Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright (C) 2001 Jens Axboe <axboe@suse.de>
4 */
5#ifndef __LINUX_BIO_H
6#define __LINUX_BIO_H
7
8#include <linux/mempool.h>
9/* struct bio, bio_vec and BIO_* flags are defined in blk_types.h */
10#include <linux/blk_types.h>
11#include <linux/uio.h>
12
13#define BIO_MAX_VECS 256U
14
15struct queue_limits;
16
17static inline unsigned int bio_max_segs(unsigned int nr_segs)
18{
19 return min(nr_segs, BIO_MAX_VECS);
20}
21
22#define bio_prio(bio) (bio)->bi_ioprio
23#define bio_set_prio(bio, prio) ((bio)->bi_ioprio = prio)
24
25#define bio_iter_iovec(bio, iter) \
26 bvec_iter_bvec((bio)->bi_io_vec, (iter))
27
28#define bio_iter_page(bio, iter) \
29 bvec_iter_page((bio)->bi_io_vec, (iter))
30#define bio_iter_len(bio, iter) \
31 bvec_iter_len((bio)->bi_io_vec, (iter))
32#define bio_iter_offset(bio, iter) \
33 bvec_iter_offset((bio)->bi_io_vec, (iter))
34
35#define bio_page(bio) bio_iter_page((bio), (bio)->bi_iter)
36#define bio_offset(bio) bio_iter_offset((bio), (bio)->bi_iter)
37#define bio_iovec(bio) bio_iter_iovec((bio), (bio)->bi_iter)
38
39#define bvec_iter_sectors(iter) ((iter).bi_size >> 9)
40#define bvec_iter_end_sector(iter) ((iter).bi_sector + bvec_iter_sectors((iter)))
41
42#define bio_sectors(bio) bvec_iter_sectors((bio)->bi_iter)
43#define bio_end_sector(bio) bvec_iter_end_sector((bio)->bi_iter)
44
45/*
46 * Return the data direction, READ or WRITE.
47 */
48#define bio_data_dir(bio) \
49 (op_is_write(bio_op(bio)) ? WRITE : READ)
50
51/*
52 * Check whether this bio carries any data or not. A NULL bio is allowed.
53 */
54static inline bool bio_has_data(struct bio *bio)
55{
56 if (bio &&
57 bio->bi_iter.bi_size &&
58 bio_op(bio) != REQ_OP_DISCARD &&
59 bio_op(bio) != REQ_OP_SECURE_ERASE &&
60 bio_op(bio) != REQ_OP_WRITE_ZEROES)
61 return true;
62
63 return false;
64}
65
66static inline bool bio_no_advance_iter(const struct bio *bio)
67{
68 return bio_op(bio) == REQ_OP_DISCARD ||
69 bio_op(bio) == REQ_OP_SECURE_ERASE ||
70 bio_op(bio) == REQ_OP_WRITE_ZEROES;
71}
72
73static inline void *bio_data(struct bio *bio)
74{
75 if (bio_has_data(bio))
76 return page_address(bio_page(bio)) + bio_offset(bio);
77
78 return NULL;
79}
80
81static inline bool bio_next_segment(const struct bio *bio,
82 struct bvec_iter_all *iter)
83{
84 if (iter->idx >= bio->bi_vcnt)
85 return false;
86
87 bvec_advance(&bio->bi_io_vec[iter->idx], iter);
88 return true;
89}
90
91/*
92 * drivers should _never_ use the all version - the bio may have been split
93 * before it got to the driver and the driver won't own all of it
94 */
95#define bio_for_each_segment_all(bvl, bio, iter) \
96 for (bvl = bvec_init_iter_all(&iter); bio_next_segment((bio), &iter); )
97
98static inline void bio_advance_iter(const struct bio *bio,
99 struct bvec_iter *iter, unsigned int bytes)
100{
101 iter->bi_sector += bytes >> 9;
102
103 if (bio_no_advance_iter(bio))
104 iter->bi_size -= bytes;
105 else
106 bvec_iter_advance(bio->bi_io_vec, iter, bytes);
107 /* TODO: It is reasonable to complete bio with error here. */
108}
109
110/* @bytes should be less or equal to bvec[i->bi_idx].bv_len */
111static inline void bio_advance_iter_single(const struct bio *bio,
112 struct bvec_iter *iter,
113 unsigned int bytes)
114{
115 iter->bi_sector += bytes >> 9;
116
117 if (bio_no_advance_iter(bio))
118 iter->bi_size -= bytes;
119 else
120 bvec_iter_advance_single(bio->bi_io_vec, iter, bytes);
121}
122
123void __bio_advance(struct bio *, unsigned bytes);
124
125/**
126 * bio_advance - increment/complete a bio by some number of bytes
127 * @bio: bio to advance
128 * @nbytes: number of bytes to complete
129 *
130 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
131 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
132 * be updated on the last bvec as well.
133 *
134 * @bio will then represent the remaining, uncompleted portion of the io.
135 */
136static inline void bio_advance(struct bio *bio, unsigned int nbytes)
137{
138 if (nbytes == bio->bi_iter.bi_size) {
139 bio->bi_iter.bi_size = 0;
140 return;
141 }
142 __bio_advance(bio, nbytes);
143}
144
145#define __bio_for_each_segment(bvl, bio, iter, start) \
146 for (iter = (start); \
147 (iter).bi_size && \
148 ((bvl = bio_iter_iovec((bio), (iter))), 1); \
149 bio_advance_iter_single((bio), &(iter), (bvl).bv_len))
150
151#define bio_for_each_segment(bvl, bio, iter) \
152 __bio_for_each_segment(bvl, bio, iter, (bio)->bi_iter)
153
154#define __bio_for_each_bvec(bvl, bio, iter, start) \
155 for (iter = (start); \
156 (iter).bi_size && \
157 ((bvl = mp_bvec_iter_bvec((bio)->bi_io_vec, (iter))), 1); \
158 bio_advance_iter_single((bio), &(iter), (bvl).bv_len))
159
160/* iterate over multi-page bvec */
161#define bio_for_each_bvec(bvl, bio, iter) \
162 __bio_for_each_bvec(bvl, bio, iter, (bio)->bi_iter)
163
164/*
165 * Iterate over all multi-page bvecs. Drivers shouldn't use this version for the
166 * same reasons as bio_for_each_segment_all().
167 */
168#define bio_for_each_bvec_all(bvl, bio, i) \
169 for (i = 0, bvl = bio_first_bvec_all(bio); \
170 i < (bio)->bi_vcnt; i++, bvl++)
171
172#define bio_iter_last(bvec, iter) ((iter).bi_size == (bvec).bv_len)
173
174static inline unsigned bio_segments(struct bio *bio)
175{
176 unsigned segs = 0;
177 struct bio_vec bv;
178 struct bvec_iter iter;
179
180 /*
181 * We special case discard/write same/write zeroes, because they
182 * interpret bi_size differently:
183 */
184
185 switch (bio_op(bio)) {
186 case REQ_OP_DISCARD:
187 case REQ_OP_SECURE_ERASE:
188 case REQ_OP_WRITE_ZEROES:
189 return 0;
190 default:
191 break;
192 }
193
194 bio_for_each_segment(bv, bio, iter)
195 segs++;
196
197 return segs;
198}
199
200/*
201 * get a reference to a bio, so it won't disappear. the intended use is
202 * something like:
203 *
204 * bio_get(bio);
205 * submit_bio(rw, bio);
206 * if (bio->bi_flags ...)
207 * do_something
208 * bio_put(bio);
209 *
210 * without the bio_get(), it could potentially complete I/O before submit_bio
211 * returns. and then bio would be freed memory when if (bio->bi_flags ...)
212 * runs
213 */
214static inline void bio_get(struct bio *bio)
215{
216 bio->bi_flags |= (1 << BIO_REFFED);
217 smp_mb__before_atomic();
218 atomic_inc(&bio->__bi_cnt);
219}
220
221static inline void bio_cnt_set(struct bio *bio, unsigned int count)
222{
223 if (count != 1) {
224 bio->bi_flags |= (1 << BIO_REFFED);
225 smp_mb();
226 }
227 atomic_set(&bio->__bi_cnt, count);
228}
229
230static inline bool bio_flagged(struct bio *bio, unsigned int bit)
231{
232 return bio->bi_flags & (1U << bit);
233}
234
235static inline void bio_set_flag(struct bio *bio, unsigned int bit)
236{
237 bio->bi_flags |= (1U << bit);
238}
239
240static inline void bio_clear_flag(struct bio *bio, unsigned int bit)
241{
242 bio->bi_flags &= ~(1U << bit);
243}
244
245static inline struct bio_vec *bio_first_bvec_all(struct bio *bio)
246{
247 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
248 return bio->bi_io_vec;
249}
250
251static inline struct page *bio_first_page_all(struct bio *bio)
252{
253 return bio_first_bvec_all(bio)->bv_page;
254}
255
256static inline struct folio *bio_first_folio_all(struct bio *bio)
257{
258 return page_folio(bio_first_page_all(bio));
259}
260
261static inline struct bio_vec *bio_last_bvec_all(struct bio *bio)
262{
263 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
264 return &bio->bi_io_vec[bio->bi_vcnt - 1];
265}
266
267/**
268 * struct folio_iter - State for iterating all folios in a bio.
269 * @folio: The current folio we're iterating. NULL after the last folio.
270 * @offset: The byte offset within the current folio.
271 * @length: The number of bytes in this iteration (will not cross folio
272 * boundary).
273 */
274struct folio_iter {
275 struct folio *folio;
276 size_t offset;
277 size_t length;
278 /* private: for use by the iterator */
279 struct folio *_next;
280 size_t _seg_count;
281 int _i;
282};
283
284static inline void bio_first_folio(struct folio_iter *fi, struct bio *bio,
285 int i)
286{
287 struct bio_vec *bvec = bio_first_bvec_all(bio) + i;
288
289 if (unlikely(i >= bio->bi_vcnt)) {
290 fi->folio = NULL;
291 return;
292 }
293
294 fi->folio = page_folio(bvec->bv_page);
295 fi->offset = bvec->bv_offset +
296 PAGE_SIZE * (bvec->bv_page - &fi->folio->page);
297 fi->_seg_count = bvec->bv_len;
298 fi->length = min(folio_size(fi->folio) - fi->offset, fi->_seg_count);
299 fi->_next = folio_next(fi->folio);
300 fi->_i = i;
301}
302
303static inline void bio_next_folio(struct folio_iter *fi, struct bio *bio)
304{
305 fi->_seg_count -= fi->length;
306 if (fi->_seg_count) {
307 fi->folio = fi->_next;
308 fi->offset = 0;
309 fi->length = min(folio_size(fi->folio), fi->_seg_count);
310 fi->_next = folio_next(fi->folio);
311 } else {
312 bio_first_folio(fi, bio, fi->_i + 1);
313 }
314}
315
316/**
317 * bio_for_each_folio_all - Iterate over each folio in a bio.
318 * @fi: struct folio_iter which is updated for each folio.
319 * @bio: struct bio to iterate over.
320 */
321#define bio_for_each_folio_all(fi, bio) \
322 for (bio_first_folio(&fi, bio, 0); fi.folio; bio_next_folio(&fi, bio))
323
324void bio_trim(struct bio *bio, sector_t offset, sector_t size);
325extern struct bio *bio_split(struct bio *bio, int sectors,
326 gfp_t gfp, struct bio_set *bs);
327int bio_split_rw_at(struct bio *bio, const struct queue_limits *lim,
328 unsigned *segs, unsigned max_bytes);
329
330/**
331 * bio_next_split - get next @sectors from a bio, splitting if necessary
332 * @bio: bio to split
333 * @sectors: number of sectors to split from the front of @bio
334 * @gfp: gfp mask
335 * @bs: bio set to allocate from
336 *
337 * Return: a bio representing the next @sectors of @bio - if the bio is smaller
338 * than @sectors, returns the original bio unchanged.
339 */
340static inline struct bio *bio_next_split(struct bio *bio, int sectors,
341 gfp_t gfp, struct bio_set *bs)
342{
343 if (sectors >= bio_sectors(bio))
344 return bio;
345
346 return bio_split(bio, sectors, gfp, bs);
347}
348
349enum {
350 BIOSET_NEED_BVECS = BIT(0),
351 BIOSET_NEED_RESCUER = BIT(1),
352 BIOSET_PERCPU_CACHE = BIT(2),
353};
354extern int bioset_init(struct bio_set *, unsigned int, unsigned int, int flags);
355extern void bioset_exit(struct bio_set *);
356extern int biovec_init_pool(mempool_t *pool, int pool_entries);
357
358struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
359 blk_opf_t opf, gfp_t gfp_mask,
360 struct bio_set *bs);
361struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask);
362extern void bio_put(struct bio *);
363
364struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
365 gfp_t gfp, struct bio_set *bs);
366int bio_init_clone(struct block_device *bdev, struct bio *bio,
367 struct bio *bio_src, gfp_t gfp);
368
369extern struct bio_set fs_bio_set;
370
371static inline struct bio *bio_alloc(struct block_device *bdev,
372 unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp_mask)
373{
374 return bio_alloc_bioset(bdev, nr_vecs, opf, gfp_mask, &fs_bio_set);
375}
376
377void submit_bio(struct bio *bio);
378
379extern void bio_endio(struct bio *);
380
381static inline void bio_io_error(struct bio *bio)
382{
383 bio->bi_status = BLK_STS_IOERR;
384 bio_endio(bio);
385}
386
387static inline void bio_wouldblock_error(struct bio *bio)
388{
389 bio_set_flag(bio, BIO_QUIET);
390 bio->bi_status = BLK_STS_AGAIN;
391 bio_endio(bio);
392}
393
394/*
395 * Calculate number of bvec segments that should be allocated to fit data
396 * pointed by @iter. If @iter is backed by bvec it's going to be reused
397 * instead of allocating a new one.
398 */
399static inline int bio_iov_vecs_to_alloc(struct iov_iter *iter, int max_segs)
400{
401 if (iov_iter_is_bvec(iter))
402 return 0;
403 return iov_iter_npages(iter, max_segs);
404}
405
406struct request_queue;
407
408extern int submit_bio_wait(struct bio *bio);
409void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
410 unsigned short max_vecs, blk_opf_t opf);
411extern void bio_uninit(struct bio *);
412void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf);
413void bio_chain(struct bio *, struct bio *);
414
415int __must_check bio_add_page(struct bio *bio, struct page *page, unsigned len,
416 unsigned off);
417bool __must_check bio_add_folio(struct bio *bio, struct folio *folio,
418 size_t len, size_t off);
419extern int bio_add_pc_page(struct request_queue *, struct bio *, struct page *,
420 unsigned int, unsigned int);
421void __bio_add_page(struct bio *bio, struct page *page,
422 unsigned int len, unsigned int off);
423void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len,
424 size_t off);
425int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter);
426void bio_iov_bvec_set(struct bio *bio, const struct iov_iter *iter);
427void __bio_release_pages(struct bio *bio, bool mark_dirty);
428extern void bio_set_pages_dirty(struct bio *bio);
429extern void bio_check_pages_dirty(struct bio *bio);
430
431extern void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
432 struct bio *src, struct bvec_iter *src_iter);
433extern void bio_copy_data(struct bio *dst, struct bio *src);
434extern void bio_free_pages(struct bio *bio);
435void guard_bio_eod(struct bio *bio);
436void zero_fill_bio_iter(struct bio *bio, struct bvec_iter iter);
437
438static inline void zero_fill_bio(struct bio *bio)
439{
440 zero_fill_bio_iter(bio, bio->bi_iter);
441}
442
443static inline void bio_release_pages(struct bio *bio, bool mark_dirty)
444{
445 if (bio_flagged(bio, BIO_PAGE_PINNED))
446 __bio_release_pages(bio, mark_dirty);
447}
448
449#define bio_dev(bio) \
450 disk_devt((bio)->bi_bdev->bd_disk)
451
452#ifdef CONFIG_BLK_CGROUP
453void bio_associate_blkg(struct bio *bio);
454void bio_associate_blkg_from_css(struct bio *bio,
455 struct cgroup_subsys_state *css);
456void bio_clone_blkg_association(struct bio *dst, struct bio *src);
457void blkcg_punt_bio_submit(struct bio *bio);
458#else /* CONFIG_BLK_CGROUP */
459static inline void bio_associate_blkg(struct bio *bio) { }
460static inline void bio_associate_blkg_from_css(struct bio *bio,
461 struct cgroup_subsys_state *css)
462{ }
463static inline void bio_clone_blkg_association(struct bio *dst,
464 struct bio *src) { }
465static inline void blkcg_punt_bio_submit(struct bio *bio)
466{
467 submit_bio(bio);
468}
469#endif /* CONFIG_BLK_CGROUP */
470
471static inline void bio_set_dev(struct bio *bio, struct block_device *bdev)
472{
473 bio_clear_flag(bio, BIO_REMAPPED);
474 if (bio->bi_bdev != bdev)
475 bio_clear_flag(bio, BIO_BPS_THROTTLED);
476 bio->bi_bdev = bdev;
477 bio_associate_blkg(bio);
478}
479
480/*
481 * BIO list management for use by remapping drivers (e.g. DM or MD) and loop.
482 *
483 * A bio_list anchors a singly-linked list of bios chained through the bi_next
484 * member of the bio. The bio_list also caches the last list member to allow
485 * fast access to the tail.
486 */
487struct bio_list {
488 struct bio *head;
489 struct bio *tail;
490};
491
492static inline int bio_list_empty(const struct bio_list *bl)
493{
494 return bl->head == NULL;
495}
496
497static inline void bio_list_init(struct bio_list *bl)
498{
499 bl->head = bl->tail = NULL;
500}
501
502#define BIO_EMPTY_LIST { NULL, NULL }
503
504#define bio_list_for_each(bio, bl) \
505 for (bio = (bl)->head; bio; bio = bio->bi_next)
506
507static inline unsigned bio_list_size(const struct bio_list *bl)
508{
509 unsigned sz = 0;
510 struct bio *bio;
511
512 bio_list_for_each(bio, bl)
513 sz++;
514
515 return sz;
516}
517
518static inline void bio_list_add(struct bio_list *bl, struct bio *bio)
519{
520 bio->bi_next = NULL;
521
522 if (bl->tail)
523 bl->tail->bi_next = bio;
524 else
525 bl->head = bio;
526
527 bl->tail = bio;
528}
529
530static inline void bio_list_add_head(struct bio_list *bl, struct bio *bio)
531{
532 bio->bi_next = bl->head;
533
534 bl->head = bio;
535
536 if (!bl->tail)
537 bl->tail = bio;
538}
539
540static inline void bio_list_merge(struct bio_list *bl, struct bio_list *bl2)
541{
542 if (!bl2->head)
543 return;
544
545 if (bl->tail)
546 bl->tail->bi_next = bl2->head;
547 else
548 bl->head = bl2->head;
549
550 bl->tail = bl2->tail;
551}
552
553static inline void bio_list_merge_init(struct bio_list *bl,
554 struct bio_list *bl2)
555{
556 bio_list_merge(bl, bl2);
557 bio_list_init(bl2);
558}
559
560static inline void bio_list_merge_head(struct bio_list *bl,
561 struct bio_list *bl2)
562{
563 if (!bl2->head)
564 return;
565
566 if (bl->head)
567 bl2->tail->bi_next = bl->head;
568 else
569 bl->tail = bl2->tail;
570
571 bl->head = bl2->head;
572}
573
574static inline struct bio *bio_list_peek(struct bio_list *bl)
575{
576 return bl->head;
577}
578
579static inline struct bio *bio_list_pop(struct bio_list *bl)
580{
581 struct bio *bio = bl->head;
582
583 if (bio) {
584 bl->head = bl->head->bi_next;
585 if (!bl->head)
586 bl->tail = NULL;
587
588 bio->bi_next = NULL;
589 }
590
591 return bio;
592}
593
594static inline struct bio *bio_list_get(struct bio_list *bl)
595{
596 struct bio *bio = bl->head;
597
598 bl->head = bl->tail = NULL;
599
600 return bio;
601}
602
603/*
604 * Increment chain count for the bio. Make sure the CHAIN flag update
605 * is visible before the raised count.
606 */
607static inline void bio_inc_remaining(struct bio *bio)
608{
609 bio_set_flag(bio, BIO_CHAIN);
610 smp_mb__before_atomic();
611 atomic_inc(&bio->__bi_remaining);
612}
613
614/*
615 * bio_set is used to allow other portions of the IO system to
616 * allocate their own private memory pools for bio and iovec structures.
617 * These memory pools in turn all allocate from the bio_slab
618 * and the bvec_slabs[].
619 */
620#define BIO_POOL_SIZE 2
621
622struct bio_set {
623 struct kmem_cache *bio_slab;
624 unsigned int front_pad;
625
626 /*
627 * per-cpu bio alloc cache
628 */
629 struct bio_alloc_cache __percpu *cache;
630
631 mempool_t bio_pool;
632 mempool_t bvec_pool;
633#if defined(CONFIG_BLK_DEV_INTEGRITY)
634 mempool_t bio_integrity_pool;
635 mempool_t bvec_integrity_pool;
636#endif
637
638 unsigned int back_pad;
639 /*
640 * Deadlock avoidance for stacking block drivers: see comments in
641 * bio_alloc_bioset() for details
642 */
643 spinlock_t rescue_lock;
644 struct bio_list rescue_list;
645 struct work_struct rescue_work;
646 struct workqueue_struct *rescue_workqueue;
647
648 /*
649 * Hot un-plug notifier for the per-cpu cache, if used
650 */
651 struct hlist_node cpuhp_dead;
652};
653
654static inline bool bioset_initialized(struct bio_set *bs)
655{
656 return bs->bio_slab != NULL;
657}
658
659/*
660 * Mark a bio as polled. Note that for async polled IO, the caller must
661 * expect -EWOULDBLOCK if we cannot allocate a request (or other resources).
662 * We cannot block waiting for requests on polled IO, as those completions
663 * must be found by the caller. This is different than IRQ driven IO, where
664 * it's safe to wait for IO to complete.
665 */
666static inline void bio_set_polled(struct bio *bio, struct kiocb *kiocb)
667{
668 bio->bi_opf |= REQ_POLLED;
669 if (kiocb->ki_flags & IOCB_NOWAIT)
670 bio->bi_opf |= REQ_NOWAIT;
671}
672
673static inline void bio_clear_polled(struct bio *bio)
674{
675 bio->bi_opf &= ~REQ_POLLED;
676}
677
678/**
679 * bio_is_zone_append - is this a zone append bio?
680 * @bio: bio to check
681 *
682 * Check if @bio is a zone append operation. Core block layer code and end_io
683 * handlers must use this instead of an open coded REQ_OP_ZONE_APPEND check
684 * because the block layer can rewrite REQ_OP_ZONE_APPEND to REQ_OP_WRITE if
685 * it is not natively supported.
686 */
687static inline bool bio_is_zone_append(struct bio *bio)
688{
689 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED))
690 return false;
691 return bio_op(bio) == REQ_OP_ZONE_APPEND ||
692 bio_flagged(bio, BIO_EMULATES_ZONE_APPEND);
693}
694
695struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
696 unsigned int nr_pages, blk_opf_t opf, gfp_t gfp);
697struct bio *bio_chain_and_submit(struct bio *prev, struct bio *new);
698
699struct bio *blk_alloc_discard_bio(struct block_device *bdev,
700 sector_t *sector, sector_t *nr_sects, gfp_t gfp_mask);
701
702#endif /* __LINUX_BIO_H */