at for-next 998 lines 26 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* 3 * Copyright (C) 2012 Regents of the University of California 4 */ 5 6#ifndef _ASM_RISCV_PGTABLE_H 7#define _ASM_RISCV_PGTABLE_H 8 9#include <linux/mmzone.h> 10#include <linux/sizes.h> 11 12#include <asm/pgtable-bits.h> 13 14#ifndef CONFIG_MMU 15#define KERNEL_LINK_ADDR PAGE_OFFSET 16#define KERN_VIRT_SIZE (UL(-1)) 17#else 18 19#define ADDRESS_SPACE_END (UL(-1)) 20 21#ifdef CONFIG_64BIT 22/* Leave 2GB for kernel and BPF at the end of the address space */ 23#define KERNEL_LINK_ADDR (ADDRESS_SPACE_END - SZ_2G + 1) 24#else 25#define KERNEL_LINK_ADDR PAGE_OFFSET 26#endif 27 28/* Number of entries in the page global directory */ 29#define PTRS_PER_PGD (PAGE_SIZE / sizeof(pgd_t)) 30/* Number of entries in the page table */ 31#define PTRS_PER_PTE (PAGE_SIZE / sizeof(pte_t)) 32 33/* 34 * Half of the kernel address space (1/4 of the entries of the page global 35 * directory) is for the direct mapping. 36 */ 37#define KERN_VIRT_SIZE ((PTRS_PER_PGD / 2 * PGDIR_SIZE) / 2) 38 39#define VMALLOC_SIZE (KERN_VIRT_SIZE >> 1) 40#define VMALLOC_END PAGE_OFFSET 41#define VMALLOC_START (PAGE_OFFSET - VMALLOC_SIZE) 42 43#define BPF_JIT_REGION_SIZE (SZ_128M) 44#ifdef CONFIG_64BIT 45#define BPF_JIT_REGION_START (BPF_JIT_REGION_END - BPF_JIT_REGION_SIZE) 46#define BPF_JIT_REGION_END (MODULES_END) 47#else 48#define BPF_JIT_REGION_START (PAGE_OFFSET - BPF_JIT_REGION_SIZE) 49#define BPF_JIT_REGION_END (VMALLOC_END) 50#endif 51 52/* Modules always live before the kernel */ 53#ifdef CONFIG_64BIT 54/* This is used to define the end of the KASAN shadow region */ 55#define MODULES_LOWEST_VADDR (KERNEL_LINK_ADDR - SZ_2G) 56#define MODULES_VADDR (PFN_ALIGN((unsigned long)&_end) - SZ_2G) 57#define MODULES_END (PFN_ALIGN((unsigned long)&_start)) 58#else 59#define MODULES_VADDR VMALLOC_START 60#define MODULES_END VMALLOC_END 61#endif 62 63/* 64 * Roughly size the vmemmap space to be large enough to fit enough 65 * struct pages to map half the virtual address space. Then 66 * position vmemmap directly below the VMALLOC region. 67 */ 68#define VA_BITS_SV32 32 69#ifdef CONFIG_64BIT 70#define VA_BITS_SV39 39 71#define VA_BITS_SV48 48 72#define VA_BITS_SV57 57 73 74#define VA_BITS (pgtable_l5_enabled ? \ 75 VA_BITS_SV57 : (pgtable_l4_enabled ? VA_BITS_SV48 : VA_BITS_SV39)) 76#else 77#define VA_BITS VA_BITS_SV32 78#endif 79 80#define VMEMMAP_SHIFT \ 81 (VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT) 82#define VMEMMAP_SIZE BIT(VMEMMAP_SHIFT) 83#define VMEMMAP_END VMALLOC_START 84#define VMEMMAP_START (VMALLOC_START - VMEMMAP_SIZE) 85 86/* 87 * Define vmemmap for pfn_to_page & page_to_pfn calls. Needed if kernel 88 * is configured with CONFIG_SPARSEMEM_VMEMMAP enabled. 89 */ 90#define vmemmap ((struct page *)VMEMMAP_START - vmemmap_start_pfn) 91 92#define PCI_IO_SIZE SZ_16M 93#define PCI_IO_END VMEMMAP_START 94#define PCI_IO_START (PCI_IO_END - PCI_IO_SIZE) 95 96#define FIXADDR_TOP PCI_IO_START 97#ifdef CONFIG_64BIT 98#define MAX_FDT_SIZE PMD_SIZE 99#define FIX_FDT_SIZE (MAX_FDT_SIZE + SZ_2M) 100#define FIXADDR_SIZE (PMD_SIZE + FIX_FDT_SIZE) 101#else 102#define MAX_FDT_SIZE PGDIR_SIZE 103#define FIX_FDT_SIZE MAX_FDT_SIZE 104#define FIXADDR_SIZE (PGDIR_SIZE + FIX_FDT_SIZE) 105#endif 106#define FIXADDR_START (FIXADDR_TOP - FIXADDR_SIZE) 107 108#endif 109 110#ifndef __ASSEMBLY__ 111 112#include <asm/page.h> 113#include <asm/tlbflush.h> 114#include <linux/mm_types.h> 115#include <asm/compat.h> 116#include <asm/cpufeature.h> 117 118#define __page_val_to_pfn(_val) (((_val) & _PAGE_PFN_MASK) >> _PAGE_PFN_SHIFT) 119 120#ifdef CONFIG_64BIT 121#include <asm/pgtable-64.h> 122 123#define VA_USER_SV39 (UL(1) << (VA_BITS_SV39 - 1)) 124#define VA_USER_SV48 (UL(1) << (VA_BITS_SV48 - 1)) 125#define VA_USER_SV57 (UL(1) << (VA_BITS_SV57 - 1)) 126 127#define MMAP_VA_BITS_64 ((VA_BITS >= VA_BITS_SV48) ? VA_BITS_SV48 : VA_BITS) 128#define MMAP_MIN_VA_BITS_64 (VA_BITS_SV39) 129#define MMAP_VA_BITS (is_compat_task() ? VA_BITS_SV32 : MMAP_VA_BITS_64) 130#define MMAP_MIN_VA_BITS (is_compat_task() ? VA_BITS_SV32 : MMAP_MIN_VA_BITS_64) 131#else 132#include <asm/pgtable-32.h> 133#endif /* CONFIG_64BIT */ 134 135#include <linux/page_table_check.h> 136 137#ifdef CONFIG_XIP_KERNEL 138#define XIP_FIXUP(addr) ({ \ 139 extern char _sdata[], _start[], _end[]; \ 140 uintptr_t __rom_start_data = CONFIG_XIP_PHYS_ADDR \ 141 + (uintptr_t)&_sdata - (uintptr_t)&_start; \ 142 uintptr_t __rom_end_data = CONFIG_XIP_PHYS_ADDR \ 143 + (uintptr_t)&_end - (uintptr_t)&_start; \ 144 uintptr_t __a = (uintptr_t)(addr); \ 145 (__a >= __rom_start_data && __a < __rom_end_data) ? \ 146 __a - __rom_start_data + CONFIG_PHYS_RAM_BASE : __a; \ 147 }) 148#else 149#define XIP_FIXUP(addr) (addr) 150#endif /* CONFIG_XIP_KERNEL */ 151 152struct pt_alloc_ops { 153 pte_t *(*get_pte_virt)(phys_addr_t pa); 154 phys_addr_t (*alloc_pte)(uintptr_t va); 155#ifndef __PAGETABLE_PMD_FOLDED 156 pmd_t *(*get_pmd_virt)(phys_addr_t pa); 157 phys_addr_t (*alloc_pmd)(uintptr_t va); 158 pud_t *(*get_pud_virt)(phys_addr_t pa); 159 phys_addr_t (*alloc_pud)(uintptr_t va); 160 p4d_t *(*get_p4d_virt)(phys_addr_t pa); 161 phys_addr_t (*alloc_p4d)(uintptr_t va); 162#endif 163}; 164 165extern struct pt_alloc_ops pt_ops __meminitdata; 166 167#ifdef CONFIG_MMU 168/* Number of PGD entries that a user-mode program can use */ 169#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) 170 171/* Page protection bits */ 172#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER) 173 174#define PAGE_NONE __pgprot(_PAGE_PROT_NONE | _PAGE_READ) 175#define PAGE_READ __pgprot(_PAGE_BASE | _PAGE_READ) 176#define PAGE_WRITE __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE) 177#define PAGE_EXEC __pgprot(_PAGE_BASE | _PAGE_EXEC) 178#define PAGE_READ_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC) 179#define PAGE_WRITE_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | \ 180 _PAGE_EXEC | _PAGE_WRITE) 181 182#define PAGE_COPY PAGE_READ 183#define PAGE_COPY_EXEC PAGE_READ_EXEC 184#define PAGE_SHARED PAGE_WRITE 185#define PAGE_SHARED_EXEC PAGE_WRITE_EXEC 186 187#define _PAGE_KERNEL (_PAGE_READ \ 188 | _PAGE_WRITE \ 189 | _PAGE_PRESENT \ 190 | _PAGE_ACCESSED \ 191 | _PAGE_DIRTY \ 192 | _PAGE_GLOBAL) 193 194#define PAGE_KERNEL __pgprot(_PAGE_KERNEL) 195#define PAGE_KERNEL_READ __pgprot(_PAGE_KERNEL & ~_PAGE_WRITE) 196#define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL | _PAGE_EXEC) 197#define PAGE_KERNEL_READ_EXEC __pgprot((_PAGE_KERNEL & ~_PAGE_WRITE) \ 198 | _PAGE_EXEC) 199 200#define PAGE_TABLE __pgprot(_PAGE_TABLE) 201 202#define _PAGE_IOREMAP ((_PAGE_KERNEL & ~_PAGE_MTMASK) | _PAGE_IO) 203#define PAGE_KERNEL_IO __pgprot(_PAGE_IOREMAP) 204 205extern pgd_t swapper_pg_dir[]; 206extern pgd_t trampoline_pg_dir[]; 207extern pgd_t early_pg_dir[]; 208 209#ifdef CONFIG_TRANSPARENT_HUGEPAGE 210static inline int pmd_present(pmd_t pmd) 211{ 212 /* 213 * Checking for _PAGE_LEAF is needed too because: 214 * When splitting a THP, split_huge_page() will temporarily clear 215 * the present bit, in this situation, pmd_present() and 216 * pmd_trans_huge() still needs to return true. 217 */ 218 return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE | _PAGE_LEAF)); 219} 220#else 221static inline int pmd_present(pmd_t pmd) 222{ 223 return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE)); 224} 225#endif 226 227static inline int pmd_none(pmd_t pmd) 228{ 229 return (pmd_val(pmd) == 0); 230} 231 232static inline int pmd_bad(pmd_t pmd) 233{ 234 return !pmd_present(pmd) || (pmd_val(pmd) & _PAGE_LEAF); 235} 236 237#define pmd_leaf pmd_leaf 238static inline bool pmd_leaf(pmd_t pmd) 239{ 240 return pmd_present(pmd) && (pmd_val(pmd) & _PAGE_LEAF); 241} 242 243static inline void set_pmd(pmd_t *pmdp, pmd_t pmd) 244{ 245 WRITE_ONCE(*pmdp, pmd); 246} 247 248static inline void pmd_clear(pmd_t *pmdp) 249{ 250 set_pmd(pmdp, __pmd(0)); 251} 252 253static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot) 254{ 255 unsigned long prot_val = pgprot_val(prot); 256 257 ALT_THEAD_PMA(prot_val); 258 259 return __pgd((pfn << _PAGE_PFN_SHIFT) | prot_val); 260} 261 262static inline unsigned long _pgd_pfn(pgd_t pgd) 263{ 264 return __page_val_to_pfn(pgd_val(pgd)); 265} 266 267static inline struct page *pmd_page(pmd_t pmd) 268{ 269 return pfn_to_page(__page_val_to_pfn(pmd_val(pmd))); 270} 271 272static inline unsigned long pmd_page_vaddr(pmd_t pmd) 273{ 274 return (unsigned long)pfn_to_virt(__page_val_to_pfn(pmd_val(pmd))); 275} 276 277static inline pte_t pmd_pte(pmd_t pmd) 278{ 279 return __pte(pmd_val(pmd)); 280} 281 282static inline pte_t pud_pte(pud_t pud) 283{ 284 return __pte(pud_val(pud)); 285} 286 287#ifdef CONFIG_RISCV_ISA_SVNAPOT 288 289static __always_inline bool has_svnapot(void) 290{ 291 return riscv_has_extension_likely(RISCV_ISA_EXT_SVNAPOT); 292} 293 294static inline unsigned long pte_napot(pte_t pte) 295{ 296 return pte_val(pte) & _PAGE_NAPOT; 297} 298 299static inline pte_t pte_mknapot(pte_t pte, unsigned int order) 300{ 301 int pos = order - 1 + _PAGE_PFN_SHIFT; 302 unsigned long napot_bit = BIT(pos); 303 unsigned long napot_mask = ~GENMASK(pos, _PAGE_PFN_SHIFT); 304 305 return __pte((pte_val(pte) & napot_mask) | napot_bit | _PAGE_NAPOT); 306} 307 308#else 309 310static __always_inline bool has_svnapot(void) { return false; } 311 312static inline unsigned long pte_napot(pte_t pte) 313{ 314 return 0; 315} 316 317#endif /* CONFIG_RISCV_ISA_SVNAPOT */ 318 319/* Yields the page frame number (PFN) of a page table entry */ 320static inline unsigned long pte_pfn(pte_t pte) 321{ 322 unsigned long res = __page_val_to_pfn(pte_val(pte)); 323 324 if (has_svnapot() && pte_napot(pte)) 325 res = res & (res - 1UL); 326 327 return res; 328} 329 330#define pte_page(x) pfn_to_page(pte_pfn(x)) 331 332/* Constructs a page table entry */ 333static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot) 334{ 335 unsigned long prot_val = pgprot_val(prot); 336 337 ALT_THEAD_PMA(prot_val); 338 339 return __pte((pfn << _PAGE_PFN_SHIFT) | prot_val); 340} 341 342#define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot) 343 344static inline int pte_present(pte_t pte) 345{ 346 return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)); 347} 348 349#define pte_accessible pte_accessible 350static inline unsigned long pte_accessible(struct mm_struct *mm, pte_t a) 351{ 352 if (pte_val(a) & _PAGE_PRESENT) 353 return true; 354 355 if ((pte_val(a) & _PAGE_PROT_NONE) && 356 atomic_read(&mm->tlb_flush_pending)) 357 return true; 358 359 return false; 360} 361 362static inline int pte_none(pte_t pte) 363{ 364 return (pte_val(pte) == 0); 365} 366 367static inline int pte_write(pte_t pte) 368{ 369 return pte_val(pte) & _PAGE_WRITE; 370} 371 372static inline int pte_exec(pte_t pte) 373{ 374 return pte_val(pte) & _PAGE_EXEC; 375} 376 377static inline int pte_user(pte_t pte) 378{ 379 return pte_val(pte) & _PAGE_USER; 380} 381 382static inline int pte_huge(pte_t pte) 383{ 384 return pte_present(pte) && (pte_val(pte) & _PAGE_LEAF); 385} 386 387static inline int pte_dirty(pte_t pte) 388{ 389 return pte_val(pte) & _PAGE_DIRTY; 390} 391 392static inline int pte_young(pte_t pte) 393{ 394 return pte_val(pte) & _PAGE_ACCESSED; 395} 396 397static inline int pte_special(pte_t pte) 398{ 399 return pte_val(pte) & _PAGE_SPECIAL; 400} 401 402#ifdef CONFIG_ARCH_HAS_PTE_DEVMAP 403static inline int pte_devmap(pte_t pte) 404{ 405 return pte_val(pte) & _PAGE_DEVMAP; 406} 407#endif 408 409/* static inline pte_t pte_rdprotect(pte_t pte) */ 410 411static inline pte_t pte_wrprotect(pte_t pte) 412{ 413 return __pte(pte_val(pte) & ~(_PAGE_WRITE)); 414} 415 416/* static inline pte_t pte_mkread(pte_t pte) */ 417 418static inline pte_t pte_mkwrite_novma(pte_t pte) 419{ 420 return __pte(pte_val(pte) | _PAGE_WRITE); 421} 422 423/* static inline pte_t pte_mkexec(pte_t pte) */ 424 425static inline pte_t pte_mkdirty(pte_t pte) 426{ 427 return __pte(pte_val(pte) | _PAGE_DIRTY); 428} 429 430static inline pte_t pte_mkclean(pte_t pte) 431{ 432 return __pte(pte_val(pte) & ~(_PAGE_DIRTY)); 433} 434 435static inline pte_t pte_mkyoung(pte_t pte) 436{ 437 return __pte(pte_val(pte) | _PAGE_ACCESSED); 438} 439 440static inline pte_t pte_mkold(pte_t pte) 441{ 442 return __pte(pte_val(pte) & ~(_PAGE_ACCESSED)); 443} 444 445static inline pte_t pte_mkspecial(pte_t pte) 446{ 447 return __pte(pte_val(pte) | _PAGE_SPECIAL); 448} 449 450static inline pte_t pte_mkdevmap(pte_t pte) 451{ 452 return __pte(pte_val(pte) | _PAGE_DEVMAP); 453} 454 455static inline pte_t pte_mkhuge(pte_t pte) 456{ 457 return pte; 458} 459 460#ifdef CONFIG_RISCV_ISA_SVNAPOT 461#define pte_leaf_size(pte) (pte_napot(pte) ? \ 462 napot_cont_size(napot_cont_order(pte)) :\ 463 PAGE_SIZE) 464#endif 465 466#ifdef CONFIG_NUMA_BALANCING 467/* 468 * See the comment in include/asm-generic/pgtable.h 469 */ 470static inline int pte_protnone(pte_t pte) 471{ 472 return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)) == _PAGE_PROT_NONE; 473} 474 475static inline int pmd_protnone(pmd_t pmd) 476{ 477 return pte_protnone(pmd_pte(pmd)); 478} 479#endif 480 481/* Modify page protection bits */ 482static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 483{ 484 unsigned long newprot_val = pgprot_val(newprot); 485 486 ALT_THEAD_PMA(newprot_val); 487 488 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | newprot_val); 489} 490 491#define pgd_ERROR(e) \ 492 pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e)) 493 494 495/* Commit new configuration to MMU hardware */ 496static inline void update_mmu_cache_range(struct vm_fault *vmf, 497 struct vm_area_struct *vma, unsigned long address, 498 pte_t *ptep, unsigned int nr) 499{ 500 asm goto(ALTERNATIVE("nop", "j %l[svvptc]", 0, RISCV_ISA_EXT_SVVPTC, 1) 501 : : : : svvptc); 502 503 /* 504 * The kernel assumes that TLBs don't cache invalid entries, but 505 * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a 506 * cache flush; it is necessary even after writing invalid entries. 507 * Relying on flush_tlb_fix_spurious_fault would suffice, but 508 * the extra traps reduce performance. So, eagerly SFENCE.VMA. 509 */ 510 while (nr--) 511 local_flush_tlb_page(address + nr * PAGE_SIZE); 512 513svvptc:; 514 /* 515 * Svvptc guarantees that the new valid pte will be visible within 516 * a bounded timeframe, so when the uarch does not cache invalid 517 * entries, we don't have to do anything. 518 */ 519} 520#define update_mmu_cache(vma, addr, ptep) \ 521 update_mmu_cache_range(NULL, vma, addr, ptep, 1) 522 523#define update_mmu_tlb_range(vma, addr, ptep, nr) \ 524 update_mmu_cache_range(NULL, vma, addr, ptep, nr) 525 526static inline void update_mmu_cache_pmd(struct vm_area_struct *vma, 527 unsigned long address, pmd_t *pmdp) 528{ 529 pte_t *ptep = (pte_t *)pmdp; 530 531 update_mmu_cache(vma, address, ptep); 532} 533 534#define __HAVE_ARCH_PTE_SAME 535static inline int pte_same(pte_t pte_a, pte_t pte_b) 536{ 537 return pte_val(pte_a) == pte_val(pte_b); 538} 539 540/* 541 * Certain architectures need to do special things when PTEs within 542 * a page table are directly modified. Thus, the following hook is 543 * made available. 544 */ 545static inline void set_pte(pte_t *ptep, pte_t pteval) 546{ 547 WRITE_ONCE(*ptep, pteval); 548} 549 550void flush_icache_pte(struct mm_struct *mm, pte_t pte); 551 552static inline void __set_pte_at(struct mm_struct *mm, pte_t *ptep, pte_t pteval) 553{ 554 if (pte_present(pteval) && pte_exec(pteval)) 555 flush_icache_pte(mm, pteval); 556 557 set_pte(ptep, pteval); 558} 559 560#define PFN_PTE_SHIFT _PAGE_PFN_SHIFT 561 562static inline void set_ptes(struct mm_struct *mm, unsigned long addr, 563 pte_t *ptep, pte_t pteval, unsigned int nr) 564{ 565 page_table_check_ptes_set(mm, ptep, pteval, nr); 566 567 for (;;) { 568 __set_pte_at(mm, ptep, pteval); 569 if (--nr == 0) 570 break; 571 ptep++; 572 pte_val(pteval) += 1 << _PAGE_PFN_SHIFT; 573 } 574} 575#define set_ptes set_ptes 576 577static inline void pte_clear(struct mm_struct *mm, 578 unsigned long addr, pte_t *ptep) 579{ 580 __set_pte_at(mm, ptep, __pte(0)); 581} 582 583#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS /* defined in mm/pgtable.c */ 584extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address, 585 pte_t *ptep, pte_t entry, int dirty); 586#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG /* defined in mm/pgtable.c */ 587extern int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long address, 588 pte_t *ptep); 589 590#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 591static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 592 unsigned long address, pte_t *ptep) 593{ 594 pte_t pte = __pte(atomic_long_xchg((atomic_long_t *)ptep, 0)); 595 596 page_table_check_pte_clear(mm, pte); 597 598 return pte; 599} 600 601#define __HAVE_ARCH_PTEP_SET_WRPROTECT 602static inline void ptep_set_wrprotect(struct mm_struct *mm, 603 unsigned long address, pte_t *ptep) 604{ 605 atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep); 606} 607 608#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 609static inline int ptep_clear_flush_young(struct vm_area_struct *vma, 610 unsigned long address, pte_t *ptep) 611{ 612 /* 613 * This comment is borrowed from x86, but applies equally to RISC-V: 614 * 615 * Clearing the accessed bit without a TLB flush 616 * doesn't cause data corruption. [ It could cause incorrect 617 * page aging and the (mistaken) reclaim of hot pages, but the 618 * chance of that should be relatively low. ] 619 * 620 * So as a performance optimization don't flush the TLB when 621 * clearing the accessed bit, it will eventually be flushed by 622 * a context switch or a VM operation anyway. [ In the rare 623 * event of it not getting flushed for a long time the delay 624 * shouldn't really matter because there's no real memory 625 * pressure for swapout to react to. ] 626 */ 627 return ptep_test_and_clear_young(vma, address, ptep); 628} 629 630#define pgprot_nx pgprot_nx 631static inline pgprot_t pgprot_nx(pgprot_t _prot) 632{ 633 return __pgprot(pgprot_val(_prot) & ~_PAGE_EXEC); 634} 635 636#define pgprot_noncached pgprot_noncached 637static inline pgprot_t pgprot_noncached(pgprot_t _prot) 638{ 639 unsigned long prot = pgprot_val(_prot); 640 641 prot &= ~_PAGE_MTMASK; 642 prot |= _PAGE_IO; 643 644 return __pgprot(prot); 645} 646 647#define pgprot_writecombine pgprot_writecombine 648static inline pgprot_t pgprot_writecombine(pgprot_t _prot) 649{ 650 unsigned long prot = pgprot_val(_prot); 651 652 prot &= ~_PAGE_MTMASK; 653 prot |= _PAGE_NOCACHE; 654 655 return __pgprot(prot); 656} 657 658/* 659 * Both Svade and Svadu control the hardware behavior when the PTE A/D bits need to be set. By 660 * default the M-mode firmware enables the hardware updating scheme when only Svadu is present in 661 * DT. 662 */ 663#define arch_has_hw_pte_young arch_has_hw_pte_young 664static inline bool arch_has_hw_pte_young(void) 665{ 666 return riscv_has_extension_unlikely(RISCV_ISA_EXT_SVADU); 667} 668 669/* 670 * THP functions 671 */ 672static inline pmd_t pte_pmd(pte_t pte) 673{ 674 return __pmd(pte_val(pte)); 675} 676 677static inline pmd_t pmd_mkhuge(pmd_t pmd) 678{ 679 return pmd; 680} 681 682static inline pmd_t pmd_mkinvalid(pmd_t pmd) 683{ 684 return __pmd(pmd_val(pmd) & ~(_PAGE_PRESENT|_PAGE_PROT_NONE)); 685} 686 687#define __pmd_to_phys(pmd) (__page_val_to_pfn(pmd_val(pmd)) << PAGE_SHIFT) 688 689static inline unsigned long pmd_pfn(pmd_t pmd) 690{ 691 return ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT); 692} 693 694#define __pud_to_phys(pud) (__page_val_to_pfn(pud_val(pud)) << PAGE_SHIFT) 695 696#define pud_pfn pud_pfn 697static inline unsigned long pud_pfn(pud_t pud) 698{ 699 return ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT); 700} 701 702static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 703{ 704 return pte_pmd(pte_modify(pmd_pte(pmd), newprot)); 705} 706 707#define pmd_write pmd_write 708static inline int pmd_write(pmd_t pmd) 709{ 710 return pte_write(pmd_pte(pmd)); 711} 712 713#define pud_write pud_write 714static inline int pud_write(pud_t pud) 715{ 716 return pte_write(pud_pte(pud)); 717} 718 719#define pmd_dirty pmd_dirty 720static inline int pmd_dirty(pmd_t pmd) 721{ 722 return pte_dirty(pmd_pte(pmd)); 723} 724 725#define pmd_young pmd_young 726static inline int pmd_young(pmd_t pmd) 727{ 728 return pte_young(pmd_pte(pmd)); 729} 730 731static inline int pmd_user(pmd_t pmd) 732{ 733 return pte_user(pmd_pte(pmd)); 734} 735 736static inline pmd_t pmd_mkold(pmd_t pmd) 737{ 738 return pte_pmd(pte_mkold(pmd_pte(pmd))); 739} 740 741static inline pmd_t pmd_mkyoung(pmd_t pmd) 742{ 743 return pte_pmd(pte_mkyoung(pmd_pte(pmd))); 744} 745 746static inline pmd_t pmd_mkwrite_novma(pmd_t pmd) 747{ 748 return pte_pmd(pte_mkwrite_novma(pmd_pte(pmd))); 749} 750 751static inline pmd_t pmd_wrprotect(pmd_t pmd) 752{ 753 return pte_pmd(pte_wrprotect(pmd_pte(pmd))); 754} 755 756static inline pmd_t pmd_mkclean(pmd_t pmd) 757{ 758 return pte_pmd(pte_mkclean(pmd_pte(pmd))); 759} 760 761static inline pmd_t pmd_mkdirty(pmd_t pmd) 762{ 763 return pte_pmd(pte_mkdirty(pmd_pte(pmd))); 764} 765 766static inline pmd_t pmd_mkdevmap(pmd_t pmd) 767{ 768 return pte_pmd(pte_mkdevmap(pmd_pte(pmd))); 769} 770 771static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr, 772 pmd_t *pmdp, pmd_t pmd) 773{ 774 page_table_check_pmd_set(mm, pmdp, pmd); 775 return __set_pte_at(mm, (pte_t *)pmdp, pmd_pte(pmd)); 776} 777 778static inline void set_pud_at(struct mm_struct *mm, unsigned long addr, 779 pud_t *pudp, pud_t pud) 780{ 781 page_table_check_pud_set(mm, pudp, pud); 782 return __set_pte_at(mm, (pte_t *)pudp, pud_pte(pud)); 783} 784 785#ifdef CONFIG_PAGE_TABLE_CHECK 786static inline bool pte_user_accessible_page(pte_t pte) 787{ 788 return pte_present(pte) && pte_user(pte); 789} 790 791static inline bool pmd_user_accessible_page(pmd_t pmd) 792{ 793 return pmd_leaf(pmd) && pmd_user(pmd); 794} 795 796static inline bool pud_user_accessible_page(pud_t pud) 797{ 798 return pud_leaf(pud) && pud_user(pud); 799} 800#endif 801 802#ifdef CONFIG_TRANSPARENT_HUGEPAGE 803static inline int pmd_trans_huge(pmd_t pmd) 804{ 805 return pmd_leaf(pmd); 806} 807 808#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 809static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 810 unsigned long address, pmd_t *pmdp, 811 pmd_t entry, int dirty) 812{ 813 return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty); 814} 815 816#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 817static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 818 unsigned long address, pmd_t *pmdp) 819{ 820 return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp); 821} 822 823#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 824static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 825 unsigned long address, pmd_t *pmdp) 826{ 827 pmd_t pmd = __pmd(atomic_long_xchg((atomic_long_t *)pmdp, 0)); 828 829 page_table_check_pmd_clear(mm, pmd); 830 831 return pmd; 832} 833 834#define __HAVE_ARCH_PMDP_SET_WRPROTECT 835static inline void pmdp_set_wrprotect(struct mm_struct *mm, 836 unsigned long address, pmd_t *pmdp) 837{ 838 ptep_set_wrprotect(mm, address, (pte_t *)pmdp); 839} 840 841#define pmdp_establish pmdp_establish 842static inline pmd_t pmdp_establish(struct vm_area_struct *vma, 843 unsigned long address, pmd_t *pmdp, pmd_t pmd) 844{ 845 page_table_check_pmd_set(vma->vm_mm, pmdp, pmd); 846 return __pmd(atomic_long_xchg((atomic_long_t *)pmdp, pmd_val(pmd))); 847} 848 849#define pmdp_collapse_flush pmdp_collapse_flush 850extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 851 unsigned long address, pmd_t *pmdp); 852#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 853 854/* 855 * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that 856 * are !pte_none() && !pte_present(). 857 * 858 * Format of swap PTE: 859 * bit 0: _PAGE_PRESENT (zero) 860 * bit 1 to 3: _PAGE_LEAF (zero) 861 * bit 5: _PAGE_PROT_NONE (zero) 862 * bit 6: exclusive marker 863 * bits 7 to 11: swap type 864 * bits 12 to XLEN-1: swap offset 865 */ 866#define __SWP_TYPE_SHIFT 7 867#define __SWP_TYPE_BITS 5 868#define __SWP_TYPE_MASK ((1UL << __SWP_TYPE_BITS) - 1) 869#define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT) 870 871#define MAX_SWAPFILES_CHECK() \ 872 BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS) 873 874#define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK) 875#define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT) 876#define __swp_entry(type, offset) ((swp_entry_t) \ 877 { (((type) & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT) | \ 878 ((offset) << __SWP_OFFSET_SHIFT) }) 879 880#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 881#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 882 883static inline int pte_swp_exclusive(pte_t pte) 884{ 885 return pte_val(pte) & _PAGE_SWP_EXCLUSIVE; 886} 887 888static inline pte_t pte_swp_mkexclusive(pte_t pte) 889{ 890 return __pte(pte_val(pte) | _PAGE_SWP_EXCLUSIVE); 891} 892 893static inline pte_t pte_swp_clear_exclusive(pte_t pte) 894{ 895 return __pte(pte_val(pte) & ~_PAGE_SWP_EXCLUSIVE); 896} 897 898#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 899#define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) }) 900#define __swp_entry_to_pmd(swp) __pmd((swp).val) 901#endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */ 902 903/* 904 * In the RV64 Linux scheme, we give the user half of the virtual-address space 905 * and give the kernel the other (upper) half. 906 */ 907#ifdef CONFIG_64BIT 908#define KERN_VIRT_START (-(BIT(VA_BITS)) + TASK_SIZE) 909#else 910#define KERN_VIRT_START FIXADDR_START 911#endif 912 913/* 914 * Task size is 0x4000000000 for RV64 or 0x9fc00000 for RV32. 915 * Note that PGDIR_SIZE must evenly divide TASK_SIZE. 916 * Task size is: 917 * - 0x9fc00000 (~2.5GB) for RV32. 918 * - 0x4000000000 ( 256GB) for RV64 using SV39 mmu 919 * - 0x800000000000 ( 128TB) for RV64 using SV48 mmu 920 * - 0x100000000000000 ( 64PB) for RV64 using SV57 mmu 921 * 922 * Note that PGDIR_SIZE must evenly divide TASK_SIZE since "RISC-V 923 * Instruction Set Manual Volume II: Privileged Architecture" states that 924 * "load and store effective addresses, which are 64bits, must have bits 925 * 63–48 all equal to bit 47, or else a page-fault exception will occur." 926 * Similarly for SV57, bits 63–57 must be equal to bit 56. 927 */ 928#ifdef CONFIG_64BIT 929#define TASK_SIZE_64 (PGDIR_SIZE * PTRS_PER_PGD / 2) 930#define TASK_SIZE_MAX LONG_MAX 931 932#ifdef CONFIG_COMPAT 933#define TASK_SIZE_32 (_AC(0x80000000, UL) - PAGE_SIZE) 934#define TASK_SIZE (is_compat_task() ? \ 935 TASK_SIZE_32 : TASK_SIZE_64) 936#else 937#define TASK_SIZE TASK_SIZE_64 938#endif 939 940#else 941#define TASK_SIZE FIXADDR_START 942#endif 943 944#else /* CONFIG_MMU */ 945 946#define PAGE_SHARED __pgprot(0) 947#define PAGE_KERNEL __pgprot(0) 948#define swapper_pg_dir NULL 949#define TASK_SIZE _AC(-1, UL) 950#define VMALLOC_START _AC(0, UL) 951#define VMALLOC_END TASK_SIZE 952 953#endif /* !CONFIG_MMU */ 954 955extern char _start[]; 956extern void *_dtb_early_va; 957extern uintptr_t _dtb_early_pa; 958#if defined(CONFIG_XIP_KERNEL) && defined(CONFIG_MMU) 959#define dtb_early_va (*(void **)XIP_FIXUP(&_dtb_early_va)) 960#define dtb_early_pa (*(uintptr_t *)XIP_FIXUP(&_dtb_early_pa)) 961#else 962#define dtb_early_va _dtb_early_va 963#define dtb_early_pa _dtb_early_pa 964#endif /* CONFIG_XIP_KERNEL */ 965extern u64 satp_mode; 966 967void paging_init(void); 968void misc_mem_init(void); 969 970/* 971 * ZERO_PAGE is a global shared page that is always zero, 972 * used for zero-mapped memory areas, etc. 973 */ 974extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]; 975#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 976 977/* 978 * Use set_p*_safe(), and elide TLB flushing, when confident that *no* 979 * TLB flush will be required as a result of the "set". For example, use 980 * in scenarios where it is known ahead of time that the routine is 981 * setting non-present entries, or re-setting an existing entry to the 982 * same value. Otherwise, use the typical "set" helpers and flush the 983 * TLB. 984 */ 985#define set_p4d_safe(p4dp, p4d) \ 986({ \ 987 WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \ 988 set_p4d(p4dp, p4d); \ 989}) 990 991#define set_pgd_safe(pgdp, pgd) \ 992({ \ 993 WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \ 994 set_pgd(pgdp, pgd); \ 995}) 996#endif /* !__ASSEMBLY__ */ 997 998#endif /* _ASM_RISCV_PGTABLE_H */