at for-next 16 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * This header is for implementations of dma_map_ops and related code. 4 * It should not be included in drivers just using the DMA API. 5 */ 6#ifndef _LINUX_DMA_MAP_OPS_H 7#define _LINUX_DMA_MAP_OPS_H 8 9#include <linux/dma-mapping.h> 10#include <linux/pgtable.h> 11#include <linux/slab.h> 12 13struct cma; 14struct iommu_ops; 15 16struct dma_map_ops { 17 void *(*alloc)(struct device *dev, size_t size, 18 dma_addr_t *dma_handle, gfp_t gfp, 19 unsigned long attrs); 20 void (*free)(struct device *dev, size_t size, void *vaddr, 21 dma_addr_t dma_handle, unsigned long attrs); 22 struct page *(*alloc_pages_op)(struct device *dev, size_t size, 23 dma_addr_t *dma_handle, enum dma_data_direction dir, 24 gfp_t gfp); 25 void (*free_pages)(struct device *dev, size_t size, struct page *vaddr, 26 dma_addr_t dma_handle, enum dma_data_direction dir); 27 int (*mmap)(struct device *, struct vm_area_struct *, 28 void *, dma_addr_t, size_t, unsigned long attrs); 29 30 int (*get_sgtable)(struct device *dev, struct sg_table *sgt, 31 void *cpu_addr, dma_addr_t dma_addr, size_t size, 32 unsigned long attrs); 33 34 dma_addr_t (*map_page)(struct device *dev, struct page *page, 35 unsigned long offset, size_t size, 36 enum dma_data_direction dir, unsigned long attrs); 37 void (*unmap_page)(struct device *dev, dma_addr_t dma_handle, 38 size_t size, enum dma_data_direction dir, 39 unsigned long attrs); 40 /* 41 * map_sg should return a negative error code on error. See 42 * dma_map_sgtable() for a list of appropriate error codes 43 * and their meanings. 44 */ 45 int (*map_sg)(struct device *dev, struct scatterlist *sg, int nents, 46 enum dma_data_direction dir, unsigned long attrs); 47 void (*unmap_sg)(struct device *dev, struct scatterlist *sg, int nents, 48 enum dma_data_direction dir, unsigned long attrs); 49 dma_addr_t (*map_resource)(struct device *dev, phys_addr_t phys_addr, 50 size_t size, enum dma_data_direction dir, 51 unsigned long attrs); 52 void (*unmap_resource)(struct device *dev, dma_addr_t dma_handle, 53 size_t size, enum dma_data_direction dir, 54 unsigned long attrs); 55 void (*sync_single_for_cpu)(struct device *dev, dma_addr_t dma_handle, 56 size_t size, enum dma_data_direction dir); 57 void (*sync_single_for_device)(struct device *dev, 58 dma_addr_t dma_handle, size_t size, 59 enum dma_data_direction dir); 60 void (*sync_sg_for_cpu)(struct device *dev, struct scatterlist *sg, 61 int nents, enum dma_data_direction dir); 62 void (*sync_sg_for_device)(struct device *dev, struct scatterlist *sg, 63 int nents, enum dma_data_direction dir); 64 void (*cache_sync)(struct device *dev, void *vaddr, size_t size, 65 enum dma_data_direction direction); 66 int (*dma_supported)(struct device *dev, u64 mask); 67 u64 (*get_required_mask)(struct device *dev); 68 size_t (*max_mapping_size)(struct device *dev); 69 size_t (*opt_mapping_size)(void); 70 unsigned long (*get_merge_boundary)(struct device *dev); 71}; 72 73#ifdef CONFIG_ARCH_HAS_DMA_OPS 74#include <asm/dma-mapping.h> 75 76static inline const struct dma_map_ops *get_dma_ops(struct device *dev) 77{ 78 if (dev->dma_ops) 79 return dev->dma_ops; 80 return get_arch_dma_ops(); 81} 82 83static inline void set_dma_ops(struct device *dev, 84 const struct dma_map_ops *dma_ops) 85{ 86 dev->dma_ops = dma_ops; 87} 88#else /* CONFIG_ARCH_HAS_DMA_OPS */ 89static inline const struct dma_map_ops *get_dma_ops(struct device *dev) 90{ 91 return NULL; 92} 93static inline void set_dma_ops(struct device *dev, 94 const struct dma_map_ops *dma_ops) 95{ 96} 97#endif /* CONFIG_ARCH_HAS_DMA_OPS */ 98 99#ifdef CONFIG_DMA_CMA 100extern struct cma *dma_contiguous_default_area; 101 102static inline struct cma *dev_get_cma_area(struct device *dev) 103{ 104 if (dev && dev->cma_area) 105 return dev->cma_area; 106 return dma_contiguous_default_area; 107} 108 109void dma_contiguous_reserve(phys_addr_t addr_limit); 110int __init dma_contiguous_reserve_area(phys_addr_t size, phys_addr_t base, 111 phys_addr_t limit, struct cma **res_cma, bool fixed); 112 113struct page *dma_alloc_from_contiguous(struct device *dev, size_t count, 114 unsigned int order, bool no_warn); 115bool dma_release_from_contiguous(struct device *dev, struct page *pages, 116 int count); 117struct page *dma_alloc_contiguous(struct device *dev, size_t size, gfp_t gfp); 118void dma_free_contiguous(struct device *dev, struct page *page, size_t size); 119 120void dma_contiguous_early_fixup(phys_addr_t base, unsigned long size); 121#else /* CONFIG_DMA_CMA */ 122static inline struct cma *dev_get_cma_area(struct device *dev) 123{ 124 return NULL; 125} 126static inline void dma_contiguous_reserve(phys_addr_t limit) 127{ 128} 129static inline int dma_contiguous_reserve_area(phys_addr_t size, 130 phys_addr_t base, phys_addr_t limit, struct cma **res_cma, 131 bool fixed) 132{ 133 return -ENOSYS; 134} 135static inline struct page *dma_alloc_from_contiguous(struct device *dev, 136 size_t count, unsigned int order, bool no_warn) 137{ 138 return NULL; 139} 140static inline bool dma_release_from_contiguous(struct device *dev, 141 struct page *pages, int count) 142{ 143 return false; 144} 145/* Use fallback alloc() and free() when CONFIG_DMA_CMA=n */ 146static inline struct page *dma_alloc_contiguous(struct device *dev, size_t size, 147 gfp_t gfp) 148{ 149 return NULL; 150} 151static inline void dma_free_contiguous(struct device *dev, struct page *page, 152 size_t size) 153{ 154 __free_pages(page, get_order(size)); 155} 156#endif /* CONFIG_DMA_CMA*/ 157 158#ifdef CONFIG_DMA_DECLARE_COHERENT 159int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr, 160 dma_addr_t device_addr, size_t size); 161void dma_release_coherent_memory(struct device *dev); 162int dma_alloc_from_dev_coherent(struct device *dev, ssize_t size, 163 dma_addr_t *dma_handle, void **ret); 164int dma_release_from_dev_coherent(struct device *dev, int order, void *vaddr); 165int dma_mmap_from_dev_coherent(struct device *dev, struct vm_area_struct *vma, 166 void *cpu_addr, size_t size, int *ret); 167#else 168static inline int dma_declare_coherent_memory(struct device *dev, 169 phys_addr_t phys_addr, dma_addr_t device_addr, size_t size) 170{ 171 return -ENOSYS; 172} 173 174#define dma_alloc_from_dev_coherent(dev, size, handle, ret) (0) 175#define dma_release_from_dev_coherent(dev, order, vaddr) (0) 176#define dma_mmap_from_dev_coherent(dev, vma, vaddr, order, ret) (0) 177static inline void dma_release_coherent_memory(struct device *dev) { } 178#endif /* CONFIG_DMA_DECLARE_COHERENT */ 179 180#ifdef CONFIG_DMA_GLOBAL_POOL 181void *dma_alloc_from_global_coherent(struct device *dev, ssize_t size, 182 dma_addr_t *dma_handle); 183int dma_release_from_global_coherent(int order, void *vaddr); 184int dma_mmap_from_global_coherent(struct vm_area_struct *vma, void *cpu_addr, 185 size_t size, int *ret); 186int dma_init_global_coherent(phys_addr_t phys_addr, size_t size); 187#else 188static inline void *dma_alloc_from_global_coherent(struct device *dev, 189 ssize_t size, dma_addr_t *dma_handle) 190{ 191 return NULL; 192} 193static inline int dma_release_from_global_coherent(int order, void *vaddr) 194{ 195 return 0; 196} 197static inline int dma_mmap_from_global_coherent(struct vm_area_struct *vma, 198 void *cpu_addr, size_t size, int *ret) 199{ 200 return 0; 201} 202#endif /* CONFIG_DMA_GLOBAL_POOL */ 203 204int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt, 205 void *cpu_addr, dma_addr_t dma_addr, size_t size, 206 unsigned long attrs); 207int dma_common_mmap(struct device *dev, struct vm_area_struct *vma, 208 void *cpu_addr, dma_addr_t dma_addr, size_t size, 209 unsigned long attrs); 210struct page *dma_common_alloc_pages(struct device *dev, size_t size, 211 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp); 212void dma_common_free_pages(struct device *dev, size_t size, struct page *vaddr, 213 dma_addr_t dma_handle, enum dma_data_direction dir); 214 215struct page **dma_common_find_pages(void *cpu_addr); 216void *dma_common_contiguous_remap(struct page *page, size_t size, pgprot_t prot, 217 const void *caller); 218void *dma_common_pages_remap(struct page **pages, size_t size, pgprot_t prot, 219 const void *caller); 220void dma_common_free_remap(void *cpu_addr, size_t size); 221 222struct page *dma_alloc_from_pool(struct device *dev, size_t size, 223 void **cpu_addr, gfp_t flags, 224 bool (*phys_addr_ok)(struct device *, phys_addr_t, size_t)); 225bool dma_free_from_pool(struct device *dev, void *start, size_t size); 226 227int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start, 228 dma_addr_t dma_start, u64 size); 229 230#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ 231 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ 232 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) 233extern bool dma_default_coherent; 234static inline bool dev_is_dma_coherent(struct device *dev) 235{ 236 return dev->dma_coherent; 237} 238#else 239#define dma_default_coherent true 240 241static inline bool dev_is_dma_coherent(struct device *dev) 242{ 243 return true; 244} 245#endif 246 247static inline void dma_reset_need_sync(struct device *dev) 248{ 249#ifdef CONFIG_DMA_NEED_SYNC 250 /* Reset it only once so that the function can be called on hotpath */ 251 if (unlikely(dev->dma_skip_sync)) 252 dev->dma_skip_sync = false; 253#endif 254} 255 256/* 257 * Check whether potential kmalloc() buffers are safe for non-coherent DMA. 258 */ 259static inline bool dma_kmalloc_safe(struct device *dev, 260 enum dma_data_direction dir) 261{ 262 /* 263 * If DMA bouncing of kmalloc() buffers is disabled, the kmalloc() 264 * caches have already been aligned to a DMA-safe size. 265 */ 266 if (!IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC)) 267 return true; 268 269 /* 270 * kmalloc() buffers are DMA-safe irrespective of size if the device 271 * is coherent or the direction is DMA_TO_DEVICE (non-desctructive 272 * cache maintenance and benign cache line evictions). 273 */ 274 if (dev_is_dma_coherent(dev) || dir == DMA_TO_DEVICE) 275 return true; 276 277 return false; 278} 279 280/* 281 * Check whether the given size, assuming it is for a kmalloc()'ed buffer, is 282 * sufficiently aligned for non-coherent DMA. 283 */ 284static inline bool dma_kmalloc_size_aligned(size_t size) 285{ 286 /* 287 * Larger kmalloc() sizes are guaranteed to be aligned to 288 * ARCH_DMA_MINALIGN. 289 */ 290 if (size >= 2 * ARCH_DMA_MINALIGN || 291 IS_ALIGNED(kmalloc_size_roundup(size), dma_get_cache_alignment())) 292 return true; 293 294 return false; 295} 296 297/* 298 * Check whether the given object size may have originated from a kmalloc() 299 * buffer with a slab alignment below the DMA-safe alignment and needs 300 * bouncing for non-coherent DMA. The pointer alignment is not considered and 301 * in-structure DMA-safe offsets are the responsibility of the caller. Such 302 * code should use the static ARCH_DMA_MINALIGN for compiler annotations. 303 * 304 * The heuristics can have false positives, bouncing unnecessarily, though the 305 * buffers would be small. False negatives are theoretically possible if, for 306 * example, multiple small kmalloc() buffers are coalesced into a larger 307 * buffer that passes the alignment check. There are no such known constructs 308 * in the kernel. 309 */ 310static inline bool dma_kmalloc_needs_bounce(struct device *dev, size_t size, 311 enum dma_data_direction dir) 312{ 313 return !dma_kmalloc_safe(dev, dir) && !dma_kmalloc_size_aligned(size); 314} 315 316void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, 317 gfp_t gfp, unsigned long attrs); 318void arch_dma_free(struct device *dev, size_t size, void *cpu_addr, 319 dma_addr_t dma_addr, unsigned long attrs); 320 321#ifdef CONFIG_ARCH_HAS_DMA_SET_MASK 322void arch_dma_set_mask(struct device *dev, u64 mask); 323#else 324#define arch_dma_set_mask(dev, mask) do { } while (0) 325#endif 326 327#ifdef CONFIG_MMU 328/* 329 * Page protection so that devices that can't snoop CPU caches can use the 330 * memory coherently. We default to pgprot_noncached which is usually used 331 * for ioremap as a safe bet, but architectures can override this with less 332 * strict semantics if possible. 333 */ 334#ifndef pgprot_dmacoherent 335#define pgprot_dmacoherent(prot) pgprot_noncached(prot) 336#endif 337 338pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs); 339#else 340static inline pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, 341 unsigned long attrs) 342{ 343 return prot; /* no protection bits supported without page tables */ 344} 345#endif /* CONFIG_MMU */ 346 347#ifdef CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE 348void arch_sync_dma_for_device(phys_addr_t paddr, size_t size, 349 enum dma_data_direction dir); 350#else 351static inline void arch_sync_dma_for_device(phys_addr_t paddr, size_t size, 352 enum dma_data_direction dir) 353{ 354} 355#endif /* ARCH_HAS_SYNC_DMA_FOR_DEVICE */ 356 357#ifdef CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU 358void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size, 359 enum dma_data_direction dir); 360#else 361static inline void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size, 362 enum dma_data_direction dir) 363{ 364} 365#endif /* ARCH_HAS_SYNC_DMA_FOR_CPU */ 366 367#ifdef CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL 368void arch_sync_dma_for_cpu_all(void); 369#else 370static inline void arch_sync_dma_for_cpu_all(void) 371{ 372} 373#endif /* CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL */ 374 375#ifdef CONFIG_ARCH_HAS_DMA_PREP_COHERENT 376void arch_dma_prep_coherent(struct page *page, size_t size); 377#else 378static inline void arch_dma_prep_coherent(struct page *page, size_t size) 379{ 380} 381#endif /* CONFIG_ARCH_HAS_DMA_PREP_COHERENT */ 382 383#ifdef CONFIG_ARCH_HAS_DMA_MARK_CLEAN 384void arch_dma_mark_clean(phys_addr_t paddr, size_t size); 385#else 386static inline void arch_dma_mark_clean(phys_addr_t paddr, size_t size) 387{ 388} 389#endif /* ARCH_HAS_DMA_MARK_CLEAN */ 390 391void *arch_dma_set_uncached(void *addr, size_t size); 392void arch_dma_clear_uncached(void *addr, size_t size); 393 394#ifdef CONFIG_ARCH_HAS_DMA_MAP_DIRECT 395bool arch_dma_map_page_direct(struct device *dev, phys_addr_t addr); 396bool arch_dma_unmap_page_direct(struct device *dev, dma_addr_t dma_handle); 397bool arch_dma_map_sg_direct(struct device *dev, struct scatterlist *sg, 398 int nents); 399bool arch_dma_unmap_sg_direct(struct device *dev, struct scatterlist *sg, 400 int nents); 401#else 402#define arch_dma_map_page_direct(d, a) (false) 403#define arch_dma_unmap_page_direct(d, a) (false) 404#define arch_dma_map_sg_direct(d, s, n) (false) 405#define arch_dma_unmap_sg_direct(d, s, n) (false) 406#endif 407 408#ifdef CONFIG_ARCH_HAS_SETUP_DMA_OPS 409void arch_setup_dma_ops(struct device *dev, bool coherent); 410#else 411static inline void arch_setup_dma_ops(struct device *dev, bool coherent) 412{ 413} 414#endif /* CONFIG_ARCH_HAS_SETUP_DMA_OPS */ 415 416#ifdef CONFIG_ARCH_HAS_TEARDOWN_DMA_OPS 417void arch_teardown_dma_ops(struct device *dev); 418#else 419static inline void arch_teardown_dma_ops(struct device *dev) 420{ 421} 422#endif /* CONFIG_ARCH_HAS_TEARDOWN_DMA_OPS */ 423 424#ifdef CONFIG_DMA_API_DEBUG 425void dma_debug_add_bus(const struct bus_type *bus); 426void debug_dma_dump_mappings(struct device *dev); 427#else 428static inline void dma_debug_add_bus(const struct bus_type *bus) 429{ 430} 431static inline void debug_dma_dump_mappings(struct device *dev) 432{ 433} 434#endif /* CONFIG_DMA_API_DEBUG */ 435 436extern const struct dma_map_ops dma_dummy_ops; 437 438enum pci_p2pdma_map_type { 439 /* 440 * PCI_P2PDMA_MAP_UNKNOWN: Used internally for indicating the mapping 441 * type hasn't been calculated yet. Functions that return this enum 442 * never return this value. 443 */ 444 PCI_P2PDMA_MAP_UNKNOWN = 0, 445 446 /* 447 * PCI_P2PDMA_MAP_NOT_SUPPORTED: Indicates the transaction will 448 * traverse the host bridge and the host bridge is not in the 449 * allowlist. DMA Mapping routines should return an error when 450 * this is returned. 451 */ 452 PCI_P2PDMA_MAP_NOT_SUPPORTED, 453 454 /* 455 * PCI_P2PDMA_BUS_ADDR: Indicates that two devices can talk to 456 * each other directly through a PCI switch and the transaction will 457 * not traverse the host bridge. Such a mapping should program 458 * the DMA engine with PCI bus addresses. 459 */ 460 PCI_P2PDMA_MAP_BUS_ADDR, 461 462 /* 463 * PCI_P2PDMA_MAP_THRU_HOST_BRIDGE: Indicates two devices can talk 464 * to each other, but the transaction traverses a host bridge on the 465 * allowlist. In this case, a normal mapping either with CPU physical 466 * addresses (in the case of dma-direct) or IOVA addresses (in the 467 * case of IOMMUs) should be used to program the DMA engine. 468 */ 469 PCI_P2PDMA_MAP_THRU_HOST_BRIDGE, 470}; 471 472struct pci_p2pdma_map_state { 473 struct dev_pagemap *pgmap; 474 int map; 475 u64 bus_off; 476}; 477 478#ifdef CONFIG_PCI_P2PDMA 479enum pci_p2pdma_map_type 480pci_p2pdma_map_segment(struct pci_p2pdma_map_state *state, struct device *dev, 481 struct scatterlist *sg); 482#else /* CONFIG_PCI_P2PDMA */ 483static inline enum pci_p2pdma_map_type 484pci_p2pdma_map_segment(struct pci_p2pdma_map_state *state, struct device *dev, 485 struct scatterlist *sg) 486{ 487 return PCI_P2PDMA_MAP_NOT_SUPPORTED; 488} 489#endif /* CONFIG_PCI_P2PDMA */ 490 491#endif /* _LINUX_DMA_MAP_OPS_H */