at for-next 18 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_FIREWIRE_H 3#define _LINUX_FIREWIRE_H 4 5#include <linux/completion.h> 6#include <linux/device.h> 7#include <linux/dma-mapping.h> 8#include <linux/kernel.h> 9#include <linux/kref.h> 10#include <linux/list.h> 11#include <linux/mutex.h> 12#include <linux/spinlock.h> 13#include <linux/sysfs.h> 14#include <linux/timer.h> 15#include <linux/types.h> 16#include <linux/workqueue.h> 17 18#include <linux/atomic.h> 19#include <asm/byteorder.h> 20 21#define CSR_REGISTER_BASE 0xfffff0000000ULL 22 23/* register offsets are relative to CSR_REGISTER_BASE */ 24#define CSR_STATE_CLEAR 0x0 25#define CSR_STATE_SET 0x4 26#define CSR_NODE_IDS 0x8 27#define CSR_RESET_START 0xc 28#define CSR_SPLIT_TIMEOUT_HI 0x18 29#define CSR_SPLIT_TIMEOUT_LO 0x1c 30#define CSR_CYCLE_TIME 0x200 31#define CSR_BUS_TIME 0x204 32#define CSR_BUSY_TIMEOUT 0x210 33#define CSR_PRIORITY_BUDGET 0x218 34#define CSR_BUS_MANAGER_ID 0x21c 35#define CSR_BANDWIDTH_AVAILABLE 0x220 36#define CSR_CHANNELS_AVAILABLE 0x224 37#define CSR_CHANNELS_AVAILABLE_HI 0x224 38#define CSR_CHANNELS_AVAILABLE_LO 0x228 39#define CSR_MAINT_UTILITY 0x230 40#define CSR_BROADCAST_CHANNEL 0x234 41#define CSR_CONFIG_ROM 0x400 42#define CSR_CONFIG_ROM_END 0x800 43#define CSR_OMPR 0x900 44#define CSR_OPCR(i) (0x904 + (i) * 4) 45#define CSR_IMPR 0x980 46#define CSR_IPCR(i) (0x984 + (i) * 4) 47#define CSR_FCP_COMMAND 0xB00 48#define CSR_FCP_RESPONSE 0xD00 49#define CSR_FCP_END 0xF00 50#define CSR_TOPOLOGY_MAP 0x1000 51#define CSR_TOPOLOGY_MAP_END 0x1400 52#define CSR_SPEED_MAP 0x2000 53#define CSR_SPEED_MAP_END 0x3000 54 55#define CSR_OFFSET 0x40 56#define CSR_LEAF 0x80 57#define CSR_DIRECTORY 0xc0 58 59#define CSR_DESCRIPTOR 0x01 60#define CSR_VENDOR 0x03 61#define CSR_HARDWARE_VERSION 0x04 62#define CSR_UNIT 0x11 63#define CSR_SPECIFIER_ID 0x12 64#define CSR_VERSION 0x13 65#define CSR_DEPENDENT_INFO 0x14 66#define CSR_MODEL 0x17 67#define CSR_DIRECTORY_ID 0x20 68 69struct fw_csr_iterator { 70 const u32 *p; 71 const u32 *end; 72}; 73 74void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p); 75int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value); 76int fw_csr_string(const u32 *directory, int key, char *buf, size_t size); 77 78extern const struct bus_type fw_bus_type; 79 80struct fw_card_driver; 81struct fw_node; 82 83struct fw_card { 84 const struct fw_card_driver *driver; 85 struct device *device; 86 struct kref kref; 87 struct completion done; 88 89 int node_id; 90 int generation; 91 int current_tlabel; 92 u64 tlabel_mask; 93 struct list_head transaction_list; 94 u64 reset_jiffies; 95 96 u32 split_timeout_hi; 97 u32 split_timeout_lo; 98 unsigned int split_timeout_cycles; 99 unsigned int split_timeout_jiffies; 100 101 unsigned long long guid; 102 unsigned max_receive; 103 int link_speed; 104 int config_rom_generation; 105 106 spinlock_t lock; /* Take this lock when handling the lists in 107 * this struct. */ 108 struct fw_node *local_node; 109 struct fw_node *root_node; 110 struct fw_node *irm_node; 111 u8 color; /* must be u8 to match the definition in struct fw_node */ 112 int gap_count; 113 bool beta_repeaters_present; 114 115 int index; 116 struct list_head link; 117 118 struct list_head phy_receiver_list; 119 120 struct delayed_work br_work; /* bus reset job */ 121 bool br_short; 122 123 struct delayed_work bm_work; /* bus manager job */ 124 int bm_retries; 125 int bm_generation; 126 int bm_node_id; 127 bool bm_abdicate; 128 129 bool priority_budget_implemented; /* controller feature */ 130 bool broadcast_channel_auto_allocated; /* controller feature */ 131 132 bool broadcast_channel_allocated; 133 u32 broadcast_channel; 134 __be32 topology_map[(CSR_TOPOLOGY_MAP_END - CSR_TOPOLOGY_MAP) / 4]; 135 136 __be32 maint_utility_register; 137 138 struct workqueue_struct *isoc_wq; 139}; 140 141static inline struct fw_card *fw_card_get(struct fw_card *card) 142{ 143 kref_get(&card->kref); 144 145 return card; 146} 147 148void fw_card_release(struct kref *kref); 149 150static inline void fw_card_put(struct fw_card *card) 151{ 152 kref_put(&card->kref, fw_card_release); 153} 154 155int fw_card_read_cycle_time(struct fw_card *card, u32 *cycle_time); 156 157struct fw_attribute_group { 158 struct attribute_group *groups[2]; 159 struct attribute_group group; 160 struct attribute *attrs[13]; 161}; 162 163enum fw_device_state { 164 FW_DEVICE_INITIALIZING, 165 FW_DEVICE_RUNNING, 166 FW_DEVICE_GONE, 167 FW_DEVICE_SHUTDOWN, 168}; 169 170/* 171 * Note, fw_device.generation always has to be read before fw_device.node_id. 172 * Use SMP memory barriers to ensure this. Otherwise requests will be sent 173 * to an outdated node_id if the generation was updated in the meantime due 174 * to a bus reset. 175 * 176 * Likewise, fw-core will take care to update .node_id before .generation so 177 * that whenever fw_device.generation is current WRT the actual bus generation, 178 * fw_device.node_id is guaranteed to be current too. 179 * 180 * The same applies to fw_device.card->node_id vs. fw_device.generation. 181 * 182 * fw_device.config_rom and fw_device.config_rom_length may be accessed during 183 * the lifetime of any fw_unit belonging to the fw_device, before device_del() 184 * was called on the last fw_unit. Alternatively, they may be accessed while 185 * holding fw_device_rwsem. 186 */ 187struct fw_device { 188 atomic_t state; 189 struct fw_node *node; 190 int node_id; 191 int generation; 192 unsigned max_speed; 193 struct fw_card *card; 194 struct device device; 195 196 struct mutex client_list_mutex; 197 struct list_head client_list; 198 199 const u32 *config_rom; 200 size_t config_rom_length; 201 int config_rom_retries; 202 unsigned is_local:1; 203 unsigned max_rec:4; 204 unsigned cmc:1; 205 unsigned irmc:1; 206 unsigned bc_implemented:2; 207 208 work_func_t workfn; 209 struct delayed_work work; 210 struct fw_attribute_group attribute_group; 211}; 212 213#define fw_device(dev) container_of_const(dev, struct fw_device, device) 214 215static inline int fw_device_is_shutdown(struct fw_device *device) 216{ 217 return atomic_read(&device->state) == FW_DEVICE_SHUTDOWN; 218} 219 220int fw_device_enable_phys_dma(struct fw_device *device); 221 222/* 223 * fw_unit.directory must not be accessed after device_del(&fw_unit.device). 224 */ 225struct fw_unit { 226 struct device device; 227 const u32 *directory; 228 struct fw_attribute_group attribute_group; 229}; 230 231#define fw_unit(dev) container_of_const(dev, struct fw_unit, device) 232 233static inline struct fw_unit *fw_unit_get(struct fw_unit *unit) 234{ 235 get_device(&unit->device); 236 237 return unit; 238} 239 240static inline void fw_unit_put(struct fw_unit *unit) 241{ 242 put_device(&unit->device); 243} 244 245#define fw_parent_device(unit) fw_device(unit->device.parent) 246 247struct ieee1394_device_id; 248 249struct fw_driver { 250 struct device_driver driver; 251 int (*probe)(struct fw_unit *unit, const struct ieee1394_device_id *id); 252 /* Called when the parent device sits through a bus reset. */ 253 void (*update)(struct fw_unit *unit); 254 void (*remove)(struct fw_unit *unit); 255 const struct ieee1394_device_id *id_table; 256}; 257 258struct fw_packet; 259struct fw_request; 260 261typedef void (*fw_packet_callback_t)(struct fw_packet *packet, 262 struct fw_card *card, int status); 263typedef void (*fw_transaction_callback_t)(struct fw_card *card, int rcode, 264 void *data, size_t length, 265 void *callback_data); 266typedef void (*fw_transaction_callback_with_tstamp_t)(struct fw_card *card, int rcode, 267 u32 request_tstamp, u32 response_tstamp, void *data, 268 size_t length, void *callback_data); 269 270union fw_transaction_callback { 271 fw_transaction_callback_t without_tstamp; 272 fw_transaction_callback_with_tstamp_t with_tstamp; 273}; 274 275/* 276 * This callback handles an inbound request subaction. It is called in 277 * RCU read-side context, therefore must not sleep. 278 * 279 * The callback should not initiate outbound request subactions directly. 280 * Otherwise there is a danger of recursion of inbound and outbound 281 * transactions from and to the local node. 282 * 283 * The callback is responsible that fw_send_response() is called on the @request, except for FCP 284 * registers for which the core takes care of that. 285 */ 286typedef void (*fw_address_callback_t)(struct fw_card *card, 287 struct fw_request *request, 288 int tcode, int destination, int source, 289 int generation, 290 unsigned long long offset, 291 void *data, size_t length, 292 void *callback_data); 293 294struct fw_packet { 295 int speed; 296 int generation; 297 u32 header[4]; 298 size_t header_length; 299 void *payload; 300 size_t payload_length; 301 dma_addr_t payload_bus; 302 bool payload_mapped; 303 u32 timestamp; 304 305 /* 306 * This callback is called when the packet transmission has completed. 307 * For successful transmission, the status code is the ack received 308 * from the destination. Otherwise it is one of the juju-specific 309 * rcodes: RCODE_SEND_ERROR, _CANCELLED, _BUSY, _GENERATION, _NO_ACK. 310 * The callback can be called from tasklet context and thus 311 * must never block. 312 */ 313 fw_packet_callback_t callback; 314 int ack; 315 struct list_head link; 316 void *driver_data; 317}; 318 319struct fw_transaction { 320 int node_id; /* The generation is implied; it is always the current. */ 321 int tlabel; 322 struct list_head link; 323 struct fw_card *card; 324 bool is_split_transaction; 325 struct timer_list split_timeout_timer; 326 u32 split_timeout_cycle; 327 328 struct fw_packet packet; 329 330 /* 331 * The data passed to the callback is valid only during the 332 * callback. 333 */ 334 union fw_transaction_callback callback; 335 bool with_tstamp; 336 void *callback_data; 337}; 338 339struct fw_address_handler { 340 u64 offset; 341 u64 length; 342 fw_address_callback_t address_callback; 343 void *callback_data; 344 struct list_head link; 345}; 346 347struct fw_address_region { 348 u64 start; 349 u64 end; 350}; 351 352extern const struct fw_address_region fw_high_memory_region; 353 354int fw_core_add_address_handler(struct fw_address_handler *handler, 355 const struct fw_address_region *region); 356void fw_core_remove_address_handler(struct fw_address_handler *handler); 357void fw_send_response(struct fw_card *card, 358 struct fw_request *request, int rcode); 359int fw_get_request_speed(struct fw_request *request); 360u32 fw_request_get_timestamp(const struct fw_request *request); 361 362void __fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode, 363 int destination_id, int generation, int speed, unsigned long long offset, 364 void *payload, size_t length, union fw_transaction_callback callback, 365 bool with_tstamp, void *callback_data); 366 367/** 368 * fw_send_request() - submit a request packet for transmission to generate callback for response 369 * subaction without time stamp. 370 * @card: interface to send the request at 371 * @t: transaction instance to which the request belongs 372 * @tcode: transaction code 373 * @destination_id: destination node ID, consisting of bus_ID and phy_ID 374 * @generation: bus generation in which request and response are valid 375 * @speed: transmission speed 376 * @offset: 48bit wide offset into destination's address space 377 * @payload: data payload for the request subaction 378 * @length: length of the payload, in bytes 379 * @callback: function to be called when the transaction is completed 380 * @callback_data: data to be passed to the transaction completion callback 381 * 382 * A variation of __fw_send_request() to generate callback for response subaction without time 383 * stamp. 384 */ 385static inline void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode, 386 int destination_id, int generation, int speed, 387 unsigned long long offset, void *payload, size_t length, 388 fw_transaction_callback_t callback, void *callback_data) 389{ 390 union fw_transaction_callback cb = { 391 .without_tstamp = callback, 392 }; 393 __fw_send_request(card, t, tcode, destination_id, generation, speed, offset, payload, 394 length, cb, false, callback_data); 395} 396 397/** 398 * fw_send_request_with_tstamp() - submit a request packet for transmission to generate callback for 399 * response with time stamp. 400 * @card: interface to send the request at 401 * @t: transaction instance to which the request belongs 402 * @tcode: transaction code 403 * @destination_id: destination node ID, consisting of bus_ID and phy_ID 404 * @generation: bus generation in which request and response are valid 405 * @speed: transmission speed 406 * @offset: 48bit wide offset into destination's address space 407 * @payload: data payload for the request subaction 408 * @length: length of the payload, in bytes 409 * @callback: function to be called when the transaction is completed 410 * @callback_data: data to be passed to the transaction completion callback 411 * 412 * A variation of __fw_send_request() to generate callback for response subaction with time stamp. 413 */ 414static inline void fw_send_request_with_tstamp(struct fw_card *card, struct fw_transaction *t, 415 int tcode, int destination_id, int generation, int speed, unsigned long long offset, 416 void *payload, size_t length, fw_transaction_callback_with_tstamp_t callback, 417 void *callback_data) 418{ 419 union fw_transaction_callback cb = { 420 .with_tstamp = callback, 421 }; 422 __fw_send_request(card, t, tcode, destination_id, generation, speed, offset, payload, 423 length, cb, true, callback_data); 424} 425 426int fw_cancel_transaction(struct fw_card *card, 427 struct fw_transaction *transaction); 428int fw_run_transaction(struct fw_card *card, int tcode, int destination_id, 429 int generation, int speed, unsigned long long offset, 430 void *payload, size_t length); 431const char *fw_rcode_string(int rcode); 432 433static inline int fw_stream_packet_destination_id(int tag, int channel, int sy) 434{ 435 return tag << 14 | channel << 8 | sy; 436} 437 438void fw_schedule_bus_reset(struct fw_card *card, bool delayed, 439 bool short_reset); 440 441struct fw_descriptor { 442 struct list_head link; 443 size_t length; 444 u32 immediate; 445 u32 key; 446 const u32 *data; 447}; 448 449int fw_core_add_descriptor(struct fw_descriptor *desc); 450void fw_core_remove_descriptor(struct fw_descriptor *desc); 451 452/* 453 * The iso packet format allows for an immediate header/payload part 454 * stored in 'header' immediately after the packet info plus an 455 * indirect payload part that is pointer to by the 'payload' field. 456 * Applications can use one or the other or both to implement simple 457 * low-bandwidth streaming (e.g. audio) or more advanced 458 * scatter-gather streaming (e.g. assembling video frame automatically). 459 */ 460struct fw_iso_packet { 461 u16 payload_length; /* Length of indirect payload */ 462 u32 interrupt:1; /* Generate interrupt on this packet */ 463 u32 skip:1; /* tx: Set to not send packet at all */ 464 /* rx: Sync bit, wait for matching sy */ 465 u32 tag:2; /* tx: Tag in packet header */ 466 u32 sy:4; /* tx: Sy in packet header */ 467 u32 header_length:8; /* Size of immediate header */ 468 u32 header[]; /* tx: Top of 1394 isoch. data_block */ 469}; 470 471#define FW_ISO_CONTEXT_TRANSMIT 0 472#define FW_ISO_CONTEXT_RECEIVE 1 473#define FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL 2 474 475#define FW_ISO_CONTEXT_MATCH_TAG0 1 476#define FW_ISO_CONTEXT_MATCH_TAG1 2 477#define FW_ISO_CONTEXT_MATCH_TAG2 4 478#define FW_ISO_CONTEXT_MATCH_TAG3 8 479#define FW_ISO_CONTEXT_MATCH_ALL_TAGS 15 480 481/* 482 * An iso buffer is just a set of pages mapped for DMA in the 483 * specified direction. Since the pages are to be used for DMA, they 484 * are not mapped into the kernel virtual address space. We store the 485 * DMA address in the page private. The helper function 486 * fw_iso_buffer_map() will map the pages into a given vma. 487 */ 488struct fw_iso_buffer { 489 enum dma_data_direction direction; 490 struct page **pages; 491 int page_count; 492 int page_count_mapped; 493}; 494 495int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card, 496 int page_count, enum dma_data_direction direction); 497void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer, struct fw_card *card); 498size_t fw_iso_buffer_lookup(struct fw_iso_buffer *buffer, dma_addr_t completed); 499 500struct fw_iso_context; 501typedef void (*fw_iso_callback_t)(struct fw_iso_context *context, 502 u32 cycle, size_t header_length, 503 void *header, void *data); 504typedef void (*fw_iso_mc_callback_t)(struct fw_iso_context *context, 505 dma_addr_t completed, void *data); 506 507union fw_iso_callback { 508 fw_iso_callback_t sc; 509 fw_iso_mc_callback_t mc; 510}; 511 512struct fw_iso_context { 513 struct fw_card *card; 514 struct work_struct work; 515 int type; 516 int channel; 517 int speed; 518 bool drop_overflow_headers; 519 size_t header_size; 520 union fw_iso_callback callback; 521 void *callback_data; 522}; 523 524struct fw_iso_context *fw_iso_context_create(struct fw_card *card, 525 int type, int channel, int speed, size_t header_size, 526 fw_iso_callback_t callback, void *callback_data); 527int fw_iso_context_set_channels(struct fw_iso_context *ctx, u64 *channels); 528int fw_iso_context_queue(struct fw_iso_context *ctx, 529 struct fw_iso_packet *packet, 530 struct fw_iso_buffer *buffer, 531 unsigned long payload); 532void fw_iso_context_queue_flush(struct fw_iso_context *ctx); 533int fw_iso_context_flush_completions(struct fw_iso_context *ctx); 534 535/** 536 * fw_iso_context_schedule_flush_completions() - schedule work item to process isochronous context. 537 * @ctx: the isochronous context 538 * 539 * Schedule a work item on workqueue to process the isochronous context. The registered callback 540 * function is called by the worker when a queued packet buffer with the interrupt flag is 541 * completed, either after transmission in the IT context or after being filled in the IR context. 542 * The callback function is also called when the header buffer in the context becomes full, If it 543 * is required to process the context in the current context, fw_iso_context_flush_completions() is 544 * available instead. 545 * 546 * Context: Any context. 547 */ 548static inline void fw_iso_context_schedule_flush_completions(struct fw_iso_context *ctx) 549{ 550 queue_work(ctx->card->isoc_wq, &ctx->work); 551} 552 553int fw_iso_context_start(struct fw_iso_context *ctx, 554 int cycle, int sync, int tags); 555int fw_iso_context_stop(struct fw_iso_context *ctx); 556void fw_iso_context_destroy(struct fw_iso_context *ctx); 557void fw_iso_resource_manage(struct fw_card *card, int generation, 558 u64 channels_mask, int *channel, int *bandwidth, 559 bool allocate); 560 561extern struct workqueue_struct *fw_workqueue; 562 563#endif /* _LINUX_FIREWIRE_H */