at for-next 14 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_CLEANUP_H 3#define _LINUX_CLEANUP_H 4 5#include <linux/compiler.h> 6 7/** 8 * DOC: scope-based cleanup helpers 9 * 10 * The "goto error" pattern is notorious for introducing subtle resource 11 * leaks. It is tedious and error prone to add new resource acquisition 12 * constraints into code paths that already have several unwind 13 * conditions. The "cleanup" helpers enable the compiler to help with 14 * this tedium and can aid in maintaining LIFO (last in first out) 15 * unwind ordering to avoid unintentional leaks. 16 * 17 * As drivers make up the majority of the kernel code base, here is an 18 * example of using these helpers to clean up PCI drivers. The target of 19 * the cleanups are occasions where a goto is used to unwind a device 20 * reference (pci_dev_put()), or unlock the device (pci_dev_unlock()) 21 * before returning. 22 * 23 * The DEFINE_FREE() macro can arrange for PCI device references to be 24 * dropped when the associated variable goes out of scope:: 25 * 26 * DEFINE_FREE(pci_dev_put, struct pci_dev *, if (_T) pci_dev_put(_T)) 27 * ... 28 * struct pci_dev *dev __free(pci_dev_put) = 29 * pci_get_slot(parent, PCI_DEVFN(0, 0)); 30 * 31 * The above will automatically call pci_dev_put() if @dev is non-NULL 32 * when @dev goes out of scope (automatic variable scope). If a function 33 * wants to invoke pci_dev_put() on error, but return @dev (i.e. without 34 * freeing it) on success, it can do:: 35 * 36 * return no_free_ptr(dev); 37 * 38 * ...or:: 39 * 40 * return_ptr(dev); 41 * 42 * The DEFINE_GUARD() macro can arrange for the PCI device lock to be 43 * dropped when the scope where guard() is invoked ends:: 44 * 45 * DEFINE_GUARD(pci_dev, struct pci_dev *, pci_dev_lock(_T), pci_dev_unlock(_T)) 46 * ... 47 * guard(pci_dev)(dev); 48 * 49 * The lifetime of the lock obtained by the guard() helper follows the 50 * scope of automatic variable declaration. Take the following example:: 51 * 52 * func(...) 53 * { 54 * if (...) { 55 * ... 56 * guard(pci_dev)(dev); // pci_dev_lock() invoked here 57 * ... 58 * } // <- implied pci_dev_unlock() triggered here 59 * } 60 * 61 * Observe the lock is held for the remainder of the "if ()" block not 62 * the remainder of "func()". 63 * 64 * Now, when a function uses both __free() and guard(), or multiple 65 * instances of __free(), the LIFO order of variable definition order 66 * matters. GCC documentation says: 67 * 68 * "When multiple variables in the same scope have cleanup attributes, 69 * at exit from the scope their associated cleanup functions are run in 70 * reverse order of definition (last defined, first cleanup)." 71 * 72 * When the unwind order matters it requires that variables be defined 73 * mid-function scope rather than at the top of the file. Take the 74 * following example and notice the bug highlighted by "!!":: 75 * 76 * LIST_HEAD(list); 77 * DEFINE_MUTEX(lock); 78 * 79 * struct object { 80 * struct list_head node; 81 * }; 82 * 83 * static struct object *alloc_add(void) 84 * { 85 * struct object *obj; 86 * 87 * lockdep_assert_held(&lock); 88 * obj = kzalloc(sizeof(*obj), GFP_KERNEL); 89 * if (obj) { 90 * LIST_HEAD_INIT(&obj->node); 91 * list_add(obj->node, &list): 92 * } 93 * return obj; 94 * } 95 * 96 * static void remove_free(struct object *obj) 97 * { 98 * lockdep_assert_held(&lock); 99 * list_del(&obj->node); 100 * kfree(obj); 101 * } 102 * 103 * DEFINE_FREE(remove_free, struct object *, if (_T) remove_free(_T)) 104 * static int init(void) 105 * { 106 * struct object *obj __free(remove_free) = NULL; 107 * int err; 108 * 109 * guard(mutex)(&lock); 110 * obj = alloc_add(); 111 * 112 * if (!obj) 113 * return -ENOMEM; 114 * 115 * err = other_init(obj); 116 * if (err) 117 * return err; // remove_free() called without the lock!! 118 * 119 * no_free_ptr(obj); 120 * return 0; 121 * } 122 * 123 * That bug is fixed by changing init() to call guard() and define + 124 * initialize @obj in this order:: 125 * 126 * guard(mutex)(&lock); 127 * struct object *obj __free(remove_free) = alloc_add(); 128 * 129 * Given that the "__free(...) = NULL" pattern for variables defined at 130 * the top of the function poses this potential interdependency problem 131 * the recommendation is to always define and assign variables in one 132 * statement and not group variable definitions at the top of the 133 * function when __free() is used. 134 * 135 * Lastly, given that the benefit of cleanup helpers is removal of 136 * "goto", and that the "goto" statement can jump between scopes, the 137 * expectation is that usage of "goto" and cleanup helpers is never 138 * mixed in the same function. I.e. for a given routine, convert all 139 * resources that need a "goto" cleanup to scope-based cleanup, or 140 * convert none of them. 141 */ 142 143/* 144 * DEFINE_FREE(name, type, free): 145 * simple helper macro that defines the required wrapper for a __free() 146 * based cleanup function. @free is an expression using '_T' to access the 147 * variable. @free should typically include a NULL test before calling a 148 * function, see the example below. 149 * 150 * __free(name): 151 * variable attribute to add a scoped based cleanup to the variable. 152 * 153 * no_free_ptr(var): 154 * like a non-atomic xchg(var, NULL), such that the cleanup function will 155 * be inhibited -- provided it sanely deals with a NULL value. 156 * 157 * NOTE: this has __must_check semantics so that it is harder to accidentally 158 * leak the resource. 159 * 160 * return_ptr(p): 161 * returns p while inhibiting the __free(). 162 * 163 * Ex. 164 * 165 * DEFINE_FREE(kfree, void *, if (_T) kfree(_T)) 166 * 167 * void *alloc_obj(...) 168 * { 169 * struct obj *p __free(kfree) = kmalloc(...); 170 * if (!p) 171 * return NULL; 172 * 173 * if (!init_obj(p)) 174 * return NULL; 175 * 176 * return_ptr(p); 177 * } 178 * 179 * NOTE: the DEFINE_FREE()'s @free expression includes a NULL test even though 180 * kfree() is fine to be called with a NULL value. This is on purpose. This way 181 * the compiler sees the end of our alloc_obj() function as: 182 * 183 * tmp = p; 184 * p = NULL; 185 * if (p) 186 * kfree(p); 187 * return tmp; 188 * 189 * And through the magic of value-propagation and dead-code-elimination, it 190 * eliminates the actual cleanup call and compiles into: 191 * 192 * return p; 193 * 194 * Without the NULL test it turns into a mess and the compiler can't help us. 195 */ 196 197#define DEFINE_FREE(_name, _type, _free) \ 198 static inline void __free_##_name(void *p) { _type _T = *(_type *)p; _free; } 199 200#define __free(_name) __cleanup(__free_##_name) 201 202#define __get_and_null(p, nullvalue) \ 203 ({ \ 204 __auto_type __ptr = &(p); \ 205 __auto_type __val = *__ptr; \ 206 *__ptr = nullvalue; \ 207 __val; \ 208 }) 209 210static inline __must_check 211const volatile void * __must_check_fn(const volatile void *val) 212{ return val; } 213 214#define no_free_ptr(p) \ 215 ((typeof(p)) __must_check_fn(__get_and_null(p, NULL))) 216 217#define return_ptr(p) return no_free_ptr(p) 218 219 220/* 221 * DEFINE_CLASS(name, type, exit, init, init_args...): 222 * helper to define the destructor and constructor for a type. 223 * @exit is an expression using '_T' -- similar to FREE above. 224 * @init is an expression in @init_args resulting in @type 225 * 226 * EXTEND_CLASS(name, ext, init, init_args...): 227 * extends class @name to @name@ext with the new constructor 228 * 229 * CLASS(name, var)(args...): 230 * declare the variable @var as an instance of the named class 231 * 232 * Ex. 233 * 234 * DEFINE_CLASS(fdget, struct fd, fdput(_T), fdget(fd), int fd) 235 * 236 * CLASS(fdget, f)(fd); 237 * if (fd_empty(f)) 238 * return -EBADF; 239 * 240 * // use 'f' without concern 241 */ 242 243#define DEFINE_CLASS(_name, _type, _exit, _init, _init_args...) \ 244typedef _type class_##_name##_t; \ 245static inline void class_##_name##_destructor(_type *p) \ 246{ _type _T = *p; _exit; } \ 247static inline _type class_##_name##_constructor(_init_args) \ 248{ _type t = _init; return t; } 249 250#define EXTEND_CLASS(_name, ext, _init, _init_args...) \ 251typedef class_##_name##_t class_##_name##ext##_t; \ 252static inline void class_##_name##ext##_destructor(class_##_name##_t *p)\ 253{ class_##_name##_destructor(p); } \ 254static inline class_##_name##_t class_##_name##ext##_constructor(_init_args) \ 255{ class_##_name##_t t = _init; return t; } 256 257#define CLASS(_name, var) \ 258 class_##_name##_t var __cleanup(class_##_name##_destructor) = \ 259 class_##_name##_constructor 260 261 262/* 263 * DEFINE_GUARD(name, type, lock, unlock): 264 * trivial wrapper around DEFINE_CLASS() above specifically 265 * for locks. 266 * 267 * DEFINE_GUARD_COND(name, ext, condlock) 268 * wrapper around EXTEND_CLASS above to add conditional lock 269 * variants to a base class, eg. mutex_trylock() or 270 * mutex_lock_interruptible(). 271 * 272 * guard(name): 273 * an anonymous instance of the (guard) class, not recommended for 274 * conditional locks. 275 * 276 * scoped_guard (name, args...) { }: 277 * similar to CLASS(name, scope)(args), except the variable (with the 278 * explicit name 'scope') is declard in a for-loop such that its scope is 279 * bound to the next (compound) statement. 280 * 281 * for conditional locks the loop body is skipped when the lock is not 282 * acquired. 283 * 284 * scoped_cond_guard (name, fail, args...) { }: 285 * similar to scoped_guard(), except it does fail when the lock 286 * acquire fails. 287 * 288 * Only for conditional locks. 289 */ 290 291#define __DEFINE_CLASS_IS_CONDITIONAL(_name, _is_cond) \ 292static __maybe_unused const bool class_##_name##_is_conditional = _is_cond 293 294#define DEFINE_GUARD(_name, _type, _lock, _unlock) \ 295 __DEFINE_CLASS_IS_CONDITIONAL(_name, false); \ 296 DEFINE_CLASS(_name, _type, if (_T) { _unlock; }, ({ _lock; _T; }), _type _T); \ 297 static inline void * class_##_name##_lock_ptr(class_##_name##_t *_T) \ 298 { return (void *)(__force unsigned long)*_T; } 299 300#define DEFINE_GUARD_COND(_name, _ext, _condlock) \ 301 __DEFINE_CLASS_IS_CONDITIONAL(_name##_ext, true); \ 302 EXTEND_CLASS(_name, _ext, \ 303 ({ void *_t = _T; if (_T && !(_condlock)) _t = NULL; _t; }), \ 304 class_##_name##_t _T) \ 305 static inline void * class_##_name##_ext##_lock_ptr(class_##_name##_t *_T) \ 306 { return class_##_name##_lock_ptr(_T); } 307 308#define guard(_name) \ 309 CLASS(_name, __UNIQUE_ID(guard)) 310 311#define __guard_ptr(_name) class_##_name##_lock_ptr 312#define __is_cond_ptr(_name) class_##_name##_is_conditional 313 314/* 315 * Helper macro for scoped_guard(). 316 * 317 * Note that the "!__is_cond_ptr(_name)" part of the condition ensures that 318 * compiler would be sure that for the unconditional locks the body of the 319 * loop (caller-provided code glued to the else clause) could not be skipped. 320 * It is needed because the other part - "__guard_ptr(_name)(&scope)" - is too 321 * hard to deduce (even if could be proven true for unconditional locks). 322 */ 323#define __scoped_guard(_name, _label, args...) \ 324 for (CLASS(_name, scope)(args); \ 325 __guard_ptr(_name)(&scope) || !__is_cond_ptr(_name); \ 326 ({ goto _label; })) \ 327 if (0) { \ 328_label: \ 329 break; \ 330 } else 331 332#define scoped_guard(_name, args...) \ 333 __scoped_guard(_name, __UNIQUE_ID(label), args) 334 335#define __scoped_cond_guard(_name, _fail, _label, args...) \ 336 for (CLASS(_name, scope)(args); true; ({ goto _label; })) \ 337 if (!__guard_ptr(_name)(&scope)) { \ 338 BUILD_BUG_ON(!__is_cond_ptr(_name)); \ 339 _fail; \ 340_label: \ 341 break; \ 342 } else 343 344#define scoped_cond_guard(_name, _fail, args...) \ 345 __scoped_cond_guard(_name, _fail, __UNIQUE_ID(label), args) 346 347/* 348 * Additional helper macros for generating lock guards with types, either for 349 * locks that don't have a native type (eg. RCU, preempt) or those that need a 350 * 'fat' pointer (eg. spin_lock_irqsave). 351 * 352 * DEFINE_LOCK_GUARD_0(name, lock, unlock, ...) 353 * DEFINE_LOCK_GUARD_1(name, type, lock, unlock, ...) 354 * DEFINE_LOCK_GUARD_1_COND(name, ext, condlock) 355 * 356 * will result in the following type: 357 * 358 * typedef struct { 359 * type *lock; // 'type := void' for the _0 variant 360 * __VA_ARGS__; 361 * } class_##name##_t; 362 * 363 * As above, both _lock and _unlock are statements, except this time '_T' will 364 * be a pointer to the above struct. 365 */ 366 367#define __DEFINE_UNLOCK_GUARD(_name, _type, _unlock, ...) \ 368typedef struct { \ 369 _type *lock; \ 370 __VA_ARGS__; \ 371} class_##_name##_t; \ 372 \ 373static inline void class_##_name##_destructor(class_##_name##_t *_T) \ 374{ \ 375 if (_T->lock) { _unlock; } \ 376} \ 377 \ 378static inline void *class_##_name##_lock_ptr(class_##_name##_t *_T) \ 379{ \ 380 return (void *)(__force unsigned long)_T->lock; \ 381} 382 383 384#define __DEFINE_LOCK_GUARD_1(_name, _type, _lock) \ 385static inline class_##_name##_t class_##_name##_constructor(_type *l) \ 386{ \ 387 class_##_name##_t _t = { .lock = l }, *_T = &_t; \ 388 _lock; \ 389 return _t; \ 390} 391 392#define __DEFINE_LOCK_GUARD_0(_name, _lock) \ 393static inline class_##_name##_t class_##_name##_constructor(void) \ 394{ \ 395 class_##_name##_t _t = { .lock = (void*)1 }, \ 396 *_T __maybe_unused = &_t; \ 397 _lock; \ 398 return _t; \ 399} 400 401#define DEFINE_LOCK_GUARD_1(_name, _type, _lock, _unlock, ...) \ 402__DEFINE_CLASS_IS_CONDITIONAL(_name, false); \ 403__DEFINE_UNLOCK_GUARD(_name, _type, _unlock, __VA_ARGS__) \ 404__DEFINE_LOCK_GUARD_1(_name, _type, _lock) 405 406#define DEFINE_LOCK_GUARD_0(_name, _lock, _unlock, ...) \ 407__DEFINE_CLASS_IS_CONDITIONAL(_name, false); \ 408__DEFINE_UNLOCK_GUARD(_name, void, _unlock, __VA_ARGS__) \ 409__DEFINE_LOCK_GUARD_0(_name, _lock) 410 411#define DEFINE_LOCK_GUARD_1_COND(_name, _ext, _condlock) \ 412 __DEFINE_CLASS_IS_CONDITIONAL(_name##_ext, true); \ 413 EXTEND_CLASS(_name, _ext, \ 414 ({ class_##_name##_t _t = { .lock = l }, *_T = &_t;\ 415 if (_T->lock && !(_condlock)) _T->lock = NULL; \ 416 _t; }), \ 417 typeof_member(class_##_name##_t, lock) l) \ 418 static inline void * class_##_name##_ext##_lock_ptr(class_##_name##_t *_T) \ 419 { return class_##_name##_lock_ptr(_T); } 420 421 422#endif /* _LINUX_CLEANUP_H */