at for-next 13 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_ENERGY_MODEL_H 3#define _LINUX_ENERGY_MODEL_H 4#include <linux/cpumask.h> 5#include <linux/device.h> 6#include <linux/jump_label.h> 7#include <linux/kobject.h> 8#include <linux/kref.h> 9#include <linux/rcupdate.h> 10#include <linux/sched/cpufreq.h> 11#include <linux/sched/topology.h> 12#include <linux/types.h> 13 14/** 15 * struct em_perf_state - Performance state of a performance domain 16 * @performance: CPU performance (capacity) at a given frequency 17 * @frequency: The frequency in KHz, for consistency with CPUFreq 18 * @power: The power consumed at this level (by 1 CPU or by a registered 19 * device). It can be a total power: static and dynamic. 20 * @cost: The cost coefficient associated with this level, used during 21 * energy calculation. Equal to: power * max_frequency / frequency 22 * @flags: see "em_perf_state flags" description below. 23 */ 24struct em_perf_state { 25 unsigned long performance; 26 unsigned long frequency; 27 unsigned long power; 28 unsigned long cost; 29 unsigned long flags; 30}; 31 32/* 33 * em_perf_state flags: 34 * 35 * EM_PERF_STATE_INEFFICIENT: The performance state is inefficient. There is 36 * in this em_perf_domain, another performance state with a higher frequency 37 * but a lower or equal power cost. Such inefficient states are ignored when 38 * using em_pd_get_efficient_*() functions. 39 */ 40#define EM_PERF_STATE_INEFFICIENT BIT(0) 41 42/** 43 * struct em_perf_table - Performance states table 44 * @rcu: RCU used for safe access and destruction 45 * @kref: Reference counter to track the users 46 * @state: List of performance states, in ascending order 47 */ 48struct em_perf_table { 49 struct rcu_head rcu; 50 struct kref kref; 51 struct em_perf_state state[]; 52}; 53 54/** 55 * struct em_perf_domain - Performance domain 56 * @em_table: Pointer to the runtime modifiable em_perf_table 57 * @nr_perf_states: Number of performance states 58 * @min_perf_state: Minimum allowed Performance State index 59 * @max_perf_state: Maximum allowed Performance State index 60 * @flags: See "em_perf_domain flags" 61 * @cpus: Cpumask covering the CPUs of the domain. It's here 62 * for performance reasons to avoid potential cache 63 * misses during energy calculations in the scheduler 64 * and simplifies allocating/freeing that memory region. 65 * 66 * In case of CPU device, a "performance domain" represents a group of CPUs 67 * whose performance is scaled together. All CPUs of a performance domain 68 * must have the same micro-architecture. Performance domains often have 69 * a 1-to-1 mapping with CPUFreq policies. In case of other devices the @cpus 70 * field is unused. 71 */ 72struct em_perf_domain { 73 struct em_perf_table __rcu *em_table; 74 int nr_perf_states; 75 int min_perf_state; 76 int max_perf_state; 77 unsigned long flags; 78 unsigned long cpus[]; 79}; 80 81/* 82 * em_perf_domain flags: 83 * 84 * EM_PERF_DOMAIN_MICROWATTS: The power values are in micro-Watts or some 85 * other scale. 86 * 87 * EM_PERF_DOMAIN_SKIP_INEFFICIENCIES: Skip inefficient states when estimating 88 * energy consumption. 89 * 90 * EM_PERF_DOMAIN_ARTIFICIAL: The power values are artificial and might be 91 * created by platform missing real power information 92 */ 93#define EM_PERF_DOMAIN_MICROWATTS BIT(0) 94#define EM_PERF_DOMAIN_SKIP_INEFFICIENCIES BIT(1) 95#define EM_PERF_DOMAIN_ARTIFICIAL BIT(2) 96 97#define em_span_cpus(em) (to_cpumask((em)->cpus)) 98#define em_is_artificial(em) ((em)->flags & EM_PERF_DOMAIN_ARTIFICIAL) 99 100#ifdef CONFIG_ENERGY_MODEL 101/* 102 * The max power value in micro-Watts. The limit of 64 Watts is set as 103 * a safety net to not overflow multiplications on 32bit platforms. The 104 * 32bit value limit for total Perf Domain power implies a limit of 105 * maximum CPUs in such domain to 64. 106 */ 107#define EM_MAX_POWER (64000000) /* 64 Watts */ 108 109/* 110 * To avoid possible energy estimation overflow on 32bit machines add 111 * limits to number of CPUs in the Perf. Domain. 112 * We are safe on 64bit machine, thus some big number. 113 */ 114#ifdef CONFIG_64BIT 115#define EM_MAX_NUM_CPUS 4096 116#else 117#define EM_MAX_NUM_CPUS 16 118#endif 119 120struct em_data_callback { 121 /** 122 * active_power() - Provide power at the next performance state of 123 * a device 124 * @dev : Device for which we do this operation (can be a CPU) 125 * @power : Active power at the performance state 126 * (modified) 127 * @freq : Frequency at the performance state in kHz 128 * (modified) 129 * 130 * active_power() must find the lowest performance state of 'dev' above 131 * 'freq' and update 'power' and 'freq' to the matching active power 132 * and frequency. 133 * 134 * In case of CPUs, the power is the one of a single CPU in the domain, 135 * expressed in micro-Watts or an abstract scale. It is expected to 136 * fit in the [0, EM_MAX_POWER] range. 137 * 138 * Return 0 on success. 139 */ 140 int (*active_power)(struct device *dev, unsigned long *power, 141 unsigned long *freq); 142 143 /** 144 * get_cost() - Provide the cost at the given performance state of 145 * a device 146 * @dev : Device for which we do this operation (can be a CPU) 147 * @freq : Frequency at the performance state in kHz 148 * @cost : The cost value for the performance state 149 * (modified) 150 * 151 * In case of CPUs, the cost is the one of a single CPU in the domain. 152 * It is expected to fit in the [0, EM_MAX_POWER] range due to internal 153 * usage in EAS calculation. 154 * 155 * Return 0 on success, or appropriate error value in case of failure. 156 */ 157 int (*get_cost)(struct device *dev, unsigned long freq, 158 unsigned long *cost); 159}; 160#define EM_SET_ACTIVE_POWER_CB(em_cb, cb) ((em_cb).active_power = cb) 161#define EM_ADV_DATA_CB(_active_power_cb, _cost_cb) \ 162 { .active_power = _active_power_cb, \ 163 .get_cost = _cost_cb } 164#define EM_DATA_CB(_active_power_cb) \ 165 EM_ADV_DATA_CB(_active_power_cb, NULL) 166 167struct em_perf_domain *em_cpu_get(int cpu); 168struct em_perf_domain *em_pd_get(struct device *dev); 169int em_dev_update_perf_domain(struct device *dev, 170 struct em_perf_table __rcu *new_table); 171int em_dev_register_perf_domain(struct device *dev, unsigned int nr_states, 172 struct em_data_callback *cb, cpumask_t *span, 173 bool microwatts); 174void em_dev_unregister_perf_domain(struct device *dev); 175struct em_perf_table __rcu *em_table_alloc(struct em_perf_domain *pd); 176void em_table_free(struct em_perf_table __rcu *table); 177int em_dev_compute_costs(struct device *dev, struct em_perf_state *table, 178 int nr_states); 179int em_dev_update_chip_binning(struct device *dev); 180int em_update_performance_limits(struct em_perf_domain *pd, 181 unsigned long freq_min_khz, unsigned long freq_max_khz); 182 183/** 184 * em_pd_get_efficient_state() - Get an efficient performance state from the EM 185 * @table: List of performance states, in ascending order 186 * @pd: performance domain for which this must be done 187 * @max_util: Max utilization to map with the EM 188 * 189 * It is called from the scheduler code quite frequently and as a consequence 190 * doesn't implement any check. 191 * 192 * Return: An efficient performance state id, high enough to meet @max_util 193 * requirement. 194 */ 195static inline int 196em_pd_get_efficient_state(struct em_perf_state *table, 197 struct em_perf_domain *pd, unsigned long max_util) 198{ 199 unsigned long pd_flags = pd->flags; 200 int min_ps = pd->min_perf_state; 201 int max_ps = pd->max_perf_state; 202 struct em_perf_state *ps; 203 int i; 204 205 for (i = min_ps; i <= max_ps; i++) { 206 ps = &table[i]; 207 if (ps->performance >= max_util) { 208 if (pd_flags & EM_PERF_DOMAIN_SKIP_INEFFICIENCIES && 209 ps->flags & EM_PERF_STATE_INEFFICIENT) 210 continue; 211 return i; 212 } 213 } 214 215 return max_ps; 216} 217 218/** 219 * em_cpu_energy() - Estimates the energy consumed by the CPUs of a 220 * performance domain 221 * @pd : performance domain for which energy has to be estimated 222 * @max_util : highest utilization among CPUs of the domain 223 * @sum_util : sum of the utilization of all CPUs in the domain 224 * @allowed_cpu_cap : maximum allowed CPU capacity for the @pd, which 225 * might reflect reduced frequency (due to thermal) 226 * 227 * This function must be used only for CPU devices. There is no validation, 228 * i.e. if the EM is a CPU type and has cpumask allocated. It is called from 229 * the scheduler code quite frequently and that is why there is not checks. 230 * 231 * Return: the sum of the energy consumed by the CPUs of the domain assuming 232 * a capacity state satisfying the max utilization of the domain. 233 */ 234static inline unsigned long em_cpu_energy(struct em_perf_domain *pd, 235 unsigned long max_util, unsigned long sum_util, 236 unsigned long allowed_cpu_cap) 237{ 238 struct em_perf_table *em_table; 239 struct em_perf_state *ps; 240 int i; 241 242#ifdef CONFIG_SCHED_DEBUG 243 WARN_ONCE(!rcu_read_lock_held(), "EM: rcu read lock needed\n"); 244#endif 245 246 if (!sum_util) 247 return 0; 248 249 /* 250 * In order to predict the performance state, map the utilization of 251 * the most utilized CPU of the performance domain to a requested 252 * performance, like schedutil. Take also into account that the real 253 * performance might be set lower (due to thermal capping). Thus, clamp 254 * max utilization to the allowed CPU capacity before calculating 255 * effective performance. 256 */ 257 max_util = min(max_util, allowed_cpu_cap); 258 259 /* 260 * Find the lowest performance state of the Energy Model above the 261 * requested performance. 262 */ 263 em_table = rcu_dereference(pd->em_table); 264 i = em_pd_get_efficient_state(em_table->state, pd, max_util); 265 ps = &em_table->state[i]; 266 267 /* 268 * The performance (capacity) of a CPU in the domain at the performance 269 * state (ps) can be computed as: 270 * 271 * ps->freq * scale_cpu 272 * ps->performance = -------------------- (1) 273 * cpu_max_freq 274 * 275 * So, ignoring the costs of idle states (which are not available in 276 * the EM), the energy consumed by this CPU at that performance state 277 * is estimated as: 278 * 279 * ps->power * cpu_util 280 * cpu_nrg = -------------------- (2) 281 * ps->performance 282 * 283 * since 'cpu_util / ps->performance' represents its percentage of busy 284 * time. 285 * 286 * NOTE: Although the result of this computation actually is in 287 * units of power, it can be manipulated as an energy value 288 * over a scheduling period, since it is assumed to be 289 * constant during that interval. 290 * 291 * By injecting (1) in (2), 'cpu_nrg' can be re-expressed as a product 292 * of two terms: 293 * 294 * ps->power * cpu_max_freq 295 * cpu_nrg = ------------------------ * cpu_util (3) 296 * ps->freq * scale_cpu 297 * 298 * The first term is static, and is stored in the em_perf_state struct 299 * as 'ps->cost'. 300 * 301 * Since all CPUs of the domain have the same micro-architecture, they 302 * share the same 'ps->cost', and the same CPU capacity. Hence, the 303 * total energy of the domain (which is the simple sum of the energy of 304 * all of its CPUs) can be factorized as: 305 * 306 * pd_nrg = ps->cost * \Sum cpu_util (4) 307 */ 308 return ps->cost * sum_util; 309} 310 311/** 312 * em_pd_nr_perf_states() - Get the number of performance states of a perf. 313 * domain 314 * @pd : performance domain for which this must be done 315 * 316 * Return: the number of performance states in the performance domain table 317 */ 318static inline int em_pd_nr_perf_states(struct em_perf_domain *pd) 319{ 320 return pd->nr_perf_states; 321} 322 323/** 324 * em_perf_state_from_pd() - Get the performance states table of perf. 325 * domain 326 * @pd : performance domain for which this must be done 327 * 328 * To use this function the rcu_read_lock() should be hold. After the usage 329 * of the performance states table is finished, the rcu_read_unlock() should 330 * be called. 331 * 332 * Return: the pointer to performance states table of the performance domain 333 */ 334static inline 335struct em_perf_state *em_perf_state_from_pd(struct em_perf_domain *pd) 336{ 337 return rcu_dereference(pd->em_table)->state; 338} 339 340#else 341struct em_data_callback {}; 342#define EM_ADV_DATA_CB(_active_power_cb, _cost_cb) { } 343#define EM_DATA_CB(_active_power_cb) { } 344#define EM_SET_ACTIVE_POWER_CB(em_cb, cb) do { } while (0) 345 346static inline 347int em_dev_register_perf_domain(struct device *dev, unsigned int nr_states, 348 struct em_data_callback *cb, cpumask_t *span, 349 bool microwatts) 350{ 351 return -EINVAL; 352} 353static inline void em_dev_unregister_perf_domain(struct device *dev) 354{ 355} 356static inline struct em_perf_domain *em_cpu_get(int cpu) 357{ 358 return NULL; 359} 360static inline struct em_perf_domain *em_pd_get(struct device *dev) 361{ 362 return NULL; 363} 364static inline unsigned long em_cpu_energy(struct em_perf_domain *pd, 365 unsigned long max_util, unsigned long sum_util, 366 unsigned long allowed_cpu_cap) 367{ 368 return 0; 369} 370static inline int em_pd_nr_perf_states(struct em_perf_domain *pd) 371{ 372 return 0; 373} 374static inline 375struct em_perf_table __rcu *em_table_alloc(struct em_perf_domain *pd) 376{ 377 return NULL; 378} 379static inline void em_table_free(struct em_perf_table __rcu *table) {} 380static inline 381int em_dev_update_perf_domain(struct device *dev, 382 struct em_perf_table __rcu *new_table) 383{ 384 return -EINVAL; 385} 386static inline 387struct em_perf_state *em_perf_state_from_pd(struct em_perf_domain *pd) 388{ 389 return NULL; 390} 391static inline 392int em_dev_compute_costs(struct device *dev, struct em_perf_state *table, 393 int nr_states) 394{ 395 return -EINVAL; 396} 397static inline int em_dev_update_chip_binning(struct device *dev) 398{ 399 return -EINVAL; 400} 401static inline 402int em_update_performance_limits(struct em_perf_domain *pd, 403 unsigned long freq_min_khz, unsigned long freq_max_khz) 404{ 405 return -EINVAL; 406} 407#endif 408 409#endif