at for-next 112 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4#ifndef _LINUX_BPF_H 5#define _LINUX_BPF_H 1 6 7#include <uapi/linux/bpf.h> 8#include <uapi/linux/filter.h> 9 10#include <linux/workqueue.h> 11#include <linux/file.h> 12#include <linux/percpu.h> 13#include <linux/err.h> 14#include <linux/rbtree_latch.h> 15#include <linux/numa.h> 16#include <linux/mm_types.h> 17#include <linux/wait.h> 18#include <linux/refcount.h> 19#include <linux/mutex.h> 20#include <linux/module.h> 21#include <linux/kallsyms.h> 22#include <linux/capability.h> 23#include <linux/sched/mm.h> 24#include <linux/slab.h> 25#include <linux/percpu-refcount.h> 26#include <linux/stddef.h> 27#include <linux/bpfptr.h> 28#include <linux/btf.h> 29#include <linux/rcupdate_trace.h> 30#include <linux/static_call.h> 31#include <linux/memcontrol.h> 32#include <linux/cfi.h> 33 34struct bpf_verifier_env; 35struct bpf_verifier_log; 36struct perf_event; 37struct bpf_prog; 38struct bpf_prog_aux; 39struct bpf_map; 40struct bpf_arena; 41struct sock; 42struct seq_file; 43struct btf; 44struct btf_type; 45struct exception_table_entry; 46struct seq_operations; 47struct bpf_iter_aux_info; 48struct bpf_local_storage; 49struct bpf_local_storage_map; 50struct kobject; 51struct mem_cgroup; 52struct module; 53struct bpf_func_state; 54struct ftrace_ops; 55struct cgroup; 56struct bpf_token; 57struct user_namespace; 58struct super_block; 59struct inode; 60 61extern struct idr btf_idr; 62extern spinlock_t btf_idr_lock; 63extern struct kobject *btf_kobj; 64extern struct bpf_mem_alloc bpf_global_ma, bpf_global_percpu_ma; 65extern bool bpf_global_ma_set; 66 67typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64); 68typedef int (*bpf_iter_init_seq_priv_t)(void *private_data, 69 struct bpf_iter_aux_info *aux); 70typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data); 71typedef unsigned int (*bpf_func_t)(const void *, 72 const struct bpf_insn *); 73struct bpf_iter_seq_info { 74 const struct seq_operations *seq_ops; 75 bpf_iter_init_seq_priv_t init_seq_private; 76 bpf_iter_fini_seq_priv_t fini_seq_private; 77 u32 seq_priv_size; 78}; 79 80/* map is generic key/value storage optionally accessible by eBPF programs */ 81struct bpf_map_ops { 82 /* funcs callable from userspace (via syscall) */ 83 int (*map_alloc_check)(union bpf_attr *attr); 84 struct bpf_map *(*map_alloc)(union bpf_attr *attr); 85 void (*map_release)(struct bpf_map *map, struct file *map_file); 86 void (*map_free)(struct bpf_map *map); 87 int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key); 88 void (*map_release_uref)(struct bpf_map *map); 89 void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key); 90 int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr, 91 union bpf_attr __user *uattr); 92 int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key, 93 void *value, u64 flags); 94 int (*map_lookup_and_delete_batch)(struct bpf_map *map, 95 const union bpf_attr *attr, 96 union bpf_attr __user *uattr); 97 int (*map_update_batch)(struct bpf_map *map, struct file *map_file, 98 const union bpf_attr *attr, 99 union bpf_attr __user *uattr); 100 int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr, 101 union bpf_attr __user *uattr); 102 103 /* funcs callable from userspace and from eBPF programs */ 104 void *(*map_lookup_elem)(struct bpf_map *map, void *key); 105 long (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags); 106 long (*map_delete_elem)(struct bpf_map *map, void *key); 107 long (*map_push_elem)(struct bpf_map *map, void *value, u64 flags); 108 long (*map_pop_elem)(struct bpf_map *map, void *value); 109 long (*map_peek_elem)(struct bpf_map *map, void *value); 110 void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu); 111 112 /* funcs called by prog_array and perf_event_array map */ 113 void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file, 114 int fd); 115 /* If need_defer is true, the implementation should guarantee that 116 * the to-be-put element is still alive before the bpf program, which 117 * may manipulate it, exists. 118 */ 119 void (*map_fd_put_ptr)(struct bpf_map *map, void *ptr, bool need_defer); 120 int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf); 121 u32 (*map_fd_sys_lookup_elem)(void *ptr); 122 void (*map_seq_show_elem)(struct bpf_map *map, void *key, 123 struct seq_file *m); 124 int (*map_check_btf)(const struct bpf_map *map, 125 const struct btf *btf, 126 const struct btf_type *key_type, 127 const struct btf_type *value_type); 128 129 /* Prog poke tracking helpers. */ 130 int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux); 131 void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux); 132 void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old, 133 struct bpf_prog *new); 134 135 /* Direct value access helpers. */ 136 int (*map_direct_value_addr)(const struct bpf_map *map, 137 u64 *imm, u32 off); 138 int (*map_direct_value_meta)(const struct bpf_map *map, 139 u64 imm, u32 *off); 140 int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma); 141 __poll_t (*map_poll)(struct bpf_map *map, struct file *filp, 142 struct poll_table_struct *pts); 143 unsigned long (*map_get_unmapped_area)(struct file *filep, unsigned long addr, 144 unsigned long len, unsigned long pgoff, 145 unsigned long flags); 146 147 /* Functions called by bpf_local_storage maps */ 148 int (*map_local_storage_charge)(struct bpf_local_storage_map *smap, 149 void *owner, u32 size); 150 void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap, 151 void *owner, u32 size); 152 struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner); 153 154 /* Misc helpers.*/ 155 long (*map_redirect)(struct bpf_map *map, u64 key, u64 flags); 156 157 /* map_meta_equal must be implemented for maps that can be 158 * used as an inner map. It is a runtime check to ensure 159 * an inner map can be inserted to an outer map. 160 * 161 * Some properties of the inner map has been used during the 162 * verification time. When inserting an inner map at the runtime, 163 * map_meta_equal has to ensure the inserting map has the same 164 * properties that the verifier has used earlier. 165 */ 166 bool (*map_meta_equal)(const struct bpf_map *meta0, 167 const struct bpf_map *meta1); 168 169 170 int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env, 171 struct bpf_func_state *caller, 172 struct bpf_func_state *callee); 173 long (*map_for_each_callback)(struct bpf_map *map, 174 bpf_callback_t callback_fn, 175 void *callback_ctx, u64 flags); 176 177 u64 (*map_mem_usage)(const struct bpf_map *map); 178 179 /* BTF id of struct allocated by map_alloc */ 180 int *map_btf_id; 181 182 /* bpf_iter info used to open a seq_file */ 183 const struct bpf_iter_seq_info *iter_seq_info; 184}; 185 186enum { 187 /* Support at most 11 fields in a BTF type */ 188 BTF_FIELDS_MAX = 11, 189}; 190 191enum btf_field_type { 192 BPF_SPIN_LOCK = (1 << 0), 193 BPF_TIMER = (1 << 1), 194 BPF_KPTR_UNREF = (1 << 2), 195 BPF_KPTR_REF = (1 << 3), 196 BPF_KPTR_PERCPU = (1 << 4), 197 BPF_KPTR = BPF_KPTR_UNREF | BPF_KPTR_REF | BPF_KPTR_PERCPU, 198 BPF_LIST_HEAD = (1 << 5), 199 BPF_LIST_NODE = (1 << 6), 200 BPF_RB_ROOT = (1 << 7), 201 BPF_RB_NODE = (1 << 8), 202 BPF_GRAPH_NODE = BPF_RB_NODE | BPF_LIST_NODE, 203 BPF_GRAPH_ROOT = BPF_RB_ROOT | BPF_LIST_HEAD, 204 BPF_REFCOUNT = (1 << 9), 205 BPF_WORKQUEUE = (1 << 10), 206 BPF_UPTR = (1 << 11), 207}; 208 209typedef void (*btf_dtor_kfunc_t)(void *); 210 211struct btf_field_kptr { 212 struct btf *btf; 213 struct module *module; 214 /* dtor used if btf_is_kernel(btf), otherwise the type is 215 * program-allocated, dtor is NULL, and __bpf_obj_drop_impl is used 216 */ 217 btf_dtor_kfunc_t dtor; 218 u32 btf_id; 219}; 220 221struct btf_field_graph_root { 222 struct btf *btf; 223 u32 value_btf_id; 224 u32 node_offset; 225 struct btf_record *value_rec; 226}; 227 228struct btf_field { 229 u32 offset; 230 u32 size; 231 enum btf_field_type type; 232 union { 233 struct btf_field_kptr kptr; 234 struct btf_field_graph_root graph_root; 235 }; 236}; 237 238struct btf_record { 239 u32 cnt; 240 u32 field_mask; 241 int spin_lock_off; 242 int timer_off; 243 int wq_off; 244 int refcount_off; 245 struct btf_field fields[]; 246}; 247 248/* Non-opaque version of bpf_rb_node in uapi/linux/bpf.h */ 249struct bpf_rb_node_kern { 250 struct rb_node rb_node; 251 void *owner; 252} __attribute__((aligned(8))); 253 254/* Non-opaque version of bpf_list_node in uapi/linux/bpf.h */ 255struct bpf_list_node_kern { 256 struct list_head list_head; 257 void *owner; 258} __attribute__((aligned(8))); 259 260struct bpf_map { 261 const struct bpf_map_ops *ops; 262 struct bpf_map *inner_map_meta; 263#ifdef CONFIG_SECURITY 264 void *security; 265#endif 266 enum bpf_map_type map_type; 267 u32 key_size; 268 u32 value_size; 269 u32 max_entries; 270 u64 map_extra; /* any per-map-type extra fields */ 271 u32 map_flags; 272 u32 id; 273 struct btf_record *record; 274 int numa_node; 275 u32 btf_key_type_id; 276 u32 btf_value_type_id; 277 u32 btf_vmlinux_value_type_id; 278 struct btf *btf; 279#ifdef CONFIG_MEMCG 280 struct obj_cgroup *objcg; 281#endif 282 char name[BPF_OBJ_NAME_LEN]; 283 struct mutex freeze_mutex; 284 atomic64_t refcnt; 285 atomic64_t usercnt; 286 /* rcu is used before freeing and work is only used during freeing */ 287 union { 288 struct work_struct work; 289 struct rcu_head rcu; 290 }; 291 atomic64_t writecnt; 292 /* 'Ownership' of program-containing map is claimed by the first program 293 * that is going to use this map or by the first program which FD is 294 * stored in the map to make sure that all callers and callees have the 295 * same prog type, JITed flag and xdp_has_frags flag. 296 */ 297 struct { 298 const struct btf_type *attach_func_proto; 299 spinlock_t lock; 300 enum bpf_prog_type type; 301 bool jited; 302 bool xdp_has_frags; 303 } owner; 304 bool bypass_spec_v1; 305 bool frozen; /* write-once; write-protected by freeze_mutex */ 306 bool free_after_mult_rcu_gp; 307 bool free_after_rcu_gp; 308 atomic64_t sleepable_refcnt; 309 s64 __percpu *elem_count; 310}; 311 312static inline const char *btf_field_type_name(enum btf_field_type type) 313{ 314 switch (type) { 315 case BPF_SPIN_LOCK: 316 return "bpf_spin_lock"; 317 case BPF_TIMER: 318 return "bpf_timer"; 319 case BPF_WORKQUEUE: 320 return "bpf_wq"; 321 case BPF_KPTR_UNREF: 322 case BPF_KPTR_REF: 323 return "kptr"; 324 case BPF_KPTR_PERCPU: 325 return "percpu_kptr"; 326 case BPF_UPTR: 327 return "uptr"; 328 case BPF_LIST_HEAD: 329 return "bpf_list_head"; 330 case BPF_LIST_NODE: 331 return "bpf_list_node"; 332 case BPF_RB_ROOT: 333 return "bpf_rb_root"; 334 case BPF_RB_NODE: 335 return "bpf_rb_node"; 336 case BPF_REFCOUNT: 337 return "bpf_refcount"; 338 default: 339 WARN_ON_ONCE(1); 340 return "unknown"; 341 } 342} 343 344static inline u32 btf_field_type_size(enum btf_field_type type) 345{ 346 switch (type) { 347 case BPF_SPIN_LOCK: 348 return sizeof(struct bpf_spin_lock); 349 case BPF_TIMER: 350 return sizeof(struct bpf_timer); 351 case BPF_WORKQUEUE: 352 return sizeof(struct bpf_wq); 353 case BPF_KPTR_UNREF: 354 case BPF_KPTR_REF: 355 case BPF_KPTR_PERCPU: 356 case BPF_UPTR: 357 return sizeof(u64); 358 case BPF_LIST_HEAD: 359 return sizeof(struct bpf_list_head); 360 case BPF_LIST_NODE: 361 return sizeof(struct bpf_list_node); 362 case BPF_RB_ROOT: 363 return sizeof(struct bpf_rb_root); 364 case BPF_RB_NODE: 365 return sizeof(struct bpf_rb_node); 366 case BPF_REFCOUNT: 367 return sizeof(struct bpf_refcount); 368 default: 369 WARN_ON_ONCE(1); 370 return 0; 371 } 372} 373 374static inline u32 btf_field_type_align(enum btf_field_type type) 375{ 376 switch (type) { 377 case BPF_SPIN_LOCK: 378 return __alignof__(struct bpf_spin_lock); 379 case BPF_TIMER: 380 return __alignof__(struct bpf_timer); 381 case BPF_WORKQUEUE: 382 return __alignof__(struct bpf_wq); 383 case BPF_KPTR_UNREF: 384 case BPF_KPTR_REF: 385 case BPF_KPTR_PERCPU: 386 case BPF_UPTR: 387 return __alignof__(u64); 388 case BPF_LIST_HEAD: 389 return __alignof__(struct bpf_list_head); 390 case BPF_LIST_NODE: 391 return __alignof__(struct bpf_list_node); 392 case BPF_RB_ROOT: 393 return __alignof__(struct bpf_rb_root); 394 case BPF_RB_NODE: 395 return __alignof__(struct bpf_rb_node); 396 case BPF_REFCOUNT: 397 return __alignof__(struct bpf_refcount); 398 default: 399 WARN_ON_ONCE(1); 400 return 0; 401 } 402} 403 404static inline void bpf_obj_init_field(const struct btf_field *field, void *addr) 405{ 406 memset(addr, 0, field->size); 407 408 switch (field->type) { 409 case BPF_REFCOUNT: 410 refcount_set((refcount_t *)addr, 1); 411 break; 412 case BPF_RB_NODE: 413 RB_CLEAR_NODE((struct rb_node *)addr); 414 break; 415 case BPF_LIST_HEAD: 416 case BPF_LIST_NODE: 417 INIT_LIST_HEAD((struct list_head *)addr); 418 break; 419 case BPF_RB_ROOT: 420 /* RB_ROOT_CACHED 0-inits, no need to do anything after memset */ 421 case BPF_SPIN_LOCK: 422 case BPF_TIMER: 423 case BPF_WORKQUEUE: 424 case BPF_KPTR_UNREF: 425 case BPF_KPTR_REF: 426 case BPF_KPTR_PERCPU: 427 case BPF_UPTR: 428 break; 429 default: 430 WARN_ON_ONCE(1); 431 return; 432 } 433} 434 435static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type) 436{ 437 if (IS_ERR_OR_NULL(rec)) 438 return false; 439 return rec->field_mask & type; 440} 441 442static inline void bpf_obj_init(const struct btf_record *rec, void *obj) 443{ 444 int i; 445 446 if (IS_ERR_OR_NULL(rec)) 447 return; 448 for (i = 0; i < rec->cnt; i++) 449 bpf_obj_init_field(&rec->fields[i], obj + rec->fields[i].offset); 450} 451 452/* 'dst' must be a temporary buffer and should not point to memory that is being 453 * used in parallel by a bpf program or bpf syscall, otherwise the access from 454 * the bpf program or bpf syscall may be corrupted by the reinitialization, 455 * leading to weird problems. Even 'dst' is newly-allocated from bpf memory 456 * allocator, it is still possible for 'dst' to be used in parallel by a bpf 457 * program or bpf syscall. 458 */ 459static inline void check_and_init_map_value(struct bpf_map *map, void *dst) 460{ 461 bpf_obj_init(map->record, dst); 462} 463 464/* memcpy that is used with 8-byte aligned pointers, power-of-8 size and 465 * forced to use 'long' read/writes to try to atomically copy long counters. 466 * Best-effort only. No barriers here, since it _will_ race with concurrent 467 * updates from BPF programs. Called from bpf syscall and mostly used with 468 * size 8 or 16 bytes, so ask compiler to inline it. 469 */ 470static inline void bpf_long_memcpy(void *dst, const void *src, u32 size) 471{ 472 const long *lsrc = src; 473 long *ldst = dst; 474 475 size /= sizeof(long); 476 while (size--) 477 data_race(*ldst++ = *lsrc++); 478} 479 480/* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */ 481static inline void bpf_obj_memcpy(struct btf_record *rec, 482 void *dst, void *src, u32 size, 483 bool long_memcpy) 484{ 485 u32 curr_off = 0; 486 int i; 487 488 if (IS_ERR_OR_NULL(rec)) { 489 if (long_memcpy) 490 bpf_long_memcpy(dst, src, round_up(size, 8)); 491 else 492 memcpy(dst, src, size); 493 return; 494 } 495 496 for (i = 0; i < rec->cnt; i++) { 497 u32 next_off = rec->fields[i].offset; 498 u32 sz = next_off - curr_off; 499 500 memcpy(dst + curr_off, src + curr_off, sz); 501 curr_off += rec->fields[i].size + sz; 502 } 503 memcpy(dst + curr_off, src + curr_off, size - curr_off); 504} 505 506static inline void copy_map_value(struct bpf_map *map, void *dst, void *src) 507{ 508 bpf_obj_memcpy(map->record, dst, src, map->value_size, false); 509} 510 511static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src) 512{ 513 bpf_obj_memcpy(map->record, dst, src, map->value_size, true); 514} 515 516static inline void bpf_obj_swap_uptrs(const struct btf_record *rec, void *dst, void *src) 517{ 518 unsigned long *src_uptr, *dst_uptr; 519 const struct btf_field *field; 520 int i; 521 522 if (!btf_record_has_field(rec, BPF_UPTR)) 523 return; 524 525 for (i = 0, field = rec->fields; i < rec->cnt; i++, field++) { 526 if (field->type != BPF_UPTR) 527 continue; 528 529 src_uptr = src + field->offset; 530 dst_uptr = dst + field->offset; 531 swap(*src_uptr, *dst_uptr); 532 } 533} 534 535static inline void bpf_obj_memzero(struct btf_record *rec, void *dst, u32 size) 536{ 537 u32 curr_off = 0; 538 int i; 539 540 if (IS_ERR_OR_NULL(rec)) { 541 memset(dst, 0, size); 542 return; 543 } 544 545 for (i = 0; i < rec->cnt; i++) { 546 u32 next_off = rec->fields[i].offset; 547 u32 sz = next_off - curr_off; 548 549 memset(dst + curr_off, 0, sz); 550 curr_off += rec->fields[i].size + sz; 551 } 552 memset(dst + curr_off, 0, size - curr_off); 553} 554 555static inline void zero_map_value(struct bpf_map *map, void *dst) 556{ 557 bpf_obj_memzero(map->record, dst, map->value_size); 558} 559 560void copy_map_value_locked(struct bpf_map *map, void *dst, void *src, 561 bool lock_src); 562void bpf_timer_cancel_and_free(void *timer); 563void bpf_wq_cancel_and_free(void *timer); 564void bpf_list_head_free(const struct btf_field *field, void *list_head, 565 struct bpf_spin_lock *spin_lock); 566void bpf_rb_root_free(const struct btf_field *field, void *rb_root, 567 struct bpf_spin_lock *spin_lock); 568u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena); 569u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena); 570int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size); 571 572struct bpf_offload_dev; 573struct bpf_offloaded_map; 574 575struct bpf_map_dev_ops { 576 int (*map_get_next_key)(struct bpf_offloaded_map *map, 577 void *key, void *next_key); 578 int (*map_lookup_elem)(struct bpf_offloaded_map *map, 579 void *key, void *value); 580 int (*map_update_elem)(struct bpf_offloaded_map *map, 581 void *key, void *value, u64 flags); 582 int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key); 583}; 584 585struct bpf_offloaded_map { 586 struct bpf_map map; 587 struct net_device *netdev; 588 const struct bpf_map_dev_ops *dev_ops; 589 void *dev_priv; 590 struct list_head offloads; 591}; 592 593static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map) 594{ 595 return container_of(map, struct bpf_offloaded_map, map); 596} 597 598static inline bool bpf_map_offload_neutral(const struct bpf_map *map) 599{ 600 return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 601} 602 603static inline bool bpf_map_support_seq_show(const struct bpf_map *map) 604{ 605 return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) && 606 map->ops->map_seq_show_elem; 607} 608 609int map_check_no_btf(const struct bpf_map *map, 610 const struct btf *btf, 611 const struct btf_type *key_type, 612 const struct btf_type *value_type); 613 614bool bpf_map_meta_equal(const struct bpf_map *meta0, 615 const struct bpf_map *meta1); 616 617extern const struct bpf_map_ops bpf_map_offload_ops; 618 619/* bpf_type_flag contains a set of flags that are applicable to the values of 620 * arg_type, ret_type and reg_type. For example, a pointer value may be null, 621 * or a memory is read-only. We classify types into two categories: base types 622 * and extended types. Extended types are base types combined with a type flag. 623 * 624 * Currently there are no more than 32 base types in arg_type, ret_type and 625 * reg_types. 626 */ 627#define BPF_BASE_TYPE_BITS 8 628 629enum bpf_type_flag { 630 /* PTR may be NULL. */ 631 PTR_MAYBE_NULL = BIT(0 + BPF_BASE_TYPE_BITS), 632 633 /* MEM is read-only. When applied on bpf_arg, it indicates the arg is 634 * compatible with both mutable and immutable memory. 635 */ 636 MEM_RDONLY = BIT(1 + BPF_BASE_TYPE_BITS), 637 638 /* MEM points to BPF ring buffer reservation. */ 639 MEM_RINGBUF = BIT(2 + BPF_BASE_TYPE_BITS), 640 641 /* MEM is in user address space. */ 642 MEM_USER = BIT(3 + BPF_BASE_TYPE_BITS), 643 644 /* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged 645 * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In 646 * order to drop this tag, it must be passed into bpf_per_cpu_ptr() 647 * or bpf_this_cpu_ptr(), which will return the pointer corresponding 648 * to the specified cpu. 649 */ 650 MEM_PERCPU = BIT(4 + BPF_BASE_TYPE_BITS), 651 652 /* Indicates that the argument will be released. */ 653 OBJ_RELEASE = BIT(5 + BPF_BASE_TYPE_BITS), 654 655 /* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark 656 * unreferenced and referenced kptr loaded from map value using a load 657 * instruction, so that they can only be dereferenced but not escape the 658 * BPF program into the kernel (i.e. cannot be passed as arguments to 659 * kfunc or bpf helpers). 660 */ 661 PTR_UNTRUSTED = BIT(6 + BPF_BASE_TYPE_BITS), 662 663 /* MEM can be uninitialized. */ 664 MEM_UNINIT = BIT(7 + BPF_BASE_TYPE_BITS), 665 666 /* DYNPTR points to memory local to the bpf program. */ 667 DYNPTR_TYPE_LOCAL = BIT(8 + BPF_BASE_TYPE_BITS), 668 669 /* DYNPTR points to a kernel-produced ringbuf record. */ 670 DYNPTR_TYPE_RINGBUF = BIT(9 + BPF_BASE_TYPE_BITS), 671 672 /* Size is known at compile time. */ 673 MEM_FIXED_SIZE = BIT(10 + BPF_BASE_TYPE_BITS), 674 675 /* MEM is of an allocated object of type in program BTF. This is used to 676 * tag PTR_TO_BTF_ID allocated using bpf_obj_new. 677 */ 678 MEM_ALLOC = BIT(11 + BPF_BASE_TYPE_BITS), 679 680 /* PTR was passed from the kernel in a trusted context, and may be 681 * passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions. 682 * Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above. 683 * PTR_UNTRUSTED refers to a kptr that was read directly from a map 684 * without invoking bpf_kptr_xchg(). What we really need to know is 685 * whether a pointer is safe to pass to a kfunc or BPF helper function. 686 * While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF 687 * helpers, they do not cover all possible instances of unsafe 688 * pointers. For example, a pointer that was obtained from walking a 689 * struct will _not_ get the PTR_UNTRUSTED type modifier, despite the 690 * fact that it may be NULL, invalid, etc. This is due to backwards 691 * compatibility requirements, as this was the behavior that was first 692 * introduced when kptrs were added. The behavior is now considered 693 * deprecated, and PTR_UNTRUSTED will eventually be removed. 694 * 695 * PTR_TRUSTED, on the other hand, is a pointer that the kernel 696 * guarantees to be valid and safe to pass to kfuncs and BPF helpers. 697 * For example, pointers passed to tracepoint arguments are considered 698 * PTR_TRUSTED, as are pointers that are passed to struct_ops 699 * callbacks. As alluded to above, pointers that are obtained from 700 * walking PTR_TRUSTED pointers are _not_ trusted. For example, if a 701 * struct task_struct *task is PTR_TRUSTED, then accessing 702 * task->last_wakee will lose the PTR_TRUSTED modifier when it's stored 703 * in a BPF register. Similarly, pointers passed to certain programs 704 * types such as kretprobes are not guaranteed to be valid, as they may 705 * for example contain an object that was recently freed. 706 */ 707 PTR_TRUSTED = BIT(12 + BPF_BASE_TYPE_BITS), 708 709 /* MEM is tagged with rcu and memory access needs rcu_read_lock protection. */ 710 MEM_RCU = BIT(13 + BPF_BASE_TYPE_BITS), 711 712 /* Used to tag PTR_TO_BTF_ID | MEM_ALLOC references which are non-owning. 713 * Currently only valid for linked-list and rbtree nodes. If the nodes 714 * have a bpf_refcount_field, they must be tagged MEM_RCU as well. 715 */ 716 NON_OWN_REF = BIT(14 + BPF_BASE_TYPE_BITS), 717 718 /* DYNPTR points to sk_buff */ 719 DYNPTR_TYPE_SKB = BIT(15 + BPF_BASE_TYPE_BITS), 720 721 /* DYNPTR points to xdp_buff */ 722 DYNPTR_TYPE_XDP = BIT(16 + BPF_BASE_TYPE_BITS), 723 724 /* Memory must be aligned on some architectures, used in combination with 725 * MEM_FIXED_SIZE. 726 */ 727 MEM_ALIGNED = BIT(17 + BPF_BASE_TYPE_BITS), 728 729 /* MEM is being written to, often combined with MEM_UNINIT. Non-presence 730 * of MEM_WRITE means that MEM is only being read. MEM_WRITE without the 731 * MEM_UNINIT means that memory needs to be initialized since it is also 732 * read. 733 */ 734 MEM_WRITE = BIT(18 + BPF_BASE_TYPE_BITS), 735 736 __BPF_TYPE_FLAG_MAX, 737 __BPF_TYPE_LAST_FLAG = __BPF_TYPE_FLAG_MAX - 1, 738}; 739 740#define DYNPTR_TYPE_FLAG_MASK (DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF | DYNPTR_TYPE_SKB \ 741 | DYNPTR_TYPE_XDP) 742 743/* Max number of base types. */ 744#define BPF_BASE_TYPE_LIMIT (1UL << BPF_BASE_TYPE_BITS) 745 746/* Max number of all types. */ 747#define BPF_TYPE_LIMIT (__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1)) 748 749/* function argument constraints */ 750enum bpf_arg_type { 751 ARG_DONTCARE = 0, /* unused argument in helper function */ 752 753 /* the following constraints used to prototype 754 * bpf_map_lookup/update/delete_elem() functions 755 */ 756 ARG_CONST_MAP_PTR, /* const argument used as pointer to bpf_map */ 757 ARG_PTR_TO_MAP_KEY, /* pointer to stack used as map key */ 758 ARG_PTR_TO_MAP_VALUE, /* pointer to stack used as map value */ 759 760 /* Used to prototype bpf_memcmp() and other functions that access data 761 * on eBPF program stack 762 */ 763 ARG_PTR_TO_MEM, /* pointer to valid memory (stack, packet, map value) */ 764 ARG_PTR_TO_ARENA, 765 766 ARG_CONST_SIZE, /* number of bytes accessed from memory */ 767 ARG_CONST_SIZE_OR_ZERO, /* number of bytes accessed from memory or 0 */ 768 769 ARG_PTR_TO_CTX, /* pointer to context */ 770 ARG_ANYTHING, /* any (initialized) argument is ok */ 771 ARG_PTR_TO_SPIN_LOCK, /* pointer to bpf_spin_lock */ 772 ARG_PTR_TO_SOCK_COMMON, /* pointer to sock_common */ 773 ARG_PTR_TO_SOCKET, /* pointer to bpf_sock (fullsock) */ 774 ARG_PTR_TO_BTF_ID, /* pointer to in-kernel struct */ 775 ARG_PTR_TO_RINGBUF_MEM, /* pointer to dynamically reserved ringbuf memory */ 776 ARG_CONST_ALLOC_SIZE_OR_ZERO, /* number of allocated bytes requested */ 777 ARG_PTR_TO_BTF_ID_SOCK_COMMON, /* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */ 778 ARG_PTR_TO_PERCPU_BTF_ID, /* pointer to in-kernel percpu type */ 779 ARG_PTR_TO_FUNC, /* pointer to a bpf program function */ 780 ARG_PTR_TO_STACK, /* pointer to stack */ 781 ARG_PTR_TO_CONST_STR, /* pointer to a null terminated read-only string */ 782 ARG_PTR_TO_TIMER, /* pointer to bpf_timer */ 783 ARG_KPTR_XCHG_DEST, /* pointer to destination that kptrs are bpf_kptr_xchg'd into */ 784 ARG_PTR_TO_DYNPTR, /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */ 785 __BPF_ARG_TYPE_MAX, 786 787 /* Extended arg_types. */ 788 ARG_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE, 789 ARG_PTR_TO_MEM_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MEM, 790 ARG_PTR_TO_CTX_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_CTX, 791 ARG_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET, 792 ARG_PTR_TO_STACK_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_STACK, 793 ARG_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID, 794 /* Pointer to memory does not need to be initialized, since helper function 795 * fills all bytes or clears them in error case. 796 */ 797 ARG_PTR_TO_UNINIT_MEM = MEM_UNINIT | MEM_WRITE | ARG_PTR_TO_MEM, 798 /* Pointer to valid memory of size known at compile time. */ 799 ARG_PTR_TO_FIXED_SIZE_MEM = MEM_FIXED_SIZE | ARG_PTR_TO_MEM, 800 801 /* This must be the last entry. Its purpose is to ensure the enum is 802 * wide enough to hold the higher bits reserved for bpf_type_flag. 803 */ 804 __BPF_ARG_TYPE_LIMIT = BPF_TYPE_LIMIT, 805}; 806static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 807 808/* type of values returned from helper functions */ 809enum bpf_return_type { 810 RET_INTEGER, /* function returns integer */ 811 RET_VOID, /* function doesn't return anything */ 812 RET_PTR_TO_MAP_VALUE, /* returns a pointer to map elem value */ 813 RET_PTR_TO_SOCKET, /* returns a pointer to a socket */ 814 RET_PTR_TO_TCP_SOCK, /* returns a pointer to a tcp_sock */ 815 RET_PTR_TO_SOCK_COMMON, /* returns a pointer to a sock_common */ 816 RET_PTR_TO_MEM, /* returns a pointer to memory */ 817 RET_PTR_TO_MEM_OR_BTF_ID, /* returns a pointer to a valid memory or a btf_id */ 818 RET_PTR_TO_BTF_ID, /* returns a pointer to a btf_id */ 819 __BPF_RET_TYPE_MAX, 820 821 /* Extended ret_types. */ 822 RET_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE, 823 RET_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCKET, 824 RET_PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK, 825 RET_PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON, 826 RET_PTR_TO_RINGBUF_MEM_OR_NULL = PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM, 827 RET_PTR_TO_DYNPTR_MEM_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MEM, 828 RET_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID, 829 RET_PTR_TO_BTF_ID_TRUSTED = PTR_TRUSTED | RET_PTR_TO_BTF_ID, 830 831 /* This must be the last entry. Its purpose is to ensure the enum is 832 * wide enough to hold the higher bits reserved for bpf_type_flag. 833 */ 834 __BPF_RET_TYPE_LIMIT = BPF_TYPE_LIMIT, 835}; 836static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 837 838/* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs 839 * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL 840 * instructions after verifying 841 */ 842struct bpf_func_proto { 843 u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 844 bool gpl_only; 845 bool pkt_access; 846 bool might_sleep; 847 /* set to true if helper follows contract for llvm 848 * attribute bpf_fastcall: 849 * - void functions do not scratch r0 850 * - functions taking N arguments scratch only registers r1-rN 851 */ 852 bool allow_fastcall; 853 enum bpf_return_type ret_type; 854 union { 855 struct { 856 enum bpf_arg_type arg1_type; 857 enum bpf_arg_type arg2_type; 858 enum bpf_arg_type arg3_type; 859 enum bpf_arg_type arg4_type; 860 enum bpf_arg_type arg5_type; 861 }; 862 enum bpf_arg_type arg_type[5]; 863 }; 864 union { 865 struct { 866 u32 *arg1_btf_id; 867 u32 *arg2_btf_id; 868 u32 *arg3_btf_id; 869 u32 *arg4_btf_id; 870 u32 *arg5_btf_id; 871 }; 872 u32 *arg_btf_id[5]; 873 struct { 874 size_t arg1_size; 875 size_t arg2_size; 876 size_t arg3_size; 877 size_t arg4_size; 878 size_t arg5_size; 879 }; 880 size_t arg_size[5]; 881 }; 882 int *ret_btf_id; /* return value btf_id */ 883 bool (*allowed)(const struct bpf_prog *prog); 884}; 885 886/* bpf_context is intentionally undefined structure. Pointer to bpf_context is 887 * the first argument to eBPF programs. 888 * For socket filters: 'struct bpf_context *' == 'struct sk_buff *' 889 */ 890struct bpf_context; 891 892enum bpf_access_type { 893 BPF_READ = 1, 894 BPF_WRITE = 2 895}; 896 897/* types of values stored in eBPF registers */ 898/* Pointer types represent: 899 * pointer 900 * pointer + imm 901 * pointer + (u16) var 902 * pointer + (u16) var + imm 903 * if (range > 0) then [ptr, ptr + range - off) is safe to access 904 * if (id > 0) means that some 'var' was added 905 * if (off > 0) means that 'imm' was added 906 */ 907enum bpf_reg_type { 908 NOT_INIT = 0, /* nothing was written into register */ 909 SCALAR_VALUE, /* reg doesn't contain a valid pointer */ 910 PTR_TO_CTX, /* reg points to bpf_context */ 911 CONST_PTR_TO_MAP, /* reg points to struct bpf_map */ 912 PTR_TO_MAP_VALUE, /* reg points to map element value */ 913 PTR_TO_MAP_KEY, /* reg points to a map element key */ 914 PTR_TO_STACK, /* reg == frame_pointer + offset */ 915 PTR_TO_PACKET_META, /* skb->data - meta_len */ 916 PTR_TO_PACKET, /* reg points to skb->data */ 917 PTR_TO_PACKET_END, /* skb->data + headlen */ 918 PTR_TO_FLOW_KEYS, /* reg points to bpf_flow_keys */ 919 PTR_TO_SOCKET, /* reg points to struct bpf_sock */ 920 PTR_TO_SOCK_COMMON, /* reg points to sock_common */ 921 PTR_TO_TCP_SOCK, /* reg points to struct tcp_sock */ 922 PTR_TO_TP_BUFFER, /* reg points to a writable raw tp's buffer */ 923 PTR_TO_XDP_SOCK, /* reg points to struct xdp_sock */ 924 /* PTR_TO_BTF_ID points to a kernel struct that does not need 925 * to be null checked by the BPF program. This does not imply the 926 * pointer is _not_ null and in practice this can easily be a null 927 * pointer when reading pointer chains. The assumption is program 928 * context will handle null pointer dereference typically via fault 929 * handling. The verifier must keep this in mind and can make no 930 * assumptions about null or non-null when doing branch analysis. 931 * Further, when passed into helpers the helpers can not, without 932 * additional context, assume the value is non-null. 933 */ 934 PTR_TO_BTF_ID, 935 PTR_TO_MEM, /* reg points to valid memory region */ 936 PTR_TO_ARENA, 937 PTR_TO_BUF, /* reg points to a read/write buffer */ 938 PTR_TO_FUNC, /* reg points to a bpf program function */ 939 CONST_PTR_TO_DYNPTR, /* reg points to a const struct bpf_dynptr */ 940 __BPF_REG_TYPE_MAX, 941 942 /* Extended reg_types. */ 943 PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | PTR_TO_MAP_VALUE, 944 PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCKET, 945 PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON, 946 PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | PTR_TO_TCP_SOCK, 947 /* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not 948 * been checked for null. Used primarily to inform the verifier 949 * an explicit null check is required for this struct. 950 */ 951 PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | PTR_TO_BTF_ID, 952 953 /* This must be the last entry. Its purpose is to ensure the enum is 954 * wide enough to hold the higher bits reserved for bpf_type_flag. 955 */ 956 __BPF_REG_TYPE_LIMIT = BPF_TYPE_LIMIT, 957}; 958static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 959 960/* The information passed from prog-specific *_is_valid_access 961 * back to the verifier. 962 */ 963struct bpf_insn_access_aux { 964 enum bpf_reg_type reg_type; 965 bool is_ldsx; 966 union { 967 int ctx_field_size; 968 struct { 969 struct btf *btf; 970 u32 btf_id; 971 }; 972 }; 973 struct bpf_verifier_log *log; /* for verbose logs */ 974 bool is_retval; /* is accessing function return value ? */ 975}; 976 977static inline void 978bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size) 979{ 980 aux->ctx_field_size = size; 981} 982 983static bool bpf_is_ldimm64(const struct bpf_insn *insn) 984{ 985 return insn->code == (BPF_LD | BPF_IMM | BPF_DW); 986} 987 988static inline bool bpf_pseudo_func(const struct bpf_insn *insn) 989{ 990 return bpf_is_ldimm64(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 991} 992 993struct bpf_prog_ops { 994 int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr, 995 union bpf_attr __user *uattr); 996}; 997 998struct bpf_reg_state; 999struct bpf_verifier_ops { 1000 /* return eBPF function prototype for verification */ 1001 const struct bpf_func_proto * 1002 (*get_func_proto)(enum bpf_func_id func_id, 1003 const struct bpf_prog *prog); 1004 1005 /* return true if 'size' wide access at offset 'off' within bpf_context 1006 * with 'type' (read or write) is allowed 1007 */ 1008 bool (*is_valid_access)(int off, int size, enum bpf_access_type type, 1009 const struct bpf_prog *prog, 1010 struct bpf_insn_access_aux *info); 1011 int (*gen_prologue)(struct bpf_insn *insn, bool direct_write, 1012 const struct bpf_prog *prog); 1013 int (*gen_epilogue)(struct bpf_insn *insn, const struct bpf_prog *prog, 1014 s16 ctx_stack_off); 1015 int (*gen_ld_abs)(const struct bpf_insn *orig, 1016 struct bpf_insn *insn_buf); 1017 u32 (*convert_ctx_access)(enum bpf_access_type type, 1018 const struct bpf_insn *src, 1019 struct bpf_insn *dst, 1020 struct bpf_prog *prog, u32 *target_size); 1021 int (*btf_struct_access)(struct bpf_verifier_log *log, 1022 const struct bpf_reg_state *reg, 1023 int off, int size); 1024}; 1025 1026struct bpf_prog_offload_ops { 1027 /* verifier basic callbacks */ 1028 int (*insn_hook)(struct bpf_verifier_env *env, 1029 int insn_idx, int prev_insn_idx); 1030 int (*finalize)(struct bpf_verifier_env *env); 1031 /* verifier optimization callbacks (called after .finalize) */ 1032 int (*replace_insn)(struct bpf_verifier_env *env, u32 off, 1033 struct bpf_insn *insn); 1034 int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt); 1035 /* program management callbacks */ 1036 int (*prepare)(struct bpf_prog *prog); 1037 int (*translate)(struct bpf_prog *prog); 1038 void (*destroy)(struct bpf_prog *prog); 1039}; 1040 1041struct bpf_prog_offload { 1042 struct bpf_prog *prog; 1043 struct net_device *netdev; 1044 struct bpf_offload_dev *offdev; 1045 void *dev_priv; 1046 struct list_head offloads; 1047 bool dev_state; 1048 bool opt_failed; 1049 void *jited_image; 1050 u32 jited_len; 1051}; 1052 1053enum bpf_cgroup_storage_type { 1054 BPF_CGROUP_STORAGE_SHARED, 1055 BPF_CGROUP_STORAGE_PERCPU, 1056 __BPF_CGROUP_STORAGE_MAX 1057}; 1058 1059#define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX 1060 1061/* The longest tracepoint has 12 args. 1062 * See include/trace/bpf_probe.h 1063 */ 1064#define MAX_BPF_FUNC_ARGS 12 1065 1066/* The maximum number of arguments passed through registers 1067 * a single function may have. 1068 */ 1069#define MAX_BPF_FUNC_REG_ARGS 5 1070 1071/* The argument is a structure. */ 1072#define BTF_FMODEL_STRUCT_ARG BIT(0) 1073 1074/* The argument is signed. */ 1075#define BTF_FMODEL_SIGNED_ARG BIT(1) 1076 1077struct btf_func_model { 1078 u8 ret_size; 1079 u8 ret_flags; 1080 u8 nr_args; 1081 u8 arg_size[MAX_BPF_FUNC_ARGS]; 1082 u8 arg_flags[MAX_BPF_FUNC_ARGS]; 1083}; 1084 1085/* Restore arguments before returning from trampoline to let original function 1086 * continue executing. This flag is used for fentry progs when there are no 1087 * fexit progs. 1088 */ 1089#define BPF_TRAMP_F_RESTORE_REGS BIT(0) 1090/* Call original function after fentry progs, but before fexit progs. 1091 * Makes sense for fentry/fexit, normal calls and indirect calls. 1092 */ 1093#define BPF_TRAMP_F_CALL_ORIG BIT(1) 1094/* Skip current frame and return to parent. Makes sense for fentry/fexit 1095 * programs only. Should not be used with normal calls and indirect calls. 1096 */ 1097#define BPF_TRAMP_F_SKIP_FRAME BIT(2) 1098/* Store IP address of the caller on the trampoline stack, 1099 * so it's available for trampoline's programs. 1100 */ 1101#define BPF_TRAMP_F_IP_ARG BIT(3) 1102/* Return the return value of fentry prog. Only used by bpf_struct_ops. */ 1103#define BPF_TRAMP_F_RET_FENTRY_RET BIT(4) 1104 1105/* Get original function from stack instead of from provided direct address. 1106 * Makes sense for trampolines with fexit or fmod_ret programs. 1107 */ 1108#define BPF_TRAMP_F_ORIG_STACK BIT(5) 1109 1110/* This trampoline is on a function with another ftrace_ops with IPMODIFY, 1111 * e.g., a live patch. This flag is set and cleared by ftrace call backs, 1112 */ 1113#define BPF_TRAMP_F_SHARE_IPMODIFY BIT(6) 1114 1115/* Indicate that current trampoline is in a tail call context. Then, it has to 1116 * cache and restore tail_call_cnt to avoid infinite tail call loop. 1117 */ 1118#define BPF_TRAMP_F_TAIL_CALL_CTX BIT(7) 1119 1120/* 1121 * Indicate the trampoline should be suitable to receive indirect calls; 1122 * without this indirectly calling the generated code can result in #UD/#CP, 1123 * depending on the CFI options. 1124 * 1125 * Used by bpf_struct_ops. 1126 * 1127 * Incompatible with FENTRY usage, overloads @func_addr argument. 1128 */ 1129#define BPF_TRAMP_F_INDIRECT BIT(8) 1130 1131/* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50 1132 * bytes on x86. 1133 */ 1134enum { 1135#if defined(__s390x__) 1136 BPF_MAX_TRAMP_LINKS = 27, 1137#else 1138 BPF_MAX_TRAMP_LINKS = 38, 1139#endif 1140}; 1141 1142struct bpf_tramp_links { 1143 struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS]; 1144 int nr_links; 1145}; 1146 1147struct bpf_tramp_run_ctx; 1148 1149/* Different use cases for BPF trampoline: 1150 * 1. replace nop at the function entry (kprobe equivalent) 1151 * flags = BPF_TRAMP_F_RESTORE_REGS 1152 * fentry = a set of programs to run before returning from trampoline 1153 * 1154 * 2. replace nop at the function entry (kprobe + kretprobe equivalent) 1155 * flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME 1156 * orig_call = fentry_ip + MCOUNT_INSN_SIZE 1157 * fentry = a set of program to run before calling original function 1158 * fexit = a set of program to run after original function 1159 * 1160 * 3. replace direct call instruction anywhere in the function body 1161 * or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid) 1162 * With flags = 0 1163 * fentry = a set of programs to run before returning from trampoline 1164 * With flags = BPF_TRAMP_F_CALL_ORIG 1165 * orig_call = original callback addr or direct function addr 1166 * fentry = a set of program to run before calling original function 1167 * fexit = a set of program to run after original function 1168 */ 1169struct bpf_tramp_image; 1170int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end, 1171 const struct btf_func_model *m, u32 flags, 1172 struct bpf_tramp_links *tlinks, 1173 void *func_addr); 1174void *arch_alloc_bpf_trampoline(unsigned int size); 1175void arch_free_bpf_trampoline(void *image, unsigned int size); 1176int __must_check arch_protect_bpf_trampoline(void *image, unsigned int size); 1177int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags, 1178 struct bpf_tramp_links *tlinks, void *func_addr); 1179 1180u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog, 1181 struct bpf_tramp_run_ctx *run_ctx); 1182void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start, 1183 struct bpf_tramp_run_ctx *run_ctx); 1184void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr); 1185void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr); 1186typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog, 1187 struct bpf_tramp_run_ctx *run_ctx); 1188typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start, 1189 struct bpf_tramp_run_ctx *run_ctx); 1190bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog); 1191bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog); 1192 1193struct bpf_ksym { 1194 unsigned long start; 1195 unsigned long end; 1196 char name[KSYM_NAME_LEN]; 1197 struct list_head lnode; 1198 struct latch_tree_node tnode; 1199 bool prog; 1200}; 1201 1202enum bpf_tramp_prog_type { 1203 BPF_TRAMP_FENTRY, 1204 BPF_TRAMP_FEXIT, 1205 BPF_TRAMP_MODIFY_RETURN, 1206 BPF_TRAMP_MAX, 1207 BPF_TRAMP_REPLACE, /* more than MAX */ 1208}; 1209 1210struct bpf_tramp_image { 1211 void *image; 1212 int size; 1213 struct bpf_ksym ksym; 1214 struct percpu_ref pcref; 1215 void *ip_after_call; 1216 void *ip_epilogue; 1217 union { 1218 struct rcu_head rcu; 1219 struct work_struct work; 1220 }; 1221}; 1222 1223struct bpf_trampoline { 1224 /* hlist for trampoline_table */ 1225 struct hlist_node hlist; 1226 struct ftrace_ops *fops; 1227 /* serializes access to fields of this trampoline */ 1228 struct mutex mutex; 1229 refcount_t refcnt; 1230 u32 flags; 1231 u64 key; 1232 struct { 1233 struct btf_func_model model; 1234 void *addr; 1235 bool ftrace_managed; 1236 } func; 1237 /* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF 1238 * program by replacing one of its functions. func.addr is the address 1239 * of the function it replaced. 1240 */ 1241 struct bpf_prog *extension_prog; 1242 /* list of BPF programs using this trampoline */ 1243 struct hlist_head progs_hlist[BPF_TRAMP_MAX]; 1244 /* Number of attached programs. A counter per kind. */ 1245 int progs_cnt[BPF_TRAMP_MAX]; 1246 /* Executable image of trampoline */ 1247 struct bpf_tramp_image *cur_image; 1248}; 1249 1250struct bpf_attach_target_info { 1251 struct btf_func_model fmodel; 1252 long tgt_addr; 1253 struct module *tgt_mod; 1254 const char *tgt_name; 1255 const struct btf_type *tgt_type; 1256}; 1257 1258#define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */ 1259 1260struct bpf_dispatcher_prog { 1261 struct bpf_prog *prog; 1262 refcount_t users; 1263}; 1264 1265struct bpf_dispatcher { 1266 /* dispatcher mutex */ 1267 struct mutex mutex; 1268 void *func; 1269 struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX]; 1270 int num_progs; 1271 void *image; 1272 void *rw_image; 1273 u32 image_off; 1274 struct bpf_ksym ksym; 1275#ifdef CONFIG_HAVE_STATIC_CALL 1276 struct static_call_key *sc_key; 1277 void *sc_tramp; 1278#endif 1279}; 1280 1281#ifndef __bpfcall 1282#define __bpfcall __nocfi 1283#endif 1284 1285static __always_inline __bpfcall unsigned int bpf_dispatcher_nop_func( 1286 const void *ctx, 1287 const struct bpf_insn *insnsi, 1288 bpf_func_t bpf_func) 1289{ 1290 return bpf_func(ctx, insnsi); 1291} 1292 1293/* the implementation of the opaque uapi struct bpf_dynptr */ 1294struct bpf_dynptr_kern { 1295 void *data; 1296 /* Size represents the number of usable bytes of dynptr data. 1297 * If for example the offset is at 4 for a local dynptr whose data is 1298 * of type u64, the number of usable bytes is 4. 1299 * 1300 * The upper 8 bits are reserved. It is as follows: 1301 * Bits 0 - 23 = size 1302 * Bits 24 - 30 = dynptr type 1303 * Bit 31 = whether dynptr is read-only 1304 */ 1305 u32 size; 1306 u32 offset; 1307} __aligned(8); 1308 1309enum bpf_dynptr_type { 1310 BPF_DYNPTR_TYPE_INVALID, 1311 /* Points to memory that is local to the bpf program */ 1312 BPF_DYNPTR_TYPE_LOCAL, 1313 /* Underlying data is a ringbuf record */ 1314 BPF_DYNPTR_TYPE_RINGBUF, 1315 /* Underlying data is a sk_buff */ 1316 BPF_DYNPTR_TYPE_SKB, 1317 /* Underlying data is a xdp_buff */ 1318 BPF_DYNPTR_TYPE_XDP, 1319}; 1320 1321int bpf_dynptr_check_size(u32 size); 1322u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr); 1323const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len); 1324void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len); 1325bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr); 1326 1327#ifdef CONFIG_BPF_JIT 1328int bpf_trampoline_link_prog(struct bpf_tramp_link *link, 1329 struct bpf_trampoline *tr, 1330 struct bpf_prog *tgt_prog); 1331int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, 1332 struct bpf_trampoline *tr, 1333 struct bpf_prog *tgt_prog); 1334struct bpf_trampoline *bpf_trampoline_get(u64 key, 1335 struct bpf_attach_target_info *tgt_info); 1336void bpf_trampoline_put(struct bpf_trampoline *tr); 1337int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs); 1338 1339/* 1340 * When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn 1341 * indirection with a direct call to the bpf program. If the architecture does 1342 * not have STATIC_CALL, avoid a double-indirection. 1343 */ 1344#ifdef CONFIG_HAVE_STATIC_CALL 1345 1346#define __BPF_DISPATCHER_SC_INIT(_name) \ 1347 .sc_key = &STATIC_CALL_KEY(_name), \ 1348 .sc_tramp = STATIC_CALL_TRAMP_ADDR(_name), 1349 1350#define __BPF_DISPATCHER_SC(name) \ 1351 DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func) 1352 1353#define __BPF_DISPATCHER_CALL(name) \ 1354 static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func) 1355 1356#define __BPF_DISPATCHER_UPDATE(_d, _new) \ 1357 __static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new)) 1358 1359#else 1360#define __BPF_DISPATCHER_SC_INIT(name) 1361#define __BPF_DISPATCHER_SC(name) 1362#define __BPF_DISPATCHER_CALL(name) bpf_func(ctx, insnsi) 1363#define __BPF_DISPATCHER_UPDATE(_d, _new) 1364#endif 1365 1366#define BPF_DISPATCHER_INIT(_name) { \ 1367 .mutex = __MUTEX_INITIALIZER(_name.mutex), \ 1368 .func = &_name##_func, \ 1369 .progs = {}, \ 1370 .num_progs = 0, \ 1371 .image = NULL, \ 1372 .image_off = 0, \ 1373 .ksym = { \ 1374 .name = #_name, \ 1375 .lnode = LIST_HEAD_INIT(_name.ksym.lnode), \ 1376 }, \ 1377 __BPF_DISPATCHER_SC_INIT(_name##_call) \ 1378} 1379 1380#define DEFINE_BPF_DISPATCHER(name) \ 1381 __BPF_DISPATCHER_SC(name); \ 1382 noinline __bpfcall unsigned int bpf_dispatcher_##name##_func( \ 1383 const void *ctx, \ 1384 const struct bpf_insn *insnsi, \ 1385 bpf_func_t bpf_func) \ 1386 { \ 1387 return __BPF_DISPATCHER_CALL(name); \ 1388 } \ 1389 EXPORT_SYMBOL(bpf_dispatcher_##name##_func); \ 1390 struct bpf_dispatcher bpf_dispatcher_##name = \ 1391 BPF_DISPATCHER_INIT(bpf_dispatcher_##name); 1392 1393#define DECLARE_BPF_DISPATCHER(name) \ 1394 unsigned int bpf_dispatcher_##name##_func( \ 1395 const void *ctx, \ 1396 const struct bpf_insn *insnsi, \ 1397 bpf_func_t bpf_func); \ 1398 extern struct bpf_dispatcher bpf_dispatcher_##name; 1399 1400#define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func 1401#define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name) 1402void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from, 1403 struct bpf_prog *to); 1404/* Called only from JIT-enabled code, so there's no need for stubs. */ 1405void bpf_image_ksym_init(void *data, unsigned int size, struct bpf_ksym *ksym); 1406void bpf_image_ksym_add(struct bpf_ksym *ksym); 1407void bpf_image_ksym_del(struct bpf_ksym *ksym); 1408void bpf_ksym_add(struct bpf_ksym *ksym); 1409void bpf_ksym_del(struct bpf_ksym *ksym); 1410int bpf_jit_charge_modmem(u32 size); 1411void bpf_jit_uncharge_modmem(u32 size); 1412bool bpf_prog_has_trampoline(const struct bpf_prog *prog); 1413#else 1414static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link, 1415 struct bpf_trampoline *tr, 1416 struct bpf_prog *tgt_prog) 1417{ 1418 return -ENOTSUPP; 1419} 1420static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, 1421 struct bpf_trampoline *tr, 1422 struct bpf_prog *tgt_prog) 1423{ 1424 return -ENOTSUPP; 1425} 1426static inline struct bpf_trampoline *bpf_trampoline_get(u64 key, 1427 struct bpf_attach_target_info *tgt_info) 1428{ 1429 return NULL; 1430} 1431static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {} 1432#define DEFINE_BPF_DISPATCHER(name) 1433#define DECLARE_BPF_DISPATCHER(name) 1434#define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func 1435#define BPF_DISPATCHER_PTR(name) NULL 1436static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, 1437 struct bpf_prog *from, 1438 struct bpf_prog *to) {} 1439static inline bool is_bpf_image_address(unsigned long address) 1440{ 1441 return false; 1442} 1443static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog) 1444{ 1445 return false; 1446} 1447#endif 1448 1449struct bpf_func_info_aux { 1450 u16 linkage; 1451 bool unreliable; 1452 bool called : 1; 1453 bool verified : 1; 1454}; 1455 1456enum bpf_jit_poke_reason { 1457 BPF_POKE_REASON_TAIL_CALL, 1458}; 1459 1460/* Descriptor of pokes pointing /into/ the JITed image. */ 1461struct bpf_jit_poke_descriptor { 1462 void *tailcall_target; 1463 void *tailcall_bypass; 1464 void *bypass_addr; 1465 void *aux; 1466 union { 1467 struct { 1468 struct bpf_map *map; 1469 u32 key; 1470 } tail_call; 1471 }; 1472 bool tailcall_target_stable; 1473 u8 adj_off; 1474 u16 reason; 1475 u32 insn_idx; 1476}; 1477 1478/* reg_type info for ctx arguments */ 1479struct bpf_ctx_arg_aux { 1480 u32 offset; 1481 enum bpf_reg_type reg_type; 1482 struct btf *btf; 1483 u32 btf_id; 1484}; 1485 1486struct btf_mod_pair { 1487 struct btf *btf; 1488 struct module *module; 1489}; 1490 1491struct bpf_kfunc_desc_tab; 1492 1493struct bpf_prog_aux { 1494 atomic64_t refcnt; 1495 u32 used_map_cnt; 1496 u32 used_btf_cnt; 1497 u32 max_ctx_offset; 1498 u32 max_pkt_offset; 1499 u32 max_tp_access; 1500 u32 stack_depth; 1501 u32 id; 1502 u32 func_cnt; /* used by non-func prog as the number of func progs */ 1503 u32 real_func_cnt; /* includes hidden progs, only used for JIT and freeing progs */ 1504 u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */ 1505 u32 attach_btf_id; /* in-kernel BTF type id to attach to */ 1506 u32 ctx_arg_info_size; 1507 u32 max_rdonly_access; 1508 u32 max_rdwr_access; 1509 struct btf *attach_btf; 1510 const struct bpf_ctx_arg_aux *ctx_arg_info; 1511 void __percpu *priv_stack_ptr; 1512 struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */ 1513 struct bpf_prog *dst_prog; 1514 struct bpf_trampoline *dst_trampoline; 1515 enum bpf_prog_type saved_dst_prog_type; 1516 enum bpf_attach_type saved_dst_attach_type; 1517 bool verifier_zext; /* Zero extensions has been inserted by verifier. */ 1518 bool dev_bound; /* Program is bound to the netdev. */ 1519 bool offload_requested; /* Program is bound and offloaded to the netdev. */ 1520 bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */ 1521 bool attach_tracing_prog; /* true if tracing another tracing program */ 1522 bool func_proto_unreliable; 1523 bool tail_call_reachable; 1524 bool xdp_has_frags; 1525 bool exception_cb; 1526 bool exception_boundary; 1527 bool is_extended; /* true if extended by freplace program */ 1528 bool jits_use_priv_stack; 1529 bool priv_stack_requested; 1530 bool changes_pkt_data; 1531 u64 prog_array_member_cnt; /* counts how many times as member of prog_array */ 1532 struct mutex ext_mutex; /* mutex for is_extended and prog_array_member_cnt */ 1533 struct bpf_arena *arena; 1534 void (*recursion_detected)(struct bpf_prog *prog); /* callback if recursion is detected */ 1535 /* BTF_KIND_FUNC_PROTO for valid attach_btf_id */ 1536 const struct btf_type *attach_func_proto; 1537 /* function name for valid attach_btf_id */ 1538 const char *attach_func_name; 1539 struct bpf_prog **func; 1540 void *jit_data; /* JIT specific data. arch dependent */ 1541 struct bpf_jit_poke_descriptor *poke_tab; 1542 struct bpf_kfunc_desc_tab *kfunc_tab; 1543 struct bpf_kfunc_btf_tab *kfunc_btf_tab; 1544 u32 size_poke_tab; 1545#ifdef CONFIG_FINEIBT 1546 struct bpf_ksym ksym_prefix; 1547#endif 1548 struct bpf_ksym ksym; 1549 const struct bpf_prog_ops *ops; 1550 struct bpf_map **used_maps; 1551 struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */ 1552 struct btf_mod_pair *used_btfs; 1553 struct bpf_prog *prog; 1554 struct user_struct *user; 1555 u64 load_time; /* ns since boottime */ 1556 u32 verified_insns; 1557 int cgroup_atype; /* enum cgroup_bpf_attach_type */ 1558 struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]; 1559 char name[BPF_OBJ_NAME_LEN]; 1560 u64 (*bpf_exception_cb)(u64 cookie, u64 sp, u64 bp, u64, u64); 1561#ifdef CONFIG_SECURITY 1562 void *security; 1563#endif 1564 struct bpf_token *token; 1565 struct bpf_prog_offload *offload; 1566 struct btf *btf; 1567 struct bpf_func_info *func_info; 1568 struct bpf_func_info_aux *func_info_aux; 1569 /* bpf_line_info loaded from userspace. linfo->insn_off 1570 * has the xlated insn offset. 1571 * Both the main and sub prog share the same linfo. 1572 * The subprog can access its first linfo by 1573 * using the linfo_idx. 1574 */ 1575 struct bpf_line_info *linfo; 1576 /* jited_linfo is the jited addr of the linfo. It has a 1577 * one to one mapping to linfo: 1578 * jited_linfo[i] is the jited addr for the linfo[i]->insn_off. 1579 * Both the main and sub prog share the same jited_linfo. 1580 * The subprog can access its first jited_linfo by 1581 * using the linfo_idx. 1582 */ 1583 void **jited_linfo; 1584 u32 func_info_cnt; 1585 u32 nr_linfo; 1586 /* subprog can use linfo_idx to access its first linfo and 1587 * jited_linfo. 1588 * main prog always has linfo_idx == 0 1589 */ 1590 u32 linfo_idx; 1591 struct module *mod; 1592 u32 num_exentries; 1593 struct exception_table_entry *extable; 1594 union { 1595 struct work_struct work; 1596 struct rcu_head rcu; 1597 }; 1598}; 1599 1600struct bpf_prog { 1601 u16 pages; /* Number of allocated pages */ 1602 u16 jited:1, /* Is our filter JIT'ed? */ 1603 jit_requested:1,/* archs need to JIT the prog */ 1604 gpl_compatible:1, /* Is filter GPL compatible? */ 1605 cb_access:1, /* Is control block accessed? */ 1606 dst_needed:1, /* Do we need dst entry? */ 1607 blinding_requested:1, /* needs constant blinding */ 1608 blinded:1, /* Was blinded */ 1609 is_func:1, /* program is a bpf function */ 1610 kprobe_override:1, /* Do we override a kprobe? */ 1611 has_callchain_buf:1, /* callchain buffer allocated? */ 1612 enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */ 1613 call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */ 1614 call_get_func_ip:1, /* Do we call get_func_ip() */ 1615 tstamp_type_access:1, /* Accessed __sk_buff->tstamp_type */ 1616 sleepable:1; /* BPF program is sleepable */ 1617 enum bpf_prog_type type; /* Type of BPF program */ 1618 enum bpf_attach_type expected_attach_type; /* For some prog types */ 1619 u32 len; /* Number of filter blocks */ 1620 u32 jited_len; /* Size of jited insns in bytes */ 1621 u8 tag[BPF_TAG_SIZE]; 1622 struct bpf_prog_stats __percpu *stats; 1623 int __percpu *active; 1624 unsigned int (*bpf_func)(const void *ctx, 1625 const struct bpf_insn *insn); 1626 struct bpf_prog_aux *aux; /* Auxiliary fields */ 1627 struct sock_fprog_kern *orig_prog; /* Original BPF program */ 1628 /* Instructions for interpreter */ 1629 union { 1630 DECLARE_FLEX_ARRAY(struct sock_filter, insns); 1631 DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi); 1632 }; 1633}; 1634 1635struct bpf_array_aux { 1636 /* Programs with direct jumps into programs part of this array. */ 1637 struct list_head poke_progs; 1638 struct bpf_map *map; 1639 struct mutex poke_mutex; 1640 struct work_struct work; 1641}; 1642 1643struct bpf_link { 1644 atomic64_t refcnt; 1645 u32 id; 1646 enum bpf_link_type type; 1647 const struct bpf_link_ops *ops; 1648 struct bpf_prog *prog; 1649 /* whether BPF link itself has "sleepable" semantics, which can differ 1650 * from underlying BPF program having a "sleepable" semantics, as BPF 1651 * link's semantics is determined by target attach hook 1652 */ 1653 bool sleepable; 1654 /* rcu is used before freeing, work can be used to schedule that 1655 * RCU-based freeing before that, so they never overlap 1656 */ 1657 union { 1658 struct rcu_head rcu; 1659 struct work_struct work; 1660 }; 1661}; 1662 1663struct bpf_link_ops { 1664 void (*release)(struct bpf_link *link); 1665 /* deallocate link resources callback, called without RCU grace period 1666 * waiting 1667 */ 1668 void (*dealloc)(struct bpf_link *link); 1669 /* deallocate link resources callback, called after RCU grace period; 1670 * if either the underlying BPF program is sleepable or BPF link's 1671 * target hook is sleepable, we'll go through tasks trace RCU GP and 1672 * then "classic" RCU GP; this need for chaining tasks trace and 1673 * classic RCU GPs is designated by setting bpf_link->sleepable flag 1674 */ 1675 void (*dealloc_deferred)(struct bpf_link *link); 1676 int (*detach)(struct bpf_link *link); 1677 int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog, 1678 struct bpf_prog *old_prog); 1679 void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq); 1680 int (*fill_link_info)(const struct bpf_link *link, 1681 struct bpf_link_info *info); 1682 int (*update_map)(struct bpf_link *link, struct bpf_map *new_map, 1683 struct bpf_map *old_map); 1684 __poll_t (*poll)(struct file *file, struct poll_table_struct *pts); 1685}; 1686 1687struct bpf_tramp_link { 1688 struct bpf_link link; 1689 struct hlist_node tramp_hlist; 1690 u64 cookie; 1691}; 1692 1693struct bpf_shim_tramp_link { 1694 struct bpf_tramp_link link; 1695 struct bpf_trampoline *trampoline; 1696}; 1697 1698struct bpf_tracing_link { 1699 struct bpf_tramp_link link; 1700 enum bpf_attach_type attach_type; 1701 struct bpf_trampoline *trampoline; 1702 struct bpf_prog *tgt_prog; 1703}; 1704 1705struct bpf_raw_tp_link { 1706 struct bpf_link link; 1707 struct bpf_raw_event_map *btp; 1708 u64 cookie; 1709}; 1710 1711struct bpf_link_primer { 1712 struct bpf_link *link; 1713 struct file *file; 1714 int fd; 1715 u32 id; 1716}; 1717 1718struct bpf_mount_opts { 1719 kuid_t uid; 1720 kgid_t gid; 1721 umode_t mode; 1722 1723 /* BPF token-related delegation options */ 1724 u64 delegate_cmds; 1725 u64 delegate_maps; 1726 u64 delegate_progs; 1727 u64 delegate_attachs; 1728}; 1729 1730struct bpf_token { 1731 struct work_struct work; 1732 atomic64_t refcnt; 1733 struct user_namespace *userns; 1734 u64 allowed_cmds; 1735 u64 allowed_maps; 1736 u64 allowed_progs; 1737 u64 allowed_attachs; 1738#ifdef CONFIG_SECURITY 1739 void *security; 1740#endif 1741}; 1742 1743struct bpf_struct_ops_value; 1744struct btf_member; 1745 1746#define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64 1747/** 1748 * struct bpf_struct_ops - A structure of callbacks allowing a subsystem to 1749 * define a BPF_MAP_TYPE_STRUCT_OPS map type composed 1750 * of BPF_PROG_TYPE_STRUCT_OPS progs. 1751 * @verifier_ops: A structure of callbacks that are invoked by the verifier 1752 * when determining whether the struct_ops progs in the 1753 * struct_ops map are valid. 1754 * @init: A callback that is invoked a single time, and before any other 1755 * callback, to initialize the structure. A nonzero return value means 1756 * the subsystem could not be initialized. 1757 * @check_member: When defined, a callback invoked by the verifier to allow 1758 * the subsystem to determine if an entry in the struct_ops map 1759 * is valid. A nonzero return value means that the map is 1760 * invalid and should be rejected by the verifier. 1761 * @init_member: A callback that is invoked for each member of the struct_ops 1762 * map to allow the subsystem to initialize the member. A nonzero 1763 * value means the member could not be initialized. This callback 1764 * is exclusive with the @type, @type_id, @value_type, and 1765 * @value_id fields. 1766 * @reg: A callback that is invoked when the struct_ops map has been 1767 * initialized and is being attached to. Zero means the struct_ops map 1768 * has been successfully registered and is live. A nonzero return value 1769 * means the struct_ops map could not be registered. 1770 * @unreg: A callback that is invoked when the struct_ops map should be 1771 * unregistered. 1772 * @update: A callback that is invoked when the live struct_ops map is being 1773 * updated to contain new values. This callback is only invoked when 1774 * the struct_ops map is loaded with BPF_F_LINK. If not defined, the 1775 * it is assumed that the struct_ops map cannot be updated. 1776 * @validate: A callback that is invoked after all of the members have been 1777 * initialized. This callback should perform static checks on the 1778 * map, meaning that it should either fail or succeed 1779 * deterministically. A struct_ops map that has been validated may 1780 * not necessarily succeed in being registered if the call to @reg 1781 * fails. For example, a valid struct_ops map may be loaded, but 1782 * then fail to be registered due to there being another active 1783 * struct_ops map on the system in the subsystem already. For this 1784 * reason, if this callback is not defined, the check is skipped as 1785 * the struct_ops map will have final verification performed in 1786 * @reg. 1787 * @type: BTF type. 1788 * @value_type: Value type. 1789 * @name: The name of the struct bpf_struct_ops object. 1790 * @func_models: Func models 1791 * @type_id: BTF type id. 1792 * @value_id: BTF value id. 1793 */ 1794struct bpf_struct_ops { 1795 const struct bpf_verifier_ops *verifier_ops; 1796 int (*init)(struct btf *btf); 1797 int (*check_member)(const struct btf_type *t, 1798 const struct btf_member *member, 1799 const struct bpf_prog *prog); 1800 int (*init_member)(const struct btf_type *t, 1801 const struct btf_member *member, 1802 void *kdata, const void *udata); 1803 int (*reg)(void *kdata, struct bpf_link *link); 1804 void (*unreg)(void *kdata, struct bpf_link *link); 1805 int (*update)(void *kdata, void *old_kdata, struct bpf_link *link); 1806 int (*validate)(void *kdata); 1807 void *cfi_stubs; 1808 struct module *owner; 1809 const char *name; 1810 struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS]; 1811}; 1812 1813/* Every member of a struct_ops type has an instance even a member is not 1814 * an operator (function pointer). The "info" field will be assigned to 1815 * prog->aux->ctx_arg_info of BPF struct_ops programs to provide the 1816 * argument information required by the verifier to verify the program. 1817 * 1818 * btf_ctx_access() will lookup prog->aux->ctx_arg_info to find the 1819 * corresponding entry for an given argument. 1820 */ 1821struct bpf_struct_ops_arg_info { 1822 struct bpf_ctx_arg_aux *info; 1823 u32 cnt; 1824}; 1825 1826struct bpf_struct_ops_desc { 1827 struct bpf_struct_ops *st_ops; 1828 1829 const struct btf_type *type; 1830 const struct btf_type *value_type; 1831 u32 type_id; 1832 u32 value_id; 1833 1834 /* Collection of argument information for each member */ 1835 struct bpf_struct_ops_arg_info *arg_info; 1836}; 1837 1838enum bpf_struct_ops_state { 1839 BPF_STRUCT_OPS_STATE_INIT, 1840 BPF_STRUCT_OPS_STATE_INUSE, 1841 BPF_STRUCT_OPS_STATE_TOBEFREE, 1842 BPF_STRUCT_OPS_STATE_READY, 1843}; 1844 1845struct bpf_struct_ops_common_value { 1846 refcount_t refcnt; 1847 enum bpf_struct_ops_state state; 1848}; 1849 1850#if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL) 1851/* This macro helps developer to register a struct_ops type and generate 1852 * type information correctly. Developers should use this macro to register 1853 * a struct_ops type instead of calling __register_bpf_struct_ops() directly. 1854 */ 1855#define register_bpf_struct_ops(st_ops, type) \ 1856 ({ \ 1857 struct bpf_struct_ops_##type { \ 1858 struct bpf_struct_ops_common_value common; \ 1859 struct type data ____cacheline_aligned_in_smp; \ 1860 }; \ 1861 BTF_TYPE_EMIT(struct bpf_struct_ops_##type); \ 1862 __register_bpf_struct_ops(st_ops); \ 1863 }) 1864#define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA)) 1865bool bpf_struct_ops_get(const void *kdata); 1866void bpf_struct_ops_put(const void *kdata); 1867int bpf_struct_ops_supported(const struct bpf_struct_ops *st_ops, u32 moff); 1868int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key, 1869 void *value); 1870int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks, 1871 struct bpf_tramp_link *link, 1872 const struct btf_func_model *model, 1873 void *stub_func, 1874 void **image, u32 *image_off, 1875 bool allow_alloc); 1876void bpf_struct_ops_image_free(void *image); 1877static inline bool bpf_try_module_get(const void *data, struct module *owner) 1878{ 1879 if (owner == BPF_MODULE_OWNER) 1880 return bpf_struct_ops_get(data); 1881 else 1882 return try_module_get(owner); 1883} 1884static inline void bpf_module_put(const void *data, struct module *owner) 1885{ 1886 if (owner == BPF_MODULE_OWNER) 1887 bpf_struct_ops_put(data); 1888 else 1889 module_put(owner); 1890} 1891int bpf_struct_ops_link_create(union bpf_attr *attr); 1892 1893#ifdef CONFIG_NET 1894/* Define it here to avoid the use of forward declaration */ 1895struct bpf_dummy_ops_state { 1896 int val; 1897}; 1898 1899struct bpf_dummy_ops { 1900 int (*test_1)(struct bpf_dummy_ops_state *cb); 1901 int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2, 1902 char a3, unsigned long a4); 1903 int (*test_sleepable)(struct bpf_dummy_ops_state *cb); 1904}; 1905 1906int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr, 1907 union bpf_attr __user *uattr); 1908#endif 1909int bpf_struct_ops_desc_init(struct bpf_struct_ops_desc *st_ops_desc, 1910 struct btf *btf, 1911 struct bpf_verifier_log *log); 1912void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map); 1913void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc); 1914#else 1915#define register_bpf_struct_ops(st_ops, type) ({ (void *)(st_ops); 0; }) 1916static inline bool bpf_try_module_get(const void *data, struct module *owner) 1917{ 1918 return try_module_get(owner); 1919} 1920static inline void bpf_module_put(const void *data, struct module *owner) 1921{ 1922 module_put(owner); 1923} 1924static inline int bpf_struct_ops_supported(const struct bpf_struct_ops *st_ops, u32 moff) 1925{ 1926 return -ENOTSUPP; 1927} 1928static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, 1929 void *key, 1930 void *value) 1931{ 1932 return -EINVAL; 1933} 1934static inline int bpf_struct_ops_link_create(union bpf_attr *attr) 1935{ 1936 return -EOPNOTSUPP; 1937} 1938static inline void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map) 1939{ 1940} 1941 1942static inline void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc) 1943{ 1944} 1945 1946#endif 1947 1948#if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM) 1949int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, 1950 int cgroup_atype); 1951void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog); 1952#else 1953static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, 1954 int cgroup_atype) 1955{ 1956 return -EOPNOTSUPP; 1957} 1958static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog) 1959{ 1960} 1961#endif 1962 1963struct bpf_array { 1964 struct bpf_map map; 1965 u32 elem_size; 1966 u32 index_mask; 1967 struct bpf_array_aux *aux; 1968 union { 1969 DECLARE_FLEX_ARRAY(char, value) __aligned(8); 1970 DECLARE_FLEX_ARRAY(void *, ptrs) __aligned(8); 1971 DECLARE_FLEX_ARRAY(void __percpu *, pptrs) __aligned(8); 1972 }; 1973}; 1974 1975#define BPF_COMPLEXITY_LIMIT_INSNS 1000000 /* yes. 1M insns */ 1976#define MAX_TAIL_CALL_CNT 33 1977 1978/* Maximum number of loops for bpf_loop and bpf_iter_num. 1979 * It's enum to expose it (and thus make it discoverable) through BTF. 1980 */ 1981enum { 1982 BPF_MAX_LOOPS = 8 * 1024 * 1024, 1983}; 1984 1985#define BPF_F_ACCESS_MASK (BPF_F_RDONLY | \ 1986 BPF_F_RDONLY_PROG | \ 1987 BPF_F_WRONLY | \ 1988 BPF_F_WRONLY_PROG) 1989 1990#define BPF_MAP_CAN_READ BIT(0) 1991#define BPF_MAP_CAN_WRITE BIT(1) 1992 1993/* Maximum number of user-producer ring buffer samples that can be drained in 1994 * a call to bpf_user_ringbuf_drain(). 1995 */ 1996#define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024) 1997 1998static inline u32 bpf_map_flags_to_cap(struct bpf_map *map) 1999{ 2000 u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG); 2001 2002 /* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is 2003 * not possible. 2004 */ 2005 if (access_flags & BPF_F_RDONLY_PROG) 2006 return BPF_MAP_CAN_READ; 2007 else if (access_flags & BPF_F_WRONLY_PROG) 2008 return BPF_MAP_CAN_WRITE; 2009 else 2010 return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE; 2011} 2012 2013static inline bool bpf_map_flags_access_ok(u32 access_flags) 2014{ 2015 return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) != 2016 (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG); 2017} 2018 2019struct bpf_event_entry { 2020 struct perf_event *event; 2021 struct file *perf_file; 2022 struct file *map_file; 2023 struct rcu_head rcu; 2024}; 2025 2026static inline bool map_type_contains_progs(struct bpf_map *map) 2027{ 2028 return map->map_type == BPF_MAP_TYPE_PROG_ARRAY || 2029 map->map_type == BPF_MAP_TYPE_DEVMAP || 2030 map->map_type == BPF_MAP_TYPE_CPUMAP; 2031} 2032 2033bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp); 2034int bpf_prog_calc_tag(struct bpf_prog *fp); 2035 2036const struct bpf_func_proto *bpf_get_trace_printk_proto(void); 2037const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void); 2038 2039typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src, 2040 unsigned long off, unsigned long len); 2041typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type, 2042 const struct bpf_insn *src, 2043 struct bpf_insn *dst, 2044 struct bpf_prog *prog, 2045 u32 *target_size); 2046 2047u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 2048 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy); 2049 2050/* an array of programs to be executed under rcu_lock. 2051 * 2052 * Typical usage: 2053 * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run); 2054 * 2055 * the structure returned by bpf_prog_array_alloc() should be populated 2056 * with program pointers and the last pointer must be NULL. 2057 * The user has to keep refcnt on the program and make sure the program 2058 * is removed from the array before bpf_prog_put(). 2059 * The 'struct bpf_prog_array *' should only be replaced with xchg() 2060 * since other cpus are walking the array of pointers in parallel. 2061 */ 2062struct bpf_prog_array_item { 2063 struct bpf_prog *prog; 2064 union { 2065 struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]; 2066 u64 bpf_cookie; 2067 }; 2068}; 2069 2070struct bpf_prog_array { 2071 struct rcu_head rcu; 2072 struct bpf_prog_array_item items[]; 2073}; 2074 2075struct bpf_empty_prog_array { 2076 struct bpf_prog_array hdr; 2077 struct bpf_prog *null_prog; 2078}; 2079 2080/* to avoid allocating empty bpf_prog_array for cgroups that 2081 * don't have bpf program attached use one global 'bpf_empty_prog_array' 2082 * It will not be modified the caller of bpf_prog_array_alloc() 2083 * (since caller requested prog_cnt == 0) 2084 * that pointer should be 'freed' by bpf_prog_array_free() 2085 */ 2086extern struct bpf_empty_prog_array bpf_empty_prog_array; 2087 2088struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags); 2089void bpf_prog_array_free(struct bpf_prog_array *progs); 2090/* Use when traversal over the bpf_prog_array uses tasks_trace rcu */ 2091void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs); 2092int bpf_prog_array_length(struct bpf_prog_array *progs); 2093bool bpf_prog_array_is_empty(struct bpf_prog_array *array); 2094int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs, 2095 __u32 __user *prog_ids, u32 cnt); 2096 2097void bpf_prog_array_delete_safe(struct bpf_prog_array *progs, 2098 struct bpf_prog *old_prog); 2099int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index); 2100int bpf_prog_array_update_at(struct bpf_prog_array *array, int index, 2101 struct bpf_prog *prog); 2102int bpf_prog_array_copy_info(struct bpf_prog_array *array, 2103 u32 *prog_ids, u32 request_cnt, 2104 u32 *prog_cnt); 2105int bpf_prog_array_copy(struct bpf_prog_array *old_array, 2106 struct bpf_prog *exclude_prog, 2107 struct bpf_prog *include_prog, 2108 u64 bpf_cookie, 2109 struct bpf_prog_array **new_array); 2110 2111struct bpf_run_ctx {}; 2112 2113struct bpf_cg_run_ctx { 2114 struct bpf_run_ctx run_ctx; 2115 const struct bpf_prog_array_item *prog_item; 2116 int retval; 2117}; 2118 2119struct bpf_trace_run_ctx { 2120 struct bpf_run_ctx run_ctx; 2121 u64 bpf_cookie; 2122 bool is_uprobe; 2123}; 2124 2125struct bpf_tramp_run_ctx { 2126 struct bpf_run_ctx run_ctx; 2127 u64 bpf_cookie; 2128 struct bpf_run_ctx *saved_run_ctx; 2129}; 2130 2131static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx) 2132{ 2133 struct bpf_run_ctx *old_ctx = NULL; 2134 2135#ifdef CONFIG_BPF_SYSCALL 2136 old_ctx = current->bpf_ctx; 2137 current->bpf_ctx = new_ctx; 2138#endif 2139 return old_ctx; 2140} 2141 2142static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx) 2143{ 2144#ifdef CONFIG_BPF_SYSCALL 2145 current->bpf_ctx = old_ctx; 2146#endif 2147} 2148 2149/* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */ 2150#define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE (1 << 0) 2151/* BPF program asks to set CN on the packet. */ 2152#define BPF_RET_SET_CN (1 << 0) 2153 2154typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx); 2155 2156static __always_inline u32 2157bpf_prog_run_array(const struct bpf_prog_array *array, 2158 const void *ctx, bpf_prog_run_fn run_prog) 2159{ 2160 const struct bpf_prog_array_item *item; 2161 const struct bpf_prog *prog; 2162 struct bpf_run_ctx *old_run_ctx; 2163 struct bpf_trace_run_ctx run_ctx; 2164 u32 ret = 1; 2165 2166 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held"); 2167 2168 if (unlikely(!array)) 2169 return ret; 2170 2171 run_ctx.is_uprobe = false; 2172 2173 migrate_disable(); 2174 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 2175 item = &array->items[0]; 2176 while ((prog = READ_ONCE(item->prog))) { 2177 run_ctx.bpf_cookie = item->bpf_cookie; 2178 ret &= run_prog(prog, ctx); 2179 item++; 2180 } 2181 bpf_reset_run_ctx(old_run_ctx); 2182 migrate_enable(); 2183 return ret; 2184} 2185 2186/* Notes on RCU design for bpf_prog_arrays containing sleepable programs: 2187 * 2188 * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array 2189 * overall. As a result, we must use the bpf_prog_array_free_sleepable 2190 * in order to use the tasks_trace rcu grace period. 2191 * 2192 * When a non-sleepable program is inside the array, we take the rcu read 2193 * section and disable preemption for that program alone, so it can access 2194 * rcu-protected dynamically sized maps. 2195 */ 2196static __always_inline u32 2197bpf_prog_run_array_uprobe(const struct bpf_prog_array *array, 2198 const void *ctx, bpf_prog_run_fn run_prog) 2199{ 2200 const struct bpf_prog_array_item *item; 2201 const struct bpf_prog *prog; 2202 struct bpf_run_ctx *old_run_ctx; 2203 struct bpf_trace_run_ctx run_ctx; 2204 u32 ret = 1; 2205 2206 might_fault(); 2207 RCU_LOCKDEP_WARN(!rcu_read_lock_trace_held(), "no rcu lock held"); 2208 2209 if (unlikely(!array)) 2210 return ret; 2211 2212 migrate_disable(); 2213 2214 run_ctx.is_uprobe = true; 2215 2216 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 2217 item = &array->items[0]; 2218 while ((prog = READ_ONCE(item->prog))) { 2219 if (!prog->sleepable) 2220 rcu_read_lock(); 2221 2222 run_ctx.bpf_cookie = item->bpf_cookie; 2223 ret &= run_prog(prog, ctx); 2224 item++; 2225 2226 if (!prog->sleepable) 2227 rcu_read_unlock(); 2228 } 2229 bpf_reset_run_ctx(old_run_ctx); 2230 migrate_enable(); 2231 return ret; 2232} 2233 2234#ifdef CONFIG_BPF_SYSCALL 2235DECLARE_PER_CPU(int, bpf_prog_active); 2236extern struct mutex bpf_stats_enabled_mutex; 2237 2238/* 2239 * Block execution of BPF programs attached to instrumentation (perf, 2240 * kprobes, tracepoints) to prevent deadlocks on map operations as any of 2241 * these events can happen inside a region which holds a map bucket lock 2242 * and can deadlock on it. 2243 */ 2244static inline void bpf_disable_instrumentation(void) 2245{ 2246 migrate_disable(); 2247 this_cpu_inc(bpf_prog_active); 2248} 2249 2250static inline void bpf_enable_instrumentation(void) 2251{ 2252 this_cpu_dec(bpf_prog_active); 2253 migrate_enable(); 2254} 2255 2256extern const struct super_operations bpf_super_ops; 2257extern const struct file_operations bpf_map_fops; 2258extern const struct file_operations bpf_prog_fops; 2259extern const struct file_operations bpf_iter_fops; 2260 2261#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 2262 extern const struct bpf_prog_ops _name ## _prog_ops; \ 2263 extern const struct bpf_verifier_ops _name ## _verifier_ops; 2264#define BPF_MAP_TYPE(_id, _ops) \ 2265 extern const struct bpf_map_ops _ops; 2266#define BPF_LINK_TYPE(_id, _name) 2267#include <linux/bpf_types.h> 2268#undef BPF_PROG_TYPE 2269#undef BPF_MAP_TYPE 2270#undef BPF_LINK_TYPE 2271 2272extern const struct bpf_prog_ops bpf_offload_prog_ops; 2273extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops; 2274extern const struct bpf_verifier_ops xdp_analyzer_ops; 2275 2276struct bpf_prog *bpf_prog_get(u32 ufd); 2277struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type, 2278 bool attach_drv); 2279void bpf_prog_add(struct bpf_prog *prog, int i); 2280void bpf_prog_sub(struct bpf_prog *prog, int i); 2281void bpf_prog_inc(struct bpf_prog *prog); 2282struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog); 2283void bpf_prog_put(struct bpf_prog *prog); 2284 2285void bpf_prog_free_id(struct bpf_prog *prog); 2286void bpf_map_free_id(struct bpf_map *map); 2287 2288struct btf_field *btf_record_find(const struct btf_record *rec, 2289 u32 offset, u32 field_mask); 2290void btf_record_free(struct btf_record *rec); 2291void bpf_map_free_record(struct bpf_map *map); 2292struct btf_record *btf_record_dup(const struct btf_record *rec); 2293bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b); 2294void bpf_obj_free_timer(const struct btf_record *rec, void *obj); 2295void bpf_obj_free_workqueue(const struct btf_record *rec, void *obj); 2296void bpf_obj_free_fields(const struct btf_record *rec, void *obj); 2297void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu); 2298 2299struct bpf_map *bpf_map_get(u32 ufd); 2300struct bpf_map *bpf_map_get_with_uref(u32 ufd); 2301 2302static inline struct bpf_map *__bpf_map_get(struct fd f) 2303{ 2304 if (fd_empty(f)) 2305 return ERR_PTR(-EBADF); 2306 if (unlikely(fd_file(f)->f_op != &bpf_map_fops)) 2307 return ERR_PTR(-EINVAL); 2308 return fd_file(f)->private_data; 2309} 2310 2311void bpf_map_inc(struct bpf_map *map); 2312void bpf_map_inc_with_uref(struct bpf_map *map); 2313struct bpf_map *__bpf_map_inc_not_zero(struct bpf_map *map, bool uref); 2314struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map); 2315void bpf_map_put_with_uref(struct bpf_map *map); 2316void bpf_map_put(struct bpf_map *map); 2317void *bpf_map_area_alloc(u64 size, int numa_node); 2318void *bpf_map_area_mmapable_alloc(u64 size, int numa_node); 2319void bpf_map_area_free(void *base); 2320bool bpf_map_write_active(const struct bpf_map *map); 2321void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr); 2322int generic_map_lookup_batch(struct bpf_map *map, 2323 const union bpf_attr *attr, 2324 union bpf_attr __user *uattr); 2325int generic_map_update_batch(struct bpf_map *map, struct file *map_file, 2326 const union bpf_attr *attr, 2327 union bpf_attr __user *uattr); 2328int generic_map_delete_batch(struct bpf_map *map, 2329 const union bpf_attr *attr, 2330 union bpf_attr __user *uattr); 2331struct bpf_map *bpf_map_get_curr_or_next(u32 *id); 2332struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id); 2333 2334int bpf_map_alloc_pages(const struct bpf_map *map, gfp_t gfp, int nid, 2335 unsigned long nr_pages, struct page **page_array); 2336#ifdef CONFIG_MEMCG 2337void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags, 2338 int node); 2339void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags); 2340void *bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size, 2341 gfp_t flags); 2342void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, 2343 size_t align, gfp_t flags); 2344#else 2345/* 2346 * These specialized allocators have to be macros for their allocations to be 2347 * accounted separately (to have separate alloc_tag). 2348 */ 2349#define bpf_map_kmalloc_node(_map, _size, _flags, _node) \ 2350 kmalloc_node(_size, _flags, _node) 2351#define bpf_map_kzalloc(_map, _size, _flags) \ 2352 kzalloc(_size, _flags) 2353#define bpf_map_kvcalloc(_map, _n, _size, _flags) \ 2354 kvcalloc(_n, _size, _flags) 2355#define bpf_map_alloc_percpu(_map, _size, _align, _flags) \ 2356 __alloc_percpu_gfp(_size, _align, _flags) 2357#endif 2358 2359static inline int 2360bpf_map_init_elem_count(struct bpf_map *map) 2361{ 2362 size_t size = sizeof(*map->elem_count), align = size; 2363 gfp_t flags = GFP_USER | __GFP_NOWARN; 2364 2365 map->elem_count = bpf_map_alloc_percpu(map, size, align, flags); 2366 if (!map->elem_count) 2367 return -ENOMEM; 2368 2369 return 0; 2370} 2371 2372static inline void 2373bpf_map_free_elem_count(struct bpf_map *map) 2374{ 2375 free_percpu(map->elem_count); 2376} 2377 2378static inline void bpf_map_inc_elem_count(struct bpf_map *map) 2379{ 2380 this_cpu_inc(*map->elem_count); 2381} 2382 2383static inline void bpf_map_dec_elem_count(struct bpf_map *map) 2384{ 2385 this_cpu_dec(*map->elem_count); 2386} 2387 2388extern int sysctl_unprivileged_bpf_disabled; 2389 2390bool bpf_token_capable(const struct bpf_token *token, int cap); 2391 2392static inline bool bpf_allow_ptr_leaks(const struct bpf_token *token) 2393{ 2394 return bpf_token_capable(token, CAP_PERFMON); 2395} 2396 2397static inline bool bpf_allow_uninit_stack(const struct bpf_token *token) 2398{ 2399 return bpf_token_capable(token, CAP_PERFMON); 2400} 2401 2402static inline bool bpf_bypass_spec_v1(const struct bpf_token *token) 2403{ 2404 return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON); 2405} 2406 2407static inline bool bpf_bypass_spec_v4(const struct bpf_token *token) 2408{ 2409 return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON); 2410} 2411 2412int bpf_map_new_fd(struct bpf_map *map, int flags); 2413int bpf_prog_new_fd(struct bpf_prog *prog); 2414 2415void bpf_link_init(struct bpf_link *link, enum bpf_link_type type, 2416 const struct bpf_link_ops *ops, struct bpf_prog *prog); 2417void bpf_link_init_sleepable(struct bpf_link *link, enum bpf_link_type type, 2418 const struct bpf_link_ops *ops, struct bpf_prog *prog, 2419 bool sleepable); 2420int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer); 2421int bpf_link_settle(struct bpf_link_primer *primer); 2422void bpf_link_cleanup(struct bpf_link_primer *primer); 2423void bpf_link_inc(struct bpf_link *link); 2424struct bpf_link *bpf_link_inc_not_zero(struct bpf_link *link); 2425void bpf_link_put(struct bpf_link *link); 2426int bpf_link_new_fd(struct bpf_link *link); 2427struct bpf_link *bpf_link_get_from_fd(u32 ufd); 2428struct bpf_link *bpf_link_get_curr_or_next(u32 *id); 2429 2430void bpf_token_inc(struct bpf_token *token); 2431void bpf_token_put(struct bpf_token *token); 2432int bpf_token_create(union bpf_attr *attr); 2433struct bpf_token *bpf_token_get_from_fd(u32 ufd); 2434 2435bool bpf_token_allow_cmd(const struct bpf_token *token, enum bpf_cmd cmd); 2436bool bpf_token_allow_map_type(const struct bpf_token *token, enum bpf_map_type type); 2437bool bpf_token_allow_prog_type(const struct bpf_token *token, 2438 enum bpf_prog_type prog_type, 2439 enum bpf_attach_type attach_type); 2440 2441int bpf_obj_pin_user(u32 ufd, int path_fd, const char __user *pathname); 2442int bpf_obj_get_user(int path_fd, const char __user *pathname, int flags); 2443struct inode *bpf_get_inode(struct super_block *sb, const struct inode *dir, 2444 umode_t mode); 2445 2446#define BPF_ITER_FUNC_PREFIX "bpf_iter_" 2447#define DEFINE_BPF_ITER_FUNC(target, args...) \ 2448 extern int bpf_iter_ ## target(args); \ 2449 int __init bpf_iter_ ## target(args) { return 0; } 2450 2451/* 2452 * The task type of iterators. 2453 * 2454 * For BPF task iterators, they can be parameterized with various 2455 * parameters to visit only some of tasks. 2456 * 2457 * BPF_TASK_ITER_ALL (default) 2458 * Iterate over resources of every task. 2459 * 2460 * BPF_TASK_ITER_TID 2461 * Iterate over resources of a task/tid. 2462 * 2463 * BPF_TASK_ITER_TGID 2464 * Iterate over resources of every task of a process / task group. 2465 */ 2466enum bpf_iter_task_type { 2467 BPF_TASK_ITER_ALL = 0, 2468 BPF_TASK_ITER_TID, 2469 BPF_TASK_ITER_TGID, 2470}; 2471 2472struct bpf_iter_aux_info { 2473 /* for map_elem iter */ 2474 struct bpf_map *map; 2475 2476 /* for cgroup iter */ 2477 struct { 2478 struct cgroup *start; /* starting cgroup */ 2479 enum bpf_cgroup_iter_order order; 2480 } cgroup; 2481 struct { 2482 enum bpf_iter_task_type type; 2483 u32 pid; 2484 } task; 2485}; 2486 2487typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog, 2488 union bpf_iter_link_info *linfo, 2489 struct bpf_iter_aux_info *aux); 2490typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux); 2491typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux, 2492 struct seq_file *seq); 2493typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux, 2494 struct bpf_link_info *info); 2495typedef const struct bpf_func_proto * 2496(*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id, 2497 const struct bpf_prog *prog); 2498 2499enum bpf_iter_feature { 2500 BPF_ITER_RESCHED = BIT(0), 2501}; 2502 2503#define BPF_ITER_CTX_ARG_MAX 2 2504struct bpf_iter_reg { 2505 const char *target; 2506 bpf_iter_attach_target_t attach_target; 2507 bpf_iter_detach_target_t detach_target; 2508 bpf_iter_show_fdinfo_t show_fdinfo; 2509 bpf_iter_fill_link_info_t fill_link_info; 2510 bpf_iter_get_func_proto_t get_func_proto; 2511 u32 ctx_arg_info_size; 2512 u32 feature; 2513 struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX]; 2514 const struct bpf_iter_seq_info *seq_info; 2515}; 2516 2517struct bpf_iter_meta { 2518 __bpf_md_ptr(struct seq_file *, seq); 2519 u64 session_id; 2520 u64 seq_num; 2521}; 2522 2523struct bpf_iter__bpf_map_elem { 2524 __bpf_md_ptr(struct bpf_iter_meta *, meta); 2525 __bpf_md_ptr(struct bpf_map *, map); 2526 __bpf_md_ptr(void *, key); 2527 __bpf_md_ptr(void *, value); 2528}; 2529 2530int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info); 2531void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info); 2532bool bpf_iter_prog_supported(struct bpf_prog *prog); 2533const struct bpf_func_proto * 2534bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog); 2535int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog); 2536int bpf_iter_new_fd(struct bpf_link *link); 2537bool bpf_link_is_iter(struct bpf_link *link); 2538struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop); 2539int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx); 2540void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux, 2541 struct seq_file *seq); 2542int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux, 2543 struct bpf_link_info *info); 2544 2545int map_set_for_each_callback_args(struct bpf_verifier_env *env, 2546 struct bpf_func_state *caller, 2547 struct bpf_func_state *callee); 2548 2549int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value); 2550int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value); 2551int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value, 2552 u64 flags); 2553int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value, 2554 u64 flags); 2555 2556int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value); 2557 2558int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file, 2559 void *key, void *value, u64 map_flags); 2560int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value); 2561int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file, 2562 void *key, void *value, u64 map_flags); 2563int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value); 2564 2565int bpf_get_file_flag(int flags); 2566int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size, 2567 size_t actual_size); 2568 2569/* verify correctness of eBPF program */ 2570int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size); 2571 2572#ifndef CONFIG_BPF_JIT_ALWAYS_ON 2573void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth); 2574#endif 2575 2576struct btf *bpf_get_btf_vmlinux(void); 2577 2578/* Map specifics */ 2579struct xdp_frame; 2580struct sk_buff; 2581struct bpf_dtab_netdev; 2582struct bpf_cpu_map_entry; 2583 2584void __dev_flush(struct list_head *flush_list); 2585int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 2586 struct net_device *dev_rx); 2587int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 2588 struct net_device *dev_rx); 2589int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 2590 struct bpf_map *map, bool exclude_ingress); 2591int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb, 2592 struct bpf_prog *xdp_prog); 2593int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 2594 struct bpf_prog *xdp_prog, struct bpf_map *map, 2595 bool exclude_ingress); 2596 2597void __cpu_map_flush(struct list_head *flush_list); 2598int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf, 2599 struct net_device *dev_rx); 2600int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 2601 struct sk_buff *skb); 2602 2603/* Return map's numa specified by userspace */ 2604static inline int bpf_map_attr_numa_node(const union bpf_attr *attr) 2605{ 2606 return (attr->map_flags & BPF_F_NUMA_NODE) ? 2607 attr->numa_node : NUMA_NO_NODE; 2608} 2609 2610struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type); 2611int array_map_alloc_check(union bpf_attr *attr); 2612 2613int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr, 2614 union bpf_attr __user *uattr); 2615int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr, 2616 union bpf_attr __user *uattr); 2617int bpf_prog_test_run_tracing(struct bpf_prog *prog, 2618 const union bpf_attr *kattr, 2619 union bpf_attr __user *uattr); 2620int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog, 2621 const union bpf_attr *kattr, 2622 union bpf_attr __user *uattr); 2623int bpf_prog_test_run_raw_tp(struct bpf_prog *prog, 2624 const union bpf_attr *kattr, 2625 union bpf_attr __user *uattr); 2626int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, 2627 const union bpf_attr *kattr, 2628 union bpf_attr __user *uattr); 2629int bpf_prog_test_run_nf(struct bpf_prog *prog, 2630 const union bpf_attr *kattr, 2631 union bpf_attr __user *uattr); 2632bool btf_ctx_access(int off, int size, enum bpf_access_type type, 2633 const struct bpf_prog *prog, 2634 struct bpf_insn_access_aux *info); 2635 2636static inline bool bpf_tracing_ctx_access(int off, int size, 2637 enum bpf_access_type type) 2638{ 2639 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 2640 return false; 2641 if (type != BPF_READ) 2642 return false; 2643 if (off % size != 0) 2644 return false; 2645 return true; 2646} 2647 2648static inline bool bpf_tracing_btf_ctx_access(int off, int size, 2649 enum bpf_access_type type, 2650 const struct bpf_prog *prog, 2651 struct bpf_insn_access_aux *info) 2652{ 2653 if (!bpf_tracing_ctx_access(off, size, type)) 2654 return false; 2655 return btf_ctx_access(off, size, type, prog, info); 2656} 2657 2658int btf_struct_access(struct bpf_verifier_log *log, 2659 const struct bpf_reg_state *reg, 2660 int off, int size, enum bpf_access_type atype, 2661 u32 *next_btf_id, enum bpf_type_flag *flag, const char **field_name); 2662bool btf_struct_ids_match(struct bpf_verifier_log *log, 2663 const struct btf *btf, u32 id, int off, 2664 const struct btf *need_btf, u32 need_type_id, 2665 bool strict); 2666 2667int btf_distill_func_proto(struct bpf_verifier_log *log, 2668 struct btf *btf, 2669 const struct btf_type *func_proto, 2670 const char *func_name, 2671 struct btf_func_model *m); 2672 2673struct bpf_reg_state; 2674int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog); 2675int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, 2676 struct btf *btf, const struct btf_type *t); 2677const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt, 2678 int comp_idx, const char *tag_key); 2679int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt, 2680 int comp_idx, const char *tag_key, int last_id); 2681 2682struct bpf_prog *bpf_prog_by_id(u32 id); 2683struct bpf_link *bpf_link_by_id(u32 id); 2684 2685const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id, 2686 const struct bpf_prog *prog); 2687void bpf_task_storage_free(struct task_struct *task); 2688void bpf_cgrp_storage_free(struct cgroup *cgroup); 2689bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog); 2690const struct btf_func_model * 2691bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2692 const struct bpf_insn *insn); 2693int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2694 u16 btf_fd_idx, u8 **func_addr); 2695 2696struct bpf_core_ctx { 2697 struct bpf_verifier_log *log; 2698 const struct btf *btf; 2699}; 2700 2701bool btf_nested_type_is_trusted(struct bpf_verifier_log *log, 2702 const struct bpf_reg_state *reg, 2703 const char *field_name, u32 btf_id, const char *suffix); 2704 2705bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log, 2706 const struct btf *reg_btf, u32 reg_id, 2707 const struct btf *arg_btf, u32 arg_id); 2708 2709int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, 2710 int relo_idx, void *insn); 2711 2712static inline bool unprivileged_ebpf_enabled(void) 2713{ 2714 return !sysctl_unprivileged_bpf_disabled; 2715} 2716 2717/* Not all bpf prog type has the bpf_ctx. 2718 * For the bpf prog type that has initialized the bpf_ctx, 2719 * this function can be used to decide if a kernel function 2720 * is called by a bpf program. 2721 */ 2722static inline bool has_current_bpf_ctx(void) 2723{ 2724 return !!current->bpf_ctx; 2725} 2726 2727void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog); 2728 2729void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 2730 enum bpf_dynptr_type type, u32 offset, u32 size); 2731void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr); 2732void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr); 2733 2734#else /* !CONFIG_BPF_SYSCALL */ 2735static inline struct bpf_prog *bpf_prog_get(u32 ufd) 2736{ 2737 return ERR_PTR(-EOPNOTSUPP); 2738} 2739 2740static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, 2741 enum bpf_prog_type type, 2742 bool attach_drv) 2743{ 2744 return ERR_PTR(-EOPNOTSUPP); 2745} 2746 2747static inline void bpf_prog_add(struct bpf_prog *prog, int i) 2748{ 2749} 2750 2751static inline void bpf_prog_sub(struct bpf_prog *prog, int i) 2752{ 2753} 2754 2755static inline void bpf_prog_put(struct bpf_prog *prog) 2756{ 2757} 2758 2759static inline void bpf_prog_inc(struct bpf_prog *prog) 2760{ 2761} 2762 2763static inline struct bpf_prog *__must_check 2764bpf_prog_inc_not_zero(struct bpf_prog *prog) 2765{ 2766 return ERR_PTR(-EOPNOTSUPP); 2767} 2768 2769static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type, 2770 const struct bpf_link_ops *ops, 2771 struct bpf_prog *prog) 2772{ 2773} 2774 2775static inline void bpf_link_init_sleepable(struct bpf_link *link, enum bpf_link_type type, 2776 const struct bpf_link_ops *ops, struct bpf_prog *prog, 2777 bool sleepable) 2778{ 2779} 2780 2781static inline int bpf_link_prime(struct bpf_link *link, 2782 struct bpf_link_primer *primer) 2783{ 2784 return -EOPNOTSUPP; 2785} 2786 2787static inline int bpf_link_settle(struct bpf_link_primer *primer) 2788{ 2789 return -EOPNOTSUPP; 2790} 2791 2792static inline void bpf_link_cleanup(struct bpf_link_primer *primer) 2793{ 2794} 2795 2796static inline void bpf_link_inc(struct bpf_link *link) 2797{ 2798} 2799 2800static inline struct bpf_link *bpf_link_inc_not_zero(struct bpf_link *link) 2801{ 2802 return NULL; 2803} 2804 2805static inline void bpf_link_put(struct bpf_link *link) 2806{ 2807} 2808 2809static inline int bpf_obj_get_user(const char __user *pathname, int flags) 2810{ 2811 return -EOPNOTSUPP; 2812} 2813 2814static inline bool bpf_token_capable(const struct bpf_token *token, int cap) 2815{ 2816 return capable(cap) || (cap != CAP_SYS_ADMIN && capable(CAP_SYS_ADMIN)); 2817} 2818 2819static inline void bpf_token_inc(struct bpf_token *token) 2820{ 2821} 2822 2823static inline void bpf_token_put(struct bpf_token *token) 2824{ 2825} 2826 2827static inline struct bpf_token *bpf_token_get_from_fd(u32 ufd) 2828{ 2829 return ERR_PTR(-EOPNOTSUPP); 2830} 2831 2832static inline void __dev_flush(struct list_head *flush_list) 2833{ 2834} 2835 2836struct xdp_frame; 2837struct bpf_dtab_netdev; 2838struct bpf_cpu_map_entry; 2839 2840static inline 2841int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 2842 struct net_device *dev_rx) 2843{ 2844 return 0; 2845} 2846 2847static inline 2848int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 2849 struct net_device *dev_rx) 2850{ 2851 return 0; 2852} 2853 2854static inline 2855int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 2856 struct bpf_map *map, bool exclude_ingress) 2857{ 2858 return 0; 2859} 2860 2861struct sk_buff; 2862 2863static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, 2864 struct sk_buff *skb, 2865 struct bpf_prog *xdp_prog) 2866{ 2867 return 0; 2868} 2869 2870static inline 2871int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 2872 struct bpf_prog *xdp_prog, struct bpf_map *map, 2873 bool exclude_ingress) 2874{ 2875 return 0; 2876} 2877 2878static inline void __cpu_map_flush(struct list_head *flush_list) 2879{ 2880} 2881 2882static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, 2883 struct xdp_frame *xdpf, 2884 struct net_device *dev_rx) 2885{ 2886 return 0; 2887} 2888 2889static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 2890 struct sk_buff *skb) 2891{ 2892 return -EOPNOTSUPP; 2893} 2894 2895static inline struct bpf_prog *bpf_prog_get_type_path(const char *name, 2896 enum bpf_prog_type type) 2897{ 2898 return ERR_PTR(-EOPNOTSUPP); 2899} 2900 2901static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog, 2902 const union bpf_attr *kattr, 2903 union bpf_attr __user *uattr) 2904{ 2905 return -ENOTSUPP; 2906} 2907 2908static inline int bpf_prog_test_run_skb(struct bpf_prog *prog, 2909 const union bpf_attr *kattr, 2910 union bpf_attr __user *uattr) 2911{ 2912 return -ENOTSUPP; 2913} 2914 2915static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog, 2916 const union bpf_attr *kattr, 2917 union bpf_attr __user *uattr) 2918{ 2919 return -ENOTSUPP; 2920} 2921 2922static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog, 2923 const union bpf_attr *kattr, 2924 union bpf_attr __user *uattr) 2925{ 2926 return -ENOTSUPP; 2927} 2928 2929static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, 2930 const union bpf_attr *kattr, 2931 union bpf_attr __user *uattr) 2932{ 2933 return -ENOTSUPP; 2934} 2935 2936static inline void bpf_map_put(struct bpf_map *map) 2937{ 2938} 2939 2940static inline struct bpf_prog *bpf_prog_by_id(u32 id) 2941{ 2942 return ERR_PTR(-ENOTSUPP); 2943} 2944 2945static inline int btf_struct_access(struct bpf_verifier_log *log, 2946 const struct bpf_reg_state *reg, 2947 int off, int size, enum bpf_access_type atype, 2948 u32 *next_btf_id, enum bpf_type_flag *flag, 2949 const char **field_name) 2950{ 2951 return -EACCES; 2952} 2953 2954static inline const struct bpf_func_proto * 2955bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 2956{ 2957 return NULL; 2958} 2959 2960static inline void bpf_task_storage_free(struct task_struct *task) 2961{ 2962} 2963 2964static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2965{ 2966 return false; 2967} 2968 2969static inline const struct btf_func_model * 2970bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2971 const struct bpf_insn *insn) 2972{ 2973 return NULL; 2974} 2975 2976static inline int 2977bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2978 u16 btf_fd_idx, u8 **func_addr) 2979{ 2980 return -ENOTSUPP; 2981} 2982 2983static inline bool unprivileged_ebpf_enabled(void) 2984{ 2985 return false; 2986} 2987 2988static inline bool has_current_bpf_ctx(void) 2989{ 2990 return false; 2991} 2992 2993static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog) 2994{ 2995} 2996 2997static inline void bpf_cgrp_storage_free(struct cgroup *cgroup) 2998{ 2999} 3000 3001static inline void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 3002 enum bpf_dynptr_type type, u32 offset, u32 size) 3003{ 3004} 3005 3006static inline void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr) 3007{ 3008} 3009 3010static inline void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr) 3011{ 3012} 3013#endif /* CONFIG_BPF_SYSCALL */ 3014 3015static __always_inline int 3016bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr) 3017{ 3018 int ret = -EFAULT; 3019 3020 if (IS_ENABLED(CONFIG_BPF_EVENTS)) 3021 ret = copy_from_kernel_nofault(dst, unsafe_ptr, size); 3022 if (unlikely(ret < 0)) 3023 memset(dst, 0, size); 3024 return ret; 3025} 3026 3027void __bpf_free_used_btfs(struct btf_mod_pair *used_btfs, u32 len); 3028 3029static inline struct bpf_prog *bpf_prog_get_type(u32 ufd, 3030 enum bpf_prog_type type) 3031{ 3032 return bpf_prog_get_type_dev(ufd, type, false); 3033} 3034 3035void __bpf_free_used_maps(struct bpf_prog_aux *aux, 3036 struct bpf_map **used_maps, u32 len); 3037 3038bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool); 3039 3040int bpf_prog_offload_compile(struct bpf_prog *prog); 3041void bpf_prog_dev_bound_destroy(struct bpf_prog *prog); 3042int bpf_prog_offload_info_fill(struct bpf_prog_info *info, 3043 struct bpf_prog *prog); 3044 3045int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map); 3046 3047int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value); 3048int bpf_map_offload_update_elem(struct bpf_map *map, 3049 void *key, void *value, u64 flags); 3050int bpf_map_offload_delete_elem(struct bpf_map *map, void *key); 3051int bpf_map_offload_get_next_key(struct bpf_map *map, 3052 void *key, void *next_key); 3053 3054bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map); 3055 3056struct bpf_offload_dev * 3057bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv); 3058void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev); 3059void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev); 3060int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev, 3061 struct net_device *netdev); 3062void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev, 3063 struct net_device *netdev); 3064bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev); 3065 3066void unpriv_ebpf_notify(int new_state); 3067 3068#if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL) 3069int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log, 3070 struct bpf_prog_aux *prog_aux); 3071void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id); 3072int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr); 3073int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog); 3074void bpf_dev_bound_netdev_unregister(struct net_device *dev); 3075 3076static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux) 3077{ 3078 return aux->dev_bound; 3079} 3080 3081static inline bool bpf_prog_is_offloaded(const struct bpf_prog_aux *aux) 3082{ 3083 return aux->offload_requested; 3084} 3085 3086bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs); 3087 3088static inline bool bpf_map_is_offloaded(struct bpf_map *map) 3089{ 3090 return unlikely(map->ops == &bpf_map_offload_ops); 3091} 3092 3093struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr); 3094void bpf_map_offload_map_free(struct bpf_map *map); 3095u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map); 3096int bpf_prog_test_run_syscall(struct bpf_prog *prog, 3097 const union bpf_attr *kattr, 3098 union bpf_attr __user *uattr); 3099 3100int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog); 3101int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype); 3102int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags); 3103int sock_map_bpf_prog_query(const union bpf_attr *attr, 3104 union bpf_attr __user *uattr); 3105int sock_map_link_create(const union bpf_attr *attr, struct bpf_prog *prog); 3106 3107void sock_map_unhash(struct sock *sk); 3108void sock_map_destroy(struct sock *sk); 3109void sock_map_close(struct sock *sk, long timeout); 3110#else 3111static inline int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log, 3112 struct bpf_prog_aux *prog_aux) 3113{ 3114 return -EOPNOTSUPP; 3115} 3116 3117static inline void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, 3118 u32 func_id) 3119{ 3120 return NULL; 3121} 3122 3123static inline int bpf_prog_dev_bound_init(struct bpf_prog *prog, 3124 union bpf_attr *attr) 3125{ 3126 return -EOPNOTSUPP; 3127} 3128 3129static inline int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, 3130 struct bpf_prog *old_prog) 3131{ 3132 return -EOPNOTSUPP; 3133} 3134 3135static inline void bpf_dev_bound_netdev_unregister(struct net_device *dev) 3136{ 3137} 3138 3139static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux) 3140{ 3141 return false; 3142} 3143 3144static inline bool bpf_prog_is_offloaded(struct bpf_prog_aux *aux) 3145{ 3146 return false; 3147} 3148 3149static inline bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs) 3150{ 3151 return false; 3152} 3153 3154static inline bool bpf_map_is_offloaded(struct bpf_map *map) 3155{ 3156 return false; 3157} 3158 3159static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr) 3160{ 3161 return ERR_PTR(-EOPNOTSUPP); 3162} 3163 3164static inline void bpf_map_offload_map_free(struct bpf_map *map) 3165{ 3166} 3167 3168static inline u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map) 3169{ 3170 return 0; 3171} 3172 3173static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog, 3174 const union bpf_attr *kattr, 3175 union bpf_attr __user *uattr) 3176{ 3177 return -ENOTSUPP; 3178} 3179 3180#ifdef CONFIG_BPF_SYSCALL 3181static inline int sock_map_get_from_fd(const union bpf_attr *attr, 3182 struct bpf_prog *prog) 3183{ 3184 return -EINVAL; 3185} 3186 3187static inline int sock_map_prog_detach(const union bpf_attr *attr, 3188 enum bpf_prog_type ptype) 3189{ 3190 return -EOPNOTSUPP; 3191} 3192 3193static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, 3194 u64 flags) 3195{ 3196 return -EOPNOTSUPP; 3197} 3198 3199static inline int sock_map_bpf_prog_query(const union bpf_attr *attr, 3200 union bpf_attr __user *uattr) 3201{ 3202 return -EINVAL; 3203} 3204 3205static inline int sock_map_link_create(const union bpf_attr *attr, struct bpf_prog *prog) 3206{ 3207 return -EOPNOTSUPP; 3208} 3209#endif /* CONFIG_BPF_SYSCALL */ 3210#endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */ 3211 3212static __always_inline void 3213bpf_prog_inc_misses_counters(const struct bpf_prog_array *array) 3214{ 3215 const struct bpf_prog_array_item *item; 3216 struct bpf_prog *prog; 3217 3218 if (unlikely(!array)) 3219 return; 3220 3221 item = &array->items[0]; 3222 while ((prog = READ_ONCE(item->prog))) { 3223 bpf_prog_inc_misses_counter(prog); 3224 item++; 3225 } 3226} 3227 3228#if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) 3229void bpf_sk_reuseport_detach(struct sock *sk); 3230int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key, 3231 void *value); 3232int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key, 3233 void *value, u64 map_flags); 3234#else 3235static inline void bpf_sk_reuseport_detach(struct sock *sk) 3236{ 3237} 3238 3239#ifdef CONFIG_BPF_SYSCALL 3240static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, 3241 void *key, void *value) 3242{ 3243 return -EOPNOTSUPP; 3244} 3245 3246static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, 3247 void *key, void *value, 3248 u64 map_flags) 3249{ 3250 return -EOPNOTSUPP; 3251} 3252#endif /* CONFIG_BPF_SYSCALL */ 3253#endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */ 3254 3255/* verifier prototypes for helper functions called from eBPF programs */ 3256extern const struct bpf_func_proto bpf_map_lookup_elem_proto; 3257extern const struct bpf_func_proto bpf_map_update_elem_proto; 3258extern const struct bpf_func_proto bpf_map_delete_elem_proto; 3259extern const struct bpf_func_proto bpf_map_push_elem_proto; 3260extern const struct bpf_func_proto bpf_map_pop_elem_proto; 3261extern const struct bpf_func_proto bpf_map_peek_elem_proto; 3262extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto; 3263 3264extern const struct bpf_func_proto bpf_get_prandom_u32_proto; 3265extern const struct bpf_func_proto bpf_get_smp_processor_id_proto; 3266extern const struct bpf_func_proto bpf_get_numa_node_id_proto; 3267extern const struct bpf_func_proto bpf_tail_call_proto; 3268extern const struct bpf_func_proto bpf_ktime_get_ns_proto; 3269extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto; 3270extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto; 3271extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto; 3272extern const struct bpf_func_proto bpf_get_current_uid_gid_proto; 3273extern const struct bpf_func_proto bpf_get_current_comm_proto; 3274extern const struct bpf_func_proto bpf_get_stackid_proto; 3275extern const struct bpf_func_proto bpf_get_stack_proto; 3276extern const struct bpf_func_proto bpf_get_stack_sleepable_proto; 3277extern const struct bpf_func_proto bpf_get_task_stack_proto; 3278extern const struct bpf_func_proto bpf_get_task_stack_sleepable_proto; 3279extern const struct bpf_func_proto bpf_get_stackid_proto_pe; 3280extern const struct bpf_func_proto bpf_get_stack_proto_pe; 3281extern const struct bpf_func_proto bpf_sock_map_update_proto; 3282extern const struct bpf_func_proto bpf_sock_hash_update_proto; 3283extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto; 3284extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto; 3285extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto; 3286extern const struct bpf_func_proto bpf_current_task_under_cgroup_proto; 3287extern const struct bpf_func_proto bpf_msg_redirect_hash_proto; 3288extern const struct bpf_func_proto bpf_msg_redirect_map_proto; 3289extern const struct bpf_func_proto bpf_sk_redirect_hash_proto; 3290extern const struct bpf_func_proto bpf_sk_redirect_map_proto; 3291extern const struct bpf_func_proto bpf_spin_lock_proto; 3292extern const struct bpf_func_proto bpf_spin_unlock_proto; 3293extern const struct bpf_func_proto bpf_get_local_storage_proto; 3294extern const struct bpf_func_proto bpf_strtol_proto; 3295extern const struct bpf_func_proto bpf_strtoul_proto; 3296extern const struct bpf_func_proto bpf_tcp_sock_proto; 3297extern const struct bpf_func_proto bpf_jiffies64_proto; 3298extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto; 3299extern const struct bpf_func_proto bpf_event_output_data_proto; 3300extern const struct bpf_func_proto bpf_ringbuf_output_proto; 3301extern const struct bpf_func_proto bpf_ringbuf_reserve_proto; 3302extern const struct bpf_func_proto bpf_ringbuf_submit_proto; 3303extern const struct bpf_func_proto bpf_ringbuf_discard_proto; 3304extern const struct bpf_func_proto bpf_ringbuf_query_proto; 3305extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto; 3306extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto; 3307extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto; 3308extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto; 3309extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto; 3310extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto; 3311extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto; 3312extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto; 3313extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto; 3314extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto; 3315extern const struct bpf_func_proto bpf_copy_from_user_proto; 3316extern const struct bpf_func_proto bpf_snprintf_btf_proto; 3317extern const struct bpf_func_proto bpf_snprintf_proto; 3318extern const struct bpf_func_proto bpf_per_cpu_ptr_proto; 3319extern const struct bpf_func_proto bpf_this_cpu_ptr_proto; 3320extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto; 3321extern const struct bpf_func_proto bpf_sock_from_file_proto; 3322extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto; 3323extern const struct bpf_func_proto bpf_task_storage_get_recur_proto; 3324extern const struct bpf_func_proto bpf_task_storage_get_proto; 3325extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto; 3326extern const struct bpf_func_proto bpf_task_storage_delete_proto; 3327extern const struct bpf_func_proto bpf_for_each_map_elem_proto; 3328extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto; 3329extern const struct bpf_func_proto bpf_sk_setsockopt_proto; 3330extern const struct bpf_func_proto bpf_sk_getsockopt_proto; 3331extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto; 3332extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto; 3333extern const struct bpf_func_proto bpf_find_vma_proto; 3334extern const struct bpf_func_proto bpf_loop_proto; 3335extern const struct bpf_func_proto bpf_copy_from_user_task_proto; 3336extern const struct bpf_func_proto bpf_set_retval_proto; 3337extern const struct bpf_func_proto bpf_get_retval_proto; 3338extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto; 3339extern const struct bpf_func_proto bpf_cgrp_storage_get_proto; 3340extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto; 3341 3342const struct bpf_func_proto *tracing_prog_func_proto( 3343 enum bpf_func_id func_id, const struct bpf_prog *prog); 3344 3345/* Shared helpers among cBPF and eBPF. */ 3346void bpf_user_rnd_init_once(void); 3347u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 3348u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 3349 3350#if defined(CONFIG_NET) 3351bool bpf_sock_common_is_valid_access(int off, int size, 3352 enum bpf_access_type type, 3353 struct bpf_insn_access_aux *info); 3354bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type, 3355 struct bpf_insn_access_aux *info); 3356u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, 3357 const struct bpf_insn *si, 3358 struct bpf_insn *insn_buf, 3359 struct bpf_prog *prog, 3360 u32 *target_size); 3361int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags, 3362 struct bpf_dynptr *ptr); 3363#else 3364static inline bool bpf_sock_common_is_valid_access(int off, int size, 3365 enum bpf_access_type type, 3366 struct bpf_insn_access_aux *info) 3367{ 3368 return false; 3369} 3370static inline bool bpf_sock_is_valid_access(int off, int size, 3371 enum bpf_access_type type, 3372 struct bpf_insn_access_aux *info) 3373{ 3374 return false; 3375} 3376static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, 3377 const struct bpf_insn *si, 3378 struct bpf_insn *insn_buf, 3379 struct bpf_prog *prog, 3380 u32 *target_size) 3381{ 3382 return 0; 3383} 3384static inline int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags, 3385 struct bpf_dynptr *ptr) 3386{ 3387 return -EOPNOTSUPP; 3388} 3389#endif 3390 3391#ifdef CONFIG_INET 3392struct sk_reuseport_kern { 3393 struct sk_buff *skb; 3394 struct sock *sk; 3395 struct sock *selected_sk; 3396 struct sock *migrating_sk; 3397 void *data_end; 3398 u32 hash; 3399 u32 reuseport_id; 3400 bool bind_inany; 3401}; 3402bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type, 3403 struct bpf_insn_access_aux *info); 3404 3405u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, 3406 const struct bpf_insn *si, 3407 struct bpf_insn *insn_buf, 3408 struct bpf_prog *prog, 3409 u32 *target_size); 3410 3411bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type, 3412 struct bpf_insn_access_aux *info); 3413 3414u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, 3415 const struct bpf_insn *si, 3416 struct bpf_insn *insn_buf, 3417 struct bpf_prog *prog, 3418 u32 *target_size); 3419#else 3420static inline bool bpf_tcp_sock_is_valid_access(int off, int size, 3421 enum bpf_access_type type, 3422 struct bpf_insn_access_aux *info) 3423{ 3424 return false; 3425} 3426 3427static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, 3428 const struct bpf_insn *si, 3429 struct bpf_insn *insn_buf, 3430 struct bpf_prog *prog, 3431 u32 *target_size) 3432{ 3433 return 0; 3434} 3435static inline bool bpf_xdp_sock_is_valid_access(int off, int size, 3436 enum bpf_access_type type, 3437 struct bpf_insn_access_aux *info) 3438{ 3439 return false; 3440} 3441 3442static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, 3443 const struct bpf_insn *si, 3444 struct bpf_insn *insn_buf, 3445 struct bpf_prog *prog, 3446 u32 *target_size) 3447{ 3448 return 0; 3449} 3450#endif /* CONFIG_INET */ 3451 3452enum bpf_text_poke_type { 3453 BPF_MOD_CALL, 3454 BPF_MOD_JUMP, 3455}; 3456 3457int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t, 3458 void *addr1, void *addr2); 3459 3460void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke, 3461 struct bpf_prog *new, struct bpf_prog *old); 3462 3463void *bpf_arch_text_copy(void *dst, void *src, size_t len); 3464int bpf_arch_text_invalidate(void *dst, size_t len); 3465 3466struct btf_id_set; 3467bool btf_id_set_contains(const struct btf_id_set *set, u32 id); 3468 3469#define MAX_BPRINTF_VARARGS 12 3470#define MAX_BPRINTF_BUF 1024 3471 3472struct bpf_bprintf_data { 3473 u32 *bin_args; 3474 char *buf; 3475 bool get_bin_args; 3476 bool get_buf; 3477}; 3478 3479int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args, 3480 u32 num_args, struct bpf_bprintf_data *data); 3481void bpf_bprintf_cleanup(struct bpf_bprintf_data *data); 3482 3483#ifdef CONFIG_BPF_LSM 3484void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype); 3485void bpf_cgroup_atype_put(int cgroup_atype); 3486#else 3487static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {} 3488static inline void bpf_cgroup_atype_put(int cgroup_atype) {} 3489#endif /* CONFIG_BPF_LSM */ 3490 3491struct key; 3492 3493#ifdef CONFIG_KEYS 3494struct bpf_key { 3495 struct key *key; 3496 bool has_ref; 3497}; 3498#endif /* CONFIG_KEYS */ 3499 3500static inline bool type_is_alloc(u32 type) 3501{ 3502 return type & MEM_ALLOC; 3503} 3504 3505static inline gfp_t bpf_memcg_flags(gfp_t flags) 3506{ 3507 if (memcg_bpf_enabled()) 3508 return flags | __GFP_ACCOUNT; 3509 return flags; 3510} 3511 3512static inline bool bpf_is_subprog(const struct bpf_prog *prog) 3513{ 3514 return prog->aux->func_idx != 0; 3515} 3516 3517#endif /* _LINUX_BPF_H */