at for-next 19 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Copyright (C) 2001 Jens Axboe <axboe@suse.de> 4 */ 5#ifndef __LINUX_BIO_H 6#define __LINUX_BIO_H 7 8#include <linux/mempool.h> 9/* struct bio, bio_vec and BIO_* flags are defined in blk_types.h */ 10#include <linux/blk_types.h> 11#include <linux/uio.h> 12 13#define BIO_MAX_VECS 256U 14 15struct queue_limits; 16 17static inline unsigned int bio_max_segs(unsigned int nr_segs) 18{ 19 return min(nr_segs, BIO_MAX_VECS); 20} 21 22#define bio_prio(bio) (bio)->bi_ioprio 23#define bio_set_prio(bio, prio) ((bio)->bi_ioprio = prio) 24 25#define bio_iter_iovec(bio, iter) \ 26 bvec_iter_bvec((bio)->bi_io_vec, (iter)) 27 28#define bio_iter_page(bio, iter) \ 29 bvec_iter_page((bio)->bi_io_vec, (iter)) 30#define bio_iter_len(bio, iter) \ 31 bvec_iter_len((bio)->bi_io_vec, (iter)) 32#define bio_iter_offset(bio, iter) \ 33 bvec_iter_offset((bio)->bi_io_vec, (iter)) 34 35#define bio_page(bio) bio_iter_page((bio), (bio)->bi_iter) 36#define bio_offset(bio) bio_iter_offset((bio), (bio)->bi_iter) 37#define bio_iovec(bio) bio_iter_iovec((bio), (bio)->bi_iter) 38 39#define bvec_iter_sectors(iter) ((iter).bi_size >> 9) 40#define bvec_iter_end_sector(iter) ((iter).bi_sector + bvec_iter_sectors((iter))) 41 42#define bio_sectors(bio) bvec_iter_sectors((bio)->bi_iter) 43#define bio_end_sector(bio) bvec_iter_end_sector((bio)->bi_iter) 44 45/* 46 * Return the data direction, READ or WRITE. 47 */ 48#define bio_data_dir(bio) \ 49 (op_is_write(bio_op(bio)) ? WRITE : READ) 50 51/* 52 * Check whether this bio carries any data or not. A NULL bio is allowed. 53 */ 54static inline bool bio_has_data(struct bio *bio) 55{ 56 if (bio && 57 bio->bi_iter.bi_size && 58 bio_op(bio) != REQ_OP_DISCARD && 59 bio_op(bio) != REQ_OP_SECURE_ERASE && 60 bio_op(bio) != REQ_OP_WRITE_ZEROES) 61 return true; 62 63 return false; 64} 65 66static inline bool bio_no_advance_iter(const struct bio *bio) 67{ 68 return bio_op(bio) == REQ_OP_DISCARD || 69 bio_op(bio) == REQ_OP_SECURE_ERASE || 70 bio_op(bio) == REQ_OP_WRITE_ZEROES; 71} 72 73static inline void *bio_data(struct bio *bio) 74{ 75 if (bio_has_data(bio)) 76 return page_address(bio_page(bio)) + bio_offset(bio); 77 78 return NULL; 79} 80 81static inline bool bio_next_segment(const struct bio *bio, 82 struct bvec_iter_all *iter) 83{ 84 if (iter->idx >= bio->bi_vcnt) 85 return false; 86 87 bvec_advance(&bio->bi_io_vec[iter->idx], iter); 88 return true; 89} 90 91/* 92 * drivers should _never_ use the all version - the bio may have been split 93 * before it got to the driver and the driver won't own all of it 94 */ 95#define bio_for_each_segment_all(bvl, bio, iter) \ 96 for (bvl = bvec_init_iter_all(&iter); bio_next_segment((bio), &iter); ) 97 98static inline void bio_advance_iter(const struct bio *bio, 99 struct bvec_iter *iter, unsigned int bytes) 100{ 101 iter->bi_sector += bytes >> 9; 102 103 if (bio_no_advance_iter(bio)) 104 iter->bi_size -= bytes; 105 else 106 bvec_iter_advance(bio->bi_io_vec, iter, bytes); 107 /* TODO: It is reasonable to complete bio with error here. */ 108} 109 110/* @bytes should be less or equal to bvec[i->bi_idx].bv_len */ 111static inline void bio_advance_iter_single(const struct bio *bio, 112 struct bvec_iter *iter, 113 unsigned int bytes) 114{ 115 iter->bi_sector += bytes >> 9; 116 117 if (bio_no_advance_iter(bio)) 118 iter->bi_size -= bytes; 119 else 120 bvec_iter_advance_single(bio->bi_io_vec, iter, bytes); 121} 122 123void __bio_advance(struct bio *, unsigned bytes); 124 125/** 126 * bio_advance - increment/complete a bio by some number of bytes 127 * @bio: bio to advance 128 * @nbytes: number of bytes to complete 129 * 130 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to 131 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will 132 * be updated on the last bvec as well. 133 * 134 * @bio will then represent the remaining, uncompleted portion of the io. 135 */ 136static inline void bio_advance(struct bio *bio, unsigned int nbytes) 137{ 138 if (nbytes == bio->bi_iter.bi_size) { 139 bio->bi_iter.bi_size = 0; 140 return; 141 } 142 __bio_advance(bio, nbytes); 143} 144 145#define __bio_for_each_segment(bvl, bio, iter, start) \ 146 for (iter = (start); \ 147 (iter).bi_size && \ 148 ((bvl = bio_iter_iovec((bio), (iter))), 1); \ 149 bio_advance_iter_single((bio), &(iter), (bvl).bv_len)) 150 151#define bio_for_each_segment(bvl, bio, iter) \ 152 __bio_for_each_segment(bvl, bio, iter, (bio)->bi_iter) 153 154#define __bio_for_each_bvec(bvl, bio, iter, start) \ 155 for (iter = (start); \ 156 (iter).bi_size && \ 157 ((bvl = mp_bvec_iter_bvec((bio)->bi_io_vec, (iter))), 1); \ 158 bio_advance_iter_single((bio), &(iter), (bvl).bv_len)) 159 160/* iterate over multi-page bvec */ 161#define bio_for_each_bvec(bvl, bio, iter) \ 162 __bio_for_each_bvec(bvl, bio, iter, (bio)->bi_iter) 163 164/* 165 * Iterate over all multi-page bvecs. Drivers shouldn't use this version for the 166 * same reasons as bio_for_each_segment_all(). 167 */ 168#define bio_for_each_bvec_all(bvl, bio, i) \ 169 for (i = 0, bvl = bio_first_bvec_all(bio); \ 170 i < (bio)->bi_vcnt; i++, bvl++) 171 172#define bio_iter_last(bvec, iter) ((iter).bi_size == (bvec).bv_len) 173 174static inline unsigned bio_segments(struct bio *bio) 175{ 176 unsigned segs = 0; 177 struct bio_vec bv; 178 struct bvec_iter iter; 179 180 /* 181 * We special case discard/write same/write zeroes, because they 182 * interpret bi_size differently: 183 */ 184 185 switch (bio_op(bio)) { 186 case REQ_OP_DISCARD: 187 case REQ_OP_SECURE_ERASE: 188 case REQ_OP_WRITE_ZEROES: 189 return 0; 190 default: 191 break; 192 } 193 194 bio_for_each_segment(bv, bio, iter) 195 segs++; 196 197 return segs; 198} 199 200/* 201 * get a reference to a bio, so it won't disappear. the intended use is 202 * something like: 203 * 204 * bio_get(bio); 205 * submit_bio(rw, bio); 206 * if (bio->bi_flags ...) 207 * do_something 208 * bio_put(bio); 209 * 210 * without the bio_get(), it could potentially complete I/O before submit_bio 211 * returns. and then bio would be freed memory when if (bio->bi_flags ...) 212 * runs 213 */ 214static inline void bio_get(struct bio *bio) 215{ 216 bio->bi_flags |= (1 << BIO_REFFED); 217 smp_mb__before_atomic(); 218 atomic_inc(&bio->__bi_cnt); 219} 220 221static inline void bio_cnt_set(struct bio *bio, unsigned int count) 222{ 223 if (count != 1) { 224 bio->bi_flags |= (1 << BIO_REFFED); 225 smp_mb(); 226 } 227 atomic_set(&bio->__bi_cnt, count); 228} 229 230static inline bool bio_flagged(struct bio *bio, unsigned int bit) 231{ 232 return bio->bi_flags & (1U << bit); 233} 234 235static inline void bio_set_flag(struct bio *bio, unsigned int bit) 236{ 237 bio->bi_flags |= (1U << bit); 238} 239 240static inline void bio_clear_flag(struct bio *bio, unsigned int bit) 241{ 242 bio->bi_flags &= ~(1U << bit); 243} 244 245static inline struct bio_vec *bio_first_bvec_all(struct bio *bio) 246{ 247 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); 248 return bio->bi_io_vec; 249} 250 251static inline struct page *bio_first_page_all(struct bio *bio) 252{ 253 return bio_first_bvec_all(bio)->bv_page; 254} 255 256static inline struct folio *bio_first_folio_all(struct bio *bio) 257{ 258 return page_folio(bio_first_page_all(bio)); 259} 260 261static inline struct bio_vec *bio_last_bvec_all(struct bio *bio) 262{ 263 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); 264 return &bio->bi_io_vec[bio->bi_vcnt - 1]; 265} 266 267/** 268 * struct folio_iter - State for iterating all folios in a bio. 269 * @folio: The current folio we're iterating. NULL after the last folio. 270 * @offset: The byte offset within the current folio. 271 * @length: The number of bytes in this iteration (will not cross folio 272 * boundary). 273 */ 274struct folio_iter { 275 struct folio *folio; 276 size_t offset; 277 size_t length; 278 /* private: for use by the iterator */ 279 struct folio *_next; 280 size_t _seg_count; 281 int _i; 282}; 283 284static inline void bio_first_folio(struct folio_iter *fi, struct bio *bio, 285 int i) 286{ 287 struct bio_vec *bvec = bio_first_bvec_all(bio) + i; 288 289 if (unlikely(i >= bio->bi_vcnt)) { 290 fi->folio = NULL; 291 return; 292 } 293 294 fi->folio = page_folio(bvec->bv_page); 295 fi->offset = bvec->bv_offset + 296 PAGE_SIZE * (bvec->bv_page - &fi->folio->page); 297 fi->_seg_count = bvec->bv_len; 298 fi->length = min(folio_size(fi->folio) - fi->offset, fi->_seg_count); 299 fi->_next = folio_next(fi->folio); 300 fi->_i = i; 301} 302 303static inline void bio_next_folio(struct folio_iter *fi, struct bio *bio) 304{ 305 fi->_seg_count -= fi->length; 306 if (fi->_seg_count) { 307 fi->folio = fi->_next; 308 fi->offset = 0; 309 fi->length = min(folio_size(fi->folio), fi->_seg_count); 310 fi->_next = folio_next(fi->folio); 311 } else { 312 bio_first_folio(fi, bio, fi->_i + 1); 313 } 314} 315 316/** 317 * bio_for_each_folio_all - Iterate over each folio in a bio. 318 * @fi: struct folio_iter which is updated for each folio. 319 * @bio: struct bio to iterate over. 320 */ 321#define bio_for_each_folio_all(fi, bio) \ 322 for (bio_first_folio(&fi, bio, 0); fi.folio; bio_next_folio(&fi, bio)) 323 324void bio_trim(struct bio *bio, sector_t offset, sector_t size); 325extern struct bio *bio_split(struct bio *bio, int sectors, 326 gfp_t gfp, struct bio_set *bs); 327int bio_split_rw_at(struct bio *bio, const struct queue_limits *lim, 328 unsigned *segs, unsigned max_bytes); 329 330/** 331 * bio_next_split - get next @sectors from a bio, splitting if necessary 332 * @bio: bio to split 333 * @sectors: number of sectors to split from the front of @bio 334 * @gfp: gfp mask 335 * @bs: bio set to allocate from 336 * 337 * Return: a bio representing the next @sectors of @bio - if the bio is smaller 338 * than @sectors, returns the original bio unchanged. 339 */ 340static inline struct bio *bio_next_split(struct bio *bio, int sectors, 341 gfp_t gfp, struct bio_set *bs) 342{ 343 if (sectors >= bio_sectors(bio)) 344 return bio; 345 346 return bio_split(bio, sectors, gfp, bs); 347} 348 349enum { 350 BIOSET_NEED_BVECS = BIT(0), 351 BIOSET_NEED_RESCUER = BIT(1), 352 BIOSET_PERCPU_CACHE = BIT(2), 353}; 354extern int bioset_init(struct bio_set *, unsigned int, unsigned int, int flags); 355extern void bioset_exit(struct bio_set *); 356extern int biovec_init_pool(mempool_t *pool, int pool_entries); 357 358struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs, 359 blk_opf_t opf, gfp_t gfp_mask, 360 struct bio_set *bs); 361struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask); 362extern void bio_put(struct bio *); 363 364struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src, 365 gfp_t gfp, struct bio_set *bs); 366int bio_init_clone(struct block_device *bdev, struct bio *bio, 367 struct bio *bio_src, gfp_t gfp); 368 369extern struct bio_set fs_bio_set; 370 371static inline struct bio *bio_alloc(struct block_device *bdev, 372 unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp_mask) 373{ 374 return bio_alloc_bioset(bdev, nr_vecs, opf, gfp_mask, &fs_bio_set); 375} 376 377void submit_bio(struct bio *bio); 378 379extern void bio_endio(struct bio *); 380 381static inline void bio_io_error(struct bio *bio) 382{ 383 bio->bi_status = BLK_STS_IOERR; 384 bio_endio(bio); 385} 386 387static inline void bio_wouldblock_error(struct bio *bio) 388{ 389 bio_set_flag(bio, BIO_QUIET); 390 bio->bi_status = BLK_STS_AGAIN; 391 bio_endio(bio); 392} 393 394/* 395 * Calculate number of bvec segments that should be allocated to fit data 396 * pointed by @iter. If @iter is backed by bvec it's going to be reused 397 * instead of allocating a new one. 398 */ 399static inline int bio_iov_vecs_to_alloc(struct iov_iter *iter, int max_segs) 400{ 401 if (iov_iter_is_bvec(iter)) 402 return 0; 403 return iov_iter_npages(iter, max_segs); 404} 405 406struct request_queue; 407 408extern int submit_bio_wait(struct bio *bio); 409void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table, 410 unsigned short max_vecs, blk_opf_t opf); 411extern void bio_uninit(struct bio *); 412void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf); 413void bio_chain(struct bio *, struct bio *); 414 415int __must_check bio_add_page(struct bio *bio, struct page *page, unsigned len, 416 unsigned off); 417bool __must_check bio_add_folio(struct bio *bio, struct folio *folio, 418 size_t len, size_t off); 419extern int bio_add_pc_page(struct request_queue *, struct bio *, struct page *, 420 unsigned int, unsigned int); 421void __bio_add_page(struct bio *bio, struct page *page, 422 unsigned int len, unsigned int off); 423void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len, 424 size_t off); 425int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter); 426void bio_iov_bvec_set(struct bio *bio, const struct iov_iter *iter); 427void __bio_release_pages(struct bio *bio, bool mark_dirty); 428extern void bio_set_pages_dirty(struct bio *bio); 429extern void bio_check_pages_dirty(struct bio *bio); 430 431extern void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter, 432 struct bio *src, struct bvec_iter *src_iter); 433extern void bio_copy_data(struct bio *dst, struct bio *src); 434extern void bio_free_pages(struct bio *bio); 435void guard_bio_eod(struct bio *bio); 436void zero_fill_bio_iter(struct bio *bio, struct bvec_iter iter); 437 438static inline void zero_fill_bio(struct bio *bio) 439{ 440 zero_fill_bio_iter(bio, bio->bi_iter); 441} 442 443static inline void bio_release_pages(struct bio *bio, bool mark_dirty) 444{ 445 if (bio_flagged(bio, BIO_PAGE_PINNED)) 446 __bio_release_pages(bio, mark_dirty); 447} 448 449#define bio_dev(bio) \ 450 disk_devt((bio)->bi_bdev->bd_disk) 451 452#ifdef CONFIG_BLK_CGROUP 453void bio_associate_blkg(struct bio *bio); 454void bio_associate_blkg_from_css(struct bio *bio, 455 struct cgroup_subsys_state *css); 456void bio_clone_blkg_association(struct bio *dst, struct bio *src); 457void blkcg_punt_bio_submit(struct bio *bio); 458#else /* CONFIG_BLK_CGROUP */ 459static inline void bio_associate_blkg(struct bio *bio) { } 460static inline void bio_associate_blkg_from_css(struct bio *bio, 461 struct cgroup_subsys_state *css) 462{ } 463static inline void bio_clone_blkg_association(struct bio *dst, 464 struct bio *src) { } 465static inline void blkcg_punt_bio_submit(struct bio *bio) 466{ 467 submit_bio(bio); 468} 469#endif /* CONFIG_BLK_CGROUP */ 470 471static inline void bio_set_dev(struct bio *bio, struct block_device *bdev) 472{ 473 bio_clear_flag(bio, BIO_REMAPPED); 474 if (bio->bi_bdev != bdev) 475 bio_clear_flag(bio, BIO_BPS_THROTTLED); 476 bio->bi_bdev = bdev; 477 bio_associate_blkg(bio); 478} 479 480/* 481 * BIO list management for use by remapping drivers (e.g. DM or MD) and loop. 482 * 483 * A bio_list anchors a singly-linked list of bios chained through the bi_next 484 * member of the bio. The bio_list also caches the last list member to allow 485 * fast access to the tail. 486 */ 487struct bio_list { 488 struct bio *head; 489 struct bio *tail; 490}; 491 492static inline int bio_list_empty(const struct bio_list *bl) 493{ 494 return bl->head == NULL; 495} 496 497static inline void bio_list_init(struct bio_list *bl) 498{ 499 bl->head = bl->tail = NULL; 500} 501 502#define BIO_EMPTY_LIST { NULL, NULL } 503 504#define bio_list_for_each(bio, bl) \ 505 for (bio = (bl)->head; bio; bio = bio->bi_next) 506 507static inline unsigned bio_list_size(const struct bio_list *bl) 508{ 509 unsigned sz = 0; 510 struct bio *bio; 511 512 bio_list_for_each(bio, bl) 513 sz++; 514 515 return sz; 516} 517 518static inline void bio_list_add(struct bio_list *bl, struct bio *bio) 519{ 520 bio->bi_next = NULL; 521 522 if (bl->tail) 523 bl->tail->bi_next = bio; 524 else 525 bl->head = bio; 526 527 bl->tail = bio; 528} 529 530static inline void bio_list_add_head(struct bio_list *bl, struct bio *bio) 531{ 532 bio->bi_next = bl->head; 533 534 bl->head = bio; 535 536 if (!bl->tail) 537 bl->tail = bio; 538} 539 540static inline void bio_list_merge(struct bio_list *bl, struct bio_list *bl2) 541{ 542 if (!bl2->head) 543 return; 544 545 if (bl->tail) 546 bl->tail->bi_next = bl2->head; 547 else 548 bl->head = bl2->head; 549 550 bl->tail = bl2->tail; 551} 552 553static inline void bio_list_merge_init(struct bio_list *bl, 554 struct bio_list *bl2) 555{ 556 bio_list_merge(bl, bl2); 557 bio_list_init(bl2); 558} 559 560static inline void bio_list_merge_head(struct bio_list *bl, 561 struct bio_list *bl2) 562{ 563 if (!bl2->head) 564 return; 565 566 if (bl->head) 567 bl2->tail->bi_next = bl->head; 568 else 569 bl->tail = bl2->tail; 570 571 bl->head = bl2->head; 572} 573 574static inline struct bio *bio_list_peek(struct bio_list *bl) 575{ 576 return bl->head; 577} 578 579static inline struct bio *bio_list_pop(struct bio_list *bl) 580{ 581 struct bio *bio = bl->head; 582 583 if (bio) { 584 bl->head = bl->head->bi_next; 585 if (!bl->head) 586 bl->tail = NULL; 587 588 bio->bi_next = NULL; 589 } 590 591 return bio; 592} 593 594static inline struct bio *bio_list_get(struct bio_list *bl) 595{ 596 struct bio *bio = bl->head; 597 598 bl->head = bl->tail = NULL; 599 600 return bio; 601} 602 603/* 604 * Increment chain count for the bio. Make sure the CHAIN flag update 605 * is visible before the raised count. 606 */ 607static inline void bio_inc_remaining(struct bio *bio) 608{ 609 bio_set_flag(bio, BIO_CHAIN); 610 smp_mb__before_atomic(); 611 atomic_inc(&bio->__bi_remaining); 612} 613 614/* 615 * bio_set is used to allow other portions of the IO system to 616 * allocate their own private memory pools for bio and iovec structures. 617 * These memory pools in turn all allocate from the bio_slab 618 * and the bvec_slabs[]. 619 */ 620#define BIO_POOL_SIZE 2 621 622struct bio_set { 623 struct kmem_cache *bio_slab; 624 unsigned int front_pad; 625 626 /* 627 * per-cpu bio alloc cache 628 */ 629 struct bio_alloc_cache __percpu *cache; 630 631 mempool_t bio_pool; 632 mempool_t bvec_pool; 633#if defined(CONFIG_BLK_DEV_INTEGRITY) 634 mempool_t bio_integrity_pool; 635 mempool_t bvec_integrity_pool; 636#endif 637 638 unsigned int back_pad; 639 /* 640 * Deadlock avoidance for stacking block drivers: see comments in 641 * bio_alloc_bioset() for details 642 */ 643 spinlock_t rescue_lock; 644 struct bio_list rescue_list; 645 struct work_struct rescue_work; 646 struct workqueue_struct *rescue_workqueue; 647 648 /* 649 * Hot un-plug notifier for the per-cpu cache, if used 650 */ 651 struct hlist_node cpuhp_dead; 652}; 653 654static inline bool bioset_initialized(struct bio_set *bs) 655{ 656 return bs->bio_slab != NULL; 657} 658 659/* 660 * Mark a bio as polled. Note that for async polled IO, the caller must 661 * expect -EWOULDBLOCK if we cannot allocate a request (or other resources). 662 * We cannot block waiting for requests on polled IO, as those completions 663 * must be found by the caller. This is different than IRQ driven IO, where 664 * it's safe to wait for IO to complete. 665 */ 666static inline void bio_set_polled(struct bio *bio, struct kiocb *kiocb) 667{ 668 bio->bi_opf |= REQ_POLLED; 669 if (kiocb->ki_flags & IOCB_NOWAIT) 670 bio->bi_opf |= REQ_NOWAIT; 671} 672 673static inline void bio_clear_polled(struct bio *bio) 674{ 675 bio->bi_opf &= ~REQ_POLLED; 676} 677 678/** 679 * bio_is_zone_append - is this a zone append bio? 680 * @bio: bio to check 681 * 682 * Check if @bio is a zone append operation. Core block layer code and end_io 683 * handlers must use this instead of an open coded REQ_OP_ZONE_APPEND check 684 * because the block layer can rewrite REQ_OP_ZONE_APPEND to REQ_OP_WRITE if 685 * it is not natively supported. 686 */ 687static inline bool bio_is_zone_append(struct bio *bio) 688{ 689 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) 690 return false; 691 return bio_op(bio) == REQ_OP_ZONE_APPEND || 692 bio_flagged(bio, BIO_EMULATES_ZONE_APPEND); 693} 694 695struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev, 696 unsigned int nr_pages, blk_opf_t opf, gfp_t gfp); 697struct bio *bio_chain_and_submit(struct bio *prev, struct bio *new); 698 699struct bio *blk_alloc_discard_bio(struct block_device *bdev, 700 sector_t *sector, sector_t *nr_sects, gfp_t gfp_mask); 701 702#endif /* __LINUX_BIO_H */