at for-next 38 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef __LINUX_CPUMASK_H 3#define __LINUX_CPUMASK_H 4 5/* 6 * Cpumasks provide a bitmap suitable for representing the 7 * set of CPUs in a system, one bit position per CPU number. In general, 8 * only nr_cpu_ids (<= NR_CPUS) bits are valid. 9 */ 10#include <linux/cleanup.h> 11#include <linux/kernel.h> 12#include <linux/bitmap.h> 13#include <linux/cpumask_types.h> 14#include <linux/atomic.h> 15#include <linux/bug.h> 16#include <linux/gfp_types.h> 17#include <linux/numa.h> 18 19/** 20 * cpumask_pr_args - printf args to output a cpumask 21 * @maskp: cpumask to be printed 22 * 23 * Can be used to provide arguments for '%*pb[l]' when printing a cpumask. 24 */ 25#define cpumask_pr_args(maskp) nr_cpu_ids, cpumask_bits(maskp) 26 27#if (NR_CPUS == 1) || defined(CONFIG_FORCE_NR_CPUS) 28#define nr_cpu_ids ((unsigned int)NR_CPUS) 29#else 30extern unsigned int nr_cpu_ids; 31#endif 32 33static __always_inline void set_nr_cpu_ids(unsigned int nr) 34{ 35#if (NR_CPUS == 1) || defined(CONFIG_FORCE_NR_CPUS) 36 WARN_ON(nr != nr_cpu_ids); 37#else 38 nr_cpu_ids = nr; 39#endif 40} 41 42/* 43 * We have several different "preferred sizes" for the cpumask 44 * operations, depending on operation. 45 * 46 * For example, the bitmap scanning and operating operations have 47 * optimized routines that work for the single-word case, but only when 48 * the size is constant. So if NR_CPUS fits in one single word, we are 49 * better off using that small constant, in order to trigger the 50 * optimized bit finding. That is 'small_cpumask_size'. 51 * 52 * The clearing and copying operations will similarly perform better 53 * with a constant size, but we limit that size arbitrarily to four 54 * words. We call this 'large_cpumask_size'. 55 * 56 * Finally, some operations just want the exact limit, either because 57 * they set bits or just don't have any faster fixed-sized versions. We 58 * call this just 'nr_cpumask_bits'. 59 * 60 * Note that these optional constants are always guaranteed to be at 61 * least as big as 'nr_cpu_ids' itself is, and all our cpumask 62 * allocations are at least that size (see cpumask_size()). The 63 * optimization comes from being able to potentially use a compile-time 64 * constant instead of a run-time generated exact number of CPUs. 65 */ 66#if NR_CPUS <= BITS_PER_LONG 67 #define small_cpumask_bits ((unsigned int)NR_CPUS) 68 #define large_cpumask_bits ((unsigned int)NR_CPUS) 69#elif NR_CPUS <= 4*BITS_PER_LONG 70 #define small_cpumask_bits nr_cpu_ids 71 #define large_cpumask_bits ((unsigned int)NR_CPUS) 72#else 73 #define small_cpumask_bits nr_cpu_ids 74 #define large_cpumask_bits nr_cpu_ids 75#endif 76#define nr_cpumask_bits nr_cpu_ids 77 78/* 79 * The following particular system cpumasks and operations manage 80 * possible, present, active and online cpus. 81 * 82 * cpu_possible_mask- has bit 'cpu' set iff cpu is populatable 83 * cpu_present_mask - has bit 'cpu' set iff cpu is populated 84 * cpu_enabled_mask - has bit 'cpu' set iff cpu can be brought online 85 * cpu_online_mask - has bit 'cpu' set iff cpu available to scheduler 86 * cpu_active_mask - has bit 'cpu' set iff cpu available to migration 87 * 88 * If !CONFIG_HOTPLUG_CPU, present == possible, and active == online. 89 * 90 * The cpu_possible_mask is fixed at boot time, as the set of CPU IDs 91 * that it is possible might ever be plugged in at anytime during the 92 * life of that system boot. The cpu_present_mask is dynamic(*), 93 * representing which CPUs are currently plugged in. And 94 * cpu_online_mask is the dynamic subset of cpu_present_mask, 95 * indicating those CPUs available for scheduling. 96 * 97 * If HOTPLUG is enabled, then cpu_present_mask varies dynamically, 98 * depending on what ACPI reports as currently plugged in, otherwise 99 * cpu_present_mask is just a copy of cpu_possible_mask. 100 * 101 * (*) Well, cpu_present_mask is dynamic in the hotplug case. If not 102 * hotplug, it's a copy of cpu_possible_mask, hence fixed at boot. 103 * 104 * Subtleties: 105 * 1) UP ARCHes (NR_CPUS == 1, CONFIG_SMP not defined) hardcode 106 * assumption that their single CPU is online. The UP 107 * cpu_{online,possible,present}_masks are placebos. Changing them 108 * will have no useful affect on the following num_*_cpus() 109 * and cpu_*() macros in the UP case. This ugliness is a UP 110 * optimization - don't waste any instructions or memory references 111 * asking if you're online or how many CPUs there are if there is 112 * only one CPU. 113 */ 114 115extern struct cpumask __cpu_possible_mask; 116extern struct cpumask __cpu_online_mask; 117extern struct cpumask __cpu_enabled_mask; 118extern struct cpumask __cpu_present_mask; 119extern struct cpumask __cpu_active_mask; 120extern struct cpumask __cpu_dying_mask; 121#define cpu_possible_mask ((const struct cpumask *)&__cpu_possible_mask) 122#define cpu_online_mask ((const struct cpumask *)&__cpu_online_mask) 123#define cpu_enabled_mask ((const struct cpumask *)&__cpu_enabled_mask) 124#define cpu_present_mask ((const struct cpumask *)&__cpu_present_mask) 125#define cpu_active_mask ((const struct cpumask *)&__cpu_active_mask) 126#define cpu_dying_mask ((const struct cpumask *)&__cpu_dying_mask) 127 128extern atomic_t __num_online_cpus; 129 130extern cpumask_t cpus_booted_once_mask; 131 132static __always_inline void cpu_max_bits_warn(unsigned int cpu, unsigned int bits) 133{ 134#ifdef CONFIG_DEBUG_PER_CPU_MAPS 135 WARN_ON_ONCE(cpu >= bits); 136#endif /* CONFIG_DEBUG_PER_CPU_MAPS */ 137} 138 139/* verify cpu argument to cpumask_* operators */ 140static __always_inline unsigned int cpumask_check(unsigned int cpu) 141{ 142 cpu_max_bits_warn(cpu, small_cpumask_bits); 143 return cpu; 144} 145 146/** 147 * cpumask_first - get the first cpu in a cpumask 148 * @srcp: the cpumask pointer 149 * 150 * Return: >= nr_cpu_ids if no cpus set. 151 */ 152static __always_inline unsigned int cpumask_first(const struct cpumask *srcp) 153{ 154 return find_first_bit(cpumask_bits(srcp), small_cpumask_bits); 155} 156 157/** 158 * cpumask_first_zero - get the first unset cpu in a cpumask 159 * @srcp: the cpumask pointer 160 * 161 * Return: >= nr_cpu_ids if all cpus are set. 162 */ 163static __always_inline unsigned int cpumask_first_zero(const struct cpumask *srcp) 164{ 165 return find_first_zero_bit(cpumask_bits(srcp), small_cpumask_bits); 166} 167 168/** 169 * cpumask_first_and - return the first cpu from *srcp1 & *srcp2 170 * @srcp1: the first input 171 * @srcp2: the second input 172 * 173 * Return: >= nr_cpu_ids if no cpus set in both. See also cpumask_next_and(). 174 */ 175static __always_inline 176unsigned int cpumask_first_and(const struct cpumask *srcp1, const struct cpumask *srcp2) 177{ 178 return find_first_and_bit(cpumask_bits(srcp1), cpumask_bits(srcp2), small_cpumask_bits); 179} 180 181/** 182 * cpumask_first_and_and - return the first cpu from *srcp1 & *srcp2 & *srcp3 183 * @srcp1: the first input 184 * @srcp2: the second input 185 * @srcp3: the third input 186 * 187 * Return: >= nr_cpu_ids if no cpus set in all. 188 */ 189static __always_inline 190unsigned int cpumask_first_and_and(const struct cpumask *srcp1, 191 const struct cpumask *srcp2, 192 const struct cpumask *srcp3) 193{ 194 return find_first_and_and_bit(cpumask_bits(srcp1), cpumask_bits(srcp2), 195 cpumask_bits(srcp3), small_cpumask_bits); 196} 197 198/** 199 * cpumask_last - get the last CPU in a cpumask 200 * @srcp: - the cpumask pointer 201 * 202 * Return: >= nr_cpumask_bits if no CPUs set. 203 */ 204static __always_inline unsigned int cpumask_last(const struct cpumask *srcp) 205{ 206 return find_last_bit(cpumask_bits(srcp), small_cpumask_bits); 207} 208 209/** 210 * cpumask_next - get the next cpu in a cpumask 211 * @n: the cpu prior to the place to search (i.e. return will be > @n) 212 * @srcp: the cpumask pointer 213 * 214 * Return: >= nr_cpu_ids if no further cpus set. 215 */ 216static __always_inline 217unsigned int cpumask_next(int n, const struct cpumask *srcp) 218{ 219 /* -1 is a legal arg here. */ 220 if (n != -1) 221 cpumask_check(n); 222 return find_next_bit(cpumask_bits(srcp), small_cpumask_bits, n + 1); 223} 224 225/** 226 * cpumask_next_zero - get the next unset cpu in a cpumask 227 * @n: the cpu prior to the place to search (i.e. return will be > @n) 228 * @srcp: the cpumask pointer 229 * 230 * Return: >= nr_cpu_ids if no further cpus unset. 231 */ 232static __always_inline 233unsigned int cpumask_next_zero(int n, const struct cpumask *srcp) 234{ 235 /* -1 is a legal arg here. */ 236 if (n != -1) 237 cpumask_check(n); 238 return find_next_zero_bit(cpumask_bits(srcp), small_cpumask_bits, n+1); 239} 240 241#if NR_CPUS == 1 242/* Uniprocessor: there is only one valid CPU */ 243static __always_inline 244unsigned int cpumask_local_spread(unsigned int i, int node) 245{ 246 return 0; 247} 248 249static __always_inline 250unsigned int cpumask_any_and_distribute(const struct cpumask *src1p, 251 const struct cpumask *src2p) 252{ 253 return cpumask_first_and(src1p, src2p); 254} 255 256static __always_inline 257unsigned int cpumask_any_distribute(const struct cpumask *srcp) 258{ 259 return cpumask_first(srcp); 260} 261#else 262unsigned int cpumask_local_spread(unsigned int i, int node); 263unsigned int cpumask_any_and_distribute(const struct cpumask *src1p, 264 const struct cpumask *src2p); 265unsigned int cpumask_any_distribute(const struct cpumask *srcp); 266#endif /* NR_CPUS */ 267 268/** 269 * cpumask_next_and - get the next cpu in *src1p & *src2p 270 * @n: the cpu prior to the place to search (i.e. return will be > @n) 271 * @src1p: the first cpumask pointer 272 * @src2p: the second cpumask pointer 273 * 274 * Return: >= nr_cpu_ids if no further cpus set in both. 275 */ 276static __always_inline 277unsigned int cpumask_next_and(int n, const struct cpumask *src1p, 278 const struct cpumask *src2p) 279{ 280 /* -1 is a legal arg here. */ 281 if (n != -1) 282 cpumask_check(n); 283 return find_next_and_bit(cpumask_bits(src1p), cpumask_bits(src2p), 284 small_cpumask_bits, n + 1); 285} 286 287/** 288 * for_each_cpu - iterate over every cpu in a mask 289 * @cpu: the (optionally unsigned) integer iterator 290 * @mask: the cpumask pointer 291 * 292 * After the loop, cpu is >= nr_cpu_ids. 293 */ 294#define for_each_cpu(cpu, mask) \ 295 for_each_set_bit(cpu, cpumask_bits(mask), small_cpumask_bits) 296 297#if NR_CPUS == 1 298static __always_inline 299unsigned int cpumask_next_wrap(int n, const struct cpumask *mask, int start, bool wrap) 300{ 301 cpumask_check(start); 302 if (n != -1) 303 cpumask_check(n); 304 305 /* 306 * Return the first available CPU when wrapping, or when starting before cpu0, 307 * since there is only one valid option. 308 */ 309 if (wrap && n >= 0) 310 return nr_cpumask_bits; 311 312 return cpumask_first(mask); 313} 314#else 315unsigned int __pure cpumask_next_wrap(int n, const struct cpumask *mask, int start, bool wrap); 316#endif 317 318/** 319 * for_each_cpu_wrap - iterate over every cpu in a mask, starting at a specified location 320 * @cpu: the (optionally unsigned) integer iterator 321 * @mask: the cpumask pointer 322 * @start: the start location 323 * 324 * The implementation does not assume any bit in @mask is set (including @start). 325 * 326 * After the loop, cpu is >= nr_cpu_ids. 327 */ 328#define for_each_cpu_wrap(cpu, mask, start) \ 329 for_each_set_bit_wrap(cpu, cpumask_bits(mask), small_cpumask_bits, start) 330 331/** 332 * for_each_cpu_and - iterate over every cpu in both masks 333 * @cpu: the (optionally unsigned) integer iterator 334 * @mask1: the first cpumask pointer 335 * @mask2: the second cpumask pointer 336 * 337 * This saves a temporary CPU mask in many places. It is equivalent to: 338 * struct cpumask tmp; 339 * cpumask_and(&tmp, &mask1, &mask2); 340 * for_each_cpu(cpu, &tmp) 341 * ... 342 * 343 * After the loop, cpu is >= nr_cpu_ids. 344 */ 345#define for_each_cpu_and(cpu, mask1, mask2) \ 346 for_each_and_bit(cpu, cpumask_bits(mask1), cpumask_bits(mask2), small_cpumask_bits) 347 348/** 349 * for_each_cpu_andnot - iterate over every cpu present in one mask, excluding 350 * those present in another. 351 * @cpu: the (optionally unsigned) integer iterator 352 * @mask1: the first cpumask pointer 353 * @mask2: the second cpumask pointer 354 * 355 * This saves a temporary CPU mask in many places. It is equivalent to: 356 * struct cpumask tmp; 357 * cpumask_andnot(&tmp, &mask1, &mask2); 358 * for_each_cpu(cpu, &tmp) 359 * ... 360 * 361 * After the loop, cpu is >= nr_cpu_ids. 362 */ 363#define for_each_cpu_andnot(cpu, mask1, mask2) \ 364 for_each_andnot_bit(cpu, cpumask_bits(mask1), cpumask_bits(mask2), small_cpumask_bits) 365 366/** 367 * for_each_cpu_or - iterate over every cpu present in either mask 368 * @cpu: the (optionally unsigned) integer iterator 369 * @mask1: the first cpumask pointer 370 * @mask2: the second cpumask pointer 371 * 372 * This saves a temporary CPU mask in many places. It is equivalent to: 373 * struct cpumask tmp; 374 * cpumask_or(&tmp, &mask1, &mask2); 375 * for_each_cpu(cpu, &tmp) 376 * ... 377 * 378 * After the loop, cpu is >= nr_cpu_ids. 379 */ 380#define for_each_cpu_or(cpu, mask1, mask2) \ 381 for_each_or_bit(cpu, cpumask_bits(mask1), cpumask_bits(mask2), small_cpumask_bits) 382 383/** 384 * for_each_cpu_from - iterate over CPUs present in @mask, from @cpu to the end of @mask. 385 * @cpu: the (optionally unsigned) integer iterator 386 * @mask: the cpumask pointer 387 * 388 * After the loop, cpu is >= nr_cpu_ids. 389 */ 390#define for_each_cpu_from(cpu, mask) \ 391 for_each_set_bit_from(cpu, cpumask_bits(mask), small_cpumask_bits) 392 393/** 394 * cpumask_any_but - return a "random" in a cpumask, but not this one. 395 * @mask: the cpumask to search 396 * @cpu: the cpu to ignore. 397 * 398 * Often used to find any cpu but smp_processor_id() in a mask. 399 * Return: >= nr_cpu_ids if no cpus set. 400 */ 401static __always_inline 402unsigned int cpumask_any_but(const struct cpumask *mask, unsigned int cpu) 403{ 404 unsigned int i; 405 406 cpumask_check(cpu); 407 for_each_cpu(i, mask) 408 if (i != cpu) 409 break; 410 return i; 411} 412 413/** 414 * cpumask_any_and_but - pick a "random" cpu from *mask1 & *mask2, but not this one. 415 * @mask1: the first input cpumask 416 * @mask2: the second input cpumask 417 * @cpu: the cpu to ignore 418 * 419 * Returns >= nr_cpu_ids if no cpus set. 420 */ 421static __always_inline 422unsigned int cpumask_any_and_but(const struct cpumask *mask1, 423 const struct cpumask *mask2, 424 unsigned int cpu) 425{ 426 unsigned int i; 427 428 cpumask_check(cpu); 429 i = cpumask_first_and(mask1, mask2); 430 if (i != cpu) 431 return i; 432 433 return cpumask_next_and(cpu, mask1, mask2); 434} 435 436/** 437 * cpumask_nth - get the Nth cpu in a cpumask 438 * @srcp: the cpumask pointer 439 * @cpu: the Nth cpu to find, starting from 0 440 * 441 * Return: >= nr_cpu_ids if such cpu doesn't exist. 442 */ 443static __always_inline 444unsigned int cpumask_nth(unsigned int cpu, const struct cpumask *srcp) 445{ 446 return find_nth_bit(cpumask_bits(srcp), small_cpumask_bits, cpumask_check(cpu)); 447} 448 449/** 450 * cpumask_nth_and - get the Nth cpu in 2 cpumasks 451 * @srcp1: the cpumask pointer 452 * @srcp2: the cpumask pointer 453 * @cpu: the Nth cpu to find, starting from 0 454 * 455 * Return: >= nr_cpu_ids if such cpu doesn't exist. 456 */ 457static __always_inline 458unsigned int cpumask_nth_and(unsigned int cpu, const struct cpumask *srcp1, 459 const struct cpumask *srcp2) 460{ 461 return find_nth_and_bit(cpumask_bits(srcp1), cpumask_bits(srcp2), 462 small_cpumask_bits, cpumask_check(cpu)); 463} 464 465/** 466 * cpumask_nth_andnot - get the Nth cpu set in 1st cpumask, and clear in 2nd. 467 * @srcp1: the cpumask pointer 468 * @srcp2: the cpumask pointer 469 * @cpu: the Nth cpu to find, starting from 0 470 * 471 * Return: >= nr_cpu_ids if such cpu doesn't exist. 472 */ 473static __always_inline 474unsigned int cpumask_nth_andnot(unsigned int cpu, const struct cpumask *srcp1, 475 const struct cpumask *srcp2) 476{ 477 return find_nth_andnot_bit(cpumask_bits(srcp1), cpumask_bits(srcp2), 478 small_cpumask_bits, cpumask_check(cpu)); 479} 480 481/** 482 * cpumask_nth_and_andnot - get the Nth cpu set in 1st and 2nd cpumask, and clear in 3rd. 483 * @srcp1: the cpumask pointer 484 * @srcp2: the cpumask pointer 485 * @srcp3: the cpumask pointer 486 * @cpu: the Nth cpu to find, starting from 0 487 * 488 * Return: >= nr_cpu_ids if such cpu doesn't exist. 489 */ 490static __always_inline 491unsigned int cpumask_nth_and_andnot(unsigned int cpu, const struct cpumask *srcp1, 492 const struct cpumask *srcp2, 493 const struct cpumask *srcp3) 494{ 495 return find_nth_and_andnot_bit(cpumask_bits(srcp1), 496 cpumask_bits(srcp2), 497 cpumask_bits(srcp3), 498 small_cpumask_bits, cpumask_check(cpu)); 499} 500 501#define CPU_BITS_NONE \ 502{ \ 503 [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \ 504} 505 506#define CPU_BITS_CPU0 \ 507{ \ 508 [0] = 1UL \ 509} 510 511/** 512 * cpumask_set_cpu - set a cpu in a cpumask 513 * @cpu: cpu number (< nr_cpu_ids) 514 * @dstp: the cpumask pointer 515 */ 516static __always_inline 517void cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp) 518{ 519 set_bit(cpumask_check(cpu), cpumask_bits(dstp)); 520} 521 522static __always_inline 523void __cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp) 524{ 525 __set_bit(cpumask_check(cpu), cpumask_bits(dstp)); 526} 527 528 529/** 530 * cpumask_clear_cpu - clear a cpu in a cpumask 531 * @cpu: cpu number (< nr_cpu_ids) 532 * @dstp: the cpumask pointer 533 */ 534static __always_inline void cpumask_clear_cpu(int cpu, struct cpumask *dstp) 535{ 536 clear_bit(cpumask_check(cpu), cpumask_bits(dstp)); 537} 538 539static __always_inline void __cpumask_clear_cpu(int cpu, struct cpumask *dstp) 540{ 541 __clear_bit(cpumask_check(cpu), cpumask_bits(dstp)); 542} 543 544/** 545 * cpumask_assign_cpu - assign a cpu in a cpumask 546 * @cpu: cpu number (< nr_cpu_ids) 547 * @dstp: the cpumask pointer 548 * @bool: the value to assign 549 */ 550static __always_inline void cpumask_assign_cpu(int cpu, struct cpumask *dstp, bool value) 551{ 552 assign_bit(cpumask_check(cpu), cpumask_bits(dstp), value); 553} 554 555static __always_inline void __cpumask_assign_cpu(int cpu, struct cpumask *dstp, bool value) 556{ 557 __assign_bit(cpumask_check(cpu), cpumask_bits(dstp), value); 558} 559 560/** 561 * cpumask_test_cpu - test for a cpu in a cpumask 562 * @cpu: cpu number (< nr_cpu_ids) 563 * @cpumask: the cpumask pointer 564 * 565 * Return: true if @cpu is set in @cpumask, else returns false 566 */ 567static __always_inline 568bool cpumask_test_cpu(int cpu, const struct cpumask *cpumask) 569{ 570 return test_bit(cpumask_check(cpu), cpumask_bits((cpumask))); 571} 572 573/** 574 * cpumask_test_and_set_cpu - atomically test and set a cpu in a cpumask 575 * @cpu: cpu number (< nr_cpu_ids) 576 * @cpumask: the cpumask pointer 577 * 578 * test_and_set_bit wrapper for cpumasks. 579 * 580 * Return: true if @cpu is set in old bitmap of @cpumask, else returns false 581 */ 582static __always_inline 583bool cpumask_test_and_set_cpu(int cpu, struct cpumask *cpumask) 584{ 585 return test_and_set_bit(cpumask_check(cpu), cpumask_bits(cpumask)); 586} 587 588/** 589 * cpumask_test_and_clear_cpu - atomically test and clear a cpu in a cpumask 590 * @cpu: cpu number (< nr_cpu_ids) 591 * @cpumask: the cpumask pointer 592 * 593 * test_and_clear_bit wrapper for cpumasks. 594 * 595 * Return: true if @cpu is set in old bitmap of @cpumask, else returns false 596 */ 597static __always_inline 598bool cpumask_test_and_clear_cpu(int cpu, struct cpumask *cpumask) 599{ 600 return test_and_clear_bit(cpumask_check(cpu), cpumask_bits(cpumask)); 601} 602 603/** 604 * cpumask_setall - set all cpus (< nr_cpu_ids) in a cpumask 605 * @dstp: the cpumask pointer 606 */ 607static __always_inline void cpumask_setall(struct cpumask *dstp) 608{ 609 if (small_const_nbits(small_cpumask_bits)) { 610 cpumask_bits(dstp)[0] = BITMAP_LAST_WORD_MASK(nr_cpumask_bits); 611 return; 612 } 613 bitmap_fill(cpumask_bits(dstp), nr_cpumask_bits); 614} 615 616/** 617 * cpumask_clear - clear all cpus (< nr_cpu_ids) in a cpumask 618 * @dstp: the cpumask pointer 619 */ 620static __always_inline void cpumask_clear(struct cpumask *dstp) 621{ 622 bitmap_zero(cpumask_bits(dstp), large_cpumask_bits); 623} 624 625/** 626 * cpumask_and - *dstp = *src1p & *src2p 627 * @dstp: the cpumask result 628 * @src1p: the first input 629 * @src2p: the second input 630 * 631 * Return: false if *@dstp is empty, else returns true 632 */ 633static __always_inline 634bool cpumask_and(struct cpumask *dstp, const struct cpumask *src1p, 635 const struct cpumask *src2p) 636{ 637 return bitmap_and(cpumask_bits(dstp), cpumask_bits(src1p), 638 cpumask_bits(src2p), small_cpumask_bits); 639} 640 641/** 642 * cpumask_or - *dstp = *src1p | *src2p 643 * @dstp: the cpumask result 644 * @src1p: the first input 645 * @src2p: the second input 646 */ 647static __always_inline 648void cpumask_or(struct cpumask *dstp, const struct cpumask *src1p, 649 const struct cpumask *src2p) 650{ 651 bitmap_or(cpumask_bits(dstp), cpumask_bits(src1p), 652 cpumask_bits(src2p), small_cpumask_bits); 653} 654 655/** 656 * cpumask_xor - *dstp = *src1p ^ *src2p 657 * @dstp: the cpumask result 658 * @src1p: the first input 659 * @src2p: the second input 660 */ 661static __always_inline 662void cpumask_xor(struct cpumask *dstp, const struct cpumask *src1p, 663 const struct cpumask *src2p) 664{ 665 bitmap_xor(cpumask_bits(dstp), cpumask_bits(src1p), 666 cpumask_bits(src2p), small_cpumask_bits); 667} 668 669/** 670 * cpumask_andnot - *dstp = *src1p & ~*src2p 671 * @dstp: the cpumask result 672 * @src1p: the first input 673 * @src2p: the second input 674 * 675 * Return: false if *@dstp is empty, else returns true 676 */ 677static __always_inline 678bool cpumask_andnot(struct cpumask *dstp, const struct cpumask *src1p, 679 const struct cpumask *src2p) 680{ 681 return bitmap_andnot(cpumask_bits(dstp), cpumask_bits(src1p), 682 cpumask_bits(src2p), small_cpumask_bits); 683} 684 685/** 686 * cpumask_equal - *src1p == *src2p 687 * @src1p: the first input 688 * @src2p: the second input 689 * 690 * Return: true if the cpumasks are equal, false if not 691 */ 692static __always_inline 693bool cpumask_equal(const struct cpumask *src1p, const struct cpumask *src2p) 694{ 695 return bitmap_equal(cpumask_bits(src1p), cpumask_bits(src2p), 696 small_cpumask_bits); 697} 698 699/** 700 * cpumask_or_equal - *src1p | *src2p == *src3p 701 * @src1p: the first input 702 * @src2p: the second input 703 * @src3p: the third input 704 * 705 * Return: true if first cpumask ORed with second cpumask == third cpumask, 706 * otherwise false 707 */ 708static __always_inline 709bool cpumask_or_equal(const struct cpumask *src1p, const struct cpumask *src2p, 710 const struct cpumask *src3p) 711{ 712 return bitmap_or_equal(cpumask_bits(src1p), cpumask_bits(src2p), 713 cpumask_bits(src3p), small_cpumask_bits); 714} 715 716/** 717 * cpumask_intersects - (*src1p & *src2p) != 0 718 * @src1p: the first input 719 * @src2p: the second input 720 * 721 * Return: true if first cpumask ANDed with second cpumask is non-empty, 722 * otherwise false 723 */ 724static __always_inline 725bool cpumask_intersects(const struct cpumask *src1p, const struct cpumask *src2p) 726{ 727 return bitmap_intersects(cpumask_bits(src1p), cpumask_bits(src2p), 728 small_cpumask_bits); 729} 730 731/** 732 * cpumask_subset - (*src1p & ~*src2p) == 0 733 * @src1p: the first input 734 * @src2p: the second input 735 * 736 * Return: true if *@src1p is a subset of *@src2p, else returns false 737 */ 738static __always_inline 739bool cpumask_subset(const struct cpumask *src1p, const struct cpumask *src2p) 740{ 741 return bitmap_subset(cpumask_bits(src1p), cpumask_bits(src2p), 742 small_cpumask_bits); 743} 744 745/** 746 * cpumask_empty - *srcp == 0 747 * @srcp: the cpumask to that all cpus < nr_cpu_ids are clear. 748 * 749 * Return: true if srcp is empty (has no bits set), else false 750 */ 751static __always_inline bool cpumask_empty(const struct cpumask *srcp) 752{ 753 return bitmap_empty(cpumask_bits(srcp), small_cpumask_bits); 754} 755 756/** 757 * cpumask_full - *srcp == 0xFFFFFFFF... 758 * @srcp: the cpumask to that all cpus < nr_cpu_ids are set. 759 * 760 * Return: true if srcp is full (has all bits set), else false 761 */ 762static __always_inline bool cpumask_full(const struct cpumask *srcp) 763{ 764 return bitmap_full(cpumask_bits(srcp), nr_cpumask_bits); 765} 766 767/** 768 * cpumask_weight - Count of bits in *srcp 769 * @srcp: the cpumask to count bits (< nr_cpu_ids) in. 770 * 771 * Return: count of bits set in *srcp 772 */ 773static __always_inline unsigned int cpumask_weight(const struct cpumask *srcp) 774{ 775 return bitmap_weight(cpumask_bits(srcp), small_cpumask_bits); 776} 777 778/** 779 * cpumask_weight_and - Count of bits in (*srcp1 & *srcp2) 780 * @srcp1: the cpumask to count bits (< nr_cpu_ids) in. 781 * @srcp2: the cpumask to count bits (< nr_cpu_ids) in. 782 * 783 * Return: count of bits set in both *srcp1 and *srcp2 784 */ 785static __always_inline 786unsigned int cpumask_weight_and(const struct cpumask *srcp1, const struct cpumask *srcp2) 787{ 788 return bitmap_weight_and(cpumask_bits(srcp1), cpumask_bits(srcp2), small_cpumask_bits); 789} 790 791/** 792 * cpumask_weight_andnot - Count of bits in (*srcp1 & ~*srcp2) 793 * @srcp1: the cpumask to count bits (< nr_cpu_ids) in. 794 * @srcp2: the cpumask to count bits (< nr_cpu_ids) in. 795 * 796 * Return: count of bits set in both *srcp1 and *srcp2 797 */ 798static __always_inline 799unsigned int cpumask_weight_andnot(const struct cpumask *srcp1, 800 const struct cpumask *srcp2) 801{ 802 return bitmap_weight_andnot(cpumask_bits(srcp1), cpumask_bits(srcp2), small_cpumask_bits); 803} 804 805/** 806 * cpumask_shift_right - *dstp = *srcp >> n 807 * @dstp: the cpumask result 808 * @srcp: the input to shift 809 * @n: the number of bits to shift by 810 */ 811static __always_inline 812void cpumask_shift_right(struct cpumask *dstp, const struct cpumask *srcp, int n) 813{ 814 bitmap_shift_right(cpumask_bits(dstp), cpumask_bits(srcp), n, 815 small_cpumask_bits); 816} 817 818/** 819 * cpumask_shift_left - *dstp = *srcp << n 820 * @dstp: the cpumask result 821 * @srcp: the input to shift 822 * @n: the number of bits to shift by 823 */ 824static __always_inline 825void cpumask_shift_left(struct cpumask *dstp, const struct cpumask *srcp, int n) 826{ 827 bitmap_shift_left(cpumask_bits(dstp), cpumask_bits(srcp), n, 828 nr_cpumask_bits); 829} 830 831/** 832 * cpumask_copy - *dstp = *srcp 833 * @dstp: the result 834 * @srcp: the input cpumask 835 */ 836static __always_inline 837void cpumask_copy(struct cpumask *dstp, const struct cpumask *srcp) 838{ 839 bitmap_copy(cpumask_bits(dstp), cpumask_bits(srcp), large_cpumask_bits); 840} 841 842/** 843 * cpumask_any - pick a "random" cpu from *srcp 844 * @srcp: the input cpumask 845 * 846 * Return: >= nr_cpu_ids if no cpus set. 847 */ 848#define cpumask_any(srcp) cpumask_first(srcp) 849 850/** 851 * cpumask_any_and - pick a "random" cpu from *mask1 & *mask2 852 * @mask1: the first input cpumask 853 * @mask2: the second input cpumask 854 * 855 * Return: >= nr_cpu_ids if no cpus set. 856 */ 857#define cpumask_any_and(mask1, mask2) cpumask_first_and((mask1), (mask2)) 858 859/** 860 * cpumask_of - the cpumask containing just a given cpu 861 * @cpu: the cpu (<= nr_cpu_ids) 862 */ 863#define cpumask_of(cpu) (get_cpu_mask(cpu)) 864 865/** 866 * cpumask_parse_user - extract a cpumask from a user string 867 * @buf: the buffer to extract from 868 * @len: the length of the buffer 869 * @dstp: the cpumask to set. 870 * 871 * Return: -errno, or 0 for success. 872 */ 873static __always_inline 874int cpumask_parse_user(const char __user *buf, int len, struct cpumask *dstp) 875{ 876 return bitmap_parse_user(buf, len, cpumask_bits(dstp), nr_cpumask_bits); 877} 878 879/** 880 * cpumask_parselist_user - extract a cpumask from a user string 881 * @buf: the buffer to extract from 882 * @len: the length of the buffer 883 * @dstp: the cpumask to set. 884 * 885 * Return: -errno, or 0 for success. 886 */ 887static __always_inline 888int cpumask_parselist_user(const char __user *buf, int len, struct cpumask *dstp) 889{ 890 return bitmap_parselist_user(buf, len, cpumask_bits(dstp), 891 nr_cpumask_bits); 892} 893 894/** 895 * cpumask_parse - extract a cpumask from a string 896 * @buf: the buffer to extract from 897 * @dstp: the cpumask to set. 898 * 899 * Return: -errno, or 0 for success. 900 */ 901static __always_inline int cpumask_parse(const char *buf, struct cpumask *dstp) 902{ 903 return bitmap_parse(buf, UINT_MAX, cpumask_bits(dstp), nr_cpumask_bits); 904} 905 906/** 907 * cpulist_parse - extract a cpumask from a user string of ranges 908 * @buf: the buffer to extract from 909 * @dstp: the cpumask to set. 910 * 911 * Return: -errno, or 0 for success. 912 */ 913static __always_inline int cpulist_parse(const char *buf, struct cpumask *dstp) 914{ 915 return bitmap_parselist(buf, cpumask_bits(dstp), nr_cpumask_bits); 916} 917 918/** 919 * cpumask_size - calculate size to allocate for a 'struct cpumask' in bytes 920 * 921 * Return: size to allocate for a &struct cpumask in bytes 922 */ 923static __always_inline unsigned int cpumask_size(void) 924{ 925 return bitmap_size(large_cpumask_bits); 926} 927 928#ifdef CONFIG_CPUMASK_OFFSTACK 929 930#define this_cpu_cpumask_var_ptr(x) this_cpu_read(x) 931#define __cpumask_var_read_mostly __read_mostly 932 933bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node); 934 935static __always_inline 936bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node) 937{ 938 return alloc_cpumask_var_node(mask, flags | __GFP_ZERO, node); 939} 940 941/** 942 * alloc_cpumask_var - allocate a struct cpumask 943 * @mask: pointer to cpumask_var_t where the cpumask is returned 944 * @flags: GFP_ flags 945 * 946 * Only defined when CONFIG_CPUMASK_OFFSTACK=y, otherwise is 947 * a nop returning a constant 1 (in <linux/cpumask.h>). 948 * 949 * See alloc_cpumask_var_node. 950 * 951 * Return: %true if allocation succeeded, %false if not 952 */ 953static __always_inline 954bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) 955{ 956 return alloc_cpumask_var_node(mask, flags, NUMA_NO_NODE); 957} 958 959static __always_inline 960bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) 961{ 962 return alloc_cpumask_var(mask, flags | __GFP_ZERO); 963} 964 965void alloc_bootmem_cpumask_var(cpumask_var_t *mask); 966void free_cpumask_var(cpumask_var_t mask); 967void free_bootmem_cpumask_var(cpumask_var_t mask); 968 969static __always_inline bool cpumask_available(cpumask_var_t mask) 970{ 971 return mask != NULL; 972} 973 974#else 975 976#define this_cpu_cpumask_var_ptr(x) this_cpu_ptr(x) 977#define __cpumask_var_read_mostly 978 979static __always_inline bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) 980{ 981 return true; 982} 983 984static __always_inline bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, 985 int node) 986{ 987 return true; 988} 989 990static __always_inline bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) 991{ 992 cpumask_clear(*mask); 993 return true; 994} 995 996static __always_inline bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, 997 int node) 998{ 999 cpumask_clear(*mask); 1000 return true; 1001} 1002 1003static __always_inline void alloc_bootmem_cpumask_var(cpumask_var_t *mask) 1004{ 1005} 1006 1007static __always_inline void free_cpumask_var(cpumask_var_t mask) 1008{ 1009} 1010 1011static __always_inline void free_bootmem_cpumask_var(cpumask_var_t mask) 1012{ 1013} 1014 1015static __always_inline bool cpumask_available(cpumask_var_t mask) 1016{ 1017 return true; 1018} 1019#endif /* CONFIG_CPUMASK_OFFSTACK */ 1020 1021DEFINE_FREE(free_cpumask_var, struct cpumask *, if (_T) free_cpumask_var(_T)); 1022 1023/* It's common to want to use cpu_all_mask in struct member initializers, 1024 * so it has to refer to an address rather than a pointer. */ 1025extern const DECLARE_BITMAP(cpu_all_bits, NR_CPUS); 1026#define cpu_all_mask to_cpumask(cpu_all_bits) 1027 1028/* First bits of cpu_bit_bitmap are in fact unset. */ 1029#define cpu_none_mask to_cpumask(cpu_bit_bitmap[0]) 1030 1031#if NR_CPUS == 1 1032/* Uniprocessor: the possible/online/present masks are always "1" */ 1033#define for_each_possible_cpu(cpu) for ((cpu) = 0; (cpu) < 1; (cpu)++) 1034#define for_each_online_cpu(cpu) for ((cpu) = 0; (cpu) < 1; (cpu)++) 1035#define for_each_present_cpu(cpu) for ((cpu) = 0; (cpu) < 1; (cpu)++) 1036#else 1037#define for_each_possible_cpu(cpu) for_each_cpu((cpu), cpu_possible_mask) 1038#define for_each_online_cpu(cpu) for_each_cpu((cpu), cpu_online_mask) 1039#define for_each_enabled_cpu(cpu) for_each_cpu((cpu), cpu_enabled_mask) 1040#define for_each_present_cpu(cpu) for_each_cpu((cpu), cpu_present_mask) 1041#endif 1042 1043/* Wrappers for arch boot code to manipulate normally-constant masks */ 1044void init_cpu_present(const struct cpumask *src); 1045void init_cpu_possible(const struct cpumask *src); 1046void init_cpu_online(const struct cpumask *src); 1047 1048#define assign_cpu(cpu, mask, val) \ 1049 assign_bit(cpumask_check(cpu), cpumask_bits(mask), (val)) 1050 1051#define set_cpu_possible(cpu, possible) assign_cpu((cpu), &__cpu_possible_mask, (possible)) 1052#define set_cpu_enabled(cpu, enabled) assign_cpu((cpu), &__cpu_enabled_mask, (enabled)) 1053#define set_cpu_present(cpu, present) assign_cpu((cpu), &__cpu_present_mask, (present)) 1054#define set_cpu_active(cpu, active) assign_cpu((cpu), &__cpu_active_mask, (active)) 1055#define set_cpu_dying(cpu, dying) assign_cpu((cpu), &__cpu_dying_mask, (dying)) 1056 1057void set_cpu_online(unsigned int cpu, bool online); 1058 1059/** 1060 * to_cpumask - convert a NR_CPUS bitmap to a struct cpumask * 1061 * @bitmap: the bitmap 1062 * 1063 * There are a few places where cpumask_var_t isn't appropriate and 1064 * static cpumasks must be used (eg. very early boot), yet we don't 1065 * expose the definition of 'struct cpumask'. 1066 * 1067 * This does the conversion, and can be used as a constant initializer. 1068 */ 1069#define to_cpumask(bitmap) \ 1070 ((struct cpumask *)(1 ? (bitmap) \ 1071 : (void *)sizeof(__check_is_bitmap(bitmap)))) 1072 1073static __always_inline int __check_is_bitmap(const unsigned long *bitmap) 1074{ 1075 return 1; 1076} 1077 1078/* 1079 * Special-case data structure for "single bit set only" constant CPU masks. 1080 * 1081 * We pre-generate all the 64 (or 32) possible bit positions, with enough 1082 * padding to the left and the right, and return the constant pointer 1083 * appropriately offset. 1084 */ 1085extern const unsigned long 1086 cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)]; 1087 1088static __always_inline const struct cpumask *get_cpu_mask(unsigned int cpu) 1089{ 1090 const unsigned long *p = cpu_bit_bitmap[1 + cpu % BITS_PER_LONG]; 1091 p -= cpu / BITS_PER_LONG; 1092 return to_cpumask(p); 1093} 1094 1095#if NR_CPUS > 1 1096/** 1097 * num_online_cpus() - Read the number of online CPUs 1098 * 1099 * Despite the fact that __num_online_cpus is of type atomic_t, this 1100 * interface gives only a momentary snapshot and is not protected against 1101 * concurrent CPU hotplug operations unless invoked from a cpuhp_lock held 1102 * region. 1103 * 1104 * Return: momentary snapshot of the number of online CPUs 1105 */ 1106static __always_inline unsigned int num_online_cpus(void) 1107{ 1108 return raw_atomic_read(&__num_online_cpus); 1109} 1110#define num_possible_cpus() cpumask_weight(cpu_possible_mask) 1111#define num_enabled_cpus() cpumask_weight(cpu_enabled_mask) 1112#define num_present_cpus() cpumask_weight(cpu_present_mask) 1113#define num_active_cpus() cpumask_weight(cpu_active_mask) 1114 1115static __always_inline bool cpu_online(unsigned int cpu) 1116{ 1117 return cpumask_test_cpu(cpu, cpu_online_mask); 1118} 1119 1120static __always_inline bool cpu_enabled(unsigned int cpu) 1121{ 1122 return cpumask_test_cpu(cpu, cpu_enabled_mask); 1123} 1124 1125static __always_inline bool cpu_possible(unsigned int cpu) 1126{ 1127 return cpumask_test_cpu(cpu, cpu_possible_mask); 1128} 1129 1130static __always_inline bool cpu_present(unsigned int cpu) 1131{ 1132 return cpumask_test_cpu(cpu, cpu_present_mask); 1133} 1134 1135static __always_inline bool cpu_active(unsigned int cpu) 1136{ 1137 return cpumask_test_cpu(cpu, cpu_active_mask); 1138} 1139 1140static __always_inline bool cpu_dying(unsigned int cpu) 1141{ 1142 return cpumask_test_cpu(cpu, cpu_dying_mask); 1143} 1144 1145#else 1146 1147#define num_online_cpus() 1U 1148#define num_possible_cpus() 1U 1149#define num_enabled_cpus() 1U 1150#define num_present_cpus() 1U 1151#define num_active_cpus() 1U 1152 1153static __always_inline bool cpu_online(unsigned int cpu) 1154{ 1155 return cpu == 0; 1156} 1157 1158static __always_inline bool cpu_possible(unsigned int cpu) 1159{ 1160 return cpu == 0; 1161} 1162 1163static __always_inline bool cpu_enabled(unsigned int cpu) 1164{ 1165 return cpu == 0; 1166} 1167 1168static __always_inline bool cpu_present(unsigned int cpu) 1169{ 1170 return cpu == 0; 1171} 1172 1173static __always_inline bool cpu_active(unsigned int cpu) 1174{ 1175 return cpu == 0; 1176} 1177 1178static __always_inline bool cpu_dying(unsigned int cpu) 1179{ 1180 return false; 1181} 1182 1183#endif /* NR_CPUS > 1 */ 1184 1185#define cpu_is_offline(cpu) unlikely(!cpu_online(cpu)) 1186 1187#if NR_CPUS <= BITS_PER_LONG 1188#define CPU_BITS_ALL \ 1189{ \ 1190 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ 1191} 1192 1193#else /* NR_CPUS > BITS_PER_LONG */ 1194 1195#define CPU_BITS_ALL \ 1196{ \ 1197 [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \ 1198 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ 1199} 1200#endif /* NR_CPUS > BITS_PER_LONG */ 1201 1202/** 1203 * cpumap_print_to_pagebuf - copies the cpumask into the buffer either 1204 * as comma-separated list of cpus or hex values of cpumask 1205 * @list: indicates whether the cpumap must be list 1206 * @mask: the cpumask to copy 1207 * @buf: the buffer to copy into 1208 * 1209 * Return: the length of the (null-terminated) @buf string, zero if 1210 * nothing is copied. 1211 */ 1212static __always_inline ssize_t 1213cpumap_print_to_pagebuf(bool list, char *buf, const struct cpumask *mask) 1214{ 1215 return bitmap_print_to_pagebuf(list, buf, cpumask_bits(mask), 1216 nr_cpu_ids); 1217} 1218 1219/** 1220 * cpumap_print_bitmask_to_buf - copies the cpumask into the buffer as 1221 * hex values of cpumask 1222 * 1223 * @buf: the buffer to copy into 1224 * @mask: the cpumask to copy 1225 * @off: in the string from which we are copying, we copy to @buf 1226 * @count: the maximum number of bytes to print 1227 * 1228 * The function prints the cpumask into the buffer as hex values of 1229 * cpumask; Typically used by bin_attribute to export cpumask bitmask 1230 * ABI. 1231 * 1232 * Return: the length of how many bytes have been copied, excluding 1233 * terminating '\0'. 1234 */ 1235static __always_inline 1236ssize_t cpumap_print_bitmask_to_buf(char *buf, const struct cpumask *mask, 1237 loff_t off, size_t count) 1238{ 1239 return bitmap_print_bitmask_to_buf(buf, cpumask_bits(mask), 1240 nr_cpu_ids, off, count) - 1; 1241} 1242 1243/** 1244 * cpumap_print_list_to_buf - copies the cpumask into the buffer as 1245 * comma-separated list of cpus 1246 * @buf: the buffer to copy into 1247 * @mask: the cpumask to copy 1248 * @off: in the string from which we are copying, we copy to @buf 1249 * @count: the maximum number of bytes to print 1250 * 1251 * Everything is same with the above cpumap_print_bitmask_to_buf() 1252 * except the print format. 1253 * 1254 * Return: the length of how many bytes have been copied, excluding 1255 * terminating '\0'. 1256 */ 1257static __always_inline 1258ssize_t cpumap_print_list_to_buf(char *buf, const struct cpumask *mask, 1259 loff_t off, size_t count) 1260{ 1261 return bitmap_print_list_to_buf(buf, cpumask_bits(mask), 1262 nr_cpu_ids, off, count) - 1; 1263} 1264 1265#if NR_CPUS <= BITS_PER_LONG 1266#define CPU_MASK_ALL \ 1267(cpumask_t) { { \ 1268 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ 1269} } 1270#else 1271#define CPU_MASK_ALL \ 1272(cpumask_t) { { \ 1273 [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \ 1274 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ 1275} } 1276#endif /* NR_CPUS > BITS_PER_LONG */ 1277 1278#define CPU_MASK_NONE \ 1279(cpumask_t) { { \ 1280 [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \ 1281} } 1282 1283#define CPU_MASK_CPU0 \ 1284(cpumask_t) { { \ 1285 [0] = 1UL \ 1286} } 1287 1288/* 1289 * Provide a valid theoretical max size for cpumap and cpulist sysfs files 1290 * to avoid breaking userspace which may allocate a buffer based on the size 1291 * reported by e.g. fstat. 1292 * 1293 * for cpumap NR_CPUS * 9/32 - 1 should be an exact length. 1294 * 1295 * For cpulist 7 is (ceil(log10(NR_CPUS)) + 1) allowing for NR_CPUS to be up 1296 * to 2 orders of magnitude larger than 8192. And then we divide by 2 to 1297 * cover a worst-case of every other cpu being on one of two nodes for a 1298 * very large NR_CPUS. 1299 * 1300 * Use PAGE_SIZE as a minimum for smaller configurations while avoiding 1301 * unsigned comparison to -1. 1302 */ 1303#define CPUMAP_FILE_MAX_BYTES (((NR_CPUS * 9)/32 > PAGE_SIZE) \ 1304 ? (NR_CPUS * 9)/32 - 1 : PAGE_SIZE) 1305#define CPULIST_FILE_MAX_BYTES (((NR_CPUS * 7)/2 > PAGE_SIZE) ? (NR_CPUS * 7)/2 : PAGE_SIZE) 1306 1307#endif /* __LINUX_CPUMASK_H */