Hierarchical annotation of immune cells in scRNA-Seq data based on ssGSEA algorithm. Fork for large datasets with QOL improvements.

Update README.md

authored by Yingjiang17 and committed by GitHub 9268de73 dc44cae5

Changed files
+9 -3
+9 -3
README.md
··· 14 14 </div> 15 15 16 16 # Installation 17 - R programming language >= 4.1.1 is required to use scImmuCC. 17 + R programming language >= 4.1.1 ,packages Seurat and GSVA are required to use scImmuCC. 18 18 19 19 The installation from GitHub is in experimental stage but gives the newest feature: 20 20 <div style="backgroud-color: #f5f5f5; padding: 10px"> 21 + 22 + if (!requireNamespace("Seurat", quietly = TRUE)) 23 + install.packages("Seurat") 24 + 25 + if (!requireNamespace("GSVA", quietly = TRUE)) 26 + BiocManager::install("GSVA") 21 27 22 28 if (!requireNamespace("remotes", quietly = TRUE)) 23 29 install.packages("remotes") 30 + 24 31 remotes::install_github("wuaipinglab/scImmuCC") 25 32 </div> 26 33 ··· 34 41 35 42 count <- as.matrix(count) 36 43 37 - test <- scImmuCC_Layered(test_data,Non_Immune=FALSE) 38 - ##if your data have non-immune cell, Nn_Immune = TRUE 44 + test <- scImmuCC_Layered(test_data,Non_Immune=FALSE) ##if your data have non-immune cell, Nn_Immune = TRUE 39 45 40 46 </div> 41 47 The annotation results will be output in your current running directory。