at 24.11-pre 1.4 kB view raw
1{ 2 lib, 3 buildPythonPackage, 4 fetchFromGitHub, 5 pythonOlder, 6 # build inputs 7 networkx, 8 numpy, 9 scipy, 10 scikit-learn, 11 pandas, 12 pyparsing, 13 torch, 14 statsmodels, 15 tqdm, 16 joblib, 17 opt-einsum, 18 # check inputs 19 pytestCheckHook, 20 pytest-cov, 21 coverage, 22 mock, 23 black, 24}: 25let 26 pname = "pgmpy"; 27 version = "0.1.25"; 28in 29# optional-dependencies = { 30# all = [ daft ]; 31# }; 32buildPythonPackage { 33 inherit pname version; 34 format = "setuptools"; 35 36 disabled = pythonOlder "3.7"; 37 38 src = fetchFromGitHub { 39 owner = "pgmpy"; 40 repo = pname; 41 rev = "refs/tags/v${version}"; 42 hash = "sha256-d2TNcJQ82XxTWdetLgtKXRpFulAEEzrr+cyRewoA6YI="; 43 }; 44 45 propagatedBuildInputs = [ 46 networkx 47 numpy 48 scipy 49 scikit-learn 50 pandas 51 pyparsing 52 torch 53 statsmodels 54 tqdm 55 joblib 56 opt-einsum 57 ]; 58 59 disabledTests = [ 60 "test_to_daft" # requires optional dependency daft 61 ]; 62 63 nativeCheckInputs = [ 64 pytestCheckHook 65 # xdoctest 66 pytest-cov 67 coverage 68 mock 69 black 70 ]; 71 72 meta = with lib; { 73 description = "Python Library for learning (Structure and Parameter), inference (Probabilistic and Causal), and simulations in Bayesian Networks"; 74 homepage = "https://github.com/pgmpy/pgmpy"; 75 changelog = "https://github.com/pgmpy/pgmpy/releases/tag/v${version}"; 76 license = licenses.mit; 77 maintainers = with maintainers; [ happysalada ]; 78 }; 79}