Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * drivers/base/core.c - core driver model code (device registration, etc)
4 *
5 * Copyright (c) 2002-3 Patrick Mochel
6 * Copyright (c) 2002-3 Open Source Development Labs
7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8 * Copyright (c) 2006 Novell, Inc.
9 */
10
11#include <linux/acpi.h>
12#include <linux/blkdev.h>
13#include <linux/cleanup.h>
14#include <linux/cpufreq.h>
15#include <linux/device.h>
16#include <linux/dma-map-ops.h> /* for dma_default_coherent */
17#include <linux/err.h>
18#include <linux/fwnode.h>
19#include <linux/init.h>
20#include <linux/kdev_t.h>
21#include <linux/kstrtox.h>
22#include <linux/module.h>
23#include <linux/mutex.h>
24#include <linux/netdevice.h>
25#include <linux/notifier.h>
26#include <linux/of.h>
27#include <linux/of_device.h>
28#include <linux/pm_runtime.h>
29#include <linux/sched/mm.h>
30#include <linux/sched/signal.h>
31#include <linux/slab.h>
32#include <linux/string_helpers.h>
33#include <linux/swiotlb.h>
34#include <linux/sysfs.h>
35
36#include "base.h"
37#include "physical_location.h"
38#include "power/power.h"
39
40/* Device links support. */
41static LIST_HEAD(deferred_sync);
42static unsigned int defer_sync_state_count = 1;
43static DEFINE_MUTEX(fwnode_link_lock);
44static bool fw_devlink_is_permissive(void);
45static void __fw_devlink_link_to_consumers(struct device *dev);
46static bool fw_devlink_drv_reg_done;
47static bool fw_devlink_best_effort;
48static struct workqueue_struct *device_link_wq;
49
50/**
51 * __fwnode_link_add - Create a link between two fwnode_handles.
52 * @con: Consumer end of the link.
53 * @sup: Supplier end of the link.
54 * @flags: Link flags.
55 *
56 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
57 * represents the detail that the firmware lists @sup fwnode as supplying a
58 * resource to @con.
59 *
60 * The driver core will use the fwnode link to create a device link between the
61 * two device objects corresponding to @con and @sup when they are created. The
62 * driver core will automatically delete the fwnode link between @con and @sup
63 * after doing that.
64 *
65 * Attempts to create duplicate links between the same pair of fwnode handles
66 * are ignored and there is no reference counting.
67 */
68static int __fwnode_link_add(struct fwnode_handle *con,
69 struct fwnode_handle *sup, u8 flags)
70{
71 struct fwnode_link *link;
72
73 list_for_each_entry(link, &sup->consumers, s_hook)
74 if (link->consumer == con) {
75 link->flags |= flags;
76 return 0;
77 }
78
79 link = kzalloc(sizeof(*link), GFP_KERNEL);
80 if (!link)
81 return -ENOMEM;
82
83 link->supplier = sup;
84 INIT_LIST_HEAD(&link->s_hook);
85 link->consumer = con;
86 INIT_LIST_HEAD(&link->c_hook);
87 link->flags = flags;
88
89 list_add(&link->s_hook, &sup->consumers);
90 list_add(&link->c_hook, &con->suppliers);
91 pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n",
92 con, sup);
93
94 return 0;
95}
96
97int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup,
98 u8 flags)
99{
100 guard(mutex)(&fwnode_link_lock);
101
102 return __fwnode_link_add(con, sup, flags);
103}
104
105/**
106 * __fwnode_link_del - Delete a link between two fwnode_handles.
107 * @link: the fwnode_link to be deleted
108 *
109 * The fwnode_link_lock needs to be held when this function is called.
110 */
111static void __fwnode_link_del(struct fwnode_link *link)
112{
113 pr_debug("%pfwf Dropping the fwnode link to %pfwf\n",
114 link->consumer, link->supplier);
115 list_del(&link->s_hook);
116 list_del(&link->c_hook);
117 kfree(link);
118}
119
120/**
121 * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle.
122 * @link: the fwnode_link to be marked
123 *
124 * The fwnode_link_lock needs to be held when this function is called.
125 */
126static void __fwnode_link_cycle(struct fwnode_link *link)
127{
128 pr_debug("%pfwf: cycle: depends on %pfwf\n",
129 link->consumer, link->supplier);
130 link->flags |= FWLINK_FLAG_CYCLE;
131}
132
133/**
134 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
135 * @fwnode: fwnode whose supplier links need to be deleted
136 *
137 * Deletes all supplier links connecting directly to @fwnode.
138 */
139static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
140{
141 struct fwnode_link *link, *tmp;
142
143 guard(mutex)(&fwnode_link_lock);
144
145 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook)
146 __fwnode_link_del(link);
147}
148
149/**
150 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
151 * @fwnode: fwnode whose consumer links need to be deleted
152 *
153 * Deletes all consumer links connecting directly to @fwnode.
154 */
155static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
156{
157 struct fwnode_link *link, *tmp;
158
159 guard(mutex)(&fwnode_link_lock);
160
161 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook)
162 __fwnode_link_del(link);
163}
164
165/**
166 * fwnode_links_purge - Delete all links connected to a fwnode_handle.
167 * @fwnode: fwnode whose links needs to be deleted
168 *
169 * Deletes all links connecting directly to a fwnode.
170 */
171void fwnode_links_purge(struct fwnode_handle *fwnode)
172{
173 fwnode_links_purge_suppliers(fwnode);
174 fwnode_links_purge_consumers(fwnode);
175}
176
177void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
178{
179 struct fwnode_handle *child;
180
181 /* Don't purge consumer links of an added child */
182 if (fwnode->dev)
183 return;
184
185 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
186 fwnode_links_purge_consumers(fwnode);
187
188 fwnode_for_each_available_child_node(fwnode, child)
189 fw_devlink_purge_absent_suppliers(child);
190}
191EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
192
193/**
194 * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle
195 * @from: move consumers away from this fwnode
196 * @to: move consumers to this fwnode
197 *
198 * Move all consumer links from @from fwnode to @to fwnode.
199 */
200static void __fwnode_links_move_consumers(struct fwnode_handle *from,
201 struct fwnode_handle *to)
202{
203 struct fwnode_link *link, *tmp;
204
205 list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) {
206 __fwnode_link_add(link->consumer, to, link->flags);
207 __fwnode_link_del(link);
208 }
209}
210
211/**
212 * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers
213 * @fwnode: fwnode from which to pick up dangling consumers
214 * @new_sup: fwnode of new supplier
215 *
216 * If the @fwnode has a corresponding struct device and the device supports
217 * probing (that is, added to a bus), then we want to let fw_devlink create
218 * MANAGED device links to this device, so leave @fwnode and its descendant's
219 * fwnode links alone.
220 *
221 * Otherwise, move its consumers to the new supplier @new_sup.
222 */
223static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode,
224 struct fwnode_handle *new_sup)
225{
226 struct fwnode_handle *child;
227
228 if (fwnode->dev && fwnode->dev->bus)
229 return;
230
231 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
232 __fwnode_links_move_consumers(fwnode, new_sup);
233
234 fwnode_for_each_available_child_node(fwnode, child)
235 __fw_devlink_pickup_dangling_consumers(child, new_sup);
236}
237
238static DEFINE_MUTEX(device_links_lock);
239DEFINE_STATIC_SRCU(device_links_srcu);
240
241static inline void device_links_write_lock(void)
242{
243 mutex_lock(&device_links_lock);
244}
245
246static inline void device_links_write_unlock(void)
247{
248 mutex_unlock(&device_links_lock);
249}
250
251int device_links_read_lock(void) __acquires(&device_links_srcu)
252{
253 return srcu_read_lock(&device_links_srcu);
254}
255
256void device_links_read_unlock(int idx) __releases(&device_links_srcu)
257{
258 srcu_read_unlock(&device_links_srcu, idx);
259}
260
261int device_links_read_lock_held(void)
262{
263 return srcu_read_lock_held(&device_links_srcu);
264}
265
266static void device_link_synchronize_removal(void)
267{
268 synchronize_srcu(&device_links_srcu);
269}
270
271static void device_link_remove_from_lists(struct device_link *link)
272{
273 list_del_rcu(&link->s_node);
274 list_del_rcu(&link->c_node);
275}
276
277static bool device_is_ancestor(struct device *dev, struct device *target)
278{
279 while (target->parent) {
280 target = target->parent;
281 if (dev == target)
282 return true;
283 }
284 return false;
285}
286
287#define DL_MARKER_FLAGS (DL_FLAG_INFERRED | \
288 DL_FLAG_CYCLE | \
289 DL_FLAG_MANAGED)
290static inline bool device_link_flag_is_sync_state_only(u32 flags)
291{
292 return (flags & ~DL_MARKER_FLAGS) == DL_FLAG_SYNC_STATE_ONLY;
293}
294
295/**
296 * device_is_dependent - Check if one device depends on another one
297 * @dev: Device to check dependencies for.
298 * @target: Device to check against.
299 *
300 * Check if @target depends on @dev or any device dependent on it (its child or
301 * its consumer etc). Return 1 if that is the case or 0 otherwise.
302 */
303static int device_is_dependent(struct device *dev, void *target)
304{
305 struct device_link *link;
306 int ret;
307
308 /*
309 * The "ancestors" check is needed to catch the case when the target
310 * device has not been completely initialized yet and it is still
311 * missing from the list of children of its parent device.
312 */
313 if (dev == target || device_is_ancestor(dev, target))
314 return 1;
315
316 ret = device_for_each_child(dev, target, device_is_dependent);
317 if (ret)
318 return ret;
319
320 list_for_each_entry(link, &dev->links.consumers, s_node) {
321 if (device_link_flag_is_sync_state_only(link->flags))
322 continue;
323
324 if (link->consumer == target)
325 return 1;
326
327 ret = device_is_dependent(link->consumer, target);
328 if (ret)
329 break;
330 }
331 return ret;
332}
333
334static void device_link_init_status(struct device_link *link,
335 struct device *consumer,
336 struct device *supplier)
337{
338 switch (supplier->links.status) {
339 case DL_DEV_PROBING:
340 switch (consumer->links.status) {
341 case DL_DEV_PROBING:
342 /*
343 * A consumer driver can create a link to a supplier
344 * that has not completed its probing yet as long as it
345 * knows that the supplier is already functional (for
346 * example, it has just acquired some resources from the
347 * supplier).
348 */
349 link->status = DL_STATE_CONSUMER_PROBE;
350 break;
351 default:
352 link->status = DL_STATE_DORMANT;
353 break;
354 }
355 break;
356 case DL_DEV_DRIVER_BOUND:
357 switch (consumer->links.status) {
358 case DL_DEV_PROBING:
359 link->status = DL_STATE_CONSUMER_PROBE;
360 break;
361 case DL_DEV_DRIVER_BOUND:
362 link->status = DL_STATE_ACTIVE;
363 break;
364 default:
365 link->status = DL_STATE_AVAILABLE;
366 break;
367 }
368 break;
369 case DL_DEV_UNBINDING:
370 link->status = DL_STATE_SUPPLIER_UNBIND;
371 break;
372 default:
373 link->status = DL_STATE_DORMANT;
374 break;
375 }
376}
377
378static int device_reorder_to_tail(struct device *dev, void *not_used)
379{
380 struct device_link *link;
381
382 /*
383 * Devices that have not been registered yet will be put to the ends
384 * of the lists during the registration, so skip them here.
385 */
386 if (device_is_registered(dev))
387 devices_kset_move_last(dev);
388
389 if (device_pm_initialized(dev))
390 device_pm_move_last(dev);
391
392 device_for_each_child(dev, NULL, device_reorder_to_tail);
393 list_for_each_entry(link, &dev->links.consumers, s_node) {
394 if (device_link_flag_is_sync_state_only(link->flags))
395 continue;
396 device_reorder_to_tail(link->consumer, NULL);
397 }
398
399 return 0;
400}
401
402/**
403 * device_pm_move_to_tail - Move set of devices to the end of device lists
404 * @dev: Device to move
405 *
406 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
407 *
408 * It moves the @dev along with all of its children and all of its consumers
409 * to the ends of the device_kset and dpm_list, recursively.
410 */
411void device_pm_move_to_tail(struct device *dev)
412{
413 int idx;
414
415 idx = device_links_read_lock();
416 device_pm_lock();
417 device_reorder_to_tail(dev, NULL);
418 device_pm_unlock();
419 device_links_read_unlock(idx);
420}
421
422#define to_devlink(dev) container_of((dev), struct device_link, link_dev)
423
424static ssize_t status_show(struct device *dev,
425 struct device_attribute *attr, char *buf)
426{
427 const char *output;
428
429 switch (to_devlink(dev)->status) {
430 case DL_STATE_NONE:
431 output = "not tracked";
432 break;
433 case DL_STATE_DORMANT:
434 output = "dormant";
435 break;
436 case DL_STATE_AVAILABLE:
437 output = "available";
438 break;
439 case DL_STATE_CONSUMER_PROBE:
440 output = "consumer probing";
441 break;
442 case DL_STATE_ACTIVE:
443 output = "active";
444 break;
445 case DL_STATE_SUPPLIER_UNBIND:
446 output = "supplier unbinding";
447 break;
448 default:
449 output = "unknown";
450 break;
451 }
452
453 return sysfs_emit(buf, "%s\n", output);
454}
455static DEVICE_ATTR_RO(status);
456
457static ssize_t auto_remove_on_show(struct device *dev,
458 struct device_attribute *attr, char *buf)
459{
460 struct device_link *link = to_devlink(dev);
461 const char *output;
462
463 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
464 output = "supplier unbind";
465 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
466 output = "consumer unbind";
467 else
468 output = "never";
469
470 return sysfs_emit(buf, "%s\n", output);
471}
472static DEVICE_ATTR_RO(auto_remove_on);
473
474static ssize_t runtime_pm_show(struct device *dev,
475 struct device_attribute *attr, char *buf)
476{
477 struct device_link *link = to_devlink(dev);
478
479 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
480}
481static DEVICE_ATTR_RO(runtime_pm);
482
483static ssize_t sync_state_only_show(struct device *dev,
484 struct device_attribute *attr, char *buf)
485{
486 struct device_link *link = to_devlink(dev);
487
488 return sysfs_emit(buf, "%d\n",
489 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
490}
491static DEVICE_ATTR_RO(sync_state_only);
492
493static struct attribute *devlink_attrs[] = {
494 &dev_attr_status.attr,
495 &dev_attr_auto_remove_on.attr,
496 &dev_attr_runtime_pm.attr,
497 &dev_attr_sync_state_only.attr,
498 NULL,
499};
500ATTRIBUTE_GROUPS(devlink);
501
502static void device_link_release_fn(struct work_struct *work)
503{
504 struct device_link *link = container_of(work, struct device_link, rm_work);
505
506 /* Ensure that all references to the link object have been dropped. */
507 device_link_synchronize_removal();
508
509 pm_runtime_release_supplier(link);
510 /*
511 * If supplier_preactivated is set, the link has been dropped between
512 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls
513 * in __driver_probe_device(). In that case, drop the supplier's
514 * PM-runtime usage counter to remove the reference taken by
515 * pm_runtime_get_suppliers().
516 */
517 if (link->supplier_preactivated)
518 pm_runtime_put_noidle(link->supplier);
519
520 pm_request_idle(link->supplier);
521
522 put_device(link->consumer);
523 put_device(link->supplier);
524 kfree(link);
525}
526
527static void devlink_dev_release(struct device *dev)
528{
529 struct device_link *link = to_devlink(dev);
530
531 INIT_WORK(&link->rm_work, device_link_release_fn);
532 /*
533 * It may take a while to complete this work because of the SRCU
534 * synchronization in device_link_release_fn() and if the consumer or
535 * supplier devices get deleted when it runs, so put it into the
536 * dedicated workqueue.
537 */
538 queue_work(device_link_wq, &link->rm_work);
539}
540
541/**
542 * device_link_wait_removal - Wait for ongoing devlink removal jobs to terminate
543 */
544void device_link_wait_removal(void)
545{
546 /*
547 * devlink removal jobs are queued in the dedicated work queue.
548 * To be sure that all removal jobs are terminated, ensure that any
549 * scheduled work has run to completion.
550 */
551 flush_workqueue(device_link_wq);
552}
553EXPORT_SYMBOL_GPL(device_link_wait_removal);
554
555static const struct class devlink_class = {
556 .name = "devlink",
557 .dev_groups = devlink_groups,
558 .dev_release = devlink_dev_release,
559};
560
561static int devlink_add_symlinks(struct device *dev)
562{
563 char *buf_con __free(kfree) = NULL, *buf_sup __free(kfree) = NULL;
564 int ret;
565 struct device_link *link = to_devlink(dev);
566 struct device *sup = link->supplier;
567 struct device *con = link->consumer;
568
569 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
570 if (ret)
571 goto out;
572
573 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
574 if (ret)
575 goto err_con;
576
577 buf_con = kasprintf(GFP_KERNEL, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
578 if (!buf_con) {
579 ret = -ENOMEM;
580 goto err_con_dev;
581 }
582
583 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf_con);
584 if (ret)
585 goto err_con_dev;
586
587 buf_sup = kasprintf(GFP_KERNEL, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
588 if (!buf_sup) {
589 ret = -ENOMEM;
590 goto err_sup_dev;
591 }
592
593 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf_sup);
594 if (ret)
595 goto err_sup_dev;
596
597 goto out;
598
599err_sup_dev:
600 sysfs_remove_link(&sup->kobj, buf_con);
601err_con_dev:
602 sysfs_remove_link(&link->link_dev.kobj, "consumer");
603err_con:
604 sysfs_remove_link(&link->link_dev.kobj, "supplier");
605out:
606 return ret;
607}
608
609static void devlink_remove_symlinks(struct device *dev)
610{
611 char *buf_con __free(kfree) = NULL, *buf_sup __free(kfree) = NULL;
612 struct device_link *link = to_devlink(dev);
613 struct device *sup = link->supplier;
614 struct device *con = link->consumer;
615
616 sysfs_remove_link(&link->link_dev.kobj, "consumer");
617 sysfs_remove_link(&link->link_dev.kobj, "supplier");
618
619 if (device_is_registered(con)) {
620 buf_sup = kasprintf(GFP_KERNEL, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
621 if (!buf_sup)
622 goto out;
623 sysfs_remove_link(&con->kobj, buf_sup);
624 }
625
626 buf_con = kasprintf(GFP_KERNEL, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
627 if (!buf_con)
628 goto out;
629 sysfs_remove_link(&sup->kobj, buf_con);
630
631 return;
632
633out:
634 WARN(1, "Unable to properly free device link symlinks!\n");
635}
636
637static struct class_interface devlink_class_intf = {
638 .class = &devlink_class,
639 .add_dev = devlink_add_symlinks,
640 .remove_dev = devlink_remove_symlinks,
641};
642
643static int __init devlink_class_init(void)
644{
645 int ret;
646
647 ret = class_register(&devlink_class);
648 if (ret)
649 return ret;
650
651 ret = class_interface_register(&devlink_class_intf);
652 if (ret)
653 class_unregister(&devlink_class);
654
655 return ret;
656}
657postcore_initcall(devlink_class_init);
658
659#define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
660 DL_FLAG_AUTOREMOVE_SUPPLIER | \
661 DL_FLAG_AUTOPROBE_CONSUMER | \
662 DL_FLAG_SYNC_STATE_ONLY | \
663 DL_FLAG_INFERRED | \
664 DL_FLAG_CYCLE)
665
666#define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
667 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
668
669/**
670 * device_link_add - Create a link between two devices.
671 * @consumer: Consumer end of the link.
672 * @supplier: Supplier end of the link.
673 * @flags: Link flags.
674 *
675 * Return: On success, a device_link struct will be returned.
676 * On error or invalid flag settings, NULL will be returned.
677 *
678 * The caller is responsible for the proper synchronization of the link creation
679 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the
680 * runtime PM framework to take the link into account. Second, if the
681 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
682 * be forced into the active meta state and reference-counted upon the creation
683 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
684 * ignored.
685 *
686 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
687 * expected to release the link returned by it directly with the help of either
688 * device_link_del() or device_link_remove().
689 *
690 * If that flag is not set, however, the caller of this function is handing the
691 * management of the link over to the driver core entirely and its return value
692 * can only be used to check whether or not the link is present. In that case,
693 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
694 * flags can be used to indicate to the driver core when the link can be safely
695 * deleted. Namely, setting one of them in @flags indicates to the driver core
696 * that the link is not going to be used (by the given caller of this function)
697 * after unbinding the consumer or supplier driver, respectively, from its
698 * device, so the link can be deleted at that point. If none of them is set,
699 * the link will be maintained until one of the devices pointed to by it (either
700 * the consumer or the supplier) is unregistered.
701 *
702 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
703 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
704 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
705 * be used to request the driver core to automatically probe for a consumer
706 * driver after successfully binding a driver to the supplier device.
707 *
708 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
709 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
710 * the same time is invalid and will cause NULL to be returned upfront.
711 * However, if a device link between the given @consumer and @supplier pair
712 * exists already when this function is called for them, the existing link will
713 * be returned regardless of its current type and status (the link's flags may
714 * be modified then). The caller of this function is then expected to treat
715 * the link as though it has just been created, so (in particular) if
716 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
717 * explicitly when not needed any more (as stated above).
718 *
719 * A side effect of the link creation is re-ordering of dpm_list and the
720 * devices_kset list by moving the consumer device and all devices depending
721 * on it to the ends of these lists (that does not happen to devices that have
722 * not been registered when this function is called).
723 *
724 * The supplier device is required to be registered when this function is called
725 * and NULL will be returned if that is not the case. The consumer device need
726 * not be registered, however.
727 */
728struct device_link *device_link_add(struct device *consumer,
729 struct device *supplier, u32 flags)
730{
731 struct device_link *link;
732
733 if (!consumer || !supplier || consumer == supplier ||
734 flags & ~DL_ADD_VALID_FLAGS ||
735 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
736 (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
737 flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
738 DL_FLAG_AUTOREMOVE_SUPPLIER)))
739 return NULL;
740
741 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
742 if (pm_runtime_get_sync(supplier) < 0) {
743 pm_runtime_put_noidle(supplier);
744 return NULL;
745 }
746 }
747
748 if (!(flags & DL_FLAG_STATELESS))
749 flags |= DL_FLAG_MANAGED;
750
751 if (flags & DL_FLAG_SYNC_STATE_ONLY &&
752 !device_link_flag_is_sync_state_only(flags))
753 return NULL;
754
755 device_links_write_lock();
756 device_pm_lock();
757
758 /*
759 * If the supplier has not been fully registered yet or there is a
760 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
761 * the supplier already in the graph, return NULL. If the link is a
762 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
763 * because it only affects sync_state() callbacks.
764 */
765 if (!device_pm_initialized(supplier)
766 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
767 device_is_dependent(consumer, supplier))) {
768 link = NULL;
769 goto out;
770 }
771
772 /*
773 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
774 * So, only create it if the consumer hasn't probed yet.
775 */
776 if (flags & DL_FLAG_SYNC_STATE_ONLY &&
777 consumer->links.status != DL_DEV_NO_DRIVER &&
778 consumer->links.status != DL_DEV_PROBING) {
779 link = NULL;
780 goto out;
781 }
782
783 /*
784 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
785 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
786 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
787 */
788 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
789 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
790
791 list_for_each_entry(link, &supplier->links.consumers, s_node) {
792 if (link->consumer != consumer)
793 continue;
794
795 if (link->flags & DL_FLAG_INFERRED &&
796 !(flags & DL_FLAG_INFERRED))
797 link->flags &= ~DL_FLAG_INFERRED;
798
799 if (flags & DL_FLAG_PM_RUNTIME) {
800 if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
801 pm_runtime_new_link(consumer);
802 link->flags |= DL_FLAG_PM_RUNTIME;
803 }
804 if (flags & DL_FLAG_RPM_ACTIVE)
805 refcount_inc(&link->rpm_active);
806 }
807
808 if (flags & DL_FLAG_STATELESS) {
809 kref_get(&link->kref);
810 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
811 !(link->flags & DL_FLAG_STATELESS)) {
812 link->flags |= DL_FLAG_STATELESS;
813 goto reorder;
814 } else {
815 link->flags |= DL_FLAG_STATELESS;
816 goto out;
817 }
818 }
819
820 /*
821 * If the life time of the link following from the new flags is
822 * longer than indicated by the flags of the existing link,
823 * update the existing link to stay around longer.
824 */
825 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
826 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
827 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
828 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
829 }
830 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
831 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
832 DL_FLAG_AUTOREMOVE_SUPPLIER);
833 }
834 if (!(link->flags & DL_FLAG_MANAGED)) {
835 kref_get(&link->kref);
836 link->flags |= DL_FLAG_MANAGED;
837 device_link_init_status(link, consumer, supplier);
838 }
839 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
840 !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
841 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
842 goto reorder;
843 }
844
845 goto out;
846 }
847
848 link = kzalloc(sizeof(*link), GFP_KERNEL);
849 if (!link)
850 goto out;
851
852 refcount_set(&link->rpm_active, 1);
853
854 get_device(supplier);
855 link->supplier = supplier;
856 INIT_LIST_HEAD(&link->s_node);
857 get_device(consumer);
858 link->consumer = consumer;
859 INIT_LIST_HEAD(&link->c_node);
860 link->flags = flags;
861 kref_init(&link->kref);
862
863 link->link_dev.class = &devlink_class;
864 device_set_pm_not_required(&link->link_dev);
865 dev_set_name(&link->link_dev, "%s:%s--%s:%s",
866 dev_bus_name(supplier), dev_name(supplier),
867 dev_bus_name(consumer), dev_name(consumer));
868 if (device_register(&link->link_dev)) {
869 put_device(&link->link_dev);
870 link = NULL;
871 goto out;
872 }
873
874 if (flags & DL_FLAG_PM_RUNTIME) {
875 if (flags & DL_FLAG_RPM_ACTIVE)
876 refcount_inc(&link->rpm_active);
877
878 pm_runtime_new_link(consumer);
879 }
880
881 /* Determine the initial link state. */
882 if (flags & DL_FLAG_STATELESS)
883 link->status = DL_STATE_NONE;
884 else
885 device_link_init_status(link, consumer, supplier);
886
887 /*
888 * Some callers expect the link creation during consumer driver probe to
889 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
890 */
891 if (link->status == DL_STATE_CONSUMER_PROBE &&
892 flags & DL_FLAG_PM_RUNTIME)
893 pm_runtime_resume(supplier);
894
895 list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
896 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
897
898 if (flags & DL_FLAG_SYNC_STATE_ONLY) {
899 dev_dbg(consumer,
900 "Linked as a sync state only consumer to %s\n",
901 dev_name(supplier));
902 goto out;
903 }
904
905reorder:
906 /*
907 * Move the consumer and all of the devices depending on it to the end
908 * of dpm_list and the devices_kset list.
909 *
910 * It is necessary to hold dpm_list locked throughout all that or else
911 * we may end up suspending with a wrong ordering of it.
912 */
913 device_reorder_to_tail(consumer, NULL);
914
915 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
916
917out:
918 device_pm_unlock();
919 device_links_write_unlock();
920
921 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
922 pm_runtime_put(supplier);
923
924 return link;
925}
926EXPORT_SYMBOL_GPL(device_link_add);
927
928static void __device_link_del(struct kref *kref)
929{
930 struct device_link *link = container_of(kref, struct device_link, kref);
931
932 dev_dbg(link->consumer, "Dropping the link to %s\n",
933 dev_name(link->supplier));
934
935 pm_runtime_drop_link(link);
936
937 device_link_remove_from_lists(link);
938 device_unregister(&link->link_dev);
939}
940
941static void device_link_put_kref(struct device_link *link)
942{
943 if (link->flags & DL_FLAG_STATELESS)
944 kref_put(&link->kref, __device_link_del);
945 else if (!device_is_registered(link->consumer))
946 __device_link_del(&link->kref);
947 else
948 WARN(1, "Unable to drop a managed device link reference\n");
949}
950
951/**
952 * device_link_del - Delete a stateless link between two devices.
953 * @link: Device link to delete.
954 *
955 * The caller must ensure proper synchronization of this function with runtime
956 * PM. If the link was added multiple times, it needs to be deleted as often.
957 * Care is required for hotplugged devices: Their links are purged on removal
958 * and calling device_link_del() is then no longer allowed.
959 */
960void device_link_del(struct device_link *link)
961{
962 device_links_write_lock();
963 device_link_put_kref(link);
964 device_links_write_unlock();
965}
966EXPORT_SYMBOL_GPL(device_link_del);
967
968/**
969 * device_link_remove - Delete a stateless link between two devices.
970 * @consumer: Consumer end of the link.
971 * @supplier: Supplier end of the link.
972 *
973 * The caller must ensure proper synchronization of this function with runtime
974 * PM.
975 */
976void device_link_remove(void *consumer, struct device *supplier)
977{
978 struct device_link *link;
979
980 if (WARN_ON(consumer == supplier))
981 return;
982
983 device_links_write_lock();
984
985 list_for_each_entry(link, &supplier->links.consumers, s_node) {
986 if (link->consumer == consumer) {
987 device_link_put_kref(link);
988 break;
989 }
990 }
991
992 device_links_write_unlock();
993}
994EXPORT_SYMBOL_GPL(device_link_remove);
995
996static void device_links_missing_supplier(struct device *dev)
997{
998 struct device_link *link;
999
1000 list_for_each_entry(link, &dev->links.suppliers, c_node) {
1001 if (link->status != DL_STATE_CONSUMER_PROBE)
1002 continue;
1003
1004 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1005 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1006 } else {
1007 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1008 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1009 }
1010 }
1011}
1012
1013static bool dev_is_best_effort(struct device *dev)
1014{
1015 return (fw_devlink_best_effort && dev->can_match) ||
1016 (dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT));
1017}
1018
1019static struct fwnode_handle *fwnode_links_check_suppliers(
1020 struct fwnode_handle *fwnode)
1021{
1022 struct fwnode_link *link;
1023
1024 if (!fwnode || fw_devlink_is_permissive())
1025 return NULL;
1026
1027 list_for_each_entry(link, &fwnode->suppliers, c_hook)
1028 if (!(link->flags &
1029 (FWLINK_FLAG_CYCLE | FWLINK_FLAG_IGNORE)))
1030 return link->supplier;
1031
1032 return NULL;
1033}
1034
1035/**
1036 * device_links_check_suppliers - Check presence of supplier drivers.
1037 * @dev: Consumer device.
1038 *
1039 * Check links from this device to any suppliers. Walk the list of the device's
1040 * links to suppliers and see if all of them are available. If not, simply
1041 * return -EPROBE_DEFER.
1042 *
1043 * We need to guarantee that the supplier will not go away after the check has
1044 * been positive here. It only can go away in __device_release_driver() and
1045 * that function checks the device's links to consumers. This means we need to
1046 * mark the link as "consumer probe in progress" to make the supplier removal
1047 * wait for us to complete (or bad things may happen).
1048 *
1049 * Links without the DL_FLAG_MANAGED flag set are ignored.
1050 */
1051int device_links_check_suppliers(struct device *dev)
1052{
1053 struct device_link *link;
1054 int ret = 0, fwnode_ret = 0;
1055 struct fwnode_handle *sup_fw;
1056
1057 /*
1058 * Device waiting for supplier to become available is not allowed to
1059 * probe.
1060 */
1061 scoped_guard(mutex, &fwnode_link_lock) {
1062 sup_fw = fwnode_links_check_suppliers(dev->fwnode);
1063 if (sup_fw) {
1064 if (dev_is_best_effort(dev))
1065 fwnode_ret = -EAGAIN;
1066 else
1067 return dev_err_probe(dev, -EPROBE_DEFER,
1068 "wait for supplier %pfwf\n", sup_fw);
1069 }
1070 }
1071
1072 device_links_write_lock();
1073
1074 list_for_each_entry(link, &dev->links.suppliers, c_node) {
1075 if (!(link->flags & DL_FLAG_MANAGED))
1076 continue;
1077
1078 if (link->status != DL_STATE_AVAILABLE &&
1079 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1080
1081 if (dev_is_best_effort(dev) &&
1082 link->flags & DL_FLAG_INFERRED &&
1083 !link->supplier->can_match) {
1084 ret = -EAGAIN;
1085 continue;
1086 }
1087
1088 device_links_missing_supplier(dev);
1089 ret = dev_err_probe(dev, -EPROBE_DEFER,
1090 "supplier %s not ready\n", dev_name(link->supplier));
1091 break;
1092 }
1093 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1094 }
1095 dev->links.status = DL_DEV_PROBING;
1096
1097 device_links_write_unlock();
1098
1099 return ret ? ret : fwnode_ret;
1100}
1101
1102/**
1103 * __device_links_queue_sync_state - Queue a device for sync_state() callback
1104 * @dev: Device to call sync_state() on
1105 * @list: List head to queue the @dev on
1106 *
1107 * Queues a device for a sync_state() callback when the device links write lock
1108 * isn't held. This allows the sync_state() execution flow to use device links
1109 * APIs. The caller must ensure this function is called with
1110 * device_links_write_lock() held.
1111 *
1112 * This function does a get_device() to make sure the device is not freed while
1113 * on this list.
1114 *
1115 * So the caller must also ensure that device_links_flush_sync_list() is called
1116 * as soon as the caller releases device_links_write_lock(). This is necessary
1117 * to make sure the sync_state() is called in a timely fashion and the
1118 * put_device() is called on this device.
1119 */
1120static void __device_links_queue_sync_state(struct device *dev,
1121 struct list_head *list)
1122{
1123 struct device_link *link;
1124
1125 if (!dev_has_sync_state(dev))
1126 return;
1127 if (dev->state_synced)
1128 return;
1129
1130 list_for_each_entry(link, &dev->links.consumers, s_node) {
1131 if (!(link->flags & DL_FLAG_MANAGED))
1132 continue;
1133 if (link->status != DL_STATE_ACTIVE)
1134 return;
1135 }
1136
1137 /*
1138 * Set the flag here to avoid adding the same device to a list more
1139 * than once. This can happen if new consumers get added to the device
1140 * and probed before the list is flushed.
1141 */
1142 dev->state_synced = true;
1143
1144 if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1145 return;
1146
1147 get_device(dev);
1148 list_add_tail(&dev->links.defer_sync, list);
1149}
1150
1151/**
1152 * device_links_flush_sync_list - Call sync_state() on a list of devices
1153 * @list: List of devices to call sync_state() on
1154 * @dont_lock_dev: Device for which lock is already held by the caller
1155 *
1156 * Calls sync_state() on all the devices that have been queued for it. This
1157 * function is used in conjunction with __device_links_queue_sync_state(). The
1158 * @dont_lock_dev parameter is useful when this function is called from a
1159 * context where a device lock is already held.
1160 */
1161static void device_links_flush_sync_list(struct list_head *list,
1162 struct device *dont_lock_dev)
1163{
1164 struct device *dev, *tmp;
1165
1166 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1167 list_del_init(&dev->links.defer_sync);
1168
1169 if (dev != dont_lock_dev)
1170 device_lock(dev);
1171
1172 dev_sync_state(dev);
1173
1174 if (dev != dont_lock_dev)
1175 device_unlock(dev);
1176
1177 put_device(dev);
1178 }
1179}
1180
1181void device_links_supplier_sync_state_pause(void)
1182{
1183 device_links_write_lock();
1184 defer_sync_state_count++;
1185 device_links_write_unlock();
1186}
1187
1188void device_links_supplier_sync_state_resume(void)
1189{
1190 struct device *dev, *tmp;
1191 LIST_HEAD(sync_list);
1192
1193 device_links_write_lock();
1194 if (!defer_sync_state_count) {
1195 WARN(true, "Unmatched sync_state pause/resume!");
1196 goto out;
1197 }
1198 defer_sync_state_count--;
1199 if (defer_sync_state_count)
1200 goto out;
1201
1202 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1203 /*
1204 * Delete from deferred_sync list before queuing it to
1205 * sync_list because defer_sync is used for both lists.
1206 */
1207 list_del_init(&dev->links.defer_sync);
1208 __device_links_queue_sync_state(dev, &sync_list);
1209 }
1210out:
1211 device_links_write_unlock();
1212
1213 device_links_flush_sync_list(&sync_list, NULL);
1214}
1215
1216static int sync_state_resume_initcall(void)
1217{
1218 device_links_supplier_sync_state_resume();
1219 return 0;
1220}
1221late_initcall(sync_state_resume_initcall);
1222
1223static void __device_links_supplier_defer_sync(struct device *sup)
1224{
1225 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1226 list_add_tail(&sup->links.defer_sync, &deferred_sync);
1227}
1228
1229static void device_link_drop_managed(struct device_link *link)
1230{
1231 link->flags &= ~DL_FLAG_MANAGED;
1232 WRITE_ONCE(link->status, DL_STATE_NONE);
1233 kref_put(&link->kref, __device_link_del);
1234}
1235
1236static ssize_t waiting_for_supplier_show(struct device *dev,
1237 struct device_attribute *attr,
1238 char *buf)
1239{
1240 bool val;
1241
1242 device_lock(dev);
1243 scoped_guard(mutex, &fwnode_link_lock)
1244 val = !!fwnode_links_check_suppliers(dev->fwnode);
1245 device_unlock(dev);
1246 return sysfs_emit(buf, "%u\n", val);
1247}
1248static DEVICE_ATTR_RO(waiting_for_supplier);
1249
1250/**
1251 * device_links_force_bind - Prepares device to be force bound
1252 * @dev: Consumer device.
1253 *
1254 * device_bind_driver() force binds a device to a driver without calling any
1255 * driver probe functions. So the consumer really isn't going to wait for any
1256 * supplier before it's bound to the driver. We still want the device link
1257 * states to be sensible when this happens.
1258 *
1259 * In preparation for device_bind_driver(), this function goes through each
1260 * supplier device links and checks if the supplier is bound. If it is, then
1261 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1262 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1263 */
1264void device_links_force_bind(struct device *dev)
1265{
1266 struct device_link *link, *ln;
1267
1268 device_links_write_lock();
1269
1270 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1271 if (!(link->flags & DL_FLAG_MANAGED))
1272 continue;
1273
1274 if (link->status != DL_STATE_AVAILABLE) {
1275 device_link_drop_managed(link);
1276 continue;
1277 }
1278 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1279 }
1280 dev->links.status = DL_DEV_PROBING;
1281
1282 device_links_write_unlock();
1283}
1284
1285/**
1286 * device_links_driver_bound - Update device links after probing its driver.
1287 * @dev: Device to update the links for.
1288 *
1289 * The probe has been successful, so update links from this device to any
1290 * consumers by changing their status to "available".
1291 *
1292 * Also change the status of @dev's links to suppliers to "active".
1293 *
1294 * Links without the DL_FLAG_MANAGED flag set are ignored.
1295 */
1296void device_links_driver_bound(struct device *dev)
1297{
1298 struct device_link *link, *ln;
1299 LIST_HEAD(sync_list);
1300
1301 /*
1302 * If a device binds successfully, it's expected to have created all
1303 * the device links it needs to or make new device links as it needs
1304 * them. So, fw_devlink no longer needs to create device links to any
1305 * of the device's suppliers.
1306 *
1307 * Also, if a child firmware node of this bound device is not added as a
1308 * device by now, assume it is never going to be added. Make this bound
1309 * device the fallback supplier to the dangling consumers of the child
1310 * firmware node because this bound device is probably implementing the
1311 * child firmware node functionality and we don't want the dangling
1312 * consumers to defer probe indefinitely waiting for a device for the
1313 * child firmware node.
1314 */
1315 if (dev->fwnode && dev->fwnode->dev == dev) {
1316 struct fwnode_handle *child;
1317
1318 fwnode_links_purge_suppliers(dev->fwnode);
1319
1320 guard(mutex)(&fwnode_link_lock);
1321
1322 fwnode_for_each_available_child_node(dev->fwnode, child)
1323 __fw_devlink_pickup_dangling_consumers(child,
1324 dev->fwnode);
1325 __fw_devlink_link_to_consumers(dev);
1326 }
1327 device_remove_file(dev, &dev_attr_waiting_for_supplier);
1328
1329 device_links_write_lock();
1330
1331 list_for_each_entry(link, &dev->links.consumers, s_node) {
1332 if (!(link->flags & DL_FLAG_MANAGED))
1333 continue;
1334
1335 /*
1336 * Links created during consumer probe may be in the "consumer
1337 * probe" state to start with if the supplier is still probing
1338 * when they are created and they may become "active" if the
1339 * consumer probe returns first. Skip them here.
1340 */
1341 if (link->status == DL_STATE_CONSUMER_PROBE ||
1342 link->status == DL_STATE_ACTIVE)
1343 continue;
1344
1345 WARN_ON(link->status != DL_STATE_DORMANT);
1346 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1347
1348 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1349 driver_deferred_probe_add(link->consumer);
1350 }
1351
1352 if (defer_sync_state_count)
1353 __device_links_supplier_defer_sync(dev);
1354 else
1355 __device_links_queue_sync_state(dev, &sync_list);
1356
1357 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1358 struct device *supplier;
1359
1360 if (!(link->flags & DL_FLAG_MANAGED))
1361 continue;
1362
1363 supplier = link->supplier;
1364 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1365 /*
1366 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1367 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1368 * save to drop the managed link completely.
1369 */
1370 device_link_drop_managed(link);
1371 } else if (dev_is_best_effort(dev) &&
1372 link->flags & DL_FLAG_INFERRED &&
1373 link->status != DL_STATE_CONSUMER_PROBE &&
1374 !link->supplier->can_match) {
1375 /*
1376 * When dev_is_best_effort() is true, we ignore device
1377 * links to suppliers that don't have a driver. If the
1378 * consumer device still managed to probe, there's no
1379 * point in maintaining a device link in a weird state
1380 * (consumer probed before supplier). So delete it.
1381 */
1382 device_link_drop_managed(link);
1383 } else {
1384 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1385 WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1386 }
1387
1388 /*
1389 * This needs to be done even for the deleted
1390 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1391 * device link that was preventing the supplier from getting a
1392 * sync_state() call.
1393 */
1394 if (defer_sync_state_count)
1395 __device_links_supplier_defer_sync(supplier);
1396 else
1397 __device_links_queue_sync_state(supplier, &sync_list);
1398 }
1399
1400 dev->links.status = DL_DEV_DRIVER_BOUND;
1401
1402 device_links_write_unlock();
1403
1404 device_links_flush_sync_list(&sync_list, dev);
1405}
1406
1407/**
1408 * __device_links_no_driver - Update links of a device without a driver.
1409 * @dev: Device without a drvier.
1410 *
1411 * Delete all non-persistent links from this device to any suppliers.
1412 *
1413 * Persistent links stay around, but their status is changed to "available",
1414 * unless they already are in the "supplier unbind in progress" state in which
1415 * case they need not be updated.
1416 *
1417 * Links without the DL_FLAG_MANAGED flag set are ignored.
1418 */
1419static void __device_links_no_driver(struct device *dev)
1420{
1421 struct device_link *link, *ln;
1422
1423 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1424 if (!(link->flags & DL_FLAG_MANAGED))
1425 continue;
1426
1427 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1428 device_link_drop_managed(link);
1429 continue;
1430 }
1431
1432 if (link->status != DL_STATE_CONSUMER_PROBE &&
1433 link->status != DL_STATE_ACTIVE)
1434 continue;
1435
1436 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1437 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1438 } else {
1439 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1440 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1441 }
1442 }
1443
1444 dev->links.status = DL_DEV_NO_DRIVER;
1445}
1446
1447/**
1448 * device_links_no_driver - Update links after failing driver probe.
1449 * @dev: Device whose driver has just failed to probe.
1450 *
1451 * Clean up leftover links to consumers for @dev and invoke
1452 * %__device_links_no_driver() to update links to suppliers for it as
1453 * appropriate.
1454 *
1455 * Links without the DL_FLAG_MANAGED flag set are ignored.
1456 */
1457void device_links_no_driver(struct device *dev)
1458{
1459 struct device_link *link;
1460
1461 device_links_write_lock();
1462
1463 list_for_each_entry(link, &dev->links.consumers, s_node) {
1464 if (!(link->flags & DL_FLAG_MANAGED))
1465 continue;
1466
1467 /*
1468 * The probe has failed, so if the status of the link is
1469 * "consumer probe" or "active", it must have been added by
1470 * a probing consumer while this device was still probing.
1471 * Change its state to "dormant", as it represents a valid
1472 * relationship, but it is not functionally meaningful.
1473 */
1474 if (link->status == DL_STATE_CONSUMER_PROBE ||
1475 link->status == DL_STATE_ACTIVE)
1476 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1477 }
1478
1479 __device_links_no_driver(dev);
1480
1481 device_links_write_unlock();
1482}
1483
1484/**
1485 * device_links_driver_cleanup - Update links after driver removal.
1486 * @dev: Device whose driver has just gone away.
1487 *
1488 * Update links to consumers for @dev by changing their status to "dormant" and
1489 * invoke %__device_links_no_driver() to update links to suppliers for it as
1490 * appropriate.
1491 *
1492 * Links without the DL_FLAG_MANAGED flag set are ignored.
1493 */
1494void device_links_driver_cleanup(struct device *dev)
1495{
1496 struct device_link *link, *ln;
1497
1498 device_links_write_lock();
1499
1500 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1501 if (!(link->flags & DL_FLAG_MANAGED))
1502 continue;
1503
1504 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1505 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1506
1507 /*
1508 * autoremove the links between this @dev and its consumer
1509 * devices that are not active, i.e. where the link state
1510 * has moved to DL_STATE_SUPPLIER_UNBIND.
1511 */
1512 if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1513 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1514 device_link_drop_managed(link);
1515
1516 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1517 }
1518
1519 list_del_init(&dev->links.defer_sync);
1520 __device_links_no_driver(dev);
1521
1522 device_links_write_unlock();
1523}
1524
1525/**
1526 * device_links_busy - Check if there are any busy links to consumers.
1527 * @dev: Device to check.
1528 *
1529 * Check each consumer of the device and return 'true' if its link's status
1530 * is one of "consumer probe" or "active" (meaning that the given consumer is
1531 * probing right now or its driver is present). Otherwise, change the link
1532 * state to "supplier unbind" to prevent the consumer from being probed
1533 * successfully going forward.
1534 *
1535 * Return 'false' if there are no probing or active consumers.
1536 *
1537 * Links without the DL_FLAG_MANAGED flag set are ignored.
1538 */
1539bool device_links_busy(struct device *dev)
1540{
1541 struct device_link *link;
1542 bool ret = false;
1543
1544 device_links_write_lock();
1545
1546 list_for_each_entry(link, &dev->links.consumers, s_node) {
1547 if (!(link->flags & DL_FLAG_MANAGED))
1548 continue;
1549
1550 if (link->status == DL_STATE_CONSUMER_PROBE
1551 || link->status == DL_STATE_ACTIVE) {
1552 ret = true;
1553 break;
1554 }
1555 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1556 }
1557
1558 dev->links.status = DL_DEV_UNBINDING;
1559
1560 device_links_write_unlock();
1561 return ret;
1562}
1563
1564/**
1565 * device_links_unbind_consumers - Force unbind consumers of the given device.
1566 * @dev: Device to unbind the consumers of.
1567 *
1568 * Walk the list of links to consumers for @dev and if any of them is in the
1569 * "consumer probe" state, wait for all device probes in progress to complete
1570 * and start over.
1571 *
1572 * If that's not the case, change the status of the link to "supplier unbind"
1573 * and check if the link was in the "active" state. If so, force the consumer
1574 * driver to unbind and start over (the consumer will not re-probe as we have
1575 * changed the state of the link already).
1576 *
1577 * Links without the DL_FLAG_MANAGED flag set are ignored.
1578 */
1579void device_links_unbind_consumers(struct device *dev)
1580{
1581 struct device_link *link;
1582
1583 start:
1584 device_links_write_lock();
1585
1586 list_for_each_entry(link, &dev->links.consumers, s_node) {
1587 enum device_link_state status;
1588
1589 if (!(link->flags & DL_FLAG_MANAGED) ||
1590 link->flags & DL_FLAG_SYNC_STATE_ONLY)
1591 continue;
1592
1593 status = link->status;
1594 if (status == DL_STATE_CONSUMER_PROBE) {
1595 device_links_write_unlock();
1596
1597 wait_for_device_probe();
1598 goto start;
1599 }
1600 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1601 if (status == DL_STATE_ACTIVE) {
1602 struct device *consumer = link->consumer;
1603
1604 get_device(consumer);
1605
1606 device_links_write_unlock();
1607
1608 device_release_driver_internal(consumer, NULL,
1609 consumer->parent);
1610 put_device(consumer);
1611 goto start;
1612 }
1613 }
1614
1615 device_links_write_unlock();
1616}
1617
1618/**
1619 * device_links_purge - Delete existing links to other devices.
1620 * @dev: Target device.
1621 */
1622static void device_links_purge(struct device *dev)
1623{
1624 struct device_link *link, *ln;
1625
1626 if (dev->class == &devlink_class)
1627 return;
1628
1629 /*
1630 * Delete all of the remaining links from this device to any other
1631 * devices (either consumers or suppliers).
1632 */
1633 device_links_write_lock();
1634
1635 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1636 WARN_ON(link->status == DL_STATE_ACTIVE);
1637 __device_link_del(&link->kref);
1638 }
1639
1640 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1641 WARN_ON(link->status != DL_STATE_DORMANT &&
1642 link->status != DL_STATE_NONE);
1643 __device_link_del(&link->kref);
1644 }
1645
1646 device_links_write_unlock();
1647}
1648
1649#define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \
1650 DL_FLAG_SYNC_STATE_ONLY)
1651#define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \
1652 DL_FLAG_AUTOPROBE_CONSUMER)
1653#define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \
1654 DL_FLAG_PM_RUNTIME)
1655
1656static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1657static int __init fw_devlink_setup(char *arg)
1658{
1659 if (!arg)
1660 return -EINVAL;
1661
1662 if (strcmp(arg, "off") == 0) {
1663 fw_devlink_flags = 0;
1664 } else if (strcmp(arg, "permissive") == 0) {
1665 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1666 } else if (strcmp(arg, "on") == 0) {
1667 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1668 } else if (strcmp(arg, "rpm") == 0) {
1669 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1670 }
1671 return 0;
1672}
1673early_param("fw_devlink", fw_devlink_setup);
1674
1675static bool fw_devlink_strict;
1676static int __init fw_devlink_strict_setup(char *arg)
1677{
1678 return kstrtobool(arg, &fw_devlink_strict);
1679}
1680early_param("fw_devlink.strict", fw_devlink_strict_setup);
1681
1682#define FW_DEVLINK_SYNC_STATE_STRICT 0
1683#define FW_DEVLINK_SYNC_STATE_TIMEOUT 1
1684
1685#ifndef CONFIG_FW_DEVLINK_SYNC_STATE_TIMEOUT
1686static int fw_devlink_sync_state;
1687#else
1688static int fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1689#endif
1690
1691static int __init fw_devlink_sync_state_setup(char *arg)
1692{
1693 if (!arg)
1694 return -EINVAL;
1695
1696 if (strcmp(arg, "strict") == 0) {
1697 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_STRICT;
1698 return 0;
1699 } else if (strcmp(arg, "timeout") == 0) {
1700 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1701 return 0;
1702 }
1703 return -EINVAL;
1704}
1705early_param("fw_devlink.sync_state", fw_devlink_sync_state_setup);
1706
1707static inline u32 fw_devlink_get_flags(u8 fwlink_flags)
1708{
1709 if (fwlink_flags & FWLINK_FLAG_CYCLE)
1710 return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE;
1711
1712 return fw_devlink_flags;
1713}
1714
1715static bool fw_devlink_is_permissive(void)
1716{
1717 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1718}
1719
1720bool fw_devlink_is_strict(void)
1721{
1722 return fw_devlink_strict && !fw_devlink_is_permissive();
1723}
1724
1725static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1726{
1727 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1728 return;
1729
1730 fwnode_call_int_op(fwnode, add_links);
1731 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1732}
1733
1734static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1735{
1736 struct fwnode_handle *child = NULL;
1737
1738 fw_devlink_parse_fwnode(fwnode);
1739
1740 while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1741 fw_devlink_parse_fwtree(child);
1742}
1743
1744static void fw_devlink_relax_link(struct device_link *link)
1745{
1746 if (!(link->flags & DL_FLAG_INFERRED))
1747 return;
1748
1749 if (device_link_flag_is_sync_state_only(link->flags))
1750 return;
1751
1752 pm_runtime_drop_link(link);
1753 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1754 dev_dbg(link->consumer, "Relaxing link with %s\n",
1755 dev_name(link->supplier));
1756}
1757
1758static int fw_devlink_no_driver(struct device *dev, void *data)
1759{
1760 struct device_link *link = to_devlink(dev);
1761
1762 if (!link->supplier->can_match)
1763 fw_devlink_relax_link(link);
1764
1765 return 0;
1766}
1767
1768void fw_devlink_drivers_done(void)
1769{
1770 fw_devlink_drv_reg_done = true;
1771 device_links_write_lock();
1772 class_for_each_device(&devlink_class, NULL, NULL,
1773 fw_devlink_no_driver);
1774 device_links_write_unlock();
1775}
1776
1777static int fw_devlink_dev_sync_state(struct device *dev, void *data)
1778{
1779 struct device_link *link = to_devlink(dev);
1780 struct device *sup = link->supplier;
1781
1782 if (!(link->flags & DL_FLAG_MANAGED) ||
1783 link->status == DL_STATE_ACTIVE || sup->state_synced ||
1784 !dev_has_sync_state(sup))
1785 return 0;
1786
1787 if (fw_devlink_sync_state == FW_DEVLINK_SYNC_STATE_STRICT) {
1788 dev_warn(sup, "sync_state() pending due to %s\n",
1789 dev_name(link->consumer));
1790 return 0;
1791 }
1792
1793 if (!list_empty(&sup->links.defer_sync))
1794 return 0;
1795
1796 dev_warn(sup, "Timed out. Forcing sync_state()\n");
1797 sup->state_synced = true;
1798 get_device(sup);
1799 list_add_tail(&sup->links.defer_sync, data);
1800
1801 return 0;
1802}
1803
1804void fw_devlink_probing_done(void)
1805{
1806 LIST_HEAD(sync_list);
1807
1808 device_links_write_lock();
1809 class_for_each_device(&devlink_class, NULL, &sync_list,
1810 fw_devlink_dev_sync_state);
1811 device_links_write_unlock();
1812 device_links_flush_sync_list(&sync_list, NULL);
1813}
1814
1815/**
1816 * wait_for_init_devices_probe - Try to probe any device needed for init
1817 *
1818 * Some devices might need to be probed and bound successfully before the kernel
1819 * boot sequence can finish and move on to init/userspace. For example, a
1820 * network interface might need to be bound to be able to mount a NFS rootfs.
1821 *
1822 * With fw_devlink=on by default, some of these devices might be blocked from
1823 * probing because they are waiting on a optional supplier that doesn't have a
1824 * driver. While fw_devlink will eventually identify such devices and unblock
1825 * the probing automatically, it might be too late by the time it unblocks the
1826 * probing of devices. For example, the IP4 autoconfig might timeout before
1827 * fw_devlink unblocks probing of the network interface.
1828 *
1829 * This function is available to temporarily try and probe all devices that have
1830 * a driver even if some of their suppliers haven't been added or don't have
1831 * drivers.
1832 *
1833 * The drivers can then decide which of the suppliers are optional vs mandatory
1834 * and probe the device if possible. By the time this function returns, all such
1835 * "best effort" probes are guaranteed to be completed. If a device successfully
1836 * probes in this mode, we delete all fw_devlink discovered dependencies of that
1837 * device where the supplier hasn't yet probed successfully because they have to
1838 * be optional dependencies.
1839 *
1840 * Any devices that didn't successfully probe go back to being treated as if
1841 * this function was never called.
1842 *
1843 * This also means that some devices that aren't needed for init and could have
1844 * waited for their optional supplier to probe (when the supplier's module is
1845 * loaded later on) would end up probing prematurely with limited functionality.
1846 * So call this function only when boot would fail without it.
1847 */
1848void __init wait_for_init_devices_probe(void)
1849{
1850 if (!fw_devlink_flags || fw_devlink_is_permissive())
1851 return;
1852
1853 /*
1854 * Wait for all ongoing probes to finish so that the "best effort" is
1855 * only applied to devices that can't probe otherwise.
1856 */
1857 wait_for_device_probe();
1858
1859 pr_info("Trying to probe devices needed for running init ...\n");
1860 fw_devlink_best_effort = true;
1861 driver_deferred_probe_trigger();
1862
1863 /*
1864 * Wait for all "best effort" probes to finish before going back to
1865 * normal enforcement.
1866 */
1867 wait_for_device_probe();
1868 fw_devlink_best_effort = false;
1869}
1870
1871static void fw_devlink_unblock_consumers(struct device *dev)
1872{
1873 struct device_link *link;
1874
1875 if (!fw_devlink_flags || fw_devlink_is_permissive())
1876 return;
1877
1878 device_links_write_lock();
1879 list_for_each_entry(link, &dev->links.consumers, s_node)
1880 fw_devlink_relax_link(link);
1881 device_links_write_unlock();
1882}
1883
1884#define get_dev_from_fwnode(fwnode) get_device((fwnode)->dev)
1885
1886static bool fwnode_init_without_drv(struct fwnode_handle *fwnode)
1887{
1888 struct device *dev;
1889 bool ret;
1890
1891 if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED))
1892 return false;
1893
1894 dev = get_dev_from_fwnode(fwnode);
1895 ret = !dev || dev->links.status == DL_DEV_NO_DRIVER;
1896 put_device(dev);
1897
1898 return ret;
1899}
1900
1901static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode)
1902{
1903 struct fwnode_handle *parent;
1904
1905 fwnode_for_each_parent_node(fwnode, parent) {
1906 if (fwnode_init_without_drv(parent)) {
1907 fwnode_handle_put(parent);
1908 return true;
1909 }
1910 }
1911
1912 return false;
1913}
1914
1915/**
1916 * fwnode_is_ancestor_of - Test if @ancestor is ancestor of @child
1917 * @ancestor: Firmware which is tested for being an ancestor
1918 * @child: Firmware which is tested for being the child
1919 *
1920 * A node is considered an ancestor of itself too.
1921 *
1922 * Return: true if @ancestor is an ancestor of @child. Otherwise, returns false.
1923 */
1924static bool fwnode_is_ancestor_of(const struct fwnode_handle *ancestor,
1925 const struct fwnode_handle *child)
1926{
1927 struct fwnode_handle *parent;
1928
1929 if (IS_ERR_OR_NULL(ancestor))
1930 return false;
1931
1932 if (child == ancestor)
1933 return true;
1934
1935 fwnode_for_each_parent_node(child, parent) {
1936 if (parent == ancestor) {
1937 fwnode_handle_put(parent);
1938 return true;
1939 }
1940 }
1941 return false;
1942}
1943
1944/**
1945 * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode
1946 * @fwnode: firmware node
1947 *
1948 * Given a firmware node (@fwnode), this function finds its closest ancestor
1949 * firmware node that has a corresponding struct device and returns that struct
1950 * device.
1951 *
1952 * The caller is responsible for calling put_device() on the returned device
1953 * pointer.
1954 *
1955 * Return: a pointer to the device of the @fwnode's closest ancestor.
1956 */
1957static struct device *fwnode_get_next_parent_dev(const struct fwnode_handle *fwnode)
1958{
1959 struct fwnode_handle *parent;
1960 struct device *dev;
1961
1962 fwnode_for_each_parent_node(fwnode, parent) {
1963 dev = get_dev_from_fwnode(parent);
1964 if (dev) {
1965 fwnode_handle_put(parent);
1966 return dev;
1967 }
1968 }
1969 return NULL;
1970}
1971
1972/**
1973 * __fw_devlink_relax_cycles - Relax and mark dependency cycles.
1974 * @con_handle: Potential consumer device fwnode.
1975 * @sup_handle: Potential supplier's fwnode.
1976 *
1977 * Needs to be called with fwnode_lock and device link lock held.
1978 *
1979 * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly
1980 * depend on @con. This function can detect multiple cyles between @sup_handle
1981 * and @con. When such dependency cycles are found, convert all device links
1982 * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark
1983 * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are
1984 * converted into a device link in the future, they are created as
1985 * SYNC_STATE_ONLY device links. This is the equivalent of doing
1986 * fw_devlink=permissive just between the devices in the cycle. We need to do
1987 * this because, at this point, fw_devlink can't tell which of these
1988 * dependencies is not a real dependency.
1989 *
1990 * Return true if one or more cycles were found. Otherwise, return false.
1991 */
1992static bool __fw_devlink_relax_cycles(struct fwnode_handle *con_handle,
1993 struct fwnode_handle *sup_handle)
1994{
1995 struct device *sup_dev = NULL, *par_dev = NULL, *con_dev = NULL;
1996 struct fwnode_link *link;
1997 struct device_link *dev_link;
1998 bool ret = false;
1999
2000 if (!sup_handle)
2001 return false;
2002
2003 /*
2004 * We aren't trying to find all cycles. Just a cycle between con and
2005 * sup_handle.
2006 */
2007 if (sup_handle->flags & FWNODE_FLAG_VISITED)
2008 return false;
2009
2010 sup_handle->flags |= FWNODE_FLAG_VISITED;
2011
2012 /* Termination condition. */
2013 if (sup_handle == con_handle) {
2014 pr_debug("----- cycle: start -----\n");
2015 ret = true;
2016 goto out;
2017 }
2018
2019 sup_dev = get_dev_from_fwnode(sup_handle);
2020 con_dev = get_dev_from_fwnode(con_handle);
2021 /*
2022 * If sup_dev is bound to a driver and @con hasn't started binding to a
2023 * driver, sup_dev can't be a consumer of @con. So, no need to check
2024 * further.
2025 */
2026 if (sup_dev && sup_dev->links.status == DL_DEV_DRIVER_BOUND &&
2027 con_dev && con_dev->links.status == DL_DEV_NO_DRIVER) {
2028 ret = false;
2029 goto out;
2030 }
2031
2032 list_for_each_entry(link, &sup_handle->suppliers, c_hook) {
2033 if (link->flags & FWLINK_FLAG_IGNORE)
2034 continue;
2035
2036 if (__fw_devlink_relax_cycles(con_handle, link->supplier)) {
2037 __fwnode_link_cycle(link);
2038 ret = true;
2039 }
2040 }
2041
2042 /*
2043 * Give priority to device parent over fwnode parent to account for any
2044 * quirks in how fwnodes are converted to devices.
2045 */
2046 if (sup_dev)
2047 par_dev = get_device(sup_dev->parent);
2048 else
2049 par_dev = fwnode_get_next_parent_dev(sup_handle);
2050
2051 if (par_dev && __fw_devlink_relax_cycles(con_handle, par_dev->fwnode)) {
2052 pr_debug("%pfwf: cycle: child of %pfwf\n", sup_handle,
2053 par_dev->fwnode);
2054 ret = true;
2055 }
2056
2057 if (!sup_dev)
2058 goto out;
2059
2060 list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) {
2061 /*
2062 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as
2063 * such due to a cycle.
2064 */
2065 if (device_link_flag_is_sync_state_only(dev_link->flags) &&
2066 !(dev_link->flags & DL_FLAG_CYCLE))
2067 continue;
2068
2069 if (__fw_devlink_relax_cycles(con_handle,
2070 dev_link->supplier->fwnode)) {
2071 pr_debug("%pfwf: cycle: depends on %pfwf\n", sup_handle,
2072 dev_link->supplier->fwnode);
2073 fw_devlink_relax_link(dev_link);
2074 dev_link->flags |= DL_FLAG_CYCLE;
2075 ret = true;
2076 }
2077 }
2078
2079out:
2080 sup_handle->flags &= ~FWNODE_FLAG_VISITED;
2081 put_device(sup_dev);
2082 put_device(par_dev);
2083 return ret;
2084}
2085
2086/**
2087 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
2088 * @con: consumer device for the device link
2089 * @sup_handle: fwnode handle of supplier
2090 * @link: fwnode link that's being converted to a device link
2091 *
2092 * This function will try to create a device link between the consumer device
2093 * @con and the supplier device represented by @sup_handle.
2094 *
2095 * The supplier has to be provided as a fwnode because incorrect cycles in
2096 * fwnode links can sometimes cause the supplier device to never be created.
2097 * This function detects such cases and returns an error if it cannot create a
2098 * device link from the consumer to a missing supplier.
2099 *
2100 * Returns,
2101 * 0 on successfully creating a device link
2102 * -EINVAL if the device link cannot be created as expected
2103 * -EAGAIN if the device link cannot be created right now, but it may be
2104 * possible to do that in the future
2105 */
2106static int fw_devlink_create_devlink(struct device *con,
2107 struct fwnode_handle *sup_handle,
2108 struct fwnode_link *link)
2109{
2110 struct device *sup_dev;
2111 int ret = 0;
2112 u32 flags;
2113
2114 if (link->flags & FWLINK_FLAG_IGNORE)
2115 return 0;
2116
2117 /*
2118 * In some cases, a device P might also be a supplier to its child node
2119 * C. However, this would defer the probe of C until the probe of P
2120 * completes successfully. This is perfectly fine in the device driver
2121 * model. device_add() doesn't guarantee probe completion of the device
2122 * by the time it returns.
2123 *
2124 * However, there are a few drivers that assume C will finish probing
2125 * as soon as it's added and before P finishes probing. So, we provide
2126 * a flag to let fw_devlink know not to delay the probe of C until the
2127 * probe of P completes successfully.
2128 *
2129 * When such a flag is set, we can't create device links where P is the
2130 * supplier of C as that would delay the probe of C.
2131 */
2132 if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
2133 fwnode_is_ancestor_of(sup_handle, con->fwnode))
2134 return -EINVAL;
2135
2136 /*
2137 * Don't try to optimize by not calling the cycle detection logic under
2138 * certain conditions. There's always some corner case that won't get
2139 * detected.
2140 */
2141 device_links_write_lock();
2142 if (__fw_devlink_relax_cycles(link->consumer, sup_handle)) {
2143 __fwnode_link_cycle(link);
2144 pr_debug("----- cycle: end -----\n");
2145 pr_info("%pfwf: Fixed dependency cycle(s) with %pfwf\n",
2146 link->consumer, sup_handle);
2147 }
2148 device_links_write_unlock();
2149
2150 if (con->fwnode == link->consumer)
2151 flags = fw_devlink_get_flags(link->flags);
2152 else
2153 flags = FW_DEVLINK_FLAGS_PERMISSIVE;
2154
2155 if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE)
2156 sup_dev = fwnode_get_next_parent_dev(sup_handle);
2157 else
2158 sup_dev = get_dev_from_fwnode(sup_handle);
2159
2160 if (sup_dev) {
2161 /*
2162 * If it's one of those drivers that don't actually bind to
2163 * their device using driver core, then don't wait on this
2164 * supplier device indefinitely.
2165 */
2166 if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
2167 sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
2168 dev_dbg(con,
2169 "Not linking %pfwf - dev might never probe\n",
2170 sup_handle);
2171 ret = -EINVAL;
2172 goto out;
2173 }
2174
2175 if (con != sup_dev && !device_link_add(con, sup_dev, flags)) {
2176 dev_err(con, "Failed to create device link (0x%x) with supplier %s for %pfwf\n",
2177 flags, dev_name(sup_dev), link->consumer);
2178 ret = -EINVAL;
2179 }
2180
2181 goto out;
2182 }
2183
2184 /*
2185 * Supplier or supplier's ancestor already initialized without a struct
2186 * device or being probed by a driver.
2187 */
2188 if (fwnode_init_without_drv(sup_handle) ||
2189 fwnode_ancestor_init_without_drv(sup_handle)) {
2190 dev_dbg(con, "Not linking %pfwf - might never become dev\n",
2191 sup_handle);
2192 return -EINVAL;
2193 }
2194
2195 ret = -EAGAIN;
2196out:
2197 put_device(sup_dev);
2198 return ret;
2199}
2200
2201/**
2202 * __fw_devlink_link_to_consumers - Create device links to consumers of a device
2203 * @dev: Device that needs to be linked to its consumers
2204 *
2205 * This function looks at all the consumer fwnodes of @dev and creates device
2206 * links between the consumer device and @dev (supplier).
2207 *
2208 * If the consumer device has not been added yet, then this function creates a
2209 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
2210 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
2211 * sync_state() callback before the real consumer device gets to be added and
2212 * then probed.
2213 *
2214 * Once device links are created from the real consumer to @dev (supplier), the
2215 * fwnode links are deleted.
2216 */
2217static void __fw_devlink_link_to_consumers(struct device *dev)
2218{
2219 struct fwnode_handle *fwnode = dev->fwnode;
2220 struct fwnode_link *link, *tmp;
2221
2222 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
2223 struct device *con_dev;
2224 bool own_link = true;
2225 int ret;
2226
2227 con_dev = get_dev_from_fwnode(link->consumer);
2228 /*
2229 * If consumer device is not available yet, make a "proxy"
2230 * SYNC_STATE_ONLY link from the consumer's parent device to
2231 * the supplier device. This is necessary to make sure the
2232 * supplier doesn't get a sync_state() callback before the real
2233 * consumer can create a device link to the supplier.
2234 *
2235 * This proxy link step is needed to handle the case where the
2236 * consumer's parent device is added before the supplier.
2237 */
2238 if (!con_dev) {
2239 con_dev = fwnode_get_next_parent_dev(link->consumer);
2240 /*
2241 * However, if the consumer's parent device is also the
2242 * parent of the supplier, don't create a
2243 * consumer-supplier link from the parent to its child
2244 * device. Such a dependency is impossible.
2245 */
2246 if (con_dev &&
2247 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
2248 put_device(con_dev);
2249 con_dev = NULL;
2250 } else {
2251 own_link = false;
2252 }
2253 }
2254
2255 if (!con_dev)
2256 continue;
2257
2258 ret = fw_devlink_create_devlink(con_dev, fwnode, link);
2259 put_device(con_dev);
2260 if (!own_link || ret == -EAGAIN)
2261 continue;
2262
2263 __fwnode_link_del(link);
2264 }
2265}
2266
2267/**
2268 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
2269 * @dev: The consumer device that needs to be linked to its suppliers
2270 * @fwnode: Root of the fwnode tree that is used to create device links
2271 *
2272 * This function looks at all the supplier fwnodes of fwnode tree rooted at
2273 * @fwnode and creates device links between @dev (consumer) and all the
2274 * supplier devices of the entire fwnode tree at @fwnode.
2275 *
2276 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
2277 * and the real suppliers of @dev. Once these device links are created, the
2278 * fwnode links are deleted.
2279 *
2280 * In addition, it also looks at all the suppliers of the entire fwnode tree
2281 * because some of the child devices of @dev that have not been added yet
2282 * (because @dev hasn't probed) might already have their suppliers added to
2283 * driver core. So, this function creates SYNC_STATE_ONLY device links between
2284 * @dev (consumer) and these suppliers to make sure they don't execute their
2285 * sync_state() callbacks before these child devices have a chance to create
2286 * their device links. The fwnode links that correspond to the child devices
2287 * aren't delete because they are needed later to create the device links
2288 * between the real consumer and supplier devices.
2289 */
2290static void __fw_devlink_link_to_suppliers(struct device *dev,
2291 struct fwnode_handle *fwnode)
2292{
2293 bool own_link = (dev->fwnode == fwnode);
2294 struct fwnode_link *link, *tmp;
2295 struct fwnode_handle *child = NULL;
2296
2297 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
2298 int ret;
2299 struct fwnode_handle *sup = link->supplier;
2300
2301 ret = fw_devlink_create_devlink(dev, sup, link);
2302 if (!own_link || ret == -EAGAIN)
2303 continue;
2304
2305 __fwnode_link_del(link);
2306 }
2307
2308 /*
2309 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
2310 * all the descendants. This proxy link step is needed to handle the
2311 * case where the supplier is added before the consumer's parent device
2312 * (@dev).
2313 */
2314 while ((child = fwnode_get_next_available_child_node(fwnode, child)))
2315 __fw_devlink_link_to_suppliers(dev, child);
2316}
2317
2318static void fw_devlink_link_device(struct device *dev)
2319{
2320 struct fwnode_handle *fwnode = dev->fwnode;
2321
2322 if (!fw_devlink_flags)
2323 return;
2324
2325 fw_devlink_parse_fwtree(fwnode);
2326
2327 guard(mutex)(&fwnode_link_lock);
2328
2329 __fw_devlink_link_to_consumers(dev);
2330 __fw_devlink_link_to_suppliers(dev, fwnode);
2331}
2332
2333/* Device links support end. */
2334
2335static struct kobject *dev_kobj;
2336
2337/* /sys/dev/char */
2338static struct kobject *sysfs_dev_char_kobj;
2339
2340/* /sys/dev/block */
2341static struct kobject *sysfs_dev_block_kobj;
2342
2343static DEFINE_MUTEX(device_hotplug_lock);
2344
2345void lock_device_hotplug(void)
2346{
2347 mutex_lock(&device_hotplug_lock);
2348}
2349
2350void unlock_device_hotplug(void)
2351{
2352 mutex_unlock(&device_hotplug_lock);
2353}
2354
2355int lock_device_hotplug_sysfs(void)
2356{
2357 if (mutex_trylock(&device_hotplug_lock))
2358 return 0;
2359
2360 /* Avoid busy looping (5 ms of sleep should do). */
2361 msleep(5);
2362 return restart_syscall();
2363}
2364
2365#ifdef CONFIG_BLOCK
2366static inline int device_is_not_partition(struct device *dev)
2367{
2368 return !(dev->type == &part_type);
2369}
2370#else
2371static inline int device_is_not_partition(struct device *dev)
2372{
2373 return 1;
2374}
2375#endif
2376
2377static void device_platform_notify(struct device *dev)
2378{
2379 acpi_device_notify(dev);
2380
2381 software_node_notify(dev);
2382}
2383
2384static void device_platform_notify_remove(struct device *dev)
2385{
2386 software_node_notify_remove(dev);
2387
2388 acpi_device_notify_remove(dev);
2389}
2390
2391/**
2392 * dev_driver_string - Return a device's driver name, if at all possible
2393 * @dev: struct device to get the name of
2394 *
2395 * Will return the device's driver's name if it is bound to a device. If
2396 * the device is not bound to a driver, it will return the name of the bus
2397 * it is attached to. If it is not attached to a bus either, an empty
2398 * string will be returned.
2399 */
2400const char *dev_driver_string(const struct device *dev)
2401{
2402 struct device_driver *drv;
2403
2404 /* dev->driver can change to NULL underneath us because of unbinding,
2405 * so be careful about accessing it. dev->bus and dev->class should
2406 * never change once they are set, so they don't need special care.
2407 */
2408 drv = READ_ONCE(dev->driver);
2409 return drv ? drv->name : dev_bus_name(dev);
2410}
2411EXPORT_SYMBOL(dev_driver_string);
2412
2413#define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2414
2415static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2416 char *buf)
2417{
2418 struct device_attribute *dev_attr = to_dev_attr(attr);
2419 struct device *dev = kobj_to_dev(kobj);
2420 ssize_t ret = -EIO;
2421
2422 if (dev_attr->show)
2423 ret = dev_attr->show(dev, dev_attr, buf);
2424 if (ret >= (ssize_t)PAGE_SIZE) {
2425 printk("dev_attr_show: %pS returned bad count\n",
2426 dev_attr->show);
2427 }
2428 return ret;
2429}
2430
2431static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2432 const char *buf, size_t count)
2433{
2434 struct device_attribute *dev_attr = to_dev_attr(attr);
2435 struct device *dev = kobj_to_dev(kobj);
2436 ssize_t ret = -EIO;
2437
2438 if (dev_attr->store)
2439 ret = dev_attr->store(dev, dev_attr, buf, count);
2440 return ret;
2441}
2442
2443static const struct sysfs_ops dev_sysfs_ops = {
2444 .show = dev_attr_show,
2445 .store = dev_attr_store,
2446};
2447
2448#define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2449
2450ssize_t device_store_ulong(struct device *dev,
2451 struct device_attribute *attr,
2452 const char *buf, size_t size)
2453{
2454 struct dev_ext_attribute *ea = to_ext_attr(attr);
2455 int ret;
2456 unsigned long new;
2457
2458 ret = kstrtoul(buf, 0, &new);
2459 if (ret)
2460 return ret;
2461 *(unsigned long *)(ea->var) = new;
2462 /* Always return full write size even if we didn't consume all */
2463 return size;
2464}
2465EXPORT_SYMBOL_GPL(device_store_ulong);
2466
2467ssize_t device_show_ulong(struct device *dev,
2468 struct device_attribute *attr,
2469 char *buf)
2470{
2471 struct dev_ext_attribute *ea = to_ext_attr(attr);
2472 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2473}
2474EXPORT_SYMBOL_GPL(device_show_ulong);
2475
2476ssize_t device_store_int(struct device *dev,
2477 struct device_attribute *attr,
2478 const char *buf, size_t size)
2479{
2480 struct dev_ext_attribute *ea = to_ext_attr(attr);
2481 int ret;
2482 long new;
2483
2484 ret = kstrtol(buf, 0, &new);
2485 if (ret)
2486 return ret;
2487
2488 if (new > INT_MAX || new < INT_MIN)
2489 return -EINVAL;
2490 *(int *)(ea->var) = new;
2491 /* Always return full write size even if we didn't consume all */
2492 return size;
2493}
2494EXPORT_SYMBOL_GPL(device_store_int);
2495
2496ssize_t device_show_int(struct device *dev,
2497 struct device_attribute *attr,
2498 char *buf)
2499{
2500 struct dev_ext_attribute *ea = to_ext_attr(attr);
2501
2502 return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2503}
2504EXPORT_SYMBOL_GPL(device_show_int);
2505
2506ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2507 const char *buf, size_t size)
2508{
2509 struct dev_ext_attribute *ea = to_ext_attr(attr);
2510
2511 if (kstrtobool(buf, ea->var) < 0)
2512 return -EINVAL;
2513
2514 return size;
2515}
2516EXPORT_SYMBOL_GPL(device_store_bool);
2517
2518ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2519 char *buf)
2520{
2521 struct dev_ext_attribute *ea = to_ext_attr(attr);
2522
2523 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2524}
2525EXPORT_SYMBOL_GPL(device_show_bool);
2526
2527ssize_t device_show_string(struct device *dev,
2528 struct device_attribute *attr, char *buf)
2529{
2530 struct dev_ext_attribute *ea = to_ext_attr(attr);
2531
2532 return sysfs_emit(buf, "%s\n", (char *)ea->var);
2533}
2534EXPORT_SYMBOL_GPL(device_show_string);
2535
2536/**
2537 * device_release - free device structure.
2538 * @kobj: device's kobject.
2539 *
2540 * This is called once the reference count for the object
2541 * reaches 0. We forward the call to the device's release
2542 * method, which should handle actually freeing the structure.
2543 */
2544static void device_release(struct kobject *kobj)
2545{
2546 struct device *dev = kobj_to_dev(kobj);
2547 struct device_private *p = dev->p;
2548
2549 /*
2550 * Some platform devices are driven without driver attached
2551 * and managed resources may have been acquired. Make sure
2552 * all resources are released.
2553 *
2554 * Drivers still can add resources into device after device
2555 * is deleted but alive, so release devres here to avoid
2556 * possible memory leak.
2557 */
2558 devres_release_all(dev);
2559
2560 kfree(dev->dma_range_map);
2561
2562 if (dev->release)
2563 dev->release(dev);
2564 else if (dev->type && dev->type->release)
2565 dev->type->release(dev);
2566 else if (dev->class && dev->class->dev_release)
2567 dev->class->dev_release(dev);
2568 else
2569 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2570 dev_name(dev));
2571 kfree(p);
2572}
2573
2574static const void *device_namespace(const struct kobject *kobj)
2575{
2576 const struct device *dev = kobj_to_dev(kobj);
2577 const void *ns = NULL;
2578
2579 if (dev->class && dev->class->namespace)
2580 ns = dev->class->namespace(dev);
2581
2582 return ns;
2583}
2584
2585static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2586{
2587 const struct device *dev = kobj_to_dev(kobj);
2588
2589 if (dev->class && dev->class->get_ownership)
2590 dev->class->get_ownership(dev, uid, gid);
2591}
2592
2593static const struct kobj_type device_ktype = {
2594 .release = device_release,
2595 .sysfs_ops = &dev_sysfs_ops,
2596 .namespace = device_namespace,
2597 .get_ownership = device_get_ownership,
2598};
2599
2600
2601static int dev_uevent_filter(const struct kobject *kobj)
2602{
2603 const struct kobj_type *ktype = get_ktype(kobj);
2604
2605 if (ktype == &device_ktype) {
2606 const struct device *dev = kobj_to_dev(kobj);
2607 if (dev->bus)
2608 return 1;
2609 if (dev->class)
2610 return 1;
2611 }
2612 return 0;
2613}
2614
2615static const char *dev_uevent_name(const struct kobject *kobj)
2616{
2617 const struct device *dev = kobj_to_dev(kobj);
2618
2619 if (dev->bus)
2620 return dev->bus->name;
2621 if (dev->class)
2622 return dev->class->name;
2623 return NULL;
2624}
2625
2626static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
2627{
2628 const struct device *dev = kobj_to_dev(kobj);
2629 int retval = 0;
2630
2631 /* add device node properties if present */
2632 if (MAJOR(dev->devt)) {
2633 const char *tmp;
2634 const char *name;
2635 umode_t mode = 0;
2636 kuid_t uid = GLOBAL_ROOT_UID;
2637 kgid_t gid = GLOBAL_ROOT_GID;
2638
2639 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2640 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2641 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2642 if (name) {
2643 add_uevent_var(env, "DEVNAME=%s", name);
2644 if (mode)
2645 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2646 if (!uid_eq(uid, GLOBAL_ROOT_UID))
2647 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2648 if (!gid_eq(gid, GLOBAL_ROOT_GID))
2649 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2650 kfree(tmp);
2651 }
2652 }
2653
2654 if (dev->type && dev->type->name)
2655 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2656
2657 if (dev->driver)
2658 add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2659
2660 /* Add common DT information about the device */
2661 of_device_uevent(dev, env);
2662
2663 /* have the bus specific function add its stuff */
2664 if (dev->bus && dev->bus->uevent) {
2665 retval = dev->bus->uevent(dev, env);
2666 if (retval)
2667 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2668 dev_name(dev), __func__, retval);
2669 }
2670
2671 /* have the class specific function add its stuff */
2672 if (dev->class && dev->class->dev_uevent) {
2673 retval = dev->class->dev_uevent(dev, env);
2674 if (retval)
2675 pr_debug("device: '%s': %s: class uevent() "
2676 "returned %d\n", dev_name(dev),
2677 __func__, retval);
2678 }
2679
2680 /* have the device type specific function add its stuff */
2681 if (dev->type && dev->type->uevent) {
2682 retval = dev->type->uevent(dev, env);
2683 if (retval)
2684 pr_debug("device: '%s': %s: dev_type uevent() "
2685 "returned %d\n", dev_name(dev),
2686 __func__, retval);
2687 }
2688
2689 return retval;
2690}
2691
2692static const struct kset_uevent_ops device_uevent_ops = {
2693 .filter = dev_uevent_filter,
2694 .name = dev_uevent_name,
2695 .uevent = dev_uevent,
2696};
2697
2698static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2699 char *buf)
2700{
2701 struct kobject *top_kobj;
2702 struct kset *kset;
2703 struct kobj_uevent_env *env = NULL;
2704 int i;
2705 int len = 0;
2706 int retval;
2707
2708 /* search the kset, the device belongs to */
2709 top_kobj = &dev->kobj;
2710 while (!top_kobj->kset && top_kobj->parent)
2711 top_kobj = top_kobj->parent;
2712 if (!top_kobj->kset)
2713 goto out;
2714
2715 kset = top_kobj->kset;
2716 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2717 goto out;
2718
2719 /* respect filter */
2720 if (kset->uevent_ops && kset->uevent_ops->filter)
2721 if (!kset->uevent_ops->filter(&dev->kobj))
2722 goto out;
2723
2724 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2725 if (!env)
2726 return -ENOMEM;
2727
2728 /* Synchronize with really_probe() */
2729 device_lock(dev);
2730 /* let the kset specific function add its keys */
2731 retval = kset->uevent_ops->uevent(&dev->kobj, env);
2732 device_unlock(dev);
2733 if (retval)
2734 goto out;
2735
2736 /* copy keys to file */
2737 for (i = 0; i < env->envp_idx; i++)
2738 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2739out:
2740 kfree(env);
2741 return len;
2742}
2743
2744static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2745 const char *buf, size_t count)
2746{
2747 int rc;
2748
2749 rc = kobject_synth_uevent(&dev->kobj, buf, count);
2750
2751 if (rc) {
2752 dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc);
2753 return rc;
2754 }
2755
2756 return count;
2757}
2758static DEVICE_ATTR_RW(uevent);
2759
2760static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2761 char *buf)
2762{
2763 bool val;
2764
2765 device_lock(dev);
2766 val = !dev->offline;
2767 device_unlock(dev);
2768 return sysfs_emit(buf, "%u\n", val);
2769}
2770
2771static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2772 const char *buf, size_t count)
2773{
2774 bool val;
2775 int ret;
2776
2777 ret = kstrtobool(buf, &val);
2778 if (ret < 0)
2779 return ret;
2780
2781 ret = lock_device_hotplug_sysfs();
2782 if (ret)
2783 return ret;
2784
2785 ret = val ? device_online(dev) : device_offline(dev);
2786 unlock_device_hotplug();
2787 return ret < 0 ? ret : count;
2788}
2789static DEVICE_ATTR_RW(online);
2790
2791static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2792 char *buf)
2793{
2794 const char *loc;
2795
2796 switch (dev->removable) {
2797 case DEVICE_REMOVABLE:
2798 loc = "removable";
2799 break;
2800 case DEVICE_FIXED:
2801 loc = "fixed";
2802 break;
2803 default:
2804 loc = "unknown";
2805 }
2806 return sysfs_emit(buf, "%s\n", loc);
2807}
2808static DEVICE_ATTR_RO(removable);
2809
2810int device_add_groups(struct device *dev, const struct attribute_group **groups)
2811{
2812 return sysfs_create_groups(&dev->kobj, groups);
2813}
2814EXPORT_SYMBOL_GPL(device_add_groups);
2815
2816void device_remove_groups(struct device *dev,
2817 const struct attribute_group **groups)
2818{
2819 sysfs_remove_groups(&dev->kobj, groups);
2820}
2821EXPORT_SYMBOL_GPL(device_remove_groups);
2822
2823union device_attr_group_devres {
2824 const struct attribute_group *group;
2825 const struct attribute_group **groups;
2826};
2827
2828static void devm_attr_group_remove(struct device *dev, void *res)
2829{
2830 union device_attr_group_devres *devres = res;
2831 const struct attribute_group *group = devres->group;
2832
2833 dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2834 sysfs_remove_group(&dev->kobj, group);
2835}
2836
2837/**
2838 * devm_device_add_group - given a device, create a managed attribute group
2839 * @dev: The device to create the group for
2840 * @grp: The attribute group to create
2841 *
2842 * This function creates a group for the first time. It will explicitly
2843 * warn and error if any of the attribute files being created already exist.
2844 *
2845 * Returns 0 on success or error code on failure.
2846 */
2847int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2848{
2849 union device_attr_group_devres *devres;
2850 int error;
2851
2852 devres = devres_alloc(devm_attr_group_remove,
2853 sizeof(*devres), GFP_KERNEL);
2854 if (!devres)
2855 return -ENOMEM;
2856
2857 error = sysfs_create_group(&dev->kobj, grp);
2858 if (error) {
2859 devres_free(devres);
2860 return error;
2861 }
2862
2863 devres->group = grp;
2864 devres_add(dev, devres);
2865 return 0;
2866}
2867EXPORT_SYMBOL_GPL(devm_device_add_group);
2868
2869static int device_add_attrs(struct device *dev)
2870{
2871 const struct class *class = dev->class;
2872 const struct device_type *type = dev->type;
2873 int error;
2874
2875 if (class) {
2876 error = device_add_groups(dev, class->dev_groups);
2877 if (error)
2878 return error;
2879 }
2880
2881 if (type) {
2882 error = device_add_groups(dev, type->groups);
2883 if (error)
2884 goto err_remove_class_groups;
2885 }
2886
2887 error = device_add_groups(dev, dev->groups);
2888 if (error)
2889 goto err_remove_type_groups;
2890
2891 if (device_supports_offline(dev) && !dev->offline_disabled) {
2892 error = device_create_file(dev, &dev_attr_online);
2893 if (error)
2894 goto err_remove_dev_groups;
2895 }
2896
2897 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2898 error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2899 if (error)
2900 goto err_remove_dev_online;
2901 }
2902
2903 if (dev_removable_is_valid(dev)) {
2904 error = device_create_file(dev, &dev_attr_removable);
2905 if (error)
2906 goto err_remove_dev_waiting_for_supplier;
2907 }
2908
2909 if (dev_add_physical_location(dev)) {
2910 error = device_add_group(dev,
2911 &dev_attr_physical_location_group);
2912 if (error)
2913 goto err_remove_dev_removable;
2914 }
2915
2916 return 0;
2917
2918 err_remove_dev_removable:
2919 device_remove_file(dev, &dev_attr_removable);
2920 err_remove_dev_waiting_for_supplier:
2921 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2922 err_remove_dev_online:
2923 device_remove_file(dev, &dev_attr_online);
2924 err_remove_dev_groups:
2925 device_remove_groups(dev, dev->groups);
2926 err_remove_type_groups:
2927 if (type)
2928 device_remove_groups(dev, type->groups);
2929 err_remove_class_groups:
2930 if (class)
2931 device_remove_groups(dev, class->dev_groups);
2932
2933 return error;
2934}
2935
2936static void device_remove_attrs(struct device *dev)
2937{
2938 const struct class *class = dev->class;
2939 const struct device_type *type = dev->type;
2940
2941 if (dev->physical_location) {
2942 device_remove_group(dev, &dev_attr_physical_location_group);
2943 kfree(dev->physical_location);
2944 }
2945
2946 device_remove_file(dev, &dev_attr_removable);
2947 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2948 device_remove_file(dev, &dev_attr_online);
2949 device_remove_groups(dev, dev->groups);
2950
2951 if (type)
2952 device_remove_groups(dev, type->groups);
2953
2954 if (class)
2955 device_remove_groups(dev, class->dev_groups);
2956}
2957
2958static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2959 char *buf)
2960{
2961 return print_dev_t(buf, dev->devt);
2962}
2963static DEVICE_ATTR_RO(dev);
2964
2965/* /sys/devices/ */
2966struct kset *devices_kset;
2967
2968/**
2969 * devices_kset_move_before - Move device in the devices_kset's list.
2970 * @deva: Device to move.
2971 * @devb: Device @deva should come before.
2972 */
2973static void devices_kset_move_before(struct device *deva, struct device *devb)
2974{
2975 if (!devices_kset)
2976 return;
2977 pr_debug("devices_kset: Moving %s before %s\n",
2978 dev_name(deva), dev_name(devb));
2979 spin_lock(&devices_kset->list_lock);
2980 list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2981 spin_unlock(&devices_kset->list_lock);
2982}
2983
2984/**
2985 * devices_kset_move_after - Move device in the devices_kset's list.
2986 * @deva: Device to move
2987 * @devb: Device @deva should come after.
2988 */
2989static void devices_kset_move_after(struct device *deva, struct device *devb)
2990{
2991 if (!devices_kset)
2992 return;
2993 pr_debug("devices_kset: Moving %s after %s\n",
2994 dev_name(deva), dev_name(devb));
2995 spin_lock(&devices_kset->list_lock);
2996 list_move(&deva->kobj.entry, &devb->kobj.entry);
2997 spin_unlock(&devices_kset->list_lock);
2998}
2999
3000/**
3001 * devices_kset_move_last - move the device to the end of devices_kset's list.
3002 * @dev: device to move
3003 */
3004void devices_kset_move_last(struct device *dev)
3005{
3006 if (!devices_kset)
3007 return;
3008 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
3009 spin_lock(&devices_kset->list_lock);
3010 list_move_tail(&dev->kobj.entry, &devices_kset->list);
3011 spin_unlock(&devices_kset->list_lock);
3012}
3013
3014/**
3015 * device_create_file - create sysfs attribute file for device.
3016 * @dev: device.
3017 * @attr: device attribute descriptor.
3018 */
3019int device_create_file(struct device *dev,
3020 const struct device_attribute *attr)
3021{
3022 int error = 0;
3023
3024 if (dev) {
3025 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
3026 "Attribute %s: write permission without 'store'\n",
3027 attr->attr.name);
3028 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
3029 "Attribute %s: read permission without 'show'\n",
3030 attr->attr.name);
3031 error = sysfs_create_file(&dev->kobj, &attr->attr);
3032 }
3033
3034 return error;
3035}
3036EXPORT_SYMBOL_GPL(device_create_file);
3037
3038/**
3039 * device_remove_file - remove sysfs attribute file.
3040 * @dev: device.
3041 * @attr: device attribute descriptor.
3042 */
3043void device_remove_file(struct device *dev,
3044 const struct device_attribute *attr)
3045{
3046 if (dev)
3047 sysfs_remove_file(&dev->kobj, &attr->attr);
3048}
3049EXPORT_SYMBOL_GPL(device_remove_file);
3050
3051/**
3052 * device_remove_file_self - remove sysfs attribute file from its own method.
3053 * @dev: device.
3054 * @attr: device attribute descriptor.
3055 *
3056 * See kernfs_remove_self() for details.
3057 */
3058bool device_remove_file_self(struct device *dev,
3059 const struct device_attribute *attr)
3060{
3061 if (dev)
3062 return sysfs_remove_file_self(&dev->kobj, &attr->attr);
3063 else
3064 return false;
3065}
3066EXPORT_SYMBOL_GPL(device_remove_file_self);
3067
3068/**
3069 * device_create_bin_file - create sysfs binary attribute file for device.
3070 * @dev: device.
3071 * @attr: device binary attribute descriptor.
3072 */
3073int device_create_bin_file(struct device *dev,
3074 const struct bin_attribute *attr)
3075{
3076 int error = -EINVAL;
3077 if (dev)
3078 error = sysfs_create_bin_file(&dev->kobj, attr);
3079 return error;
3080}
3081EXPORT_SYMBOL_GPL(device_create_bin_file);
3082
3083/**
3084 * device_remove_bin_file - remove sysfs binary attribute file
3085 * @dev: device.
3086 * @attr: device binary attribute descriptor.
3087 */
3088void device_remove_bin_file(struct device *dev,
3089 const struct bin_attribute *attr)
3090{
3091 if (dev)
3092 sysfs_remove_bin_file(&dev->kobj, attr);
3093}
3094EXPORT_SYMBOL_GPL(device_remove_bin_file);
3095
3096static void klist_children_get(struct klist_node *n)
3097{
3098 struct device_private *p = to_device_private_parent(n);
3099 struct device *dev = p->device;
3100
3101 get_device(dev);
3102}
3103
3104static void klist_children_put(struct klist_node *n)
3105{
3106 struct device_private *p = to_device_private_parent(n);
3107 struct device *dev = p->device;
3108
3109 put_device(dev);
3110}
3111
3112/**
3113 * device_initialize - init device structure.
3114 * @dev: device.
3115 *
3116 * This prepares the device for use by other layers by initializing
3117 * its fields.
3118 * It is the first half of device_register(), if called by
3119 * that function, though it can also be called separately, so one
3120 * may use @dev's fields. In particular, get_device()/put_device()
3121 * may be used for reference counting of @dev after calling this
3122 * function.
3123 *
3124 * All fields in @dev must be initialized by the caller to 0, except
3125 * for those explicitly set to some other value. The simplest
3126 * approach is to use kzalloc() to allocate the structure containing
3127 * @dev.
3128 *
3129 * NOTE: Use put_device() to give up your reference instead of freeing
3130 * @dev directly once you have called this function.
3131 */
3132void device_initialize(struct device *dev)
3133{
3134 dev->kobj.kset = devices_kset;
3135 kobject_init(&dev->kobj, &device_ktype);
3136 INIT_LIST_HEAD(&dev->dma_pools);
3137 mutex_init(&dev->mutex);
3138 lockdep_set_novalidate_class(&dev->mutex);
3139 spin_lock_init(&dev->devres_lock);
3140 INIT_LIST_HEAD(&dev->devres_head);
3141 device_pm_init(dev);
3142 set_dev_node(dev, NUMA_NO_NODE);
3143 INIT_LIST_HEAD(&dev->links.consumers);
3144 INIT_LIST_HEAD(&dev->links.suppliers);
3145 INIT_LIST_HEAD(&dev->links.defer_sync);
3146 dev->links.status = DL_DEV_NO_DRIVER;
3147#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
3148 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
3149 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
3150 dev->dma_coherent = dma_default_coherent;
3151#endif
3152 swiotlb_dev_init(dev);
3153}
3154EXPORT_SYMBOL_GPL(device_initialize);
3155
3156struct kobject *virtual_device_parent(void)
3157{
3158 static struct kobject *virtual_dir = NULL;
3159
3160 if (!virtual_dir)
3161 virtual_dir = kobject_create_and_add("virtual",
3162 &devices_kset->kobj);
3163
3164 return virtual_dir;
3165}
3166
3167struct class_dir {
3168 struct kobject kobj;
3169 const struct class *class;
3170};
3171
3172#define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
3173
3174static void class_dir_release(struct kobject *kobj)
3175{
3176 struct class_dir *dir = to_class_dir(kobj);
3177 kfree(dir);
3178}
3179
3180static const
3181struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj)
3182{
3183 const struct class_dir *dir = to_class_dir(kobj);
3184 return dir->class->ns_type;
3185}
3186
3187static const struct kobj_type class_dir_ktype = {
3188 .release = class_dir_release,
3189 .sysfs_ops = &kobj_sysfs_ops,
3190 .child_ns_type = class_dir_child_ns_type
3191};
3192
3193static struct kobject *class_dir_create_and_add(struct subsys_private *sp,
3194 struct kobject *parent_kobj)
3195{
3196 struct class_dir *dir;
3197 int retval;
3198
3199 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
3200 if (!dir)
3201 return ERR_PTR(-ENOMEM);
3202
3203 dir->class = sp->class;
3204 kobject_init(&dir->kobj, &class_dir_ktype);
3205
3206 dir->kobj.kset = &sp->glue_dirs;
3207
3208 retval = kobject_add(&dir->kobj, parent_kobj, "%s", sp->class->name);
3209 if (retval < 0) {
3210 kobject_put(&dir->kobj);
3211 return ERR_PTR(retval);
3212 }
3213 return &dir->kobj;
3214}
3215
3216static DEFINE_MUTEX(gdp_mutex);
3217
3218static struct kobject *get_device_parent(struct device *dev,
3219 struct device *parent)
3220{
3221 struct subsys_private *sp = class_to_subsys(dev->class);
3222 struct kobject *kobj = NULL;
3223
3224 if (sp) {
3225 struct kobject *parent_kobj;
3226 struct kobject *k;
3227
3228 /*
3229 * If we have no parent, we live in "virtual".
3230 * Class-devices with a non class-device as parent, live
3231 * in a "glue" directory to prevent namespace collisions.
3232 */
3233 if (parent == NULL)
3234 parent_kobj = virtual_device_parent();
3235 else if (parent->class && !dev->class->ns_type) {
3236 subsys_put(sp);
3237 return &parent->kobj;
3238 } else {
3239 parent_kobj = &parent->kobj;
3240 }
3241
3242 mutex_lock(&gdp_mutex);
3243
3244 /* find our class-directory at the parent and reference it */
3245 spin_lock(&sp->glue_dirs.list_lock);
3246 list_for_each_entry(k, &sp->glue_dirs.list, entry)
3247 if (k->parent == parent_kobj) {
3248 kobj = kobject_get(k);
3249 break;
3250 }
3251 spin_unlock(&sp->glue_dirs.list_lock);
3252 if (kobj) {
3253 mutex_unlock(&gdp_mutex);
3254 subsys_put(sp);
3255 return kobj;
3256 }
3257
3258 /* or create a new class-directory at the parent device */
3259 k = class_dir_create_and_add(sp, parent_kobj);
3260 /* do not emit an uevent for this simple "glue" directory */
3261 mutex_unlock(&gdp_mutex);
3262 subsys_put(sp);
3263 return k;
3264 }
3265
3266 /* subsystems can specify a default root directory for their devices */
3267 if (!parent && dev->bus) {
3268 struct device *dev_root = bus_get_dev_root(dev->bus);
3269
3270 if (dev_root) {
3271 kobj = &dev_root->kobj;
3272 put_device(dev_root);
3273 return kobj;
3274 }
3275 }
3276
3277 if (parent)
3278 return &parent->kobj;
3279 return NULL;
3280}
3281
3282static inline bool live_in_glue_dir(struct kobject *kobj,
3283 struct device *dev)
3284{
3285 struct subsys_private *sp;
3286 bool retval;
3287
3288 if (!kobj || !dev->class)
3289 return false;
3290
3291 sp = class_to_subsys(dev->class);
3292 if (!sp)
3293 return false;
3294
3295 if (kobj->kset == &sp->glue_dirs)
3296 retval = true;
3297 else
3298 retval = false;
3299
3300 subsys_put(sp);
3301 return retval;
3302}
3303
3304static inline struct kobject *get_glue_dir(struct device *dev)
3305{
3306 return dev->kobj.parent;
3307}
3308
3309/**
3310 * kobject_has_children - Returns whether a kobject has children.
3311 * @kobj: the object to test
3312 *
3313 * This will return whether a kobject has other kobjects as children.
3314 *
3315 * It does NOT account for the presence of attribute files, only sub
3316 * directories. It also assumes there is no concurrent addition or
3317 * removal of such children, and thus relies on external locking.
3318 */
3319static inline bool kobject_has_children(struct kobject *kobj)
3320{
3321 WARN_ON_ONCE(kref_read(&kobj->kref) == 0);
3322
3323 return kobj->sd && kobj->sd->dir.subdirs;
3324}
3325
3326/*
3327 * make sure cleaning up dir as the last step, we need to make
3328 * sure .release handler of kobject is run with holding the
3329 * global lock
3330 */
3331static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3332{
3333 unsigned int ref;
3334
3335 /* see if we live in a "glue" directory */
3336 if (!live_in_glue_dir(glue_dir, dev))
3337 return;
3338
3339 mutex_lock(&gdp_mutex);
3340 /**
3341 * There is a race condition between removing glue directory
3342 * and adding a new device under the glue directory.
3343 *
3344 * CPU1: CPU2:
3345 *
3346 * device_add()
3347 * get_device_parent()
3348 * class_dir_create_and_add()
3349 * kobject_add_internal()
3350 * create_dir() // create glue_dir
3351 *
3352 * device_add()
3353 * get_device_parent()
3354 * kobject_get() // get glue_dir
3355 *
3356 * device_del()
3357 * cleanup_glue_dir()
3358 * kobject_del(glue_dir)
3359 *
3360 * kobject_add()
3361 * kobject_add_internal()
3362 * create_dir() // in glue_dir
3363 * sysfs_create_dir_ns()
3364 * kernfs_create_dir_ns(sd)
3365 *
3366 * sysfs_remove_dir() // glue_dir->sd=NULL
3367 * sysfs_put() // free glue_dir->sd
3368 *
3369 * // sd is freed
3370 * kernfs_new_node(sd)
3371 * kernfs_get(glue_dir)
3372 * kernfs_add_one()
3373 * kernfs_put()
3374 *
3375 * Before CPU1 remove last child device under glue dir, if CPU2 add
3376 * a new device under glue dir, the glue_dir kobject reference count
3377 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3378 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3379 * and sysfs_put(). This result in glue_dir->sd is freed.
3380 *
3381 * Then the CPU2 will see a stale "empty" but still potentially used
3382 * glue dir around in kernfs_new_node().
3383 *
3384 * In order to avoid this happening, we also should make sure that
3385 * kernfs_node for glue_dir is released in CPU1 only when refcount
3386 * for glue_dir kobj is 1.
3387 */
3388 ref = kref_read(&glue_dir->kref);
3389 if (!kobject_has_children(glue_dir) && !--ref)
3390 kobject_del(glue_dir);
3391 kobject_put(glue_dir);
3392 mutex_unlock(&gdp_mutex);
3393}
3394
3395static int device_add_class_symlinks(struct device *dev)
3396{
3397 struct device_node *of_node = dev_of_node(dev);
3398 struct subsys_private *sp;
3399 int error;
3400
3401 if (of_node) {
3402 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3403 if (error)
3404 dev_warn(dev, "Error %d creating of_node link\n",error);
3405 /* An error here doesn't warrant bringing down the device */
3406 }
3407
3408 sp = class_to_subsys(dev->class);
3409 if (!sp)
3410 return 0;
3411
3412 error = sysfs_create_link(&dev->kobj, &sp->subsys.kobj, "subsystem");
3413 if (error)
3414 goto out_devnode;
3415
3416 if (dev->parent && device_is_not_partition(dev)) {
3417 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3418 "device");
3419 if (error)
3420 goto out_subsys;
3421 }
3422
3423 /* link in the class directory pointing to the device */
3424 error = sysfs_create_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3425 if (error)
3426 goto out_device;
3427 goto exit;
3428
3429out_device:
3430 sysfs_remove_link(&dev->kobj, "device");
3431out_subsys:
3432 sysfs_remove_link(&dev->kobj, "subsystem");
3433out_devnode:
3434 sysfs_remove_link(&dev->kobj, "of_node");
3435exit:
3436 subsys_put(sp);
3437 return error;
3438}
3439
3440static void device_remove_class_symlinks(struct device *dev)
3441{
3442 struct subsys_private *sp = class_to_subsys(dev->class);
3443
3444 if (dev_of_node(dev))
3445 sysfs_remove_link(&dev->kobj, "of_node");
3446
3447 if (!sp)
3448 return;
3449
3450 if (dev->parent && device_is_not_partition(dev))
3451 sysfs_remove_link(&dev->kobj, "device");
3452 sysfs_remove_link(&dev->kobj, "subsystem");
3453 sysfs_delete_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3454 subsys_put(sp);
3455}
3456
3457/**
3458 * dev_set_name - set a device name
3459 * @dev: device
3460 * @fmt: format string for the device's name
3461 */
3462int dev_set_name(struct device *dev, const char *fmt, ...)
3463{
3464 va_list vargs;
3465 int err;
3466
3467 va_start(vargs, fmt);
3468 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3469 va_end(vargs);
3470 return err;
3471}
3472EXPORT_SYMBOL_GPL(dev_set_name);
3473
3474/* select a /sys/dev/ directory for the device */
3475static struct kobject *device_to_dev_kobj(struct device *dev)
3476{
3477 if (is_blockdev(dev))
3478 return sysfs_dev_block_kobj;
3479 else
3480 return sysfs_dev_char_kobj;
3481}
3482
3483static int device_create_sys_dev_entry(struct device *dev)
3484{
3485 struct kobject *kobj = device_to_dev_kobj(dev);
3486 int error = 0;
3487 char devt_str[15];
3488
3489 if (kobj) {
3490 format_dev_t(devt_str, dev->devt);
3491 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3492 }
3493
3494 return error;
3495}
3496
3497static void device_remove_sys_dev_entry(struct device *dev)
3498{
3499 struct kobject *kobj = device_to_dev_kobj(dev);
3500 char devt_str[15];
3501
3502 if (kobj) {
3503 format_dev_t(devt_str, dev->devt);
3504 sysfs_remove_link(kobj, devt_str);
3505 }
3506}
3507
3508static int device_private_init(struct device *dev)
3509{
3510 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3511 if (!dev->p)
3512 return -ENOMEM;
3513 dev->p->device = dev;
3514 klist_init(&dev->p->klist_children, klist_children_get,
3515 klist_children_put);
3516 INIT_LIST_HEAD(&dev->p->deferred_probe);
3517 return 0;
3518}
3519
3520/**
3521 * device_add - add device to device hierarchy.
3522 * @dev: device.
3523 *
3524 * This is part 2 of device_register(), though may be called
3525 * separately _iff_ device_initialize() has been called separately.
3526 *
3527 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3528 * to the global and sibling lists for the device, then
3529 * adds it to the other relevant subsystems of the driver model.
3530 *
3531 * Do not call this routine or device_register() more than once for
3532 * any device structure. The driver model core is not designed to work
3533 * with devices that get unregistered and then spring back to life.
3534 * (Among other things, it's very hard to guarantee that all references
3535 * to the previous incarnation of @dev have been dropped.) Allocate
3536 * and register a fresh new struct device instead.
3537 *
3538 * NOTE: _Never_ directly free @dev after calling this function, even
3539 * if it returned an error! Always use put_device() to give up your
3540 * reference instead.
3541 *
3542 * Rule of thumb is: if device_add() succeeds, you should call
3543 * device_del() when you want to get rid of it. If device_add() has
3544 * *not* succeeded, use *only* put_device() to drop the reference
3545 * count.
3546 */
3547int device_add(struct device *dev)
3548{
3549 struct subsys_private *sp;
3550 struct device *parent;
3551 struct kobject *kobj;
3552 struct class_interface *class_intf;
3553 int error = -EINVAL;
3554 struct kobject *glue_dir = NULL;
3555
3556 dev = get_device(dev);
3557 if (!dev)
3558 goto done;
3559
3560 if (!dev->p) {
3561 error = device_private_init(dev);
3562 if (error)
3563 goto done;
3564 }
3565
3566 /*
3567 * for statically allocated devices, which should all be converted
3568 * some day, we need to initialize the name. We prevent reading back
3569 * the name, and force the use of dev_name()
3570 */
3571 if (dev->init_name) {
3572 error = dev_set_name(dev, "%s", dev->init_name);
3573 dev->init_name = NULL;
3574 }
3575
3576 if (dev_name(dev))
3577 error = 0;
3578 /* subsystems can specify simple device enumeration */
3579 else if (dev->bus && dev->bus->dev_name)
3580 error = dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3581 else
3582 error = -EINVAL;
3583 if (error)
3584 goto name_error;
3585
3586 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3587
3588 parent = get_device(dev->parent);
3589 kobj = get_device_parent(dev, parent);
3590 if (IS_ERR(kobj)) {
3591 error = PTR_ERR(kobj);
3592 goto parent_error;
3593 }
3594 if (kobj)
3595 dev->kobj.parent = kobj;
3596
3597 /* use parent numa_node */
3598 if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3599 set_dev_node(dev, dev_to_node(parent));
3600
3601 /* first, register with generic layer. */
3602 /* we require the name to be set before, and pass NULL */
3603 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3604 if (error) {
3605 glue_dir = kobj;
3606 goto Error;
3607 }
3608
3609 /* notify platform of device entry */
3610 device_platform_notify(dev);
3611
3612 error = device_create_file(dev, &dev_attr_uevent);
3613 if (error)
3614 goto attrError;
3615
3616 error = device_add_class_symlinks(dev);
3617 if (error)
3618 goto SymlinkError;
3619 error = device_add_attrs(dev);
3620 if (error)
3621 goto AttrsError;
3622 error = bus_add_device(dev);
3623 if (error)
3624 goto BusError;
3625 error = dpm_sysfs_add(dev);
3626 if (error)
3627 goto DPMError;
3628 device_pm_add(dev);
3629
3630 if (MAJOR(dev->devt)) {
3631 error = device_create_file(dev, &dev_attr_dev);
3632 if (error)
3633 goto DevAttrError;
3634
3635 error = device_create_sys_dev_entry(dev);
3636 if (error)
3637 goto SysEntryError;
3638
3639 devtmpfs_create_node(dev);
3640 }
3641
3642 /* Notify clients of device addition. This call must come
3643 * after dpm_sysfs_add() and before kobject_uevent().
3644 */
3645 bus_notify(dev, BUS_NOTIFY_ADD_DEVICE);
3646 kobject_uevent(&dev->kobj, KOBJ_ADD);
3647
3648 /*
3649 * Check if any of the other devices (consumers) have been waiting for
3650 * this device (supplier) to be added so that they can create a device
3651 * link to it.
3652 *
3653 * This needs to happen after device_pm_add() because device_link_add()
3654 * requires the supplier be registered before it's called.
3655 *
3656 * But this also needs to happen before bus_probe_device() to make sure
3657 * waiting consumers can link to it before the driver is bound to the
3658 * device and the driver sync_state callback is called for this device.
3659 */
3660 if (dev->fwnode && !dev->fwnode->dev) {
3661 dev->fwnode->dev = dev;
3662 fw_devlink_link_device(dev);
3663 }
3664
3665 bus_probe_device(dev);
3666
3667 /*
3668 * If all driver registration is done and a newly added device doesn't
3669 * match with any driver, don't block its consumers from probing in
3670 * case the consumer device is able to operate without this supplier.
3671 */
3672 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3673 fw_devlink_unblock_consumers(dev);
3674
3675 if (parent)
3676 klist_add_tail(&dev->p->knode_parent,
3677 &parent->p->klist_children);
3678
3679 sp = class_to_subsys(dev->class);
3680 if (sp) {
3681 mutex_lock(&sp->mutex);
3682 /* tie the class to the device */
3683 klist_add_tail(&dev->p->knode_class, &sp->klist_devices);
3684
3685 /* notify any interfaces that the device is here */
3686 list_for_each_entry(class_intf, &sp->interfaces, node)
3687 if (class_intf->add_dev)
3688 class_intf->add_dev(dev);
3689 mutex_unlock(&sp->mutex);
3690 subsys_put(sp);
3691 }
3692done:
3693 put_device(dev);
3694 return error;
3695 SysEntryError:
3696 if (MAJOR(dev->devt))
3697 device_remove_file(dev, &dev_attr_dev);
3698 DevAttrError:
3699 device_pm_remove(dev);
3700 dpm_sysfs_remove(dev);
3701 DPMError:
3702 dev->driver = NULL;
3703 bus_remove_device(dev);
3704 BusError:
3705 device_remove_attrs(dev);
3706 AttrsError:
3707 device_remove_class_symlinks(dev);
3708 SymlinkError:
3709 device_remove_file(dev, &dev_attr_uevent);
3710 attrError:
3711 device_platform_notify_remove(dev);
3712 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3713 glue_dir = get_glue_dir(dev);
3714 kobject_del(&dev->kobj);
3715 Error:
3716 cleanup_glue_dir(dev, glue_dir);
3717parent_error:
3718 put_device(parent);
3719name_error:
3720 kfree(dev->p);
3721 dev->p = NULL;
3722 goto done;
3723}
3724EXPORT_SYMBOL_GPL(device_add);
3725
3726/**
3727 * device_register - register a device with the system.
3728 * @dev: pointer to the device structure
3729 *
3730 * This happens in two clean steps - initialize the device
3731 * and add it to the system. The two steps can be called
3732 * separately, but this is the easiest and most common.
3733 * I.e. you should only call the two helpers separately if
3734 * have a clearly defined need to use and refcount the device
3735 * before it is added to the hierarchy.
3736 *
3737 * For more information, see the kerneldoc for device_initialize()
3738 * and device_add().
3739 *
3740 * NOTE: _Never_ directly free @dev after calling this function, even
3741 * if it returned an error! Always use put_device() to give up the
3742 * reference initialized in this function instead.
3743 */
3744int device_register(struct device *dev)
3745{
3746 device_initialize(dev);
3747 return device_add(dev);
3748}
3749EXPORT_SYMBOL_GPL(device_register);
3750
3751/**
3752 * get_device - increment reference count for device.
3753 * @dev: device.
3754 *
3755 * This simply forwards the call to kobject_get(), though
3756 * we do take care to provide for the case that we get a NULL
3757 * pointer passed in.
3758 */
3759struct device *get_device(struct device *dev)
3760{
3761 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3762}
3763EXPORT_SYMBOL_GPL(get_device);
3764
3765/**
3766 * put_device - decrement reference count.
3767 * @dev: device in question.
3768 */
3769void put_device(struct device *dev)
3770{
3771 /* might_sleep(); */
3772 if (dev)
3773 kobject_put(&dev->kobj);
3774}
3775EXPORT_SYMBOL_GPL(put_device);
3776
3777bool kill_device(struct device *dev)
3778{
3779 /*
3780 * Require the device lock and set the "dead" flag to guarantee that
3781 * the update behavior is consistent with the other bitfields near
3782 * it and that we cannot have an asynchronous probe routine trying
3783 * to run while we are tearing out the bus/class/sysfs from
3784 * underneath the device.
3785 */
3786 device_lock_assert(dev);
3787
3788 if (dev->p->dead)
3789 return false;
3790 dev->p->dead = true;
3791 return true;
3792}
3793EXPORT_SYMBOL_GPL(kill_device);
3794
3795/**
3796 * device_del - delete device from system.
3797 * @dev: device.
3798 *
3799 * This is the first part of the device unregistration
3800 * sequence. This removes the device from the lists we control
3801 * from here, has it removed from the other driver model
3802 * subsystems it was added to in device_add(), and removes it
3803 * from the kobject hierarchy.
3804 *
3805 * NOTE: this should be called manually _iff_ device_add() was
3806 * also called manually.
3807 */
3808void device_del(struct device *dev)
3809{
3810 struct subsys_private *sp;
3811 struct device *parent = dev->parent;
3812 struct kobject *glue_dir = NULL;
3813 struct class_interface *class_intf;
3814 unsigned int noio_flag;
3815
3816 device_lock(dev);
3817 kill_device(dev);
3818 device_unlock(dev);
3819
3820 if (dev->fwnode && dev->fwnode->dev == dev)
3821 dev->fwnode->dev = NULL;
3822
3823 /* Notify clients of device removal. This call must come
3824 * before dpm_sysfs_remove().
3825 */
3826 noio_flag = memalloc_noio_save();
3827 bus_notify(dev, BUS_NOTIFY_DEL_DEVICE);
3828
3829 dpm_sysfs_remove(dev);
3830 if (parent)
3831 klist_del(&dev->p->knode_parent);
3832 if (MAJOR(dev->devt)) {
3833 devtmpfs_delete_node(dev);
3834 device_remove_sys_dev_entry(dev);
3835 device_remove_file(dev, &dev_attr_dev);
3836 }
3837
3838 sp = class_to_subsys(dev->class);
3839 if (sp) {
3840 device_remove_class_symlinks(dev);
3841
3842 mutex_lock(&sp->mutex);
3843 /* notify any interfaces that the device is now gone */
3844 list_for_each_entry(class_intf, &sp->interfaces, node)
3845 if (class_intf->remove_dev)
3846 class_intf->remove_dev(dev);
3847 /* remove the device from the class list */
3848 klist_del(&dev->p->knode_class);
3849 mutex_unlock(&sp->mutex);
3850 subsys_put(sp);
3851 }
3852 device_remove_file(dev, &dev_attr_uevent);
3853 device_remove_attrs(dev);
3854 bus_remove_device(dev);
3855 device_pm_remove(dev);
3856 driver_deferred_probe_del(dev);
3857 device_platform_notify_remove(dev);
3858 device_links_purge(dev);
3859
3860 /*
3861 * If a device does not have a driver attached, we need to clean
3862 * up any managed resources. We do this in device_release(), but
3863 * it's never called (and we leak the device) if a managed
3864 * resource holds a reference to the device. So release all
3865 * managed resources here, like we do in driver_detach(). We
3866 * still need to do so again in device_release() in case someone
3867 * adds a new resource after this point, though.
3868 */
3869 devres_release_all(dev);
3870
3871 bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE);
3872 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3873 glue_dir = get_glue_dir(dev);
3874 kobject_del(&dev->kobj);
3875 cleanup_glue_dir(dev, glue_dir);
3876 memalloc_noio_restore(noio_flag);
3877 put_device(parent);
3878}
3879EXPORT_SYMBOL_GPL(device_del);
3880
3881/**
3882 * device_unregister - unregister device from system.
3883 * @dev: device going away.
3884 *
3885 * We do this in two parts, like we do device_register(). First,
3886 * we remove it from all the subsystems with device_del(), then
3887 * we decrement the reference count via put_device(). If that
3888 * is the final reference count, the device will be cleaned up
3889 * via device_release() above. Otherwise, the structure will
3890 * stick around until the final reference to the device is dropped.
3891 */
3892void device_unregister(struct device *dev)
3893{
3894 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3895 device_del(dev);
3896 put_device(dev);
3897}
3898EXPORT_SYMBOL_GPL(device_unregister);
3899
3900static struct device *prev_device(struct klist_iter *i)
3901{
3902 struct klist_node *n = klist_prev(i);
3903 struct device *dev = NULL;
3904 struct device_private *p;
3905
3906 if (n) {
3907 p = to_device_private_parent(n);
3908 dev = p->device;
3909 }
3910 return dev;
3911}
3912
3913static struct device *next_device(struct klist_iter *i)
3914{
3915 struct klist_node *n = klist_next(i);
3916 struct device *dev = NULL;
3917 struct device_private *p;
3918
3919 if (n) {
3920 p = to_device_private_parent(n);
3921 dev = p->device;
3922 }
3923 return dev;
3924}
3925
3926/**
3927 * device_get_devnode - path of device node file
3928 * @dev: device
3929 * @mode: returned file access mode
3930 * @uid: returned file owner
3931 * @gid: returned file group
3932 * @tmp: possibly allocated string
3933 *
3934 * Return the relative path of a possible device node.
3935 * Non-default names may need to allocate a memory to compose
3936 * a name. This memory is returned in tmp and needs to be
3937 * freed by the caller.
3938 */
3939const char *device_get_devnode(const struct device *dev,
3940 umode_t *mode, kuid_t *uid, kgid_t *gid,
3941 const char **tmp)
3942{
3943 char *s;
3944
3945 *tmp = NULL;
3946
3947 /* the device type may provide a specific name */
3948 if (dev->type && dev->type->devnode)
3949 *tmp = dev->type->devnode(dev, mode, uid, gid);
3950 if (*tmp)
3951 return *tmp;
3952
3953 /* the class may provide a specific name */
3954 if (dev->class && dev->class->devnode)
3955 *tmp = dev->class->devnode(dev, mode);
3956 if (*tmp)
3957 return *tmp;
3958
3959 /* return name without allocation, tmp == NULL */
3960 if (strchr(dev_name(dev), '!') == NULL)
3961 return dev_name(dev);
3962
3963 /* replace '!' in the name with '/' */
3964 s = kstrdup_and_replace(dev_name(dev), '!', '/', GFP_KERNEL);
3965 if (!s)
3966 return NULL;
3967 return *tmp = s;
3968}
3969
3970/**
3971 * device_for_each_child - device child iterator.
3972 * @parent: parent struct device.
3973 * @fn: function to be called for each device.
3974 * @data: data for the callback.
3975 *
3976 * Iterate over @parent's child devices, and call @fn for each,
3977 * passing it @data.
3978 *
3979 * We check the return of @fn each time. If it returns anything
3980 * other than 0, we break out and return that value.
3981 */
3982int device_for_each_child(struct device *parent, void *data,
3983 int (*fn)(struct device *dev, void *data))
3984{
3985 struct klist_iter i;
3986 struct device *child;
3987 int error = 0;
3988
3989 if (!parent || !parent->p)
3990 return 0;
3991
3992 klist_iter_init(&parent->p->klist_children, &i);
3993 while (!error && (child = next_device(&i)))
3994 error = fn(child, data);
3995 klist_iter_exit(&i);
3996 return error;
3997}
3998EXPORT_SYMBOL_GPL(device_for_each_child);
3999
4000/**
4001 * device_for_each_child_reverse - device child iterator in reversed order.
4002 * @parent: parent struct device.
4003 * @fn: function to be called for each device.
4004 * @data: data for the callback.
4005 *
4006 * Iterate over @parent's child devices, and call @fn for each,
4007 * passing it @data.
4008 *
4009 * We check the return of @fn each time. If it returns anything
4010 * other than 0, we break out and return that value.
4011 */
4012int device_for_each_child_reverse(struct device *parent, void *data,
4013 int (*fn)(struct device *dev, void *data))
4014{
4015 struct klist_iter i;
4016 struct device *child;
4017 int error = 0;
4018
4019 if (!parent || !parent->p)
4020 return 0;
4021
4022 klist_iter_init(&parent->p->klist_children, &i);
4023 while ((child = prev_device(&i)) && !error)
4024 error = fn(child, data);
4025 klist_iter_exit(&i);
4026 return error;
4027}
4028EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
4029
4030/**
4031 * device_for_each_child_reverse_from - device child iterator in reversed order.
4032 * @parent: parent struct device.
4033 * @from: optional starting point in child list
4034 * @fn: function to be called for each device.
4035 * @data: data for the callback.
4036 *
4037 * Iterate over @parent's child devices, starting at @from, and call @fn
4038 * for each, passing it @data. This helper is identical to
4039 * device_for_each_child_reverse() when @from is NULL.
4040 *
4041 * @fn is checked each iteration. If it returns anything other than 0,
4042 * iteration stop and that value is returned to the caller of
4043 * device_for_each_child_reverse_from();
4044 */
4045int device_for_each_child_reverse_from(struct device *parent,
4046 struct device *from, const void *data,
4047 int (*fn)(struct device *, const void *))
4048{
4049 struct klist_iter i;
4050 struct device *child;
4051 int error = 0;
4052
4053 if (!parent->p)
4054 return 0;
4055
4056 klist_iter_init_node(&parent->p->klist_children, &i,
4057 (from ? &from->p->knode_parent : NULL));
4058 while ((child = prev_device(&i)) && !error)
4059 error = fn(child, data);
4060 klist_iter_exit(&i);
4061 return error;
4062}
4063EXPORT_SYMBOL_GPL(device_for_each_child_reverse_from);
4064
4065/**
4066 * device_find_child - device iterator for locating a particular device.
4067 * @parent: parent struct device
4068 * @match: Callback function to check device
4069 * @data: Data to pass to match function
4070 *
4071 * This is similar to the device_for_each_child() function above, but it
4072 * returns a reference to a device that is 'found' for later use, as
4073 * determined by the @match callback.
4074 *
4075 * The callback should return 0 if the device doesn't match and non-zero
4076 * if it does. If the callback returns non-zero and a reference to the
4077 * current device can be obtained, this function will return to the caller
4078 * and not iterate over any more devices.
4079 *
4080 * NOTE: you will need to drop the reference with put_device() after use.
4081 */
4082struct device *device_find_child(struct device *parent, void *data,
4083 int (*match)(struct device *dev, void *data))
4084{
4085 struct klist_iter i;
4086 struct device *child;
4087
4088 if (!parent || !parent->p)
4089 return NULL;
4090
4091 klist_iter_init(&parent->p->klist_children, &i);
4092 while ((child = next_device(&i)))
4093 if (match(child, data) && get_device(child))
4094 break;
4095 klist_iter_exit(&i);
4096 return child;
4097}
4098EXPORT_SYMBOL_GPL(device_find_child);
4099
4100/**
4101 * device_find_child_by_name - device iterator for locating a child device.
4102 * @parent: parent struct device
4103 * @name: name of the child device
4104 *
4105 * This is similar to the device_find_child() function above, but it
4106 * returns a reference to a device that has the name @name.
4107 *
4108 * NOTE: you will need to drop the reference with put_device() after use.
4109 */
4110struct device *device_find_child_by_name(struct device *parent,
4111 const char *name)
4112{
4113 struct klist_iter i;
4114 struct device *child;
4115
4116 if (!parent)
4117 return NULL;
4118
4119 klist_iter_init(&parent->p->klist_children, &i);
4120 while ((child = next_device(&i)))
4121 if (sysfs_streq(dev_name(child), name) && get_device(child))
4122 break;
4123 klist_iter_exit(&i);
4124 return child;
4125}
4126EXPORT_SYMBOL_GPL(device_find_child_by_name);
4127
4128static int match_any(struct device *dev, void *unused)
4129{
4130 return 1;
4131}
4132
4133/**
4134 * device_find_any_child - device iterator for locating a child device, if any.
4135 * @parent: parent struct device
4136 *
4137 * This is similar to the device_find_child() function above, but it
4138 * returns a reference to a child device, if any.
4139 *
4140 * NOTE: you will need to drop the reference with put_device() after use.
4141 */
4142struct device *device_find_any_child(struct device *parent)
4143{
4144 return device_find_child(parent, NULL, match_any);
4145}
4146EXPORT_SYMBOL_GPL(device_find_any_child);
4147
4148int __init devices_init(void)
4149{
4150 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
4151 if (!devices_kset)
4152 return -ENOMEM;
4153 dev_kobj = kobject_create_and_add("dev", NULL);
4154 if (!dev_kobj)
4155 goto dev_kobj_err;
4156 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
4157 if (!sysfs_dev_block_kobj)
4158 goto block_kobj_err;
4159 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
4160 if (!sysfs_dev_char_kobj)
4161 goto char_kobj_err;
4162 device_link_wq = alloc_workqueue("device_link_wq", 0, 0);
4163 if (!device_link_wq)
4164 goto wq_err;
4165
4166 return 0;
4167
4168 wq_err:
4169 kobject_put(sysfs_dev_char_kobj);
4170 char_kobj_err:
4171 kobject_put(sysfs_dev_block_kobj);
4172 block_kobj_err:
4173 kobject_put(dev_kobj);
4174 dev_kobj_err:
4175 kset_unregister(devices_kset);
4176 return -ENOMEM;
4177}
4178
4179static int device_check_offline(struct device *dev, void *not_used)
4180{
4181 int ret;
4182
4183 ret = device_for_each_child(dev, NULL, device_check_offline);
4184 if (ret)
4185 return ret;
4186
4187 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
4188}
4189
4190/**
4191 * device_offline - Prepare the device for hot-removal.
4192 * @dev: Device to be put offline.
4193 *
4194 * Execute the device bus type's .offline() callback, if present, to prepare
4195 * the device for a subsequent hot-removal. If that succeeds, the device must
4196 * not be used until either it is removed or its bus type's .online() callback
4197 * is executed.
4198 *
4199 * Call under device_hotplug_lock.
4200 */
4201int device_offline(struct device *dev)
4202{
4203 int ret;
4204
4205 if (dev->offline_disabled)
4206 return -EPERM;
4207
4208 ret = device_for_each_child(dev, NULL, device_check_offline);
4209 if (ret)
4210 return ret;
4211
4212 device_lock(dev);
4213 if (device_supports_offline(dev)) {
4214 if (dev->offline) {
4215 ret = 1;
4216 } else {
4217 ret = dev->bus->offline(dev);
4218 if (!ret) {
4219 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
4220 dev->offline = true;
4221 }
4222 }
4223 }
4224 device_unlock(dev);
4225
4226 return ret;
4227}
4228
4229/**
4230 * device_online - Put the device back online after successful device_offline().
4231 * @dev: Device to be put back online.
4232 *
4233 * If device_offline() has been successfully executed for @dev, but the device
4234 * has not been removed subsequently, execute its bus type's .online() callback
4235 * to indicate that the device can be used again.
4236 *
4237 * Call under device_hotplug_lock.
4238 */
4239int device_online(struct device *dev)
4240{
4241 int ret = 0;
4242
4243 device_lock(dev);
4244 if (device_supports_offline(dev)) {
4245 if (dev->offline) {
4246 ret = dev->bus->online(dev);
4247 if (!ret) {
4248 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
4249 dev->offline = false;
4250 }
4251 } else {
4252 ret = 1;
4253 }
4254 }
4255 device_unlock(dev);
4256
4257 return ret;
4258}
4259
4260struct root_device {
4261 struct device dev;
4262 struct module *owner;
4263};
4264
4265static inline struct root_device *to_root_device(struct device *d)
4266{
4267 return container_of(d, struct root_device, dev);
4268}
4269
4270static void root_device_release(struct device *dev)
4271{
4272 kfree(to_root_device(dev));
4273}
4274
4275/**
4276 * __root_device_register - allocate and register a root device
4277 * @name: root device name
4278 * @owner: owner module of the root device, usually THIS_MODULE
4279 *
4280 * This function allocates a root device and registers it
4281 * using device_register(). In order to free the returned
4282 * device, use root_device_unregister().
4283 *
4284 * Root devices are dummy devices which allow other devices
4285 * to be grouped under /sys/devices. Use this function to
4286 * allocate a root device and then use it as the parent of
4287 * any device which should appear under /sys/devices/{name}
4288 *
4289 * The /sys/devices/{name} directory will also contain a
4290 * 'module' symlink which points to the @owner directory
4291 * in sysfs.
4292 *
4293 * Returns &struct device pointer on success, or ERR_PTR() on error.
4294 *
4295 * Note: You probably want to use root_device_register().
4296 */
4297struct device *__root_device_register(const char *name, struct module *owner)
4298{
4299 struct root_device *root;
4300 int err = -ENOMEM;
4301
4302 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
4303 if (!root)
4304 return ERR_PTR(err);
4305
4306 err = dev_set_name(&root->dev, "%s", name);
4307 if (err) {
4308 kfree(root);
4309 return ERR_PTR(err);
4310 }
4311
4312 root->dev.release = root_device_release;
4313
4314 err = device_register(&root->dev);
4315 if (err) {
4316 put_device(&root->dev);
4317 return ERR_PTR(err);
4318 }
4319
4320#ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
4321 if (owner) {
4322 struct module_kobject *mk = &owner->mkobj;
4323
4324 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
4325 if (err) {
4326 device_unregister(&root->dev);
4327 return ERR_PTR(err);
4328 }
4329 root->owner = owner;
4330 }
4331#endif
4332
4333 return &root->dev;
4334}
4335EXPORT_SYMBOL_GPL(__root_device_register);
4336
4337/**
4338 * root_device_unregister - unregister and free a root device
4339 * @dev: device going away
4340 *
4341 * This function unregisters and cleans up a device that was created by
4342 * root_device_register().
4343 */
4344void root_device_unregister(struct device *dev)
4345{
4346 struct root_device *root = to_root_device(dev);
4347
4348 if (root->owner)
4349 sysfs_remove_link(&root->dev.kobj, "module");
4350
4351 device_unregister(dev);
4352}
4353EXPORT_SYMBOL_GPL(root_device_unregister);
4354
4355
4356static void device_create_release(struct device *dev)
4357{
4358 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4359 kfree(dev);
4360}
4361
4362static __printf(6, 0) struct device *
4363device_create_groups_vargs(const struct class *class, struct device *parent,
4364 dev_t devt, void *drvdata,
4365 const struct attribute_group **groups,
4366 const char *fmt, va_list args)
4367{
4368 struct device *dev = NULL;
4369 int retval = -ENODEV;
4370
4371 if (IS_ERR_OR_NULL(class))
4372 goto error;
4373
4374 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4375 if (!dev) {
4376 retval = -ENOMEM;
4377 goto error;
4378 }
4379
4380 device_initialize(dev);
4381 dev->devt = devt;
4382 dev->class = class;
4383 dev->parent = parent;
4384 dev->groups = groups;
4385 dev->release = device_create_release;
4386 dev_set_drvdata(dev, drvdata);
4387
4388 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4389 if (retval)
4390 goto error;
4391
4392 retval = device_add(dev);
4393 if (retval)
4394 goto error;
4395
4396 return dev;
4397
4398error:
4399 put_device(dev);
4400 return ERR_PTR(retval);
4401}
4402
4403/**
4404 * device_create - creates a device and registers it with sysfs
4405 * @class: pointer to the struct class that this device should be registered to
4406 * @parent: pointer to the parent struct device of this new device, if any
4407 * @devt: the dev_t for the char device to be added
4408 * @drvdata: the data to be added to the device for callbacks
4409 * @fmt: string for the device's name
4410 *
4411 * This function can be used by char device classes. A struct device
4412 * will be created in sysfs, registered to the specified class.
4413 *
4414 * A "dev" file will be created, showing the dev_t for the device, if
4415 * the dev_t is not 0,0.
4416 * If a pointer to a parent struct device is passed in, the newly created
4417 * struct device will be a child of that device in sysfs.
4418 * The pointer to the struct device will be returned from the call.
4419 * Any further sysfs files that might be required can be created using this
4420 * pointer.
4421 *
4422 * Returns &struct device pointer on success, or ERR_PTR() on error.
4423 */
4424struct device *device_create(const struct class *class, struct device *parent,
4425 dev_t devt, void *drvdata, const char *fmt, ...)
4426{
4427 va_list vargs;
4428 struct device *dev;
4429
4430 va_start(vargs, fmt);
4431 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4432 fmt, vargs);
4433 va_end(vargs);
4434 return dev;
4435}
4436EXPORT_SYMBOL_GPL(device_create);
4437
4438/**
4439 * device_create_with_groups - creates a device and registers it with sysfs
4440 * @class: pointer to the struct class that this device should be registered to
4441 * @parent: pointer to the parent struct device of this new device, if any
4442 * @devt: the dev_t for the char device to be added
4443 * @drvdata: the data to be added to the device for callbacks
4444 * @groups: NULL-terminated list of attribute groups to be created
4445 * @fmt: string for the device's name
4446 *
4447 * This function can be used by char device classes. A struct device
4448 * will be created in sysfs, registered to the specified class.
4449 * Additional attributes specified in the groups parameter will also
4450 * be created automatically.
4451 *
4452 * A "dev" file will be created, showing the dev_t for the device, if
4453 * the dev_t is not 0,0.
4454 * If a pointer to a parent struct device is passed in, the newly created
4455 * struct device will be a child of that device in sysfs.
4456 * The pointer to the struct device will be returned from the call.
4457 * Any further sysfs files that might be required can be created using this
4458 * pointer.
4459 *
4460 * Returns &struct device pointer on success, or ERR_PTR() on error.
4461 */
4462struct device *device_create_with_groups(const struct class *class,
4463 struct device *parent, dev_t devt,
4464 void *drvdata,
4465 const struct attribute_group **groups,
4466 const char *fmt, ...)
4467{
4468 va_list vargs;
4469 struct device *dev;
4470
4471 va_start(vargs, fmt);
4472 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4473 fmt, vargs);
4474 va_end(vargs);
4475 return dev;
4476}
4477EXPORT_SYMBOL_GPL(device_create_with_groups);
4478
4479/**
4480 * device_destroy - removes a device that was created with device_create()
4481 * @class: pointer to the struct class that this device was registered with
4482 * @devt: the dev_t of the device that was previously registered
4483 *
4484 * This call unregisters and cleans up a device that was created with a
4485 * call to device_create().
4486 */
4487void device_destroy(const struct class *class, dev_t devt)
4488{
4489 struct device *dev;
4490
4491 dev = class_find_device_by_devt(class, devt);
4492 if (dev) {
4493 put_device(dev);
4494 device_unregister(dev);
4495 }
4496}
4497EXPORT_SYMBOL_GPL(device_destroy);
4498
4499/**
4500 * device_rename - renames a device
4501 * @dev: the pointer to the struct device to be renamed
4502 * @new_name: the new name of the device
4503 *
4504 * It is the responsibility of the caller to provide mutual
4505 * exclusion between two different calls of device_rename
4506 * on the same device to ensure that new_name is valid and
4507 * won't conflict with other devices.
4508 *
4509 * Note: given that some subsystems (networking and infiniband) use this
4510 * function, with no immediate plans for this to change, we cannot assume or
4511 * require that this function not be called at all.
4512 *
4513 * However, if you're writing new code, do not call this function. The following
4514 * text from Kay Sievers offers some insight:
4515 *
4516 * Renaming devices is racy at many levels, symlinks and other stuff are not
4517 * replaced atomically, and you get a "move" uevent, but it's not easy to
4518 * connect the event to the old and new device. Device nodes are not renamed at
4519 * all, there isn't even support for that in the kernel now.
4520 *
4521 * In the meantime, during renaming, your target name might be taken by another
4522 * driver, creating conflicts. Or the old name is taken directly after you
4523 * renamed it -- then you get events for the same DEVPATH, before you even see
4524 * the "move" event. It's just a mess, and nothing new should ever rely on
4525 * kernel device renaming. Besides that, it's not even implemented now for
4526 * other things than (driver-core wise very simple) network devices.
4527 *
4528 * Make up a "real" name in the driver before you register anything, or add
4529 * some other attributes for userspace to find the device, or use udev to add
4530 * symlinks -- but never rename kernel devices later, it's a complete mess. We
4531 * don't even want to get into that and try to implement the missing pieces in
4532 * the core. We really have other pieces to fix in the driver core mess. :)
4533 */
4534int device_rename(struct device *dev, const char *new_name)
4535{
4536 struct subsys_private *sp = NULL;
4537 struct kobject *kobj = &dev->kobj;
4538 char *old_device_name = NULL;
4539 int error;
4540 bool is_link_renamed = false;
4541
4542 dev = get_device(dev);
4543 if (!dev)
4544 return -EINVAL;
4545
4546 dev_dbg(dev, "renaming to %s\n", new_name);
4547
4548 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4549 if (!old_device_name) {
4550 error = -ENOMEM;
4551 goto out;
4552 }
4553
4554 if (dev->class) {
4555 sp = class_to_subsys(dev->class);
4556
4557 if (!sp) {
4558 error = -EINVAL;
4559 goto out;
4560 }
4561
4562 error = sysfs_rename_link_ns(&sp->subsys.kobj, kobj, old_device_name,
4563 new_name, kobject_namespace(kobj));
4564 if (error)
4565 goto out;
4566
4567 is_link_renamed = true;
4568 }
4569
4570 error = kobject_rename(kobj, new_name);
4571out:
4572 if (error && is_link_renamed)
4573 sysfs_rename_link_ns(&sp->subsys.kobj, kobj, new_name,
4574 old_device_name, kobject_namespace(kobj));
4575 subsys_put(sp);
4576
4577 put_device(dev);
4578
4579 kfree(old_device_name);
4580
4581 return error;
4582}
4583EXPORT_SYMBOL_GPL(device_rename);
4584
4585static int device_move_class_links(struct device *dev,
4586 struct device *old_parent,
4587 struct device *new_parent)
4588{
4589 int error = 0;
4590
4591 if (old_parent)
4592 sysfs_remove_link(&dev->kobj, "device");
4593 if (new_parent)
4594 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4595 "device");
4596 return error;
4597}
4598
4599/**
4600 * device_move - moves a device to a new parent
4601 * @dev: the pointer to the struct device to be moved
4602 * @new_parent: the new parent of the device (can be NULL)
4603 * @dpm_order: how to reorder the dpm_list
4604 */
4605int device_move(struct device *dev, struct device *new_parent,
4606 enum dpm_order dpm_order)
4607{
4608 int error;
4609 struct device *old_parent;
4610 struct kobject *new_parent_kobj;
4611
4612 dev = get_device(dev);
4613 if (!dev)
4614 return -EINVAL;
4615
4616 device_pm_lock();
4617 new_parent = get_device(new_parent);
4618 new_parent_kobj = get_device_parent(dev, new_parent);
4619 if (IS_ERR(new_parent_kobj)) {
4620 error = PTR_ERR(new_parent_kobj);
4621 put_device(new_parent);
4622 goto out;
4623 }
4624
4625 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4626 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4627 error = kobject_move(&dev->kobj, new_parent_kobj);
4628 if (error) {
4629 cleanup_glue_dir(dev, new_parent_kobj);
4630 put_device(new_parent);
4631 goto out;
4632 }
4633 old_parent = dev->parent;
4634 dev->parent = new_parent;
4635 if (old_parent)
4636 klist_remove(&dev->p->knode_parent);
4637 if (new_parent) {
4638 klist_add_tail(&dev->p->knode_parent,
4639 &new_parent->p->klist_children);
4640 set_dev_node(dev, dev_to_node(new_parent));
4641 }
4642
4643 if (dev->class) {
4644 error = device_move_class_links(dev, old_parent, new_parent);
4645 if (error) {
4646 /* We ignore errors on cleanup since we're hosed anyway... */
4647 device_move_class_links(dev, new_parent, old_parent);
4648 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4649 if (new_parent)
4650 klist_remove(&dev->p->knode_parent);
4651 dev->parent = old_parent;
4652 if (old_parent) {
4653 klist_add_tail(&dev->p->knode_parent,
4654 &old_parent->p->klist_children);
4655 set_dev_node(dev, dev_to_node(old_parent));
4656 }
4657 }
4658 cleanup_glue_dir(dev, new_parent_kobj);
4659 put_device(new_parent);
4660 goto out;
4661 }
4662 }
4663 switch (dpm_order) {
4664 case DPM_ORDER_NONE:
4665 break;
4666 case DPM_ORDER_DEV_AFTER_PARENT:
4667 device_pm_move_after(dev, new_parent);
4668 devices_kset_move_after(dev, new_parent);
4669 break;
4670 case DPM_ORDER_PARENT_BEFORE_DEV:
4671 device_pm_move_before(new_parent, dev);
4672 devices_kset_move_before(new_parent, dev);
4673 break;
4674 case DPM_ORDER_DEV_LAST:
4675 device_pm_move_last(dev);
4676 devices_kset_move_last(dev);
4677 break;
4678 }
4679
4680 put_device(old_parent);
4681out:
4682 device_pm_unlock();
4683 put_device(dev);
4684 return error;
4685}
4686EXPORT_SYMBOL_GPL(device_move);
4687
4688static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4689 kgid_t kgid)
4690{
4691 struct kobject *kobj = &dev->kobj;
4692 const struct class *class = dev->class;
4693 const struct device_type *type = dev->type;
4694 int error;
4695
4696 if (class) {
4697 /*
4698 * Change the device groups of the device class for @dev to
4699 * @kuid/@kgid.
4700 */
4701 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4702 kgid);
4703 if (error)
4704 return error;
4705 }
4706
4707 if (type) {
4708 /*
4709 * Change the device groups of the device type for @dev to
4710 * @kuid/@kgid.
4711 */
4712 error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4713 kgid);
4714 if (error)
4715 return error;
4716 }
4717
4718 /* Change the device groups of @dev to @kuid/@kgid. */
4719 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4720 if (error)
4721 return error;
4722
4723 if (device_supports_offline(dev) && !dev->offline_disabled) {
4724 /* Change online device attributes of @dev to @kuid/@kgid. */
4725 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4726 kuid, kgid);
4727 if (error)
4728 return error;
4729 }
4730
4731 return 0;
4732}
4733
4734/**
4735 * device_change_owner - change the owner of an existing device.
4736 * @dev: device.
4737 * @kuid: new owner's kuid
4738 * @kgid: new owner's kgid
4739 *
4740 * This changes the owner of @dev and its corresponding sysfs entries to
4741 * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4742 * core.
4743 *
4744 * Returns 0 on success or error code on failure.
4745 */
4746int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4747{
4748 int error;
4749 struct kobject *kobj = &dev->kobj;
4750 struct subsys_private *sp;
4751
4752 dev = get_device(dev);
4753 if (!dev)
4754 return -EINVAL;
4755
4756 /*
4757 * Change the kobject and the default attributes and groups of the
4758 * ktype associated with it to @kuid/@kgid.
4759 */
4760 error = sysfs_change_owner(kobj, kuid, kgid);
4761 if (error)
4762 goto out;
4763
4764 /*
4765 * Change the uevent file for @dev to the new owner. The uevent file
4766 * was created in a separate step when @dev got added and we mirror
4767 * that step here.
4768 */
4769 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4770 kgid);
4771 if (error)
4772 goto out;
4773
4774 /*
4775 * Change the device groups, the device groups associated with the
4776 * device class, and the groups associated with the device type of @dev
4777 * to @kuid/@kgid.
4778 */
4779 error = device_attrs_change_owner(dev, kuid, kgid);
4780 if (error)
4781 goto out;
4782
4783 error = dpm_sysfs_change_owner(dev, kuid, kgid);
4784 if (error)
4785 goto out;
4786
4787 /*
4788 * Change the owner of the symlink located in the class directory of
4789 * the device class associated with @dev which points to the actual
4790 * directory entry for @dev to @kuid/@kgid. This ensures that the
4791 * symlink shows the same permissions as its target.
4792 */
4793 sp = class_to_subsys(dev->class);
4794 if (!sp) {
4795 error = -EINVAL;
4796 goto out;
4797 }
4798 error = sysfs_link_change_owner(&sp->subsys.kobj, &dev->kobj, dev_name(dev), kuid, kgid);
4799 subsys_put(sp);
4800
4801out:
4802 put_device(dev);
4803 return error;
4804}
4805EXPORT_SYMBOL_GPL(device_change_owner);
4806
4807/**
4808 * device_shutdown - call ->shutdown() on each device to shutdown.
4809 */
4810void device_shutdown(void)
4811{
4812 struct device *dev, *parent;
4813
4814 wait_for_device_probe();
4815 device_block_probing();
4816
4817 cpufreq_suspend();
4818
4819 spin_lock(&devices_kset->list_lock);
4820 /*
4821 * Walk the devices list backward, shutting down each in turn.
4822 * Beware that device unplug events may also start pulling
4823 * devices offline, even as the system is shutting down.
4824 */
4825 while (!list_empty(&devices_kset->list)) {
4826 dev = list_entry(devices_kset->list.prev, struct device,
4827 kobj.entry);
4828
4829 /*
4830 * hold reference count of device's parent to
4831 * prevent it from being freed because parent's
4832 * lock is to be held
4833 */
4834 parent = get_device(dev->parent);
4835 get_device(dev);
4836 /*
4837 * Make sure the device is off the kset list, in the
4838 * event that dev->*->shutdown() doesn't remove it.
4839 */
4840 list_del_init(&dev->kobj.entry);
4841 spin_unlock(&devices_kset->list_lock);
4842
4843 /* hold lock to avoid race with probe/release */
4844 if (parent)
4845 device_lock(parent);
4846 device_lock(dev);
4847
4848 /* Don't allow any more runtime suspends */
4849 pm_runtime_get_noresume(dev);
4850 pm_runtime_barrier(dev);
4851
4852 if (dev->class && dev->class->shutdown_pre) {
4853 if (initcall_debug)
4854 dev_info(dev, "shutdown_pre\n");
4855 dev->class->shutdown_pre(dev);
4856 }
4857 if (dev->bus && dev->bus->shutdown) {
4858 if (initcall_debug)
4859 dev_info(dev, "shutdown\n");
4860 dev->bus->shutdown(dev);
4861 } else if (dev->driver && dev->driver->shutdown) {
4862 if (initcall_debug)
4863 dev_info(dev, "shutdown\n");
4864 dev->driver->shutdown(dev);
4865 }
4866
4867 device_unlock(dev);
4868 if (parent)
4869 device_unlock(parent);
4870
4871 put_device(dev);
4872 put_device(parent);
4873
4874 spin_lock(&devices_kset->list_lock);
4875 }
4876 spin_unlock(&devices_kset->list_lock);
4877}
4878
4879/*
4880 * Device logging functions
4881 */
4882
4883#ifdef CONFIG_PRINTK
4884static void
4885set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4886{
4887 const char *subsys;
4888
4889 memset(dev_info, 0, sizeof(*dev_info));
4890
4891 if (dev->class)
4892 subsys = dev->class->name;
4893 else if (dev->bus)
4894 subsys = dev->bus->name;
4895 else
4896 return;
4897
4898 strscpy(dev_info->subsystem, subsys);
4899
4900 /*
4901 * Add device identifier DEVICE=:
4902 * b12:8 block dev_t
4903 * c127:3 char dev_t
4904 * n8 netdev ifindex
4905 * +sound:card0 subsystem:devname
4906 */
4907 if (MAJOR(dev->devt)) {
4908 char c;
4909
4910 if (strcmp(subsys, "block") == 0)
4911 c = 'b';
4912 else
4913 c = 'c';
4914
4915 snprintf(dev_info->device, sizeof(dev_info->device),
4916 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4917 } else if (strcmp(subsys, "net") == 0) {
4918 struct net_device *net = to_net_dev(dev);
4919
4920 snprintf(dev_info->device, sizeof(dev_info->device),
4921 "n%u", net->ifindex);
4922 } else {
4923 snprintf(dev_info->device, sizeof(dev_info->device),
4924 "+%s:%s", subsys, dev_name(dev));
4925 }
4926}
4927
4928int dev_vprintk_emit(int level, const struct device *dev,
4929 const char *fmt, va_list args)
4930{
4931 struct dev_printk_info dev_info;
4932
4933 set_dev_info(dev, &dev_info);
4934
4935 return vprintk_emit(0, level, &dev_info, fmt, args);
4936}
4937EXPORT_SYMBOL(dev_vprintk_emit);
4938
4939int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4940{
4941 va_list args;
4942 int r;
4943
4944 va_start(args, fmt);
4945
4946 r = dev_vprintk_emit(level, dev, fmt, args);
4947
4948 va_end(args);
4949
4950 return r;
4951}
4952EXPORT_SYMBOL(dev_printk_emit);
4953
4954static void __dev_printk(const char *level, const struct device *dev,
4955 struct va_format *vaf)
4956{
4957 if (dev)
4958 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4959 dev_driver_string(dev), dev_name(dev), vaf);
4960 else
4961 printk("%s(NULL device *): %pV", level, vaf);
4962}
4963
4964void _dev_printk(const char *level, const struct device *dev,
4965 const char *fmt, ...)
4966{
4967 struct va_format vaf;
4968 va_list args;
4969
4970 va_start(args, fmt);
4971
4972 vaf.fmt = fmt;
4973 vaf.va = &args;
4974
4975 __dev_printk(level, dev, &vaf);
4976
4977 va_end(args);
4978}
4979EXPORT_SYMBOL(_dev_printk);
4980
4981#define define_dev_printk_level(func, kern_level) \
4982void func(const struct device *dev, const char *fmt, ...) \
4983{ \
4984 struct va_format vaf; \
4985 va_list args; \
4986 \
4987 va_start(args, fmt); \
4988 \
4989 vaf.fmt = fmt; \
4990 vaf.va = &args; \
4991 \
4992 __dev_printk(kern_level, dev, &vaf); \
4993 \
4994 va_end(args); \
4995} \
4996EXPORT_SYMBOL(func);
4997
4998define_dev_printk_level(_dev_emerg, KERN_EMERG);
4999define_dev_printk_level(_dev_alert, KERN_ALERT);
5000define_dev_printk_level(_dev_crit, KERN_CRIT);
5001define_dev_printk_level(_dev_err, KERN_ERR);
5002define_dev_printk_level(_dev_warn, KERN_WARNING);
5003define_dev_printk_level(_dev_notice, KERN_NOTICE);
5004define_dev_printk_level(_dev_info, KERN_INFO);
5005
5006#endif
5007
5008static void __dev_probe_failed(const struct device *dev, int err, bool fatal,
5009 const char *fmt, va_list vargsp)
5010{
5011 struct va_format vaf;
5012 va_list vargs;
5013
5014 /*
5015 * On x86_64 and possibly on other architectures, va_list is actually a
5016 * size-1 array containing a structure. As a result, function parameter
5017 * vargsp decays from T[1] to T*, and &vargsp has type T** rather than
5018 * T(*)[1], which is expected by its assignment to vaf.va below.
5019 *
5020 * One standard way to solve this mess is by creating a copy in a local
5021 * variable of type va_list and then using a pointer to that local copy
5022 * instead, which is the approach employed here.
5023 */
5024 va_copy(vargs, vargsp);
5025
5026 vaf.fmt = fmt;
5027 vaf.va = &vargs;
5028
5029 switch (err) {
5030 case -EPROBE_DEFER:
5031 device_set_deferred_probe_reason(dev, &vaf);
5032 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5033 break;
5034
5035 case -ENOMEM:
5036 /* Don't print anything on -ENOMEM, there's already enough output */
5037 break;
5038
5039 default:
5040 /* Log fatal final failures as errors, otherwise produce warnings */
5041 if (fatal)
5042 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5043 else
5044 dev_warn(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5045 break;
5046 }
5047
5048 va_end(vargs);
5049}
5050
5051/**
5052 * dev_err_probe - probe error check and log helper
5053 * @dev: the pointer to the struct device
5054 * @err: error value to test
5055 * @fmt: printf-style format string
5056 * @...: arguments as specified in the format string
5057 *
5058 * This helper implements common pattern present in probe functions for error
5059 * checking: print debug or error message depending if the error value is
5060 * -EPROBE_DEFER and propagate error upwards.
5061 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
5062 * checked later by reading devices_deferred debugfs attribute.
5063 * It replaces the following code sequence::
5064 *
5065 * if (err != -EPROBE_DEFER)
5066 * dev_err(dev, ...);
5067 * else
5068 * dev_dbg(dev, ...);
5069 * return err;
5070 *
5071 * with::
5072 *
5073 * return dev_err_probe(dev, err, ...);
5074 *
5075 * Using this helper in your probe function is totally fine even if @err
5076 * is known to never be -EPROBE_DEFER.
5077 * The benefit compared to a normal dev_err() is the standardized format
5078 * of the error code, which is emitted symbolically (i.e. you get "EAGAIN"
5079 * instead of "-35"), and having the error code returned allows more
5080 * compact error paths.
5081 *
5082 * Returns @err.
5083 */
5084int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
5085{
5086 va_list vargs;
5087
5088 va_start(vargs, fmt);
5089
5090 /* Use dev_err() for logging when err doesn't equal -EPROBE_DEFER */
5091 __dev_probe_failed(dev, err, true, fmt, vargs);
5092
5093 va_end(vargs);
5094
5095 return err;
5096}
5097EXPORT_SYMBOL_GPL(dev_err_probe);
5098
5099/**
5100 * dev_warn_probe - probe error check and log helper
5101 * @dev: the pointer to the struct device
5102 * @err: error value to test
5103 * @fmt: printf-style format string
5104 * @...: arguments as specified in the format string
5105 *
5106 * This helper implements common pattern present in probe functions for error
5107 * checking: print debug or warning message depending if the error value is
5108 * -EPROBE_DEFER and propagate error upwards.
5109 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
5110 * checked later by reading devices_deferred debugfs attribute.
5111 * It replaces the following code sequence::
5112 *
5113 * if (err != -EPROBE_DEFER)
5114 * dev_warn(dev, ...);
5115 * else
5116 * dev_dbg(dev, ...);
5117 * return err;
5118 *
5119 * with::
5120 *
5121 * return dev_warn_probe(dev, err, ...);
5122 *
5123 * Using this helper in your probe function is totally fine even if @err
5124 * is known to never be -EPROBE_DEFER.
5125 * The benefit compared to a normal dev_warn() is the standardized format
5126 * of the error code, which is emitted symbolically (i.e. you get "EAGAIN"
5127 * instead of "-35"), and having the error code returned allows more
5128 * compact error paths.
5129 *
5130 * Returns @err.
5131 */
5132int dev_warn_probe(const struct device *dev, int err, const char *fmt, ...)
5133{
5134 va_list vargs;
5135
5136 va_start(vargs, fmt);
5137
5138 /* Use dev_warn() for logging when err doesn't equal -EPROBE_DEFER */
5139 __dev_probe_failed(dev, err, false, fmt, vargs);
5140
5141 va_end(vargs);
5142
5143 return err;
5144}
5145EXPORT_SYMBOL_GPL(dev_warn_probe);
5146
5147static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
5148{
5149 return fwnode && !IS_ERR(fwnode->secondary);
5150}
5151
5152/**
5153 * set_primary_fwnode - Change the primary firmware node of a given device.
5154 * @dev: Device to handle.
5155 * @fwnode: New primary firmware node of the device.
5156 *
5157 * Set the device's firmware node pointer to @fwnode, but if a secondary
5158 * firmware node of the device is present, preserve it.
5159 *
5160 * Valid fwnode cases are:
5161 * - primary --> secondary --> -ENODEV
5162 * - primary --> NULL
5163 * - secondary --> -ENODEV
5164 * - NULL
5165 */
5166void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5167{
5168 struct device *parent = dev->parent;
5169 struct fwnode_handle *fn = dev->fwnode;
5170
5171 if (fwnode) {
5172 if (fwnode_is_primary(fn))
5173 fn = fn->secondary;
5174
5175 if (fn) {
5176 WARN_ON(fwnode->secondary);
5177 fwnode->secondary = fn;
5178 }
5179 dev->fwnode = fwnode;
5180 } else {
5181 if (fwnode_is_primary(fn)) {
5182 dev->fwnode = fn->secondary;
5183
5184 /* Skip nullifying fn->secondary if the primary is shared */
5185 if (parent && fn == parent->fwnode)
5186 return;
5187
5188 /* Set fn->secondary = NULL, so fn remains the primary fwnode */
5189 fn->secondary = NULL;
5190 } else {
5191 dev->fwnode = NULL;
5192 }
5193 }
5194}
5195EXPORT_SYMBOL_GPL(set_primary_fwnode);
5196
5197/**
5198 * set_secondary_fwnode - Change the secondary firmware node of a given device.
5199 * @dev: Device to handle.
5200 * @fwnode: New secondary firmware node of the device.
5201 *
5202 * If a primary firmware node of the device is present, set its secondary
5203 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to
5204 * @fwnode.
5205 */
5206void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5207{
5208 if (fwnode)
5209 fwnode->secondary = ERR_PTR(-ENODEV);
5210
5211 if (fwnode_is_primary(dev->fwnode))
5212 dev->fwnode->secondary = fwnode;
5213 else
5214 dev->fwnode = fwnode;
5215}
5216EXPORT_SYMBOL_GPL(set_secondary_fwnode);
5217
5218/**
5219 * device_set_of_node_from_dev - reuse device-tree node of another device
5220 * @dev: device whose device-tree node is being set
5221 * @dev2: device whose device-tree node is being reused
5222 *
5223 * Takes another reference to the new device-tree node after first dropping
5224 * any reference held to the old node.
5225 */
5226void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
5227{
5228 of_node_put(dev->of_node);
5229 dev->of_node = of_node_get(dev2->of_node);
5230 dev->of_node_reused = true;
5231}
5232EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
5233
5234void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
5235{
5236 dev->fwnode = fwnode;
5237 dev->of_node = to_of_node(fwnode);
5238}
5239EXPORT_SYMBOL_GPL(device_set_node);
5240
5241int device_match_name(struct device *dev, const void *name)
5242{
5243 return sysfs_streq(dev_name(dev), name);
5244}
5245EXPORT_SYMBOL_GPL(device_match_name);
5246
5247int device_match_of_node(struct device *dev, const void *np)
5248{
5249 return dev->of_node == np;
5250}
5251EXPORT_SYMBOL_GPL(device_match_of_node);
5252
5253int device_match_fwnode(struct device *dev, const void *fwnode)
5254{
5255 return dev_fwnode(dev) == fwnode;
5256}
5257EXPORT_SYMBOL_GPL(device_match_fwnode);
5258
5259int device_match_devt(struct device *dev, const void *pdevt)
5260{
5261 return dev->devt == *(dev_t *)pdevt;
5262}
5263EXPORT_SYMBOL_GPL(device_match_devt);
5264
5265int device_match_acpi_dev(struct device *dev, const void *adev)
5266{
5267 return ACPI_COMPANION(dev) == adev;
5268}
5269EXPORT_SYMBOL(device_match_acpi_dev);
5270
5271int device_match_acpi_handle(struct device *dev, const void *handle)
5272{
5273 return ACPI_HANDLE(dev) == handle;
5274}
5275EXPORT_SYMBOL(device_match_acpi_handle);
5276
5277int device_match_any(struct device *dev, const void *unused)
5278{
5279 return 1;
5280}
5281EXPORT_SYMBOL_GPL(device_match_any);