->detached = detached; 800} 801 802static inline void release_fault_lock(struct vm_fault *vmf) 803{ 804 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 805 vma_end_read(vmf->vma); 806 else 807 mmap_read_unlock(vmf->vma->vm_mm); 808} 809 810static inline void assert_fault_locked(struct vm_fault *vmf) 811{ 812 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 813 vma_assert_locked(vmf->vma); 814 else 815 mmap_assert_locked(vmf->vma->vm_mm); 816} 817 818struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 819 unsigned long address); 820 821#else /* CONFIG_PER_VMA_LOCK */ 822 823static inline bool vma_start_read(struct vm_area_struct *vma) 824 { return false; } 825static inline void vma_end_read(struct vm_area_struct *vma) {} 826static inline void vma_start_write(struct vm_area_struct *vma) {} 827static inline void vma_assert_write_locked(struct vm_area_struct *vma) 828 { mmap_assert_write_locked(vma->vm_mm); } 829static inline void vma_mark_detached(struct vm_area_struct *vma, 830 bool detached) {} 831 832static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 833 unsigned long address) 834{ 835 return NULL; 836} 837 838static inline void vma_assert_locked(struct vm_area_struct *vma) 839{ 840 mmap_assert_locked(vma->vm_mm); 841} 842 843static inline void release_fault_lock(struct vm_fault *vmf) 844{ 845 mmap_read_unlock(vmf->vma->vm_mm); 846} 847 848static inline void assert_fault_locked(struct vm_fault *vmf) 849{ 850 mmap_assert_locked(vmf->vma->vm_mm); 851} 852 853#endif /* CONFIG_PER_VMA_LOCK */ 854 855extern const struct vm_operations_struct vma_dummy_vm_ops; 856 857/* 858 * WARNING: vma_init does not initialize vma->vm_lock. 859 * Use vm_area_alloc()/vm_area_free() if vma needs locking. 860 */ 861static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 862{ 863 memset(vma, 0, sizeof(*vma)); 864 vma->vm_mm = mm; 865 vma->vm_ops = &vma_dummy_vm_ops; 866 INIT_LIST_HEAD(&vma->anon_vma_chain); 867 vma_mark_detached(vma, false); 868 vma_numab_state_init(vma); 869} 870 871/* Use when VMA is not part of the VMA tree and needs no locking */ 872static inline void vm_flags_init(struct vm_area_struct *vma, 873 vm_flags_t flags) 874{ 875 ACCESS_PRIVATE(vma, __vm_flags) = flags; 876} 877 878/* 879 * Use when VMA is part of the VMA tree and modifications need coordination 880 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and 881 * it should be locked explicitly beforehand. 882 */ 883static inline void vm_flags_reset(struct vm_area_struct *vma, 884 vm_flags_t flags) 885{ 886 vma_assert_write_locked(vma); 887 vm_flags_init(vma, flags); 888} 889 890static inline void vm_flags_reset_once(struct vm_area_struct *vma, 891 vm_flags_t flags) 892{ 893 vma_assert_write_locked(vma); 894 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags); 895} 896 897static inline void vm_flags_set(struct vm_area_struct *vma, 898 vm_flags_t flags) 899{ 900 vma_start_write(vma); 901 ACCESS_PRIVATE(vma, __vm_flags) |= flags; 902} 903 904static inline void vm_flags_clear(struct vm_area_struct *vma, 905 vm_flags_t flags) 906{ 907 vma_start_write(vma); 908 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags; 909} 910 911/* 912 * Use only if VMA is not part of the VMA tree or has no other users and 913 * therefore needs no locking. 914 */ 915static inline void __vm_flags_mod(struct vm_area_struct *vma, 916 vm_flags_t set, vm_flags_t clear) 917{ 918 vm_flags_init(vma, (vma->vm_flags | set) & ~clear); 919} 920 921/* 922 * Use only when the order of set/clear operations is unimportant, otherwise 923 * use vm_flags_{set|clear} explicitly. 924 */ 925static inline void vm_flags_mod(struct vm_area_struct *vma, 926 vm_flags_t set, vm_flags_t clear) 927{ 928 vma_start_write(vma); 929 __vm_flags_mod(vma, set, clear); 930} 931 932static inline void vma_set_anonymous(struct vm_area_struct *vma) 933{ 934 vma->vm_ops = NULL; 935} 936 937static inline bool vma_is_anonymous(struct vm_area_struct *vma) 938{ 939 return !vma->vm_ops; 940} 941 942/* 943 * Indicate if the VMA is a heap for the given task; for 944 * /proc/PID/maps that is the heap of the main task. 945 */ 946static inline bool vma_is_initial_heap(const struct vm_area_struct *vma) 947{ 948 return vma->vm_start < vma->vm_mm->brk && 949 vma->vm_end > vma->vm_mm->start_brk; 950} 951 952/* 953 * Indicate if the VMA is a stack for the given task; for 954 * /proc/PID/maps that is the stack of the main task. 955 */ 956static inline bool vma_is_initial_stack(const struct vm_area_struct *vma) 957{ 958 /* 959 * We make no effort to guess what a given thread considers to be 960 * its "stack". It's not even well-defined for programs written 961 * languages like Go. 962 */ 963 return vma->vm_start <= vma->vm_mm->start_stack && 964 vma->vm_end >= vma->vm_mm->start_stack; 965} 966 967static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 968{ 969 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 970 971 if (!maybe_stack) 972 return false; 973 974 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 975 VM_STACK_INCOMPLETE_SETUP) 976 return true; 977 978 return false; 979} 980 981static inline bool vma_is_foreign(struct vm_area_struct *vma) 982{ 983 if (!current->mm) 984 return true; 985 986 if (current->mm != vma->vm_mm) 987 return true; 988 989 return false; 990} 991 992static inline bool vma_is_accessible(struct vm_area_struct *vma) 993{ 994 return vma->vm_flags & VM_ACCESS_FLAGS; 995} 996 997static inline bool is_shared_maywrite(vm_flags_t vm_flags) 998{ 999 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) == 1000 (VM_SHARED | VM_MAYWRITE); 1001} 1002 1003static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma) 1004{ 1005 return is_shared_maywrite(vma->vm_flags); 1006} 1007 1008static inline 1009struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max) 1010{ 1011 return mas_find(&vmi->mas, max - 1); 1012} 1013 1014static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi) 1015{ 1016 /* 1017 * Uses mas_find() to get the first VMA when the iterator starts. 1018 * Calling mas_next() could skip the first entry. 1019 */ 1020 return mas_find(&vmi->mas, ULONG_MAX); 1021} 1022 1023static inline 1024struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi) 1025{ 1026 return mas_next_range(&vmi->mas, ULONG_MAX); 1027} 1028 1029 1030static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi) 1031{ 1032 return mas_prev(&vmi->mas, 0); 1033} 1034 1035static inline int vma_iter_clear_gfp(struct vma_iterator *vmi, 1036 unsigned long start, unsigned long end, gfp_t gfp) 1037{ 1038 __mas_set_range(&vmi->mas, start, end - 1); 1039 mas_store_gfp(&vmi->mas, NULL, gfp); 1040 if (unlikely(mas_is_err(&vmi->mas))) 1041 return -ENOMEM; 1042 1043 return 0; 1044} 1045 1046/* Free any unused preallocations */ 1047static inline void vma_iter_free(struct vma_iterator *vmi) 1048{ 1049 mas_destroy(&vmi->mas); 1050} 1051 1052static inline int vma_iter_bulk_store(struct vma_iterator *vmi, 1053 struct vm_area_struct *vma) 1054{ 1055 vmi->mas.index = vma->vm_start; 1056 vmi->mas.last = vma->vm_end - 1; 1057 mas_store(&vmi->mas, vma); 1058 if (unlikely(mas_is_err(&vmi->mas))) 1059 return -ENOMEM; 1060 1061 return 0; 1062} 1063 1064static inline void vma_iter_invalidate(struct vma_iterator *vmi) 1065{ 1066 mas_pause(&vmi->mas); 1067} 1068 1069static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr) 1070{ 1071 mas_set(&vmi->mas, addr); 1072} 1073 1074#define for_each_vma(__vmi, __vma) \ 1075 while (((__vma) = vma_next(&(__vmi))) != NULL) 1076 1077/* The MM code likes to work with exclusive end addresses */ 1078#define for_each_vma_range(__vmi, __vma, __end) \ 1079 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL) 1080 1081#ifdef CONFIG_SHMEM 1082/* 1083 * The vma_is_shmem is not inline because it is used only by slow 1084 * paths in userfault. 1085 */ 1086bool vma_is_shmem(struct vm_area_struct *vma); 1087bool vma_is_anon_shmem(struct vm_area_struct *vma); 1088#else 1089static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 1090static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; } 1091#endif 1092 1093int vma_is_stack_for_current(struct vm_area_struct *vma); 1094 1095/* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 1096#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 1097 1098struct mmu_gather; 1099struct inode; 1100 1101/* 1102 * compound_order() can be called without holding a reference, which means 1103 * that niceties like page_folio() don't work. These callers should be 1104 * prepared to handle wild return values. For example, PG_head may be 1105 * set before the order is initialised, or this may be a tail page. 1106 * See compaction.c for some good examples. 1107 */ 1108static inline unsigned int compound_order(struct page *page) 1109{ 1110 struct folio *folio = (struct folio *)page; 1111 1112 if (!test_bit(PG_head, &folio->flags)) 1113 return 0; 1114 return folio->_flags_1 & 0xff; 1115} 1116 1117/** 1118 * folio_order - The allocation order of a folio. 1119 * @folio: The folio. 1120 * 1121 * A folio is composed of 2^order pages. See get_order() for the definition 1122 * of order. 1123 * 1124 * Return: The order of the folio. 1125 */ 1126static inline unsigned int folio_order(const struct folio *folio) 1127{ 1128 if (!folio_test_large(folio)) 1129 return 0; 1130 return folio->_flags_1 & 0xff; 1131} 1132 1133#include <linux/huge_mm.h> 1134 1135/* 1136 * Methods to modify the page usage count. 1137 * 1138 * What counts for a page usage: 1139 * - cache mapping (page->mapping) 1140 * - private data (page->private) 1141 * - page mapped in a task's page tables, each mapping 1142 * is counted separately 1143 * 1144 * Also, many kernel routines increase the page count before a critical 1145 * routine so they can be sure the page doesn't go away from under them. 1146 */ 1147 1148/* 1149 * Drop a ref, return true if the refcount fell to zero (the page has no users) 1150 */ 1151static inline int put_page_testzero(struct page *page) 1152{ 1153 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 1154 return page_ref_dec_and_test(page); 1155} 1156 1157static inline int folio_put_testzero(struct folio *folio) 1158{ 1159 return put_page_testzero(&folio->page); 1160} 1161 1162/* 1163 * Try to grab a ref unless the page has a refcount of zero, return false if 1164 * that is the case. 1165 * This can be called when MMU is off so it must not access 1166 * any of the virtual mappings. 1167 */ 1168static inline bool get_page_unless_zero(struct page *page) 1169{ 1170 return page_ref_add_unless(page, 1, 0); 1171} 1172 1173static inline struct folio *folio_get_nontail_page(struct page *page) 1174{ 1175 if (unlikely(!get_page_unless_zero(page))) 1176 return NULL; 1177 return (struct folio *)page; 1178} 1179 1180extern int page_is_ram(unsigned long pfn); 1181 1182enum { 1183 REGION_INTERSECTS, 1184 REGION_DISJOINT, 1185 REGION_MIXED, 1186}; 1187 1188int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 1189 unsigned long desc); 1190 1191/* Support for virtually mapped pages */ 1192struct page *vmalloc_to_page(const void *addr); 1193unsigned long vmalloc_to_pfn(const void *addr); 1194 1195/* 1196 * Determine if an address is within the vmalloc range 1197 * 1198 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 1199 * is no special casing required. 1200 */ 1201#ifdef CONFIG_MMU 1202extern bool is_vmalloc_addr(const void *x); 1203extern int is_vmalloc_or_module_addr(const void *x); 1204#else 1205static inline bool is_vmalloc_addr(const void *x) 1206{ 1207 return false; 1208} 1209static inline int is_vmalloc_or_module_addr(const void *x) 1210{ 1211 return 0; 1212} 1213#endif 1214 1215/* 1216 * How many times the entire folio is mapped as a single unit (eg by a 1217 * PMD or PUD entry). This is probably not what you want, except for 1218 * debugging purposes or implementation of other core folio_*() primitives. 1219 */ 1220static inline int folio_entire_mapcount(const struct folio *folio) 1221{ 1222 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 1223 return atomic_read(&folio->_entire_mapcount) + 1; 1224} 1225 1226static inline int folio_large_mapcount(const struct folio *folio) 1227{ 1228 VM_WARN_ON_FOLIO(!folio_test_large(folio), folio); 1229 return atomic_read(&folio->_large_mapcount) + 1; 1230} 1231 1232/** 1233 * folio_mapcount() - Number of mappings of this folio. 1234 * @folio: The folio. 1235 * 1236 * The folio mapcount corresponds to the number of present user page table 1237 * entries that reference any part of a folio. Each such present user page 1238 * table entry must be paired with exactly on folio reference. 1239 * 1240 * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts 1241 * exactly once. 1242 * 1243 * For hugetlb folios, each abstracted "hugetlb" user page table entry that 1244 * references the entire folio counts exactly once, even when such special 1245 * page table entries are comprised of multiple ordinary page table entries. 1246 * 1247 * Will report 0 for pages which cannot be mapped into userspace, such as 1248 * slab, page tables and similar. 1249 * 1250 * Return: The number of times this folio is mapped. 1251 */ 1252static inline int folio_mapcount(const struct folio *folio) 1253{ 1254 int mapcount; 1255 1256 if (likely(!folio_test_large(folio))) { 1257 mapcount = atomic_read(&folio->_mapcount) + 1; 1258 if (page_mapcount_is_type(mapcount)) 1259 mapcount = 0; 1260 return mapcount; 1261 } 1262 return folio_large_mapcount(folio); 1263} 1264 1265/** 1266 * folio_mapped - Is this folio mapped into userspace? 1267 * @folio: The folio. 1268 * 1269 * Return: True if any page in this folio is referenced by user page tables. 1270 */ 1271static inline bool folio_mapped(const struct folio *folio) 1272{ 1273 return folio_mapcount(folio) >= 1; 1274} 1275 1276/* 1277 * Return true if this page is mapped into pagetables. 1278 * For compound page it returns true if any sub-page of compound page is mapped, 1279 * even if this particular sub-page is not itself mapped by any PTE or PMD. 1280 */ 1281static inline bool page_mapped(const struct page *page) 1282{ 1283 return folio_mapped(page_folio(page)); 1284} 1285 1286static inline struct page *virt_to_head_page(const void *x) 1287{ 1288 struct page *page = virt_to_page(x); 1289 1290 return compound_head(page); 1291} 1292 1293static inline struct folio *virt_to_folio(const void *x) 1294{ 1295 struct page *page = virt_to_page(x); 1296 1297 return page_folio(page); 1298} 1299 1300void __folio_put(struct folio *folio); 1301 1302void split_page(struct page *page, unsigned int order); 1303void folio_copy(struct folio *dst, struct folio *src); 1304int folio_mc_copy(struct folio *dst, struct folio *src); 1305 1306unsigned long nr_free_buffer_pages(void); 1307 1308/* Returns the number of bytes in this potentially compound page. */ 1309static inline unsigned long page_size(struct page *page) 1310{ 1311 return PAGE_SIZE << compound_order(page); 1312} 1313 1314/* Returns the number of bits needed for the number of bytes in a page */ 1315static inline unsigned int page_shift(struct page *page) 1316{ 1317 return PAGE_SHIFT + compound_order(page); 1318} 1319 1320/** 1321 * thp_order - Order of a transparent huge page. 1322 * @page: Head page of a transparent huge page. 1323 */ 1324static inline unsigned int thp_order(struct page *page) 1325{ 1326 VM_BUG_ON_PGFLAGS(PageTail(page), page); 1327 return compound_order(page); 1328} 1329 1330/** 1331 * thp_size - Size of a transparent huge page. 1332 * @page: Head page of a transparent huge page. 1333 * 1334 * Return: Number of bytes in this page. 1335 */ 1336static inline unsigned long thp_size(struct page *page) 1337{ 1338 return PAGE_SIZE << thp_order(page); 1339} 1340 1341#ifdef CONFIG_MMU 1342/* 1343 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1344 * servicing faults for write access. In the normal case, do always want 1345 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1346 * that do not have writing enabled, when used by access_process_vm. 1347 */ 1348static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1349{ 1350 if (likely(vma->vm_flags & VM_WRITE)) 1351 pte = pte_mkwrite(pte, vma); 1352 return pte; 1353} 1354 1355vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 1356void set_pte_range(struct vm_fault *vmf, struct folio *folio, 1357 struct page *page, unsigned int nr, unsigned long addr); 1358 1359vm_fault_t finish_fault(struct vm_fault *vmf); 1360#endif 1361 1362/* 1363 * Multiple processes may "see" the same page. E.g. for untouched 1364 * mappings of /dev/null, all processes see the same page full of 1365 * zeroes, and text pages of executables and shared libraries have 1366 * only one copy in memory, at most, normally. 1367 * 1368 * For the non-reserved pages, page_count(page) denotes a reference count. 1369 * page_count() == 0 means the page is free. page->lru is then used for 1370 * freelist management in the buddy allocator. 1371 * page_count() > 0 means the page has been allocated. 1372 * 1373 * Pages are allocated by the slab allocator in order to provide memory 1374 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1375 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1376 * unless a particular usage is carefully commented. (the responsibility of 1377 * freeing the kmalloc memory is the caller's, of course). 1378 * 1379 * A page may be used by anyone else who does a __get_free_page(). 1380 * In this case, page_count still tracks the references, and should only 1381 * be used through the normal accessor functions. The top bits of page->flags 1382 * and page->virtual store page management information, but all other fields 1383 * are unused and could be used privately, carefully. The management of this 1384 * page is the responsibility of the one who allocated it, and those who have 1385 * subsequently been given references to it. 1386 * 1387 * The other pages (we may call them "pagecache pages") are completely 1388 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1389 * The following discussion applies only to them. 1390 * 1391 * A pagecache page contains an opaque `private' member, which belongs to the 1392 * page's address_space. Usually, this is the address of a circular list of 1393 * the page's disk buffers. PG_private must be set to tell the VM to call 1394 * into the filesystem to release these pages. 1395 * 1396 * A page may belong to an inode's memory mapping. In this case, page->mapping 1397 * is the pointer to the inode, and page->index is the file offset of the page, 1398 * in units of PAGE_SIZE. 1399 * 1400 * If pagecache pages are not associated with an inode, they are said to be 1401 * anonymous pages. These may become associated with the swapcache, and in that 1402 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1403 * 1404 * In either case (swapcache or inode backed), the pagecache itself holds one 1405 * reference to the page. Setting PG_private should also increment the 1406 * refcount. The each user mapping also has a reference to the page. 1407 * 1408 * The pagecache pages are stored in a per-mapping radix tree, which is 1409 * rooted at mapping->i_pages, and indexed by offset. 1410 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1411 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1412 * 1413 * All pagecache pages may be subject to I/O: 1414 * - inode pages may need to be read from disk, 1415 * - inode pages which have been modified and are MAP_SHARED may need 1416 * to be written back to the inode on disk, 1417 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1418 * modified may need to be swapped out to swap space and (later) to be read 1419 * back into memory. 1420 */ 1421 1422#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX) 1423DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1424 1425bool __put_devmap_managed_folio_refs(struct folio *folio, int refs); 1426static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs) 1427{ 1428 if (!static_branch_unlikely(&devmap_managed_key)) 1429 return false; 1430 if (!folio_is_zone_device(folio)) 1431 return false; 1432 return __put_devmap_managed_folio_refs(folio, refs); 1433} 1434#else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1435static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs) 1436{ 1437 return false; 1438} 1439#endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1440 1441/* 127: arbitrary random number, small enough to assemble well */ 1442#define folio_ref_zero_or_close_to_overflow(folio) \ 1443 ((unsigned int) folio_ref_count(folio) + 127u <= 127u) 1444 1445/** 1446 * folio_get - Increment the reference count on a folio. 1447 * @folio: The folio. 1448 * 1449 * Context: May be called in any context, as long as you know that 1450 * you have a refcount on the folio. If you do not already have one, 1451 * folio_try_get() may be the right interface for you to use. 1452 */ 1453static inline void folio_get(struct folio *folio) 1454{ 1455 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); 1456 folio_ref_inc(folio); 1457} 1458 1459static inline void get_page(struct page *page) 1460{ 1461 folio_get(page_folio(page)); 1462} 1463 1464static inline __must_check bool try_get_page(struct page *page) 1465{ 1466 page = compound_head(page); 1467 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1468 return false; 1469 page_ref_inc(page); 1470 return true; 1471} 1472 1473/** 1474 * folio_put - Decrement the reference count on a folio. 1475 * @folio: The folio. 1476 * 1477 * If the folio's reference count reaches zero, the memory will be 1478 * released back to the page allocator and may be used by another 1479 * allocation immediately. Do not access the memory or the struct folio 1480 * after calling folio_put() unless you can be sure that it wasn't the 1481 * last reference. 1482 * 1483 * Context: May be called in process or interrupt context, but not in NMI 1484 * context. May be called while holding a spinlock. 1485 */ 1486static inline void folio_put(struct folio *folio) 1487{ 1488 if (folio_put_testzero(folio)) 1489 __folio_put(folio); 1490} 1491 1492/** 1493 * folio_put_refs - Reduce the reference count on a folio. 1494 * @folio: The folio. 1495 * @refs: The amount to subtract from the folio's reference count. 1496 * 1497 * If the folio's reference count reaches zero, the memory will be 1498 * released back to the page allocator and may be used by another 1499 * allocation immediately. Do not access the memory or the struct folio 1500 * after calling folio_put_refs() unless you can be sure that these weren't 1501 * the last references. 1502 * 1503 * Context: May be called in process or interrupt context, but not in NMI 1504 * context. May be called while holding a spinlock. 1505 */ 1506static inline void folio_put_refs(struct folio *folio, int refs) 1507{ 1508 if (folio_ref_sub_and_test(folio, refs)) 1509 __folio_put(folio); 1510} 1511 1512void folios_put_refs(struct folio_batch *folios, unsigned int *refs); 1513 1514/* 1515 * union release_pages_arg - an array of pages or folios 1516 * 1517 * release_pages() releases a simple array of multiple pages, and 1518 * accepts various different forms of said page array: either 1519 * a regular old boring array of pages, an array of folios, or 1520 * an array of encoded page pointers. 1521 * 1522 * The transparent union syntax for this kind of "any of these 1523 * argument types" is all kinds of ugly, so look away. 1524 */ 1525typedef union { 1526 struct page **pages; 1527 struct folio **folios; 1528 struct encoded_page **encoded_pages; 1529} release_pages_arg __attribute__ ((__transparent_union__)); 1530 1531void release_pages(release_pages_arg, int nr); 1532 1533/** 1534 * folios_put - Decrement the reference count on an array of folios. 1535 * @folios: The folios. 1536 * 1537 * Like folio_put(), but for a batch of folios. This is more efficient 1538 * than writing the loop yourself as it will optimise the locks which need 1539 * to be taken if the folios are freed. The folios batch is returned 1540 * empty and ready to be reused for another batch; there is no need to 1541 * reinitialise it. 1542 * 1543 * Context: May be called in process or interrupt context, but not in NMI 1544 * context. May be called while holding a spinlock. 1545 */ 1546static inline void folios_put(struct folio_batch *folios) 1547{ 1548 folios_put_refs(folios, NULL); 1549} 1550 1551static inline void put_page(struct page *page) 1552{ 1553 struct folio *folio = page_folio(page); 1554 1555 /* 1556 * For some devmap managed pages we need to catch refcount transition 1557 * from 2 to 1: 1558 */ 1559 if (put_devmap_managed_folio_refs(folio, 1)) 1560 return; 1561 folio_put(folio); 1562} 1563 1564/* 1565 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1566 * the page's refcount so that two separate items are tracked: the original page 1567 * reference count, and also a new count of how many pin_user_pages() calls were 1568 * made against the page. ("gup-pinned" is another term for the latter). 1569 * 1570 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1571 * distinct from normal pages. As such, the unpin_user_page() call (and its 1572 * variants) must be used in order to release gup-pinned pages. 1573 * 1574 * Choice of value: 1575 * 1576 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1577 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1578 * simpler, due to the fact that adding an even power of two to the page 1579 * refcount has the effect of using only the upper N bits, for the code that 1580 * counts up using the bias value. This means that the lower bits are left for 1581 * the exclusive use of the original code that increments and decrements by one 1582 * (or at least, by much smaller values than the bias value). 1583 * 1584 * Of course, once the lower bits overflow into the upper bits (and this is 1585 * OK, because subtraction recovers the original values), then visual inspection 1586 * no longer suffices to directly view the separate counts. However, for normal 1587 * applications that don't have huge page reference counts, this won't be an 1588 * issue. 1589 * 1590 * Locking: the lockless algorithm described in folio_try_get_rcu() 1591 * provides safe operation for get_user_pages(), folio_mkclean() and 1592 * other calls that race to set up page table entries. 1593 */ 1594#define GUP_PIN_COUNTING_BIAS (1U << 10) 1595 1596void unpin_user_page(struct page *page); 1597void unpin_folio(struct folio *folio); 1598void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1599 bool make_dirty); 1600void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1601 bool make_dirty); 1602void unpin_user_pages(struct page **pages, unsigned long npages); 1603void unpin_user_folio(struct folio *folio, unsigned long npages); 1604void unpin_folios(struct folio **folios, unsigned long nfolios); 1605 1606static inline bool is_cow_mapping(vm_flags_t flags) 1607{ 1608 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1609} 1610 1611#ifndef CONFIG_MMU 1612static inline bool is_nommu_shared_mapping(vm_flags_t flags) 1613{ 1614 /* 1615 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected 1616 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of 1617 * a file mapping. R/O MAP_PRIVATE mappings might still modify 1618 * underlying memory if ptrace is active, so this is only possible if 1619 * ptrace does not apply. Note that there is no mprotect() to upgrade 1620 * write permissions later. 1621 */ 1622 return flags & (VM_MAYSHARE | VM_MAYOVERLAY); 1623} 1624#endif 1625 1626#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1627#define SECTION_IN_PAGE_FLAGS 1628#endif 1629 1630/* 1631 * The identification function is mainly used by the buddy allocator for 1632 * determining if two pages could be buddies. We are not really identifying 1633 * the zone since we could be using the section number id if we do not have 1634 * node id available in page flags. 1635 * We only guarantee that it will return the same value for two combinable 1636 * pages in a zone. 1637 */ 1638static inline int page_zone_id(struct page *page) 1639{ 1640 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1641} 1642 1643#ifdef NODE_NOT_IN_PAGE_FLAGS 1644int page_to_nid(const struct page *page); 1645#else 1646static inline int page_to_nid(const struct page *page) 1647{ 1648 return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK; 1649} 1650#endif 1651 1652static inline int folio_nid(const struct folio *folio) 1653{ 1654 return page_to_nid(&folio->page); 1655} 1656 1657#ifdef CONFIG_NUMA_BALANCING 1658/* page access time bits needs to hold at least 4 seconds */ 1659#define PAGE_ACCESS_TIME_MIN_BITS 12 1660#if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS 1661#define PAGE_ACCESS_TIME_BUCKETS \ 1662 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT) 1663#else 1664#define PAGE_ACCESS_TIME_BUCKETS 0 1665#endif 1666 1667#define PAGE_ACCESS_TIME_MASK \ 1668 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS) 1669 1670static inline int cpu_pid_to_cpupid(int cpu, int pid) 1671{ 1672 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1673} 1674 1675static inline int cpupid_to_pid(int cpupid) 1676{ 1677 return cpupid & LAST__PID_MASK; 1678} 1679 1680static inline int cpupid_to_cpu(int cpupid) 1681{ 1682 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1683} 1684 1685static inline int cpupid_to_nid(int cpupid) 1686{ 1687 return cpu_to_node(cpupid_to_cpu(cpupid)); 1688} 1689 1690static inline bool cpupid_pid_unset(int cpupid) 1691{ 1692 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1693} 1694 1695static inline bool cpupid_cpu_unset(int cpupid) 1696{ 1697 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1698} 1699 1700static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1701{ 1702 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1703} 1704 1705#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1706#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1707static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1708{ 1709 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1710} 1711 1712static inline int folio_last_cpupid(struct folio *folio) 1713{ 1714 return folio->_last_cpupid; 1715} 1716static inline void page_cpupid_reset_last(struct page *page) 1717{ 1718 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1719} 1720#else 1721static inline int folio_last_cpupid(struct folio *folio) 1722{ 1723 return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1724} 1725 1726int folio_xchg_last_cpupid(struct folio *folio, int cpupid); 1727 1728static inline void page_cpupid_reset_last(struct page *page) 1729{ 1730 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1731} 1732#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1733 1734static inline int folio_xchg_access_time(struct folio *folio, int time) 1735{ 1736 int last_time; 1737 1738 last_time = folio_xchg_last_cpupid(folio, 1739 time >> PAGE_ACCESS_TIME_BUCKETS); 1740 return last_time << PAGE_ACCESS_TIME_BUCKETS; 1741} 1742 1743static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1744{ 1745 unsigned int pid_bit; 1746 1747 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG)); 1748 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) { 1749 __set_bit(pid_bit, &vma->numab_state->pids_active[1]); 1750 } 1751} 1752 1753bool folio_use_access_time(struct folio *folio); 1754#else /* !CONFIG_NUMA_BALANCING */ 1755static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1756{ 1757 return folio_nid(folio); /* XXX */ 1758} 1759 1760static inline int folio_xchg_access_time(struct folio *folio, int time) 1761{ 1762 return 0; 1763} 1764 1765static inline int folio_last_cpupid(struct folio *folio) 1766{ 1767 return folio_nid(folio); /* XXX */ 1768} 1769 1770static inline int cpupid_to_nid(int cpupid) 1771{ 1772 return -1; 1773} 1774 1775static inline int cpupid_to_pid(int cpupid) 1776{ 1777 return -1; 1778} 1779 1780static inline int cpupid_to_cpu(int cpupid) 1781{ 1782 return -1; 1783} 1784 1785static inline int cpu_pid_to_cpupid(int nid, int pid) 1786{ 1787 return -1; 1788} 1789 1790static inline bool cpupid_pid_unset(int cpupid) 1791{ 1792 return true; 1793} 1794 1795static inline void page_cpupid_reset_last(struct page *page) 1796{ 1797} 1798 1799static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1800{ 1801 return false; 1802} 1803 1804static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1805{ 1806} 1807static inline bool folio_use_access_time(struct folio *folio) 1808{ 1809 return false; 1810} 1811#endif /* CONFIG_NUMA_BALANCING */ 1812 1813#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1814 1815/* 1816 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1817 * setting tags for all pages to native kernel tag value 0xff, as the default 1818 * value 0x00 maps to 0xff. 1819 */ 1820 1821static inline u8 page_kasan_tag(const struct page *page) 1822{ 1823 u8 tag = KASAN_TAG_KERNEL; 1824 1825 if (kasan_enabled()) { 1826 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1827 tag ^= 0xff; 1828 } 1829 1830 return tag; 1831} 1832 1833static inline void page_kasan_tag_set(struct page *page, u8 tag) 1834{ 1835 unsigned long old_flags, flags; 1836 1837 if (!kasan_enabled()) 1838 return; 1839 1840 tag ^= 0xff; 1841 old_flags = READ_ONCE(page->flags); 1842 do { 1843 flags = old_flags; 1844 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1845 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1846 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags))); 1847} 1848 1849static inline void page_kasan_tag_reset(struct page *page) 1850{ 1851 if (kasan_enabled()) 1852 page_kasan_tag_set(page, KASAN_TAG_KERNEL); 1853} 1854 1855#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1856 1857static inline u8 page_kasan_tag(const struct page *page) 1858{ 1859 return 0xff; 1860} 1861 1862static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1863static inline void page_kasan_tag_reset(struct page *page) { } 1864 1865#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1866 1867static inline struct zone *page_zone(const struct page *page) 1868{ 1869 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1870} 1871 1872static inline pg_data_t *page_pgdat(const struct page *page) 1873{ 1874 return NODE_DATA(page_to_nid(page)); 1875} 1876 1877static inline struct zone *folio_zone(const struct folio *folio) 1878{ 1879 return page_zone(&folio->page); 1880} 1881 1882static inline pg_data_t *folio_pgdat(const struct folio *folio) 1883{ 1884 return page_pgdat(&folio->page); 1885} 1886 1887#ifdef SECTION_IN_PAGE_FLAGS 1888static inline void set_page_section(struct page *page, unsigned long section) 1889{ 1890 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1891 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1892} 1893 1894static inline unsigned long page_to_section(const struct page *page) 1895{ 1896 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1897} 1898#endif 1899 1900/** 1901 * folio_pfn - Return the Page Frame Number of a folio. 1902 * @folio: The folio. 1903 * 1904 * A folio may contain multiple pages. The pages have consecutive 1905 * Page Frame Numbers. 1906 * 1907 * Return: The Page Frame Number of the first page in the folio. 1908 */ 1909static inline unsigned long folio_pfn(const struct folio *folio) 1910{ 1911 return page_to_pfn(&folio->page); 1912} 1913 1914static inline struct folio *pfn_folio(unsigned long pfn) 1915{ 1916 return page_folio(pfn_to_page(pfn)); 1917} 1918 1919/** 1920 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. 1921 * @folio: The folio. 1922 * 1923 * This function checks if a folio has been pinned via a call to 1924 * a function in the pin_user_pages() family. 1925 * 1926 * For small folios, the return value is partially fuzzy: false is not fuzzy, 1927 * because it means "definitely not pinned for DMA", but true means "probably 1928 * pinned for DMA, but possibly a false positive due to having at least 1929 * GUP_PIN_COUNTING_BIAS worth of normal folio references". 1930 * 1931 * False positives are OK, because: a) it's unlikely for a folio to 1932 * get that many refcounts, and b) all the callers of this routine are 1933 * expected to be able to deal gracefully with a false positive. 1934 * 1935 * For large folios, the result will be exactly correct. That's because 1936 * we have more tracking data available: the _pincount field is used 1937 * instead of the GUP_PIN_COUNTING_BIAS scheme. 1938 * 1939 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1940 * 1941 * Return: True, if it is likely that the folio has been "dma-pinned". 1942 * False, if the folio is definitely not dma-pinned. 1943 */ 1944static inline bool folio_maybe_dma_pinned(struct folio *folio) 1945{ 1946 if (folio_test_large(folio)) 1947 return atomic_read(&folio->_pincount) > 0; 1948 1949 /* 1950 * folio_ref_count() is signed. If that refcount overflows, then 1951 * folio_ref_count() returns a negative value, and callers will avoid 1952 * further incrementing the refcount. 1953 * 1954 * Here, for that overflow case, use the sign bit to count a little 1955 * bit higher via unsigned math, and thus still get an accurate result. 1956 */ 1957 return ((unsigned int)folio_ref_count(folio)) >= 1958 GUP_PIN_COUNTING_BIAS; 1959} 1960 1961/* 1962 * This should most likely only be called during fork() to see whether we 1963 * should break the cow immediately for an anon page on the src mm. 1964 * 1965 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq. 1966 */ 1967static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma, 1968 struct folio *folio) 1969{ 1970 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1)); 1971 1972 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) 1973 return false; 1974 1975 return folio_maybe_dma_pinned(folio); 1976} 1977 1978/** 1979 * is_zero_page - Query if a page is a zero page 1980 * @page: The page to query 1981 * 1982 * This returns true if @page is one of the permanent zero pages. 1983 */ 1984static inline bool is_zero_page(const struct page *page) 1985{ 1986 return is_zero_pfn(page_to_pfn(page)); 1987} 1988 1989/** 1990 * is_zero_folio - Query if a folio is a zero page 1991 * @folio: The folio to query 1992 * 1993 * This returns true if @folio is one of the permanent zero pages. 1994 */ 1995static inline bool is_zero_folio(const struct folio *folio) 1996{ 1997 return is_zero_page(&folio->page); 1998} 1999 2000/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */ 2001#ifdef CONFIG_MIGRATION 2002static inline bool folio_is_longterm_pinnable(struct folio *folio) 2003{ 2004#ifdef CONFIG_CMA 2005 int mt = folio_migratetype(folio); 2006 2007 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE) 2008 return false; 2009#endif 2010 /* The zero page can be "pinned" but gets special handling. */ 2011 if (is_zero_folio(folio)) 2012 return true; 2013 2014 /* Coherent device memory must always allow eviction. */ 2015 if (folio_is_device_coherent(folio)) 2016 return false; 2017 2018 /* Otherwise, non-movable zone folios can be pinned. */ 2019 return !folio_is_zone_movable(folio); 2020 2021} 2022#else 2023static inline bool folio_is_longterm_pinnable(struct folio *folio) 2024{ 2025 return true; 2026} 2027#endif 2028 2029static inline void set_page_zone(struct page *page, enum zone_type zone) 2030{ 2031 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 2032 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 2033} 2034 2035static inline void set_page_node(struct page *page, unsigned long node) 2036{ 2037 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 2038 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 2039} 2040 2041static inline void set_page_links(struct page *page, enum zone_type zone, 2042 unsigned long node, unsigned long pfn) 2043{ 2044 set_page_zone(page, zone); 2045 set_page_node(page, node); 2046#ifdef SECTION_IN_PAGE_FLAGS 2047 set_page_section(page, pfn_to_section_nr(pfn)); 2048#endif 2049} 2050 2051/** 2052 * folio_nr_pages - The number of pages in the folio. 2053 * @folio: The folio. 2054 * 2055 * Return: A positive power of two. 2056 */ 2057static inline long folio_nr_pages(const struct folio *folio) 2058{ 2059 if (!folio_test_large(folio)) 2060 return 1; 2061#ifdef CONFIG_64BIT 2062 return folio->_folio_nr_pages; 2063#else 2064 return 1L << (folio->_flags_1 & 0xff); 2065#endif 2066} 2067 2068/* Only hugetlbfs can allocate folios larger than MAX_ORDER */ 2069#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 2070#define MAX_FOLIO_NR_PAGES (1UL << PUD_ORDER) 2071#else 2072#define MAX_FOLIO_NR_PAGES MAX_ORDER_NR_PAGES 2073#endif 2074 2075/* 2076 * compound_nr() returns the number of pages in this potentially compound 2077 * page. compound_nr() can be called on a tail page, and is defined to 2078 * return 1 in that case. 2079 */ 2080static inline unsigned long compound_nr(struct page *page) 2081{ 2082 struct folio *folio = (struct folio *)page; 2083 2084 if (!test_bit(PG_head, &folio->flags)) 2085 return 1; 2086#ifdef CONFIG_64BIT 2087 return folio->_folio_nr_pages; 2088#else 2089 return 1L << (folio->_flags_1 & 0xff); 2090#endif 2091} 2092 2093/** 2094 * thp_nr_pages - The number of regular pages in this huge page. 2095 * @page: The head page of a huge page. 2096 */ 2097static inline int thp_nr_pages(struct page *page) 2098{ 2099 return folio_nr_pages((struct folio *)page); 2100} 2101 2102/** 2103 * folio_next - Move to the next physical folio. 2104 * @folio: The folio we're currently operating on. 2105 * 2106 * If you have physically contiguous memory which may span more than 2107 * one folio (eg a &struct bio_vec), use this function to move from one 2108 * folio to the next. Do not use it if the memory is only virtually 2109 * contiguous as the folios are almost certainly not adjacent to each 2110 * other. This is the folio equivalent to writing ``page++``. 2111 * 2112 * Context: We assume that the folios are refcounted and/or locked at a 2113 * higher level and do not adjust the reference counts. 2114 * Return: The next struct folio. 2115 */ 2116static inline struct folio *folio_next(struct folio *folio) 2117{ 2118 return (struct folio *)folio_page(folio, folio_nr_pages(folio)); 2119} 2120 2121/** 2122 * folio_shift - The size of the memory described by this folio. 2123 * @folio: The folio. 2124 * 2125 * A folio represents a number of bytes which is a power-of-two in size. 2126 * This function tells you which power-of-two the folio is. See also 2127 * folio_size() and folio_order(). 2128 * 2129 * Context: The caller should have a reference on the folio to prevent 2130 * it from being split. It is not necessary for the folio to be locked. 2131 * Return: The base-2 logarithm of the size of this folio. 2132 */ 2133static inline unsigned int folio_shift(const struct folio *folio) 2134{ 2135 return PAGE_SHIFT + folio_order(folio); 2136} 2137 2138/** 2139 * folio_size - The number of bytes in a folio. 2140 * @folio: The folio. 2141 * 2142 * Context: The caller should have a reference on the folio to prevent 2143 * it from being split. It is not necessary for the folio to be locked. 2144 * Return: The number of bytes in this folio. 2145 */ 2146static inline size_t folio_size(const struct folio *folio) 2147{ 2148 return PAGE_SIZE << folio_order(folio); 2149} 2150 2151/** 2152 * folio_likely_mapped_shared - Estimate if the folio is mapped into the page 2153 * tables of more than one MM 2154 * @folio: The folio. 2155 * 2156 * This function checks if the folio is currently mapped into more than one 2157 * MM ("mapped shared"), or if the folio is only mapped into a single MM 2158 * ("mapped exclusively"). 2159 * 2160 * For KSM folios, this function also returns "mapped shared" when a folio is 2161 * mapped multiple times into the same MM, because the individual page mappings 2162 * are independent. 2163 * 2164 * As precise information is not easily available for all folios, this function 2165 * estimates the number of MMs ("sharers") that are currently mapping a folio 2166 * using the number of times the first page of the folio is currently mapped 2167 * into page tables. 2168 * 2169 * For small anonymous folios and anonymous hugetlb folios, the return 2170 * value will be exactly correct: non-KSM folios can only be mapped at most once 2171 * into an MM, and they cannot be partially mapped. KSM folios are 2172 * considered shared even if mapped multiple times into the same MM. 2173 * 2174 * For other folios, the result can be fuzzy: 2175 * #. For partially-mappable large folios (THP), the return value can wrongly 2176 * indicate "mapped exclusively" (false negative) when the folio is 2177 * only partially mapped into at least one MM. 2178 * #. For pagecache folios (including hugetlb), the return value can wrongly 2179 * indicate "mapped shared" (false positive) when two VMAs in the same MM 2180 * cover the same file range. 2181 * 2182 * Further, this function only considers current page table mappings that 2183 * are tracked using the folio mapcount(s). 2184 * 2185 * This function does not consider: 2186 * #. If the folio might get mapped in the (near) future (e.g., swapcache, 2187 * pagecache, temporary unmapping for migration). 2188 * #. If the folio is mapped differently (VM_PFNMAP). 2189 * #. If hugetlb page table sharing applies. Callers might want to check 2190 * hugetlb_pmd_shared(). 2191 * 2192 * Return: Whether the folio is estimated to be mapped into more than one MM. 2193 */ 2194static inline bool folio_likely_mapped_shared(struct folio *folio) 2195{ 2196 int mapcount = folio_mapcount(folio); 2197 2198 /* Only partially-mappable folios require more care. */ 2199 if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio))) 2200 return mapcount > 1; 2201 2202 /* A single mapping implies "mapped exclusively". */ 2203 if (mapcount <= 1) 2204 return false; 2205 2206 /* If any page is mapped more than once we treat it "mapped shared". */ 2207 if (folio_entire_mapcount(folio) || mapcount > folio_nr_pages(folio)) 2208 return true; 2209 2210 /* Let's guess based on the first subpage. */ 2211 return atomic_read(&folio->_mapcount) > 0; 2212} 2213 2214#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE 2215static inline int arch_make_folio_accessible(struct folio *folio) 2216{ 2217 return 0; 2218} 2219#endif 2220 2221/* 2222 * Some inline functions in vmstat.h depend on page_zone() 2223 */ 2224#include <linux/vmstat.h> 2225 2226#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 2227#define HASHED_PAGE_VIRTUAL 2228#endif 2229 2230#if defined(WANT_PAGE_VIRTUAL) 2231static inline void *page_address(const struct page *page) 2232{ 2233 return page->virtual; 2234} 2235static inline void set_page_address(struct page *page, void *address) 2236{ 2237 page->virtual = address; 2238} 2239#define page_address_init() do { } while(0) 2240#endif 2241 2242#if defined(HASHED_PAGE_VIRTUAL) 2243void *page_address(const struct page *page); 2244void set_page_address(struct page *page, void *virtual); 2245void page_address_init(void); 2246#endif 2247 2248static __always_inline void *lowmem_page_address(const struct page *page) 2249{ 2250 return page_to_virt(page); 2251} 2252 2253#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 2254#define page_address(page) lowmem_page_address(page) 2255#define set_page_address(page, address) do { } while(0) 2256#define page_address_init() do { } while(0) 2257#endif 2258 2259static inline void *folio_address(const struct folio *folio) 2260{ 2261 return page_address(&folio->page); 2262} 2263 2264/* 2265 * Return true only if the page has been allocated with 2266 * ALLOC_NO_WATERMARKS and the low watermark was not 2267 * met implying that the system is under some pressure. 2268 */ 2269static inline bool page_is_pfmemalloc(const struct page *page) 2270{ 2271 /* 2272 * lru.next has bit 1 set if the page is allocated from the 2273 * pfmemalloc reserves. Callers may simply overwrite it if 2274 * they do not need to preserve that information. 2275 */ 2276 return (uintptr_t)page->lru.next & BIT(1); 2277} 2278 2279/* 2280 * Return true only if the folio has been allocated with 2281 * ALLOC_NO_WATERMARKS and the low watermark was not 2282 * met implying that the system is under some pressure. 2283 */ 2284static inline bool folio_is_pfmemalloc(const struct folio *folio) 2285{ 2286 /* 2287 * lru.next has bit 1 set if the page is allocated from the 2288 * pfmemalloc reserves. Callers may simply overwrite it if 2289 * they do not need to preserve that information. 2290 */ 2291 return (uintptr_t)folio->lru.next & BIT(1); 2292} 2293 2294/* 2295 * Only to be called by the page allocator on a freshly allocated 2296 * page. 2297 */ 2298static inline void set_page_pfmemalloc(struct page *page) 2299{ 2300 page->lru.next = (void *)BIT(1); 2301} 2302 2303static inline void clear_page_pfmemalloc(struct page *page) 2304{ 2305 page->lru.next = NULL; 2306} 2307 2308/* 2309 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 2310 */ 2311extern void pagefault_out_of_memory(void); 2312 2313#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 2314#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 2315#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) 2316 2317/* 2318 * Parameter block passed down to zap_pte_range in exceptional cases. 2319 */ 2320struct zap_details { 2321 struct folio *single_folio; /* Locked folio to be unmapped */ 2322 bool even_cows; /* Zap COWed private pages too? */ 2323 zap_flags_t zap_flags; /* Extra flags for zapping */ 2324}; 2325 2326/* 2327 * Whether to drop the pte markers, for example, the uffd-wp information for 2328 * file-backed memory. This should only be specified when we will completely 2329 * drop the page in the mm, either by truncation or unmapping of the vma. By 2330 * default, the flag is not set. 2331 */ 2332#define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0)) 2333/* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */ 2334#define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1)) 2335 2336#ifdef CONFIG_SCHED_MM_CID 2337void sched_mm_cid_before_execve(struct task_struct *t); 2338void sched_mm_cid_after_execve(struct task_struct *t); 2339void sched_mm_cid_fork(struct task_struct *t); 2340void sched_mm_cid_exit_signals(struct task_struct *t); 2341static inline int task_mm_cid(struct task_struct *t) 2342{ 2343 return t->mm_cid; 2344} 2345#else 2346static inline void sched_mm_cid_before_execve(struct task_struct *t) { } 2347static inline void sched_mm_cid_after_execve(struct task_struct *t) { } 2348static inline void sched_mm_cid_fork(struct task_struct *t) { } 2349static inline void sched_mm_cid_exit_signals(struct task_struct *t) { } 2350static inline int task_mm_cid(struct task_struct *t) 2351{ 2352 /* 2353 * Use the processor id as a fall-back when the mm cid feature is 2354 * disabled. This provides functional per-cpu data structure accesses 2355 * in user-space, althrough it won't provide the memory usage benefits. 2356 */ 2357 return raw_smp_processor_id(); 2358} 2359#endif 2360 2361#ifdef CONFIG_MMU 2362extern bool can_do_mlock(void); 2363#else 2364static inline bool can_do_mlock(void) { return false; } 2365#endif 2366extern int user_shm_lock(size_t, struct ucounts *); 2367extern void user_shm_unlock(size_t, struct ucounts *); 2368 2369struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 2370 pte_t pte); 2371struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 2372 pte_t pte); 2373struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 2374 unsigned long addr, pmd_t pmd); 2375struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 2376 pmd_t pmd); 2377 2378void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2379 unsigned long size); 2380void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2381 unsigned long size, struct zap_details *details); 2382static inline void zap_vma_pages(struct vm_area_struct *vma) 2383{ 2384 zap_page_range_single(vma, vma->vm_start, 2385 vma->vm_end - vma->vm_start, NULL); 2386} 2387void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 2388 struct vm_area_struct *start_vma, unsigned long start, 2389 unsigned long end, unsigned long tree_end, bool mm_wr_locked); 2390 2391struct mmu_notifier_range; 2392 2393void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 2394 unsigned long end, unsigned long floor, unsigned long ceiling); 2395int 2396copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 2397int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 2398 void *buf, int len, int write); 2399 2400struct follow_pfnmap_args { 2401 /** 2402 * Inputs: 2403 * @vma: Pointer to @vm_area_struct struct 2404 * @address: the virtual address to walk 2405 */ 2406 struct vm_area_struct *vma; 2407 unsigned long address; 2408 /** 2409 * Internals: 2410 * 2411 * The caller shouldn't touch any of these. 2412 */ 2413 spinlock_t *lock; 2414 pte_t *ptep; 2415 /** 2416 * Outputs: 2417 * 2418 * @pfn: the PFN of the address 2419 * @pgprot: the pgprot_t of the mapping 2420 * @writable: whether the mapping is writable 2421 * @special: whether the mapping is a special mapping (real PFN maps) 2422 */ 2423 unsigned long pfn; 2424 pgprot_t pgprot; 2425 bool writable; 2426 bool special; 2427}; 2428int follow_pfnmap_start(struct follow_pfnmap_args *args); 2429void follow_pfnmap_end(struct follow_pfnmap_args *args); 2430 2431extern void truncate_pagecache(struct inode *inode, loff_t new); 2432extern void truncate_setsize(struct inode *inode, loff_t newsize); 2433void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 2434void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 2435int generic_error_remove_folio(struct address_space *mapping, 2436 struct folio *folio); 2437 2438struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 2439 unsigned long address, struct pt_regs *regs); 2440 2441#ifdef CONFIG_MMU 2442extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2443 unsigned long address, unsigned int flags, 2444 struct pt_regs *regs); 2445extern int fixup_user_fault(struct mm_struct *mm, 2446 unsigned long address, unsigned int fault_flags, 2447 bool *unlocked); 2448void unmap_mapping_pages(struct address_space *mapping, 2449 pgoff_t start, pgoff_t nr, bool even_cows); 2450void unmap_mapping_range(struct address_space *mapping, 2451 loff_t const holebegin, loff_t const holelen, int even_cows); 2452#else 2453static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2454 unsigned long address, unsigned int flags, 2455 struct pt_regs *regs) 2456{ 2457 /* should never happen if there's no MMU */ 2458 BUG(); 2459 return VM_FAULT_SIGBUS; 2460} 2461static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 2462 unsigned int fault_flags, bool *unlocked) 2463{ 2464 /* should never happen if there's no MMU */ 2465 BUG(); 2466 return -EFAULT; 2467} 2468static inline void unmap_mapping_pages(struct address_space *mapping, 2469 pgoff_t start, pgoff_t nr, bool even_cows) { } 2470static inline void unmap_mapping_range(struct address_space *mapping, 2471 loff_t const holebegin, loff_t const holelen, int even_cows) { } 2472#endif 2473 2474static inline void unmap_shared_mapping_range(struct address_space *mapping, 2475 loff_t const holebegin, loff_t const holelen) 2476{ 2477 unmap_mapping_range(mapping, holebegin, holelen, 0); 2478} 2479 2480static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm, 2481 unsigned long addr); 2482 2483extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 2484 void *buf, int len, unsigned int gup_flags); 2485extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 2486 void *buf, int len, unsigned int gup_flags); 2487 2488long get_user_pages_remote(struct mm_struct *mm, 2489 unsigned long start, unsigned long nr_pages, 2490 unsigned int gup_flags, struct page **pages, 2491 int *locked); 2492long pin_user_pages_remote(struct mm_struct *mm, 2493 unsigned long start, unsigned long nr_pages, 2494 unsigned int gup_flags, struct page **pages, 2495 int *locked); 2496 2497/* 2498 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT. 2499 */ 2500static inline struct page *get_user_page_vma_remote(struct mm_struct *mm, 2501 unsigned long addr, 2502 int gup_flags, 2503 struct vm_area_struct **vmap) 2504{ 2505 struct page *page; 2506 struct vm_area_struct *vma; 2507 int got; 2508 2509 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT))) 2510 return ERR_PTR(-EINVAL); 2511 2512 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL); 2513 2514 if (got < 0) 2515 return ERR_PTR(got); 2516 2517 vma = vma_lookup(mm, addr); 2518 if (WARN_ON_ONCE(!vma)) { 2519 put_page(page); 2520 return ERR_PTR(-EINVAL); 2521 } 2522 2523 *vmap = vma; 2524 return page; 2525} 2526 2527long get_user_pages(unsigned long start, unsigned long nr_pages, 2528 unsigned int gup_flags, struct page **pages); 2529long pin_user_pages(unsigned long start, unsigned long nr_pages, 2530 unsigned int gup_flags, struct page **pages); 2531long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2532 struct page **pages, unsigned int gup_flags); 2533long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2534 struct page **pages, unsigned int gup_flags); 2535long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end, 2536 struct folio **folios, unsigned int max_folios, 2537 pgoff_t *offset); 2538int folio_add_pins(struct folio *folio, unsigned int pins); 2539 2540int get_user_pages_fast(unsigned long start, int nr_pages, 2541 unsigned int gup_flags, struct page **pages); 2542int pin_user_pages_fast(unsigned long start, int nr_pages, 2543 unsigned int gup_flags, struct page **pages); 2544void folio_add_pin(struct folio *folio); 2545 2546int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 2547int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 2548 struct task_struct *task, bool bypass_rlim); 2549 2550struct kvec; 2551struct page *get_dump_page(unsigned long addr); 2552 2553bool folio_mark_dirty(struct folio *folio); 2554bool folio_mark_dirty_lock(struct folio *folio); 2555bool set_page_dirty(struct page *page); 2556int set_page_dirty_lock(struct page *page); 2557 2558int get_cmdline(struct task_struct *task, char *buffer, int buflen); 2559 2560/* 2561 * Flags used by change_protection(). For now we make it a bitmap so 2562 * that we can pass in multiple flags just like parameters. However 2563 * for now all the callers are only use one of the flags at the same 2564 * time. 2565 */ 2566/* 2567 * Whether we should manually check if we can map individual PTEs writable, 2568 * because something (e.g., COW, uffd-wp) blocks that from happening for all 2569 * PTEs automatically in a writable mapping. 2570 */ 2571#define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0) 2572/* Whether this protection change is for NUMA hints */ 2573#define MM_CP_PROT_NUMA (1UL << 1) 2574/* Whether this change is for write protecting */ 2575#define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 2576#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 2577#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 2578 MM_CP_UFFD_WP_RESOLVE) 2579 2580bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr, 2581 pte_t pte); 2582extern long change_protection(struct mmu_gather *tlb, 2583 struct vm_area_struct *vma, unsigned long start, 2584 unsigned long end, unsigned long cp_flags); 2585extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb, 2586 struct vm_area_struct *vma, struct vm_area_struct **pprev, 2587 unsigned long start, unsigned long end, unsigned long newflags); 2588 2589/* 2590 * doesn't attempt to fault and will return short. 2591 */ 2592int get_user_pages_fast_only(unsigned long start, int nr_pages, 2593 unsigned int gup_flags, struct page **pages); 2594 2595static inline bool get_user_page_fast_only(unsigned long addr, 2596 unsigned int gup_flags, struct page **pagep) 2597{ 2598 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 2599} 2600/* 2601 * per-process(per-mm_struct) statistics. 2602 */ 2603static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 2604{ 2605 return percpu_counter_read_positive(&mm->rss_stat[member]); 2606} 2607 2608void mm_trace_rss_stat(struct mm_struct *mm, int member); 2609 2610static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 2611{ 2612 percpu_counter_add(&mm->rss_stat[member], value); 2613 2614 mm_trace_rss_stat(mm, member); 2615} 2616 2617static inline void inc_mm_counter(struct mm_struct *mm, int member) 2618{ 2619 percpu_counter_inc(&mm->rss_stat[member]); 2620 2621 mm_trace_rss_stat(mm, member); 2622} 2623 2624static inline void dec_mm_counter(struct mm_struct *mm, int member) 2625{ 2626 percpu_counter_dec(&mm->rss_stat[member]); 2627 2628 mm_trace_rss_stat(mm, member); 2629} 2630 2631/* Optimized variant when folio is already known not to be anon */ 2632static inline int mm_counter_file(struct folio *folio) 2633{ 2634 if (folio_test_swapbacked(folio)) 2635 return MM_SHMEMPAGES; 2636 return MM_FILEPAGES; 2637} 2638 2639static inline int mm_counter(struct folio *folio) 2640{ 2641 if (folio_test_anon(folio)) 2642 return MM_ANONPAGES; 2643 return mm_counter_file(folio); 2644} 2645 2646static inline unsigned long get_mm_rss(struct mm_struct *mm) 2647{ 2648 return get_mm_counter(mm, MM_FILEPAGES) + 2649 get_mm_counter(mm, MM_ANONPAGES) + 2650 get_mm_counter(mm, MM_SHMEMPAGES); 2651} 2652 2653static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 2654{ 2655 return max(mm->hiwater_rss, get_mm_rss(mm)); 2656} 2657 2658static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 2659{ 2660 return max(mm->hiwater_vm, mm->total_vm); 2661} 2662 2663static inline void update_hiwater_rss(struct mm_struct *mm) 2664{ 2665 unsigned long _rss = get_mm_rss(mm); 2666 2667 if ((mm)->hiwater_rss < _rss) 2668 (mm)->hiwater_rss = _rss; 2669} 2670 2671static inline void update_hiwater_vm(struct mm_struct *mm) 2672{ 2673 if (mm->hiwater_vm < mm->total_vm) 2674 mm->hiwater_vm = mm->total_vm; 2675} 2676 2677static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2678{ 2679 mm->hiwater_rss = get_mm_rss(mm); 2680} 2681 2682static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2683 struct mm_struct *mm) 2684{ 2685 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2686 2687 if (*maxrss < hiwater_rss) 2688 *maxrss = hiwater_rss; 2689} 2690 2691#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2692static inline int pte_special(pte_t pte) 2693{ 2694 return 0; 2695} 2696 2697static inline pte_t pte_mkspecial(pte_t pte) 2698{ 2699 return pte; 2700} 2701#endif 2702 2703#ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP 2704static inline bool pmd_special(pmd_t pmd) 2705{ 2706 return false; 2707} 2708 2709static inline pmd_t pmd_mkspecial(pmd_t pmd) 2710{ 2711 return pmd; 2712} 2713#endif /* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */ 2714 2715#ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP 2716static inline bool pud_special(pud_t pud) 2717{ 2718 return false; 2719} 2720 2721static inline pud_t pud_mkspecial(pud_t pud) 2722{ 2723 return pud; 2724} 2725#endif /* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */ 2726 2727#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 2728static inline int pte_devmap(pte_t pte) 2729{ 2730 return 0; 2731} 2732#endif 2733 2734extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2735 spinlock_t **ptl); 2736static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2737 spinlock_t **ptl) 2738{ 2739 pte_t *ptep; 2740 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2741 return ptep; 2742} 2743 2744#ifdef __PAGETABLE_P4D_FOLDED 2745static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2746 unsigned long address) 2747{ 2748 return 0; 2749} 2750#else 2751int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2752#endif 2753 2754#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2755static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2756 unsigned long address) 2757{ 2758 return 0; 2759} 2760static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2761static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2762 2763#else 2764int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2765 2766static inline void mm_inc_nr_puds(struct mm_struct *mm) 2767{ 2768 if (mm_pud_folded(mm)) 2769 return; 2770 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2771} 2772 2773static inline void mm_dec_nr_puds(struct mm_struct *mm) 2774{ 2775 if (mm_pud_folded(mm)) 2776 return; 2777 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2778} 2779#endif 2780 2781#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2782static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2783 unsigned long address) 2784{ 2785 return 0; 2786} 2787 2788static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2789static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2790 2791#else 2792int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2793 2794static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2795{ 2796 if (mm_pmd_folded(mm)) 2797 return; 2798 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2799} 2800 2801static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2802{ 2803 if (mm_pmd_folded(mm)) 2804 return; 2805 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2806} 2807#endif 2808 2809#ifdef CONFIG_MMU 2810static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2811{ 2812 atomic_long_set(&mm->pgtables_bytes, 0); 2813} 2814 2815static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2816{ 2817 return atomic_long_read(&mm->pgtables_bytes); 2818} 2819 2820static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2821{ 2822 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2823} 2824 2825static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2826{ 2827 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2828} 2829#else 2830 2831static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2832static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2833{ 2834 return 0; 2835} 2836 2837static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2838static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2839#endif 2840 2841int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2842int __pte_alloc_kernel(pmd_t *pmd); 2843 2844#if defined(CONFIG_MMU) 2845 2846static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2847 unsigned long address) 2848{ 2849 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2850 NULL : p4d_offset(pgd, address); 2851} 2852 2853static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2854 unsigned long address) 2855{ 2856 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2857 NULL : pud_offset(p4d, address); 2858} 2859 2860static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2861{ 2862 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2863 NULL: pmd_offset(pud, address); 2864} 2865#endif /* CONFIG_MMU */ 2866 2867static inline struct ptdesc *virt_to_ptdesc(const void *x) 2868{ 2869 return page_ptdesc(virt_to_page(x)); 2870} 2871 2872static inline void *ptdesc_to_virt(const struct ptdesc *pt) 2873{ 2874 return page_to_virt(ptdesc_page(pt)); 2875} 2876 2877static inline void *ptdesc_address(const struct ptdesc *pt) 2878{ 2879 return folio_address(ptdesc_folio(pt)); 2880} 2881 2882static inline bool pagetable_is_reserved(struct ptdesc *pt) 2883{ 2884 return folio_test_reserved(ptdesc_folio(pt)); 2885} 2886 2887/** 2888 * pagetable_alloc - Allocate pagetables 2889 * @gfp: GFP flags 2890 * @order: desired pagetable order 2891 * 2892 * pagetable_alloc allocates memory for page tables as well as a page table 2893 * descriptor to describe that memory. 2894 * 2895 * Return: The ptdesc describing the allocated page tables. 2896 */ 2897static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order) 2898{ 2899 struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order); 2900 2901 return page_ptdesc(page); 2902} 2903#define pagetable_alloc(...) alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__)) 2904 2905/** 2906 * pagetable_free - Free pagetables 2907 * @pt: The page table descriptor 2908 * 2909 * pagetable_free frees the memory of all page tables described by a page 2910 * table descriptor and the memory for the descriptor itself. 2911 */ 2912static inline void pagetable_free(struct ptdesc *pt) 2913{ 2914 struct page *page = ptdesc_page(pt); 2915 2916 __free_pages(page, compound_order(page)); 2917} 2918 2919#if defined(CONFIG_SPLIT_PTE_PTLOCKS) 2920#if ALLOC_SPLIT_PTLOCKS 2921void __init ptlock_cache_init(void); 2922bool ptlock_alloc(struct ptdesc *ptdesc); 2923void ptlock_free(struct ptdesc *ptdesc); 2924 2925static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 2926{ 2927 return ptdesc->ptl; 2928} 2929#else /* ALLOC_SPLIT_PTLOCKS */ 2930static inline void ptlock_cache_init(void) 2931{ 2932} 2933 2934static inline bool ptlock_alloc(struct ptdesc *ptdesc) 2935{ 2936 return true; 2937} 2938 2939static inline void ptlock_free(struct ptdesc *ptdesc) 2940{ 2941} 2942 2943static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 2944{ 2945 return &ptdesc->ptl; 2946} 2947#endif /* ALLOC_SPLIT_PTLOCKS */ 2948 2949static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2950{ 2951 return ptlock_ptr(page_ptdesc(pmd_page(*pmd))); 2952} 2953 2954static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) 2955{ 2956 BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE)); 2957 BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE); 2958 return ptlock_ptr(virt_to_ptdesc(pte)); 2959} 2960 2961static inline bool ptlock_init(struct ptdesc *ptdesc) 2962{ 2963 /* 2964 * prep_new_page() initialize page->private (and therefore page->ptl) 2965 * with 0. Make sure nobody took it in use in between. 2966 * 2967 * It can happen if arch try to use slab for page table allocation: 2968 * slab code uses page->slab_cache, which share storage with page->ptl. 2969 */ 2970 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc)); 2971 if (!ptlock_alloc(ptdesc)) 2972 return false; 2973 spin_lock_init(ptlock_ptr(ptdesc)); 2974 return true; 2975} 2976 2977#else /* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */ 2978/* 2979 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2980 */ 2981static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2982{ 2983 return &mm->page_table_lock; 2984} 2985static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) 2986{ 2987 return &mm->page_table_lock; 2988} 2989static inline void ptlock_cache_init(void) {} 2990static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; } 2991static inline void ptlock_free(struct ptdesc *ptdesc) {} 2992#endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */ 2993 2994static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc) 2995{ 2996 struct folio *folio = ptdesc_folio(ptdesc); 2997 2998 if (!ptlock_init(ptdesc)) 2999 return false; 3000 __folio_set_pgtable(folio); 3001 lruvec_stat_add_folio(folio, NR_PAGETABLE); 3002 return true; 3003} 3004 3005static inline void pagetable_pte_dtor(struct ptdesc *ptdesc) 3006{ 3007 struct folio *folio = ptdesc_folio(ptdesc); 3008 3009 ptlock_free(ptdesc); 3010 __folio_clear_pgtable(folio); 3011 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 3012} 3013 3014pte_t *___pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp); 3015static inline pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, 3016 pmd_t *pmdvalp) 3017{ 3018 pte_t *pte; 3019 3020 __cond_lock(RCU, pte = ___pte_offset_map(pmd, addr, pmdvalp)); 3021 return pte; 3022} 3023static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr) 3024{ 3025 return __pte_offset_map(pmd, addr, NULL); 3026} 3027 3028pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 3029 unsigned long addr, spinlock_t **ptlp); 3030static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 3031 unsigned long addr, spinlock_t **ptlp) 3032{ 3033 pte_t *pte; 3034 3035 __cond_lock(RCU, __cond_lock(*ptlp, 3036 pte = __pte_offset_map_lock(mm, pmd, addr, ptlp))); 3037 return pte; 3038} 3039 3040pte_t *pte_offset_map_ro_nolock(struct mm_struct *mm, pmd_t *pmd, 3041 unsigned long addr, spinlock_t **ptlp); 3042pte_t *pte_offset_map_rw_nolock(struct mm_struct *mm, pmd_t *pmd, 3043 unsigned long addr, pmd_t *pmdvalp, 3044 spinlock_t **ptlp); 3045 3046#define pte_unmap_unlock(pte, ptl) do { \ 3047 spin_unlock(ptl); \ 3048 pte_unmap(pte); \ 3049} while (0) 3050 3051#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 3052 3053#define pte_alloc_map(mm, pmd, address) \ 3054 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 3055 3056#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 3057 (pte_alloc(mm, pmd) ? \ 3058 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 3059 3060#define pte_alloc_kernel(pmd, address) \ 3061 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 3062 NULL: pte_offset_kernel(pmd, address)) 3063 3064#if defined(CONFIG_SPLIT_PMD_PTLOCKS) 3065 3066static inline struct page *pmd_pgtable_page(pmd_t *pmd) 3067{ 3068 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 3069 return virt_to_page((void *)((unsigned long) pmd & mask)); 3070} 3071 3072static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd) 3073{ 3074 return page_ptdesc(pmd_pgtable_page(pmd)); 3075} 3076 3077static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3078{ 3079 return ptlock_ptr(pmd_ptdesc(pmd)); 3080} 3081 3082static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) 3083{ 3084#ifdef CONFIG_TRANSPARENT_HUGEPAGE 3085 ptdesc->pmd_huge_pte = NULL; 3086#endif 3087 return ptlock_init(ptdesc); 3088} 3089 3090static inline void pmd_ptlock_free(struct ptdesc *ptdesc) 3091{ 3092#ifdef CONFIG_TRANSPARENT_HUGEPAGE 3093 VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc)); 3094#endif 3095 ptlock_free(ptdesc); 3096} 3097 3098#define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte) 3099 3100#else 3101 3102static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3103{ 3104 return &mm->page_table_lock; 3105} 3106 3107static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; } 3108static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {} 3109 3110#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 3111 3112#endif 3113 3114static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 3115{ 3116 spinlock_t *ptl = pmd_lockptr(mm, pmd); 3117 spin_lock(ptl); 3118 return ptl; 3119} 3120 3121static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc) 3122{ 3123 struct folio *folio = ptdesc_folio(ptdesc); 3124 3125 if (!pmd_ptlock_init(ptdesc)) 3126 return false; 3127 __folio_set_pgtable(folio); 3128 ptdesc_pmd_pts_init(ptdesc); 3129 lruvec_stat_add_folio(folio, NR_PAGETABLE); 3130 return true; 3131} 3132 3133static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc) 3134{ 3135 struct folio *folio = ptdesc_folio(ptdesc); 3136 3137 pmd_ptlock_free(ptdesc); 3138 __folio_clear_pgtable(folio); 3139 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 3140} 3141 3142/* 3143 * No scalability reason to split PUD locks yet, but follow the same pattern 3144 * as the PMD locks to make it easier if we decide to. The VM should not be 3145 * considered ready to switch to split PUD locks yet; there may be places 3146 * which need to be converted from page_table_lock. 3147 */ 3148static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 3149{ 3150 return &mm->page_table_lock; 3151} 3152 3153static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 3154{ 3155 spinlock_t *ptl = pud_lockptr(mm, pud); 3156 3157 spin_lock(ptl); 3158 return ptl; 3159} 3160 3161static inline void pagetable_pud_ctor(struct ptdesc *ptdesc) 3162{ 3163 struct folio *folio = ptdesc_folio(ptdesc); 3164 3165 __folio_set_pgtable(folio); 3166 lruvec_stat_add_folio(folio, NR_PAGETABLE); 3167} 3168 3169static inline void pagetable_pud_dtor(struct ptdesc *ptdesc) 3170{ 3171 struct folio *folio = ptdesc_folio(ptdesc); 3172 3173 __folio_clear_pgtable(folio); 3174 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 3175} 3176 3177extern void __init pagecache_init(void); 3178extern void free_initmem(void); 3179 3180/* 3181 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 3182 * into the buddy system. The freed pages will be poisoned with pattern 3183 * "poison" if it's within range [0, UCHAR_MAX]. 3184 * Return pages freed into the buddy system. 3185 */ 3186extern unsigned long free_reserved_area(void *start, void *end, 3187 int poison, const char *s); 3188 3189extern void adjust_managed_page_count(struct page *page, long count); 3190 3191extern void reserve_bootmem_region(phys_addr_t start, 3192 phys_addr_t end, int nid); 3193 3194/* Free the reserved page into the buddy system, so it gets managed. */ 3195void free_reserved_page(struct page *page); 3196#define free_highmem_page(page) free_reserved_page(page) 3197 3198static inline void mark_page_reserved(struct page *page) 3199{ 3200 SetPageReserved(page); 3201 adjust_managed_page_count(page, -1); 3202} 3203 3204static inline void free_reserved_ptdesc(struct ptdesc *pt) 3205{ 3206 free_reserved_page(ptdesc_page(pt)); 3207} 3208 3209/* 3210 * Default method to free all the __init memory into the buddy system. 3211 * The freed pages will be poisoned with pattern "poison" if it's within 3212 * range [0, UCHAR_MAX]. 3213 * Return pages freed into the buddy system. 3214 */ 3215static inline unsigned long free_initmem_default(int poison) 3216{ 3217 extern char __init_begin[], __init_end[]; 3218 3219 return free_reserved_area(&__init_begin, &__init_end, 3220 poison, "unused kernel image (initmem)"); 3221} 3222 3223static inline unsigned long get_num_physpages(void) 3224{ 3225 int nid; 3226 unsigned long phys_pages = 0; 3227 3228 for_each_online_node(nid) 3229 phys_pages += node_present_pages(nid); 3230 3231 return phys_pages; 3232} 3233 3234/* 3235 * Using memblock node mappings, an architecture may initialise its 3236 * zones, allocate the backing mem_map and account for memory holes in an 3237 * architecture independent manner. 3238 * 3239 * An architecture is expected to register range of page frames backed by 3240 * physical memory with memblock_add[_node]() before calling 3241 * free_area_init() passing in the PFN each zone ends at. At a basic 3242 * usage, an architecture is expected to do something like 3243 * 3244 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 3245 * max_highmem_pfn}; 3246 * for_each_valid_physical_page_range() 3247 * memblock_add_node(base, size, nid, MEMBLOCK_NONE) 3248 * free_area_init(max_zone_pfns); 3249 */ 3250void free_area_init(unsigned long *max_zone_pfn); 3251unsigned long node_map_pfn_alignment(void); 3252extern unsigned long absent_pages_in_range(unsigned long start_pfn, 3253 unsigned long end_pfn); 3254extern void get_pfn_range_for_nid(unsigned int nid, 3255 unsigned long *start_pfn, unsigned long *end_pfn); 3256 3257#ifndef CONFIG_NUMA 3258static inline int early_pfn_to_nid(unsigned long pfn) 3259{ 3260 return 0; 3261} 3262#else 3263/* please see mm/page_alloc.c */ 3264extern int __meminit early_pfn_to_nid(unsigned long pfn); 3265#endif 3266 3267extern void mem_init(void); 3268extern void __init mmap_init(void); 3269 3270extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); 3271static inline void show_mem(void) 3272{ 3273 __show_mem(0, NULL, MAX_NR_ZONES - 1); 3274} 3275extern long si_mem_available(void); 3276extern void si_meminfo(struct sysinfo * val); 3277extern void si_meminfo_node(struct sysinfo *val, int nid); 3278 3279extern __printf(3, 4) 3280void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 3281 3282extern void setup_per_cpu_pageset(void); 3283 3284/* nommu.c */ 3285extern atomic_long_t mmap_pages_allocated; 3286extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 3287 3288/* interval_tree.c */ 3289void vma_interval_tree_insert(struct vm_area_struct *node, 3290 struct rb_root_cached *root); 3291void vma_interval_tree_insert_after(struct vm_area_struct *node, 3292 struct vm_area_struct *prev, 3293 struct rb_root_cached *root); 3294void vma_interval_tree_remove(struct vm_area_struct *node, 3295 struct rb_root_cached *root); 3296struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 3297 unsigned long start, unsigned long last); 3298struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 3299 unsigned long start, unsigned long last); 3300 3301#define vma_interval_tree_foreach(vma, root, start, last) \ 3302 for (vma = vma_interval_tree_iter_first(root, start, last); \ 3303 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 3304 3305void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 3306 struct rb_root_cached *root); 3307void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 3308 struct rb_root_cached *root); 3309struct anon_vma_chain * 3310anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 3311 unsigned long start, unsigned long last); 3312struct anon_vma_chain *anon_vma_interval_tree_iter_next( 3313 struct anon_vma_chain *node, unsigned long start, unsigned long last); 3314#ifdef CONFIG_DEBUG_VM_RB 3315void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 3316#endif 3317 3318#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 3319 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 3320 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 3321 3322/* mmap.c */ 3323extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 3324extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 3325extern void exit_mmap(struct mm_struct *); 3326int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift); 3327 3328static inline int check_data_rlimit(unsigned long rlim, 3329 unsigned long new, 3330 unsigned long start, 3331 unsigned long end_data, 3332 unsigned long start_data) 3333{ 3334 if (rlim < RLIM_INFINITY) { 3335 if (((new - start) + (end_data - start_data)) > rlim) 3336 return -ENOSPC; 3337 } 3338 3339 return 0; 3340} 3341 3342extern int mm_take_all_locks(struct mm_struct *mm); 3343extern void mm_drop_all_locks(struct mm_struct *mm); 3344 3345extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3346extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3347extern struct file *get_mm_exe_file(struct mm_struct *mm); 3348extern struct file *get_task_exe_file(struct task_struct *task); 3349 3350extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 3351extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 3352 3353extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 3354 const struct vm_special_mapping *sm); 3355extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 3356 unsigned long addr, unsigned long len, 3357 unsigned long flags, 3358 const struct vm_special_mapping *spec); 3359 3360unsigned long randomize_stack_top(unsigned long stack_top); 3361unsigned long randomize_page(unsigned long start, unsigned long range); 3362 3363unsigned long 3364__get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 3365 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags); 3366 3367static inline unsigned long 3368get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 3369 unsigned long pgoff, unsigned long flags) 3370{ 3371 return __get_unmapped_area(file, addr, len, pgoff, flags, 0); 3372} 3373 3374extern unsigned long mmap_region(struct file *file, unsigned long addr, 3375 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 3376 struct list_head *uf); 3377extern unsigned long do_mmap(struct file *file, unsigned long addr, 3378 unsigned long len, unsigned long prot, unsigned long flags, 3379 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 3380 struct list_head *uf); 3381extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 3382 unsigned long start, size_t len, struct list_head *uf, 3383 bool unlock); 3384int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 3385 struct mm_struct *mm, unsigned long start, 3386 unsigned long end, struct list_head *uf, bool unlock); 3387extern int do_munmap(struct mm_struct *, unsigned long, size_t, 3388 struct list_head *uf); 3389extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 3390 3391#ifdef CONFIG_MMU 3392extern int __mm_populate(unsigned long addr, unsigned long len, 3393 int ignore_errors); 3394static inline void mm_populate(unsigned long addr, unsigned long len) 3395{ 3396 /* Ignore errors */ 3397 (void) __mm_populate(addr, len, 1); 3398} 3399#else 3400static inline void mm_populate(unsigned long addr, unsigned long len) {} 3401#endif 3402 3403/* This takes the mm semaphore itself */ 3404extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 3405extern int vm_munmap(unsigned long, size_t); 3406extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 3407 unsigned long, unsigned long, 3408 unsigned long, unsigned long); 3409 3410struct vm_unmapped_area_info { 3411#define VM_UNMAPPED_AREA_TOPDOWN 1 3412 unsigned long flags; 3413 unsigned long length; 3414 unsigned long low_limit; 3415 unsigned long high_limit; 3416 unsigned long align_mask; 3417 unsigned long align_offset; 3418 unsigned long start_gap; 3419}; 3420 3421extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 3422 3423/* truncate.c */ 3424extern void truncate_inode_pages(struct address_space *, loff_t); 3425extern void truncate_inode_pages_range(struct address_space *, 3426 loff_t lstart, loff_t lend); 3427extern void truncate_inode_pages_final(struct address_space *); 3428 3429/* generic vm_area_ops exported for stackable file systems */ 3430extern vm_fault_t filemap_fault(struct vm_fault *vmf); 3431extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3432 pgoff_t start_pgoff, pgoff_t end_pgoff); 3433extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 3434 3435extern unsigned long stack_guard_gap; 3436/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 3437int expand_stack_locked(struct vm_area_struct *vma, unsigned long address); 3438struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr); 3439 3440/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 3441int expand_downwards(struct vm_area_struct *vma, unsigned long address); 3442 3443/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 3444extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 3445extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 3446 struct vm_area_struct **pprev); 3447 3448/* 3449 * Look up the first VMA which intersects the interval [start_addr, end_addr) 3450 * NULL if none. Assume start_addr < end_addr. 3451 */ 3452struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 3453 unsigned long start_addr, unsigned long end_addr); 3454 3455/** 3456 * vma_lookup() - Find a VMA at a specific address 3457 * @mm: The process address space. 3458 * @addr: The user address. 3459 * 3460 * Return: The vm_area_struct at the given address, %NULL otherwise. 3461 */ 3462static inline 3463struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 3464{ 3465 return mtree_load(&mm->mm_mt, addr); 3466} 3467 3468static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma) 3469{ 3470 if (vma->vm_flags & VM_GROWSDOWN) 3471 return stack_guard_gap; 3472 3473 /* See reasoning around the VM_SHADOW_STACK definition */ 3474 if (vma->vm_flags & VM_SHADOW_STACK) 3475 return PAGE_SIZE; 3476 3477 return 0; 3478} 3479 3480static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 3481{ 3482 unsigned long gap = stack_guard_start_gap(vma); 3483 unsigned long vm_start = vma->vm_start; 3484 3485 vm_start -= gap; 3486 if (vm_start > vma->vm_start) 3487 vm_start = 0; 3488 return vm_start; 3489} 3490 3491static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 3492{ 3493 unsigned long vm_end = vma->vm_end; 3494 3495 if (vma->vm_flags & VM_GROWSUP) { 3496 vm_end += stack_guard_gap; 3497 if (vm_end < vma->vm_end) 3498 vm_end = -PAGE_SIZE; 3499 } 3500 return vm_end; 3501} 3502 3503static inline unsigned long vma_pages(struct vm_area_struct *vma) 3504{ 3505 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 3506} 3507 3508/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 3509static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 3510 unsigned long vm_start, unsigned long vm_end) 3511{ 3512 struct vm_area_struct *vma = vma_lookup(mm, vm_start); 3513 3514 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 3515 vma = NULL; 3516 3517 return vma; 3518} 3519 3520static inline bool range_in_vma(struct vm_area_struct *vma, 3521 unsigned long start, unsigned long end) 3522{ 3523 return (vma && vma->vm_start <= start && end <= vma->vm_end); 3524} 3525 3526#ifdef CONFIG_MMU 3527pgprot_t vm_get_page_prot(unsigned long vm_flags); 3528void vma_set_page_prot(struct vm_area_struct *vma); 3529#else 3530static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 3531{ 3532 return __pgprot(0); 3533} 3534static inline void vma_set_page_prot(struct vm_area_struct *vma) 3535{ 3536 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3537} 3538#endif 3539 3540void vma_set_file(struct vm_area_struct *vma, struct file *file); 3541 3542#ifdef CONFIG_NUMA_BALANCING 3543unsigned long change_prot_numa(struct vm_area_struct *vma, 3544 unsigned long start, unsigned long end); 3545#endif 3546 3547struct vm_area_struct *find_extend_vma_locked(struct mm_struct *, 3548 unsigned long addr); 3549int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 3550 unsigned long pfn, unsigned long size, pgprot_t); 3551int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 3552 unsigned long pfn, unsigned long size, pgprot_t prot); 3553int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 3554int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 3555 struct page **pages, unsigned long *num); 3556int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 3557 unsigned long num); 3558int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 3559 unsigned long num); 3560vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 3561 unsigned long pfn); 3562vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 3563 unsigned long pfn, pgprot_t pgprot); 3564vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 3565 pfn_t pfn); 3566vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 3567 unsigned long addr, pfn_t pfn); 3568int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 3569 3570static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 3571 unsigned long addr, struct page *page) 3572{ 3573 int err = vm_insert_page(vma, addr, page); 3574 3575 if (err == -ENOMEM) 3576 return VM_FAULT_OOM; 3577 if (err < 0 && err != -EBUSY) 3578 return VM_FAULT_SIGBUS; 3579 3580 return VM_FAULT_NOPAGE; 3581} 3582 3583#ifndef io_remap_pfn_range 3584static inline int io_remap_pfn_range(struct vm_area_struct *vma, 3585 unsigned long addr, unsigned long pfn, 3586 unsigned long size, pgprot_t prot) 3587{ 3588 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 3589} 3590#endif 3591 3592static inline vm_fault_t vmf_error(int err) 3593{ 3594 if (err == -ENOMEM) 3595 return VM_FAULT_OOM; 3596 else if (err == -EHWPOISON) 3597 return VM_FAULT_HWPOISON; 3598 return VM_FAULT_SIGBUS; 3599} 3600 3601/* 3602 * Convert errno to return value for ->page_mkwrite() calls. 3603 * 3604 * This should eventually be merged with vmf_error() above, but will need a 3605 * careful audit of all vmf_error() callers. 3606 */ 3607static inline vm_fault_t vmf_fs_error(int err) 3608{ 3609 if (err == 0) 3610 return VM_FAULT_LOCKED; 3611 if (err == -EFAULT || err == -EAGAIN) 3612 return VM_FAULT_NOPAGE; 3613 if (err == -ENOMEM) 3614 return VM_FAULT_OOM; 3615 /* -ENOSPC, -EDQUOT, -EIO ... */ 3616 return VM_FAULT_SIGBUS; 3617} 3618 3619static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 3620{ 3621 if (vm_fault & VM_FAULT_OOM) 3622 return -ENOMEM; 3623 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 3624 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 3625 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 3626 return -EFAULT; 3627 return 0; 3628} 3629 3630/* 3631 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether 3632 * a (NUMA hinting) fault is required. 3633 */ 3634static inline bool gup_can_follow_protnone(struct vm_area_struct *vma, 3635 unsigned int flags) 3636{ 3637 /* 3638 * If callers don't want to honor NUMA hinting faults, no need to 3639 * determine if we would actually have to trigger a NUMA hinting fault. 3640 */ 3641 if (!(flags & FOLL_HONOR_NUMA_FAULT)) 3642 return true; 3643 3644 /* 3645 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs. 3646 * 3647 * Requiring a fault here even for inaccessible VMAs would mean that 3648 * FOLL_FORCE cannot make any progress, because handle_mm_fault() 3649 * refuses to process NUMA hinting faults in inaccessible VMAs. 3650 */ 3651 return !vma_is_accessible(vma); 3652} 3653 3654typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 3655extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 3656 unsigned long size, pte_fn_t fn, void *data); 3657extern int apply_to_existing_page_range(struct mm_struct *mm, 3658 unsigned long address, unsigned long size, 3659 pte_fn_t fn, void *data); 3660 3661#ifdef CONFIG_PAGE_POISONING 3662extern void __kernel_poison_pages(struct page *page, int numpages); 3663extern void __kernel_unpoison_pages(struct page *page, int numpages); 3664extern bool _page_poisoning_enabled_early; 3665DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 3666static inline bool page_poisoning_enabled(void) 3667{ 3668 return _page_poisoning_enabled_early; 3669} 3670/* 3671 * For use in fast paths after init_mem_debugging() has run, or when a 3672 * false negative result is not harmful when called too early. 3673 */ 3674static inline bool page_poisoning_enabled_static(void) 3675{ 3676 return static_branch_unlikely(&_page_poisoning_enabled); 3677} 3678static inline void kernel_poison_pages(struct page *page, int numpages) 3679{ 3680 if (page_poisoning_enabled_static()) 3681 __kernel_poison_pages(page, numpages); 3682} 3683static inline void kernel_unpoison_pages(struct page *page, int numpages) 3684{ 3685 if (page_poisoning_enabled_static()) 3686 __kernel_unpoison_pages(page, numpages); 3687} 3688#else 3689static inline bool page_poisoning_enabled(void) { return false; } 3690static inline bool page_poisoning_enabled_static(void) { return false; } 3691static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 3692static inline void kernel_poison_pages(struct page *page, int numpages) { } 3693static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 3694#endif 3695 3696DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 3697static inline bool want_init_on_alloc(gfp_t flags) 3698{ 3699 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 3700 &init_on_alloc)) 3701 return true; 3702 return flags & __GFP_ZERO; 3703} 3704 3705DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 3706static inline bool want_init_on_free(void) 3707{ 3708 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 3709 &init_on_free); 3710} 3711 3712extern bool _debug_pagealloc_enabled_early; 3713DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 3714 3715static inline bool debug_pagealloc_enabled(void) 3716{ 3717 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 3718 _debug_pagealloc_enabled_early; 3719} 3720 3721/* 3722 * For use in fast paths after mem_debugging_and_hardening_init() has run, 3723 * or when a false negative result is not harmful when called too early. 3724 */ 3725static inline bool debug_pagealloc_enabled_static(void) 3726{ 3727 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 3728 return false; 3729 3730 return static_branch_unlikely(&_debug_pagealloc_enabled); 3731} 3732 3733/* 3734 * To support DEBUG_PAGEALLOC architecture must ensure that 3735 * __kernel_map_pages() never fails 3736 */ 3737extern void __kernel_map_pages(struct page *page, int numpages, int enable); 3738#ifdef CONFIG_DEBUG_PAGEALLOC 3739static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 3740{ 3741 if (debug_pagealloc_enabled_static()) 3742 __kernel_map_pages(page, numpages, 1); 3743} 3744 3745static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 3746{ 3747 if (debug_pagealloc_enabled_static()) 3748 __kernel_map_pages(page, numpages, 0); 3749} 3750 3751extern unsigned int _debug_guardpage_minorder; 3752DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3753 3754static inline unsigned int debug_guardpage_minorder(void) 3755{ 3756 return _debug_guardpage_minorder; 3757} 3758 3759static inline bool debug_guardpage_enabled(void) 3760{ 3761 return static_branch_unlikely(&_debug_guardpage_enabled); 3762} 3763 3764static inline bool page_is_guard(struct page *page) 3765{ 3766 if (!debug_guardpage_enabled()) 3767 return false; 3768 3769 return PageGuard(page); 3770} 3771 3772bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order); 3773static inline bool set_page_guard(struct zone *zone, struct page *page, 3774 unsigned int order) 3775{ 3776 if (!debug_guardpage_enabled()) 3777 return false; 3778 return __set_page_guard(zone, page, order); 3779} 3780 3781void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order); 3782static inline void clear_page_guard(struct zone *zone, struct page *page, 3783 unsigned int order) 3784{ 3785 if (!debug_guardpage_enabled()) 3786 return; 3787 __clear_page_guard(zone, page, order); 3788} 3789 3790#else /* CONFIG_DEBUG_PAGEALLOC */ 3791static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 3792static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 3793static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3794static inline bool debug_guardpage_enabled(void) { return false; } 3795static inline bool page_is_guard(struct page *page) { return false; } 3796static inline bool set_page_guard(struct zone *zone, struct page *page, 3797 unsigned int order) { return false; } 3798static inline void clear_page_guard(struct zone *zone, struct page *page, 3799 unsigned int order) {} 3800#endif /* CONFIG_DEBUG_PAGEALLOC */ 3801 3802#ifdef __HAVE_ARCH_GATE_AREA 3803extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 3804extern int in_gate_area_no_mm(unsigned long addr); 3805extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 3806#else 3807static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3808{ 3809 return NULL; 3810} 3811static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 3812static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 3813{ 3814 return 0; 3815} 3816#endif /* __HAVE_ARCH_GATE_AREA */ 3817 3818extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 3819 3820#ifdef CONFIG_SYSCTL 3821extern int sysctl_drop_caches; 3822int drop_caches_sysctl_handler(const struct ctl_table *, int, void *, size_t *, 3823 loff_t *); 3824#endif 3825 3826void drop_slab(void); 3827 3828#ifndef CONFIG_MMU 3829#define randomize_va_space 0 3830#else 3831extern int randomize_va_space; 3832#endif 3833 3834const char * arch_vma_name(struct vm_area_struct *vma); 3835#ifdef CONFIG_MMU 3836void print_vma_addr(char *prefix, unsigned long rip); 3837#else 3838static inline void print_vma_addr(char *prefix, unsigned long rip) 3839{ 3840} 3841#endif 3842 3843void *sparse_buffer_alloc(unsigned long size); 3844struct page * __populate_section_memmap(unsigned long pfn, 3845 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 3846 struct dev_pagemap *pgmap); 3847pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3848p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3849pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3850pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3851pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3852 struct vmem_altmap *altmap, struct page *reuse); 3853void *vmemmap_alloc_block(unsigned long size, int node); 3854struct vmem_altmap; 3855void *vmemmap_alloc_block_buf(unsigned long size, int node, 3856 struct vmem_altmap *altmap); 3857void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3858void vmemmap_set_pmd(pmd_t *pmd, void *p, int node, 3859 unsigned long addr, unsigned long next); 3860int vmemmap_check_pmd(pmd_t *pmd, int node, 3861 unsigned long addr, unsigned long next); 3862int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3863 int node, struct vmem_altmap *altmap); 3864int vmemmap_populate_hugepages(unsigned long start, unsigned long end, 3865 int node, struct vmem_altmap *altmap); 3866int vmemmap_populate(unsigned long start, unsigned long end, int node, 3867 struct vmem_altmap *altmap); 3868void vmemmap_populate_print_last(void); 3869#ifdef CONFIG_MEMORY_HOTPLUG 3870void vmemmap_free(unsigned long start, unsigned long end, 3871 struct vmem_altmap *altmap); 3872#endif 3873 3874#ifdef CONFIG_SPARSEMEM_VMEMMAP 3875static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3876{ 3877 /* number of pfns from base where pfn_to_page() is valid */ 3878 if (altmap) 3879 return altmap->reserve + altmap->free; 3880 return 0; 3881} 3882 3883static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3884 unsigned long nr_pfns) 3885{ 3886 altmap->alloc -= nr_pfns; 3887} 3888#else 3889static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3890{ 3891 return 0; 3892} 3893 3894static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3895 unsigned long nr_pfns) 3896{ 3897} 3898#endif 3899 3900#define VMEMMAP_RESERVE_NR 2 3901#ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP 3902static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap, 3903 struct dev_pagemap *pgmap) 3904{ 3905 unsigned long nr_pages; 3906 unsigned long nr_vmemmap_pages; 3907 3908 if (!pgmap || !is_power_of_2(sizeof(struct page))) 3909 return false; 3910 3911 nr_pages = pgmap_vmemmap_nr(pgmap); 3912 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT); 3913 /* 3914 * For vmemmap optimization with DAX we need minimum 2 vmemmap 3915 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst 3916 */ 3917 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR); 3918} 3919/* 3920 * If we don't have an architecture override, use the generic rule 3921 */ 3922#ifndef vmemmap_can_optimize 3923#define vmemmap_can_optimize __vmemmap_can_optimize 3924#endif 3925 3926#else 3927static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap, 3928 struct dev_pagemap *pgmap) 3929{ 3930 return false; 3931} 3932#endif 3933 3934void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3935 unsigned long nr_pages); 3936 3937enum mf_flags { 3938 MF_COUNT_INCREASED = 1 << 0, 3939 MF_ACTION_REQUIRED = 1 << 1, 3940 MF_MUST_KILL = 1 << 2, 3941 MF_SOFT_OFFLINE = 1 << 3, 3942 MF_UNPOISON = 1 << 4, 3943 MF_SW_SIMULATED = 1 << 5, 3944 MF_NO_RETRY = 1 << 6, 3945 MF_MEM_PRE_REMOVE = 1 << 7, 3946}; 3947int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 3948 unsigned long count, int mf_flags); 3949extern int memory_failure(unsigned long pfn, int flags); 3950extern void memory_failure_queue_kick(int cpu); 3951extern int unpoison_memory(unsigned long pfn); 3952extern atomic_long_t num_poisoned_pages __read_mostly; 3953extern int soft_offline_page(unsigned long pfn, int flags); 3954#ifdef CONFIG_MEMORY_FAILURE 3955/* 3956 * Sysfs entries for memory failure handling statistics. 3957 */ 3958extern const struct attribute_group memory_failure_attr_group; 3959extern void memory_failure_queue(unsigned long pfn, int flags); 3960extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3961 bool *migratable_cleared); 3962void num_poisoned_pages_inc(unsigned long pfn); 3963void num_poisoned_pages_sub(unsigned long pfn, long i); 3964#else 3965static inline void memory_failure_queue(unsigned long pfn, int flags) 3966{ 3967} 3968 3969static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3970 bool *migratable_cleared) 3971{ 3972 return 0; 3973} 3974 3975static inline void num_poisoned_pages_inc(unsigned long pfn) 3976{ 3977} 3978 3979static inline void num_poisoned_pages_sub(unsigned long pfn, long i) 3980{ 3981} 3982#endif 3983 3984#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG) 3985extern void memblk_nr_poison_inc(unsigned long pfn); 3986extern void memblk_nr_poison_sub(unsigned long pfn, long i); 3987#else 3988static inline void memblk_nr_poison_inc(unsigned long pfn) 3989{ 3990} 3991 3992static inline void memblk_nr_poison_sub(unsigned long pfn, long i) 3993{ 3994} 3995#endif 3996 3997#ifndef arch_memory_failure 3998static inline int arch_memory_failure(unsigned long pfn, int flags) 3999{ 4000 return -ENXIO; 4001} 4002#endif 4003 4004#ifndef arch_is_platform_page 4005static inline bool arch_is_platform_page(u64 paddr) 4006{ 4007 return false; 4008} 4009#endif 4010 4011/* 4012 * Error handlers for various types of pages. 4013 */ 4014enum mf_result { 4015 MF_IGNORED, /* Error: cannot be handled */ 4016 MF_FAILED, /* Error: handling failed */ 4017 MF_DELAYED, /* Will be handled later */ 4018 MF_RECOVERED, /* Successfully recovered */ 4019}; 4020 4021enum mf_action_page_type { 4022 MF_MSG_KERNEL, 4023 MF_MSG_KERNEL_HIGH_ORDER, 4024 MF_MSG_DIFFERENT_COMPOUND, 4025 MF_MSG_HUGE, 4026 MF_MSG_FREE_HUGE, 4027 MF_MSG_GET_HWPOISON, 4028 MF_MSG_UNMAP_FAILED, 4029 MF_MSG_DIRTY_SWAPCACHE, 4030 MF_MSG_CLEAN_SWAPCACHE, 4031 MF_MSG_DIRTY_MLOCKED_LRU, 4032 MF_MSG_CLEAN_MLOCKED_LRU, 4033 MF_MSG_DIRTY_UNEVICTABLE_LRU, 4034 MF_MSG_CLEAN_UNEVICTABLE_LRU, 4035 MF_MSG_DIRTY_LRU, 4036 MF_MSG_CLEAN_LRU, 4037 MF_MSG_TRUNCATED_LRU, 4038 MF_MSG_BUDDY, 4039 MF_MSG_DAX, 4040 MF_MSG_UNSPLIT_THP, 4041 MF_MSG_ALREADY_POISONED, 4042 MF_MSG_UNKNOWN, 4043}; 4044 4045#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4046void folio_zero_user(struct folio *folio, unsigned long addr_hint); 4047int copy_user_large_folio(struct folio *dst, struct folio *src, 4048 unsigned long addr_hint, 4049 struct vm_area_struct *vma); 4050long copy_folio_from_user(struct folio *dst_folio, 4051 const void __user *usr_src, 4052 bool allow_pagefault); 4053 4054/** 4055 * vma_is_special_huge - Are transhuge page-table entries considered special? 4056 * @vma: Pointer to the struct vm_area_struct to consider 4057 * 4058 * Whether transhuge page-table entries are considered "special" following 4059 * the definition in vm_normal_page(). 4060 * 4061 * Return: true if transhuge page-table entries should be considered special, 4062 * false otherwise. 4063 */ 4064static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 4065{ 4066 return vma_is_dax(vma) || (vma->vm_file && 4067 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 4068} 4069 4070#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4071 4072#if MAX_NUMNODES > 1 4073void __init setup_nr_node_ids(void); 4074#else 4075static inline void setup_nr_node_ids(void) {} 4076#endif 4077 4078extern int memcmp_pages(struct page *page1, struct page *page2); 4079 4080static inline int pages_identical(struct page *page1, struct page *page2) 4081{ 4082 return !memcmp_pages(page1, page2); 4083} 4084 4085#ifdef CONFIG_MAPPING_DIRTY_HELPERS 4086unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 4087 pgoff_t first_index, pgoff_t nr, 4088 pgoff_t bitmap_pgoff, 4089 unsigned long *bitmap, 4090 pgoff_t *start, 4091 pgoff_t *end); 4092 4093unsigned long wp_shared_mapping_range(struct address_space *mapping, 4094 pgoff_t first_index, pgoff_t nr); 4095#endif 4096 4097extern int sysctl_nr_trim_pages; 4098 4099#ifdef CONFIG_PRINTK 4100void mem_dump_obj(void *object); 4101#else 4102static inline void mem_dump_obj(void *object) {} 4103#endif 4104 4105static inline bool is_write_sealed(int seals) 4106{ 4107 return seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE); 4108} 4109 4110/** 4111 * is_readonly_sealed - Checks whether write-sealed but mapped read-only, 4112 * in which case writes should be disallowing moving 4113 * forwards. 4114 * @seals: the seals to check 4115 * @vm_flags: the VMA flags to check 4116 * 4117 * Returns whether readonly sealed, in which case writess should be disallowed 4118 * going forward. 4119 */ 4120static inline bool is_readonly_sealed(int seals, vm_flags_t vm_flags) 4121{ 4122 /* 4123 * Since an F_SEAL_[FUTURE_]WRITE sealed memfd can be mapped as 4124 * MAP_SHARED and read-only, take care to not allow mprotect to 4125 * revert protections on such mappings. Do this only for shared 4126 * mappings. For private mappings, don't need to mask 4127 * VM_MAYWRITE as we still want them to be COW-writable. 4128 */ 4129 if (is_write_sealed(seals) && 4130 ((vm_flags & (VM_SHARED | VM_WRITE)) == VM_SHARED)) 4131 return true; 4132 4133 return false; 4134} 4135 4136/** 4137 * seal_check_write - Check for F_SEAL_WRITE or F_SEAL_FUTURE_WRITE flags and 4138 * handle them. 4139 * @seals: the seals to check 4140 * @vma: the vma to operate on 4141 * 4142 * Check whether F_SEAL_WRITE or F_SEAL_FUTURE_WRITE are set; if so, do proper 4143 * check/handling on the vma flags. Return 0 if check pass, or <0 for errors. 4144 */ 4145static inline int seal_check_write(int seals, struct vm_area_struct *vma) 4146{ 4147 if (!is_write_sealed(seals)) 4148 return 0; 4149 4150 /* 4151 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 4152 * write seals are active. 4153 */ 4154 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 4155 return -EPERM; 4156 4157 return 0; 4158} 4159 4160#ifdef CONFIG_ANON_VMA_NAME 4161int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4162 unsigned long len_in, 4163 struct anon_vma_name *anon_name); 4164#else 4165static inline int 4166madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4167 unsigned long len_in, struct anon_vma_name *anon_name) { 4168 return 0; 4169} 4170#endif 4171 4172#ifdef CONFIG_UNACCEPTED_MEMORY 4173 4174bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size); 4175void accept_memory(phys_addr_t start, unsigned long size); 4176 4177#else 4178 4179static inline bool range_contains_unaccepted_memory(phys_addr_t start, 4180 unsigned long size) 4181{ 4182 return false; 4183} 4184 4185static inline void accept_memory(phys_addr_t start, unsigned long size) 4186{ 4187} 4188 4189#endif 4190 4191static inline bool pfn_is_unaccepted_memory(unsigned long pfn) 4192{ 4193 return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE); 4194} 4195 4196void vma_pgtable_walk_begin(struct vm_area_struct *vma); 4197void vma_pgtable_walk_end(struct vm_area_struct *vma); 4198 4199int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size); 4200 4201#ifdef CONFIG_64BIT 4202int do_mseal(unsigned long start, size_t len_in, unsigned long flags); 4203#else 4204static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags) 4205{ 4206 /* noop on 32 bit */ 4207 return 0; 4208} 4209#endif 4210 4211/* 4212 * user_alloc_needs_zeroing checks if a user folio from page allocator needs to 4213 * be zeroed or not. 4214 */ 4215static inline bool user_alloc_needs_zeroing(void) 4216{ 4217 /* 4218 * for user folios, arch with cache aliasing requires cache flush and 4219 * arc changes folio->flags to make icache coherent with dcache, so 4220 * always return false to make caller use 4221 * clear_user_page()/clear_user_highpage(). 4222 */ 4223 return cpu_dcache_is_aliasing() || cpu_icache_is_aliasing() || 4224 !static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 4225 &init_on_alloc); 4226} 4227 4228int arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status); 4229int arch_set_shadow_stack_status(struct task_struct *t, unsigned long status); 4230int arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status); 4231 4232#endif /* _LINUX_MM_H */