{ lib, buildPythonPackage, fetchFromGitHub, pythonOlder, # build inputs networkx, numpy, scipy, scikit-learn, pandas, pyparsing, torch, statsmodels, tqdm, joblib, opt-einsum, # check inputs pytestCheckHook, pytest-cov, coverage, mock, black, }: let pname = "pgmpy"; version = "0.1.25"; in # optional-dependencies = { # all = [ daft ]; # }; buildPythonPackage { inherit pname version; format = "setuptools"; disabled = pythonOlder "3.7"; src = fetchFromGitHub { owner = "pgmpy"; repo = pname; rev = "refs/tags/v${version}"; hash = "sha256-d2TNcJQ82XxTWdetLgtKXRpFulAEEzrr+cyRewoA6YI="; }; propagatedBuildInputs = [ networkx numpy scipy scikit-learn pandas pyparsing torch statsmodels tqdm joblib opt-einsum ]; disabledTests = [ "test_to_daft" # requires optional dependency daft ]; nativeCheckInputs = [ pytestCheckHook # xdoctest pytest-cov coverage mock black ]; meta = with lib; { description = "Python Library for learning (Structure and Parameter), inference (Probabilistic and Causal), and simulations in Bayesian Networks"; homepage = "https://github.com/pgmpy/pgmpy"; changelog = "https://github.com/pgmpy/pgmpy/releases/tag/v${version}"; license = licenses.mit; maintainers = with maintainers; [ happysalada ]; }; }