Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-only */
2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 */
4#ifndef _LINUX_BPF_H
5#define _LINUX_BPF_H 1
6
7#include <uapi/linux/bpf.h>
8#include <uapi/linux/filter.h>
9
10#include <linux/workqueue.h>
11#include <linux/file.h>
12#include <linux/percpu.h>
13#include <linux/err.h>
14#include <linux/rbtree_latch.h>
15#include <linux/numa.h>
16#include <linux/mm_types.h>
17#include <linux/wait.h>
18#include <linux/refcount.h>
19#include <linux/mutex.h>
20#include <linux/module.h>
21#include <linux/kallsyms.h>
22#include <linux/capability.h>
23#include <linux/sched/mm.h>
24#include <linux/slab.h>
25#include <linux/percpu-refcount.h>
26#include <linux/stddef.h>
27#include <linux/bpfptr.h>
28#include <linux/btf.h>
29#include <linux/rcupdate_trace.h>
30#include <linux/static_call.h>
31#include <linux/memcontrol.h>
32#include <linux/cfi.h>
33
34struct bpf_verifier_env;
35struct bpf_verifier_log;
36struct perf_event;
37struct bpf_prog;
38struct bpf_prog_aux;
39struct bpf_map;
40struct bpf_arena;
41struct sock;
42struct seq_file;
43struct btf;
44struct btf_type;
45struct exception_table_entry;
46struct seq_operations;
47struct bpf_iter_aux_info;
48struct bpf_local_storage;
49struct bpf_local_storage_map;
50struct kobject;
51struct mem_cgroup;
52struct module;
53struct bpf_func_state;
54struct ftrace_ops;
55struct cgroup;
56struct bpf_token;
57struct user_namespace;
58struct super_block;
59struct inode;
60
61extern struct idr btf_idr;
62extern spinlock_t btf_idr_lock;
63extern struct kobject *btf_kobj;
64extern struct bpf_mem_alloc bpf_global_ma, bpf_global_percpu_ma;
65extern bool bpf_global_ma_set;
66
67typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64);
68typedef int (*bpf_iter_init_seq_priv_t)(void *private_data,
69 struct bpf_iter_aux_info *aux);
70typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data);
71typedef unsigned int (*bpf_func_t)(const void *,
72 const struct bpf_insn *);
73struct bpf_iter_seq_info {
74 const struct seq_operations *seq_ops;
75 bpf_iter_init_seq_priv_t init_seq_private;
76 bpf_iter_fini_seq_priv_t fini_seq_private;
77 u32 seq_priv_size;
78};
79
80/* map is generic key/value storage optionally accessible by eBPF programs */
81struct bpf_map_ops {
82 /* funcs callable from userspace (via syscall) */
83 int (*map_alloc_check)(union bpf_attr *attr);
84 struct bpf_map *(*map_alloc)(union bpf_attr *attr);
85 void (*map_release)(struct bpf_map *map, struct file *map_file);
86 void (*map_free)(struct bpf_map *map);
87 int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key);
88 void (*map_release_uref)(struct bpf_map *map);
89 void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key);
90 int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr,
91 union bpf_attr __user *uattr);
92 int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key,
93 void *value, u64 flags);
94 int (*map_lookup_and_delete_batch)(struct bpf_map *map,
95 const union bpf_attr *attr,
96 union bpf_attr __user *uattr);
97 int (*map_update_batch)(struct bpf_map *map, struct file *map_file,
98 const union bpf_attr *attr,
99 union bpf_attr __user *uattr);
100 int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr,
101 union bpf_attr __user *uattr);
102
103 /* funcs callable from userspace and from eBPF programs */
104 void *(*map_lookup_elem)(struct bpf_map *map, void *key);
105 long (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags);
106 long (*map_delete_elem)(struct bpf_map *map, void *key);
107 long (*map_push_elem)(struct bpf_map *map, void *value, u64 flags);
108 long (*map_pop_elem)(struct bpf_map *map, void *value);
109 long (*map_peek_elem)(struct bpf_map *map, void *value);
110 void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu);
111
112 /* funcs called by prog_array and perf_event_array map */
113 void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file,
114 int fd);
115 /* If need_defer is true, the implementation should guarantee that
116 * the to-be-put element is still alive before the bpf program, which
117 * may manipulate it, exists.
118 */
119 void (*map_fd_put_ptr)(struct bpf_map *map, void *ptr, bool need_defer);
120 int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf);
121 u32 (*map_fd_sys_lookup_elem)(void *ptr);
122 void (*map_seq_show_elem)(struct bpf_map *map, void *key,
123 struct seq_file *m);
124 int (*map_check_btf)(const struct bpf_map *map,
125 const struct btf *btf,
126 const struct btf_type *key_type,
127 const struct btf_type *value_type);
128
129 /* Prog poke tracking helpers. */
130 int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux);
131 void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux);
132 void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old,
133 struct bpf_prog *new);
134
135 /* Direct value access helpers. */
136 int (*map_direct_value_addr)(const struct bpf_map *map,
137 u64 *imm, u32 off);
138 int (*map_direct_value_meta)(const struct bpf_map *map,
139 u64 imm, u32 *off);
140 int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma);
141 __poll_t (*map_poll)(struct bpf_map *map, struct file *filp,
142 struct poll_table_struct *pts);
143 unsigned long (*map_get_unmapped_area)(struct file *filep, unsigned long addr,
144 unsigned long len, unsigned long pgoff,
145 unsigned long flags);
146
147 /* Functions called by bpf_local_storage maps */
148 int (*map_local_storage_charge)(struct bpf_local_storage_map *smap,
149 void *owner, u32 size);
150 void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap,
151 void *owner, u32 size);
152 struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner);
153
154 /* Misc helpers.*/
155 long (*map_redirect)(struct bpf_map *map, u64 key, u64 flags);
156
157 /* map_meta_equal must be implemented for maps that can be
158 * used as an inner map. It is a runtime check to ensure
159 * an inner map can be inserted to an outer map.
160 *
161 * Some properties of the inner map has been used during the
162 * verification time. When inserting an inner map at the runtime,
163 * map_meta_equal has to ensure the inserting map has the same
164 * properties that the verifier has used earlier.
165 */
166 bool (*map_meta_equal)(const struct bpf_map *meta0,
167 const struct bpf_map *meta1);
168
169
170 int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env,
171 struct bpf_func_state *caller,
172 struct bpf_func_state *callee);
173 long (*map_for_each_callback)(struct bpf_map *map,
174 bpf_callback_t callback_fn,
175 void *callback_ctx, u64 flags);
176
177 u64 (*map_mem_usage)(const struct bpf_map *map);
178
179 /* BTF id of struct allocated by map_alloc */
180 int *map_btf_id;
181
182 /* bpf_iter info used to open a seq_file */
183 const struct bpf_iter_seq_info *iter_seq_info;
184};
185
186enum {
187 /* Support at most 11 fields in a BTF type */
188 BTF_FIELDS_MAX = 11,
189};
190
191enum btf_field_type {
192 BPF_SPIN_LOCK = (1 << 0),
193 BPF_TIMER = (1 << 1),
194 BPF_KPTR_UNREF = (1 << 2),
195 BPF_KPTR_REF = (1 << 3),
196 BPF_KPTR_PERCPU = (1 << 4),
197 BPF_KPTR = BPF_KPTR_UNREF | BPF_KPTR_REF | BPF_KPTR_PERCPU,
198 BPF_LIST_HEAD = (1 << 5),
199 BPF_LIST_NODE = (1 << 6),
200 BPF_RB_ROOT = (1 << 7),
201 BPF_RB_NODE = (1 << 8),
202 BPF_GRAPH_NODE = BPF_RB_NODE | BPF_LIST_NODE,
203 BPF_GRAPH_ROOT = BPF_RB_ROOT | BPF_LIST_HEAD,
204 BPF_REFCOUNT = (1 << 9),
205 BPF_WORKQUEUE = (1 << 10),
206 BPF_UPTR = (1 << 11),
207};
208
209typedef void (*btf_dtor_kfunc_t)(void *);
210
211struct btf_field_kptr {
212 struct btf *btf;
213 struct module *module;
214 /* dtor used if btf_is_kernel(btf), otherwise the type is
215 * program-allocated, dtor is NULL, and __bpf_obj_drop_impl is used
216 */
217 btf_dtor_kfunc_t dtor;
218 u32 btf_id;
219};
220
221struct btf_field_graph_root {
222 struct btf *btf;
223 u32 value_btf_id;
224 u32 node_offset;
225 struct btf_record *value_rec;
226};
227
228struct btf_field {
229 u32 offset;
230 u32 size;
231 enum btf_field_type type;
232 union {
233 struct btf_field_kptr kptr;
234 struct btf_field_graph_root graph_root;
235 };
236};
237
238struct btf_record {
239 u32 cnt;
240 u32 field_mask;
241 int spin_lock_off;
242 int timer_off;
243 int wq_off;
244 int refcount_off;
245 struct btf_field fields[];
246};
247
248/* Non-opaque version of bpf_rb_node in uapi/linux/bpf.h */
249struct bpf_rb_node_kern {
250 struct rb_node rb_node;
251 void *owner;
252} __attribute__((aligned(8)));
253
254/* Non-opaque version of bpf_list_node in uapi/linux/bpf.h */
255struct bpf_list_node_kern {
256 struct list_head list_head;
257 void *owner;
258} __attribute__((aligned(8)));
259
260struct bpf_map {
261 const struct bpf_map_ops *ops;
262 struct bpf_map *inner_map_meta;
263#ifdef CONFIG_SECURITY
264 void *security;
265#endif
266 enum bpf_map_type map_type;
267 u32 key_size;
268 u32 value_size;
269 u32 max_entries;
270 u64 map_extra; /* any per-map-type extra fields */
271 u32 map_flags;
272 u32 id;
273 struct btf_record *record;
274 int numa_node;
275 u32 btf_key_type_id;
276 u32 btf_value_type_id;
277 u32 btf_vmlinux_value_type_id;
278 struct btf *btf;
279#ifdef CONFIG_MEMCG
280 struct obj_cgroup *objcg;
281#endif
282 char name[BPF_OBJ_NAME_LEN];
283 struct mutex freeze_mutex;
284 atomic64_t refcnt;
285 atomic64_t usercnt;
286 /* rcu is used before freeing and work is only used during freeing */
287 union {
288 struct work_struct work;
289 struct rcu_head rcu;
290 };
291 atomic64_t writecnt;
292 /* 'Ownership' of program-containing map is claimed by the first program
293 * that is going to use this map or by the first program which FD is
294 * stored in the map to make sure that all callers and callees have the
295 * same prog type, JITed flag and xdp_has_frags flag.
296 */
297 struct {
298 const struct btf_type *attach_func_proto;
299 spinlock_t lock;
300 enum bpf_prog_type type;
301 bool jited;
302 bool xdp_has_frags;
303 } owner;
304 bool bypass_spec_v1;
305 bool frozen; /* write-once; write-protected by freeze_mutex */
306 bool free_after_mult_rcu_gp;
307 bool free_after_rcu_gp;
308 atomic64_t sleepable_refcnt;
309 s64 __percpu *elem_count;
310};
311
312static inline const char *btf_field_type_name(enum btf_field_type type)
313{
314 switch (type) {
315 case BPF_SPIN_LOCK:
316 return "bpf_spin_lock";
317 case BPF_TIMER:
318 return "bpf_timer";
319 case BPF_WORKQUEUE:
320 return "bpf_wq";
321 case BPF_KPTR_UNREF:
322 case BPF_KPTR_REF:
323 return "kptr";
324 case BPF_KPTR_PERCPU:
325 return "percpu_kptr";
326 case BPF_UPTR:
327 return "uptr";
328 case BPF_LIST_HEAD:
329 return "bpf_list_head";
330 case BPF_LIST_NODE:
331 return "bpf_list_node";
332 case BPF_RB_ROOT:
333 return "bpf_rb_root";
334 case BPF_RB_NODE:
335 return "bpf_rb_node";
336 case BPF_REFCOUNT:
337 return "bpf_refcount";
338 default:
339 WARN_ON_ONCE(1);
340 return "unknown";
341 }
342}
343
344static inline u32 btf_field_type_size(enum btf_field_type type)
345{
346 switch (type) {
347 case BPF_SPIN_LOCK:
348 return sizeof(struct bpf_spin_lock);
349 case BPF_TIMER:
350 return sizeof(struct bpf_timer);
351 case BPF_WORKQUEUE:
352 return sizeof(struct bpf_wq);
353 case BPF_KPTR_UNREF:
354 case BPF_KPTR_REF:
355 case BPF_KPTR_PERCPU:
356 case BPF_UPTR:
357 return sizeof(u64);
358 case BPF_LIST_HEAD:
359 return sizeof(struct bpf_list_head);
360 case BPF_LIST_NODE:
361 return sizeof(struct bpf_list_node);
362 case BPF_RB_ROOT:
363 return sizeof(struct bpf_rb_root);
364 case BPF_RB_NODE:
365 return sizeof(struct bpf_rb_node);
366 case BPF_REFCOUNT:
367 return sizeof(struct bpf_refcount);
368 default:
369 WARN_ON_ONCE(1);
370 return 0;
371 }
372}
373
374static inline u32 btf_field_type_align(enum btf_field_type type)
375{
376 switch (type) {
377 case BPF_SPIN_LOCK:
378 return __alignof__(struct bpf_spin_lock);
379 case BPF_TIMER:
380 return __alignof__(struct bpf_timer);
381 case BPF_WORKQUEUE:
382 return __alignof__(struct bpf_wq);
383 case BPF_KPTR_UNREF:
384 case BPF_KPTR_REF:
385 case BPF_KPTR_PERCPU:
386 case BPF_UPTR:
387 return __alignof__(u64);
388 case BPF_LIST_HEAD:
389 return __alignof__(struct bpf_list_head);
390 case BPF_LIST_NODE:
391 return __alignof__(struct bpf_list_node);
392 case BPF_RB_ROOT:
393 return __alignof__(struct bpf_rb_root);
394 case BPF_RB_NODE:
395 return __alignof__(struct bpf_rb_node);
396 case BPF_REFCOUNT:
397 return __alignof__(struct bpf_refcount);
398 default:
399 WARN_ON_ONCE(1);
400 return 0;
401 }
402}
403
404static inline void bpf_obj_init_field(const struct btf_field *field, void *addr)
405{
406 memset(addr, 0, field->size);
407
408 switch (field->type) {
409 case BPF_REFCOUNT:
410 refcount_set((refcount_t *)addr, 1);
411 break;
412 case BPF_RB_NODE:
413 RB_CLEAR_NODE((struct rb_node *)addr);
414 break;
415 case BPF_LIST_HEAD:
416 case BPF_LIST_NODE:
417 INIT_LIST_HEAD((struct list_head *)addr);
418 break;
419 case BPF_RB_ROOT:
420 /* RB_ROOT_CACHED 0-inits, no need to do anything after memset */
421 case BPF_SPIN_LOCK:
422 case BPF_TIMER:
423 case BPF_WORKQUEUE:
424 case BPF_KPTR_UNREF:
425 case BPF_KPTR_REF:
426 case BPF_KPTR_PERCPU:
427 case BPF_UPTR:
428 break;
429 default:
430 WARN_ON_ONCE(1);
431 return;
432 }
433}
434
435static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type)
436{
437 if (IS_ERR_OR_NULL(rec))
438 return false;
439 return rec->field_mask & type;
440}
441
442static inline void bpf_obj_init(const struct btf_record *rec, void *obj)
443{
444 int i;
445
446 if (IS_ERR_OR_NULL(rec))
447 return;
448 for (i = 0; i < rec->cnt; i++)
449 bpf_obj_init_field(&rec->fields[i], obj + rec->fields[i].offset);
450}
451
452/* 'dst' must be a temporary buffer and should not point to memory that is being
453 * used in parallel by a bpf program or bpf syscall, otherwise the access from
454 * the bpf program or bpf syscall may be corrupted by the reinitialization,
455 * leading to weird problems. Even 'dst' is newly-allocated from bpf memory
456 * allocator, it is still possible for 'dst' to be used in parallel by a bpf
457 * program or bpf syscall.
458 */
459static inline void check_and_init_map_value(struct bpf_map *map, void *dst)
460{
461 bpf_obj_init(map->record, dst);
462}
463
464/* memcpy that is used with 8-byte aligned pointers, power-of-8 size and
465 * forced to use 'long' read/writes to try to atomically copy long counters.
466 * Best-effort only. No barriers here, since it _will_ race with concurrent
467 * updates from BPF programs. Called from bpf syscall and mostly used with
468 * size 8 or 16 bytes, so ask compiler to inline it.
469 */
470static inline void bpf_long_memcpy(void *dst, const void *src, u32 size)
471{
472 const long *lsrc = src;
473 long *ldst = dst;
474
475 size /= sizeof(long);
476 while (size--)
477 data_race(*ldst++ = *lsrc++);
478}
479
480/* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */
481static inline void bpf_obj_memcpy(struct btf_record *rec,
482 void *dst, void *src, u32 size,
483 bool long_memcpy)
484{
485 u32 curr_off = 0;
486 int i;
487
488 if (IS_ERR_OR_NULL(rec)) {
489 if (long_memcpy)
490 bpf_long_memcpy(dst, src, round_up(size, 8));
491 else
492 memcpy(dst, src, size);
493 return;
494 }
495
496 for (i = 0; i < rec->cnt; i++) {
497 u32 next_off = rec->fields[i].offset;
498 u32 sz = next_off - curr_off;
499
500 memcpy(dst + curr_off, src + curr_off, sz);
501 curr_off += rec->fields[i].size + sz;
502 }
503 memcpy(dst + curr_off, src + curr_off, size - curr_off);
504}
505
506static inline void copy_map_value(struct bpf_map *map, void *dst, void *src)
507{
508 bpf_obj_memcpy(map->record, dst, src, map->value_size, false);
509}
510
511static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src)
512{
513 bpf_obj_memcpy(map->record, dst, src, map->value_size, true);
514}
515
516static inline void bpf_obj_swap_uptrs(const struct btf_record *rec, void *dst, void *src)
517{
518 unsigned long *src_uptr, *dst_uptr;
519 const struct btf_field *field;
520 int i;
521
522 if (!btf_record_has_field(rec, BPF_UPTR))
523 return;
524
525 for (i = 0, field = rec->fields; i < rec->cnt; i++, field++) {
526 if (field->type != BPF_UPTR)
527 continue;
528
529 src_uptr = src + field->offset;
530 dst_uptr = dst + field->offset;
531 swap(*src_uptr, *dst_uptr);
532 }
533}
534
535static inline void bpf_obj_memzero(struct btf_record *rec, void *dst, u32 size)
536{
537 u32 curr_off = 0;
538 int i;
539
540 if (IS_ERR_OR_NULL(rec)) {
541 memset(dst, 0, size);
542 return;
543 }
544
545 for (i = 0; i < rec->cnt; i++) {
546 u32 next_off = rec->fields[i].offset;
547 u32 sz = next_off - curr_off;
548
549 memset(dst + curr_off, 0, sz);
550 curr_off += rec->fields[i].size + sz;
551 }
552 memset(dst + curr_off, 0, size - curr_off);
553}
554
555static inline void zero_map_value(struct bpf_map *map, void *dst)
556{
557 bpf_obj_memzero(map->record, dst, map->value_size);
558}
559
560void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
561 bool lock_src);
562void bpf_timer_cancel_and_free(void *timer);
563void bpf_wq_cancel_and_free(void *timer);
564void bpf_list_head_free(const struct btf_field *field, void *list_head,
565 struct bpf_spin_lock *spin_lock);
566void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
567 struct bpf_spin_lock *spin_lock);
568u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena);
569u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena);
570int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size);
571
572struct bpf_offload_dev;
573struct bpf_offloaded_map;
574
575struct bpf_map_dev_ops {
576 int (*map_get_next_key)(struct bpf_offloaded_map *map,
577 void *key, void *next_key);
578 int (*map_lookup_elem)(struct bpf_offloaded_map *map,
579 void *key, void *value);
580 int (*map_update_elem)(struct bpf_offloaded_map *map,
581 void *key, void *value, u64 flags);
582 int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key);
583};
584
585struct bpf_offloaded_map {
586 struct bpf_map map;
587 struct net_device *netdev;
588 const struct bpf_map_dev_ops *dev_ops;
589 void *dev_priv;
590 struct list_head offloads;
591};
592
593static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map)
594{
595 return container_of(map, struct bpf_offloaded_map, map);
596}
597
598static inline bool bpf_map_offload_neutral(const struct bpf_map *map)
599{
600 return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY;
601}
602
603static inline bool bpf_map_support_seq_show(const struct bpf_map *map)
604{
605 return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) &&
606 map->ops->map_seq_show_elem;
607}
608
609int map_check_no_btf(const struct bpf_map *map,
610 const struct btf *btf,
611 const struct btf_type *key_type,
612 const struct btf_type *value_type);
613
614bool bpf_map_meta_equal(const struct bpf_map *meta0,
615 const struct bpf_map *meta1);
616
617extern const struct bpf_map_ops bpf_map_offload_ops;
618
619/* bpf_type_flag contains a set of flags that are applicable to the values of
620 * arg_type, ret_type and reg_type. For example, a pointer value may be null,
621 * or a memory is read-only. We classify types into two categories: base types
622 * and extended types. Extended types are base types combined with a type flag.
623 *
624 * Currently there are no more than 32 base types in arg_type, ret_type and
625 * reg_types.
626 */
627#define BPF_BASE_TYPE_BITS 8
628
629enum bpf_type_flag {
630 /* PTR may be NULL. */
631 PTR_MAYBE_NULL = BIT(0 + BPF_BASE_TYPE_BITS),
632
633 /* MEM is read-only. When applied on bpf_arg, it indicates the arg is
634 * compatible with both mutable and immutable memory.
635 */
636 MEM_RDONLY = BIT(1 + BPF_BASE_TYPE_BITS),
637
638 /* MEM points to BPF ring buffer reservation. */
639 MEM_RINGBUF = BIT(2 + BPF_BASE_TYPE_BITS),
640
641 /* MEM is in user address space. */
642 MEM_USER = BIT(3 + BPF_BASE_TYPE_BITS),
643
644 /* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged
645 * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In
646 * order to drop this tag, it must be passed into bpf_per_cpu_ptr()
647 * or bpf_this_cpu_ptr(), which will return the pointer corresponding
648 * to the specified cpu.
649 */
650 MEM_PERCPU = BIT(4 + BPF_BASE_TYPE_BITS),
651
652 /* Indicates that the argument will be released. */
653 OBJ_RELEASE = BIT(5 + BPF_BASE_TYPE_BITS),
654
655 /* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark
656 * unreferenced and referenced kptr loaded from map value using a load
657 * instruction, so that they can only be dereferenced but not escape the
658 * BPF program into the kernel (i.e. cannot be passed as arguments to
659 * kfunc or bpf helpers).
660 */
661 PTR_UNTRUSTED = BIT(6 + BPF_BASE_TYPE_BITS),
662
663 /* MEM can be uninitialized. */
664 MEM_UNINIT = BIT(7 + BPF_BASE_TYPE_BITS),
665
666 /* DYNPTR points to memory local to the bpf program. */
667 DYNPTR_TYPE_LOCAL = BIT(8 + BPF_BASE_TYPE_BITS),
668
669 /* DYNPTR points to a kernel-produced ringbuf record. */
670 DYNPTR_TYPE_RINGBUF = BIT(9 + BPF_BASE_TYPE_BITS),
671
672 /* Size is known at compile time. */
673 MEM_FIXED_SIZE = BIT(10 + BPF_BASE_TYPE_BITS),
674
675 /* MEM is of an allocated object of type in program BTF. This is used to
676 * tag PTR_TO_BTF_ID allocated using bpf_obj_new.
677 */
678 MEM_ALLOC = BIT(11 + BPF_BASE_TYPE_BITS),
679
680 /* PTR was passed from the kernel in a trusted context, and may be
681 * passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions.
682 * Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above.
683 * PTR_UNTRUSTED refers to a kptr that was read directly from a map
684 * without invoking bpf_kptr_xchg(). What we really need to know is
685 * whether a pointer is safe to pass to a kfunc or BPF helper function.
686 * While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF
687 * helpers, they do not cover all possible instances of unsafe
688 * pointers. For example, a pointer that was obtained from walking a
689 * struct will _not_ get the PTR_UNTRUSTED type modifier, despite the
690 * fact that it may be NULL, invalid, etc. This is due to backwards
691 * compatibility requirements, as this was the behavior that was first
692 * introduced when kptrs were added. The behavior is now considered
693 * deprecated, and PTR_UNTRUSTED will eventually be removed.
694 *
695 * PTR_TRUSTED, on the other hand, is a pointer that the kernel
696 * guarantees to be valid and safe to pass to kfuncs and BPF helpers.
697 * For example, pointers passed to tracepoint arguments are considered
698 * PTR_TRUSTED, as are pointers that are passed to struct_ops
699 * callbacks. As alluded to above, pointers that are obtained from
700 * walking PTR_TRUSTED pointers are _not_ trusted. For example, if a
701 * struct task_struct *task is PTR_TRUSTED, then accessing
702 * task->last_wakee will lose the PTR_TRUSTED modifier when it's stored
703 * in a BPF register. Similarly, pointers passed to certain programs
704 * types such as kretprobes are not guaranteed to be valid, as they may
705 * for example contain an object that was recently freed.
706 */
707 PTR_TRUSTED = BIT(12 + BPF_BASE_TYPE_BITS),
708
709 /* MEM is tagged with rcu and memory access needs rcu_read_lock protection. */
710 MEM_RCU = BIT(13 + BPF_BASE_TYPE_BITS),
711
712 /* Used to tag PTR_TO_BTF_ID | MEM_ALLOC references which are non-owning.
713 * Currently only valid for linked-list and rbtree nodes. If the nodes
714 * have a bpf_refcount_field, they must be tagged MEM_RCU as well.
715 */
716 NON_OWN_REF = BIT(14 + BPF_BASE_TYPE_BITS),
717
718 /* DYNPTR points to sk_buff */
719 DYNPTR_TYPE_SKB = BIT(15 + BPF_BASE_TYPE_BITS),
720
721 /* DYNPTR points to xdp_buff */
722 DYNPTR_TYPE_XDP = BIT(16 + BPF_BASE_TYPE_BITS),
723
724 /* Memory must be aligned on some architectures, used in combination with
725 * MEM_FIXED_SIZE.
726 */
727 MEM_ALIGNED = BIT(17 + BPF_BASE_TYPE_BITS),
728
729 /* MEM is being written to, often combined with MEM_UNINIT. Non-presence
730 * of MEM_WRITE means that MEM is only being read. MEM_WRITE without the
731 * MEM_UNINIT means that memory needs to be initialized since it is also
732 * read.
733 */
734 MEM_WRITE = BIT(18 + BPF_BASE_TYPE_BITS),
735
736 __BPF_TYPE_FLAG_MAX,
737 __BPF_TYPE_LAST_FLAG = __BPF_TYPE_FLAG_MAX - 1,
738};
739
740#define DYNPTR_TYPE_FLAG_MASK (DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF | DYNPTR_TYPE_SKB \
741 | DYNPTR_TYPE_XDP)
742
743/* Max number of base types. */
744#define BPF_BASE_TYPE_LIMIT (1UL << BPF_BASE_TYPE_BITS)
745
746/* Max number of all types. */
747#define BPF_TYPE_LIMIT (__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1))
748
749/* function argument constraints */
750enum bpf_arg_type {
751 ARG_DONTCARE = 0, /* unused argument in helper function */
752
753 /* the following constraints used to prototype
754 * bpf_map_lookup/update/delete_elem() functions
755 */
756 ARG_CONST_MAP_PTR, /* const argument used as pointer to bpf_map */
757 ARG_PTR_TO_MAP_KEY, /* pointer to stack used as map key */
758 ARG_PTR_TO_MAP_VALUE, /* pointer to stack used as map value */
759
760 /* Used to prototype bpf_memcmp() and other functions that access data
761 * on eBPF program stack
762 */
763 ARG_PTR_TO_MEM, /* pointer to valid memory (stack, packet, map value) */
764 ARG_PTR_TO_ARENA,
765
766 ARG_CONST_SIZE, /* number of bytes accessed from memory */
767 ARG_CONST_SIZE_OR_ZERO, /* number of bytes accessed from memory or 0 */
768
769 ARG_PTR_TO_CTX, /* pointer to context */
770 ARG_ANYTHING, /* any (initialized) argument is ok */
771 ARG_PTR_TO_SPIN_LOCK, /* pointer to bpf_spin_lock */
772 ARG_PTR_TO_SOCK_COMMON, /* pointer to sock_common */
773 ARG_PTR_TO_SOCKET, /* pointer to bpf_sock (fullsock) */
774 ARG_PTR_TO_BTF_ID, /* pointer to in-kernel struct */
775 ARG_PTR_TO_RINGBUF_MEM, /* pointer to dynamically reserved ringbuf memory */
776 ARG_CONST_ALLOC_SIZE_OR_ZERO, /* number of allocated bytes requested */
777 ARG_PTR_TO_BTF_ID_SOCK_COMMON, /* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */
778 ARG_PTR_TO_PERCPU_BTF_ID, /* pointer to in-kernel percpu type */
779 ARG_PTR_TO_FUNC, /* pointer to a bpf program function */
780 ARG_PTR_TO_STACK, /* pointer to stack */
781 ARG_PTR_TO_CONST_STR, /* pointer to a null terminated read-only string */
782 ARG_PTR_TO_TIMER, /* pointer to bpf_timer */
783 ARG_KPTR_XCHG_DEST, /* pointer to destination that kptrs are bpf_kptr_xchg'd into */
784 ARG_PTR_TO_DYNPTR, /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */
785 __BPF_ARG_TYPE_MAX,
786
787 /* Extended arg_types. */
788 ARG_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE,
789 ARG_PTR_TO_MEM_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MEM,
790 ARG_PTR_TO_CTX_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_CTX,
791 ARG_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET,
792 ARG_PTR_TO_STACK_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_STACK,
793 ARG_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID,
794 /* Pointer to memory does not need to be initialized, since helper function
795 * fills all bytes or clears them in error case.
796 */
797 ARG_PTR_TO_UNINIT_MEM = MEM_UNINIT | MEM_WRITE | ARG_PTR_TO_MEM,
798 /* Pointer to valid memory of size known at compile time. */
799 ARG_PTR_TO_FIXED_SIZE_MEM = MEM_FIXED_SIZE | ARG_PTR_TO_MEM,
800
801 /* This must be the last entry. Its purpose is to ensure the enum is
802 * wide enough to hold the higher bits reserved for bpf_type_flag.
803 */
804 __BPF_ARG_TYPE_LIMIT = BPF_TYPE_LIMIT,
805};
806static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
807
808/* type of values returned from helper functions */
809enum bpf_return_type {
810 RET_INTEGER, /* function returns integer */
811 RET_VOID, /* function doesn't return anything */
812 RET_PTR_TO_MAP_VALUE, /* returns a pointer to map elem value */
813 RET_PTR_TO_SOCKET, /* returns a pointer to a socket */
814 RET_PTR_TO_TCP_SOCK, /* returns a pointer to a tcp_sock */
815 RET_PTR_TO_SOCK_COMMON, /* returns a pointer to a sock_common */
816 RET_PTR_TO_MEM, /* returns a pointer to memory */
817 RET_PTR_TO_MEM_OR_BTF_ID, /* returns a pointer to a valid memory or a btf_id */
818 RET_PTR_TO_BTF_ID, /* returns a pointer to a btf_id */
819 __BPF_RET_TYPE_MAX,
820
821 /* Extended ret_types. */
822 RET_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE,
823 RET_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCKET,
824 RET_PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK,
825 RET_PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON,
826 RET_PTR_TO_RINGBUF_MEM_OR_NULL = PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM,
827 RET_PTR_TO_DYNPTR_MEM_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MEM,
828 RET_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID,
829 RET_PTR_TO_BTF_ID_TRUSTED = PTR_TRUSTED | RET_PTR_TO_BTF_ID,
830
831 /* This must be the last entry. Its purpose is to ensure the enum is
832 * wide enough to hold the higher bits reserved for bpf_type_flag.
833 */
834 __BPF_RET_TYPE_LIMIT = BPF_TYPE_LIMIT,
835};
836static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
837
838/* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs
839 * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL
840 * instructions after verifying
841 */
842struct bpf_func_proto {
843 u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
844 bool gpl_only;
845 bool pkt_access;
846 bool might_sleep;
847 /* set to true if helper follows contract for llvm
848 * attribute bpf_fastcall:
849 * - void functions do not scratch r0
850 * - functions taking N arguments scratch only registers r1-rN
851 */
852 bool allow_fastcall;
853 enum bpf_return_type ret_type;
854 union {
855 struct {
856 enum bpf_arg_type arg1_type;
857 enum bpf_arg_type arg2_type;
858 enum bpf_arg_type arg3_type;
859 enum bpf_arg_type arg4_type;
860 enum bpf_arg_type arg5_type;
861 };
862 enum bpf_arg_type arg_type[5];
863 };
864 union {
865 struct {
866 u32 *arg1_btf_id;
867 u32 *arg2_btf_id;
868 u32 *arg3_btf_id;
869 u32 *arg4_btf_id;
870 u32 *arg5_btf_id;
871 };
872 u32 *arg_btf_id[5];
873 struct {
874 size_t arg1_size;
875 size_t arg2_size;
876 size_t arg3_size;
877 size_t arg4_size;
878 size_t arg5_size;
879 };
880 size_t arg_size[5];
881 };
882 int *ret_btf_id; /* return value btf_id */
883 bool (*allowed)(const struct bpf_prog *prog);
884};
885
886/* bpf_context is intentionally undefined structure. Pointer to bpf_context is
887 * the first argument to eBPF programs.
888 * For socket filters: 'struct bpf_context *' == 'struct sk_buff *'
889 */
890struct bpf_context;
891
892enum bpf_access_type {
893 BPF_READ = 1,
894 BPF_WRITE = 2
895};
896
897/* types of values stored in eBPF registers */
898/* Pointer types represent:
899 * pointer
900 * pointer + imm
901 * pointer + (u16) var
902 * pointer + (u16) var + imm
903 * if (range > 0) then [ptr, ptr + range - off) is safe to access
904 * if (id > 0) means that some 'var' was added
905 * if (off > 0) means that 'imm' was added
906 */
907enum bpf_reg_type {
908 NOT_INIT = 0, /* nothing was written into register */
909 SCALAR_VALUE, /* reg doesn't contain a valid pointer */
910 PTR_TO_CTX, /* reg points to bpf_context */
911 CONST_PTR_TO_MAP, /* reg points to struct bpf_map */
912 PTR_TO_MAP_VALUE, /* reg points to map element value */
913 PTR_TO_MAP_KEY, /* reg points to a map element key */
914 PTR_TO_STACK, /* reg == frame_pointer + offset */
915 PTR_TO_PACKET_META, /* skb->data - meta_len */
916 PTR_TO_PACKET, /* reg points to skb->data */
917 PTR_TO_PACKET_END, /* skb->data + headlen */
918 PTR_TO_FLOW_KEYS, /* reg points to bpf_flow_keys */
919 PTR_TO_SOCKET, /* reg points to struct bpf_sock */
920 PTR_TO_SOCK_COMMON, /* reg points to sock_common */
921 PTR_TO_TCP_SOCK, /* reg points to struct tcp_sock */
922 PTR_TO_TP_BUFFER, /* reg points to a writable raw tp's buffer */
923 PTR_TO_XDP_SOCK, /* reg points to struct xdp_sock */
924 /* PTR_TO_BTF_ID points to a kernel struct that does not need
925 * to be null checked by the BPF program. This does not imply the
926 * pointer is _not_ null and in practice this can easily be a null
927 * pointer when reading pointer chains. The assumption is program
928 * context will handle null pointer dereference typically via fault
929 * handling. The verifier must keep this in mind and can make no
930 * assumptions about null or non-null when doing branch analysis.
931 * Further, when passed into helpers the helpers can not, without
932 * additional context, assume the value is non-null.
933 */
934 PTR_TO_BTF_ID,
935 PTR_TO_MEM, /* reg points to valid memory region */
936 PTR_TO_ARENA,
937 PTR_TO_BUF, /* reg points to a read/write buffer */
938 PTR_TO_FUNC, /* reg points to a bpf program function */
939 CONST_PTR_TO_DYNPTR, /* reg points to a const struct bpf_dynptr */
940 __BPF_REG_TYPE_MAX,
941
942 /* Extended reg_types. */
943 PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | PTR_TO_MAP_VALUE,
944 PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCKET,
945 PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON,
946 PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | PTR_TO_TCP_SOCK,
947 /* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not
948 * been checked for null. Used primarily to inform the verifier
949 * an explicit null check is required for this struct.
950 */
951 PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | PTR_TO_BTF_ID,
952
953 /* This must be the last entry. Its purpose is to ensure the enum is
954 * wide enough to hold the higher bits reserved for bpf_type_flag.
955 */
956 __BPF_REG_TYPE_LIMIT = BPF_TYPE_LIMIT,
957};
958static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
959
960/* The information passed from prog-specific *_is_valid_access
961 * back to the verifier.
962 */
963struct bpf_insn_access_aux {
964 enum bpf_reg_type reg_type;
965 bool is_ldsx;
966 union {
967 int ctx_field_size;
968 struct {
969 struct btf *btf;
970 u32 btf_id;
971 };
972 };
973 struct bpf_verifier_log *log; /* for verbose logs */
974 bool is_retval; /* is accessing function return value ? */
975};
976
977static inline void
978bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size)
979{
980 aux->ctx_field_size = size;
981}
982
983static bool bpf_is_ldimm64(const struct bpf_insn *insn)
984{
985 return insn->code == (BPF_LD | BPF_IMM | BPF_DW);
986}
987
988static inline bool bpf_pseudo_func(const struct bpf_insn *insn)
989{
990 return bpf_is_ldimm64(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
991}
992
993struct bpf_prog_ops {
994 int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr,
995 union bpf_attr __user *uattr);
996};
997
998struct bpf_reg_state;
999struct bpf_verifier_ops {
1000 /* return eBPF function prototype for verification */
1001 const struct bpf_func_proto *
1002 (*get_func_proto)(enum bpf_func_id func_id,
1003 const struct bpf_prog *prog);
1004
1005 /* return true if 'size' wide access at offset 'off' within bpf_context
1006 * with 'type' (read or write) is allowed
1007 */
1008 bool (*is_valid_access)(int off, int size, enum bpf_access_type type,
1009 const struct bpf_prog *prog,
1010 struct bpf_insn_access_aux *info);
1011 int (*gen_prologue)(struct bpf_insn *insn, bool direct_write,
1012 const struct bpf_prog *prog);
1013 int (*gen_epilogue)(struct bpf_insn *insn, const struct bpf_prog *prog,
1014 s16 ctx_stack_off);
1015 int (*gen_ld_abs)(const struct bpf_insn *orig,
1016 struct bpf_insn *insn_buf);
1017 u32 (*convert_ctx_access)(enum bpf_access_type type,
1018 const struct bpf_insn *src,
1019 struct bpf_insn *dst,
1020 struct bpf_prog *prog, u32 *target_size);
1021 int (*btf_struct_access)(struct bpf_verifier_log *log,
1022 const struct bpf_reg_state *reg,
1023 int off, int size);
1024};
1025
1026struct bpf_prog_offload_ops {
1027 /* verifier basic callbacks */
1028 int (*insn_hook)(struct bpf_verifier_env *env,
1029 int insn_idx, int prev_insn_idx);
1030 int (*finalize)(struct bpf_verifier_env *env);
1031 /* verifier optimization callbacks (called after .finalize) */
1032 int (*replace_insn)(struct bpf_verifier_env *env, u32 off,
1033 struct bpf_insn *insn);
1034 int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt);
1035 /* program management callbacks */
1036 int (*prepare)(struct bpf_prog *prog);
1037 int (*translate)(struct bpf_prog *prog);
1038 void (*destroy)(struct bpf_prog *prog);
1039};
1040
1041struct bpf_prog_offload {
1042 struct bpf_prog *prog;
1043 struct net_device *netdev;
1044 struct bpf_offload_dev *offdev;
1045 void *dev_priv;
1046 struct list_head offloads;
1047 bool dev_state;
1048 bool opt_failed;
1049 void *jited_image;
1050 u32 jited_len;
1051};
1052
1053enum bpf_cgroup_storage_type {
1054 BPF_CGROUP_STORAGE_SHARED,
1055 BPF_CGROUP_STORAGE_PERCPU,
1056 __BPF_CGROUP_STORAGE_MAX
1057};
1058
1059#define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX
1060
1061/* The longest tracepoint has 12 args.
1062 * See include/trace/bpf_probe.h
1063 */
1064#define MAX_BPF_FUNC_ARGS 12
1065
1066/* The maximum number of arguments passed through registers
1067 * a single function may have.
1068 */
1069#define MAX_BPF_FUNC_REG_ARGS 5
1070
1071/* The argument is a structure. */
1072#define BTF_FMODEL_STRUCT_ARG BIT(0)
1073
1074/* The argument is signed. */
1075#define BTF_FMODEL_SIGNED_ARG BIT(1)
1076
1077struct btf_func_model {
1078 u8 ret_size;
1079 u8 ret_flags;
1080 u8 nr_args;
1081 u8 arg_size[MAX_BPF_FUNC_ARGS];
1082 u8 arg_flags[MAX_BPF_FUNC_ARGS];
1083};
1084
1085/* Restore arguments before returning from trampoline to let original function
1086 * continue executing. This flag is used for fentry progs when there are no
1087 * fexit progs.
1088 */
1089#define BPF_TRAMP_F_RESTORE_REGS BIT(0)
1090/* Call original function after fentry progs, but before fexit progs.
1091 * Makes sense for fentry/fexit, normal calls and indirect calls.
1092 */
1093#define BPF_TRAMP_F_CALL_ORIG BIT(1)
1094/* Skip current frame and return to parent. Makes sense for fentry/fexit
1095 * programs only. Should not be used with normal calls and indirect calls.
1096 */
1097#define BPF_TRAMP_F_SKIP_FRAME BIT(2)
1098/* Store IP address of the caller on the trampoline stack,
1099 * so it's available for trampoline's programs.
1100 */
1101#define BPF_TRAMP_F_IP_ARG BIT(3)
1102/* Return the return value of fentry prog. Only used by bpf_struct_ops. */
1103#define BPF_TRAMP_F_RET_FENTRY_RET BIT(4)
1104
1105/* Get original function from stack instead of from provided direct address.
1106 * Makes sense for trampolines with fexit or fmod_ret programs.
1107 */
1108#define BPF_TRAMP_F_ORIG_STACK BIT(5)
1109
1110/* This trampoline is on a function with another ftrace_ops with IPMODIFY,
1111 * e.g., a live patch. This flag is set and cleared by ftrace call backs,
1112 */
1113#define BPF_TRAMP_F_SHARE_IPMODIFY BIT(6)
1114
1115/* Indicate that current trampoline is in a tail call context. Then, it has to
1116 * cache and restore tail_call_cnt to avoid infinite tail call loop.
1117 */
1118#define BPF_TRAMP_F_TAIL_CALL_CTX BIT(7)
1119
1120/*
1121 * Indicate the trampoline should be suitable to receive indirect calls;
1122 * without this indirectly calling the generated code can result in #UD/#CP,
1123 * depending on the CFI options.
1124 *
1125 * Used by bpf_struct_ops.
1126 *
1127 * Incompatible with FENTRY usage, overloads @func_addr argument.
1128 */
1129#define BPF_TRAMP_F_INDIRECT BIT(8)
1130
1131/* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50
1132 * bytes on x86.
1133 */
1134enum {
1135#if defined(__s390x__)
1136 BPF_MAX_TRAMP_LINKS = 27,
1137#else
1138 BPF_MAX_TRAMP_LINKS = 38,
1139#endif
1140};
1141
1142struct bpf_tramp_links {
1143 struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS];
1144 int nr_links;
1145};
1146
1147struct bpf_tramp_run_ctx;
1148
1149/* Different use cases for BPF trampoline:
1150 * 1. replace nop at the function entry (kprobe equivalent)
1151 * flags = BPF_TRAMP_F_RESTORE_REGS
1152 * fentry = a set of programs to run before returning from trampoline
1153 *
1154 * 2. replace nop at the function entry (kprobe + kretprobe equivalent)
1155 * flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME
1156 * orig_call = fentry_ip + MCOUNT_INSN_SIZE
1157 * fentry = a set of program to run before calling original function
1158 * fexit = a set of program to run after original function
1159 *
1160 * 3. replace direct call instruction anywhere in the function body
1161 * or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid)
1162 * With flags = 0
1163 * fentry = a set of programs to run before returning from trampoline
1164 * With flags = BPF_TRAMP_F_CALL_ORIG
1165 * orig_call = original callback addr or direct function addr
1166 * fentry = a set of program to run before calling original function
1167 * fexit = a set of program to run after original function
1168 */
1169struct bpf_tramp_image;
1170int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
1171 const struct btf_func_model *m, u32 flags,
1172 struct bpf_tramp_links *tlinks,
1173 void *func_addr);
1174void *arch_alloc_bpf_trampoline(unsigned int size);
1175void arch_free_bpf_trampoline(void *image, unsigned int size);
1176int __must_check arch_protect_bpf_trampoline(void *image, unsigned int size);
1177int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
1178 struct bpf_tramp_links *tlinks, void *func_addr);
1179
1180u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog,
1181 struct bpf_tramp_run_ctx *run_ctx);
1182void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start,
1183 struct bpf_tramp_run_ctx *run_ctx);
1184void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr);
1185void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr);
1186typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog,
1187 struct bpf_tramp_run_ctx *run_ctx);
1188typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start,
1189 struct bpf_tramp_run_ctx *run_ctx);
1190bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog);
1191bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog);
1192
1193struct bpf_ksym {
1194 unsigned long start;
1195 unsigned long end;
1196 char name[KSYM_NAME_LEN];
1197 struct list_head lnode;
1198 struct latch_tree_node tnode;
1199 bool prog;
1200};
1201
1202enum bpf_tramp_prog_type {
1203 BPF_TRAMP_FENTRY,
1204 BPF_TRAMP_FEXIT,
1205 BPF_TRAMP_MODIFY_RETURN,
1206 BPF_TRAMP_MAX,
1207 BPF_TRAMP_REPLACE, /* more than MAX */
1208};
1209
1210struct bpf_tramp_image {
1211 void *image;
1212 int size;
1213 struct bpf_ksym ksym;
1214 struct percpu_ref pcref;
1215 void *ip_after_call;
1216 void *ip_epilogue;
1217 union {
1218 struct rcu_head rcu;
1219 struct work_struct work;
1220 };
1221};
1222
1223struct bpf_trampoline {
1224 /* hlist for trampoline_table */
1225 struct hlist_node hlist;
1226 struct ftrace_ops *fops;
1227 /* serializes access to fields of this trampoline */
1228 struct mutex mutex;
1229 refcount_t refcnt;
1230 u32 flags;
1231 u64 key;
1232 struct {
1233 struct btf_func_model model;
1234 void *addr;
1235 bool ftrace_managed;
1236 } func;
1237 /* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF
1238 * program by replacing one of its functions. func.addr is the address
1239 * of the function it replaced.
1240 */
1241 struct bpf_prog *extension_prog;
1242 /* list of BPF programs using this trampoline */
1243 struct hlist_head progs_hlist[BPF_TRAMP_MAX];
1244 /* Number of attached programs. A counter per kind. */
1245 int progs_cnt[BPF_TRAMP_MAX];
1246 /* Executable image of trampoline */
1247 struct bpf_tramp_image *cur_image;
1248};
1249
1250struct bpf_attach_target_info {
1251 struct btf_func_model fmodel;
1252 long tgt_addr;
1253 struct module *tgt_mod;
1254 const char *tgt_name;
1255 const struct btf_type *tgt_type;
1256};
1257
1258#define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */
1259
1260struct bpf_dispatcher_prog {
1261 struct bpf_prog *prog;
1262 refcount_t users;
1263};
1264
1265struct bpf_dispatcher {
1266 /* dispatcher mutex */
1267 struct mutex mutex;
1268 void *func;
1269 struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX];
1270 int num_progs;
1271 void *image;
1272 void *rw_image;
1273 u32 image_off;
1274 struct bpf_ksym ksym;
1275#ifdef CONFIG_HAVE_STATIC_CALL
1276 struct static_call_key *sc_key;
1277 void *sc_tramp;
1278#endif
1279};
1280
1281#ifndef __bpfcall
1282#define __bpfcall __nocfi
1283#endif
1284
1285static __always_inline __bpfcall unsigned int bpf_dispatcher_nop_func(
1286 const void *ctx,
1287 const struct bpf_insn *insnsi,
1288 bpf_func_t bpf_func)
1289{
1290 return bpf_func(ctx, insnsi);
1291}
1292
1293/* the implementation of the opaque uapi struct bpf_dynptr */
1294struct bpf_dynptr_kern {
1295 void *data;
1296 /* Size represents the number of usable bytes of dynptr data.
1297 * If for example the offset is at 4 for a local dynptr whose data is
1298 * of type u64, the number of usable bytes is 4.
1299 *
1300 * The upper 8 bits are reserved. It is as follows:
1301 * Bits 0 - 23 = size
1302 * Bits 24 - 30 = dynptr type
1303 * Bit 31 = whether dynptr is read-only
1304 */
1305 u32 size;
1306 u32 offset;
1307} __aligned(8);
1308
1309enum bpf_dynptr_type {
1310 BPF_DYNPTR_TYPE_INVALID,
1311 /* Points to memory that is local to the bpf program */
1312 BPF_DYNPTR_TYPE_LOCAL,
1313 /* Underlying data is a ringbuf record */
1314 BPF_DYNPTR_TYPE_RINGBUF,
1315 /* Underlying data is a sk_buff */
1316 BPF_DYNPTR_TYPE_SKB,
1317 /* Underlying data is a xdp_buff */
1318 BPF_DYNPTR_TYPE_XDP,
1319};
1320
1321int bpf_dynptr_check_size(u32 size);
1322u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr);
1323const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len);
1324void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len);
1325bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr);
1326
1327#ifdef CONFIG_BPF_JIT
1328int bpf_trampoline_link_prog(struct bpf_tramp_link *link,
1329 struct bpf_trampoline *tr,
1330 struct bpf_prog *tgt_prog);
1331int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link,
1332 struct bpf_trampoline *tr,
1333 struct bpf_prog *tgt_prog);
1334struct bpf_trampoline *bpf_trampoline_get(u64 key,
1335 struct bpf_attach_target_info *tgt_info);
1336void bpf_trampoline_put(struct bpf_trampoline *tr);
1337int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs);
1338
1339/*
1340 * When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn
1341 * indirection with a direct call to the bpf program. If the architecture does
1342 * not have STATIC_CALL, avoid a double-indirection.
1343 */
1344#ifdef CONFIG_HAVE_STATIC_CALL
1345
1346#define __BPF_DISPATCHER_SC_INIT(_name) \
1347 .sc_key = &STATIC_CALL_KEY(_name), \
1348 .sc_tramp = STATIC_CALL_TRAMP_ADDR(_name),
1349
1350#define __BPF_DISPATCHER_SC(name) \
1351 DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func)
1352
1353#define __BPF_DISPATCHER_CALL(name) \
1354 static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func)
1355
1356#define __BPF_DISPATCHER_UPDATE(_d, _new) \
1357 __static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new))
1358
1359#else
1360#define __BPF_DISPATCHER_SC_INIT(name)
1361#define __BPF_DISPATCHER_SC(name)
1362#define __BPF_DISPATCHER_CALL(name) bpf_func(ctx, insnsi)
1363#define __BPF_DISPATCHER_UPDATE(_d, _new)
1364#endif
1365
1366#define BPF_DISPATCHER_INIT(_name) { \
1367 .mutex = __MUTEX_INITIALIZER(_name.mutex), \
1368 .func = &_name##_func, \
1369 .progs = {}, \
1370 .num_progs = 0, \
1371 .image = NULL, \
1372 .image_off = 0, \
1373 .ksym = { \
1374 .name = #_name, \
1375 .lnode = LIST_HEAD_INIT(_name.ksym.lnode), \
1376 }, \
1377 __BPF_DISPATCHER_SC_INIT(_name##_call) \
1378}
1379
1380#define DEFINE_BPF_DISPATCHER(name) \
1381 __BPF_DISPATCHER_SC(name); \
1382 noinline __bpfcall unsigned int bpf_dispatcher_##name##_func( \
1383 const void *ctx, \
1384 const struct bpf_insn *insnsi, \
1385 bpf_func_t bpf_func) \
1386 { \
1387 return __BPF_DISPATCHER_CALL(name); \
1388 } \
1389 EXPORT_SYMBOL(bpf_dispatcher_##name##_func); \
1390 struct bpf_dispatcher bpf_dispatcher_##name = \
1391 BPF_DISPATCHER_INIT(bpf_dispatcher_##name);
1392
1393#define DECLARE_BPF_DISPATCHER(name) \
1394 unsigned int bpf_dispatcher_##name##_func( \
1395 const void *ctx, \
1396 const struct bpf_insn *insnsi, \
1397 bpf_func_t bpf_func); \
1398 extern struct bpf_dispatcher bpf_dispatcher_##name;
1399
1400#define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func
1401#define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name)
1402void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from,
1403 struct bpf_prog *to);
1404/* Called only from JIT-enabled code, so there's no need for stubs. */
1405void bpf_image_ksym_init(void *data, unsigned int size, struct bpf_ksym *ksym);
1406void bpf_image_ksym_add(struct bpf_ksym *ksym);
1407void bpf_image_ksym_del(struct bpf_ksym *ksym);
1408void bpf_ksym_add(struct bpf_ksym *ksym);
1409void bpf_ksym_del(struct bpf_ksym *ksym);
1410int bpf_jit_charge_modmem(u32 size);
1411void bpf_jit_uncharge_modmem(u32 size);
1412bool bpf_prog_has_trampoline(const struct bpf_prog *prog);
1413#else
1414static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link,
1415 struct bpf_trampoline *tr,
1416 struct bpf_prog *tgt_prog)
1417{
1418 return -ENOTSUPP;
1419}
1420static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link,
1421 struct bpf_trampoline *tr,
1422 struct bpf_prog *tgt_prog)
1423{
1424 return -ENOTSUPP;
1425}
1426static inline struct bpf_trampoline *bpf_trampoline_get(u64 key,
1427 struct bpf_attach_target_info *tgt_info)
1428{
1429 return NULL;
1430}
1431static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {}
1432#define DEFINE_BPF_DISPATCHER(name)
1433#define DECLARE_BPF_DISPATCHER(name)
1434#define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func
1435#define BPF_DISPATCHER_PTR(name) NULL
1436static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d,
1437 struct bpf_prog *from,
1438 struct bpf_prog *to) {}
1439static inline bool is_bpf_image_address(unsigned long address)
1440{
1441 return false;
1442}
1443static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog)
1444{
1445 return false;
1446}
1447#endif
1448
1449struct bpf_func_info_aux {
1450 u16 linkage;
1451 bool unreliable;
1452 bool called : 1;
1453 bool verified : 1;
1454};
1455
1456enum bpf_jit_poke_reason {
1457 BPF_POKE_REASON_TAIL_CALL,
1458};
1459
1460/* Descriptor of pokes pointing /into/ the JITed image. */
1461struct bpf_jit_poke_descriptor {
1462 void *tailcall_target;
1463 void *tailcall_bypass;
1464 void *bypass_addr;
1465 void *aux;
1466 union {
1467 struct {
1468 struct bpf_map *map;
1469 u32 key;
1470 } tail_call;
1471 };
1472 bool tailcall_target_stable;
1473 u8 adj_off;
1474 u16 reason;
1475 u32 insn_idx;
1476};
1477
1478/* reg_type info for ctx arguments */
1479struct bpf_ctx_arg_aux {
1480 u32 offset;
1481 enum bpf_reg_type reg_type;
1482 struct btf *btf;
1483 u32 btf_id;
1484};
1485
1486struct btf_mod_pair {
1487 struct btf *btf;
1488 struct module *module;
1489};
1490
1491struct bpf_kfunc_desc_tab;
1492
1493struct bpf_prog_aux {
1494 atomic64_t refcnt;
1495 u32 used_map_cnt;
1496 u32 used_btf_cnt;
1497 u32 max_ctx_offset;
1498 u32 max_pkt_offset;
1499 u32 max_tp_access;
1500 u32 stack_depth;
1501 u32 id;
1502 u32 func_cnt; /* used by non-func prog as the number of func progs */
1503 u32 real_func_cnt; /* includes hidden progs, only used for JIT and freeing progs */
1504 u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */
1505 u32 attach_btf_id; /* in-kernel BTF type id to attach to */
1506 u32 ctx_arg_info_size;
1507 u32 max_rdonly_access;
1508 u32 max_rdwr_access;
1509 struct btf *attach_btf;
1510 const struct bpf_ctx_arg_aux *ctx_arg_info;
1511 void __percpu *priv_stack_ptr;
1512 struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */
1513 struct bpf_prog *dst_prog;
1514 struct bpf_trampoline *dst_trampoline;
1515 enum bpf_prog_type saved_dst_prog_type;
1516 enum bpf_attach_type saved_dst_attach_type;
1517 bool verifier_zext; /* Zero extensions has been inserted by verifier. */
1518 bool dev_bound; /* Program is bound to the netdev. */
1519 bool offload_requested; /* Program is bound and offloaded to the netdev. */
1520 bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */
1521 bool attach_tracing_prog; /* true if tracing another tracing program */
1522 bool func_proto_unreliable;
1523 bool tail_call_reachable;
1524 bool xdp_has_frags;
1525 bool exception_cb;
1526 bool exception_boundary;
1527 bool is_extended; /* true if extended by freplace program */
1528 bool jits_use_priv_stack;
1529 bool priv_stack_requested;
1530 bool changes_pkt_data;
1531 u64 prog_array_member_cnt; /* counts how many times as member of prog_array */
1532 struct mutex ext_mutex; /* mutex for is_extended and prog_array_member_cnt */
1533 struct bpf_arena *arena;
1534 void (*recursion_detected)(struct bpf_prog *prog); /* callback if recursion is detected */
1535 /* BTF_KIND_FUNC_PROTO for valid attach_btf_id */
1536 const struct btf_type *attach_func_proto;
1537 /* function name for valid attach_btf_id */
1538 const char *attach_func_name;
1539 struct bpf_prog **func;
1540 void *jit_data; /* JIT specific data. arch dependent */
1541 struct bpf_jit_poke_descriptor *poke_tab;
1542 struct bpf_kfunc_desc_tab *kfunc_tab;
1543 struct bpf_kfunc_btf_tab *kfunc_btf_tab;
1544 u32 size_poke_tab;
1545#ifdef CONFIG_FINEIBT
1546 struct bpf_ksym ksym_prefix;
1547#endif
1548 struct bpf_ksym ksym;
1549 const struct bpf_prog_ops *ops;
1550 struct bpf_map **used_maps;
1551 struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */
1552 struct btf_mod_pair *used_btfs;
1553 struct bpf_prog *prog;
1554 struct user_struct *user;
1555 u64 load_time; /* ns since boottime */
1556 u32 verified_insns;
1557 int cgroup_atype; /* enum cgroup_bpf_attach_type */
1558 struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
1559 char name[BPF_OBJ_NAME_LEN];
1560 u64 (*bpf_exception_cb)(u64 cookie, u64 sp, u64 bp, u64, u64);
1561#ifdef CONFIG_SECURITY
1562 void *security;
1563#endif
1564 struct bpf_token *token;
1565 struct bpf_prog_offload *offload;
1566 struct btf *btf;
1567 struct bpf_func_info *func_info;
1568 struct bpf_func_info_aux *func_info_aux;
1569 /* bpf_line_info loaded from userspace. linfo->insn_off
1570 * has the xlated insn offset.
1571 * Both the main and sub prog share the same linfo.
1572 * The subprog can access its first linfo by
1573 * using the linfo_idx.
1574 */
1575 struct bpf_line_info *linfo;
1576 /* jited_linfo is the jited addr of the linfo. It has a
1577 * one to one mapping to linfo:
1578 * jited_linfo[i] is the jited addr for the linfo[i]->insn_off.
1579 * Both the main and sub prog share the same jited_linfo.
1580 * The subprog can access its first jited_linfo by
1581 * using the linfo_idx.
1582 */
1583 void **jited_linfo;
1584 u32 func_info_cnt;
1585 u32 nr_linfo;
1586 /* subprog can use linfo_idx to access its first linfo and
1587 * jited_linfo.
1588 * main prog always has linfo_idx == 0
1589 */
1590 u32 linfo_idx;
1591 struct module *mod;
1592 u32 num_exentries;
1593 struct exception_table_entry *extable;
1594 union {
1595 struct work_struct work;
1596 struct rcu_head rcu;
1597 };
1598};
1599
1600struct bpf_prog {
1601 u16 pages; /* Number of allocated pages */
1602 u16 jited:1, /* Is our filter JIT'ed? */
1603 jit_requested:1,/* archs need to JIT the prog */
1604 gpl_compatible:1, /* Is filter GPL compatible? */
1605 cb_access:1, /* Is control block accessed? */
1606 dst_needed:1, /* Do we need dst entry? */
1607 blinding_requested:1, /* needs constant blinding */
1608 blinded:1, /* Was blinded */
1609 is_func:1, /* program is a bpf function */
1610 kprobe_override:1, /* Do we override a kprobe? */
1611 has_callchain_buf:1, /* callchain buffer allocated? */
1612 enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */
1613 call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */
1614 call_get_func_ip:1, /* Do we call get_func_ip() */
1615 tstamp_type_access:1, /* Accessed __sk_buff->tstamp_type */
1616 sleepable:1; /* BPF program is sleepable */
1617 enum bpf_prog_type type; /* Type of BPF program */
1618 enum bpf_attach_type expected_attach_type; /* For some prog types */
1619 u32 len; /* Number of filter blocks */
1620 u32 jited_len; /* Size of jited insns in bytes */
1621 u8 tag[BPF_TAG_SIZE];
1622 struct bpf_prog_stats __percpu *stats;
1623 int __percpu *active;
1624 unsigned int (*bpf_func)(const void *ctx,
1625 const struct bpf_insn *insn);
1626 struct bpf_prog_aux *aux; /* Auxiliary fields */
1627 struct sock_fprog_kern *orig_prog; /* Original BPF program */
1628 /* Instructions for interpreter */
1629 union {
1630 DECLARE_FLEX_ARRAY(struct sock_filter, insns);
1631 DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi);
1632 };
1633};
1634
1635struct bpf_array_aux {
1636 /* Programs with direct jumps into programs part of this array. */
1637 struct list_head poke_progs;
1638 struct bpf_map *map;
1639 struct mutex poke_mutex;
1640 struct work_struct work;
1641};
1642
1643struct bpf_link {
1644 atomic64_t refcnt;
1645 u32 id;
1646 enum bpf_link_type type;
1647 const struct bpf_link_ops *ops;
1648 struct bpf_prog *prog;
1649 /* whether BPF link itself has "sleepable" semantics, which can differ
1650 * from underlying BPF program having a "sleepable" semantics, as BPF
1651 * link's semantics is determined by target attach hook
1652 */
1653 bool sleepable;
1654 /* rcu is used before freeing, work can be used to schedule that
1655 * RCU-based freeing before that, so they never overlap
1656 */
1657 union {
1658 struct rcu_head rcu;
1659 struct work_struct work;
1660 };
1661};
1662
1663struct bpf_link_ops {
1664 void (*release)(struct bpf_link *link);
1665 /* deallocate link resources callback, called without RCU grace period
1666 * waiting
1667 */
1668 void (*dealloc)(struct bpf_link *link);
1669 /* deallocate link resources callback, called after RCU grace period;
1670 * if either the underlying BPF program is sleepable or BPF link's
1671 * target hook is sleepable, we'll go through tasks trace RCU GP and
1672 * then "classic" RCU GP; this need for chaining tasks trace and
1673 * classic RCU GPs is designated by setting bpf_link->sleepable flag
1674 */
1675 void (*dealloc_deferred)(struct bpf_link *link);
1676 int (*detach)(struct bpf_link *link);
1677 int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog,
1678 struct bpf_prog *old_prog);
1679 void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq);
1680 int (*fill_link_info)(const struct bpf_link *link,
1681 struct bpf_link_info *info);
1682 int (*update_map)(struct bpf_link *link, struct bpf_map *new_map,
1683 struct bpf_map *old_map);
1684 __poll_t (*poll)(struct file *file, struct poll_table_struct *pts);
1685};
1686
1687struct bpf_tramp_link {
1688 struct bpf_link link;
1689 struct hlist_node tramp_hlist;
1690 u64 cookie;
1691};
1692
1693struct bpf_shim_tramp_link {
1694 struct bpf_tramp_link link;
1695 struct bpf_trampoline *trampoline;
1696};
1697
1698struct bpf_tracing_link {
1699 struct bpf_tramp_link link;
1700 enum bpf_attach_type attach_type;
1701 struct bpf_trampoline *trampoline;
1702 struct bpf_prog *tgt_prog;
1703};
1704
1705struct bpf_raw_tp_link {
1706 struct bpf_link link;
1707 struct bpf_raw_event_map *btp;
1708 u64 cookie;
1709};
1710
1711struct bpf_link_primer {
1712 struct bpf_link *link;
1713 struct file *file;
1714 int fd;
1715 u32 id;
1716};
1717
1718struct bpf_mount_opts {
1719 kuid_t uid;
1720 kgid_t gid;
1721 umode_t mode;
1722
1723 /* BPF token-related delegation options */
1724 u64 delegate_cmds;
1725 u64 delegate_maps;
1726 u64 delegate_progs;
1727 u64 delegate_attachs;
1728};
1729
1730struct bpf_token {
1731 struct work_struct work;
1732 atomic64_t refcnt;
1733 struct user_namespace *userns;
1734 u64 allowed_cmds;
1735 u64 allowed_maps;
1736 u64 allowed_progs;
1737 u64 allowed_attachs;
1738#ifdef CONFIG_SECURITY
1739 void *security;
1740#endif
1741};
1742
1743struct bpf_struct_ops_value;
1744struct btf_member;
1745
1746#define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64
1747/**
1748 * struct bpf_struct_ops - A structure of callbacks allowing a subsystem to
1749 * define a BPF_MAP_TYPE_STRUCT_OPS map type composed
1750 * of BPF_PROG_TYPE_STRUCT_OPS progs.
1751 * @verifier_ops: A structure of callbacks that are invoked by the verifier
1752 * when determining whether the struct_ops progs in the
1753 * struct_ops map are valid.
1754 * @init: A callback that is invoked a single time, and before any other
1755 * callback, to initialize the structure. A nonzero return value means
1756 * the subsystem could not be initialized.
1757 * @check_member: When defined, a callback invoked by the verifier to allow
1758 * the subsystem to determine if an entry in the struct_ops map
1759 * is valid. A nonzero return value means that the map is
1760 * invalid and should be rejected by the verifier.
1761 * @init_member: A callback that is invoked for each member of the struct_ops
1762 * map to allow the subsystem to initialize the member. A nonzero
1763 * value means the member could not be initialized. This callback
1764 * is exclusive with the @type, @type_id, @value_type, and
1765 * @value_id fields.
1766 * @reg: A callback that is invoked when the struct_ops map has been
1767 * initialized and is being attached to. Zero means the struct_ops map
1768 * has been successfully registered and is live. A nonzero return value
1769 * means the struct_ops map could not be registered.
1770 * @unreg: A callback that is invoked when the struct_ops map should be
1771 * unregistered.
1772 * @update: A callback that is invoked when the live struct_ops map is being
1773 * updated to contain new values. This callback is only invoked when
1774 * the struct_ops map is loaded with BPF_F_LINK. If not defined, the
1775 * it is assumed that the struct_ops map cannot be updated.
1776 * @validate: A callback that is invoked after all of the members have been
1777 * initialized. This callback should perform static checks on the
1778 * map, meaning that it should either fail or succeed
1779 * deterministically. A struct_ops map that has been validated may
1780 * not necessarily succeed in being registered if the call to @reg
1781 * fails. For example, a valid struct_ops map may be loaded, but
1782 * then fail to be registered due to there being another active
1783 * struct_ops map on the system in the subsystem already. For this
1784 * reason, if this callback is not defined, the check is skipped as
1785 * the struct_ops map will have final verification performed in
1786 * @reg.
1787 * @type: BTF type.
1788 * @value_type: Value type.
1789 * @name: The name of the struct bpf_struct_ops object.
1790 * @func_models: Func models
1791 * @type_id: BTF type id.
1792 * @value_id: BTF value id.
1793 */
1794struct bpf_struct_ops {
1795 const struct bpf_verifier_ops *verifier_ops;
1796 int (*init)(struct btf *btf);
1797 int (*check_member)(const struct btf_type *t,
1798 const struct btf_member *member,
1799 const struct bpf_prog *prog);
1800 int (*init_member)(const struct btf_type *t,
1801 const struct btf_member *member,
1802 void *kdata, const void *udata);
1803 int (*reg)(void *kdata, struct bpf_link *link);
1804 void (*unreg)(void *kdata, struct bpf_link *link);
1805 int (*update)(void *kdata, void *old_kdata, struct bpf_link *link);
1806 int (*validate)(void *kdata);
1807 void *cfi_stubs;
1808 struct module *owner;
1809 const char *name;
1810 struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS];
1811};
1812
1813/* Every member of a struct_ops type has an instance even a member is not
1814 * an operator (function pointer). The "info" field will be assigned to
1815 * prog->aux->ctx_arg_info of BPF struct_ops programs to provide the
1816 * argument information required by the verifier to verify the program.
1817 *
1818 * btf_ctx_access() will lookup prog->aux->ctx_arg_info to find the
1819 * corresponding entry for an given argument.
1820 */
1821struct bpf_struct_ops_arg_info {
1822 struct bpf_ctx_arg_aux *info;
1823 u32 cnt;
1824};
1825
1826struct bpf_struct_ops_desc {
1827 struct bpf_struct_ops *st_ops;
1828
1829 const struct btf_type *type;
1830 const struct btf_type *value_type;
1831 u32 type_id;
1832 u32 value_id;
1833
1834 /* Collection of argument information for each member */
1835 struct bpf_struct_ops_arg_info *arg_info;
1836};
1837
1838enum bpf_struct_ops_state {
1839 BPF_STRUCT_OPS_STATE_INIT,
1840 BPF_STRUCT_OPS_STATE_INUSE,
1841 BPF_STRUCT_OPS_STATE_TOBEFREE,
1842 BPF_STRUCT_OPS_STATE_READY,
1843};
1844
1845struct bpf_struct_ops_common_value {
1846 refcount_t refcnt;
1847 enum bpf_struct_ops_state state;
1848};
1849
1850#if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL)
1851/* This macro helps developer to register a struct_ops type and generate
1852 * type information correctly. Developers should use this macro to register
1853 * a struct_ops type instead of calling __register_bpf_struct_ops() directly.
1854 */
1855#define register_bpf_struct_ops(st_ops, type) \
1856 ({ \
1857 struct bpf_struct_ops_##type { \
1858 struct bpf_struct_ops_common_value common; \
1859 struct type data ____cacheline_aligned_in_smp; \
1860 }; \
1861 BTF_TYPE_EMIT(struct bpf_struct_ops_##type); \
1862 __register_bpf_struct_ops(st_ops); \
1863 })
1864#define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA))
1865bool bpf_struct_ops_get(const void *kdata);
1866void bpf_struct_ops_put(const void *kdata);
1867int bpf_struct_ops_supported(const struct bpf_struct_ops *st_ops, u32 moff);
1868int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key,
1869 void *value);
1870int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks,
1871 struct bpf_tramp_link *link,
1872 const struct btf_func_model *model,
1873 void *stub_func,
1874 void **image, u32 *image_off,
1875 bool allow_alloc);
1876void bpf_struct_ops_image_free(void *image);
1877static inline bool bpf_try_module_get(const void *data, struct module *owner)
1878{
1879 if (owner == BPF_MODULE_OWNER)
1880 return bpf_struct_ops_get(data);
1881 else
1882 return try_module_get(owner);
1883}
1884static inline void bpf_module_put(const void *data, struct module *owner)
1885{
1886 if (owner == BPF_MODULE_OWNER)
1887 bpf_struct_ops_put(data);
1888 else
1889 module_put(owner);
1890}
1891int bpf_struct_ops_link_create(union bpf_attr *attr);
1892
1893#ifdef CONFIG_NET
1894/* Define it here to avoid the use of forward declaration */
1895struct bpf_dummy_ops_state {
1896 int val;
1897};
1898
1899struct bpf_dummy_ops {
1900 int (*test_1)(struct bpf_dummy_ops_state *cb);
1901 int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2,
1902 char a3, unsigned long a4);
1903 int (*test_sleepable)(struct bpf_dummy_ops_state *cb);
1904};
1905
1906int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr,
1907 union bpf_attr __user *uattr);
1908#endif
1909int bpf_struct_ops_desc_init(struct bpf_struct_ops_desc *st_ops_desc,
1910 struct btf *btf,
1911 struct bpf_verifier_log *log);
1912void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map);
1913void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc);
1914#else
1915#define register_bpf_struct_ops(st_ops, type) ({ (void *)(st_ops); 0; })
1916static inline bool bpf_try_module_get(const void *data, struct module *owner)
1917{
1918 return try_module_get(owner);
1919}
1920static inline void bpf_module_put(const void *data, struct module *owner)
1921{
1922 module_put(owner);
1923}
1924static inline int bpf_struct_ops_supported(const struct bpf_struct_ops *st_ops, u32 moff)
1925{
1926 return -ENOTSUPP;
1927}
1928static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map,
1929 void *key,
1930 void *value)
1931{
1932 return -EINVAL;
1933}
1934static inline int bpf_struct_ops_link_create(union bpf_attr *attr)
1935{
1936 return -EOPNOTSUPP;
1937}
1938static inline void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map)
1939{
1940}
1941
1942static inline void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc)
1943{
1944}
1945
1946#endif
1947
1948#if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM)
1949int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
1950 int cgroup_atype);
1951void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog);
1952#else
1953static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
1954 int cgroup_atype)
1955{
1956 return -EOPNOTSUPP;
1957}
1958static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog)
1959{
1960}
1961#endif
1962
1963struct bpf_array {
1964 struct bpf_map map;
1965 u32 elem_size;
1966 u32 index_mask;
1967 struct bpf_array_aux *aux;
1968 union {
1969 DECLARE_FLEX_ARRAY(char, value) __aligned(8);
1970 DECLARE_FLEX_ARRAY(void *, ptrs) __aligned(8);
1971 DECLARE_FLEX_ARRAY(void __percpu *, pptrs) __aligned(8);
1972 };
1973};
1974
1975#define BPF_COMPLEXITY_LIMIT_INSNS 1000000 /* yes. 1M insns */
1976#define MAX_TAIL_CALL_CNT 33
1977
1978/* Maximum number of loops for bpf_loop and bpf_iter_num.
1979 * It's enum to expose it (and thus make it discoverable) through BTF.
1980 */
1981enum {
1982 BPF_MAX_LOOPS = 8 * 1024 * 1024,
1983};
1984
1985#define BPF_F_ACCESS_MASK (BPF_F_RDONLY | \
1986 BPF_F_RDONLY_PROG | \
1987 BPF_F_WRONLY | \
1988 BPF_F_WRONLY_PROG)
1989
1990#define BPF_MAP_CAN_READ BIT(0)
1991#define BPF_MAP_CAN_WRITE BIT(1)
1992
1993/* Maximum number of user-producer ring buffer samples that can be drained in
1994 * a call to bpf_user_ringbuf_drain().
1995 */
1996#define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024)
1997
1998static inline u32 bpf_map_flags_to_cap(struct bpf_map *map)
1999{
2000 u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
2001
2002 /* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is
2003 * not possible.
2004 */
2005 if (access_flags & BPF_F_RDONLY_PROG)
2006 return BPF_MAP_CAN_READ;
2007 else if (access_flags & BPF_F_WRONLY_PROG)
2008 return BPF_MAP_CAN_WRITE;
2009 else
2010 return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE;
2011}
2012
2013static inline bool bpf_map_flags_access_ok(u32 access_flags)
2014{
2015 return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) !=
2016 (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
2017}
2018
2019struct bpf_event_entry {
2020 struct perf_event *event;
2021 struct file *perf_file;
2022 struct file *map_file;
2023 struct rcu_head rcu;
2024};
2025
2026static inline bool map_type_contains_progs(struct bpf_map *map)
2027{
2028 return map->map_type == BPF_MAP_TYPE_PROG_ARRAY ||
2029 map->map_type == BPF_MAP_TYPE_DEVMAP ||
2030 map->map_type == BPF_MAP_TYPE_CPUMAP;
2031}
2032
2033bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp);
2034int bpf_prog_calc_tag(struct bpf_prog *fp);
2035
2036const struct bpf_func_proto *bpf_get_trace_printk_proto(void);
2037const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void);
2038
2039typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src,
2040 unsigned long off, unsigned long len);
2041typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type,
2042 const struct bpf_insn *src,
2043 struct bpf_insn *dst,
2044 struct bpf_prog *prog,
2045 u32 *target_size);
2046
2047u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2048 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy);
2049
2050/* an array of programs to be executed under rcu_lock.
2051 *
2052 * Typical usage:
2053 * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run);
2054 *
2055 * the structure returned by bpf_prog_array_alloc() should be populated
2056 * with program pointers and the last pointer must be NULL.
2057 * The user has to keep refcnt on the program and make sure the program
2058 * is removed from the array before bpf_prog_put().
2059 * The 'struct bpf_prog_array *' should only be replaced with xchg()
2060 * since other cpus are walking the array of pointers in parallel.
2061 */
2062struct bpf_prog_array_item {
2063 struct bpf_prog *prog;
2064 union {
2065 struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
2066 u64 bpf_cookie;
2067 };
2068};
2069
2070struct bpf_prog_array {
2071 struct rcu_head rcu;
2072 struct bpf_prog_array_item items[];
2073};
2074
2075struct bpf_empty_prog_array {
2076 struct bpf_prog_array hdr;
2077 struct bpf_prog *null_prog;
2078};
2079
2080/* to avoid allocating empty bpf_prog_array for cgroups that
2081 * don't have bpf program attached use one global 'bpf_empty_prog_array'
2082 * It will not be modified the caller of bpf_prog_array_alloc()
2083 * (since caller requested prog_cnt == 0)
2084 * that pointer should be 'freed' by bpf_prog_array_free()
2085 */
2086extern struct bpf_empty_prog_array bpf_empty_prog_array;
2087
2088struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags);
2089void bpf_prog_array_free(struct bpf_prog_array *progs);
2090/* Use when traversal over the bpf_prog_array uses tasks_trace rcu */
2091void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs);
2092int bpf_prog_array_length(struct bpf_prog_array *progs);
2093bool bpf_prog_array_is_empty(struct bpf_prog_array *array);
2094int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs,
2095 __u32 __user *prog_ids, u32 cnt);
2096
2097void bpf_prog_array_delete_safe(struct bpf_prog_array *progs,
2098 struct bpf_prog *old_prog);
2099int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index);
2100int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2101 struct bpf_prog *prog);
2102int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2103 u32 *prog_ids, u32 request_cnt,
2104 u32 *prog_cnt);
2105int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2106 struct bpf_prog *exclude_prog,
2107 struct bpf_prog *include_prog,
2108 u64 bpf_cookie,
2109 struct bpf_prog_array **new_array);
2110
2111struct bpf_run_ctx {};
2112
2113struct bpf_cg_run_ctx {
2114 struct bpf_run_ctx run_ctx;
2115 const struct bpf_prog_array_item *prog_item;
2116 int retval;
2117};
2118
2119struct bpf_trace_run_ctx {
2120 struct bpf_run_ctx run_ctx;
2121 u64 bpf_cookie;
2122 bool is_uprobe;
2123};
2124
2125struct bpf_tramp_run_ctx {
2126 struct bpf_run_ctx run_ctx;
2127 u64 bpf_cookie;
2128 struct bpf_run_ctx *saved_run_ctx;
2129};
2130
2131static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx)
2132{
2133 struct bpf_run_ctx *old_ctx = NULL;
2134
2135#ifdef CONFIG_BPF_SYSCALL
2136 old_ctx = current->bpf_ctx;
2137 current->bpf_ctx = new_ctx;
2138#endif
2139 return old_ctx;
2140}
2141
2142static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx)
2143{
2144#ifdef CONFIG_BPF_SYSCALL
2145 current->bpf_ctx = old_ctx;
2146#endif
2147}
2148
2149/* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */
2150#define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE (1 << 0)
2151/* BPF program asks to set CN on the packet. */
2152#define BPF_RET_SET_CN (1 << 0)
2153
2154typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx);
2155
2156static __always_inline u32
2157bpf_prog_run_array(const struct bpf_prog_array *array,
2158 const void *ctx, bpf_prog_run_fn run_prog)
2159{
2160 const struct bpf_prog_array_item *item;
2161 const struct bpf_prog *prog;
2162 struct bpf_run_ctx *old_run_ctx;
2163 struct bpf_trace_run_ctx run_ctx;
2164 u32 ret = 1;
2165
2166 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held");
2167
2168 if (unlikely(!array))
2169 return ret;
2170
2171 run_ctx.is_uprobe = false;
2172
2173 migrate_disable();
2174 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2175 item = &array->items[0];
2176 while ((prog = READ_ONCE(item->prog))) {
2177 run_ctx.bpf_cookie = item->bpf_cookie;
2178 ret &= run_prog(prog, ctx);
2179 item++;
2180 }
2181 bpf_reset_run_ctx(old_run_ctx);
2182 migrate_enable();
2183 return ret;
2184}
2185
2186/* Notes on RCU design for bpf_prog_arrays containing sleepable programs:
2187 *
2188 * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array
2189 * overall. As a result, we must use the bpf_prog_array_free_sleepable
2190 * in order to use the tasks_trace rcu grace period.
2191 *
2192 * When a non-sleepable program is inside the array, we take the rcu read
2193 * section and disable preemption for that program alone, so it can access
2194 * rcu-protected dynamically sized maps.
2195 */
2196static __always_inline u32
2197bpf_prog_run_array_uprobe(const struct bpf_prog_array *array,
2198 const void *ctx, bpf_prog_run_fn run_prog)
2199{
2200 const struct bpf_prog_array_item *item;
2201 const struct bpf_prog *prog;
2202 struct bpf_run_ctx *old_run_ctx;
2203 struct bpf_trace_run_ctx run_ctx;
2204 u32 ret = 1;
2205
2206 might_fault();
2207 RCU_LOCKDEP_WARN(!rcu_read_lock_trace_held(), "no rcu lock held");
2208
2209 if (unlikely(!array))
2210 return ret;
2211
2212 migrate_disable();
2213
2214 run_ctx.is_uprobe = true;
2215
2216 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2217 item = &array->items[0];
2218 while ((prog = READ_ONCE(item->prog))) {
2219 if (!prog->sleepable)
2220 rcu_read_lock();
2221
2222 run_ctx.bpf_cookie = item->bpf_cookie;
2223 ret &= run_prog(prog, ctx);
2224 item++;
2225
2226 if (!prog->sleepable)
2227 rcu_read_unlock();
2228 }
2229 bpf_reset_run_ctx(old_run_ctx);
2230 migrate_enable();
2231 return ret;
2232}
2233
2234#ifdef CONFIG_BPF_SYSCALL
2235DECLARE_PER_CPU(int, bpf_prog_active);
2236extern struct mutex bpf_stats_enabled_mutex;
2237
2238/*
2239 * Block execution of BPF programs attached to instrumentation (perf,
2240 * kprobes, tracepoints) to prevent deadlocks on map operations as any of
2241 * these events can happen inside a region which holds a map bucket lock
2242 * and can deadlock on it.
2243 */
2244static inline void bpf_disable_instrumentation(void)
2245{
2246 migrate_disable();
2247 this_cpu_inc(bpf_prog_active);
2248}
2249
2250static inline void bpf_enable_instrumentation(void)
2251{
2252 this_cpu_dec(bpf_prog_active);
2253 migrate_enable();
2254}
2255
2256extern const struct super_operations bpf_super_ops;
2257extern const struct file_operations bpf_map_fops;
2258extern const struct file_operations bpf_prog_fops;
2259extern const struct file_operations bpf_iter_fops;
2260
2261#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
2262 extern const struct bpf_prog_ops _name ## _prog_ops; \
2263 extern const struct bpf_verifier_ops _name ## _verifier_ops;
2264#define BPF_MAP_TYPE(_id, _ops) \
2265 extern const struct bpf_map_ops _ops;
2266#define BPF_LINK_TYPE(_id, _name)
2267#include <linux/bpf_types.h>
2268#undef BPF_PROG_TYPE
2269#undef BPF_MAP_TYPE
2270#undef BPF_LINK_TYPE
2271
2272extern const struct bpf_prog_ops bpf_offload_prog_ops;
2273extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops;
2274extern const struct bpf_verifier_ops xdp_analyzer_ops;
2275
2276struct bpf_prog *bpf_prog_get(u32 ufd);
2277struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type,
2278 bool attach_drv);
2279void bpf_prog_add(struct bpf_prog *prog, int i);
2280void bpf_prog_sub(struct bpf_prog *prog, int i);
2281void bpf_prog_inc(struct bpf_prog *prog);
2282struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog);
2283void bpf_prog_put(struct bpf_prog *prog);
2284
2285void bpf_prog_free_id(struct bpf_prog *prog);
2286void bpf_map_free_id(struct bpf_map *map);
2287
2288struct btf_field *btf_record_find(const struct btf_record *rec,
2289 u32 offset, u32 field_mask);
2290void btf_record_free(struct btf_record *rec);
2291void bpf_map_free_record(struct bpf_map *map);
2292struct btf_record *btf_record_dup(const struct btf_record *rec);
2293bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b);
2294void bpf_obj_free_timer(const struct btf_record *rec, void *obj);
2295void bpf_obj_free_workqueue(const struct btf_record *rec, void *obj);
2296void bpf_obj_free_fields(const struct btf_record *rec, void *obj);
2297void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu);
2298
2299struct bpf_map *bpf_map_get(u32 ufd);
2300struct bpf_map *bpf_map_get_with_uref(u32 ufd);
2301
2302static inline struct bpf_map *__bpf_map_get(struct fd f)
2303{
2304 if (fd_empty(f))
2305 return ERR_PTR(-EBADF);
2306 if (unlikely(fd_file(f)->f_op != &bpf_map_fops))
2307 return ERR_PTR(-EINVAL);
2308 return fd_file(f)->private_data;
2309}
2310
2311void bpf_map_inc(struct bpf_map *map);
2312void bpf_map_inc_with_uref(struct bpf_map *map);
2313struct bpf_map *__bpf_map_inc_not_zero(struct bpf_map *map, bool uref);
2314struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map);
2315void bpf_map_put_with_uref(struct bpf_map *map);
2316void bpf_map_put(struct bpf_map *map);
2317void *bpf_map_area_alloc(u64 size, int numa_node);
2318void *bpf_map_area_mmapable_alloc(u64 size, int numa_node);
2319void bpf_map_area_free(void *base);
2320bool bpf_map_write_active(const struct bpf_map *map);
2321void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr);
2322int generic_map_lookup_batch(struct bpf_map *map,
2323 const union bpf_attr *attr,
2324 union bpf_attr __user *uattr);
2325int generic_map_update_batch(struct bpf_map *map, struct file *map_file,
2326 const union bpf_attr *attr,
2327 union bpf_attr __user *uattr);
2328int generic_map_delete_batch(struct bpf_map *map,
2329 const union bpf_attr *attr,
2330 union bpf_attr __user *uattr);
2331struct bpf_map *bpf_map_get_curr_or_next(u32 *id);
2332struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id);
2333
2334int bpf_map_alloc_pages(const struct bpf_map *map, gfp_t gfp, int nid,
2335 unsigned long nr_pages, struct page **page_array);
2336#ifdef CONFIG_MEMCG
2337void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags,
2338 int node);
2339void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags);
2340void *bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size,
2341 gfp_t flags);
2342void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size,
2343 size_t align, gfp_t flags);
2344#else
2345/*
2346 * These specialized allocators have to be macros for their allocations to be
2347 * accounted separately (to have separate alloc_tag).
2348 */
2349#define bpf_map_kmalloc_node(_map, _size, _flags, _node) \
2350 kmalloc_node(_size, _flags, _node)
2351#define bpf_map_kzalloc(_map, _size, _flags) \
2352 kzalloc(_size, _flags)
2353#define bpf_map_kvcalloc(_map, _n, _size, _flags) \
2354 kvcalloc(_n, _size, _flags)
2355#define bpf_map_alloc_percpu(_map, _size, _align, _flags) \
2356 __alloc_percpu_gfp(_size, _align, _flags)
2357#endif
2358
2359static inline int
2360bpf_map_init_elem_count(struct bpf_map *map)
2361{
2362 size_t size = sizeof(*map->elem_count), align = size;
2363 gfp_t flags = GFP_USER | __GFP_NOWARN;
2364
2365 map->elem_count = bpf_map_alloc_percpu(map, size, align, flags);
2366 if (!map->elem_count)
2367 return -ENOMEM;
2368
2369 return 0;
2370}
2371
2372static inline void
2373bpf_map_free_elem_count(struct bpf_map *map)
2374{
2375 free_percpu(map->elem_count);
2376}
2377
2378static inline void bpf_map_inc_elem_count(struct bpf_map *map)
2379{
2380 this_cpu_inc(*map->elem_count);
2381}
2382
2383static inline void bpf_map_dec_elem_count(struct bpf_map *map)
2384{
2385 this_cpu_dec(*map->elem_count);
2386}
2387
2388extern int sysctl_unprivileged_bpf_disabled;
2389
2390bool bpf_token_capable(const struct bpf_token *token, int cap);
2391
2392static inline bool bpf_allow_ptr_leaks(const struct bpf_token *token)
2393{
2394 return bpf_token_capable(token, CAP_PERFMON);
2395}
2396
2397static inline bool bpf_allow_uninit_stack(const struct bpf_token *token)
2398{
2399 return bpf_token_capable(token, CAP_PERFMON);
2400}
2401
2402static inline bool bpf_bypass_spec_v1(const struct bpf_token *token)
2403{
2404 return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON);
2405}
2406
2407static inline bool bpf_bypass_spec_v4(const struct bpf_token *token)
2408{
2409 return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON);
2410}
2411
2412int bpf_map_new_fd(struct bpf_map *map, int flags);
2413int bpf_prog_new_fd(struct bpf_prog *prog);
2414
2415void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2416 const struct bpf_link_ops *ops, struct bpf_prog *prog);
2417void bpf_link_init_sleepable(struct bpf_link *link, enum bpf_link_type type,
2418 const struct bpf_link_ops *ops, struct bpf_prog *prog,
2419 bool sleepable);
2420int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer);
2421int bpf_link_settle(struct bpf_link_primer *primer);
2422void bpf_link_cleanup(struct bpf_link_primer *primer);
2423void bpf_link_inc(struct bpf_link *link);
2424struct bpf_link *bpf_link_inc_not_zero(struct bpf_link *link);
2425void bpf_link_put(struct bpf_link *link);
2426int bpf_link_new_fd(struct bpf_link *link);
2427struct bpf_link *bpf_link_get_from_fd(u32 ufd);
2428struct bpf_link *bpf_link_get_curr_or_next(u32 *id);
2429
2430void bpf_token_inc(struct bpf_token *token);
2431void bpf_token_put(struct bpf_token *token);
2432int bpf_token_create(union bpf_attr *attr);
2433struct bpf_token *bpf_token_get_from_fd(u32 ufd);
2434
2435bool bpf_token_allow_cmd(const struct bpf_token *token, enum bpf_cmd cmd);
2436bool bpf_token_allow_map_type(const struct bpf_token *token, enum bpf_map_type type);
2437bool bpf_token_allow_prog_type(const struct bpf_token *token,
2438 enum bpf_prog_type prog_type,
2439 enum bpf_attach_type attach_type);
2440
2441int bpf_obj_pin_user(u32 ufd, int path_fd, const char __user *pathname);
2442int bpf_obj_get_user(int path_fd, const char __user *pathname, int flags);
2443struct inode *bpf_get_inode(struct super_block *sb, const struct inode *dir,
2444 umode_t mode);
2445
2446#define BPF_ITER_FUNC_PREFIX "bpf_iter_"
2447#define DEFINE_BPF_ITER_FUNC(target, args...) \
2448 extern int bpf_iter_ ## target(args); \
2449 int __init bpf_iter_ ## target(args) { return 0; }
2450
2451/*
2452 * The task type of iterators.
2453 *
2454 * For BPF task iterators, they can be parameterized with various
2455 * parameters to visit only some of tasks.
2456 *
2457 * BPF_TASK_ITER_ALL (default)
2458 * Iterate over resources of every task.
2459 *
2460 * BPF_TASK_ITER_TID
2461 * Iterate over resources of a task/tid.
2462 *
2463 * BPF_TASK_ITER_TGID
2464 * Iterate over resources of every task of a process / task group.
2465 */
2466enum bpf_iter_task_type {
2467 BPF_TASK_ITER_ALL = 0,
2468 BPF_TASK_ITER_TID,
2469 BPF_TASK_ITER_TGID,
2470};
2471
2472struct bpf_iter_aux_info {
2473 /* for map_elem iter */
2474 struct bpf_map *map;
2475
2476 /* for cgroup iter */
2477 struct {
2478 struct cgroup *start; /* starting cgroup */
2479 enum bpf_cgroup_iter_order order;
2480 } cgroup;
2481 struct {
2482 enum bpf_iter_task_type type;
2483 u32 pid;
2484 } task;
2485};
2486
2487typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog,
2488 union bpf_iter_link_info *linfo,
2489 struct bpf_iter_aux_info *aux);
2490typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux);
2491typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux,
2492 struct seq_file *seq);
2493typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux,
2494 struct bpf_link_info *info);
2495typedef const struct bpf_func_proto *
2496(*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id,
2497 const struct bpf_prog *prog);
2498
2499enum bpf_iter_feature {
2500 BPF_ITER_RESCHED = BIT(0),
2501};
2502
2503#define BPF_ITER_CTX_ARG_MAX 2
2504struct bpf_iter_reg {
2505 const char *target;
2506 bpf_iter_attach_target_t attach_target;
2507 bpf_iter_detach_target_t detach_target;
2508 bpf_iter_show_fdinfo_t show_fdinfo;
2509 bpf_iter_fill_link_info_t fill_link_info;
2510 bpf_iter_get_func_proto_t get_func_proto;
2511 u32 ctx_arg_info_size;
2512 u32 feature;
2513 struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX];
2514 const struct bpf_iter_seq_info *seq_info;
2515};
2516
2517struct bpf_iter_meta {
2518 __bpf_md_ptr(struct seq_file *, seq);
2519 u64 session_id;
2520 u64 seq_num;
2521};
2522
2523struct bpf_iter__bpf_map_elem {
2524 __bpf_md_ptr(struct bpf_iter_meta *, meta);
2525 __bpf_md_ptr(struct bpf_map *, map);
2526 __bpf_md_ptr(void *, key);
2527 __bpf_md_ptr(void *, value);
2528};
2529
2530int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info);
2531void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info);
2532bool bpf_iter_prog_supported(struct bpf_prog *prog);
2533const struct bpf_func_proto *
2534bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog);
2535int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog);
2536int bpf_iter_new_fd(struct bpf_link *link);
2537bool bpf_link_is_iter(struct bpf_link *link);
2538struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop);
2539int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx);
2540void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux,
2541 struct seq_file *seq);
2542int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux,
2543 struct bpf_link_info *info);
2544
2545int map_set_for_each_callback_args(struct bpf_verifier_env *env,
2546 struct bpf_func_state *caller,
2547 struct bpf_func_state *callee);
2548
2549int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value);
2550int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value);
2551int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
2552 u64 flags);
2553int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value,
2554 u64 flags);
2555
2556int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value);
2557
2558int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file,
2559 void *key, void *value, u64 map_flags);
2560int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2561int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2562 void *key, void *value, u64 map_flags);
2563int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2564
2565int bpf_get_file_flag(int flags);
2566int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size,
2567 size_t actual_size);
2568
2569/* verify correctness of eBPF program */
2570int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size);
2571
2572#ifndef CONFIG_BPF_JIT_ALWAYS_ON
2573void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth);
2574#endif
2575
2576struct btf *bpf_get_btf_vmlinux(void);
2577
2578/* Map specifics */
2579struct xdp_frame;
2580struct sk_buff;
2581struct bpf_dtab_netdev;
2582struct bpf_cpu_map_entry;
2583
2584void __dev_flush(struct list_head *flush_list);
2585int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2586 struct net_device *dev_rx);
2587int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2588 struct net_device *dev_rx);
2589int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2590 struct bpf_map *map, bool exclude_ingress);
2591int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
2592 struct bpf_prog *xdp_prog);
2593int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2594 struct bpf_prog *xdp_prog, struct bpf_map *map,
2595 bool exclude_ingress);
2596
2597void __cpu_map_flush(struct list_head *flush_list);
2598int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf,
2599 struct net_device *dev_rx);
2600int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2601 struct sk_buff *skb);
2602
2603/* Return map's numa specified by userspace */
2604static inline int bpf_map_attr_numa_node(const union bpf_attr *attr)
2605{
2606 return (attr->map_flags & BPF_F_NUMA_NODE) ?
2607 attr->numa_node : NUMA_NO_NODE;
2608}
2609
2610struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type);
2611int array_map_alloc_check(union bpf_attr *attr);
2612
2613int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr,
2614 union bpf_attr __user *uattr);
2615int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr,
2616 union bpf_attr __user *uattr);
2617int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2618 const union bpf_attr *kattr,
2619 union bpf_attr __user *uattr);
2620int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2621 const union bpf_attr *kattr,
2622 union bpf_attr __user *uattr);
2623int bpf_prog_test_run_raw_tp(struct bpf_prog *prog,
2624 const union bpf_attr *kattr,
2625 union bpf_attr __user *uattr);
2626int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2627 const union bpf_attr *kattr,
2628 union bpf_attr __user *uattr);
2629int bpf_prog_test_run_nf(struct bpf_prog *prog,
2630 const union bpf_attr *kattr,
2631 union bpf_attr __user *uattr);
2632bool btf_ctx_access(int off, int size, enum bpf_access_type type,
2633 const struct bpf_prog *prog,
2634 struct bpf_insn_access_aux *info);
2635
2636static inline bool bpf_tracing_ctx_access(int off, int size,
2637 enum bpf_access_type type)
2638{
2639 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
2640 return false;
2641 if (type != BPF_READ)
2642 return false;
2643 if (off % size != 0)
2644 return false;
2645 return true;
2646}
2647
2648static inline bool bpf_tracing_btf_ctx_access(int off, int size,
2649 enum bpf_access_type type,
2650 const struct bpf_prog *prog,
2651 struct bpf_insn_access_aux *info)
2652{
2653 if (!bpf_tracing_ctx_access(off, size, type))
2654 return false;
2655 return btf_ctx_access(off, size, type, prog, info);
2656}
2657
2658int btf_struct_access(struct bpf_verifier_log *log,
2659 const struct bpf_reg_state *reg,
2660 int off, int size, enum bpf_access_type atype,
2661 u32 *next_btf_id, enum bpf_type_flag *flag, const char **field_name);
2662bool btf_struct_ids_match(struct bpf_verifier_log *log,
2663 const struct btf *btf, u32 id, int off,
2664 const struct btf *need_btf, u32 need_type_id,
2665 bool strict);
2666
2667int btf_distill_func_proto(struct bpf_verifier_log *log,
2668 struct btf *btf,
2669 const struct btf_type *func_proto,
2670 const char *func_name,
2671 struct btf_func_model *m);
2672
2673struct bpf_reg_state;
2674int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog);
2675int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
2676 struct btf *btf, const struct btf_type *t);
2677const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt,
2678 int comp_idx, const char *tag_key);
2679int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt,
2680 int comp_idx, const char *tag_key, int last_id);
2681
2682struct bpf_prog *bpf_prog_by_id(u32 id);
2683struct bpf_link *bpf_link_by_id(u32 id);
2684
2685const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id,
2686 const struct bpf_prog *prog);
2687void bpf_task_storage_free(struct task_struct *task);
2688void bpf_cgrp_storage_free(struct cgroup *cgroup);
2689bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog);
2690const struct btf_func_model *
2691bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2692 const struct bpf_insn *insn);
2693int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2694 u16 btf_fd_idx, u8 **func_addr);
2695
2696struct bpf_core_ctx {
2697 struct bpf_verifier_log *log;
2698 const struct btf *btf;
2699};
2700
2701bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
2702 const struct bpf_reg_state *reg,
2703 const char *field_name, u32 btf_id, const char *suffix);
2704
2705bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
2706 const struct btf *reg_btf, u32 reg_id,
2707 const struct btf *arg_btf, u32 arg_id);
2708
2709int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
2710 int relo_idx, void *insn);
2711
2712static inline bool unprivileged_ebpf_enabled(void)
2713{
2714 return !sysctl_unprivileged_bpf_disabled;
2715}
2716
2717/* Not all bpf prog type has the bpf_ctx.
2718 * For the bpf prog type that has initialized the bpf_ctx,
2719 * this function can be used to decide if a kernel function
2720 * is called by a bpf program.
2721 */
2722static inline bool has_current_bpf_ctx(void)
2723{
2724 return !!current->bpf_ctx;
2725}
2726
2727void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog);
2728
2729void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
2730 enum bpf_dynptr_type type, u32 offset, u32 size);
2731void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr);
2732void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr);
2733
2734#else /* !CONFIG_BPF_SYSCALL */
2735static inline struct bpf_prog *bpf_prog_get(u32 ufd)
2736{
2737 return ERR_PTR(-EOPNOTSUPP);
2738}
2739
2740static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd,
2741 enum bpf_prog_type type,
2742 bool attach_drv)
2743{
2744 return ERR_PTR(-EOPNOTSUPP);
2745}
2746
2747static inline void bpf_prog_add(struct bpf_prog *prog, int i)
2748{
2749}
2750
2751static inline void bpf_prog_sub(struct bpf_prog *prog, int i)
2752{
2753}
2754
2755static inline void bpf_prog_put(struct bpf_prog *prog)
2756{
2757}
2758
2759static inline void bpf_prog_inc(struct bpf_prog *prog)
2760{
2761}
2762
2763static inline struct bpf_prog *__must_check
2764bpf_prog_inc_not_zero(struct bpf_prog *prog)
2765{
2766 return ERR_PTR(-EOPNOTSUPP);
2767}
2768
2769static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2770 const struct bpf_link_ops *ops,
2771 struct bpf_prog *prog)
2772{
2773}
2774
2775static inline void bpf_link_init_sleepable(struct bpf_link *link, enum bpf_link_type type,
2776 const struct bpf_link_ops *ops, struct bpf_prog *prog,
2777 bool sleepable)
2778{
2779}
2780
2781static inline int bpf_link_prime(struct bpf_link *link,
2782 struct bpf_link_primer *primer)
2783{
2784 return -EOPNOTSUPP;
2785}
2786
2787static inline int bpf_link_settle(struct bpf_link_primer *primer)
2788{
2789 return -EOPNOTSUPP;
2790}
2791
2792static inline void bpf_link_cleanup(struct bpf_link_primer *primer)
2793{
2794}
2795
2796static inline void bpf_link_inc(struct bpf_link *link)
2797{
2798}
2799
2800static inline struct bpf_link *bpf_link_inc_not_zero(struct bpf_link *link)
2801{
2802 return NULL;
2803}
2804
2805static inline void bpf_link_put(struct bpf_link *link)
2806{
2807}
2808
2809static inline int bpf_obj_get_user(const char __user *pathname, int flags)
2810{
2811 return -EOPNOTSUPP;
2812}
2813
2814static inline bool bpf_token_capable(const struct bpf_token *token, int cap)
2815{
2816 return capable(cap) || (cap != CAP_SYS_ADMIN && capable(CAP_SYS_ADMIN));
2817}
2818
2819static inline void bpf_token_inc(struct bpf_token *token)
2820{
2821}
2822
2823static inline void bpf_token_put(struct bpf_token *token)
2824{
2825}
2826
2827static inline struct bpf_token *bpf_token_get_from_fd(u32 ufd)
2828{
2829 return ERR_PTR(-EOPNOTSUPP);
2830}
2831
2832static inline void __dev_flush(struct list_head *flush_list)
2833{
2834}
2835
2836struct xdp_frame;
2837struct bpf_dtab_netdev;
2838struct bpf_cpu_map_entry;
2839
2840static inline
2841int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2842 struct net_device *dev_rx)
2843{
2844 return 0;
2845}
2846
2847static inline
2848int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2849 struct net_device *dev_rx)
2850{
2851 return 0;
2852}
2853
2854static inline
2855int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2856 struct bpf_map *map, bool exclude_ingress)
2857{
2858 return 0;
2859}
2860
2861struct sk_buff;
2862
2863static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst,
2864 struct sk_buff *skb,
2865 struct bpf_prog *xdp_prog)
2866{
2867 return 0;
2868}
2869
2870static inline
2871int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2872 struct bpf_prog *xdp_prog, struct bpf_map *map,
2873 bool exclude_ingress)
2874{
2875 return 0;
2876}
2877
2878static inline void __cpu_map_flush(struct list_head *flush_list)
2879{
2880}
2881
2882static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu,
2883 struct xdp_frame *xdpf,
2884 struct net_device *dev_rx)
2885{
2886 return 0;
2887}
2888
2889static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2890 struct sk_buff *skb)
2891{
2892 return -EOPNOTSUPP;
2893}
2894
2895static inline struct bpf_prog *bpf_prog_get_type_path(const char *name,
2896 enum bpf_prog_type type)
2897{
2898 return ERR_PTR(-EOPNOTSUPP);
2899}
2900
2901static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog,
2902 const union bpf_attr *kattr,
2903 union bpf_attr __user *uattr)
2904{
2905 return -ENOTSUPP;
2906}
2907
2908static inline int bpf_prog_test_run_skb(struct bpf_prog *prog,
2909 const union bpf_attr *kattr,
2910 union bpf_attr __user *uattr)
2911{
2912 return -ENOTSUPP;
2913}
2914
2915static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2916 const union bpf_attr *kattr,
2917 union bpf_attr __user *uattr)
2918{
2919 return -ENOTSUPP;
2920}
2921
2922static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2923 const union bpf_attr *kattr,
2924 union bpf_attr __user *uattr)
2925{
2926 return -ENOTSUPP;
2927}
2928
2929static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2930 const union bpf_attr *kattr,
2931 union bpf_attr __user *uattr)
2932{
2933 return -ENOTSUPP;
2934}
2935
2936static inline void bpf_map_put(struct bpf_map *map)
2937{
2938}
2939
2940static inline struct bpf_prog *bpf_prog_by_id(u32 id)
2941{
2942 return ERR_PTR(-ENOTSUPP);
2943}
2944
2945static inline int btf_struct_access(struct bpf_verifier_log *log,
2946 const struct bpf_reg_state *reg,
2947 int off, int size, enum bpf_access_type atype,
2948 u32 *next_btf_id, enum bpf_type_flag *flag,
2949 const char **field_name)
2950{
2951 return -EACCES;
2952}
2953
2954static inline const struct bpf_func_proto *
2955bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
2956{
2957 return NULL;
2958}
2959
2960static inline void bpf_task_storage_free(struct task_struct *task)
2961{
2962}
2963
2964static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2965{
2966 return false;
2967}
2968
2969static inline const struct btf_func_model *
2970bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2971 const struct bpf_insn *insn)
2972{
2973 return NULL;
2974}
2975
2976static inline int
2977bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2978 u16 btf_fd_idx, u8 **func_addr)
2979{
2980 return -ENOTSUPP;
2981}
2982
2983static inline bool unprivileged_ebpf_enabled(void)
2984{
2985 return false;
2986}
2987
2988static inline bool has_current_bpf_ctx(void)
2989{
2990 return false;
2991}
2992
2993static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog)
2994{
2995}
2996
2997static inline void bpf_cgrp_storage_free(struct cgroup *cgroup)
2998{
2999}
3000
3001static inline void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
3002 enum bpf_dynptr_type type, u32 offset, u32 size)
3003{
3004}
3005
3006static inline void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
3007{
3008}
3009
3010static inline void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
3011{
3012}
3013#endif /* CONFIG_BPF_SYSCALL */
3014
3015static __always_inline int
3016bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr)
3017{
3018 int ret = -EFAULT;
3019
3020 if (IS_ENABLED(CONFIG_BPF_EVENTS))
3021 ret = copy_from_kernel_nofault(dst, unsafe_ptr, size);
3022 if (unlikely(ret < 0))
3023 memset(dst, 0, size);
3024 return ret;
3025}
3026
3027void __bpf_free_used_btfs(struct btf_mod_pair *used_btfs, u32 len);
3028
3029static inline struct bpf_prog *bpf_prog_get_type(u32 ufd,
3030 enum bpf_prog_type type)
3031{
3032 return bpf_prog_get_type_dev(ufd, type, false);
3033}
3034
3035void __bpf_free_used_maps(struct bpf_prog_aux *aux,
3036 struct bpf_map **used_maps, u32 len);
3037
3038bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool);
3039
3040int bpf_prog_offload_compile(struct bpf_prog *prog);
3041void bpf_prog_dev_bound_destroy(struct bpf_prog *prog);
3042int bpf_prog_offload_info_fill(struct bpf_prog_info *info,
3043 struct bpf_prog *prog);
3044
3045int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map);
3046
3047int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value);
3048int bpf_map_offload_update_elem(struct bpf_map *map,
3049 void *key, void *value, u64 flags);
3050int bpf_map_offload_delete_elem(struct bpf_map *map, void *key);
3051int bpf_map_offload_get_next_key(struct bpf_map *map,
3052 void *key, void *next_key);
3053
3054bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map);
3055
3056struct bpf_offload_dev *
3057bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv);
3058void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev);
3059void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev);
3060int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev,
3061 struct net_device *netdev);
3062void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev,
3063 struct net_device *netdev);
3064bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev);
3065
3066void unpriv_ebpf_notify(int new_state);
3067
3068#if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL)
3069int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
3070 struct bpf_prog_aux *prog_aux);
3071void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id);
3072int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr);
3073int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog);
3074void bpf_dev_bound_netdev_unregister(struct net_device *dev);
3075
3076static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
3077{
3078 return aux->dev_bound;
3079}
3080
3081static inline bool bpf_prog_is_offloaded(const struct bpf_prog_aux *aux)
3082{
3083 return aux->offload_requested;
3084}
3085
3086bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs);
3087
3088static inline bool bpf_map_is_offloaded(struct bpf_map *map)
3089{
3090 return unlikely(map->ops == &bpf_map_offload_ops);
3091}
3092
3093struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr);
3094void bpf_map_offload_map_free(struct bpf_map *map);
3095u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map);
3096int bpf_prog_test_run_syscall(struct bpf_prog *prog,
3097 const union bpf_attr *kattr,
3098 union bpf_attr __user *uattr);
3099
3100int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog);
3101int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype);
3102int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags);
3103int sock_map_bpf_prog_query(const union bpf_attr *attr,
3104 union bpf_attr __user *uattr);
3105int sock_map_link_create(const union bpf_attr *attr, struct bpf_prog *prog);
3106
3107void sock_map_unhash(struct sock *sk);
3108void sock_map_destroy(struct sock *sk);
3109void sock_map_close(struct sock *sk, long timeout);
3110#else
3111static inline int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
3112 struct bpf_prog_aux *prog_aux)
3113{
3114 return -EOPNOTSUPP;
3115}
3116
3117static inline void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog,
3118 u32 func_id)
3119{
3120 return NULL;
3121}
3122
3123static inline int bpf_prog_dev_bound_init(struct bpf_prog *prog,
3124 union bpf_attr *attr)
3125{
3126 return -EOPNOTSUPP;
3127}
3128
3129static inline int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog,
3130 struct bpf_prog *old_prog)
3131{
3132 return -EOPNOTSUPP;
3133}
3134
3135static inline void bpf_dev_bound_netdev_unregister(struct net_device *dev)
3136{
3137}
3138
3139static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
3140{
3141 return false;
3142}
3143
3144static inline bool bpf_prog_is_offloaded(struct bpf_prog_aux *aux)
3145{
3146 return false;
3147}
3148
3149static inline bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs)
3150{
3151 return false;
3152}
3153
3154static inline bool bpf_map_is_offloaded(struct bpf_map *map)
3155{
3156 return false;
3157}
3158
3159static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr)
3160{
3161 return ERR_PTR(-EOPNOTSUPP);
3162}
3163
3164static inline void bpf_map_offload_map_free(struct bpf_map *map)
3165{
3166}
3167
3168static inline u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map)
3169{
3170 return 0;
3171}
3172
3173static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog,
3174 const union bpf_attr *kattr,
3175 union bpf_attr __user *uattr)
3176{
3177 return -ENOTSUPP;
3178}
3179
3180#ifdef CONFIG_BPF_SYSCALL
3181static inline int sock_map_get_from_fd(const union bpf_attr *attr,
3182 struct bpf_prog *prog)
3183{
3184 return -EINVAL;
3185}
3186
3187static inline int sock_map_prog_detach(const union bpf_attr *attr,
3188 enum bpf_prog_type ptype)
3189{
3190 return -EOPNOTSUPP;
3191}
3192
3193static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value,
3194 u64 flags)
3195{
3196 return -EOPNOTSUPP;
3197}
3198
3199static inline int sock_map_bpf_prog_query(const union bpf_attr *attr,
3200 union bpf_attr __user *uattr)
3201{
3202 return -EINVAL;
3203}
3204
3205static inline int sock_map_link_create(const union bpf_attr *attr, struct bpf_prog *prog)
3206{
3207 return -EOPNOTSUPP;
3208}
3209#endif /* CONFIG_BPF_SYSCALL */
3210#endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */
3211
3212static __always_inline void
3213bpf_prog_inc_misses_counters(const struct bpf_prog_array *array)
3214{
3215 const struct bpf_prog_array_item *item;
3216 struct bpf_prog *prog;
3217
3218 if (unlikely(!array))
3219 return;
3220
3221 item = &array->items[0];
3222 while ((prog = READ_ONCE(item->prog))) {
3223 bpf_prog_inc_misses_counter(prog);
3224 item++;
3225 }
3226}
3227
3228#if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL)
3229void bpf_sk_reuseport_detach(struct sock *sk);
3230int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key,
3231 void *value);
3232int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key,
3233 void *value, u64 map_flags);
3234#else
3235static inline void bpf_sk_reuseport_detach(struct sock *sk)
3236{
3237}
3238
3239#ifdef CONFIG_BPF_SYSCALL
3240static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map,
3241 void *key, void *value)
3242{
3243 return -EOPNOTSUPP;
3244}
3245
3246static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map,
3247 void *key, void *value,
3248 u64 map_flags)
3249{
3250 return -EOPNOTSUPP;
3251}
3252#endif /* CONFIG_BPF_SYSCALL */
3253#endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */
3254
3255/* verifier prototypes for helper functions called from eBPF programs */
3256extern const struct bpf_func_proto bpf_map_lookup_elem_proto;
3257extern const struct bpf_func_proto bpf_map_update_elem_proto;
3258extern const struct bpf_func_proto bpf_map_delete_elem_proto;
3259extern const struct bpf_func_proto bpf_map_push_elem_proto;
3260extern const struct bpf_func_proto bpf_map_pop_elem_proto;
3261extern const struct bpf_func_proto bpf_map_peek_elem_proto;
3262extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto;
3263
3264extern const struct bpf_func_proto bpf_get_prandom_u32_proto;
3265extern const struct bpf_func_proto bpf_get_smp_processor_id_proto;
3266extern const struct bpf_func_proto bpf_get_numa_node_id_proto;
3267extern const struct bpf_func_proto bpf_tail_call_proto;
3268extern const struct bpf_func_proto bpf_ktime_get_ns_proto;
3269extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto;
3270extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto;
3271extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto;
3272extern const struct bpf_func_proto bpf_get_current_uid_gid_proto;
3273extern const struct bpf_func_proto bpf_get_current_comm_proto;
3274extern const struct bpf_func_proto bpf_get_stackid_proto;
3275extern const struct bpf_func_proto bpf_get_stack_proto;
3276extern const struct bpf_func_proto bpf_get_stack_sleepable_proto;
3277extern const struct bpf_func_proto bpf_get_task_stack_proto;
3278extern const struct bpf_func_proto bpf_get_task_stack_sleepable_proto;
3279extern const struct bpf_func_proto bpf_get_stackid_proto_pe;
3280extern const struct bpf_func_proto bpf_get_stack_proto_pe;
3281extern const struct bpf_func_proto bpf_sock_map_update_proto;
3282extern const struct bpf_func_proto bpf_sock_hash_update_proto;
3283extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto;
3284extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto;
3285extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto;
3286extern const struct bpf_func_proto bpf_current_task_under_cgroup_proto;
3287extern const struct bpf_func_proto bpf_msg_redirect_hash_proto;
3288extern const struct bpf_func_proto bpf_msg_redirect_map_proto;
3289extern const struct bpf_func_proto bpf_sk_redirect_hash_proto;
3290extern const struct bpf_func_proto bpf_sk_redirect_map_proto;
3291extern const struct bpf_func_proto bpf_spin_lock_proto;
3292extern const struct bpf_func_proto bpf_spin_unlock_proto;
3293extern const struct bpf_func_proto bpf_get_local_storage_proto;
3294extern const struct bpf_func_proto bpf_strtol_proto;
3295extern const struct bpf_func_proto bpf_strtoul_proto;
3296extern const struct bpf_func_proto bpf_tcp_sock_proto;
3297extern const struct bpf_func_proto bpf_jiffies64_proto;
3298extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto;
3299extern const struct bpf_func_proto bpf_event_output_data_proto;
3300extern const struct bpf_func_proto bpf_ringbuf_output_proto;
3301extern const struct bpf_func_proto bpf_ringbuf_reserve_proto;
3302extern const struct bpf_func_proto bpf_ringbuf_submit_proto;
3303extern const struct bpf_func_proto bpf_ringbuf_discard_proto;
3304extern const struct bpf_func_proto bpf_ringbuf_query_proto;
3305extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto;
3306extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto;
3307extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto;
3308extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto;
3309extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto;
3310extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto;
3311extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto;
3312extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto;
3313extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto;
3314extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto;
3315extern const struct bpf_func_proto bpf_copy_from_user_proto;
3316extern const struct bpf_func_proto bpf_snprintf_btf_proto;
3317extern const struct bpf_func_proto bpf_snprintf_proto;
3318extern const struct bpf_func_proto bpf_per_cpu_ptr_proto;
3319extern const struct bpf_func_proto bpf_this_cpu_ptr_proto;
3320extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto;
3321extern const struct bpf_func_proto bpf_sock_from_file_proto;
3322extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto;
3323extern const struct bpf_func_proto bpf_task_storage_get_recur_proto;
3324extern const struct bpf_func_proto bpf_task_storage_get_proto;
3325extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto;
3326extern const struct bpf_func_proto bpf_task_storage_delete_proto;
3327extern const struct bpf_func_proto bpf_for_each_map_elem_proto;
3328extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto;
3329extern const struct bpf_func_proto bpf_sk_setsockopt_proto;
3330extern const struct bpf_func_proto bpf_sk_getsockopt_proto;
3331extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto;
3332extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto;
3333extern const struct bpf_func_proto bpf_find_vma_proto;
3334extern const struct bpf_func_proto bpf_loop_proto;
3335extern const struct bpf_func_proto bpf_copy_from_user_task_proto;
3336extern const struct bpf_func_proto bpf_set_retval_proto;
3337extern const struct bpf_func_proto bpf_get_retval_proto;
3338extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto;
3339extern const struct bpf_func_proto bpf_cgrp_storage_get_proto;
3340extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto;
3341
3342const struct bpf_func_proto *tracing_prog_func_proto(
3343 enum bpf_func_id func_id, const struct bpf_prog *prog);
3344
3345/* Shared helpers among cBPF and eBPF. */
3346void bpf_user_rnd_init_once(void);
3347u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
3348u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
3349
3350#if defined(CONFIG_NET)
3351bool bpf_sock_common_is_valid_access(int off, int size,
3352 enum bpf_access_type type,
3353 struct bpf_insn_access_aux *info);
3354bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3355 struct bpf_insn_access_aux *info);
3356u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
3357 const struct bpf_insn *si,
3358 struct bpf_insn *insn_buf,
3359 struct bpf_prog *prog,
3360 u32 *target_size);
3361int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags,
3362 struct bpf_dynptr *ptr);
3363#else
3364static inline bool bpf_sock_common_is_valid_access(int off, int size,
3365 enum bpf_access_type type,
3366 struct bpf_insn_access_aux *info)
3367{
3368 return false;
3369}
3370static inline bool bpf_sock_is_valid_access(int off, int size,
3371 enum bpf_access_type type,
3372 struct bpf_insn_access_aux *info)
3373{
3374 return false;
3375}
3376static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
3377 const struct bpf_insn *si,
3378 struct bpf_insn *insn_buf,
3379 struct bpf_prog *prog,
3380 u32 *target_size)
3381{
3382 return 0;
3383}
3384static inline int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags,
3385 struct bpf_dynptr *ptr)
3386{
3387 return -EOPNOTSUPP;
3388}
3389#endif
3390
3391#ifdef CONFIG_INET
3392struct sk_reuseport_kern {
3393 struct sk_buff *skb;
3394 struct sock *sk;
3395 struct sock *selected_sk;
3396 struct sock *migrating_sk;
3397 void *data_end;
3398 u32 hash;
3399 u32 reuseport_id;
3400 bool bind_inany;
3401};
3402bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3403 struct bpf_insn_access_aux *info);
3404
3405u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
3406 const struct bpf_insn *si,
3407 struct bpf_insn *insn_buf,
3408 struct bpf_prog *prog,
3409 u32 *target_size);
3410
3411bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3412 struct bpf_insn_access_aux *info);
3413
3414u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
3415 const struct bpf_insn *si,
3416 struct bpf_insn *insn_buf,
3417 struct bpf_prog *prog,
3418 u32 *target_size);
3419#else
3420static inline bool bpf_tcp_sock_is_valid_access(int off, int size,
3421 enum bpf_access_type type,
3422 struct bpf_insn_access_aux *info)
3423{
3424 return false;
3425}
3426
3427static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
3428 const struct bpf_insn *si,
3429 struct bpf_insn *insn_buf,
3430 struct bpf_prog *prog,
3431 u32 *target_size)
3432{
3433 return 0;
3434}
3435static inline bool bpf_xdp_sock_is_valid_access(int off, int size,
3436 enum bpf_access_type type,
3437 struct bpf_insn_access_aux *info)
3438{
3439 return false;
3440}
3441
3442static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
3443 const struct bpf_insn *si,
3444 struct bpf_insn *insn_buf,
3445 struct bpf_prog *prog,
3446 u32 *target_size)
3447{
3448 return 0;
3449}
3450#endif /* CONFIG_INET */
3451
3452enum bpf_text_poke_type {
3453 BPF_MOD_CALL,
3454 BPF_MOD_JUMP,
3455};
3456
3457int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
3458 void *addr1, void *addr2);
3459
3460void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke,
3461 struct bpf_prog *new, struct bpf_prog *old);
3462
3463void *bpf_arch_text_copy(void *dst, void *src, size_t len);
3464int bpf_arch_text_invalidate(void *dst, size_t len);
3465
3466struct btf_id_set;
3467bool btf_id_set_contains(const struct btf_id_set *set, u32 id);
3468
3469#define MAX_BPRINTF_VARARGS 12
3470#define MAX_BPRINTF_BUF 1024
3471
3472struct bpf_bprintf_data {
3473 u32 *bin_args;
3474 char *buf;
3475 bool get_bin_args;
3476 bool get_buf;
3477};
3478
3479int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
3480 u32 num_args, struct bpf_bprintf_data *data);
3481void bpf_bprintf_cleanup(struct bpf_bprintf_data *data);
3482
3483#ifdef CONFIG_BPF_LSM
3484void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype);
3485void bpf_cgroup_atype_put(int cgroup_atype);
3486#else
3487static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {}
3488static inline void bpf_cgroup_atype_put(int cgroup_atype) {}
3489#endif /* CONFIG_BPF_LSM */
3490
3491struct key;
3492
3493#ifdef CONFIG_KEYS
3494struct bpf_key {
3495 struct key *key;
3496 bool has_ref;
3497};
3498#endif /* CONFIG_KEYS */
3499
3500static inline bool type_is_alloc(u32 type)
3501{
3502 return type & MEM_ALLOC;
3503}
3504
3505static inline gfp_t bpf_memcg_flags(gfp_t flags)
3506{
3507 if (memcg_bpf_enabled())
3508 return flags | __GFP_ACCOUNT;
3509 return flags;
3510}
3511
3512static inline bool bpf_is_subprog(const struct bpf_prog *prog)
3513{
3514 return prog->aux->func_idx != 0;
3515}
3516
3517#endif /* _LINUX_BPF_H */