at for-next 56 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* 3 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. 4 */ 5#ifndef LINUX_DMAENGINE_H 6#define LINUX_DMAENGINE_H 7 8#include <linux/device.h> 9#include <linux/err.h> 10#include <linux/uio.h> 11#include <linux/bug.h> 12#include <linux/scatterlist.h> 13#include <linux/bitmap.h> 14#include <linux/types.h> 15#include <asm/page.h> 16 17/** 18 * typedef dma_cookie_t - an opaque DMA cookie 19 * 20 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code 21 */ 22typedef s32 dma_cookie_t; 23#define DMA_MIN_COOKIE 1 24 25static inline int dma_submit_error(dma_cookie_t cookie) 26{ 27 return cookie < 0 ? cookie : 0; 28} 29 30/** 31 * enum dma_status - DMA transaction status 32 * @DMA_COMPLETE: transaction completed 33 * @DMA_IN_PROGRESS: transaction not yet processed 34 * @DMA_PAUSED: transaction is paused 35 * @DMA_ERROR: transaction failed 36 */ 37enum dma_status { 38 DMA_COMPLETE, 39 DMA_IN_PROGRESS, 40 DMA_PAUSED, 41 DMA_ERROR, 42 DMA_OUT_OF_ORDER, 43}; 44 45/** 46 * enum dma_transaction_type - DMA transaction types/indexes 47 * 48 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is 49 * automatically set as dma devices are registered. 50 */ 51enum dma_transaction_type { 52 DMA_MEMCPY, 53 DMA_XOR, 54 DMA_PQ, 55 DMA_XOR_VAL, 56 DMA_PQ_VAL, 57 DMA_MEMSET, 58 DMA_MEMSET_SG, 59 DMA_INTERRUPT, 60 DMA_PRIVATE, 61 DMA_ASYNC_TX, 62 DMA_SLAVE, 63 DMA_CYCLIC, 64 DMA_INTERLEAVE, 65 DMA_COMPLETION_NO_ORDER, 66 DMA_REPEAT, 67 DMA_LOAD_EOT, 68/* last transaction type for creation of the capabilities mask */ 69 DMA_TX_TYPE_END, 70}; 71 72/** 73 * enum dma_transfer_direction - dma transfer mode and direction indicator 74 * @DMA_MEM_TO_MEM: Async/Memcpy mode 75 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device 76 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory 77 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device 78 */ 79enum dma_transfer_direction { 80 DMA_MEM_TO_MEM, 81 DMA_MEM_TO_DEV, 82 DMA_DEV_TO_MEM, 83 DMA_DEV_TO_DEV, 84 DMA_TRANS_NONE, 85}; 86 87/* 88 * Interleaved Transfer Request 89 * ---------------------------- 90 * A chunk is collection of contiguous bytes to be transferred. 91 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG). 92 * ICGs may or may not change between chunks. 93 * A FRAME is the smallest series of contiguous {chunk,icg} pairs, 94 * that when repeated an integral number of times, specifies the transfer. 95 * A transfer template is specification of a Frame, the number of times 96 * it is to be repeated and other per-transfer attributes. 97 * 98 * Practically, a client driver would have ready a template for each 99 * type of transfer it is going to need during its lifetime and 100 * set only 'src_start' and 'dst_start' before submitting the requests. 101 * 102 * 103 * | Frame-1 | Frame-2 | ~ | Frame-'numf' | 104 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...| 105 * 106 * == Chunk size 107 * ... ICG 108 */ 109 110/** 111 * struct data_chunk - Element of scatter-gather list that makes a frame. 112 * @size: Number of bytes to read from source. 113 * size_dst := fn(op, size_src), so doesn't mean much for destination. 114 * @icg: Number of bytes to jump after last src/dst address of this 115 * chunk and before first src/dst address for next chunk. 116 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false. 117 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false. 118 * @dst_icg: Number of bytes to jump after last dst address of this 119 * chunk and before the first dst address for next chunk. 120 * Ignored if dst_inc is true and dst_sgl is false. 121 * @src_icg: Number of bytes to jump after last src address of this 122 * chunk and before the first src address for next chunk. 123 * Ignored if src_inc is true and src_sgl is false. 124 */ 125struct data_chunk { 126 size_t size; 127 size_t icg; 128 size_t dst_icg; 129 size_t src_icg; 130}; 131 132/** 133 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern 134 * and attributes. 135 * @src_start: Bus address of source for the first chunk. 136 * @dst_start: Bus address of destination for the first chunk. 137 * @dir: Specifies the type of Source and Destination. 138 * @src_inc: If the source address increments after reading from it. 139 * @dst_inc: If the destination address increments after writing to it. 140 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read). 141 * Otherwise, source is read contiguously (icg ignored). 142 * Ignored if src_inc is false. 143 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write). 144 * Otherwise, destination is filled contiguously (icg ignored). 145 * Ignored if dst_inc is false. 146 * @numf: Number of frames in this template. 147 * @frame_size: Number of chunks in a frame i.e, size of sgl[]. 148 * @sgl: Array of {chunk,icg} pairs that make up a frame. 149 */ 150struct dma_interleaved_template { 151 dma_addr_t src_start; 152 dma_addr_t dst_start; 153 enum dma_transfer_direction dir; 154 bool src_inc; 155 bool dst_inc; 156 bool src_sgl; 157 bool dst_sgl; 158 size_t numf; 159 size_t frame_size; 160 struct data_chunk sgl[]; 161}; 162 163/** 164 * struct dma_vec - DMA vector 165 * @addr: Bus address of the start of the vector 166 * @len: Length in bytes of the DMA vector 167 */ 168struct dma_vec { 169 dma_addr_t addr; 170 size_t len; 171}; 172 173/** 174 * enum dma_ctrl_flags - DMA flags to augment operation preparation, 175 * control completion, and communicate status. 176 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of 177 * this transaction 178 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client 179 * acknowledges receipt, i.e. has a chance to establish any dependency 180 * chains 181 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q 182 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P 183 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as 184 * sources that were the result of a previous operation, in the case of a PQ 185 * operation it continues the calculation with new sources 186 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend 187 * on the result of this operation 188 * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till 189 * cleared or freed 190 * @DMA_PREP_CMD: tell the driver that the data passed to DMA API is command 191 * data and the descriptor should be in different format from normal 192 * data descriptors. 193 * @DMA_PREP_REPEAT: tell the driver that the transaction shall be automatically 194 * repeated when it ends until a transaction is issued on the same channel 195 * with the DMA_PREP_LOAD_EOT flag set. This flag is only applicable to 196 * interleaved transactions and is ignored for all other transaction types. 197 * @DMA_PREP_LOAD_EOT: tell the driver that the transaction shall replace any 198 * active repeated (as indicated by DMA_PREP_REPEAT) transaction when the 199 * repeated transaction ends. Not setting this flag when the previously queued 200 * transaction is marked with DMA_PREP_REPEAT will cause the new transaction 201 * to never be processed and stay in the issued queue forever. The flag is 202 * ignored if the previous transaction is not a repeated transaction. 203 */ 204enum dma_ctrl_flags { 205 DMA_PREP_INTERRUPT = (1 << 0), 206 DMA_CTRL_ACK = (1 << 1), 207 DMA_PREP_PQ_DISABLE_P = (1 << 2), 208 DMA_PREP_PQ_DISABLE_Q = (1 << 3), 209 DMA_PREP_CONTINUE = (1 << 4), 210 DMA_PREP_FENCE = (1 << 5), 211 DMA_CTRL_REUSE = (1 << 6), 212 DMA_PREP_CMD = (1 << 7), 213 DMA_PREP_REPEAT = (1 << 8), 214 DMA_PREP_LOAD_EOT = (1 << 9), 215}; 216 217/** 218 * enum sum_check_bits - bit position of pq_check_flags 219 */ 220enum sum_check_bits { 221 SUM_CHECK_P = 0, 222 SUM_CHECK_Q = 1, 223}; 224 225/** 226 * enum sum_check_flags - result of async_{xor,pq}_zero_sum operations 227 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise 228 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise 229 */ 230enum sum_check_flags { 231 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P), 232 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q), 233}; 234 235 236/** 237 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t. 238 * See linux/cpumask.h 239 */ 240typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t; 241 242/** 243 * enum dma_desc_metadata_mode - per descriptor metadata mode types supported 244 * @DESC_METADATA_CLIENT - the metadata buffer is allocated/provided by the 245 * client driver and it is attached (via the dmaengine_desc_attach_metadata() 246 * helper) to the descriptor. 247 * 248 * Client drivers interested to use this mode can follow: 249 * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM: 250 * 1. prepare the descriptor (dmaengine_prep_*) 251 * construct the metadata in the client's buffer 252 * 2. use dmaengine_desc_attach_metadata() to attach the buffer to the 253 * descriptor 254 * 3. submit the transfer 255 * - DMA_DEV_TO_MEM: 256 * 1. prepare the descriptor (dmaengine_prep_*) 257 * 2. use dmaengine_desc_attach_metadata() to attach the buffer to the 258 * descriptor 259 * 3. submit the transfer 260 * 4. when the transfer is completed, the metadata should be available in the 261 * attached buffer 262 * 263 * @DESC_METADATA_ENGINE - the metadata buffer is allocated/managed by the DMA 264 * driver. The client driver can ask for the pointer, maximum size and the 265 * currently used size of the metadata and can directly update or read it. 266 * dmaengine_desc_get_metadata_ptr() and dmaengine_desc_set_metadata_len() is 267 * provided as helper functions. 268 * 269 * Note: the metadata area for the descriptor is no longer valid after the 270 * transfer has been completed (valid up to the point when the completion 271 * callback returns if used). 272 * 273 * Client drivers interested to use this mode can follow: 274 * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM: 275 * 1. prepare the descriptor (dmaengine_prep_*) 276 * 2. use dmaengine_desc_get_metadata_ptr() to get the pointer to the engine's 277 * metadata area 278 * 3. update the metadata at the pointer 279 * 4. use dmaengine_desc_set_metadata_len() to tell the DMA engine the amount 280 * of data the client has placed into the metadata buffer 281 * 5. submit the transfer 282 * - DMA_DEV_TO_MEM: 283 * 1. prepare the descriptor (dmaengine_prep_*) 284 * 2. submit the transfer 285 * 3. on transfer completion, use dmaengine_desc_get_metadata_ptr() to get the 286 * pointer to the engine's metadata area 287 * 4. Read out the metadata from the pointer 288 * 289 * Warning: the two modes are not compatible and clients must use one mode for a 290 * descriptor. 291 */ 292enum dma_desc_metadata_mode { 293 DESC_METADATA_NONE = 0, 294 DESC_METADATA_CLIENT = BIT(0), 295 DESC_METADATA_ENGINE = BIT(1), 296}; 297 298/** 299 * struct dma_chan_percpu - the per-CPU part of struct dma_chan 300 * @memcpy_count: transaction counter 301 * @bytes_transferred: byte counter 302 */ 303struct dma_chan_percpu { 304 /* stats */ 305 unsigned long memcpy_count; 306 unsigned long bytes_transferred; 307}; 308 309/** 310 * struct dma_router - DMA router structure 311 * @dev: pointer to the DMA router device 312 * @route_free: function to be called when the route can be disconnected 313 */ 314struct dma_router { 315 struct device *dev; 316 void (*route_free)(struct device *dev, void *route_data); 317}; 318 319/** 320 * struct dma_chan - devices supply DMA channels, clients use them 321 * @device: ptr to the dma device who supplies this channel, always !%NULL 322 * @slave: ptr to the device using this channel 323 * @cookie: last cookie value returned to client 324 * @completed_cookie: last completed cookie for this channel 325 * @chan_id: channel ID for sysfs 326 * @dev: class device for sysfs 327 * @name: backlink name for sysfs 328 * @dbg_client_name: slave name for debugfs in format: 329 * dev_name(requester's dev):channel name, for example: "2b00000.mcasp:tx" 330 * @device_node: used to add this to the device chan list 331 * @local: per-cpu pointer to a struct dma_chan_percpu 332 * @client_count: how many clients are using this channel 333 * @table_count: number of appearances in the mem-to-mem allocation table 334 * @router: pointer to the DMA router structure 335 * @route_data: channel specific data for the router 336 * @private: private data for certain client-channel associations 337 */ 338struct dma_chan { 339 struct dma_device *device; 340 struct device *slave; 341 dma_cookie_t cookie; 342 dma_cookie_t completed_cookie; 343 344 /* sysfs */ 345 int chan_id; 346 struct dma_chan_dev *dev; 347 const char *name; 348#ifdef CONFIG_DEBUG_FS 349 char *dbg_client_name; 350#endif 351 352 struct list_head device_node; 353 struct dma_chan_percpu __percpu *local; 354 int client_count; 355 int table_count; 356 357 /* DMA router */ 358 struct dma_router *router; 359 void *route_data; 360 361 void *private; 362}; 363 364/** 365 * struct dma_chan_dev - relate sysfs device node to backing channel device 366 * @chan: driver channel device 367 * @device: sysfs device 368 * @dev_id: parent dma_device dev_id 369 * @chan_dma_dev: The channel is using custom/different dma-mapping 370 * compared to the parent dma_device 371 */ 372struct dma_chan_dev { 373 struct dma_chan *chan; 374 struct device device; 375 int dev_id; 376 bool chan_dma_dev; 377}; 378 379/** 380 * enum dma_slave_buswidth - defines bus width of the DMA slave 381 * device, source or target buses 382 */ 383enum dma_slave_buswidth { 384 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0, 385 DMA_SLAVE_BUSWIDTH_1_BYTE = 1, 386 DMA_SLAVE_BUSWIDTH_2_BYTES = 2, 387 DMA_SLAVE_BUSWIDTH_3_BYTES = 3, 388 DMA_SLAVE_BUSWIDTH_4_BYTES = 4, 389 DMA_SLAVE_BUSWIDTH_8_BYTES = 8, 390 DMA_SLAVE_BUSWIDTH_16_BYTES = 16, 391 DMA_SLAVE_BUSWIDTH_32_BYTES = 32, 392 DMA_SLAVE_BUSWIDTH_64_BYTES = 64, 393 DMA_SLAVE_BUSWIDTH_128_BYTES = 128, 394}; 395 396/** 397 * struct dma_slave_config - dma slave channel runtime config 398 * @direction: whether the data shall go in or out on this slave 399 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are 400 * legal values. DEPRECATED, drivers should use the direction argument 401 * to the device_prep_slave_sg and device_prep_dma_cyclic functions or 402 * the dir field in the dma_interleaved_template structure. 403 * @src_addr: this is the physical address where DMA slave data 404 * should be read (RX), if the source is memory this argument is 405 * ignored. 406 * @dst_addr: this is the physical address where DMA slave data 407 * should be written (TX), if the destination is memory this argument 408 * is ignored. 409 * @src_addr_width: this is the width in bytes of the source (RX) 410 * register where DMA data shall be read. If the source 411 * is memory this may be ignored depending on architecture. 412 * Legal values: 1, 2, 3, 4, 8, 16, 32, 64, 128. 413 * @dst_addr_width: same as src_addr_width but for destination 414 * target (TX) mutatis mutandis. 415 * @src_maxburst: the maximum number of words (note: words, as in 416 * units of the src_addr_width member, not bytes) that can be sent 417 * in one burst to the device. Typically something like half the 418 * FIFO depth on I/O peripherals so you don't overflow it. This 419 * may or may not be applicable on memory sources. 420 * @dst_maxburst: same as src_maxburst but for destination target 421 * mutatis mutandis. 422 * @src_port_window_size: The length of the register area in words the data need 423 * to be accessed on the device side. It is only used for devices which is using 424 * an area instead of a single register to receive the data. Typically the DMA 425 * loops in this area in order to transfer the data. 426 * @dst_port_window_size: same as src_port_window_size but for the destination 427 * port. 428 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill 429 * with 'true' if peripheral should be flow controller. Direction will be 430 * selected at Runtime. 431 * @peripheral_config: peripheral configuration for programming peripheral 432 * for dmaengine transfer 433 * @peripheral_size: peripheral configuration buffer size 434 * 435 * This struct is passed in as configuration data to a DMA engine 436 * in order to set up a certain channel for DMA transport at runtime. 437 * The DMA device/engine has to provide support for an additional 438 * callback in the dma_device structure, device_config and this struct 439 * will then be passed in as an argument to the function. 440 * 441 * The rationale for adding configuration information to this struct is as 442 * follows: if it is likely that more than one DMA slave controllers in 443 * the world will support the configuration option, then make it generic. 444 * If not: if it is fixed so that it be sent in static from the platform 445 * data, then prefer to do that. 446 */ 447struct dma_slave_config { 448 enum dma_transfer_direction direction; 449 phys_addr_t src_addr; 450 phys_addr_t dst_addr; 451 enum dma_slave_buswidth src_addr_width; 452 enum dma_slave_buswidth dst_addr_width; 453 u32 src_maxburst; 454 u32 dst_maxburst; 455 u32 src_port_window_size; 456 u32 dst_port_window_size; 457 bool device_fc; 458 void *peripheral_config; 459 size_t peripheral_size; 460}; 461 462/** 463 * enum dma_residue_granularity - Granularity of the reported transfer residue 464 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The 465 * DMA channel is only able to tell whether a descriptor has been completed or 466 * not, which means residue reporting is not supported by this channel. The 467 * residue field of the dma_tx_state field will always be 0. 468 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully 469 * completed segment of the transfer (For cyclic transfers this is after each 470 * period). This is typically implemented by having the hardware generate an 471 * interrupt after each transferred segment and then the drivers updates the 472 * outstanding residue by the size of the segment. Another possibility is if 473 * the hardware supports scatter-gather and the segment descriptor has a field 474 * which gets set after the segment has been completed. The driver then counts 475 * the number of segments without the flag set to compute the residue. 476 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred 477 * burst. This is typically only supported if the hardware has a progress 478 * register of some sort (E.g. a register with the current read/write address 479 * or a register with the amount of bursts/beats/bytes that have been 480 * transferred or still need to be transferred). 481 */ 482enum dma_residue_granularity { 483 DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0, 484 DMA_RESIDUE_GRANULARITY_SEGMENT = 1, 485 DMA_RESIDUE_GRANULARITY_BURST = 2, 486}; 487 488/** 489 * struct dma_slave_caps - expose capabilities of a slave channel only 490 * @src_addr_widths: bit mask of src addr widths the channel supports. 491 * Width is specified in bytes, e.g. for a channel supporting 492 * a width of 4 the mask should have BIT(4) set. 493 * @dst_addr_widths: bit mask of dst addr widths the channel supports 494 * @directions: bit mask of slave directions the channel supports. 495 * Since the enum dma_transfer_direction is not defined as bit flag for 496 * each type, the dma controller should set BIT(<TYPE>) and same 497 * should be checked by controller as well 498 * @min_burst: min burst capability per-transfer 499 * @max_burst: max burst capability per-transfer 500 * @max_sg_burst: max number of SG list entries executed in a single burst 501 * DMA tansaction with no software intervention for reinitialization. 502 * Zero value means unlimited number of entries. 503 * @cmd_pause: true, if pause is supported (i.e. for reading residue or 504 * for resume later) 505 * @cmd_resume: true, if resume is supported 506 * @cmd_terminate: true, if terminate cmd is supported 507 * @residue_granularity: granularity of the reported transfer residue 508 * @descriptor_reuse: if a descriptor can be reused by client and 509 * resubmitted multiple times 510 */ 511struct dma_slave_caps { 512 u32 src_addr_widths; 513 u32 dst_addr_widths; 514 u32 directions; 515 u32 min_burst; 516 u32 max_burst; 517 u32 max_sg_burst; 518 bool cmd_pause; 519 bool cmd_resume; 520 bool cmd_terminate; 521 enum dma_residue_granularity residue_granularity; 522 bool descriptor_reuse; 523}; 524 525static inline const char *dma_chan_name(struct dma_chan *chan) 526{ 527 return dev_name(&chan->dev->device); 528} 529 530/** 531 * typedef dma_filter_fn - callback filter for dma_request_channel 532 * @chan: channel to be reviewed 533 * @filter_param: opaque parameter passed through dma_request_channel 534 * 535 * When this optional parameter is specified in a call to dma_request_channel a 536 * suitable channel is passed to this routine for further dispositioning before 537 * being returned. Where 'suitable' indicates a non-busy channel that 538 * satisfies the given capability mask. It returns 'true' to indicate that the 539 * channel is suitable. 540 */ 541typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param); 542 543typedef void (*dma_async_tx_callback)(void *dma_async_param); 544 545enum dmaengine_tx_result { 546 DMA_TRANS_NOERROR = 0, /* SUCCESS */ 547 DMA_TRANS_READ_FAILED, /* Source DMA read failed */ 548 DMA_TRANS_WRITE_FAILED, /* Destination DMA write failed */ 549 DMA_TRANS_ABORTED, /* Op never submitted / aborted */ 550}; 551 552struct dmaengine_result { 553 enum dmaengine_tx_result result; 554 u32 residue; 555}; 556 557typedef void (*dma_async_tx_callback_result)(void *dma_async_param, 558 const struct dmaengine_result *result); 559 560struct dmaengine_unmap_data { 561#if IS_ENABLED(CONFIG_DMA_ENGINE_RAID) 562 u16 map_cnt; 563#else 564 u8 map_cnt; 565#endif 566 u8 to_cnt; 567 u8 from_cnt; 568 u8 bidi_cnt; 569 struct device *dev; 570 struct kref kref; 571 size_t len; 572 dma_addr_t addr[]; 573}; 574 575struct dma_async_tx_descriptor; 576 577struct dma_descriptor_metadata_ops { 578 int (*attach)(struct dma_async_tx_descriptor *desc, void *data, 579 size_t len); 580 581 void *(*get_ptr)(struct dma_async_tx_descriptor *desc, 582 size_t *payload_len, size_t *max_len); 583 int (*set_len)(struct dma_async_tx_descriptor *desc, 584 size_t payload_len); 585}; 586 587/** 588 * struct dma_async_tx_descriptor - async transaction descriptor 589 * ---dma generic offload fields--- 590 * @cookie: tracking cookie for this transaction, set to -EBUSY if 591 * this tx is sitting on a dependency list 592 * @flags: flags to augment operation preparation, control completion, and 593 * communicate status 594 * @phys: physical address of the descriptor 595 * @chan: target channel for this operation 596 * @tx_submit: accept the descriptor, assign ordered cookie and mark the 597 * @desc_free: driver's callback function to free a resusable descriptor 598 * after completion 599 * descriptor pending. To be pushed on .issue_pending() call 600 * @callback: routine to call after this operation is complete 601 * @callback_result: error result from a DMA transaction 602 * @callback_param: general parameter to pass to the callback routine 603 * @unmap: hook for generic DMA unmap data 604 * @desc_metadata_mode: core managed metadata mode to protect mixed use of 605 * DESC_METADATA_CLIENT or DESC_METADATA_ENGINE. Otherwise 606 * DESC_METADATA_NONE 607 * @metadata_ops: DMA driver provided metadata mode ops, need to be set by the 608 * DMA driver if metadata mode is supported with the descriptor 609 * ---async_tx api specific fields--- 610 * @next: at completion submit this descriptor 611 * @parent: pointer to the next level up in the dependency chain 612 * @lock: protect the parent and next pointers 613 */ 614struct dma_async_tx_descriptor { 615 dma_cookie_t cookie; 616 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */ 617 dma_addr_t phys; 618 struct dma_chan *chan; 619 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx); 620 int (*desc_free)(struct dma_async_tx_descriptor *tx); 621 dma_async_tx_callback callback; 622 dma_async_tx_callback_result callback_result; 623 void *callback_param; 624 struct dmaengine_unmap_data *unmap; 625 enum dma_desc_metadata_mode desc_metadata_mode; 626 struct dma_descriptor_metadata_ops *metadata_ops; 627#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 628 struct dma_async_tx_descriptor *next; 629 struct dma_async_tx_descriptor *parent; 630 spinlock_t lock; 631#endif 632}; 633 634#ifdef CONFIG_DMA_ENGINE 635static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx, 636 struct dmaengine_unmap_data *unmap) 637{ 638 kref_get(&unmap->kref); 639 tx->unmap = unmap; 640} 641 642struct dmaengine_unmap_data * 643dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags); 644void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap); 645#else 646static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx, 647 struct dmaengine_unmap_data *unmap) 648{ 649} 650static inline struct dmaengine_unmap_data * 651dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags) 652{ 653 return NULL; 654} 655static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap) 656{ 657} 658#endif 659 660static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx) 661{ 662 if (!tx->unmap) 663 return; 664 665 dmaengine_unmap_put(tx->unmap); 666 tx->unmap = NULL; 667} 668 669#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 670static inline void txd_lock(struct dma_async_tx_descriptor *txd) 671{ 672} 673static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 674{ 675} 676static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 677{ 678 BUG(); 679} 680static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 681{ 682} 683static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 684{ 685} 686static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 687{ 688 return NULL; 689} 690static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 691{ 692 return NULL; 693} 694 695#else 696static inline void txd_lock(struct dma_async_tx_descriptor *txd) 697{ 698 spin_lock_bh(&txd->lock); 699} 700static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 701{ 702 spin_unlock_bh(&txd->lock); 703} 704static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 705{ 706 txd->next = next; 707 next->parent = txd; 708} 709static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 710{ 711 txd->parent = NULL; 712} 713static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 714{ 715 txd->next = NULL; 716} 717static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 718{ 719 return txd->parent; 720} 721static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 722{ 723 return txd->next; 724} 725#endif 726 727/** 728 * struct dma_tx_state - filled in to report the status of 729 * a transfer. 730 * @last: last completed DMA cookie 731 * @used: last issued DMA cookie (i.e. the one in progress) 732 * @residue: the remaining number of bytes left to transmit 733 * on the selected transfer for states DMA_IN_PROGRESS and 734 * DMA_PAUSED if this is implemented in the driver, else 0 735 * @in_flight_bytes: amount of data in bytes cached by the DMA. 736 */ 737struct dma_tx_state { 738 dma_cookie_t last; 739 dma_cookie_t used; 740 u32 residue; 741 u32 in_flight_bytes; 742}; 743 744/** 745 * enum dmaengine_alignment - defines alignment of the DMA async tx 746 * buffers 747 */ 748enum dmaengine_alignment { 749 DMAENGINE_ALIGN_1_BYTE = 0, 750 DMAENGINE_ALIGN_2_BYTES = 1, 751 DMAENGINE_ALIGN_4_BYTES = 2, 752 DMAENGINE_ALIGN_8_BYTES = 3, 753 DMAENGINE_ALIGN_16_BYTES = 4, 754 DMAENGINE_ALIGN_32_BYTES = 5, 755 DMAENGINE_ALIGN_64_BYTES = 6, 756 DMAENGINE_ALIGN_128_BYTES = 7, 757 DMAENGINE_ALIGN_256_BYTES = 8, 758}; 759 760/** 761 * struct dma_slave_map - associates slave device and it's slave channel with 762 * parameter to be used by a filter function 763 * @devname: name of the device 764 * @slave: slave channel name 765 * @param: opaque parameter to pass to struct dma_filter.fn 766 */ 767struct dma_slave_map { 768 const char *devname; 769 const char *slave; 770 void *param; 771}; 772 773/** 774 * struct dma_filter - information for slave device/channel to filter_fn/param 775 * mapping 776 * @fn: filter function callback 777 * @mapcnt: number of slave device/channel in the map 778 * @map: array of channel to filter mapping data 779 */ 780struct dma_filter { 781 dma_filter_fn fn; 782 int mapcnt; 783 const struct dma_slave_map *map; 784}; 785 786/** 787 * struct dma_device - info on the entity supplying DMA services 788 * @ref: reference is taken and put every time a channel is allocated or freed 789 * @chancnt: how many DMA channels are supported 790 * @privatecnt: how many DMA channels are requested by dma_request_channel 791 * @channels: the list of struct dma_chan 792 * @global_node: list_head for global dma_device_list 793 * @filter: information for device/slave to filter function/param mapping 794 * @cap_mask: one or more dma_capability flags 795 * @desc_metadata_modes: supported metadata modes by the DMA device 796 * @max_xor: maximum number of xor sources, 0 if no capability 797 * @max_pq: maximum number of PQ sources and PQ-continue capability 798 * @copy_align: alignment shift for memcpy operations 799 * @xor_align: alignment shift for xor operations 800 * @pq_align: alignment shift for pq operations 801 * @fill_align: alignment shift for memset operations 802 * @dev_id: unique device ID 803 * @dev: struct device reference for dma mapping api 804 * @owner: owner module (automatically set based on the provided dev) 805 * @chan_ida: unique channel ID 806 * @src_addr_widths: bit mask of src addr widths the device supports 807 * Width is specified in bytes, e.g. for a device supporting 808 * a width of 4 the mask should have BIT(4) set. 809 * @dst_addr_widths: bit mask of dst addr widths the device supports 810 * @directions: bit mask of slave directions the device supports. 811 * Since the enum dma_transfer_direction is not defined as bit flag for 812 * each type, the dma controller should set BIT(<TYPE>) and same 813 * should be checked by controller as well 814 * @min_burst: min burst capability per-transfer 815 * @max_burst: max burst capability per-transfer 816 * @max_sg_burst: max number of SG list entries executed in a single burst 817 * DMA tansaction with no software intervention for reinitialization. 818 * Zero value means unlimited number of entries. 819 * @descriptor_reuse: a submitted transfer can be resubmitted after completion 820 * @residue_granularity: granularity of the transfer residue reported 821 * by tx_status 822 * @device_alloc_chan_resources: allocate resources and return the 823 * number of allocated descriptors 824 * @device_router_config: optional callback for DMA router configuration 825 * @device_free_chan_resources: release DMA channel's resources 826 * @device_prep_dma_memcpy: prepares a memcpy operation 827 * @device_prep_dma_xor: prepares a xor operation 828 * @device_prep_dma_xor_val: prepares a xor validation operation 829 * @device_prep_dma_pq: prepares a pq operation 830 * @device_prep_dma_pq_val: prepares a pqzero_sum operation 831 * @device_prep_dma_memset: prepares a memset operation 832 * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list 833 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation 834 * @device_prep_peripheral_dma_vec: prepares a scatter-gather DMA transfer, 835 * where the address and size of each segment is located in one entry of 836 * the dma_vec array. 837 * @device_prep_slave_sg: prepares a slave dma operation 838 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio. 839 * The function takes a buffer of size buf_len. The callback function will 840 * be called after period_len bytes have been transferred. 841 * @device_prep_interleaved_dma: Transfer expression in a generic way. 842 * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address 843 * @device_caps: May be used to override the generic DMA slave capabilities 844 * with per-channel specific ones 845 * @device_config: Pushes a new configuration to a channel, return 0 or an error 846 * code 847 * @device_pause: Pauses any transfer happening on a channel. Returns 848 * 0 or an error code 849 * @device_resume: Resumes any transfer on a channel previously 850 * paused. Returns 0 or an error code 851 * @device_terminate_all: Aborts all transfers on a channel. Returns 0 852 * or an error code 853 * @device_synchronize: Synchronizes the termination of a transfers to the 854 * current context. 855 * @device_tx_status: poll for transaction completion, the optional 856 * txstate parameter can be supplied with a pointer to get a 857 * struct with auxiliary transfer status information, otherwise the call 858 * will just return a simple status code 859 * @device_issue_pending: push pending transactions to hardware 860 * @device_release: called sometime atfer dma_async_device_unregister() is 861 * called and there are no further references to this structure. This 862 * must be implemented to free resources however many existing drivers 863 * do not and are therefore not safe to unbind while in use. 864 * @dbg_summary_show: optional routine to show contents in debugfs; default code 865 * will be used when this is omitted, but custom code can show extra, 866 * controller specific information. 867 * @dbg_dev_root: the root folder in debugfs for this device 868 */ 869struct dma_device { 870 struct kref ref; 871 unsigned int chancnt; 872 unsigned int privatecnt; 873 struct list_head channels; 874 struct list_head global_node; 875 struct dma_filter filter; 876 dma_cap_mask_t cap_mask; 877 enum dma_desc_metadata_mode desc_metadata_modes; 878 unsigned short max_xor; 879 unsigned short max_pq; 880 enum dmaengine_alignment copy_align; 881 enum dmaengine_alignment xor_align; 882 enum dmaengine_alignment pq_align; 883 enum dmaengine_alignment fill_align; 884 #define DMA_HAS_PQ_CONTINUE (1 << 15) 885 886 int dev_id; 887 struct device *dev; 888 struct module *owner; 889 struct ida chan_ida; 890 891 u32 src_addr_widths; 892 u32 dst_addr_widths; 893 u32 directions; 894 u32 min_burst; 895 u32 max_burst; 896 u32 max_sg_burst; 897 bool descriptor_reuse; 898 enum dma_residue_granularity residue_granularity; 899 900 int (*device_alloc_chan_resources)(struct dma_chan *chan); 901 int (*device_router_config)(struct dma_chan *chan); 902 void (*device_free_chan_resources)(struct dma_chan *chan); 903 904 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)( 905 struct dma_chan *chan, dma_addr_t dst, dma_addr_t src, 906 size_t len, unsigned long flags); 907 struct dma_async_tx_descriptor *(*device_prep_dma_xor)( 908 struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src, 909 unsigned int src_cnt, size_t len, unsigned long flags); 910 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)( 911 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt, 912 size_t len, enum sum_check_flags *result, unsigned long flags); 913 struct dma_async_tx_descriptor *(*device_prep_dma_pq)( 914 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src, 915 unsigned int src_cnt, const unsigned char *scf, 916 size_t len, unsigned long flags); 917 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)( 918 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src, 919 unsigned int src_cnt, const unsigned char *scf, size_t len, 920 enum sum_check_flags *pqres, unsigned long flags); 921 struct dma_async_tx_descriptor *(*device_prep_dma_memset)( 922 struct dma_chan *chan, dma_addr_t dest, int value, size_t len, 923 unsigned long flags); 924 struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)( 925 struct dma_chan *chan, struct scatterlist *sg, 926 unsigned int nents, int value, unsigned long flags); 927 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)( 928 struct dma_chan *chan, unsigned long flags); 929 930 struct dma_async_tx_descriptor *(*device_prep_peripheral_dma_vec)( 931 struct dma_chan *chan, const struct dma_vec *vecs, 932 size_t nents, enum dma_transfer_direction direction, 933 unsigned long flags); 934 struct dma_async_tx_descriptor *(*device_prep_slave_sg)( 935 struct dma_chan *chan, struct scatterlist *sgl, 936 unsigned int sg_len, enum dma_transfer_direction direction, 937 unsigned long flags, void *context); 938 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)( 939 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 940 size_t period_len, enum dma_transfer_direction direction, 941 unsigned long flags); 942 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)( 943 struct dma_chan *chan, struct dma_interleaved_template *xt, 944 unsigned long flags); 945 struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)( 946 struct dma_chan *chan, dma_addr_t dst, u64 data, 947 unsigned long flags); 948 949 void (*device_caps)(struct dma_chan *chan, struct dma_slave_caps *caps); 950 int (*device_config)(struct dma_chan *chan, struct dma_slave_config *config); 951 int (*device_pause)(struct dma_chan *chan); 952 int (*device_resume)(struct dma_chan *chan); 953 int (*device_terminate_all)(struct dma_chan *chan); 954 void (*device_synchronize)(struct dma_chan *chan); 955 956 enum dma_status (*device_tx_status)(struct dma_chan *chan, 957 dma_cookie_t cookie, 958 struct dma_tx_state *txstate); 959 void (*device_issue_pending)(struct dma_chan *chan); 960 void (*device_release)(struct dma_device *dev); 961 /* debugfs support */ 962 void (*dbg_summary_show)(struct seq_file *s, struct dma_device *dev); 963 struct dentry *dbg_dev_root; 964}; 965 966static inline int dmaengine_slave_config(struct dma_chan *chan, 967 struct dma_slave_config *config) 968{ 969 if (chan->device->device_config) 970 return chan->device->device_config(chan, config); 971 972 return -ENOSYS; 973} 974 975static inline bool is_slave_direction(enum dma_transfer_direction direction) 976{ 977 return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM) || 978 (direction == DMA_DEV_TO_DEV); 979} 980 981static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single( 982 struct dma_chan *chan, dma_addr_t buf, size_t len, 983 enum dma_transfer_direction dir, unsigned long flags) 984{ 985 struct scatterlist sg; 986 sg_init_table(&sg, 1); 987 sg_dma_address(&sg) = buf; 988 sg_dma_len(&sg) = len; 989 990 if (!chan || !chan->device || !chan->device->device_prep_slave_sg) 991 return NULL; 992 993 return chan->device->device_prep_slave_sg(chan, &sg, 1, 994 dir, flags, NULL); 995} 996 997/** 998 * dmaengine_prep_peripheral_dma_vec() - Prepare a DMA scatter-gather descriptor 999 * @chan: The channel to be used for this descriptor 1000 * @vecs: The array of DMA vectors that should be transferred 1001 * @nents: The number of DMA vectors in the array 1002 * @dir: Specifies the direction of the data transfer 1003 * @flags: DMA engine flags 1004 */ 1005static inline struct dma_async_tx_descriptor *dmaengine_prep_peripheral_dma_vec( 1006 struct dma_chan *chan, const struct dma_vec *vecs, size_t nents, 1007 enum dma_transfer_direction dir, unsigned long flags) 1008{ 1009 if (!chan || !chan->device || !chan->device->device_prep_peripheral_dma_vec) 1010 return NULL; 1011 1012 return chan->device->device_prep_peripheral_dma_vec(chan, vecs, nents, 1013 dir, flags); 1014} 1015 1016static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg( 1017 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, 1018 enum dma_transfer_direction dir, unsigned long flags) 1019{ 1020 if (!chan || !chan->device || !chan->device->device_prep_slave_sg) 1021 return NULL; 1022 1023 return chan->device->device_prep_slave_sg(chan, sgl, sg_len, 1024 dir, flags, NULL); 1025} 1026 1027#ifdef CONFIG_RAPIDIO_DMA_ENGINE 1028struct rio_dma_ext; 1029static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg( 1030 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, 1031 enum dma_transfer_direction dir, unsigned long flags, 1032 struct rio_dma_ext *rio_ext) 1033{ 1034 if (!chan || !chan->device || !chan->device->device_prep_slave_sg) 1035 return NULL; 1036 1037 return chan->device->device_prep_slave_sg(chan, sgl, sg_len, 1038 dir, flags, rio_ext); 1039} 1040#endif 1041 1042static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic( 1043 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 1044 size_t period_len, enum dma_transfer_direction dir, 1045 unsigned long flags) 1046{ 1047 if (!chan || !chan->device || !chan->device->device_prep_dma_cyclic) 1048 return NULL; 1049 1050 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len, 1051 period_len, dir, flags); 1052} 1053 1054static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma( 1055 struct dma_chan *chan, struct dma_interleaved_template *xt, 1056 unsigned long flags) 1057{ 1058 if (!chan || !chan->device || !chan->device->device_prep_interleaved_dma) 1059 return NULL; 1060 if (flags & DMA_PREP_REPEAT && 1061 !test_bit(DMA_REPEAT, chan->device->cap_mask.bits)) 1062 return NULL; 1063 1064 return chan->device->device_prep_interleaved_dma(chan, xt, flags); 1065} 1066 1067/** 1068 * dmaengine_prep_dma_memset() - Prepare a DMA memset descriptor. 1069 * @chan: The channel to be used for this descriptor 1070 * @dest: Address of buffer to be set 1071 * @value: Treated as a single byte value that fills the destination buffer 1072 * @len: The total size of dest 1073 * @flags: DMA engine flags 1074 */ 1075static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset( 1076 struct dma_chan *chan, dma_addr_t dest, int value, size_t len, 1077 unsigned long flags) 1078{ 1079 if (!chan || !chan->device || !chan->device->device_prep_dma_memset) 1080 return NULL; 1081 1082 return chan->device->device_prep_dma_memset(chan, dest, value, 1083 len, flags); 1084} 1085 1086static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy( 1087 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 1088 size_t len, unsigned long flags) 1089{ 1090 if (!chan || !chan->device || !chan->device->device_prep_dma_memcpy) 1091 return NULL; 1092 1093 return chan->device->device_prep_dma_memcpy(chan, dest, src, 1094 len, flags); 1095} 1096 1097static inline bool dmaengine_is_metadata_mode_supported(struct dma_chan *chan, 1098 enum dma_desc_metadata_mode mode) 1099{ 1100 if (!chan) 1101 return false; 1102 1103 return !!(chan->device->desc_metadata_modes & mode); 1104} 1105 1106#ifdef CONFIG_DMA_ENGINE 1107int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc, 1108 void *data, size_t len); 1109void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc, 1110 size_t *payload_len, size_t *max_len); 1111int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc, 1112 size_t payload_len); 1113#else /* CONFIG_DMA_ENGINE */ 1114static inline int dmaengine_desc_attach_metadata( 1115 struct dma_async_tx_descriptor *desc, void *data, size_t len) 1116{ 1117 return -EINVAL; 1118} 1119static inline void *dmaengine_desc_get_metadata_ptr( 1120 struct dma_async_tx_descriptor *desc, size_t *payload_len, 1121 size_t *max_len) 1122{ 1123 return NULL; 1124} 1125static inline int dmaengine_desc_set_metadata_len( 1126 struct dma_async_tx_descriptor *desc, size_t payload_len) 1127{ 1128 return -EINVAL; 1129} 1130#endif /* CONFIG_DMA_ENGINE */ 1131 1132/** 1133 * dmaengine_terminate_all() - Terminate all active DMA transfers 1134 * @chan: The channel for which to terminate the transfers 1135 * 1136 * This function is DEPRECATED use either dmaengine_terminate_sync() or 1137 * dmaengine_terminate_async() instead. 1138 */ 1139static inline int dmaengine_terminate_all(struct dma_chan *chan) 1140{ 1141 if (chan->device->device_terminate_all) 1142 return chan->device->device_terminate_all(chan); 1143 1144 return -ENOSYS; 1145} 1146 1147/** 1148 * dmaengine_terminate_async() - Terminate all active DMA transfers 1149 * @chan: The channel for which to terminate the transfers 1150 * 1151 * Calling this function will terminate all active and pending descriptors 1152 * that have previously been submitted to the channel. It is not guaranteed 1153 * though that the transfer for the active descriptor has stopped when the 1154 * function returns. Furthermore it is possible the complete callback of a 1155 * submitted transfer is still running when this function returns. 1156 * 1157 * dmaengine_synchronize() needs to be called before it is safe to free 1158 * any memory that is accessed by previously submitted descriptors or before 1159 * freeing any resources accessed from within the completion callback of any 1160 * previously submitted descriptors. 1161 * 1162 * This function can be called from atomic context as well as from within a 1163 * complete callback of a descriptor submitted on the same channel. 1164 * 1165 * If none of the two conditions above apply consider using 1166 * dmaengine_terminate_sync() instead. 1167 */ 1168static inline int dmaengine_terminate_async(struct dma_chan *chan) 1169{ 1170 if (chan->device->device_terminate_all) 1171 return chan->device->device_terminate_all(chan); 1172 1173 return -EINVAL; 1174} 1175 1176/** 1177 * dmaengine_synchronize() - Synchronize DMA channel termination 1178 * @chan: The channel to synchronize 1179 * 1180 * Synchronizes to the DMA channel termination to the current context. When this 1181 * function returns it is guaranteed that all transfers for previously issued 1182 * descriptors have stopped and it is safe to free the memory associated 1183 * with them. Furthermore it is guaranteed that all complete callback functions 1184 * for a previously submitted descriptor have finished running and it is safe to 1185 * free resources accessed from within the complete callbacks. 1186 * 1187 * The behavior of this function is undefined if dma_async_issue_pending() has 1188 * been called between dmaengine_terminate_async() and this function. 1189 * 1190 * This function must only be called from non-atomic context and must not be 1191 * called from within a complete callback of a descriptor submitted on the same 1192 * channel. 1193 */ 1194static inline void dmaengine_synchronize(struct dma_chan *chan) 1195{ 1196 might_sleep(); 1197 1198 if (chan->device->device_synchronize) 1199 chan->device->device_synchronize(chan); 1200} 1201 1202/** 1203 * dmaengine_terminate_sync() - Terminate all active DMA transfers 1204 * @chan: The channel for which to terminate the transfers 1205 * 1206 * Calling this function will terminate all active and pending transfers 1207 * that have previously been submitted to the channel. It is similar to 1208 * dmaengine_terminate_async() but guarantees that the DMA transfer has actually 1209 * stopped and that all complete callbacks have finished running when the 1210 * function returns. 1211 * 1212 * This function must only be called from non-atomic context and must not be 1213 * called from within a complete callback of a descriptor submitted on the same 1214 * channel. 1215 */ 1216static inline int dmaengine_terminate_sync(struct dma_chan *chan) 1217{ 1218 int ret; 1219 1220 ret = dmaengine_terminate_async(chan); 1221 if (ret) 1222 return ret; 1223 1224 dmaengine_synchronize(chan); 1225 1226 return 0; 1227} 1228 1229static inline int dmaengine_pause(struct dma_chan *chan) 1230{ 1231 if (chan->device->device_pause) 1232 return chan->device->device_pause(chan); 1233 1234 return -ENOSYS; 1235} 1236 1237static inline int dmaengine_resume(struct dma_chan *chan) 1238{ 1239 if (chan->device->device_resume) 1240 return chan->device->device_resume(chan); 1241 1242 return -ENOSYS; 1243} 1244 1245static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan, 1246 dma_cookie_t cookie, struct dma_tx_state *state) 1247{ 1248 return chan->device->device_tx_status(chan, cookie, state); 1249} 1250 1251static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc) 1252{ 1253 return desc->tx_submit(desc); 1254} 1255 1256static inline bool dmaengine_check_align(enum dmaengine_alignment align, 1257 size_t off1, size_t off2, size_t len) 1258{ 1259 return !(((1 << align) - 1) & (off1 | off2 | len)); 1260} 1261 1262static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1, 1263 size_t off2, size_t len) 1264{ 1265 return dmaengine_check_align(dev->copy_align, off1, off2, len); 1266} 1267 1268static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1, 1269 size_t off2, size_t len) 1270{ 1271 return dmaengine_check_align(dev->xor_align, off1, off2, len); 1272} 1273 1274static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1, 1275 size_t off2, size_t len) 1276{ 1277 return dmaengine_check_align(dev->pq_align, off1, off2, len); 1278} 1279 1280static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1, 1281 size_t off2, size_t len) 1282{ 1283 return dmaengine_check_align(dev->fill_align, off1, off2, len); 1284} 1285 1286static inline void 1287dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue) 1288{ 1289 dma->max_pq = maxpq; 1290 if (has_pq_continue) 1291 dma->max_pq |= DMA_HAS_PQ_CONTINUE; 1292} 1293 1294static inline bool dmaf_continue(enum dma_ctrl_flags flags) 1295{ 1296 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE; 1297} 1298 1299static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags) 1300{ 1301 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P; 1302 1303 return (flags & mask) == mask; 1304} 1305 1306static inline bool dma_dev_has_pq_continue(struct dma_device *dma) 1307{ 1308 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE; 1309} 1310 1311static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma) 1312{ 1313 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE; 1314} 1315 1316/* dma_maxpq - reduce maxpq in the face of continued operations 1317 * @dma - dma device with PQ capability 1318 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set 1319 * 1320 * When an engine does not support native continuation we need 3 extra 1321 * source slots to reuse P and Q with the following coefficients: 1322 * 1/ {00} * P : remove P from Q', but use it as a source for P' 1323 * 2/ {01} * Q : use Q to continue Q' calculation 1324 * 3/ {00} * Q : subtract Q from P' to cancel (2) 1325 * 1326 * In the case where P is disabled we only need 1 extra source: 1327 * 1/ {01} * Q : use Q to continue Q' calculation 1328 */ 1329static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags) 1330{ 1331 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags)) 1332 return dma_dev_to_maxpq(dma); 1333 if (dmaf_p_disabled_continue(flags)) 1334 return dma_dev_to_maxpq(dma) - 1; 1335 if (dmaf_continue(flags)) 1336 return dma_dev_to_maxpq(dma) - 3; 1337 BUG(); 1338} 1339 1340static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg, 1341 size_t dir_icg) 1342{ 1343 if (inc) { 1344 if (dir_icg) 1345 return dir_icg; 1346 if (sgl) 1347 return icg; 1348 } 1349 1350 return 0; 1351} 1352 1353static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt, 1354 struct data_chunk *chunk) 1355{ 1356 return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl, 1357 chunk->icg, chunk->dst_icg); 1358} 1359 1360static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt, 1361 struct data_chunk *chunk) 1362{ 1363 return dmaengine_get_icg(xt->src_inc, xt->src_sgl, 1364 chunk->icg, chunk->src_icg); 1365} 1366 1367/* --- public DMA engine API --- */ 1368 1369#ifdef CONFIG_DMA_ENGINE 1370void dmaengine_get(void); 1371void dmaengine_put(void); 1372#else 1373static inline void dmaengine_get(void) 1374{ 1375} 1376static inline void dmaengine_put(void) 1377{ 1378} 1379#endif 1380 1381#ifdef CONFIG_ASYNC_TX_DMA 1382#define async_dmaengine_get() dmaengine_get() 1383#define async_dmaengine_put() dmaengine_put() 1384#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 1385#define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX) 1386#else 1387#define async_dma_find_channel(type) dma_find_channel(type) 1388#endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */ 1389#else 1390static inline void async_dmaengine_get(void) 1391{ 1392} 1393static inline void async_dmaengine_put(void) 1394{ 1395} 1396static inline struct dma_chan * 1397async_dma_find_channel(enum dma_transaction_type type) 1398{ 1399 return NULL; 1400} 1401#endif /* CONFIG_ASYNC_TX_DMA */ 1402void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, 1403 struct dma_chan *chan); 1404 1405static inline void async_tx_ack(struct dma_async_tx_descriptor *tx) 1406{ 1407 tx->flags |= DMA_CTRL_ACK; 1408} 1409 1410static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx) 1411{ 1412 tx->flags &= ~DMA_CTRL_ACK; 1413} 1414 1415static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx) 1416{ 1417 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK; 1418} 1419 1420#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask)) 1421static inline void 1422__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 1423{ 1424 set_bit(tx_type, dstp->bits); 1425} 1426 1427#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask)) 1428static inline void 1429__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 1430{ 1431 clear_bit(tx_type, dstp->bits); 1432} 1433 1434#define dma_cap_zero(mask) __dma_cap_zero(&(mask)) 1435static inline void __dma_cap_zero(dma_cap_mask_t *dstp) 1436{ 1437 bitmap_zero(dstp->bits, DMA_TX_TYPE_END); 1438} 1439 1440#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask)) 1441static inline int 1442__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp) 1443{ 1444 return test_bit(tx_type, srcp->bits); 1445} 1446 1447#define for_each_dma_cap_mask(cap, mask) \ 1448 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END) 1449 1450/** 1451 * dma_async_issue_pending - flush pending transactions to HW 1452 * @chan: target DMA channel 1453 * 1454 * This allows drivers to push copies to HW in batches, 1455 * reducing MMIO writes where possible. 1456 */ 1457static inline void dma_async_issue_pending(struct dma_chan *chan) 1458{ 1459 chan->device->device_issue_pending(chan); 1460} 1461 1462/** 1463 * dma_async_is_tx_complete - poll for transaction completion 1464 * @chan: DMA channel 1465 * @cookie: transaction identifier to check status of 1466 * @last: returns last completed cookie, can be NULL 1467 * @used: returns last issued cookie, can be NULL 1468 * 1469 * If @last and @used are passed in, upon return they reflect the driver 1470 * internal state and can be used with dma_async_is_complete() to check 1471 * the status of multiple cookies without re-checking hardware state. 1472 */ 1473static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan, 1474 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used) 1475{ 1476 struct dma_tx_state state; 1477 enum dma_status status; 1478 1479 status = chan->device->device_tx_status(chan, cookie, &state); 1480 if (last) 1481 *last = state.last; 1482 if (used) 1483 *used = state.used; 1484 return status; 1485} 1486 1487/** 1488 * dma_async_is_complete - test a cookie against chan state 1489 * @cookie: transaction identifier to test status of 1490 * @last_complete: last know completed transaction 1491 * @last_used: last cookie value handed out 1492 * 1493 * dma_async_is_complete() is used in dma_async_is_tx_complete() 1494 * the test logic is separated for lightweight testing of multiple cookies 1495 */ 1496static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie, 1497 dma_cookie_t last_complete, dma_cookie_t last_used) 1498{ 1499 if (last_complete <= last_used) { 1500 if ((cookie <= last_complete) || (cookie > last_used)) 1501 return DMA_COMPLETE; 1502 } else { 1503 if ((cookie <= last_complete) && (cookie > last_used)) 1504 return DMA_COMPLETE; 1505 } 1506 return DMA_IN_PROGRESS; 1507} 1508 1509static inline void 1510dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue) 1511{ 1512 if (!st) 1513 return; 1514 1515 st->last = last; 1516 st->used = used; 1517 st->residue = residue; 1518} 1519 1520#ifdef CONFIG_DMA_ENGINE 1521struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type); 1522enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie); 1523enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx); 1524void dma_issue_pending_all(void); 1525struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, 1526 dma_filter_fn fn, void *fn_param, 1527 struct device_node *np); 1528 1529struct dma_chan *dma_request_chan(struct device *dev, const char *name); 1530struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask); 1531 1532void dma_release_channel(struct dma_chan *chan); 1533int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps); 1534#else 1535static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type) 1536{ 1537 return NULL; 1538} 1539static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie) 1540{ 1541 return DMA_COMPLETE; 1542} 1543static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) 1544{ 1545 return DMA_COMPLETE; 1546} 1547static inline void dma_issue_pending_all(void) 1548{ 1549} 1550static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, 1551 dma_filter_fn fn, 1552 void *fn_param, 1553 struct device_node *np) 1554{ 1555 return NULL; 1556} 1557static inline struct dma_chan *dma_request_chan(struct device *dev, 1558 const char *name) 1559{ 1560 return ERR_PTR(-ENODEV); 1561} 1562static inline struct dma_chan *dma_request_chan_by_mask( 1563 const dma_cap_mask_t *mask) 1564{ 1565 return ERR_PTR(-ENODEV); 1566} 1567static inline void dma_release_channel(struct dma_chan *chan) 1568{ 1569} 1570static inline int dma_get_slave_caps(struct dma_chan *chan, 1571 struct dma_slave_caps *caps) 1572{ 1573 return -ENXIO; 1574} 1575#endif 1576 1577static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx) 1578{ 1579 struct dma_slave_caps caps; 1580 int ret; 1581 1582 ret = dma_get_slave_caps(tx->chan, &caps); 1583 if (ret) 1584 return ret; 1585 1586 if (!caps.descriptor_reuse) 1587 return -EPERM; 1588 1589 tx->flags |= DMA_CTRL_REUSE; 1590 return 0; 1591} 1592 1593static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx) 1594{ 1595 tx->flags &= ~DMA_CTRL_REUSE; 1596} 1597 1598static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx) 1599{ 1600 return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE; 1601} 1602 1603static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc) 1604{ 1605 /* this is supported for reusable desc, so check that */ 1606 if (!dmaengine_desc_test_reuse(desc)) 1607 return -EPERM; 1608 1609 return desc->desc_free(desc); 1610} 1611 1612/* --- DMA device --- */ 1613 1614int dma_async_device_register(struct dma_device *device); 1615int dmaenginem_async_device_register(struct dma_device *device); 1616void dma_async_device_unregister(struct dma_device *device); 1617int dma_async_device_channel_register(struct dma_device *device, 1618 struct dma_chan *chan, 1619 const char *name); 1620void dma_async_device_channel_unregister(struct dma_device *device, 1621 struct dma_chan *chan); 1622void dma_run_dependencies(struct dma_async_tx_descriptor *tx); 1623#define dma_request_channel(mask, x, y) \ 1624 __dma_request_channel(&(mask), x, y, NULL) 1625 1626/* Deprecated, please use dma_request_chan() directly */ 1627static inline struct dma_chan * __deprecated 1628dma_request_slave_channel(struct device *dev, const char *name) 1629{ 1630 struct dma_chan *ch = dma_request_chan(dev, name); 1631 1632 return IS_ERR(ch) ? NULL : ch; 1633} 1634 1635static inline struct dma_chan 1636*dma_request_slave_channel_compat(const dma_cap_mask_t mask, 1637 dma_filter_fn fn, void *fn_param, 1638 struct device *dev, const char *name) 1639{ 1640 struct dma_chan *chan; 1641 1642 chan = dma_request_slave_channel(dev, name); 1643 if (chan) 1644 return chan; 1645 1646 if (!fn || !fn_param) 1647 return NULL; 1648 1649 return __dma_request_channel(&mask, fn, fn_param, NULL); 1650} 1651 1652static inline char * 1653dmaengine_get_direction_text(enum dma_transfer_direction dir) 1654{ 1655 switch (dir) { 1656 case DMA_DEV_TO_MEM: 1657 return "DEV_TO_MEM"; 1658 case DMA_MEM_TO_DEV: 1659 return "MEM_TO_DEV"; 1660 case DMA_MEM_TO_MEM: 1661 return "MEM_TO_MEM"; 1662 case DMA_DEV_TO_DEV: 1663 return "DEV_TO_DEV"; 1664 default: 1665 return "invalid"; 1666 } 1667} 1668 1669static inline struct device *dmaengine_get_dma_device(struct dma_chan *chan) 1670{ 1671 if (chan->dev->chan_dma_dev) 1672 return &chan->dev->device; 1673 1674 return chan->device->dev; 1675} 1676 1677#endif /* DMAENGINE_H */