+56
-35
R/genelist.R
+56
-35
R/genelist.R
···
3
3
#' @format Data frames with cell type as column names.
4
4
5
5
6
+
cr0_genelist <- read.csv(
7
+
file = paste0("./extdata/",
8
+
"ImmuneOrNot_cr0_genelist.csv",
9
+
sep = ""
10
+
),
11
+
header = TRUE
12
+
)
6
13
7
-
layer0_genelist <- read.csv(file=paste("./extdata/","immune_non-immune_genelist(layer0).csv",sep=""),header=T)
8
-
layer0_genelist
14
+
cr1_genelist <- read.csv(file = paste0("./extdata/",
15
+
"MainType_cr1_genelist.csv",
16
+
sep = ""
17
+
), header = TRUE)
18
+
19
+
Tcell_genelist <- read.csv(file = paste0("./extdata/",
20
+
"Tcell_cr2_genelist.csv",
21
+
sep = ""
22
+
), header = TRUE)
23
+
24
+
Bcell_genelist <- read.csv(file = paste0("./extdata/",
25
+
"Bcell_cr2_genelist.csv",
26
+
sep = ""
27
+
), header = TRUE)
28
+
29
+
DC_genelist <- read.csv(file = paste0("./extdata/",
30
+
"DC_cr2_genelist.csv",
31
+
sep = ""
32
+
), header = TRUE)
33
+
34
+
NK_genelist <- read.csv(file = paste0("./extdata/",
35
+
"NK_cr2_genelist.csv",
36
+
sep = ""
37
+
), header = TRUE)
38
+
39
+
Monocyte_genelist <- read.csv(file = paste0("./extdata/",
40
+
"Monocyte_cr2_genelist.csv",
41
+
sep = ""
42
+
), header = TRUE)
43
+
44
+
Macrophage_genelist <- read.csv(file = paste0("./extdata/",
45
+
"Macrophage_cr2_genelist.csv",
46
+
sep = ""
47
+
), header = TRUE)
48
+
49
+
ILC_genelist <- read.csv(file = paste0("./extdata/",
50
+
"ILC_cr2_genelist.csv",
51
+
sep = ""
52
+
), header = TRUE)
9
53
10
-
layer1_genelist <- read.csv(file=paste("./extdata/","main_type_layer1_genelist.csv",sep=""),header=T)
11
-
layer1_genelist
54
+
CD4_genelist <- read.csv(file = paste0("./extdata/",
55
+
"CD4_cr3_genelist.csv",
56
+
sep = ""
57
+
), header = TRUE)
12
58
59
+
CD8_genelist <- read.csv(file = paste0("./extdata/",
60
+
"CD8_cr3_genelist.csv",
61
+
sep = ""
62
+
), header = TRUE)
13
63
14
-
Tcell_genelist <- read.csv(file=paste("./extdata/","Tcell_layer2_genelist.csv",sep=""),header=T)
64
+
cr0_genelist
65
+
cr1_genelist
15
66
Tcell_genelist
16
-
17
-
Bcell_genelist <- read.csv(file=paste("./extdata/","Bcell_layer2_genelist.csv",sep=""),header=T)
18
67
Bcell_genelist
19
-
20
-
DC_genelist <- read.csv(file=paste("./extdata/","DC_layer2_genelist.csv",sep=""),header=T)
21
68
DC_genelist
22
-
23
-
NK_genelist <- read.csv(file=paste("./extdata/","NK_layer2_genelist.csv",sep=""),header=T)
24
69
NK_genelist
25
-
26
-
Monocyte_genelist <- read.csv(file=paste("./extdata/","Monocyte_layer2_genelist.csv",sep=""),header=T)
27
70
Monocyte_genelist
28
-
29
-
Macrophage_genelist <- read.csv(file=paste("./extdata/","Macrophage_layer2_genelist.csv",sep=""),header=T)
30
71
Macrophage_genelist
31
-
32
-
ILC_genelist <- read.csv(file=paste("./extdata/","ILC_layer2_genelist.csv",sep=""),header=T)
33
72
ILC_genelist
34
-
35
-
CD4_genelist <- read.csv(file=paste("./extdata/","CD4_layer3_genelist.csv",sep=""),header=T)
36
73
CD4_genelist
37
-
38
-
CD8_genelist <- read.csv(file=paste("./extdata/","CD8_layer3_genelist.csv",sep=""),header=T)
39
74
CD8_genelist
40
-
41
-
42
-
# usethis::use_data(layer1_genelist)
43
-
# usethis::use_data(layer0_genelist)
44
-
# usethis::use_data(Tcell_genelist)
45
-
# usethis::use_data(Bcell_genelist)
46
-
# usethis::use_data(DC_genelist)
47
-
# usethis::use_data(NK_genelist)
48
-
# usethis::use_data(Monocyte_genelist)
49
-
# usethis::use_data(Macrophage_genelist)
50
-
# usethis::use_data(ILC_genelist)
51
-
# usethis::use_data(CD4_genelist)
52
-
# usethis::use_data(CD8_genelist)
53
-
+124
-106
R/scImmuCC.R
+124
-106
R/scImmuCC.R
···
1
1
#' @title scImmuCC_Layered.
2
-
#' @description Creating Hierarchical_annotation for scRNA-Seq data immune cell.
3
-
#' @details Input takes a cells-genes matrix with cell unique barcodes as column names and gene names as row names and returns the cells annotation.
4
-
#' @param count a matrix with cell unique barcodes as column names and gene names as row names .
5
-
#' @param Non_Immune Whether non-immune cells are included in the matrix.
6
-
#' @return Data frames with the barcodes and cell types, and some maps.
2
+
#' @description Creating Hierarchical_annotation for scRNA-Seq data immune cell
3
+
#' @details Input takes a cells-genes matrix with cell unique barcodes as
4
+
#' column names and gene names as row names and returns the cells annotation
5
+
#' @param count Matrix with cell unique barcodes as column names and gene names
6
+
#' as row names
7
+
#' @param Non_Immune Whether non-immune cells are included in the matrix
8
+
#' @return Data frames with the barcodes and cell types, and some maps
7
9
#' @import GSVA
8
10
#' @importFrom GSVA gsva
9
11
#' @import Matrix
10
12
#' @export
11
13
#' @examples test_data
12
-
#' library(GSVA)
13
-
#' library(Seurat)
14
-
15
-
scImmuCC_Layered <- function(count,Non_Immune=TRUE){
16
-
17
-
# if (!requireNamespace("GSVA", quietly = TRUE)) {
18
-
# BiocManager::install("GSVA")
19
-
# }
20
-
# if (!requireNamespace("Seurat", quietly = TRUE)){
21
-
# install.packages("Seurat")
22
-
# }
23
-
data("./data/layer1_genelist.rda",package="scImmuCC")
24
-
data("./data/Tcell_genelist.rda",package="scImmuCC")
25
-
data("./data/Bcell_genelist.rda",package="scImmuCC")
26
-
data("./data/DC_genelist.rda",package="scImmuCC")
27
-
data("./data/NK_genelist.rda",package="scImmuCC")
28
-
data("./data/Monocyte_genelist.rda",package="scImmuCC")
29
-
data("./data/Macrophage_genelist.rda",package="scImmuCC")
30
-
data("./data/ILC_genelist.rda",package="scImmuCC")
31
-
data("./data/CD4_genelist.rda",package="scImmuCC")
32
-
data("./data/CD8_genelist.rda",package="scImmuCC")
33
-
data("./data/layer0_genelist.rda",package="scImmuCC")
14
+
scImmuCC_Layered <- function(count, Non_Immune = TRUE) {
15
+
data("./data/cr0_genelist.rda", package = "scImmuCC")
16
+
data("./data/cr1_genelist.rda", package = "scImmuCC")
17
+
data("./data/Tcell_genelist.rda", package = "scImmuCC")
18
+
data("./data/Bcell_genelist.rda", package = "scImmuCC")
19
+
data("./data/DC_genelist.rda", package = "scImmuCC")
20
+
data("./data/NK_genelist.rda", package = "scImmuCC")
21
+
data("./data/Monocyte_genelist.rda", package = "scImmuCC")
22
+
data("./data/Macrophage_genelist.rda", package = "scImmuCC")
23
+
data("./data/ILC_genelist.rda", package = "scImmuCC")
24
+
data("./data/CD4_genelist.rda", package = "scImmuCC")
25
+
data("./data/CD8_genelist.rda", package = "scImmuCC")
34
26
35
-
36
-
if(Non_Immune==TRUE){
37
-
38
-
layer0_result <- scImmuCC_main(count,layer0_genelist,"Layer0")
39
-
immune <- layer0_result[which(layer0_result[,2]=="Immune"),]
40
-
count_immune <- count[,immune[,1]]
41
-
ssGSEA_result <- scImmuCC_main(count_immune,layer1_genelist,"Layer1")
42
-
seurat_result <- seurat_Heatmap(count,layer1_genelist,ssGSEA_result,"Layer1")
43
-
44
-
}else{
45
-
46
-
ssGSEA_result <- scImmuCC_main(count,layer1_genelist,"Layer1")
47
-
seurat_result <- seurat_Heatmap(count,layer1_genelist,ssGSEA_result,"Layer1")
27
+
if (Non_Immune == TRUE) {
28
+
cr0_result <- scImmuCC_main(count, cr0_genelist, "cr0")
29
+
immune <- cr0_result[which(cr0_result[, 2] == "Immune"), ]
30
+
count_immune <- count[, immune[, 1]]
31
+
ssGSEA_result <- scImmuCC_main(count_immune, cr1_genelist, "cr1")
32
+
seurat_result <- seurat_Heatmap(count, cr1_genelist, ssGSEA_result, "cr1")
33
+
} else {
34
+
ssGSEA_result <- scImmuCC_main(count, cr1_genelist, "cr1")
35
+
seurat_result <- seurat_Heatmap(count, cr1_genelist, ssGSEA_result, "cr1")
48
36
}
49
37
50
-
cell_type <- unique(ssGSEA_result[,2])
38
+
cell_type <- unique(ssGSEA_result[, 2])
51
39
52
-
if("Tcell" %in% cell_type){
53
-
sub_ssGSEA_Tcell <- ssGSEA_result[which(ssGSEA_result[,2]=="Tcell"),]
54
-
sub_count_Tcell <- count[,sub_ssGSEA_Tcell[,1]]
40
+
if ("Tcell" %in% cell_type) {
41
+
sub_ssGSEA_Tcell <- ssGSEA_result[which(ssGSEA_result[, 2] == "Tcell"), ]
42
+
sub_count_Tcell <- count[, sub_ssGSEA_Tcell[, 1]]
55
43
sub_count_Tcell <- as.matrix(sub_count_Tcell)
56
-
ssGSEA_Tcell <- scImmuCC_main(sub_count_Tcell,Tcell_genelist,"Layer2_Tcell")
57
-
seurat_Tcell <- seurat_Heatmap(sub_count_Tcell,Tcell_genelist,ssGSEA_Tcell,"Layer2_Tcell")
44
+
ssGSEA_Tcell <- scImmuCC_main(sub_count_Tcell, Tcell_genelist, "cr2_Tcell")
45
+
seurat_Tcell <- seurat_Heatmap(
46
+
sub_count_Tcell, Tcell_genelist,
47
+
ssGSEA_Tcell, "cr2_Tcell"
48
+
)
58
49
59
-
cell_type2 <- unique(ssGSEA_Tcell[,2])
50
+
cell_type2 <- unique(ssGSEA_Tcell[, 2])
60
51
61
-
if("CD4_T" %in% cell_type2){
62
-
sub_ssGSEA_CD4 <- ssGSEA_Tcell[which(ssGSEA_Tcell[,2]=="CD4_T"),]
63
-
sub_count_CD4 <- count[,sub_ssGSEA_CD4[,1]]
52
+
if ("CD4_T" %in% cell_type2) {
53
+
sub_ssGSEA_CD4 <- ssGSEA_Tcell[which(ssGSEA_Tcell[, 2] == "CD4_T"), ]
54
+
sub_count_CD4 <- count[, sub_ssGSEA_CD4[, 1]]
64
55
sub_count_CD4 <- as.matrix(sub_count_CD4)
65
-
ssGSEA_CD4 <- scImmuCC_main(sub_count_CD4,CD4_genelist,"Layer3_CD4")
66
-
cells <- length(sub_count_CD4[2,])
67
-
if(cells>50){
68
-
seurat_CD4 <- seurat_Heatmap(sub_count_CD4,CD4_genelist,ssGSEA_CD4,"Layer3_CD4")
56
+
ssGSEA_CD4 <- scImmuCC_main(sub_count_CD4, CD4_genelist, "cr3_CD4")
57
+
cells <- length(sub_count_CD4[2, ])
58
+
if (cells > 50) {
59
+
seurat_CD4 <- seurat_Heatmap(
60
+
sub_count_CD4, CD4_genelist, ssGSEA_CD4,
61
+
"cr3_CD4"
62
+
)
69
63
}
70
-
71
64
}
72
65
73
66
74
-
if("CD8_T" %in% cell_type2){
75
-
sub_ssGSEA_CD8 <- ssGSEA_Tcell[which(ssGSEA_Tcell[,2]=="CD8_T"),]
76
-
sub_count_CD8 <- count[,sub_ssGSEA_CD8[,1]]
67
+
if ("CD8_T" %in% cell_type2) {
68
+
sub_ssGSEA_CD8 <- ssGSEA_Tcell[which(ssGSEA_Tcell[, 2] == "CD8_T"), ]
69
+
sub_count_CD8 <- count[, sub_ssGSEA_CD8[, 1]]
77
70
sub_count_CD8 <- as.matrix(sub_count_CD8)
78
-
ssGSEA_CD8 <- scImmuCC_main(sub_count_CD8,CD8_genelist,"Layer3_CD8")
79
-
cells <- length(sub_count_CD8[2,])
80
-
if(cells>50){
81
-
seurat_CD8 <- seurat_Heatmap(sub_count_CD8,CD8_genelist,ssGSEA_CD8,"Layer3_CD8")
71
+
ssGSEA_CD8 <- scImmuCC_main(sub_count_CD8, CD8_genelist, "cr3_CD8")
72
+
cells <- length(sub_count_CD8[2, ])
73
+
if (cells > 50) {
74
+
seurat_CD8 <- seurat_Heatmap(
75
+
sub_count_CD8, CD8_genelist, ssGSEA_CD8,
76
+
"cr3_CD8"
77
+
)
82
78
}
83
-
84
79
}
85
80
}
86
81
87
-
if("Bcell" %in% cell_type){
88
-
sub_ssGSEA_Bcell <- ssGSEA_result[which(ssGSEA_result[,2]=="Bcell"),]
89
-
sub_count_Bcell <- count[,sub_ssGSEA_Bcell[,1]]
82
+
if ("Bcell" %in% cell_type) {
83
+
sub_ssGSEA_Bcell <- ssGSEA_result[which(ssGSEA_result[, 2] == "Bcell"), ]
84
+
sub_count_Bcell <- count[, sub_ssGSEA_Bcell[, 1]]
90
85
sub_count_Bcell <- as.matrix(sub_count_Bcell)
91
-
ssGSEA_Bcell <- scImmuCC_main(sub_count_Bcell,Bcell_genelist,"Layer2_Bcell")
92
-
cells <- length(sub_count_Bcell[2,])
93
-
if(cells>50){
94
-
seurat_Bcell <- seurat_Heatmap(sub_count_Bcell,Bcell_genelist,ssGSEA_Bcell,"Layer2_Bcell")
86
+
ssGSEA_Bcell <- scImmuCC_main(sub_count_Bcell, Bcell_genelist, "cr2_Bcell")
87
+
cells <- length(sub_count_Bcell[2, ])
88
+
if (cells > 50) {
89
+
seurat_Bcell <- seurat_Heatmap(
90
+
sub_count_Bcell, Bcell_genelist,
91
+
ssGSEA_Bcell, "cr2_Bcell"
92
+
)
95
93
}
96
94
}
97
95
98
-
if("DC" %in% cell_type){
99
-
sub_ssGSEA_DC <- ssGSEA_result[which(ssGSEA_result[,2]=="DC"),]
100
-
sub_count_DC <- count[,sub_ssGSEA_DC[,1]]
96
+
if ("DC" %in% cell_type) {
97
+
sub_ssGSEA_DC <- ssGSEA_result[which(ssGSEA_result[, 2] == "DC"), ]
98
+
sub_count_DC <- count[, sub_ssGSEA_DC[, 1]]
101
99
sub_count_DC <- as.matrix(sub_count_DC)
102
-
ssGSEA_DC <- scImmuCC_main(sub_count_DC,DC_genelist,"Layer2_DC")
103
-
cells <- length(sub_count_DC[2,])
104
-
if(cells>50){
105
-
seurat_DC <- seurat_Heatmap(sub_count_DC,DC_genelist,ssGSEA_DC,"Layer2_DC")
100
+
ssGSEA_DC <- scImmuCC_main(sub_count_DC, DC_genelist, "cr2_DC")
101
+
cells <- length(sub_count_DC[2, ])
102
+
if (cells > 50) {
103
+
seurat_DC <- seurat_Heatmap(
104
+
sub_count_DC, DC_genelist, ssGSEA_DC,
105
+
"cr2_DC"
106
+
)
106
107
}
107
-
108
108
}
109
109
110
-
if("NK" %in% cell_type){
111
-
sub_ssGSEA_NK <- ssGSEA_result[which(ssGSEA_result[,2]=="NK"),]
112
-
sub_count_NK <- count[,sub_ssGSEA_NK[,1]]
110
+
if ("NK" %in% cell_type) {
111
+
sub_ssGSEA_NK <- ssGSEA_result[which(ssGSEA_result[, 2] == "NK"), ]
112
+
sub_count_NK <- count[, sub_ssGSEA_NK[, 1]]
113
113
sub_count_NK <- as.matrix(sub_count_NK)
114
-
ssGSEA_NK <- scImmuCC_main(sub_count_NK,NK_genelist,"Layer2_NK")
115
-
cells <- length(sub_count_NK[2,])
116
-
if(cells>50){
117
-
seurat_NK <- seurat_Heatmap(sub_count_NK,NK_genelist,ssGSEA_NK,"Layer2_NK")
114
+
ssGSEA_NK <- scImmuCC_main(sub_count_NK, NK_genelist, "cr2_NK")
115
+
cells <- length(sub_count_NK[2, ])
116
+
if (cells > 50) {
117
+
seurat_NK <- seurat_Heatmap(
118
+
sub_count_NK, NK_genelist, ssGSEA_NK,
119
+
"cr2_NK"
120
+
)
118
121
}
119
122
}
120
123
121
-
if("Monocyte" %in% cell_type){
122
-
sub_ssGSEA_Mono <- ssGSEA_result[which(ssGSEA_result[,2]=="Monocyte"),]
123
-
sub_count_Mono <- count[,sub_ssGSEA_Mono[,1]]
124
+
if ("Monocyte" %in% cell_type) {
125
+
sub_ssGSEA_Mono <- ssGSEA_result[which(ssGSEA_result[, 2] == "Monocyte"), ]
126
+
sub_count_Mono <- count[, sub_ssGSEA_Mono[, 1]]
124
127
sub_count_Mono <- as.matrix(sub_count_Mono)
125
-
ssGSEA_Mono <- scImmuCC_main(sub_count_Mono,Monocyte_genelist,"Layer2_Monocyte")
126
-
cells <- length(sub_count_Mono[2,])
127
-
if(cells>50){
128
-
seurat_Mono <- seurat_Heatmap(sub_count_Mono,Monocyte_genelist,ssGSEA_Mono,"Layer2_Monocyte")
128
+
ssGSEA_Mono <- scImmuCC_main(
129
+
sub_count_Mono, Monocyte_genelist,
130
+
"cr2_Monocyte"
131
+
)
132
+
cells <- length(sub_count_Mono[2, ])
133
+
if (cells > 50) {
134
+
seurat_Mono <- seurat_Heatmap(
135
+
sub_count_Mono, Monocyte_genelist,
136
+
ssGSEA_Mono, "cr2_Monocyte"
137
+
)
129
138
}
130
139
}
131
140
132
-
if("Macrophage" %in% cell_type){
133
-
sub_ssGSEA_Mac <- ssGSEA_result[which(ssGSEA_result[,2]=="Macrophage"),]
134
-
sub_count_Mac <- count[,sub_ssGSEA_Mac[,1]]
141
+
if ("Macrophage" %in% cell_type) {
142
+
sub_ssGSEA_Mac <- ssGSEA_result[which(ssGSEA_result[, 2] == "Macrophage"), ]
143
+
sub_count_Mac <- count[, sub_ssGSEA_Mac[, 1]]
135
144
sub_count_Mac <- as.matrix(sub_count_Mac)
136
-
ssGSEA_Mac <- scImmuCC_main(sub_count_Mac,Macrophage_genelist,"Layer2_Macrophage")
137
-
cells <- length(sub_count_Mac[2,])
138
-
if(cells>50){
139
-
seurat_Mac <- seurat_Heatmap(sub_count_Mac,Macrophage_genelist,ssGSEA_Mac,"Layer2_Macrophage")
145
+
ssGSEA_Mac <- scImmuCC_main(
146
+
sub_count_Mac, Macrophage_genelist,
147
+
"cr2_Macrophage"
148
+
)
149
+
cells <- length(sub_count_Mac[2, ])
150
+
if (cells > 50) {
151
+
seurat_Mac <- seurat_Heatmap(
152
+
sub_count_Mac, Macrophage_genelist,
153
+
ssGSEA_Mac, "cr2_Macrophage"
154
+
)
140
155
}
141
156
}
142
157
143
-
if("ILC" %in% cell_type){
144
-
sub_ssGSEA_ILC <- ssGSEA_result[which(ssGSEA_result[,2]=="ILC"),]
145
-
sub_count_ILC <- count[,sub_ssGSEA_ILC[,1]]
158
+
if ("ILC" %in% cell_type) {
159
+
sub_ssGSEA_ILC <- ssGSEA_result[which(ssGSEA_result[, 2] == "ILC"), ]
160
+
sub_count_ILC <- count[, sub_ssGSEA_ILC[, 1]]
146
161
sub_count_ILC <- as.matrix(sub_count_ILC)
147
-
ssGSEA_ILC <- scImmuCC_main(sub_count_ILC,ILC_genelist,"Layer2_ILC")
148
-
cells <- length(sub_count_ILC[2,])
149
-
if(cells>50){
150
-
seurat_ILC <- seurat_Heatmap(sub_count_ILC,ILC_genelist,ssGSEA_ILC,"Layer2_ILC")
162
+
ssGSEA_ILC <- scImmuCC_main(sub_count_ILC, ILC_genelist, "cr2_ILC")
163
+
cells <- length(sub_count_ILC[2, ])
164
+
if (cells > 50) {
165
+
seurat_ILC <- seurat_Heatmap(
166
+
sub_count_ILC, ILC_genelist, ssGSEA_ILC,
167
+
"cr2_ILC"
168
+
)
151
169
}
152
170
}
153
171
}
+22
-34
R/scImmuCC_main.R
+22
-34
R/scImmuCC_main.R
···
1
-
#' @title scImmuCC_main.
2
-
#' @description Calculation of gene enrichment scores and annotate cell type .
3
-
#' @details Input takes a count, genelist and filename, returns a data frame with cell annotation .
4
-
#' @param count a matrix with cell unique barcodes as column names and gene names as row names .
5
-
#' @param genematrix a data frame with cell types as column names .
6
-
#' @param ssGSEA_result a data frame , scImmuCC return result .
7
-
#' @param filename custom file name, character .
8
-
#' @return a data frame with cell annotation.
1
+
#' @title scImmuCC_main
2
+
#' @description Calculation of gene enrichment scores and annotate cell type
3
+
#' @details Input takes a count, genelist and filename, returns a data frame
4
+
#' with cell annotation
5
+
#' @param count Matrix with cell unique barcodes as column names and gene
6
+
#' names as row names
7
+
#' @param genematrix Data frame with cell types as column names
8
+
#' @param ssGSEA_result Data frame, scImmuCC return result
9
+
#' @param filename Custom file name, char
10
+
#' @return Data frame with cell annotation
9
11
#' @import GSVA
10
12
#' @importFrom GSVA gsva
11
13
12
-
13
-
14
-
scImmuCC_main <- function(count,genematrix,filename){
15
-
14
+
scImmuCC_main <- function(count, genematrix, filename) {
15
+
genelist <- as.list(genematrix)
16
+
genelist <- lapply(genelist, function(x) x[!is.na(x)])
16
17
17
-
genelist <- as.list(genematrix)
18
-
genelist <- lapply(genelist,function(x) x[!is.na(x)])
19
-
20
18
ssgsea <- ssgseaParam(
21
19
count,
22
20
genelist
23
-
)
24
-
#,
25
-
#assay = NA_character_,
26
-
#annotation = NA_character_,
27
-
#minSize = 1,
28
-
#maxSize = Inf,
29
-
#alpha = 0.25,
30
-
#normalize = TRUE
31
-
#)
32
-
21
+
)
22
+
33
23
ssgsea_score <- gsva(ssgsea)
34
-
##ssgsea_score = gsva(count, genelist, method = "ssgsea", ssgsea.norm = TRUE, verbose = TRUE) # signature 'matrix,list'
35
24
score <- t(ssgsea_score)
36
25
37
26
barcodes <- c()
38
27
celltype <- c()
39
-
for(i in 1:length(score[,1])){
40
-
a1 <- score[i,]
28
+
for (i in 1:length(score[, 1])) {
29
+
a1 <- score[i, ]
41
30
b1 <- as.data.frame(a1)
42
31
b1$celltype <- rownames(b1)
43
-
f <- b1[which(b1[,1]==max(b1[,1])),]
44
-
barcodes <- c(barcodes,rownames(score)[i])
45
-
celltype <- c(celltype,rownames(f))
32
+
f <- b1[which(b1[, 1] == max(b1[, 1])), ]
33
+
barcodes <- c(barcodes, rownames(score)[i])
34
+
celltype <- c(celltype, rownames(f))
46
35
}
47
36
48
-
ssGSEA_result <- data.frame(barcodes=barcodes,cell_type=celltype)
37
+
ssGSEA_result <- data.frame(barcodes = barcodes, cell_type = celltype)
49
38
head(ssGSEA_result)
50
-
write.csv(ssGSEA_result,paste(filename,"_scImmuCC_label.csv",sep=""))
51
-
return(ssGSEA_result)
39
+
write.csv(ssGSEA_result, paste(filename, "_scImmuCC_label.csv", sep = ""))
52
40
}
+90
-58
R/seurat_maps.R
+90
-58
R/seurat_maps.R
···
1
1
#' @title Seurat Object.
2
-
#' @description Creating dynamic Seurat Object to add annotation information and draw images.
3
-
#' @details Input takes a count, genelist and scImmuCC result, returns tsne, umap, Dotplot and pheatmaps.
4
-
#' @param count a matrix with cell unique barcodes as column names and gene names as row names .
5
-
#' @param genematrix a data frame with cell types as column names .
6
-
#' @param ssGSEA_result a data frame , scImmuCC1.1 return result .
7
-
#' @param filename custom file name, character .
8
-
#' @return 4 pictures.
2
+
#' @description Creating dynamic Seurat Object to add annotation information
3
+
#' and draw images.
4
+
#' @details Input takes a count, genelist and scImmuCC result, returns tsne,
5
+
#' umap, Dotplot and pheatmaps.
6
+
#' @param count a matrix with cell unique barcodes as column names and
7
+
#' gene names as row names
8
+
#' @param genematrix Data frame with cell types as column names
9
+
#' @param ssGSEA_result Data frame, scImmuCC return result
10
+
#' @param filename Custom file name, char
11
+
#' @return 4 pictures
9
12
#' @import ggplot2
10
13
#' @import Seurat
11
-
#' @importFrom Seurat CreateSeuratObject NormalizeData FindVariableFeatures ScaleData PercentageFeatureSet VariableFeatures RunPCA RunUMAP RunTSNE DimPlot DotPlot DoHeatmap ProjectDim JackStraw ScoreJackStraw
14
+
#' @importFrom Seurat CreateSeuratObject NormalizeData FindVariableFeatures
15
+
#' ScaleData PercentageFeatureSet VariableFeatures RunPCA RunUMAP RunTSNE
16
+
#' DimPlot DotPlot DoHeatmap ProjectDim JackStraw ScoreJackStraw
12
17
13
-
14
-
15
-
seurat_Heatmap <- function(count,genematrix,ssGSEA_result,filename){
16
-
18
+
seurat_Heatmap <- function(count, genematrix, ssGSEA_result, filename) {
17
19
count <- count[, !duplicated(colnames(count))]
18
-
celltype <- intersect(colnames(count),ssGSEA_result[,1])
19
-
labels <- ssGSEA_result[which(ssGSEA_result[,1]%in%celltype),]
20
-
count <- count[,labels[,1]]
21
-
22
-
seurat.data <- CreateSeuratObject(counts = count, project = filename)#, min.cells = 3, min.features = 200)
20
+
celltype <- intersect(colnames(count), ssGSEA_result[, 1])
21
+
labels <- ssGSEA_result[which(ssGSEA_result[, 1] %in% celltype), ]
22
+
count <- count[, labels[, 1]]
23
+
24
+
seurat.data <- CreateSeuratObject(counts = count, project = filename)
23
25
seurat.data
24
-
seurat.data[["percent.mt"]] <- PercentageFeatureSet(seurat.data, pattern = "^MT-")
25
-
HB.genes_total <- c("HBA1","HBA2","HBB","HBD","HBE1","HBG1","HBG2","HBM","HBQ1","HBZ")
26
-
HB_m <- match(HB.genes_total,rownames(seurat.data@assays$RNA))
26
+
seurat.data[["percent.mt"]] <- PercentageFeatureSet(seurat.data,
27
+
pattern = "^MT-"
28
+
)
29
+
HB.genes_total <- c(
30
+
"HBA1", "HBA2", "HBB", "HBD", "HBE1", "HBG1", "HBG2",
31
+
"HBM", "HBQ1", "HBZ"
32
+
)
33
+
HB_m <- match(HB.genes_total, rownames(seurat.data@assays$RNA))
27
34
28
35
HB.genes <- rownames(seurat.data@assays$RNA)[HB_m]
29
36
HB.genes <- HB.genes[!is.na(HB.genes)]
30
-
seurat.data[["percent.HB"]]<-PercentageFeatureSet(seurat.data,features=HB.genes)
37
+
seurat.data[["percent.HB"]] <- PercentageFeatureSet(seurat.data,
38
+
features = HB.genes
39
+
)
31
40
32
-
seurat.data <- NormalizeData(seurat.data, normalization.method = "LogNormalize", scale.factor = 10000)
33
-
seurat.data <- FindVariableFeatures(seurat.data, selection.method = "vst", nfeatures = 2000)
41
+
seurat.data <- NormalizeData(seurat.data,
42
+
normalization.method = "LogNormalize",
43
+
scale.factor = 10000
44
+
)
45
+
seurat.data <- FindVariableFeatures(seurat.data,
46
+
selection.method = "vst",
47
+
nfeatures = 2000
48
+
)
34
49
all.genes <- rownames(seurat.data)
35
50
seurat.data <- ScaleData(seurat.data, features = all.genes)
36
51
37
-
#Perform linear dimensional reductionPerform linear dimensional reduction
38
-
#counts <- seurat.data[["RNA"]]@counts
52
+
# Perform linear dimensional reduction
39
53
counts <- seurat.data[["RNA"]]$counts
40
-
cells <- length(counts[2,])
41
-
if(cells>50){
42
-
seurat.data <- RunPCA(seurat.data, features = VariableFeatures(object = seurat.data))
43
-
}else{
44
-
seurat.data <- RunPCA(seurat.data,npcs = (cells-1), features = VariableFeatures(object = seurat.data))
54
+
cells <- length(counts[2, ])
55
+
if (cells > 50) {
56
+
seurat.data <- RunPCA(seurat.data,
57
+
features = VariableFeatures(object = seurat.data)
58
+
)
59
+
} else {
60
+
seurat.data <- RunPCA(seurat.data,
61
+
npcs = (cells - 1),
62
+
features = VariableFeatures(object = seurat.data)
63
+
)
45
64
}
46
-
65
+
47
66
head(seurat.data@reductions$pca@cell.embeddings)
48
67
head(seurat.data@reductions$pca@feature.loadings)
49
68
seurat.data <- ProjectDim(object = seurat.data)
50
69
seurat.data <- JackStraw(seurat.data, num.replicate = 100)
51
70
seurat.data <- ScoreJackStraw(seurat.data, dims = 1:20)
52
-
#seurat.data <- JackStraw(seurat.data, dims = 50)
53
-
#seurat.data <- ScoreJackStraw(seurat.data, dims = 1:50)
54
71
55
72
seurat.data <- RunUMAP(seurat.data, dims = 1:10)
56
-
n <- length(count[2,])
57
-
#seurat.data <- seurat.data[ ,!duplicated(colnames(seurat.data))]
58
-
59
-
min_cell_count <- 100
60
-
if(ncol(seurat.data) >= min_cell_count){
61
-
seurat.data <- RunTSNE(seurat.data, dims = 1:10,check_duplicates = FALSE )
62
-
}
63
-
else{
64
-
seurat.data <- RunTSNE(seurat.data, dims = 1:10, perplexity = 5,check_duplicates = FALSE )
73
+
n <- length(count[2, ])
74
+
75
+
min_cell_count <- 100
76
+
if (ncol(seurat.data) >= min_cell_count) {
77
+
seurat.data <- RunTSNE(seurat.data, dims = 1:10, check_duplicates = FALSE)
78
+
} else {
79
+
seurat.data <- RunTSNE(seurat.data,
80
+
dims = 1:10, perplexity = 5,
81
+
check_duplicates = FALSE
82
+
)
65
83
}
66
84
67
85
head(seurat.data@reductions$tsne@cell.embeddings)
68
86
69
-
#Add annotation information to Seurat object
70
-
seurat.data@meta.data$cell_type_pred <-labels[,2]
87
+
# Add annotation information to Seurat object
88
+
seurat.data@meta.data$cell_type_pred <- labels[, 2]
71
89
72
-
pdf(paste(filename, "_tSNE", ".pdf", sep=""), width=12, height=10)
73
-
p1 <- DimPlot(seurat.data, reduction = "tsne", group.by = "cell_type_pred",label = TRUE, pt.size=1)
90
+
pdf(paste(filename, "_tSNE", ".pdf", sep = ""), width = 12, height = 10)
91
+
p1 <- DimPlot(seurat.data,
92
+
reduction = "tsne",
93
+
group.by = "cell_type_pred", label = TRUE, pt.size = 1
94
+
)
74
95
plot(p1)
75
96
dev.off()
76
-
pdf(paste(filename, "_UMAP", ".pdf", sep=""), width=12, height=10)
77
-
p2 <- DimPlot(seurat.data, reduction = "umap", group.by = "cell_type_pred",label = TRUE, pt.size=1)
97
+
pdf(paste(filename, "_UMAP", ".pdf", sep = ""), width = 12, height = 10)
98
+
p2 <- DimPlot(seurat.data,
99
+
reduction = "umap",
100
+
group.by = "cell_type_pred", label = TRUE, pt.size = 1
101
+
)
78
102
plot(p2)
79
103
dev.off()
80
104
81
105
genelist <- as.list(genematrix)
82
-
genelist <- lapply(genelist,function(x) x[!is.na(x)])
106
+
genelist <- lapply(genelist, function(x) x[!is.na(x)])
83
107
gene <- c()
84
-
for(i in 1:length(genelist)){
85
-
gene <- c(gene,genelist[[i]])
108
+
for (i in 1:length(genelist)) {
109
+
gene <- c(gene, genelist[[i]])
86
110
}
111
+
87
112
length(gene)
88
113
gene <- unique(gene)
89
-
Y <- intersect(gene,rownames(count))
114
+
Y <- intersect(gene, rownames(count))
90
115
length(Y)
91
116
features <- Y
92
-
pdf(paste(filename,"_UMAP_DotPlot",".pdf",sep=""), width=12, height=10)
93
-
p3 <- DotPlot(seurat.data, features = features,group.by = "cell_type_pred") + RotatedAxis()
117
+
pdf(paste(filename, "_UMAP_DotPlot", ".pdf", sep = ""),
118
+
width = 12,
119
+
height = 10
120
+
)
121
+
p3 <- DotPlot(seurat.data,
122
+
features = features,
123
+
group.by = "cell_type_pred"
124
+
) + RotatedAxis()
94
125
plot(p3)
95
126
dev.off()
96
127
97
-
pdf(paste(filename, "_DoHeatmap.pdf", sep=""), width=12, height=10)
98
-
p4 <- DoHeatmap(seurat.data, features = Y,group.by = "cell_type_pred") + NoLegend()
128
+
pdf(paste(filename, "_DoHeatmap.pdf", sep = ""), width = 12, height = 10)
129
+
p4 <- DoHeatmap(seurat.data,
130
+
features = Y,
131
+
group.by = "cell_type_pred"
132
+
) + NoLegend()
99
133
plot(p4)
100
134
dev.off()
101
-
102
135
}
103
-
data/CR0_genelist.rda
data/CR0_genelist.rda
This is a binary file and will not be displayed.
data/CR1_genelist.rda
data/CR1_genelist.rda
This is a binary file and will not be displayed.
data/layer0_genelist.rda
data/layer0_genelist.rda
This is a binary file and will not be displayed.
data/layer1_genelist.rda
data/layer1_genelist.rda
This is a binary file and will not be displayed.
+21
-21
extdata/Bcell_layer2_genelist.csv
extdata/Bcell_cr2_genelist.csv
+21
-21
extdata/Bcell_layer2_genelist.csv
extdata/Bcell_cr2_genelist.csv
···
1
-
Naive_B,Memory_B,Plasma_Cell
2
-
TCL1A,MS4A1,TNFRSF17
3
-
FCER2,LINC00926,GPRC5D
4
-
LINC00926,BANK1,DERL3
5
-
FCER2,CD79A,IGF1
6
-
MS4A1,HLA-DQB1,GLDC
7
-
CD79A,FCER2,HRASLS2
8
-
BANK1,HLA-DQA1,SPACA3
9
-
FCRL1,CD22,SDC1
10
-
HLA-DQB1,FCRL2,MZB1
11
-
HVCN1,ADAM28,TXNDC5
12
-
HLA-DQA1,IGLL5,IgG
13
-
,P2RX5,IGHG4
14
-
,BLK,IGHG1
15
-
,,IGHG3
16
-
,,IGKC
17
-
,,SSR4
18
-
,,FKBP11
19
-
,,AREG
20
-
,,IGLC2
21
-
,,KLRD1
1
+
Naive_B,Memory_B,Plasma_Cell
2
+
TCL1A,MS4A1,TNFRSF17
3
+
FCER2,LINC00926,GPRC5D
4
+
LINC00926,BANK1,DERL3
5
+
FCER2,CD79A,IGF1
6
+
MS4A1,HLA-DQB1,GLDC
7
+
CD79A,FCER2,HRASLS2
8
+
BANK1,HLA-DQA1,SPACA3
9
+
FCRL1,CD22,SDC1
10
+
HLA-DQB1,FCRL2,MZB1
11
+
HVCN1,ADAM28,TXNDC5
12
+
HLA-DQA1,IGLL5,IgG
13
+
,P2RX5,IGHG4
14
+
,BLK,IGHG1
15
+
,,IGHG3
16
+
,,IGKC
17
+
,,SSR4
18
+
,,FKBP11
19
+
,,AREG
20
+
,,IGLC2
21
+
,,KLRD1
+37
-37
extdata/CD4_layer3_genelist.csv
extdata/CD4_cr3_genelist.csv
+37
-37
extdata/CD4_layer3_genelist.csv
extdata/CD4_cr3_genelist.csv
···
1
-
CD4_naive,Treg,Th1,Th2,Th17,Tfh,CD4_Central_memory,CD4_Effector_memory
2
-
TCF7,FOXP3,CD28,ADORA2A,CD274,CD200,MALT1,GFI1
3
-
CCR7,CTLA4,CD274,APOE,IL10RA,CD83,PDK1,MALT1
4
-
CD62L,CD25,IL2,C5AR1,PDCD1,CD84,SKIV2L,SERPINB6
5
-
CD127,GITR,IL4,IL13RA1,IL6,B3GAT1,CCR7,LRRC32
6
-
CD45RA,TIGIT,IL6,MMP9,IL17A,CDK5R1,IL23A,PDK1
7
-
CD132,IL10,IL10RA,MYD88,IL17AF,IL21,CD27,SKIV2L
8
-
IKBKE,AITR,IL12,PTPN13,IL17F,CXCR5,CD28,SPNS2
9
-
LAMP3,LAG3,IL23A,SPI1,IL21,IL4,CD45RO,SSU72
10
-
TRABD2A,LTA,MYD88,TBX21,IL22,STAT3,CD62L,TREX1
11
-
LEF1,IL2RA,PDCD1,TLR4,IL23R,BCL6,CD44,CXCL14
12
-
BCL11B,ITGAE,PLP1,STAT6,AHR,c-MAF,IL7R,NLRP3
13
-
LDLRAP1,GARPh,PTPN2,TIGIT,BATF,BTLA,CD127,TNFRSF4
14
-
,LAPh,TGFB1,TNFRSF4,IL21R,CXCL13,TNFRSF25,SSU72
15
-
,CCR8,CASP8,TSLP,CCR6,B3GAT1,ETS1,TREX1
16
-
,TGFBR1,CRP,USP38,RORA,CD57,AKT3,CD127
17
-
,IL9,IL27RA,GATA3,RORγt,IRF4,ITK,KLRG1
18
-
,SKP2,ICAM1,IRF4,RORC,BATF,TNFSF8,KRG1
19
-
,IL2,IL12B,IL4,IL1R,SLAM,SF3A3,IL12RB1
20
-
,IL10R,TBET,IL5,CTSH,OX4OL,ZNF143,TNFSF4
21
-
,TSC1,IL12R,IL13,IL4I1,CD40L,SMAD3,GPATCH3
22
-
,RICTOR,CXCR3,IL25R,LGALS3,CMAF,CNOT4,PRPF38A
23
-
,,IL18,IL33R,,CD200,CCR4,ITCH
24
-
,,STAT1,BATF,,GNG4,SESN3,IL23R
25
-
,,STAT4,GATA-3,,POU2AF1,TRAT1,ATM
26
-
,,IFNG,STAT6,,IGFBP4,,PNMA1
27
-
,,IL3,CRTH2,,,,RORA
28
-
,,TNF,IL17RB,,,,BMI1
29
-
,,CSF2,ST2,,,,DLL1
30
-
,,,TIM1,,,,FCF1
31
-
,,,CCR4,,,,ATG5
32
-
,,,CCR8,,,,
33
-
,,,CRTH2,,,,
34
-
,,,PTGDR2,,,,
35
-
,,,SEMA5A,,,,
36
-
,,,AKAP12,,,,
37
-
,,,HPGDS,,,,
1
+
CD4_naive,Treg,Th1,Th2,Th17,Tfh,CD4_Central_memory,CD4_Effector_memory
2
+
TCF7,FOXP3,CD28,ADORA2A,CD274,CD200,MALT1,GFI1
3
+
CCR7,CTLA4,CD274,APOE,IL10RA,CD83,PDK1,MALT1
4
+
CD62L,CD25,IL2,C5AR1,PDCD1,CD84,SKIV2L,SERPINB6
5
+
CD127,GITR,IL4,IL13RA1,IL6,B3GAT1,CCR7,LRRC32
6
+
CD45RA,TIGIT,IL6,MMP9,IL17A,CDK5R1,IL23A,PDK1
7
+
CD132,IL10,IL10RA,MYD88,IL17AF,IL21,CD27,SKIV2L
8
+
IKBKE,AITR,IL12,PTPN13,IL17F,CXCR5,CD28,SPNS2
9
+
LAMP3,LAG3,IL23A,SPI1,IL21,IL4,CD45RO,SSU72
10
+
TRABD2A,LTA,MYD88,TBX21,IL22,STAT3,CD62L,TREX1
11
+
LEF1,IL2RA,PDCD1,TLR4,IL23R,BCL6,CD44,CXCL14
12
+
BCL11B,ITGAE,PLP1,STAT6,AHR,c-MAF,IL7R,NLRP3
13
+
LDLRAP1,GARPh,PTPN2,TIGIT,BATF,BTLA,CD127,TNFRSF4
14
+
,LAPh,TGFB1,TNFRSF4,IL21R,CXCL13,TNFRSF25,SSU72
15
+
,CCR8,CASP8,TSLP,CCR6,B3GAT1,ETS1,TREX1
16
+
,TGFBR1,CRP,USP38,RORA,CD57,AKT3,CD127
17
+
,IL9,IL27RA,GATA3,RORγt,IRF4,ITK,KLRG1
18
+
,SKP2,ICAM1,IRF4,RORC,BATF,TNFSF8,KRG1
19
+
,IL2,IL12B,IL4,IL1R,SLAM,SF3A3,IL12RB1
20
+
,IL10R,TBET,IL5,CTSH,OX4OL,ZNF143,TNFSF4
21
+
,TSC1,IL12R,IL13,IL4I1,CD40L,SMAD3,GPATCH3
22
+
,RICTOR,CXCR3,IL25R,LGALS3,CMAF,CNOT4,PRPF38A
23
+
,,IL18,IL33R,,CD200,CCR4,ITCH
24
+
,,STAT1,BATF,,GNG4,SESN3,IL23R
25
+
,,STAT4,GATA-3,,POU2AF1,TRAT1,ATM
26
+
,,IFNG,STAT6,,IGFBP4,,PNMA1
27
+
,,IL3,CRTH2,,,,RORA
28
+
,,TNF,IL17RB,,,,BMI1
29
+
,,CSF2,ST2,,,,DLL1
30
+
,,,TIM1,,,,FCF1
31
+
,,,CCR4,,,,ATG5
32
+
,,,CCR8,,,,
33
+
,,,CRTH2,,,,
34
+
,,,PTGDR2,,,,
35
+
,,,SEMA5A,,,,
36
+
,,,AKAP12,,,,
37
+
,,,HPGDS,,,,
+23
-23
extdata/CD8_layer3_genelist.csv
extdata/CD8_cr3_genelist.csv
+23
-23
extdata/CD8_layer3_genelist.csv
extdata/CD8_cr3_genelist.csv
···
1
-
CD8_naive,CD8_Cytotoxic,CD8_Exhausted,CD8_Central_memory,CD8_Effector_memory
2
-
NELL2,AP20187,LAG3,MALT1,GFI1
3
-
REG4,ERBB2,PD1,IDO1,IL23R
4
-
CD248,GFI1,TIM3,SKIV2L,MALT1
5
-
MGAT4A,IL18,2B4,TRAF2,JAK3
6
-
NELL2,IL23R,CD200,SLC2A1,PDCD1LG2
7
-
CCR7,MALT1,TOX2,CD40LG,SELPLG
8
-
LEF1,MUC1,TOX,GZMK,SPNS2
9
-
APBA2,TERT,PRDM1,CCL5,BRD4
10
-
CARS,ADIPOQ,RBPJ,DUSP2,C1QBP
11
-
PIK3IP1,CD274,PDCD1,LYAR,ITPR2
12
-
,INS,TIGIT,ZNF683,NLRP3
13
-
,IPMK,HAVCR2,IL32,TRAF2
14
-
,PRF1,ZNF683,CXCR3,GZMK
15
-
,GZMA,LAYN,IL7R,DUSP2
16
-
,GZMB,ITGAE,TYROBP,CCL5
17
-
,GZMK,ANO6,,CST7
18
-
,NKG7,CDX-1127,,GZMA
19
-
,GNLY,IL2RB,,CMC1
20
-
,CX3CR1,MALT1,,CCL4
21
-
,KLRG1,NR1H4,,GZMM
22
-
,FGFBP2,TNFRSF18,,
23
-
,FCGR3A,VTCN1,,
1
+
CD8_naive,CD8_Cytotoxic,CD8_Exhausted,CD8_Central_memory,CD8_Effector_memory
2
+
NELL2,AP20187,LAG3,MALT1,GFI1
3
+
REG4,ERBB2,PD1,IDO1,IL23R
4
+
CD248,GFI1,TIM3,SKIV2L,MALT1
5
+
MGAT4A,IL18,2B4,TRAF2,JAK3
6
+
NELL2,IL23R,CD200,SLC2A1,PDCD1LG2
7
+
CCR7,MALT1,TOX2,CD40LG,SELPLG
8
+
LEF1,MUC1,TOX,GZMK,SPNS2
9
+
APBA2,TERT,PRDM1,CCL5,BRD4
10
+
CARS,ADIPOQ,RBPJ,DUSP2,C1QBP
11
+
PIK3IP1,CD274,PDCD1,LYAR,ITPR2
12
+
,INS,TIGIT,ZNF683,NLRP3
13
+
,IPMK,HAVCR2,IL32,TRAF2
14
+
,PRF1,ZNF683,CXCR3,GZMK
15
+
,GZMA,LAYN,IL7R,DUSP2
16
+
,GZMB,ITGAE,TYROBP,CCL5
17
+
,GZMK,ANO6,,CST7
18
+
,NKG7,CDX-1127,,GZMA
19
+
,GNLY,IL2RB,,CMC1
20
+
,CX3CR1,MALT1,,CCL4
21
+
,KLRG1,NR1H4,,GZMM
22
+
,FGFBP2,TNFRSF18,,
23
+
,FCGR3A,VTCN1,,
+19
-19
extdata/DC_layer2_genelist.csv
extdata/DC_cr2_genelist.csv
+19
-19
extdata/DC_layer2_genelist.csv
extdata/DC_cr2_genelist.csv
···
1
-
cDC,pDC
2
-
ENHO,LILRA4
3
-
FCER1A,CLEC4C
4
-
IGSF6,IL3RA
5
-
CTSV,SMPD3
6
-
ANXA2,SERPINF1
7
-
H2AFZ,PLD4
8
-
LGALS1,PTPRS
9
-
HLA-DPA1,SCT
10
-
CLSPN,PTCRA
11
-
TUBA1B,IRF7
12
-
CLEC10A,IRF8
13
-
CD1C,CCDC50
14
-
PKIB,TCF4
15
-
CD1E,UGCG
16
-
HLA-DQA1,ITM2C
17
-
HLA-DQB1,LGMN
18
-
HLA-DRB5,LILRA4
19
-
CPVL,APP
1
+
cDC,pDC
2
+
ENHO,LILRA4
3
+
FCER1A,CLEC4C
4
+
IGSF6,IL3RA
5
+
CTSV,SMPD3
6
+
ANXA2,SERPINF1
7
+
H2AFZ,PLD4
8
+
LGALS1,PTPRS
9
+
HLA-DPA1,SCT
10
+
CLSPN,PTCRA
11
+
TUBA1B,IRF7
12
+
CLEC10A,IRF8
13
+
CD1C,CCDC50
14
+
PKIB,TCF4
15
+
CD1E,UGCG
16
+
HLA-DQA1,ITM2C
17
+
HLA-DQB1,LGMN
18
+
HLA-DRB5,LILRA4
19
+
CPVL,APP
+62
-62
extdata/ILC_layer2_genelist.csv
extdata/ILC_cr2_genelist.csv
+62
-62
extdata/ILC_layer2_genelist.csv
extdata/ILC_cr2_genelist.csv
···
1
-
ILC1,ILC2,ILC3
2
-
SYNE2,GNLY,KIT
3
-
CCL5,KLRD1,KLRB1
4
-
HSPA1B,CCL4,KLRD1
5
-
CD3E,CMC,GZMK
6
-
FYB1,NKG7,GZMH
7
-
TRAT1,IL5,CXCL8
8
-
DNAJB1,IL13,CD83
9
-
TBX21,IL1RL1,LST1
10
-
EOMES,PDE4A,IL1R1
11
-
CXCR3,RORA,CXCL2
12
-
IL12RB1,BCL11B,ATP1B3
13
-
IL12RB2,PTGDR2,NRIP1
14
-
IL18RAP,KLRG1,VEGFA
15
-
IL18R1,IL17RB,NCOA7
16
-
KLRD1,CRLF2,RORC
17
-
KLRC1,,NFIL3
18
-
KLRF1,,AHR
19
-
,,IL23R
20
-
,,CSF2
21
-
,,TNF
22
-
,,
23
-
,,
24
-
,,
25
-
,,
26
-
,,
27
-
,,
28
-
,,
29
-
,,
30
-
,,
31
-
,,
32
-
,,
33
-
,,
34
-
,,
35
-
,,
36
-
,,
37
-
,,
38
-
,,
39
-
,,
40
-
,,
41
-
,,
42
-
,,
43
-
,,
44
-
,,
45
-
,,
46
-
,,
47
-
,,
48
-
,,
49
-
,,
50
-
,,
51
-
,,
52
-
,,
53
-
,,
54
-
,,
55
-
,,
56
-
,,
57
-
,,
58
-
,,
59
-
,,
60
-
,,
61
-
,,
62
-
,,
1
+
ILC1,ILC2,ILC3
2
+
SYNE2,GNLY,KIT
3
+
CCL5,KLRD1,KLRB1
4
+
HSPA1B,CCL4,KLRD1
5
+
CD3E,CMC,GZMK
6
+
FYB1,NKG7,GZMH
7
+
TRAT1,IL5,CXCL8
8
+
DNAJB1,IL13,CD83
9
+
TBX21,IL1RL1,LST1
10
+
EOMES,PDE4A,IL1R1
11
+
CXCR3,RORA,CXCL2
12
+
IL12RB1,BCL11B,ATP1B3
13
+
IL12RB2,PTGDR2,NRIP1
14
+
IL18RAP,KLRG1,VEGFA
15
+
IL18R1,IL17RB,NCOA7
16
+
KLRD1,CRLF2,RORC
17
+
KLRC1,,NFIL3
18
+
KLRF1,,AHR
19
+
,,IL23R
20
+
,,CSF2
21
+
,,TNF
22
+
,,
23
+
,,
24
+
,,
25
+
,,
26
+
,,
27
+
,,
28
+
,,
29
+
,,
30
+
,,
31
+
,,
32
+
,,
33
+
,,
34
+
,,
35
+
,,
36
+
,,
37
+
,,
38
+
,,
39
+
,,
40
+
,,
41
+
,,
42
+
,,
43
+
,,
44
+
,,
45
+
,,
46
+
,,
47
+
,,
48
+
,,
49
+
,,
50
+
,,
51
+
,,
52
+
,,
53
+
,,
54
+
,,
55
+
,,
56
+
,,
57
+
,,
58
+
,,
59
+
,,
60
+
,,
61
+
,,
62
+
,,
+62
-62
extdata/Macrophage_layer2_genelist.csv
extdata/Macrophage_cr2_genelist.csv
+62
-62
extdata/Macrophage_layer2_genelist.csv
extdata/Macrophage_cr2_genelist.csv
···
1
-
Macrophage_M1,Macrophage_M2
2
-
iNOS,ARG1
3
-
IL12,ARG2
4
-
CD64,FCER2
5
-
CD80,IL10
6
-
CXCR10,CD32
7
-
IL23,CD163
8
-
CXCL9,CD23
9
-
CXCL10,CD200R1
10
-
CXCL11,PD-L2
11
-
CD86,PD-L1
12
-
IL1A,MARCO
13
-
IL1B,CSF1R
14
-
IL6,CD206
15
-
TNFa,Il1RA
16
-
MHCII,Il1R2
17
-
CCL5,IL4R
18
-
IRF5,CCL4
19
-
IRF1,CCL13
20
-
CD40,CCL20
21
-
IDO1,CCL17
22
-
KYNU,CCL18
23
-
CCR7,CCL22
24
-
B7-1,CCL24
25
-
B7-2,LYVE1
26
-
,VEGFA
27
-
,VEGFB
28
-
,VEGFC
29
-
,VEGFD
30
-
,EGF
31
-
,CTSA
32
-
,CTSB
33
-
,CSTC
34
-
,CTSD
35
-
,TGFB1
36
-
,TGFB2
37
-
,TGFB3
38
-
,MMP14
39
-
,MMP19
40
-
,MMP9
41
-
,CLEC7A
42
-
,WNT7b
43
-
,FASL
44
-
,TNFSF12
45
-
,TNFSF8
46
-
,CD276
47
-
,VTCN1
48
-
,MSR1
49
-
,FN1
50
-
,IRF4
51
-
,HLA-DR
52
-
,CD205
53
-
,CD14
54
-
,PDL2
55
-
,PDL1
56
-
,PDCD1LG2
57
-
,CD274
58
-
,MRC1
59
-
,IL1RN
60
-
,B7-H3
61
-
,BH-H4
62
-
,CD204
1
+
Macrophage_M1,Macrophage_M2
2
+
iNOS,ARG1
3
+
IL12,ARG2
4
+
CD64,FCER2
5
+
CD80,IL10
6
+
CXCR10,CD32
7
+
IL23,CD163
8
+
CXCL9,CD23
9
+
CXCL10,CD200R1
10
+
CXCL11,PD-L2
11
+
CD86,PD-L1
12
+
IL1A,MARCO
13
+
IL1B,CSF1R
14
+
IL6,CD206
15
+
TNFa,Il1RA
16
+
MHCII,Il1R2
17
+
CCL5,IL4R
18
+
IRF5,CCL4
19
+
IRF1,CCL13
20
+
CD40,CCL20
21
+
IDO1,CCL17
22
+
KYNU,CCL18
23
+
CCR7,CCL22
24
+
B7-1,CCL24
25
+
B7-2,LYVE1
26
+
,VEGFA
27
+
,VEGFB
28
+
,VEGFC
29
+
,VEGFD
30
+
,EGF
31
+
,CTSA
32
+
,CTSB
33
+
,CSTC
34
+
,CTSD
35
+
,TGFB1
36
+
,TGFB2
37
+
,TGFB3
38
+
,MMP14
39
+
,MMP19
40
+
,MMP9
41
+
,CLEC7A
42
+
,WNT7b
43
+
,FASL
44
+
,TNFSF12
45
+
,TNFSF8
46
+
,CD276
47
+
,VTCN1
48
+
,MSR1
49
+
,FN1
50
+
,IRF4
51
+
,HLA-DR
52
+
,CD205
53
+
,CD14
54
+
,PDL2
55
+
,PDL1
56
+
,PDCD1LG2
57
+
,CD274
58
+
,MRC1
59
+
,IL1RN
60
+
,B7-H3
61
+
,BH-H4
62
+
,CD204
+12
-12
extdata/Monocyte_layer2_genelist.csv
extdata/Monocyte_cr2_genelist.csv
+12
-12
extdata/Monocyte_layer2_genelist.csv
extdata/Monocyte_cr2_genelist.csv
···
1
-
Classical_Mono,NonClassical_Mono
2
-
CD14,CD16
3
-
VCAN,C1QA
4
-
CD36,CDKN1C
5
-
FOSL2,HES4
6
-
S100A12,MS4A7
7
-
PLAUR,FCGR3A
8
-
LGALS2,TCF7L2
9
-
MNDA,HMOX1
10
-
SLC11A1,LYPD2
11
-
,IFITM3
12
-
,CSF1R
1
+
Classical_Mono,NonClassical_Mono
2
+
CD14,CD16
3
+
VCAN,C1QA
4
+
CD36,CDKN1C
5
+
FOSL2,HES4
6
+
S100A12,MS4A7
7
+
PLAUR,FCGR3A
8
+
LGALS2,TCF7L2
9
+
MNDA,HMOX1
10
+
SLC11A1,LYPD2
11
+
,IFITM3
12
+
,CSF1R
+25
-25
extdata/NK_layer2_genelist.csv
extdata/NK_cr2_genelist.csv
+25
-25
extdata/NK_layer2_genelist.csv
extdata/NK_cr2_genelist.csv
···
1
-
NK_bright,NK_dim
2
-
CD56,CD16
3
-
ARH,ENC1
4
-
BMP2,TTC38
5
-
COL9A2,PRF1
6
-
IL7R,CMKLR1
7
-
GZMK,BOK
8
-
JAML,CX3CR1
9
-
CCDC141,DGKK
10
-
ITM2C,SLC1A7
11
-
XCL1,MYOM2
12
-
SYPL1,MTSS1
13
-
SETD7,FGFBP2
14
-
RCAN3,LGR6
15
-
KIT,KIR2DL1
16
-
SPRY2,CD298
17
-
,ATP1B3
18
-
,ADGRG1
19
-
,TGFBR3
20
-
,SPON2
21
-
,ZEB2
22
-
,BNC2
23
-
,EBF4
24
-
,ASCL2
25
-
,TBX21
1
+
NK_bright,NK_dim
2
+
CD56,CD16
3
+
ARH,ENC1
4
+
BMP2,TTC38
5
+
COL9A2,PRF1
6
+
IL7R,CMKLR1
7
+
GZMK,BOK
8
+
JAML,CX3CR1
9
+
CCDC141,DGKK
10
+
ITM2C,SLC1A7
11
+
XCL1,MYOM2
12
+
SYPL1,MTSS1
13
+
SETD7,FGFBP2
14
+
RCAN3,LGR6
15
+
KIT,KIR2DL1
16
+
SPRY2,CD298
17
+
,ATP1B3
18
+
,ADGRG1
19
+
,TGFBR3
20
+
,SPON2
21
+
,ZEB2
22
+
,BNC2
23
+
,EBF4
24
+
,ASCL2
25
+
,TBX21
+19
-19
extdata/Tcell_layer2_genelist.csv
extdata/Tcell_cr2_genelist.csv
+19
-19
extdata/Tcell_layer2_genelist.csv
extdata/Tcell_cr2_genelist.csv
···
1
-
CD4_T,CD8_T
2
-
CD4,CD8A
3
-
TRDC,CD8B
4
-
IL2RA,GZMB
5
-
CD25,EOMES
6
-
STAT1,TNFA
7
-
IL2,IFNG
8
-
CD127,CCL5
9
-
CD152,NKG7
10
-
CTLA4,GZMH
11
-
CTLA-4,GZMK
12
-
FOXP3,GZMA
13
-
IL4,CD8
14
-
IL10,
15
-
IL12,
16
-
TGFB,
17
-
IL18,
18
-
STAT5,
19
-
CD4,
1
+
CD4_T,CD8_T
2
+
CD4,CD8A
3
+
TRDC,CD8B
4
+
IL2RA,GZMB
5
+
CD25,EOMES
6
+
STAT1,TNFA
7
+
IL2,IFNG
8
+
CD127,CCL5
9
+
CD152,NKG7
10
+
CTLA4,GZMH
11
+
CTLA-4,GZMK
12
+
FOXP3,GZMA
13
+
IL4,CD8
14
+
IL10,
15
+
IL12,
16
+
TGFB,
17
+
IL18,
18
+
STAT5,
19
+
CD4,
+25
-25
extdata/immune_non-immune_genelist(layer0).csv
extdata/ImmuneOrNot_cr0_genelist.csv
+25
-25
extdata/immune_non-immune_genelist(layer0).csv
extdata/ImmuneOrNot_cr0_genelist.csv
···
1
-
Immune,Non_Immune
2
-
PTPRC,MUC5A
3
-
CD45,KRT5
4
-
CSF3R,SFTPD
5
-
FCGR3B,EPCAM
6
-
KLRD1,CDH5
7
-
FPR1,COL1A2
8
-
CD8A,ACTA2
9
-
CD1B,PECAM1
10
-
TNFRSF17,COL3A1
11
-
BANK1,TMSB10
12
-
FCRL2,CALD1
13
-
PNOC,FTH1
14
-
CR2,COL6A2
15
-
FCN1,FKBP1A
16
-
GNLY,
17
-
KIR2DL1,
18
-
KIR3DL1,
19
-
KIR3DL2,
20
-
CD1E,
21
-
CD1A,
22
-
CD163,
23
-
AIF1,
24
-
CD79A,
25
-
JCHAIN,
1
+
Immune,Non_Immune
2
+
PTPRC,MUC5A
3
+
CD45,KRT5
4
+
CSF3R,SFTPD
5
+
FCGR3B,EPCAM
6
+
KLRD1,CDH5
7
+
FPR1,COL1A2
8
+
CD8A,ACTA2
9
+
CD1B,PECAM1
10
+
TNFRSF17,COL3A1
11
+
BANK1,TMSB10
12
+
FCRL2,CALD1
13
+
PNOC,FTH1
14
+
CR2,COL6A2
15
+
FCN1,FKBP1A
16
+
GNLY,
17
+
KIR2DL1,
18
+
KIR3DL1,
19
+
KIR3DL2,
20
+
CD1E,
21
+
CD1A,
22
+
CD163,
23
+
AIF1,
24
+
CD79A,
25
+
JCHAIN,
+45
-45
extdata/main_type_layer1_genelist.csv
extdata/MainTypes_cr1_genelist.csv
+45
-45
extdata/main_type_layer1_genelist.csv
extdata/MainTypes_cr1_genelist.csv
···
1
-
Tcell,Bcell,DC,NK,Monocyte,Macrophage,ILC,Mast,Neutrophil
2
-
CD3D,CD79A,IL3RA,GNLY,VCAN,APOE,IRF8,TPSB2,CSF3R
3
-
CD3G,CD79B,CD1C,KLRC1,CSF3R,APOC1,PLD4,TPSAB1,FCGR3B
4
-
CD3E,MS4A1,BATF3,FGFBP2,CDKN1C,C1QB,IRF7,TPSD1,FPR1
5
-
CD4,CD19,THBD,KLRF1,LRRC25,C1QC,LILRA4,TESPA1,CEACAM3
6
-
CD8A,CD20,CD209,GZMH,TCF7L2,RNASE1,TCF4,RGS13,TNFRSF10C
7
-
CD8B,AFF3,HLA-DPB1,PRF1,LYN,ACP5,SERPINF1,SLC18A2,PLXNC1
8
-
FOXP3,BANK1,HLA-DQA1,KLRD1,PILRA,GPNMB,CCDC50,CPA3,FCAR
9
-
IL2RA,BLK,CSF2RA,NKG7,FCGR1A,PLD3,UGCG,MS4A2,ABTB1
10
-
IL7R,BTLA,HLA-DRA,GZMB,CTSS,CTSB,APP,HPGDS,SLC25A37
11
-
TRAC,CD138,HLA-DPA1,SPON2,FCN1,PLTP,PPP1R14B,ADCYAP1,CXCR1
12
-
CTLA4,MZB1,HLA-DRB1,CD56,VCAN,CD9,IRF4,HDC,BCL6
13
-
DFNB31,IGHM,HLA-DQB1,,CSF3R,PRDX1,TSPAN13,FCER1A,NCF2
14
-
EOMES,IGHG3,LDLRAD4,,LYZ,CTSZ,SPIB,GATA2,CXCR2
15
-
TIM3,IGHA2,HLA-DRB5,,FCN1,DAB2,TPM2,KIT,MGAM
16
-
,,RALA,,CTSS,CD63,LILRB4,,FAM65B
17
-
,,HLA-DRB6,,CD14,CD81,LRRC26,,THBD
18
-
,,AXL,,SA00A9,LIPA,BCL11A,,LILRA2
19
-
,,CD86,,IF130,GLUL,SOX4,,CAMP
20
-
,,HLA-DMB,,AIF1,SLCO2B1,KRT86,,TNFSF14
21
-
,,FCER1A,,,CREG1,KRT81,,SEPX1
22
-
,,HBB,,,LGALS3,IL23R,,XPO6
23
-
,,CPVL,,,LAMP1,PCDH9,,CD97
24
-
,,CD74,,,MARCO,DLL1,,TNFRSF1A
25
-
,,CST3,,,FABP4,RORC,,
26
-
,,CD123,,,MCEMP1,PDZK1,,
27
-
,,CD103,,,MERTK,TNFSF11,,
28
-
,,CD1E,,,CD163,ENPP1,,
29
-
,,CD1A,,,FCGR3A,B3GALT5,,
30
-
,,CLEC10A,,,LGMN,NCR2,,
31
-
,,SIGLEC1,,,PLA2G7,LIF,,
32
-
,,UBD,,,CSF1R,IL4I1,,
33
-
,,STAB1,,,CYBB,SLC4A10,,
34
-
,,CSF2RA,,,CD163,HOXA9,,
35
-
,,GPR109B,,,NPL,CSF2,,
36
-
,,SIGLEC5,,,FN1,TLE1,,
37
-
,,,,,IL1B,TNFSF4,,
38
-
,,,,,S100A8,IL1R1,,
39
-
,,,,,MS4A6A,B3GNT7,,
40
-
,,,,,FCER1Q,AMFR,,
41
-
,,,,,,HIF3A,,
42
-
,,,,,,MTRNR2L6,,
43
-
,,,,,,MTRNR2L10,,
44
-
,,,,,,LTB,,
45
-
,,,,,,MTRNR2L1,,
1
+
Tcell,Bcell,DC,NK,Monocyte,Macrophage,ILC,Mast,Neutrophil
2
+
CD3D,CD79A,IL3RA,GNLY,VCAN,APOE,IRF8,TPSB2,CSF3R
3
+
CD3G,CD79B,CD1C,KLRC1,CSF3R,APOC1,PLD4,TPSAB1,FCGR3B
4
+
CD3E,MS4A1,BATF3,FGFBP2,CDKN1C,C1QB,IRF7,TPSD1,FPR1
5
+
CD4,CD19,THBD,KLRF1,LRRC25,C1QC,LILRA4,TESPA1,CEACAM3
6
+
CD8A,CD20,CD209,GZMH,TCF7L2,RNASE1,TCF4,RGS13,TNFRSF10C
7
+
CD8B,AFF3,HLA-DPB1,PRF1,LYN,ACP5,SERPINF1,SLC18A2,PLXNC1
8
+
FOXP3,BANK1,HLA-DQA1,KLRD1,PILRA,GPNMB,CCDC50,CPA3,FCAR
9
+
IL2RA,BLK,CSF2RA,NKG7,FCGR1A,PLD3,UGCG,MS4A2,ABTB1
10
+
IL7R,BTLA,HLA-DRA,GZMB,CTSS,CTSB,APP,HPGDS,SLC25A37
11
+
TRAC,CD138,HLA-DPA1,SPON2,FCN1,PLTP,PPP1R14B,ADCYAP1,CXCR1
12
+
CTLA4,MZB1,HLA-DRB1,CD56,VCAN,CD9,IRF4,HDC,BCL6
13
+
DFNB31,IGHM,HLA-DQB1,,CSF3R,PRDX1,TSPAN13,FCER1A,NCF2
14
+
EOMES,IGHG3,LDLRAD4,,LYZ,CTSZ,SPIB,GATA2,CXCR2
15
+
TIM3,IGHA2,HLA-DRB5,,FCN1,DAB2,TPM2,KIT,MGAM
16
+
,,RALA,,CTSS,CD63,LILRB4,,FAM65B
17
+
,,HLA-DRB6,,CD14,CD81,LRRC26,,THBD
18
+
,,AXL,,SA00A9,LIPA,BCL11A,,LILRA2
19
+
,,CD86,,IF130,GLUL,SOX4,,CAMP
20
+
,,HLA-DMB,,AIF1,SLCO2B1,KRT86,,TNFSF14
21
+
,,FCER1A,,,CREG1,KRT81,,SEPX1
22
+
,,HBB,,,LGALS3,IL23R,,XPO6
23
+
,,CPVL,,,LAMP1,PCDH9,,CD97
24
+
,,CD74,,,MARCO,DLL1,,TNFRSF1A
25
+
,,CST3,,,FABP4,RORC,,
26
+
,,CD123,,,MCEMP1,PDZK1,,
27
+
,,CD103,,,MERTK,TNFSF11,,
28
+
,,CD1E,,,CD163,ENPP1,,
29
+
,,CD1A,,,FCGR3A,B3GALT5,,
30
+
,,CLEC10A,,,LGMN,NCR2,,
31
+
,,SIGLEC1,,,PLA2G7,LIF,,
32
+
,,UBD,,,CSF1R,IL4I1,,
33
+
,,STAB1,,,CYBB,SLC4A10,,
34
+
,,CSF2RA,,,CD163,HOXA9,,
35
+
,,GPR109B,,,NPL,CSF2,,
36
+
,,SIGLEC5,,,FN1,TLE1,,
37
+
,,,,,IL1B,TNFSF4,,
38
+
,,,,,S100A8,IL1R1,,
39
+
,,,,,MS4A6A,B3GNT7,,
40
+
,,,,,FCER1Q,AMFR,,
41
+
,,,,,,HIF3A,,
42
+
,,,,,,MTRNR2L6,,
43
+
,,,,,,MTRNR2L10,,
44
+
,,,,,,LTB,,
45
+
,,,,,,MTRNR2L1,,