Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * S390 version
4 * Copyright IBM Corp. 1999, 2000
5 * Author(s): Hartmut Penner (hp@de.ibm.com)
6 * Ulrich Weigand (weigand@de.ibm.com)
7 * Martin Schwidefsky (schwidefsky@de.ibm.com)
8 *
9 * Derived from "include/asm-i386/pgtable.h"
10 */
11
12#ifndef _ASM_S390_PGTABLE_H
13#define _ASM_S390_PGTABLE_H
14
15#include <linux/sched.h>
16#include <linux/mm_types.h>
17#include <linux/page-flags.h>
18#include <linux/radix-tree.h>
19#include <linux/atomic.h>
20#include <asm/sections.h>
21#include <asm/ctlreg.h>
22#include <asm/bug.h>
23#include <asm/page.h>
24#include <asm/uv.h>
25
26extern pgd_t swapper_pg_dir[];
27extern pgd_t invalid_pg_dir[];
28extern void paging_init(void);
29extern struct ctlreg s390_invalid_asce;
30
31enum {
32 PG_DIRECT_MAP_4K = 0,
33 PG_DIRECT_MAP_1M,
34 PG_DIRECT_MAP_2G,
35 PG_DIRECT_MAP_MAX
36};
37
38extern atomic_long_t __bootdata_preserved(direct_pages_count[PG_DIRECT_MAP_MAX]);
39
40static inline void update_page_count(int level, long count)
41{
42 if (IS_ENABLED(CONFIG_PROC_FS))
43 atomic_long_add(count, &direct_pages_count[level]);
44}
45
46/*
47 * The S390 doesn't have any external MMU info: the kernel page
48 * tables contain all the necessary information.
49 */
50#define update_mmu_cache(vma, address, ptep) do { } while (0)
51#define update_mmu_cache_range(vmf, vma, addr, ptep, nr) do { } while (0)
52#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
53
54/*
55 * ZERO_PAGE is a global shared page that is always zero; used
56 * for zero-mapped memory areas etc..
57 */
58
59extern unsigned long empty_zero_page;
60extern unsigned long zero_page_mask;
61
62#define ZERO_PAGE(vaddr) \
63 (virt_to_page((void *)(empty_zero_page + \
64 (((unsigned long)(vaddr)) &zero_page_mask))))
65#define __HAVE_COLOR_ZERO_PAGE
66
67/* TODO: s390 cannot support io_remap_pfn_range... */
68
69#define pte_ERROR(e) \
70 pr_err("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
71#define pmd_ERROR(e) \
72 pr_err("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
73#define pud_ERROR(e) \
74 pr_err("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e))
75#define p4d_ERROR(e) \
76 pr_err("%s:%d: bad p4d %016lx.\n", __FILE__, __LINE__, p4d_val(e))
77#define pgd_ERROR(e) \
78 pr_err("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
79
80/*
81 * The vmalloc and module area will always be on the topmost area of the
82 * kernel mapping. 512GB are reserved for vmalloc by default.
83 * At the top of the vmalloc area a 2GB area is reserved where modules
84 * will reside. That makes sure that inter module branches always
85 * happen without trampolines and in addition the placement within a
86 * 2GB frame is branch prediction unit friendly.
87 */
88extern unsigned long __bootdata_preserved(VMALLOC_START);
89extern unsigned long __bootdata_preserved(VMALLOC_END);
90#define VMALLOC_DEFAULT_SIZE ((512UL << 30) - MODULES_LEN)
91extern struct page *__bootdata_preserved(vmemmap);
92extern unsigned long __bootdata_preserved(vmemmap_size);
93
94extern unsigned long __bootdata_preserved(MODULES_VADDR);
95extern unsigned long __bootdata_preserved(MODULES_END);
96#define MODULES_VADDR MODULES_VADDR
97#define MODULES_END MODULES_END
98#define MODULES_LEN (1UL << 31)
99
100static inline int is_module_addr(void *addr)
101{
102 BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
103 if (addr < (void *)MODULES_VADDR)
104 return 0;
105 if (addr > (void *)MODULES_END)
106 return 0;
107 return 1;
108}
109
110#ifdef CONFIG_KMSAN
111#define KMSAN_VMALLOC_SIZE (VMALLOC_END - VMALLOC_START)
112#define KMSAN_VMALLOC_SHADOW_START VMALLOC_END
113#define KMSAN_VMALLOC_SHADOW_END (KMSAN_VMALLOC_SHADOW_START + KMSAN_VMALLOC_SIZE)
114#define KMSAN_VMALLOC_ORIGIN_START KMSAN_VMALLOC_SHADOW_END
115#define KMSAN_VMALLOC_ORIGIN_END (KMSAN_VMALLOC_ORIGIN_START + KMSAN_VMALLOC_SIZE)
116#define KMSAN_MODULES_SHADOW_START KMSAN_VMALLOC_ORIGIN_END
117#define KMSAN_MODULES_SHADOW_END (KMSAN_MODULES_SHADOW_START + MODULES_LEN)
118#define KMSAN_MODULES_ORIGIN_START KMSAN_MODULES_SHADOW_END
119#define KMSAN_MODULES_ORIGIN_END (KMSAN_MODULES_ORIGIN_START + MODULES_LEN)
120#endif
121
122#ifdef CONFIG_RANDOMIZE_BASE
123#define KASLR_LEN (1UL << 31)
124#else
125#define KASLR_LEN 0UL
126#endif
127
128/*
129 * A 64 bit pagetable entry of S390 has following format:
130 * | PFRA |0IPC| OS |
131 * 0000000000111111111122222222223333333333444444444455555555556666
132 * 0123456789012345678901234567890123456789012345678901234567890123
133 *
134 * I Page-Invalid Bit: Page is not available for address-translation
135 * P Page-Protection Bit: Store access not possible for page
136 * C Change-bit override: HW is not required to set change bit
137 *
138 * A 64 bit segmenttable entry of S390 has following format:
139 * | P-table origin | TT
140 * 0000000000111111111122222222223333333333444444444455555555556666
141 * 0123456789012345678901234567890123456789012345678901234567890123
142 *
143 * I Segment-Invalid Bit: Segment is not available for address-translation
144 * C Common-Segment Bit: Segment is not private (PoP 3-30)
145 * P Page-Protection Bit: Store access not possible for page
146 * TT Type 00
147 *
148 * A 64 bit region table entry of S390 has following format:
149 * | S-table origin | TF TTTL
150 * 0000000000111111111122222222223333333333444444444455555555556666
151 * 0123456789012345678901234567890123456789012345678901234567890123
152 *
153 * I Segment-Invalid Bit: Segment is not available for address-translation
154 * TT Type 01
155 * TF
156 * TL Table length
157 *
158 * The 64 bit regiontable origin of S390 has following format:
159 * | region table origon | DTTL
160 * 0000000000111111111122222222223333333333444444444455555555556666
161 * 0123456789012345678901234567890123456789012345678901234567890123
162 *
163 * X Space-Switch event:
164 * G Segment-Invalid Bit:
165 * P Private-Space Bit:
166 * S Storage-Alteration:
167 * R Real space
168 * TL Table-Length:
169 *
170 * A storage key has the following format:
171 * | ACC |F|R|C|0|
172 * 0 3 4 5 6 7
173 * ACC: access key
174 * F : fetch protection bit
175 * R : referenced bit
176 * C : changed bit
177 */
178
179/* Hardware bits in the page table entry */
180#define _PAGE_NOEXEC 0x100 /* HW no-execute bit */
181#define _PAGE_PROTECT 0x200 /* HW read-only bit */
182#define _PAGE_INVALID 0x400 /* HW invalid bit */
183#define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
184
185/* Software bits in the page table entry */
186#define _PAGE_PRESENT 0x001 /* SW pte present bit */
187#define _PAGE_YOUNG 0x004 /* SW pte young bit */
188#define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
189#define _PAGE_READ 0x010 /* SW pte read bit */
190#define _PAGE_WRITE 0x020 /* SW pte write bit */
191#define _PAGE_SPECIAL 0x040 /* SW associated with special page */
192#define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
193
194#ifdef CONFIG_MEM_SOFT_DIRTY
195#define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
196#else
197#define _PAGE_SOFT_DIRTY 0x000
198#endif
199
200#define _PAGE_SW_BITS 0xffUL /* All SW bits */
201
202#define _PAGE_SWP_EXCLUSIVE _PAGE_LARGE /* SW pte exclusive swap bit */
203
204/* Set of bits not changed in pte_modify */
205#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
206 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
207
208/*
209 * Mask of bits that must not be changed with RDP. Allow only _PAGE_PROTECT
210 * HW bit and all SW bits.
211 */
212#define _PAGE_RDP_MASK ~(_PAGE_PROTECT | _PAGE_SW_BITS)
213
214/*
215 * handle_pte_fault uses pte_present and pte_none to find out the pte type
216 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
217 * distinguish present from not-present ptes. It is changed only with the page
218 * table lock held.
219 *
220 * The following table gives the different possible bit combinations for
221 * the pte hardware and software bits in the last 12 bits of a pte
222 * (. unassigned bit, x don't care, t swap type):
223 *
224 * 842100000000
225 * 000084210000
226 * 000000008421
227 * .IR.uswrdy.p
228 * empty .10.00000000
229 * swap .11..ttttt.0
230 * prot-none, clean, old .11.xx0000.1
231 * prot-none, clean, young .11.xx0001.1
232 * prot-none, dirty, old .11.xx0010.1
233 * prot-none, dirty, young .11.xx0011.1
234 * read-only, clean, old .11.xx0100.1
235 * read-only, clean, young .01.xx0101.1
236 * read-only, dirty, old .11.xx0110.1
237 * read-only, dirty, young .01.xx0111.1
238 * read-write, clean, old .11.xx1100.1
239 * read-write, clean, young .01.xx1101.1
240 * read-write, dirty, old .10.xx1110.1
241 * read-write, dirty, young .00.xx1111.1
242 * HW-bits: R read-only, I invalid
243 * SW-bits: p present, y young, d dirty, r read, w write, s special,
244 * u unused, l large
245 *
246 * pte_none is true for the bit pattern .10.00000000, pte == 0x400
247 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
248 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
249 */
250
251/* Bits in the segment/region table address-space-control-element */
252#define _ASCE_ORIGIN ~0xfffUL/* region/segment table origin */
253#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
254#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
255#define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
256#define _ASCE_REAL_SPACE 0x20 /* real space control */
257#define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
258#define _ASCE_TYPE_REGION1 0x0c /* region first table type */
259#define _ASCE_TYPE_REGION2 0x08 /* region second table type */
260#define _ASCE_TYPE_REGION3 0x04 /* region third table type */
261#define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
262#define _ASCE_TABLE_LENGTH 0x03 /* region table length */
263
264/* Bits in the region table entry */
265#define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
266#define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
267#define _REGION_ENTRY_NOEXEC 0x100 /* region no-execute bit */
268#define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */
269#define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
270#define _REGION_ENTRY_TYPE_MASK 0x0c /* region table type mask */
271#define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
272#define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
273#define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
274#define _REGION_ENTRY_LENGTH 0x03 /* region third length */
275
276#define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
277#define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
278#define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
279#define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
280#define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH | \
281 _REGION3_ENTRY_PRESENT)
282#define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
283
284#define _REGION3_ENTRY_HARDWARE_BITS 0xfffffffffffff6ffUL
285#define _REGION3_ENTRY_HARDWARE_BITS_LARGE 0xffffffff8001073cUL
286#define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */
287#define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */
288#define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */
289#define _REGION3_ENTRY_COMM 0x0010 /* Common-Region, marks swap entry */
290#define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */
291#define _REGION3_ENTRY_WRITE 0x8000 /* SW region write bit */
292#define _REGION3_ENTRY_READ 0x4000 /* SW region read bit */
293
294#ifdef CONFIG_MEM_SOFT_DIRTY
295#define _REGION3_ENTRY_SOFT_DIRTY 0x0002 /* SW region soft dirty bit */
296#else
297#define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
298#endif
299
300#define _REGION_ENTRY_BITS 0xfffffffffffff22fUL
301
302/*
303 * SW region present bit. For non-leaf region-third-table entries, bits 62-63
304 * indicate the TABLE LENGTH and both must be set to 1. But such entries
305 * would always be considered as present, so it is safe to use bit 63 as
306 * PRESENT bit for PUD.
307 */
308#define _REGION3_ENTRY_PRESENT 0x0001
309
310/* Bits in the segment table entry */
311#define _SEGMENT_ENTRY_BITS 0xfffffffffffffe3fUL
312#define _SEGMENT_ENTRY_HARDWARE_BITS 0xfffffffffffffe3cUL
313#define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE 0xfffffffffff1073cUL
314#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
315#define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* page table origin */
316#define _SEGMENT_ENTRY_PROTECT 0x200 /* segment protection bit */
317#define _SEGMENT_ENTRY_NOEXEC 0x100 /* segment no-execute bit */
318#define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
319#define _SEGMENT_ENTRY_TYPE_MASK 0x0c /* segment table type mask */
320
321#define _SEGMENT_ENTRY (_SEGMENT_ENTRY_PRESENT)
322#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
323
324#define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
325#define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
326
327#define _SEGMENT_ENTRY_COMM 0x0010 /* Common-Segment, marks swap entry */
328#define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
329#define _SEGMENT_ENTRY_WRITE 0x8000 /* SW segment write bit */
330#define _SEGMENT_ENTRY_READ 0x4000 /* SW segment read bit */
331
332#ifdef CONFIG_MEM_SOFT_DIRTY
333#define _SEGMENT_ENTRY_SOFT_DIRTY 0x0002 /* SW segment soft dirty bit */
334#else
335#define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
336#endif
337
338#define _SEGMENT_ENTRY_PRESENT 0x0001 /* SW segment present bit */
339
340/* Common bits in region and segment table entries, for swap entries */
341#define _RST_ENTRY_COMM 0x0010 /* Common-Region/Segment, marks swap entry */
342#define _RST_ENTRY_INVALID 0x0020 /* invalid region/segment table entry */
343
344#define _CRST_ENTRIES 2048 /* number of region/segment table entries */
345#define _PAGE_ENTRIES 256 /* number of page table entries */
346
347#define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
348#define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
349
350#define _REGION1_SHIFT 53
351#define _REGION2_SHIFT 42
352#define _REGION3_SHIFT 31
353#define _SEGMENT_SHIFT 20
354
355#define _REGION1_INDEX (0x7ffUL << _REGION1_SHIFT)
356#define _REGION2_INDEX (0x7ffUL << _REGION2_SHIFT)
357#define _REGION3_INDEX (0x7ffUL << _REGION3_SHIFT)
358#define _SEGMENT_INDEX (0x7ffUL << _SEGMENT_SHIFT)
359#define _PAGE_INDEX (0xffUL << PAGE_SHIFT)
360
361#define _REGION1_SIZE (1UL << _REGION1_SHIFT)
362#define _REGION2_SIZE (1UL << _REGION2_SHIFT)
363#define _REGION3_SIZE (1UL << _REGION3_SHIFT)
364#define _SEGMENT_SIZE (1UL << _SEGMENT_SHIFT)
365
366#define _REGION1_MASK (~(_REGION1_SIZE - 1))
367#define _REGION2_MASK (~(_REGION2_SIZE - 1))
368#define _REGION3_MASK (~(_REGION3_SIZE - 1))
369#define _SEGMENT_MASK (~(_SEGMENT_SIZE - 1))
370
371#define PMD_SHIFT _SEGMENT_SHIFT
372#define PUD_SHIFT _REGION3_SHIFT
373#define P4D_SHIFT _REGION2_SHIFT
374#define PGDIR_SHIFT _REGION1_SHIFT
375
376#define PMD_SIZE _SEGMENT_SIZE
377#define PUD_SIZE _REGION3_SIZE
378#define P4D_SIZE _REGION2_SIZE
379#define PGDIR_SIZE _REGION1_SIZE
380
381#define PMD_MASK _SEGMENT_MASK
382#define PUD_MASK _REGION3_MASK
383#define P4D_MASK _REGION2_MASK
384#define PGDIR_MASK _REGION1_MASK
385
386#define PTRS_PER_PTE _PAGE_ENTRIES
387#define PTRS_PER_PMD _CRST_ENTRIES
388#define PTRS_PER_PUD _CRST_ENTRIES
389#define PTRS_PER_P4D _CRST_ENTRIES
390#define PTRS_PER_PGD _CRST_ENTRIES
391
392/*
393 * Segment table and region3 table entry encoding
394 * (R = read-only, I = invalid, y = young bit):
395 * dy..R...I...wr
396 * prot-none, clean, old 00..1...1...00
397 * prot-none, clean, young 01..1...1...00
398 * prot-none, dirty, old 10..1...1...00
399 * prot-none, dirty, young 11..1...1...00
400 * read-only, clean, old 00..1...1...01
401 * read-only, clean, young 01..1...0...01
402 * read-only, dirty, old 10..1...1...01
403 * read-only, dirty, young 11..1...0...01
404 * read-write, clean, old 00..1...1...11
405 * read-write, clean, young 01..1...0...11
406 * read-write, dirty, old 10..0...1...11
407 * read-write, dirty, young 11..0...0...11
408 * The segment table origin is used to distinguish empty (origin==0) from
409 * read-write, old segment table entries (origin!=0)
410 * HW-bits: R read-only, I invalid
411 * SW-bits: y young, d dirty, r read, w write
412 */
413
414/* Page status table bits for virtualization */
415#define PGSTE_ACC_BITS 0xf000000000000000UL
416#define PGSTE_FP_BIT 0x0800000000000000UL
417#define PGSTE_PCL_BIT 0x0080000000000000UL
418#define PGSTE_HR_BIT 0x0040000000000000UL
419#define PGSTE_HC_BIT 0x0020000000000000UL
420#define PGSTE_GR_BIT 0x0004000000000000UL
421#define PGSTE_GC_BIT 0x0002000000000000UL
422#define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
423#define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
424#define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */
425
426/* Guest Page State used for virtualization */
427#define _PGSTE_GPS_ZERO 0x0000000080000000UL
428#define _PGSTE_GPS_NODAT 0x0000000040000000UL
429#define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
430#define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
431#define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
432#define _PGSTE_GPS_USAGE_POT_VOLATILE 0x0000000002000000UL
433#define _PGSTE_GPS_USAGE_VOLATILE _PGSTE_GPS_USAGE_MASK
434
435/*
436 * A user page table pointer has the space-switch-event bit, the
437 * private-space-control bit and the storage-alteration-event-control
438 * bit set. A kernel page table pointer doesn't need them.
439 */
440#define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
441 _ASCE_ALT_EVENT)
442
443/*
444 * Page protection definitions.
445 */
446#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
447#define PAGE_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | \
448 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
449#define PAGE_RX __pgprot(_PAGE_PRESENT | _PAGE_READ | \
450 _PAGE_INVALID | _PAGE_PROTECT)
451#define PAGE_RW __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
452 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
453#define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
454 _PAGE_INVALID | _PAGE_PROTECT)
455
456#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
457 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
458#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
459 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
460#define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
461 _PAGE_PROTECT | _PAGE_NOEXEC)
462#define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
463 _PAGE_YOUNG | _PAGE_DIRTY)
464
465/*
466 * On s390 the page table entry has an invalid bit and a read-only bit.
467 * Read permission implies execute permission and write permission
468 * implies read permission.
469 */
470 /*xwr*/
471
472/*
473 * Segment entry (large page) protection definitions.
474 */
475#define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_PRESENT | \
476 _SEGMENT_ENTRY_INVALID | \
477 _SEGMENT_ENTRY_PROTECT)
478#define SEGMENT_RO __pgprot(_SEGMENT_ENTRY_PRESENT | \
479 _SEGMENT_ENTRY_PROTECT | \
480 _SEGMENT_ENTRY_READ | \
481 _SEGMENT_ENTRY_NOEXEC)
482#define SEGMENT_RX __pgprot(_SEGMENT_ENTRY_PRESENT | \
483 _SEGMENT_ENTRY_PROTECT | \
484 _SEGMENT_ENTRY_READ)
485#define SEGMENT_RW __pgprot(_SEGMENT_ENTRY_PRESENT | \
486 _SEGMENT_ENTRY_READ | \
487 _SEGMENT_ENTRY_WRITE | \
488 _SEGMENT_ENTRY_NOEXEC)
489#define SEGMENT_RWX __pgprot(_SEGMENT_ENTRY_PRESENT | \
490 _SEGMENT_ENTRY_READ | \
491 _SEGMENT_ENTRY_WRITE)
492#define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \
493 _SEGMENT_ENTRY_LARGE | \
494 _SEGMENT_ENTRY_READ | \
495 _SEGMENT_ENTRY_WRITE | \
496 _SEGMENT_ENTRY_YOUNG | \
497 _SEGMENT_ENTRY_DIRTY | \
498 _SEGMENT_ENTRY_NOEXEC)
499#define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \
500 _SEGMENT_ENTRY_LARGE | \
501 _SEGMENT_ENTRY_READ | \
502 _SEGMENT_ENTRY_YOUNG | \
503 _SEGMENT_ENTRY_PROTECT | \
504 _SEGMENT_ENTRY_NOEXEC)
505#define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY | \
506 _SEGMENT_ENTRY_LARGE | \
507 _SEGMENT_ENTRY_READ | \
508 _SEGMENT_ENTRY_WRITE | \
509 _SEGMENT_ENTRY_YOUNG | \
510 _SEGMENT_ENTRY_DIRTY)
511
512/*
513 * Region3 entry (large page) protection definitions.
514 */
515
516#define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \
517 _REGION3_ENTRY_PRESENT | \
518 _REGION3_ENTRY_LARGE | \
519 _REGION3_ENTRY_READ | \
520 _REGION3_ENTRY_WRITE | \
521 _REGION3_ENTRY_YOUNG | \
522 _REGION3_ENTRY_DIRTY | \
523 _REGION_ENTRY_NOEXEC)
524#define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
525 _REGION3_ENTRY_PRESENT | \
526 _REGION3_ENTRY_LARGE | \
527 _REGION3_ENTRY_READ | \
528 _REGION3_ENTRY_YOUNG | \
529 _REGION_ENTRY_PROTECT | \
530 _REGION_ENTRY_NOEXEC)
531#define REGION3_KERNEL_EXEC __pgprot(_REGION_ENTRY_TYPE_R3 | \
532 _REGION3_ENTRY_PRESENT | \
533 _REGION3_ENTRY_LARGE | \
534 _REGION3_ENTRY_READ | \
535 _REGION3_ENTRY_WRITE | \
536 _REGION3_ENTRY_YOUNG | \
537 _REGION3_ENTRY_DIRTY)
538
539static inline bool mm_p4d_folded(struct mm_struct *mm)
540{
541 return mm->context.asce_limit <= _REGION1_SIZE;
542}
543#define mm_p4d_folded(mm) mm_p4d_folded(mm)
544
545static inline bool mm_pud_folded(struct mm_struct *mm)
546{
547 return mm->context.asce_limit <= _REGION2_SIZE;
548}
549#define mm_pud_folded(mm) mm_pud_folded(mm)
550
551static inline bool mm_pmd_folded(struct mm_struct *mm)
552{
553 return mm->context.asce_limit <= _REGION3_SIZE;
554}
555#define mm_pmd_folded(mm) mm_pmd_folded(mm)
556
557static inline int mm_has_pgste(struct mm_struct *mm)
558{
559#ifdef CONFIG_PGSTE
560 if (unlikely(mm->context.has_pgste))
561 return 1;
562#endif
563 return 0;
564}
565
566static inline int mm_is_protected(struct mm_struct *mm)
567{
568#ifdef CONFIG_PGSTE
569 if (unlikely(atomic_read(&mm->context.protected_count)))
570 return 1;
571#endif
572 return 0;
573}
574
575static inline int mm_alloc_pgste(struct mm_struct *mm)
576{
577#ifdef CONFIG_PGSTE
578 if (unlikely(mm->context.alloc_pgste))
579 return 1;
580#endif
581 return 0;
582}
583
584static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
585{
586 return __pte(pte_val(pte) & ~pgprot_val(prot));
587}
588
589static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
590{
591 return __pte(pte_val(pte) | pgprot_val(prot));
592}
593
594static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
595{
596 return __pmd(pmd_val(pmd) & ~pgprot_val(prot));
597}
598
599static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
600{
601 return __pmd(pmd_val(pmd) | pgprot_val(prot));
602}
603
604static inline pud_t clear_pud_bit(pud_t pud, pgprot_t prot)
605{
606 return __pud(pud_val(pud) & ~pgprot_val(prot));
607}
608
609static inline pud_t set_pud_bit(pud_t pud, pgprot_t prot)
610{
611 return __pud(pud_val(pud) | pgprot_val(prot));
612}
613
614/*
615 * As soon as the guest uses storage keys or enables PV, we deduplicate all
616 * mapped shared zeropages and prevent new shared zeropages from getting
617 * mapped.
618 */
619#define mm_forbids_zeropage mm_forbids_zeropage
620static inline int mm_forbids_zeropage(struct mm_struct *mm)
621{
622#ifdef CONFIG_PGSTE
623 if (!mm->context.allow_cow_sharing)
624 return 1;
625#endif
626 return 0;
627}
628
629static inline int mm_uses_skeys(struct mm_struct *mm)
630{
631#ifdef CONFIG_PGSTE
632 if (mm->context.uses_skeys)
633 return 1;
634#endif
635 return 0;
636}
637
638static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
639{
640 union register_pair r1 = { .even = old, .odd = new, };
641 unsigned long address = (unsigned long)ptr | 1;
642
643 asm volatile(
644 " csp %[r1],%[address]"
645 : [r1] "+&d" (r1.pair), "+m" (*ptr)
646 : [address] "d" (address)
647 : "cc");
648}
649
650/**
651 * cspg() - Compare and Swap and Purge (CSPG)
652 * @ptr: Pointer to the value to be exchanged
653 * @old: The expected old value
654 * @new: The new value
655 *
656 * Return: True if compare and swap was successful, otherwise false.
657 */
658static inline bool cspg(unsigned long *ptr, unsigned long old, unsigned long new)
659{
660 union register_pair r1 = { .even = old, .odd = new, };
661 unsigned long address = (unsigned long)ptr | 1;
662
663 asm volatile(
664 " cspg %[r1],%[address]"
665 : [r1] "+&d" (r1.pair), "+m" (*ptr)
666 : [address] "d" (address)
667 : "cc");
668 return old == r1.even;
669}
670
671#define CRDTE_DTT_PAGE 0x00UL
672#define CRDTE_DTT_SEGMENT 0x10UL
673#define CRDTE_DTT_REGION3 0x14UL
674#define CRDTE_DTT_REGION2 0x18UL
675#define CRDTE_DTT_REGION1 0x1cUL
676
677/**
678 * crdte() - Compare and Replace DAT Table Entry
679 * @old: The expected old value
680 * @new: The new value
681 * @table: Pointer to the value to be exchanged
682 * @dtt: Table type of the table to be exchanged
683 * @address: The address mapped by the entry to be replaced
684 * @asce: The ASCE of this entry
685 *
686 * Return: True if compare and replace was successful, otherwise false.
687 */
688static inline bool crdte(unsigned long old, unsigned long new,
689 unsigned long *table, unsigned long dtt,
690 unsigned long address, unsigned long asce)
691{
692 union register_pair r1 = { .even = old, .odd = new, };
693 union register_pair r2 = { .even = __pa(table) | dtt, .odd = address, };
694
695 asm volatile(".insn rrf,0xb98f0000,%[r1],%[r2],%[asce],0"
696 : [r1] "+&d" (r1.pair)
697 : [r2] "d" (r2.pair), [asce] "a" (asce)
698 : "memory", "cc");
699 return old == r1.even;
700}
701
702/*
703 * pgd/p4d/pud/pmd/pte query functions
704 */
705static inline int pgd_folded(pgd_t pgd)
706{
707 return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
708}
709
710static inline int pgd_present(pgd_t pgd)
711{
712 if (pgd_folded(pgd))
713 return 1;
714 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
715}
716
717static inline int pgd_none(pgd_t pgd)
718{
719 if (pgd_folded(pgd))
720 return 0;
721 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
722}
723
724static inline int pgd_bad(pgd_t pgd)
725{
726 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1)
727 return 0;
728 return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0;
729}
730
731static inline unsigned long pgd_pfn(pgd_t pgd)
732{
733 unsigned long origin_mask;
734
735 origin_mask = _REGION_ENTRY_ORIGIN;
736 return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
737}
738
739static inline int p4d_folded(p4d_t p4d)
740{
741 return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
742}
743
744static inline int p4d_present(p4d_t p4d)
745{
746 if (p4d_folded(p4d))
747 return 1;
748 return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
749}
750
751static inline int p4d_none(p4d_t p4d)
752{
753 if (p4d_folded(p4d))
754 return 0;
755 return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
756}
757
758static inline unsigned long p4d_pfn(p4d_t p4d)
759{
760 unsigned long origin_mask;
761
762 origin_mask = _REGION_ENTRY_ORIGIN;
763 return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
764}
765
766static inline int pud_folded(pud_t pud)
767{
768 return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
769}
770
771static inline int pud_present(pud_t pud)
772{
773 if (pud_folded(pud))
774 return 1;
775 return (pud_val(pud) & _REGION3_ENTRY_PRESENT) != 0;
776}
777
778static inline int pud_none(pud_t pud)
779{
780 if (pud_folded(pud))
781 return 0;
782 return pud_val(pud) == _REGION3_ENTRY_EMPTY;
783}
784
785#define pud_leaf pud_leaf
786static inline bool pud_leaf(pud_t pud)
787{
788 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
789 return 0;
790 return (pud_present(pud) && (pud_val(pud) & _REGION3_ENTRY_LARGE) != 0);
791}
792
793static inline int pmd_present(pmd_t pmd)
794{
795 return (pmd_val(pmd) & _SEGMENT_ENTRY_PRESENT) != 0;
796}
797
798#define pmd_leaf pmd_leaf
799static inline bool pmd_leaf(pmd_t pmd)
800{
801 return (pmd_present(pmd) && (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0);
802}
803
804static inline int pmd_bad(pmd_t pmd)
805{
806 if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0 || pmd_leaf(pmd))
807 return 1;
808 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
809}
810
811static inline int pud_bad(pud_t pud)
812{
813 unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK;
814
815 if (type > _REGION_ENTRY_TYPE_R3 || pud_leaf(pud))
816 return 1;
817 if (type < _REGION_ENTRY_TYPE_R3)
818 return 0;
819 return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
820}
821
822static inline int p4d_bad(p4d_t p4d)
823{
824 unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK;
825
826 if (type > _REGION_ENTRY_TYPE_R2)
827 return 1;
828 if (type < _REGION_ENTRY_TYPE_R2)
829 return 0;
830 return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
831}
832
833static inline int pmd_none(pmd_t pmd)
834{
835 return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
836}
837
838#define pmd_write pmd_write
839static inline int pmd_write(pmd_t pmd)
840{
841 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
842}
843
844#define pud_write pud_write
845static inline int pud_write(pud_t pud)
846{
847 return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0;
848}
849
850#define pmd_dirty pmd_dirty
851static inline int pmd_dirty(pmd_t pmd)
852{
853 return (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
854}
855
856#define pmd_young pmd_young
857static inline int pmd_young(pmd_t pmd)
858{
859 return (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
860}
861
862static inline int pte_present(pte_t pte)
863{
864 /* Bit pattern: (pte & 0x001) == 0x001 */
865 return (pte_val(pte) & _PAGE_PRESENT) != 0;
866}
867
868static inline int pte_none(pte_t pte)
869{
870 /* Bit pattern: pte == 0x400 */
871 return pte_val(pte) == _PAGE_INVALID;
872}
873
874static inline int pte_swap(pte_t pte)
875{
876 /* Bit pattern: (pte & 0x201) == 0x200 */
877 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
878 == _PAGE_PROTECT;
879}
880
881static inline int pte_special(pte_t pte)
882{
883 return (pte_val(pte) & _PAGE_SPECIAL);
884}
885
886#define __HAVE_ARCH_PTE_SAME
887static inline int pte_same(pte_t a, pte_t b)
888{
889 return pte_val(a) == pte_val(b);
890}
891
892#ifdef CONFIG_NUMA_BALANCING
893static inline int pte_protnone(pte_t pte)
894{
895 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
896}
897
898static inline int pmd_protnone(pmd_t pmd)
899{
900 /* pmd_leaf(pmd) implies pmd_present(pmd) */
901 return pmd_leaf(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
902}
903#endif
904
905static inline int pte_swp_exclusive(pte_t pte)
906{
907 return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
908}
909
910static inline pte_t pte_swp_mkexclusive(pte_t pte)
911{
912 return set_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE));
913}
914
915static inline pte_t pte_swp_clear_exclusive(pte_t pte)
916{
917 return clear_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE));
918}
919
920static inline int pte_soft_dirty(pte_t pte)
921{
922 return pte_val(pte) & _PAGE_SOFT_DIRTY;
923}
924#define pte_swp_soft_dirty pte_soft_dirty
925
926static inline pte_t pte_mksoft_dirty(pte_t pte)
927{
928 return set_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY));
929}
930#define pte_swp_mksoft_dirty pte_mksoft_dirty
931
932static inline pte_t pte_clear_soft_dirty(pte_t pte)
933{
934 return clear_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY));
935}
936#define pte_swp_clear_soft_dirty pte_clear_soft_dirty
937
938static inline int pmd_soft_dirty(pmd_t pmd)
939{
940 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
941}
942
943static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
944{
945 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY));
946}
947
948static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
949{
950 return clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY));
951}
952
953/*
954 * query functions pte_write/pte_dirty/pte_young only work if
955 * pte_present() is true. Undefined behaviour if not..
956 */
957static inline int pte_write(pte_t pte)
958{
959 return (pte_val(pte) & _PAGE_WRITE) != 0;
960}
961
962static inline int pte_dirty(pte_t pte)
963{
964 return (pte_val(pte) & _PAGE_DIRTY) != 0;
965}
966
967static inline int pte_young(pte_t pte)
968{
969 return (pte_val(pte) & _PAGE_YOUNG) != 0;
970}
971
972#define __HAVE_ARCH_PTE_UNUSED
973static inline int pte_unused(pte_t pte)
974{
975 return pte_val(pte) & _PAGE_UNUSED;
976}
977
978/*
979 * Extract the pgprot value from the given pte while at the same time making it
980 * usable for kernel address space mappings where fault driven dirty and
981 * young/old accounting is not supported, i.e _PAGE_PROTECT and _PAGE_INVALID
982 * must not be set.
983 */
984#define pte_pgprot pte_pgprot
985static inline pgprot_t pte_pgprot(pte_t pte)
986{
987 unsigned long pte_flags = pte_val(pte) & _PAGE_CHG_MASK;
988
989 if (pte_write(pte))
990 pte_flags |= pgprot_val(PAGE_KERNEL);
991 else
992 pte_flags |= pgprot_val(PAGE_KERNEL_RO);
993 pte_flags |= pte_val(pte) & mio_wb_bit_mask;
994
995 return __pgprot(pte_flags);
996}
997
998/*
999 * pgd/pmd/pte modification functions
1000 */
1001
1002static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
1003{
1004 WRITE_ONCE(*pgdp, pgd);
1005}
1006
1007static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
1008{
1009 WRITE_ONCE(*p4dp, p4d);
1010}
1011
1012static inline void set_pud(pud_t *pudp, pud_t pud)
1013{
1014 WRITE_ONCE(*pudp, pud);
1015}
1016
1017static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
1018{
1019 WRITE_ONCE(*pmdp, pmd);
1020}
1021
1022static inline void set_pte(pte_t *ptep, pte_t pte)
1023{
1024 WRITE_ONCE(*ptep, pte);
1025}
1026
1027static inline void pgd_clear(pgd_t *pgd)
1028{
1029 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
1030 set_pgd(pgd, __pgd(_REGION1_ENTRY_EMPTY));
1031}
1032
1033static inline void p4d_clear(p4d_t *p4d)
1034{
1035 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1036 set_p4d(p4d, __p4d(_REGION2_ENTRY_EMPTY));
1037}
1038
1039static inline void pud_clear(pud_t *pud)
1040{
1041 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1042 set_pud(pud, __pud(_REGION3_ENTRY_EMPTY));
1043}
1044
1045static inline void pmd_clear(pmd_t *pmdp)
1046{
1047 set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1048}
1049
1050static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
1051{
1052 set_pte(ptep, __pte(_PAGE_INVALID));
1053}
1054
1055/*
1056 * The following pte modification functions only work if
1057 * pte_present() is true. Undefined behaviour if not..
1058 */
1059static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
1060{
1061 pte = clear_pte_bit(pte, __pgprot(~_PAGE_CHG_MASK));
1062 pte = set_pte_bit(pte, newprot);
1063 /*
1064 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
1065 * has the invalid bit set, clear it again for readable, young pages
1066 */
1067 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
1068 pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID));
1069 /*
1070 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
1071 * protection bit set, clear it again for writable, dirty pages
1072 */
1073 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
1074 pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1075 return pte;
1076}
1077
1078static inline pte_t pte_wrprotect(pte_t pte)
1079{
1080 pte = clear_pte_bit(pte, __pgprot(_PAGE_WRITE));
1081 return set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1082}
1083
1084static inline pte_t pte_mkwrite_novma(pte_t pte)
1085{
1086 pte = set_pte_bit(pte, __pgprot(_PAGE_WRITE));
1087 if (pte_val(pte) & _PAGE_DIRTY)
1088 pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1089 return pte;
1090}
1091
1092static inline pte_t pte_mkclean(pte_t pte)
1093{
1094 pte = clear_pte_bit(pte, __pgprot(_PAGE_DIRTY));
1095 return set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1096}
1097
1098static inline pte_t pte_mkdirty(pte_t pte)
1099{
1100 pte = set_pte_bit(pte, __pgprot(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
1101 if (pte_val(pte) & _PAGE_WRITE)
1102 pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1103 return pte;
1104}
1105
1106static inline pte_t pte_mkold(pte_t pte)
1107{
1108 pte = clear_pte_bit(pte, __pgprot(_PAGE_YOUNG));
1109 return set_pte_bit(pte, __pgprot(_PAGE_INVALID));
1110}
1111
1112static inline pte_t pte_mkyoung(pte_t pte)
1113{
1114 pte = set_pte_bit(pte, __pgprot(_PAGE_YOUNG));
1115 if (pte_val(pte) & _PAGE_READ)
1116 pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID));
1117 return pte;
1118}
1119
1120static inline pte_t pte_mkspecial(pte_t pte)
1121{
1122 return set_pte_bit(pte, __pgprot(_PAGE_SPECIAL));
1123}
1124
1125#ifdef CONFIG_HUGETLB_PAGE
1126static inline pte_t pte_mkhuge(pte_t pte)
1127{
1128 return set_pte_bit(pte, __pgprot(_PAGE_LARGE));
1129}
1130#endif
1131
1132#define IPTE_GLOBAL 0
1133#define IPTE_LOCAL 1
1134
1135#define IPTE_NODAT 0x400
1136#define IPTE_GUEST_ASCE 0x800
1137
1138static __always_inline void __ptep_rdp(unsigned long addr, pte_t *ptep,
1139 unsigned long opt, unsigned long asce,
1140 int local)
1141{
1142 unsigned long pto;
1143
1144 pto = __pa(ptep) & ~(PTRS_PER_PTE * sizeof(pte_t) - 1);
1145 asm volatile(".insn rrf,0xb98b0000,%[r1],%[r2],%[asce],%[m4]"
1146 : "+m" (*ptep)
1147 : [r1] "a" (pto), [r2] "a" ((addr & PAGE_MASK) | opt),
1148 [asce] "a" (asce), [m4] "i" (local));
1149}
1150
1151static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep,
1152 unsigned long opt, unsigned long asce,
1153 int local)
1154{
1155 unsigned long pto = __pa(ptep);
1156
1157 if (__builtin_constant_p(opt) && opt == 0) {
1158 /* Invalidation + TLB flush for the pte */
1159 asm volatile(
1160 " ipte %[r1],%[r2],0,%[m4]"
1161 : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
1162 [m4] "i" (local));
1163 return;
1164 }
1165
1166 /* Invalidate ptes with options + TLB flush of the ptes */
1167 opt = opt | (asce & _ASCE_ORIGIN);
1168 asm volatile(
1169 " ipte %[r1],%[r2],%[r3],%[m4]"
1170 : [r2] "+a" (address), [r3] "+a" (opt)
1171 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1172}
1173
1174static __always_inline void __ptep_ipte_range(unsigned long address, int nr,
1175 pte_t *ptep, int local)
1176{
1177 unsigned long pto = __pa(ptep);
1178
1179 /* Invalidate a range of ptes + TLB flush of the ptes */
1180 do {
1181 asm volatile(
1182 " ipte %[r1],%[r2],%[r3],%[m4]"
1183 : [r2] "+a" (address), [r3] "+a" (nr)
1184 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1185 } while (nr != 255);
1186}
1187
1188/*
1189 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1190 * both clear the TLB for the unmapped pte. The reason is that
1191 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1192 * to modify an active pte. The sequence is
1193 * 1) ptep_get_and_clear
1194 * 2) set_pte_at
1195 * 3) flush_tlb_range
1196 * On s390 the tlb needs to get flushed with the modification of the pte
1197 * if the pte is active. The only way how this can be implemented is to
1198 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1199 * is a nop.
1200 */
1201pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1202pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1203
1204#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1205static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1206 unsigned long addr, pte_t *ptep)
1207{
1208 pte_t pte = *ptep;
1209
1210 pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1211 return pte_young(pte);
1212}
1213
1214#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1215static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1216 unsigned long address, pte_t *ptep)
1217{
1218 return ptep_test_and_clear_young(vma, address, ptep);
1219}
1220
1221#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1222static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1223 unsigned long addr, pte_t *ptep)
1224{
1225 pte_t res;
1226
1227 res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1228 /* At this point the reference through the mapping is still present */
1229 if (mm_is_protected(mm) && pte_present(res))
1230 uv_convert_from_secure_pte(res);
1231 return res;
1232}
1233
1234#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1235pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1236void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1237 pte_t *, pte_t, pte_t);
1238
1239#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1240static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1241 unsigned long addr, pte_t *ptep)
1242{
1243 pte_t res;
1244
1245 res = ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1246 /* At this point the reference through the mapping is still present */
1247 if (mm_is_protected(vma->vm_mm) && pte_present(res))
1248 uv_convert_from_secure_pte(res);
1249 return res;
1250}
1251
1252/*
1253 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1254 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1255 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1256 * cannot be accessed while the batched unmap is running. In this case
1257 * full==1 and a simple pte_clear is enough. See tlb.h.
1258 */
1259#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1260static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1261 unsigned long addr,
1262 pte_t *ptep, int full)
1263{
1264 pte_t res;
1265
1266 if (full) {
1267 res = *ptep;
1268 set_pte(ptep, __pte(_PAGE_INVALID));
1269 } else {
1270 res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1271 }
1272 /* Nothing to do */
1273 if (!mm_is_protected(mm) || !pte_present(res))
1274 return res;
1275 /*
1276 * At this point the reference through the mapping is still present.
1277 * The notifier should have destroyed all protected vCPUs at this
1278 * point, so the destroy should be successful.
1279 */
1280 if (full && !uv_destroy_pte(res))
1281 return res;
1282 /*
1283 * If something went wrong and the page could not be destroyed, or
1284 * if this is not a mm teardown, the slower export is used as
1285 * fallback instead.
1286 */
1287 uv_convert_from_secure_pte(res);
1288 return res;
1289}
1290
1291#define __HAVE_ARCH_PTEP_SET_WRPROTECT
1292static inline void ptep_set_wrprotect(struct mm_struct *mm,
1293 unsigned long addr, pte_t *ptep)
1294{
1295 pte_t pte = *ptep;
1296
1297 if (pte_write(pte))
1298 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1299}
1300
1301/*
1302 * Check if PTEs only differ in _PAGE_PROTECT HW bit, but also allow SW PTE
1303 * bits in the comparison. Those might change e.g. because of dirty and young
1304 * tracking.
1305 */
1306static inline int pte_allow_rdp(pte_t old, pte_t new)
1307{
1308 /*
1309 * Only allow changes from RO to RW
1310 */
1311 if (!(pte_val(old) & _PAGE_PROTECT) || pte_val(new) & _PAGE_PROTECT)
1312 return 0;
1313
1314 return (pte_val(old) & _PAGE_RDP_MASK) == (pte_val(new) & _PAGE_RDP_MASK);
1315}
1316
1317static inline void flush_tlb_fix_spurious_fault(struct vm_area_struct *vma,
1318 unsigned long address,
1319 pte_t *ptep)
1320{
1321 /*
1322 * RDP might not have propagated the PTE protection reset to all CPUs,
1323 * so there could be spurious TLB protection faults.
1324 * NOTE: This will also be called when a racing pagetable update on
1325 * another thread already installed the correct PTE. Both cases cannot
1326 * really be distinguished.
1327 * Therefore, only do the local TLB flush when RDP can be used, and the
1328 * PTE does not have _PAGE_PROTECT set, to avoid unnecessary overhead.
1329 * A local RDP can be used to do the flush.
1330 */
1331 if (MACHINE_HAS_RDP && !(pte_val(*ptep) & _PAGE_PROTECT))
1332 __ptep_rdp(address, ptep, 0, 0, 1);
1333}
1334#define flush_tlb_fix_spurious_fault flush_tlb_fix_spurious_fault
1335
1336void ptep_reset_dat_prot(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
1337 pte_t new);
1338
1339#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1340static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1341 unsigned long addr, pte_t *ptep,
1342 pte_t entry, int dirty)
1343{
1344 if (pte_same(*ptep, entry))
1345 return 0;
1346 if (MACHINE_HAS_RDP && !mm_has_pgste(vma->vm_mm) && pte_allow_rdp(*ptep, entry))
1347 ptep_reset_dat_prot(vma->vm_mm, addr, ptep, entry);
1348 else
1349 ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1350 return 1;
1351}
1352
1353/*
1354 * Additional functions to handle KVM guest page tables
1355 */
1356void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1357 pte_t *ptep, pte_t entry);
1358void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1359void ptep_notify(struct mm_struct *mm, unsigned long addr,
1360 pte_t *ptep, unsigned long bits);
1361int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1362 pte_t *ptep, int prot, unsigned long bit);
1363void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1364 pte_t *ptep , int reset);
1365void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1366int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1367 pte_t *sptep, pte_t *tptep, pte_t pte);
1368void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1369
1370bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1371 pte_t *ptep);
1372int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1373 unsigned char key, bool nq);
1374int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1375 unsigned char key, unsigned char *oldkey,
1376 bool nq, bool mr, bool mc);
1377int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1378int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1379 unsigned char *key);
1380
1381int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1382 unsigned long bits, unsigned long value);
1383int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1384int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1385 unsigned long *oldpte, unsigned long *oldpgste);
1386void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
1387void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1388void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1389void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
1390
1391#define pgprot_writecombine pgprot_writecombine
1392pgprot_t pgprot_writecombine(pgprot_t prot);
1393
1394#define pgprot_writethrough pgprot_writethrough
1395pgprot_t pgprot_writethrough(pgprot_t prot);
1396
1397#define PFN_PTE_SHIFT PAGE_SHIFT
1398
1399/*
1400 * Set multiple PTEs to consecutive pages with a single call. All PTEs
1401 * are within the same folio, PMD and VMA.
1402 */
1403static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
1404 pte_t *ptep, pte_t entry, unsigned int nr)
1405{
1406 if (pte_present(entry))
1407 entry = clear_pte_bit(entry, __pgprot(_PAGE_UNUSED));
1408 if (mm_has_pgste(mm)) {
1409 for (;;) {
1410 ptep_set_pte_at(mm, addr, ptep, entry);
1411 if (--nr == 0)
1412 break;
1413 ptep++;
1414 entry = __pte(pte_val(entry) + PAGE_SIZE);
1415 addr += PAGE_SIZE;
1416 }
1417 } else {
1418 for (;;) {
1419 set_pte(ptep, entry);
1420 if (--nr == 0)
1421 break;
1422 ptep++;
1423 entry = __pte(pte_val(entry) + PAGE_SIZE);
1424 }
1425 }
1426}
1427#define set_ptes set_ptes
1428
1429/*
1430 * Conversion functions: convert a page and protection to a page entry,
1431 * and a page entry and page directory to the page they refer to.
1432 */
1433static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1434{
1435 pte_t __pte;
1436
1437 __pte = __pte(physpage | pgprot_val(pgprot));
1438 if (!MACHINE_HAS_NX)
1439 __pte = clear_pte_bit(__pte, __pgprot(_PAGE_NOEXEC));
1440 return pte_mkyoung(__pte);
1441}
1442
1443static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1444{
1445 unsigned long physpage = page_to_phys(page);
1446 pte_t __pte = mk_pte_phys(physpage, pgprot);
1447
1448 if (pte_write(__pte) && PageDirty(page))
1449 __pte = pte_mkdirty(__pte);
1450 return __pte;
1451}
1452
1453#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1454#define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1455#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1456#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1457
1458#define p4d_deref(pud) ((unsigned long)__va(p4d_val(pud) & _REGION_ENTRY_ORIGIN))
1459#define pgd_deref(pgd) ((unsigned long)__va(pgd_val(pgd) & _REGION_ENTRY_ORIGIN))
1460
1461static inline unsigned long pmd_deref(pmd_t pmd)
1462{
1463 unsigned long origin_mask;
1464
1465 origin_mask = _SEGMENT_ENTRY_ORIGIN;
1466 if (pmd_leaf(pmd))
1467 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
1468 return (unsigned long)__va(pmd_val(pmd) & origin_mask);
1469}
1470
1471static inline unsigned long pmd_pfn(pmd_t pmd)
1472{
1473 return __pa(pmd_deref(pmd)) >> PAGE_SHIFT;
1474}
1475
1476static inline unsigned long pud_deref(pud_t pud)
1477{
1478 unsigned long origin_mask;
1479
1480 origin_mask = _REGION_ENTRY_ORIGIN;
1481 if (pud_leaf(pud))
1482 origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
1483 return (unsigned long)__va(pud_val(pud) & origin_mask);
1484}
1485
1486#define pud_pfn pud_pfn
1487static inline unsigned long pud_pfn(pud_t pud)
1488{
1489 return __pa(pud_deref(pud)) >> PAGE_SHIFT;
1490}
1491
1492/*
1493 * The pgd_offset function *always* adds the index for the top-level
1494 * region/segment table. This is done to get a sequence like the
1495 * following to work:
1496 * pgdp = pgd_offset(current->mm, addr);
1497 * pgd = READ_ONCE(*pgdp);
1498 * p4dp = p4d_offset(&pgd, addr);
1499 * ...
1500 * The subsequent p4d_offset, pud_offset and pmd_offset functions
1501 * only add an index if they dereferenced the pointer.
1502 */
1503static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address)
1504{
1505 unsigned long rste;
1506 unsigned int shift;
1507
1508 /* Get the first entry of the top level table */
1509 rste = pgd_val(*pgd);
1510 /* Pick up the shift from the table type of the first entry */
1511 shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20;
1512 return pgd + ((address >> shift) & (PTRS_PER_PGD - 1));
1513}
1514
1515#define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
1516
1517static inline p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long address)
1518{
1519 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1)
1520 return (p4d_t *) pgd_deref(pgd) + p4d_index(address);
1521 return (p4d_t *) pgdp;
1522}
1523#define p4d_offset_lockless p4d_offset_lockless
1524
1525static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long address)
1526{
1527 return p4d_offset_lockless(pgdp, *pgdp, address);
1528}
1529
1530static inline pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long address)
1531{
1532 if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2)
1533 return (pud_t *) p4d_deref(p4d) + pud_index(address);
1534 return (pud_t *) p4dp;
1535}
1536#define pud_offset_lockless pud_offset_lockless
1537
1538static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long address)
1539{
1540 return pud_offset_lockless(p4dp, *p4dp, address);
1541}
1542#define pud_offset pud_offset
1543
1544static inline pmd_t *pmd_offset_lockless(pud_t *pudp, pud_t pud, unsigned long address)
1545{
1546 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3)
1547 return (pmd_t *) pud_deref(pud) + pmd_index(address);
1548 return (pmd_t *) pudp;
1549}
1550#define pmd_offset_lockless pmd_offset_lockless
1551
1552static inline pmd_t *pmd_offset(pud_t *pudp, unsigned long address)
1553{
1554 return pmd_offset_lockless(pudp, *pudp, address);
1555}
1556#define pmd_offset pmd_offset
1557
1558static inline unsigned long pmd_page_vaddr(pmd_t pmd)
1559{
1560 return (unsigned long) pmd_deref(pmd);
1561}
1562
1563static inline bool gup_fast_permitted(unsigned long start, unsigned long end)
1564{
1565 return end <= current->mm->context.asce_limit;
1566}
1567#define gup_fast_permitted gup_fast_permitted
1568
1569#define pfn_pte(pfn, pgprot) mk_pte_phys(((pfn) << PAGE_SHIFT), (pgprot))
1570#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1571#define pte_page(x) pfn_to_page(pte_pfn(x))
1572
1573#define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1574#define pud_page(pud) pfn_to_page(pud_pfn(pud))
1575#define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1576#define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1577
1578static inline pmd_t pmd_wrprotect(pmd_t pmd)
1579{
1580 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE));
1581 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1582}
1583
1584static inline pmd_t pmd_mkwrite_novma(pmd_t pmd)
1585{
1586 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE));
1587 if (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)
1588 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1589 return pmd;
1590}
1591
1592static inline pmd_t pmd_mkclean(pmd_t pmd)
1593{
1594 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY));
1595 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1596}
1597
1598static inline pmd_t pmd_mkdirty(pmd_t pmd)
1599{
1600 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_SOFT_DIRTY));
1601 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1602 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1603 return pmd;
1604}
1605
1606static inline pud_t pud_wrprotect(pud_t pud)
1607{
1608 pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE));
1609 return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1610}
1611
1612static inline pud_t pud_mkwrite(pud_t pud)
1613{
1614 pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE));
1615 if (pud_val(pud) & _REGION3_ENTRY_DIRTY)
1616 pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1617 return pud;
1618}
1619
1620static inline pud_t pud_mkclean(pud_t pud)
1621{
1622 pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY));
1623 return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1624}
1625
1626static inline pud_t pud_mkdirty(pud_t pud)
1627{
1628 pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY | _REGION3_ENTRY_SOFT_DIRTY));
1629 if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1630 pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1631 return pud;
1632}
1633
1634#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1635static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1636{
1637 /*
1638 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1639 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1640 */
1641 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1642 return pgprot_val(SEGMENT_NONE);
1643 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1644 return pgprot_val(SEGMENT_RO);
1645 if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1646 return pgprot_val(SEGMENT_RX);
1647 if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1648 return pgprot_val(SEGMENT_RW);
1649 return pgprot_val(SEGMENT_RWX);
1650}
1651
1652static inline pmd_t pmd_mkyoung(pmd_t pmd)
1653{
1654 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1655 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1656 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1657 return pmd;
1658}
1659
1660static inline pmd_t pmd_mkold(pmd_t pmd)
1661{
1662 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1663 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1664}
1665
1666static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1667{
1668 unsigned long mask;
1669
1670 mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
1671 mask |= _SEGMENT_ENTRY_DIRTY;
1672 mask |= _SEGMENT_ENTRY_YOUNG;
1673 mask |= _SEGMENT_ENTRY_LARGE;
1674 mask |= _SEGMENT_ENTRY_SOFT_DIRTY;
1675 pmd = __pmd(pmd_val(pmd) & mask);
1676 pmd = set_pmd_bit(pmd, __pgprot(massage_pgprot_pmd(newprot)));
1677 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1678 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1679 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1680 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1681 return pmd;
1682}
1683
1684static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1685{
1686 return __pmd(physpage + massage_pgprot_pmd(pgprot));
1687}
1688
1689#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1690
1691static inline void __pmdp_csp(pmd_t *pmdp)
1692{
1693 csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1694 pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1695}
1696
1697#define IDTE_GLOBAL 0
1698#define IDTE_LOCAL 1
1699
1700#define IDTE_PTOA 0x0800
1701#define IDTE_NODAT 0x1000
1702#define IDTE_GUEST_ASCE 0x2000
1703
1704static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1705 unsigned long opt, unsigned long asce,
1706 int local)
1707{
1708 unsigned long sto;
1709
1710 sto = __pa(pmdp) - pmd_index(addr) * sizeof(pmd_t);
1711 if (__builtin_constant_p(opt) && opt == 0) {
1712 /* flush without guest asce */
1713 asm volatile(
1714 " idte %[r1],0,%[r2],%[m4]"
1715 : "+m" (*pmdp)
1716 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1717 [m4] "i" (local)
1718 : "cc" );
1719 } else {
1720 /* flush with guest asce */
1721 asm volatile(
1722 " idte %[r1],%[r3],%[r2],%[m4]"
1723 : "+m" (*pmdp)
1724 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1725 [r3] "a" (asce), [m4] "i" (local)
1726 : "cc" );
1727 }
1728}
1729
1730static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1731 unsigned long opt, unsigned long asce,
1732 int local)
1733{
1734 unsigned long r3o;
1735
1736 r3o = __pa(pudp) - pud_index(addr) * sizeof(pud_t);
1737 r3o |= _ASCE_TYPE_REGION3;
1738 if (__builtin_constant_p(opt) && opt == 0) {
1739 /* flush without guest asce */
1740 asm volatile(
1741 " idte %[r1],0,%[r2],%[m4]"
1742 : "+m" (*pudp)
1743 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1744 [m4] "i" (local)
1745 : "cc");
1746 } else {
1747 /* flush with guest asce */
1748 asm volatile(
1749 " idte %[r1],%[r3],%[r2],%[m4]"
1750 : "+m" (*pudp)
1751 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1752 [r3] "a" (asce), [m4] "i" (local)
1753 : "cc" );
1754 }
1755}
1756
1757pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1758pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1759pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1760
1761#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1762
1763#define __HAVE_ARCH_PGTABLE_DEPOSIT
1764void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1765 pgtable_t pgtable);
1766
1767#define __HAVE_ARCH_PGTABLE_WITHDRAW
1768pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1769
1770#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1771static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1772 unsigned long addr, pmd_t *pmdp,
1773 pmd_t entry, int dirty)
1774{
1775 VM_BUG_ON(addr & ~HPAGE_MASK);
1776
1777 entry = pmd_mkyoung(entry);
1778 if (dirty)
1779 entry = pmd_mkdirty(entry);
1780 if (pmd_val(*pmdp) == pmd_val(entry))
1781 return 0;
1782 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1783 return 1;
1784}
1785
1786#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1787static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1788 unsigned long addr, pmd_t *pmdp)
1789{
1790 pmd_t pmd = *pmdp;
1791
1792 pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1793 return pmd_young(pmd);
1794}
1795
1796#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1797static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1798 unsigned long addr, pmd_t *pmdp)
1799{
1800 VM_BUG_ON(addr & ~HPAGE_MASK);
1801 return pmdp_test_and_clear_young(vma, addr, pmdp);
1802}
1803
1804static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1805 pmd_t *pmdp, pmd_t entry)
1806{
1807 if (!MACHINE_HAS_NX)
1808 entry = clear_pmd_bit(entry, __pgprot(_SEGMENT_ENTRY_NOEXEC));
1809 set_pmd(pmdp, entry);
1810}
1811
1812static inline pmd_t pmd_mkhuge(pmd_t pmd)
1813{
1814 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_LARGE));
1815 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1816 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1817}
1818
1819#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1820static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1821 unsigned long addr, pmd_t *pmdp)
1822{
1823 return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1824}
1825
1826#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1827static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1828 unsigned long addr,
1829 pmd_t *pmdp, int full)
1830{
1831 if (full) {
1832 pmd_t pmd = *pmdp;
1833 set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1834 return pmd;
1835 }
1836 return pmdp_xchg_lazy(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1837}
1838
1839#define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1840static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1841 unsigned long addr, pmd_t *pmdp)
1842{
1843 return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1844}
1845
1846#define __HAVE_ARCH_PMDP_INVALIDATE
1847static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1848 unsigned long addr, pmd_t *pmdp)
1849{
1850 pmd_t pmd;
1851
1852 VM_WARN_ON_ONCE(!pmd_present(*pmdp));
1853 pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1854 return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1855}
1856
1857#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1858static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1859 unsigned long addr, pmd_t *pmdp)
1860{
1861 pmd_t pmd = *pmdp;
1862
1863 if (pmd_write(pmd))
1864 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1865}
1866
1867static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1868 unsigned long address,
1869 pmd_t *pmdp)
1870{
1871 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1872}
1873#define pmdp_collapse_flush pmdp_collapse_flush
1874
1875#define pfn_pmd(pfn, pgprot) mk_pmd_phys(((pfn) << PAGE_SHIFT), (pgprot))
1876#define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1877
1878static inline int pmd_trans_huge(pmd_t pmd)
1879{
1880 return pmd_leaf(pmd);
1881}
1882
1883#define has_transparent_hugepage has_transparent_hugepage
1884static inline int has_transparent_hugepage(void)
1885{
1886 return MACHINE_HAS_EDAT1 ? 1 : 0;
1887}
1888#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1889
1890/*
1891 * 64 bit swap entry format:
1892 * A page-table entry has some bits we have to treat in a special way.
1893 * Bits 54 and 63 are used to indicate the page type. Bit 53 marks the pte
1894 * as invalid.
1895 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1896 * | offset |E11XX|type |S0|
1897 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1898 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1899 *
1900 * Bits 0-51 store the offset.
1901 * Bit 52 (E) is used to remember PG_anon_exclusive.
1902 * Bits 57-61 store the type.
1903 * Bit 62 (S) is used for softdirty tracking.
1904 * Bits 55 and 56 (X) are unused.
1905 */
1906
1907#define __SWP_OFFSET_MASK ((1UL << 52) - 1)
1908#define __SWP_OFFSET_SHIFT 12
1909#define __SWP_TYPE_MASK ((1UL << 5) - 1)
1910#define __SWP_TYPE_SHIFT 2
1911
1912static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1913{
1914 unsigned long pteval;
1915
1916 pteval = _PAGE_INVALID | _PAGE_PROTECT;
1917 pteval |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1918 pteval |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1919 return __pte(pteval);
1920}
1921
1922static inline unsigned long __swp_type(swp_entry_t entry)
1923{
1924 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1925}
1926
1927static inline unsigned long __swp_offset(swp_entry_t entry)
1928{
1929 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1930}
1931
1932static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1933{
1934 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1935}
1936
1937#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1938#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1939
1940/*
1941 * 64 bit swap entry format for REGION3 and SEGMENT table entries (RSTE)
1942 * Bits 59 and 63 are used to indicate the swap entry. Bit 58 marks the rste
1943 * as invalid.
1944 * A swap entry is indicated by bit pattern (rste & 0x011) == 0x010
1945 * | offset |Xtype |11TT|S0|
1946 * |0000000000111111111122222222223333333333444444444455|555555|5566|66|
1947 * |0123456789012345678901234567890123456789012345678901|234567|8901|23|
1948 *
1949 * Bits 0-51 store the offset.
1950 * Bits 53-57 store the type.
1951 * Bit 62 (S) is used for softdirty tracking.
1952 * Bits 60-61 (TT) indicate the table type: 0x01 for REGION3 and 0x00 for SEGMENT.
1953 * Bit 52 (X) is unused.
1954 */
1955
1956#define __SWP_OFFSET_MASK_RSTE ((1UL << 52) - 1)
1957#define __SWP_OFFSET_SHIFT_RSTE 12
1958#define __SWP_TYPE_MASK_RSTE ((1UL << 5) - 1)
1959#define __SWP_TYPE_SHIFT_RSTE 6
1960
1961/*
1962 * TT bits set to 0x00 == SEGMENT. For REGION3 entries, caller must add R3
1963 * bits 0x01. See also __set_huge_pte_at().
1964 */
1965static inline unsigned long mk_swap_rste(unsigned long type, unsigned long offset)
1966{
1967 unsigned long rste;
1968
1969 rste = _RST_ENTRY_INVALID | _RST_ENTRY_COMM;
1970 rste |= (offset & __SWP_OFFSET_MASK_RSTE) << __SWP_OFFSET_SHIFT_RSTE;
1971 rste |= (type & __SWP_TYPE_MASK_RSTE) << __SWP_TYPE_SHIFT_RSTE;
1972 return rste;
1973}
1974
1975static inline unsigned long __swp_type_rste(swp_entry_t entry)
1976{
1977 return (entry.val >> __SWP_TYPE_SHIFT_RSTE) & __SWP_TYPE_MASK_RSTE;
1978}
1979
1980static inline unsigned long __swp_offset_rste(swp_entry_t entry)
1981{
1982 return (entry.val >> __SWP_OFFSET_SHIFT_RSTE) & __SWP_OFFSET_MASK_RSTE;
1983}
1984
1985#define __rste_to_swp_entry(rste) ((swp_entry_t) { rste })
1986
1987extern int vmem_add_mapping(unsigned long start, unsigned long size);
1988extern void vmem_remove_mapping(unsigned long start, unsigned long size);
1989extern int __vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot, bool alloc);
1990extern int vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot);
1991extern void vmem_unmap_4k_page(unsigned long addr);
1992extern pte_t *vmem_get_alloc_pte(unsigned long addr, bool alloc);
1993extern int s390_enable_sie(void);
1994extern int s390_enable_skey(void);
1995extern void s390_reset_cmma(struct mm_struct *mm);
1996
1997/* s390 has a private copy of get unmapped area to deal with cache synonyms */
1998#define HAVE_ARCH_UNMAPPED_AREA
1999#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2000
2001#define pmd_pgtable(pmd) \
2002 ((pgtable_t)__va(pmd_val(pmd) & -sizeof(pte_t)*PTRS_PER_PTE))
2003
2004#endif /* _S390_PAGE_H */