A modern Music Player Daemon based on Rockbox open source high quality audio player
libadwaita
audio
rust
zig
deno
mpris
rockbox
mpd
1/*
2 * rect.c: Puzzle from nikoli.co.jp. You have a square grid with
3 * numbers in some squares; you must divide the square grid up into
4 * variously sized rectangles, such that every rectangle contains
5 * exactly one numbered square and the area of each rectangle is
6 * equal to the number contained in it.
7 */
8
9/*
10 * TODO:
11 *
12 * - Improve singleton removal.
13 * + It would be nice to limit the size of the generated
14 * rectangles in accordance with existing constraints such as
15 * the maximum rectangle size and the one about not
16 * generating a rectangle the full width or height of the
17 * grid.
18 * + This could be achieved by making a less random choice
19 * about which of the available options to use.
20 * + Alternatively, we could create our rectangle and then
21 * split it up.
22 */
23
24#include <stdio.h>
25#include <stdlib.h>
26#include <string.h>
27#include <assert.h>
28#include <ctype.h>
29#ifdef NO_TGMATH_H
30# include <math.h>
31#else
32# include <tgmath.h>
33#endif
34
35#include "puzzles.h"
36
37enum {
38 COL_BACKGROUND,
39 COL_CORRECT,
40 COL_LINE,
41 COL_TEXT,
42 COL_GRID,
43 COL_DRAG, COL_DRAGERASE,
44 COL_CURSOR,
45 NCOLOURS
46};
47
48struct game_params {
49 int w, h;
50 float expandfactor;
51 bool unique;
52};
53
54#define INDEX(state, x, y) (((y) * (state)->w) + (x))
55#define index(state, a, x, y) ((a) [ INDEX(state,x,y) ])
56#define grid(state,x,y) index(state, (state)->grid, x, y)
57#define vedge(state,x,y) index(state, (state)->vedge, x, y)
58#define hedge(state,x,y) index(state, (state)->hedge, x, y)
59
60#define CRANGE(state,x,y,dx,dy) ( (x) >= dx && (x) < (state)->w && \
61 (y) >= dy && (y) < (state)->h )
62#define RANGE(state,x,y) CRANGE(state,x,y,0,0)
63#define HRANGE(state,x,y) CRANGE(state,x,y,0,1)
64#define VRANGE(state,x,y) CRANGE(state,x,y,1,0)
65
66#define PREFERRED_TILE_SIZE 24
67#define TILE_SIZE (ds->tilesize)
68#ifdef SMALL_SCREEN
69#define BORDER (2)
70#else
71#define BORDER (TILE_SIZE * 3 / 4)
72#endif
73
74#define CORNER_TOLERANCE 0.15F
75#define CENTRE_TOLERANCE 0.15F
76
77#define FLASH_TIME 0.13F
78
79#define COORD(x) ( (x) * TILE_SIZE + BORDER )
80#define FROMCOORD(x) ( ((x) - BORDER) / TILE_SIZE )
81
82struct game_state {
83 int w, h;
84 int *grid; /* contains the numbers */
85 unsigned char *vedge; /* (w+1) x h */
86 unsigned char *hedge; /* w x (h+1) */
87 bool completed, cheated;
88 unsigned char *correct;
89};
90
91static game_params *default_params(void)
92{
93 game_params *ret = snew(game_params);
94
95 ret->w = ret->h = 7;
96 ret->expandfactor = 0.0F;
97 ret->unique = true;
98
99 return ret;
100}
101
102static bool game_fetch_preset(int i, char **name, game_params **params)
103{
104 game_params *ret;
105 int w, h;
106 char buf[80];
107
108 switch (i) {
109 case 0: w = 7, h = 7; break;
110 case 1: w = 9, h = 9; break;
111 case 2: w = 11, h = 11; break;
112 case 3: w = 13, h = 13; break;
113 case 4: w = 15, h = 15; break;
114#ifndef SMALL_SCREEN
115 case 5: w = 17, h = 17; break;
116 case 6: w = 19, h = 19; break;
117#endif
118 default: return false;
119 }
120
121 sprintf(buf, "%dx%d", w, h);
122 *name = dupstr(buf);
123 *params = ret = snew(game_params);
124 ret->w = w;
125 ret->h = h;
126 ret->expandfactor = 0.0F;
127 ret->unique = true;
128 return true;
129}
130
131static void free_params(game_params *params)
132{
133 sfree(params);
134}
135
136static game_params *dup_params(const game_params *params)
137{
138 game_params *ret = snew(game_params);
139 *ret = *params; /* structure copy */
140 return ret;
141}
142
143static void decode_params(game_params *ret, char const *string)
144{
145 ret->w = ret->h = atoi(string);
146 while (*string && isdigit((unsigned char)*string)) string++;
147 if (*string == 'x') {
148 string++;
149 ret->h = atoi(string);
150 while (*string && isdigit((unsigned char)*string)) string++;
151 }
152 if (*string == 'e') {
153 string++;
154 ret->expandfactor = (float)atof(string);
155 while (*string &&
156 (*string == '.' || isdigit((unsigned char)*string))) string++;
157 }
158 if (*string == 'a') {
159 string++;
160 ret->unique = false;
161 }
162}
163
164static char *encode_params(const game_params *params, bool full)
165{
166 char data[256];
167
168 sprintf(data, "%dx%d", params->w, params->h);
169 if (full && params->expandfactor)
170 sprintf(data + strlen(data), "e%g", params->expandfactor);
171 if (full && !params->unique)
172 strcat(data, "a");
173
174 return dupstr(data);
175}
176
177static config_item *game_configure(const game_params *params)
178{
179 config_item *ret;
180 char buf[80];
181
182 ret = snewn(5, config_item);
183
184 ret[0].name = "Width";
185 ret[0].type = C_STRING;
186 sprintf(buf, "%d", params->w);
187 ret[0].u.string.sval = dupstr(buf);
188
189 ret[1].name = "Height";
190 ret[1].type = C_STRING;
191 sprintf(buf, "%d", params->h);
192 ret[1].u.string.sval = dupstr(buf);
193
194 ret[2].name = "Expansion factor";
195 ret[2].type = C_STRING;
196 sprintf(buf, "%g", params->expandfactor);
197 ret[2].u.string.sval = dupstr(buf);
198
199 ret[3].name = "Ensure unique solution";
200 ret[3].type = C_BOOLEAN;
201 ret[3].u.boolean.bval = params->unique;
202
203 ret[4].name = NULL;
204 ret[4].type = C_END;
205
206 return ret;
207}
208
209static game_params *custom_params(const config_item *cfg)
210{
211 game_params *ret = snew(game_params);
212
213 ret->w = atoi(cfg[0].u.string.sval);
214 ret->h = atoi(cfg[1].u.string.sval);
215 ret->expandfactor = (float)atof(cfg[2].u.string.sval);
216 ret->unique = cfg[3].u.boolean.bval;
217
218 return ret;
219}
220
221static const char *validate_params(const game_params *params, bool full)
222{
223 if (params->w <= 0 || params->h <= 0)
224 return "Width and height must both be greater than zero";
225 if (params->w > INT_MAX / params->h)
226 return "Width times height must not be unreasonably large";
227 if (params->w*params->h < 2)
228 return "Grid area must be greater than one";
229 if (params->expandfactor < 0.0F)
230 return "Expansion factor may not be negative";
231 return NULL;
232}
233
234struct point {
235 int x, y;
236};
237
238struct rect {
239 int x, y;
240 int w, h;
241};
242
243struct rectlist {
244 struct rect *rects;
245 int n;
246};
247
248struct numberdata {
249 int area;
250 int npoints;
251 struct point *points;
252};
253
254/* ----------------------------------------------------------------------
255 * Solver for Rectangles games.
256 *
257 * This solver is souped up beyond the needs of actually _solving_
258 * a puzzle. It is also designed to cope with uncertainty about
259 * where the numbers have been placed. This is because I run it on
260 * my generated grids _before_ placing the numbers, and have it
261 * tell me where I need to place the numbers to ensure a unique
262 * solution.
263 */
264
265static void remove_rect_placement(int w, int h,
266 struct rectlist *rectpositions,
267 int *overlaps,
268 int rectnum, int placement)
269{
270 int x, y, xx, yy;
271
272#ifdef SOLVER_DIAGNOSTICS
273 printf("ruling out rect %d placement at %d,%d w=%d h=%d\n", rectnum,
274 rectpositions[rectnum].rects[placement].x,
275 rectpositions[rectnum].rects[placement].y,
276 rectpositions[rectnum].rects[placement].w,
277 rectpositions[rectnum].rects[placement].h);
278#endif
279
280 /*
281 * Decrement each entry in the overlaps array to reflect the
282 * removal of this rectangle placement.
283 */
284 for (yy = 0; yy < rectpositions[rectnum].rects[placement].h; yy++) {
285 y = yy + rectpositions[rectnum].rects[placement].y;
286 for (xx = 0; xx < rectpositions[rectnum].rects[placement].w; xx++) {
287 x = xx + rectpositions[rectnum].rects[placement].x;
288
289 assert(overlaps[(rectnum * h + y) * w + x] != 0);
290
291 if (overlaps[(rectnum * h + y) * w + x] > 0)
292 overlaps[(rectnum * h + y) * w + x]--;
293 }
294 }
295
296 /*
297 * Remove the placement from the list of positions for that
298 * rectangle, by interchanging it with the one on the end.
299 */
300 if (placement < rectpositions[rectnum].n - 1) {
301 struct rect t;
302
303 t = rectpositions[rectnum].rects[rectpositions[rectnum].n - 1];
304 rectpositions[rectnum].rects[rectpositions[rectnum].n - 1] =
305 rectpositions[rectnum].rects[placement];
306 rectpositions[rectnum].rects[placement] = t;
307 }
308 rectpositions[rectnum].n--;
309}
310
311static void remove_number_placement(int w, int h, struct numberdata *number,
312 int index, int *rectbyplace)
313{
314 /*
315 * Remove the entry from the rectbyplace array.
316 */
317 rectbyplace[number->points[index].y * w + number->points[index].x] = -1;
318
319 /*
320 * Remove the placement from the list of candidates for that
321 * number, by interchanging it with the one on the end.
322 */
323 if (index < number->npoints - 1) {
324 struct point t;
325
326 t = number->points[number->npoints - 1];
327 number->points[number->npoints - 1] = number->points[index];
328 number->points[index] = t;
329 }
330 number->npoints--;
331}
332
333/*
334 * Returns 0 for failure to solve due to inconsistency; 1 for
335 * success; 2 for failure to complete a solution due to either
336 * ambiguity or it being too difficult.
337 */
338static int rect_solver(int w, int h, int nrects, struct numberdata *numbers,
339 unsigned char *hedge, unsigned char *vedge,
340 random_state *rs)
341{
342 struct rectlist *rectpositions;
343 int *overlaps, *rectbyplace, *workspace;
344 int i, ret;
345
346 /*
347 * Start by setting up a list of candidate positions for each
348 * rectangle.
349 */
350 rectpositions = snewn(nrects, struct rectlist);
351 for (i = 0; i < nrects; i++) {
352 int rw, rh, area = numbers[i].area;
353 int j, minx, miny, maxx, maxy;
354 struct rect *rlist;
355 int rlistn, rlistsize;
356
357 /*
358 * For each rectangle, begin by finding the bounding
359 * rectangle of its candidate number placements.
360 */
361 maxx = maxy = -1;
362 minx = w;
363 miny = h;
364 for (j = 0; j < numbers[i].npoints; j++) {
365 if (minx > numbers[i].points[j].x) minx = numbers[i].points[j].x;
366 if (miny > numbers[i].points[j].y) miny = numbers[i].points[j].y;
367 if (maxx < numbers[i].points[j].x) maxx = numbers[i].points[j].x;
368 if (maxy < numbers[i].points[j].y) maxy = numbers[i].points[j].y;
369 }
370
371 /*
372 * Now loop over all possible rectangle placements
373 * overlapping a point within that bounding rectangle;
374 * ensure each one actually contains a candidate number
375 * placement, and add it to the list.
376 */
377 rlist = NULL;
378 rlistn = rlistsize = 0;
379
380 for (rw = 1; rw <= area && rw <= w; rw++) {
381 int x, y;
382
383 if (area % rw)
384 continue;
385 rh = area / rw;
386 if (rh > h)
387 continue;
388
389 for (y = miny - rh + 1; y <= maxy; y++) {
390 if (y < 0 || y+rh > h)
391 continue;
392
393 for (x = minx - rw + 1; x <= maxx; x++) {
394 if (x < 0 || x+rw > w)
395 continue;
396
397 /*
398 * See if we can find a candidate number
399 * placement within this rectangle.
400 */
401 for (j = 0; j < numbers[i].npoints; j++)
402 if (numbers[i].points[j].x >= x &&
403 numbers[i].points[j].x < x+rw &&
404 numbers[i].points[j].y >= y &&
405 numbers[i].points[j].y < y+rh)
406 break;
407
408 if (j < numbers[i].npoints) {
409 /*
410 * Add this to the list of candidate
411 * placements for this rectangle.
412 */
413 if (rlistn >= rlistsize) {
414 rlistsize = rlistn + 32;
415 rlist = sresize(rlist, rlistsize, struct rect);
416 }
417 rlist[rlistn].x = x;
418 rlist[rlistn].y = y;
419 rlist[rlistn].w = rw;
420 rlist[rlistn].h = rh;
421#ifdef SOLVER_DIAGNOSTICS
422 printf("rect %d [area %d]: candidate position at"
423 " %d,%d w=%d h=%d\n",
424 i, area, x, y, rw, rh);
425#endif
426 rlistn++;
427 }
428 }
429 }
430 }
431
432 rectpositions[i].rects = rlist;
433 rectpositions[i].n = rlistn;
434 }
435
436 /*
437 * Next, construct a multidimensional array tracking how many
438 * candidate positions for each rectangle overlap each square.
439 *
440 * Indexing of this array is by the formula
441 *
442 * overlaps[(rectindex * h + y) * w + x]
443 *
444 * A positive or zero value indicates what it sounds as if it
445 * should; -1 indicates that this square _cannot_ be part of
446 * this rectangle; and -2 indicates that it _definitely_ is
447 * (which is distinct from 1, because one might very well know
448 * that _if_ square S is part of rectangle R then it must be
449 * because R is placed in a certain position without knowing
450 * that it definitely _is_).
451 */
452 overlaps = snewn(nrects * w * h, int);
453 memset(overlaps, 0, nrects * w * h * sizeof(int));
454 for (i = 0; i < nrects; i++) {
455 int j;
456
457 for (j = 0; j < rectpositions[i].n; j++) {
458 int xx, yy;
459
460 for (yy = 0; yy < rectpositions[i].rects[j].h; yy++)
461 for (xx = 0; xx < rectpositions[i].rects[j].w; xx++)
462 overlaps[(i * h + yy+rectpositions[i].rects[j].y) * w +
463 xx+rectpositions[i].rects[j].x]++;
464 }
465 }
466
467 /*
468 * Also we want an array covering the grid once, to make it
469 * easy to figure out which squares are candidate number
470 * placements for which rectangles. (The existence of this
471 * single array assumes that no square starts off as a
472 * candidate number placement for more than one rectangle. This
473 * assumption is justified, because this solver is _either_
474 * used to solve real problems - in which case there is a
475 * single placement for every number - _or_ used to decide on
476 * number placements for a new puzzle, in which case each
477 * number's placements are confined to the intended position of
478 * the rectangle containing that number.)
479 */
480 rectbyplace = snewn(w * h, int);
481 for (i = 0; i < w*h; i++)
482 rectbyplace[i] = -1;
483
484 for (i = 0; i < nrects; i++) {
485 int j;
486
487 for (j = 0; j < numbers[i].npoints; j++) {
488 int x = numbers[i].points[j].x;
489 int y = numbers[i].points[j].y;
490
491 assert(rectbyplace[y * w + x] == -1);
492 rectbyplace[y * w + x] = i;
493 }
494 }
495
496 workspace = snewn(nrects, int);
497
498 /*
499 * Now run the actual deduction loop.
500 */
501 while (1) {
502 bool done_something = false;
503
504#ifdef SOLVER_DIAGNOSTICS
505 printf("starting deduction loop\n");
506
507 for (i = 0; i < nrects; i++) {
508 printf("rect %d overlaps:\n", i);
509 {
510 int x, y;
511 for (y = 0; y < h; y++) {
512 for (x = 0; x < w; x++) {
513 printf("%3d", overlaps[(i * h + y) * w + x]);
514 }
515 printf("\n");
516 }
517 }
518 }
519 printf("rectbyplace:\n");
520 {
521 int x, y;
522 for (y = 0; y < h; y++) {
523 for (x = 0; x < w; x++) {
524 printf("%3d", rectbyplace[y * w + x]);
525 }
526 printf("\n");
527 }
528 }
529#endif
530
531 /*
532 * Housekeeping. Look for rectangles whose number has only
533 * one candidate position left, and mark that square as
534 * known if it isn't already.
535 */
536 for (i = 0; i < nrects; i++) {
537 if (numbers[i].npoints == 1) {
538 int x = numbers[i].points[0].x;
539 int y = numbers[i].points[0].y;
540 if (overlaps[(i * h + y) * w + x] >= -1) {
541 int j;
542
543 if (overlaps[(i * h + y) * w + x] <= 0) {
544 ret = 0; /* inconsistency */
545 goto cleanup;
546 }
547#ifdef SOLVER_DIAGNOSTICS
548 printf("marking %d,%d as known for rect %d"
549 " (sole remaining number position)\n", x, y, i);
550#endif
551
552 for (j = 0; j < nrects; j++)
553 overlaps[(j * h + y) * w + x] = -1;
554
555 overlaps[(i * h + y) * w + x] = -2;
556 }
557 }
558 }
559
560 /*
561 * Now look at the intersection of all possible placements
562 * for each rectangle, and mark all squares in that
563 * intersection as known for that rectangle if they aren't
564 * already.
565 */
566 for (i = 0; i < nrects; i++) {
567 int minx, miny, maxx, maxy, xx, yy, j;
568
569 minx = miny = 0;
570 maxx = w;
571 maxy = h;
572
573 for (j = 0; j < rectpositions[i].n; j++) {
574 int x = rectpositions[i].rects[j].x;
575 int y = rectpositions[i].rects[j].y;
576 int w = rectpositions[i].rects[j].w;
577 int h = rectpositions[i].rects[j].h;
578
579 if (minx < x) minx = x;
580 if (miny < y) miny = y;
581 if (maxx > x+w) maxx = x+w;
582 if (maxy > y+h) maxy = y+h;
583 }
584
585 for (yy = miny; yy < maxy; yy++)
586 for (xx = minx; xx < maxx; xx++)
587 if (overlaps[(i * h + yy) * w + xx] >= -1) {
588 if (overlaps[(i * h + yy) * w + xx] <= 0) {
589 ret = 0; /* inconsistency */
590 goto cleanup;
591 }
592#ifdef SOLVER_DIAGNOSTICS
593 printf("marking %d,%d as known for rect %d"
594 " (intersection of all placements)\n",
595 xx, yy, i);
596#endif
597
598 for (j = 0; j < nrects; j++)
599 overlaps[(j * h + yy) * w + xx] = -1;
600
601 overlaps[(i * h + yy) * w + xx] = -2;
602 }
603 }
604
605 /*
606 * Rectangle-focused deduction. Look at each rectangle in
607 * turn and try to rule out some of its candidate
608 * placements.
609 */
610 for (i = 0; i < nrects; i++) {
611 int j;
612
613 for (j = 0; j < rectpositions[i].n; j++) {
614 int xx, yy, k;
615 bool del = false;
616
617 for (k = 0; k < nrects; k++)
618 workspace[k] = 0;
619
620 for (yy = 0; yy < rectpositions[i].rects[j].h; yy++) {
621 int y = yy + rectpositions[i].rects[j].y;
622 for (xx = 0; xx < rectpositions[i].rects[j].w; xx++) {
623 int x = xx + rectpositions[i].rects[j].x;
624
625 if (overlaps[(i * h + y) * w + x] == -1) {
626 /*
627 * This placement overlaps a square
628 * which is _known_ to be part of
629 * another rectangle. Therefore we must
630 * rule it out.
631 */
632#ifdef SOLVER_DIAGNOSTICS
633 printf("rect %d placement at %d,%d w=%d h=%d "
634 "contains %d,%d which is known-other\n", i,
635 rectpositions[i].rects[j].x,
636 rectpositions[i].rects[j].y,
637 rectpositions[i].rects[j].w,
638 rectpositions[i].rects[j].h,
639 x, y);
640#endif
641 del = true;
642 }
643
644 if (rectbyplace[y * w + x] != -1) {
645 /*
646 * This placement overlaps one of the
647 * candidate number placements for some
648 * rectangle. Count it.
649 */
650 workspace[rectbyplace[y * w + x]]++;
651 }
652 }
653 }
654
655 if (!del) {
656 /*
657 * If we haven't ruled this placement out
658 * already, see if it overlaps _all_ of the
659 * candidate number placements for any
660 * rectangle. If so, we can rule it out.
661 */
662 for (k = 0; k < nrects; k++)
663 if (k != i && workspace[k] == numbers[k].npoints) {
664#ifdef SOLVER_DIAGNOSTICS
665 printf("rect %d placement at %d,%d w=%d h=%d "
666 "contains all number points for rect %d\n",
667 i,
668 rectpositions[i].rects[j].x,
669 rectpositions[i].rects[j].y,
670 rectpositions[i].rects[j].w,
671 rectpositions[i].rects[j].h,
672 k);
673#endif
674 del = true;
675 break;
676 }
677
678 /*
679 * Failing that, see if it overlaps at least
680 * one of the candidate number placements for
681 * itself! (This might not be the case if one
682 * of those number placements has been removed
683 * recently.).
684 */
685 if (!del && workspace[i] == 0) {
686#ifdef SOLVER_DIAGNOSTICS
687 printf("rect %d placement at %d,%d w=%d h=%d "
688 "contains none of its own number points\n",
689 i,
690 rectpositions[i].rects[j].x,
691 rectpositions[i].rects[j].y,
692 rectpositions[i].rects[j].w,
693 rectpositions[i].rects[j].h);
694#endif
695 del = true;
696 }
697 }
698
699 if (del) {
700 remove_rect_placement(w, h, rectpositions, overlaps, i, j);
701
702 j--; /* don't skip over next placement */
703
704 done_something = true;
705 }
706 }
707 }
708
709 /*
710 * Square-focused deduction. Look at each square not marked
711 * as known, and see if there are any which can only be
712 * part of a single rectangle.
713 */
714 {
715 int x, y, n, index;
716 for (y = 0; y < h; y++) for (x = 0; x < w; x++) {
717 /* Known squares are marked as <0 everywhere, so we only need
718 * to check the overlaps entry for rect 0. */
719 if (overlaps[y * w + x] < 0)
720 continue; /* known already */
721
722 n = 0;
723 index = -1;
724 for (i = 0; i < nrects; i++)
725 if (overlaps[(i * h + y) * w + x] > 0)
726 n++, index = i;
727
728 if (n == 1) {
729 int j;
730
731 /*
732 * Now we can rule out all placements for
733 * rectangle `index' which _don't_ contain
734 * square x,y.
735 */
736#ifdef SOLVER_DIAGNOSTICS
737 printf("square %d,%d can only be in rectangle %d\n",
738 x, y, index);
739#endif
740 for (j = 0; j < rectpositions[index].n; j++) {
741 struct rect *r = &rectpositions[index].rects[j];
742 if (x >= r->x && x < r->x + r->w &&
743 y >= r->y && y < r->y + r->h)
744 continue; /* this one is OK */
745 remove_rect_placement(w, h, rectpositions, overlaps,
746 index, j);
747 j--; /* don't skip over next placement */
748 done_something = true;
749 }
750 }
751 }
752 }
753
754 /*
755 * If we've managed to deduce anything by normal means,
756 * loop round again and see if there's more to be done.
757 * Only if normal deduction has completely failed us should
758 * we now move on to narrowing down the possible number
759 * placements.
760 */
761 if (done_something)
762 continue;
763
764 /*
765 * Now we have done everything we can with the current set
766 * of number placements. So we need to winnow the number
767 * placements so as to narrow down the possibilities. We do
768 * this by searching for a candidate placement (of _any_
769 * rectangle) which overlaps a candidate placement of the
770 * number for some other rectangle.
771 */
772 if (rs) {
773 struct rpn {
774 int rect;
775 int placement;
776 int number;
777 } *rpns = NULL;
778 size_t nrpns = 0, rpnsize = 0;
779 int j;
780
781 for (i = 0; i < nrects; i++) {
782 for (j = 0; j < rectpositions[i].n; j++) {
783 int xx, yy;
784
785 for (yy = 0; yy < rectpositions[i].rects[j].h; yy++) {
786 int y = yy + rectpositions[i].rects[j].y;
787 for (xx = 0; xx < rectpositions[i].rects[j].w; xx++) {
788 int x = xx + rectpositions[i].rects[j].x;
789
790 if (rectbyplace[y * w + x] >= 0 &&
791 rectbyplace[y * w + x] != i) {
792 /*
793 * Add this to the list of
794 * winnowing possibilities.
795 */
796 if (nrpns >= rpnsize) {
797 rpnsize = rpnsize * 3 / 2 + 32;
798 rpns = sresize(rpns, rpnsize, struct rpn);
799 }
800 rpns[nrpns].rect = i;
801 rpns[nrpns].placement = j;
802 rpns[nrpns].number = rectbyplace[y * w + x];
803 nrpns++;
804 }
805 }
806 }
807
808 }
809 }
810
811#ifdef SOLVER_DIAGNOSTICS
812 printf("%d candidate rect placements we could eliminate\n", nrpns);
813#endif
814 if (nrpns > 0) {
815 /*
816 * Now choose one of these unwanted rectangle
817 * placements, and eliminate it.
818 */
819 int index = random_upto(rs, nrpns);
820 int k, m;
821 struct rpn rpn = rpns[index];
822 struct rect r;
823 sfree(rpns);
824
825 i = rpn.rect;
826 j = rpn.placement;
827 k = rpn.number;
828 r = rectpositions[i].rects[j];
829
830 /*
831 * We rule out placement j of rectangle i by means
832 * of removing all of rectangle k's candidate
833 * number placements which do _not_ overlap it.
834 * This will ensure that it is eliminated during
835 * the next pass of rectangle-focused deduction.
836 */
837#ifdef SOLVER_DIAGNOSTICS
838 printf("ensuring number for rect %d is within"
839 " rect %d's placement at %d,%d w=%d h=%d\n",
840 k, i, r.x, r.y, r.w, r.h);
841#endif
842
843 for (m = 0; m < numbers[k].npoints; m++) {
844 int x = numbers[k].points[m].x;
845 int y = numbers[k].points[m].y;
846
847 if (x < r.x || x >= r.x + r.w ||
848 y < r.y || y >= r.y + r.h) {
849#ifdef SOLVER_DIAGNOSTICS
850 printf("eliminating number for rect %d at %d,%d\n",
851 k, x, y);
852#endif
853 remove_number_placement(w, h, &numbers[k],
854 m, rectbyplace);
855 m--; /* don't skip the next one */
856 done_something = true;
857 }
858 }
859 }
860 }
861
862 if (!done_something) {
863#ifdef SOLVER_DIAGNOSTICS
864 printf("terminating deduction loop\n");
865#endif
866 break;
867 }
868 }
869
870 cleanup:
871 ret = 1;
872 for (i = 0; i < nrects; i++) {
873#ifdef SOLVER_DIAGNOSTICS
874 printf("rect %d has %d possible placements\n",
875 i, rectpositions[i].n);
876#endif
877 if (rectpositions[i].n <= 0) {
878 ret = 0; /* inconsistency */
879 } else if (rectpositions[i].n > 1) {
880 ret = 2; /* remaining uncertainty */
881 } else if (hedge && vedge) {
882 /*
883 * Place the rectangle in its only possible position.
884 */
885 int x, y;
886 struct rect *r = &rectpositions[i].rects[0];
887
888 for (y = 0; y < r->h; y++) {
889 if (r->x > 0)
890 vedge[(r->y+y) * w + r->x] = 1;
891 if (r->x+r->w < w)
892 vedge[(r->y+y) * w + r->x+r->w] = 1;
893 }
894 for (x = 0; x < r->w; x++) {
895 if (r->y > 0)
896 hedge[r->y * w + r->x+x] = 1;
897 if (r->y+r->h < h)
898 hedge[(r->y+r->h) * w + r->x+x] = 1;
899 }
900 }
901 }
902
903 /*
904 * Free up all allocated storage.
905 */
906 sfree(workspace);
907 sfree(rectbyplace);
908 sfree(overlaps);
909 for (i = 0; i < nrects; i++)
910 sfree(rectpositions[i].rects);
911 sfree(rectpositions);
912
913 return ret;
914}
915
916/* ----------------------------------------------------------------------
917 * Grid generation code.
918 */
919
920/*
921 * This function does one of two things. If passed r==NULL, it
922 * counts the number of possible rectangles which cover the given
923 * square, and returns it in *n. If passed r!=NULL then it _reads_
924 * *n to find an index, counts the possible rectangles until it
925 * reaches the nth, and writes it into r.
926 *
927 * `scratch' is expected to point to an array of 2 * params->w
928 * ints, used internally as scratch space (and passed in like this
929 * to avoid re-allocating and re-freeing it every time round a
930 * tight loop).
931 */
932static void enum_rects(game_params *params, int *grid, struct rect *r, int *n,
933 int sx, int sy, int *scratch)
934{
935 int rw, rh, mw, mh;
936 int x, y, dx, dy;
937 int maxarea, realmaxarea;
938 int index = 0;
939 int *top, *bottom;
940
941 /*
942 * Maximum rectangle area is 1/6 of total grid size, unless
943 * this means we can't place any rectangles at all in which
944 * case we set it to 2 at minimum.
945 */
946 maxarea = params->w * params->h / 6;
947 if (maxarea < 2)
948 maxarea = 2;
949
950 /*
951 * Scan the grid to find the limits of the region within which
952 * any rectangle containing this point must fall. This will
953 * save us trawling the inside of every rectangle later on to
954 * see if it contains any used squares.
955 */
956 top = scratch;
957 bottom = scratch + params->w;
958 for (dy = -1; dy <= +1; dy += 2) {
959 int *array = (dy == -1 ? top : bottom);
960 for (dx = -1; dx <= +1; dx += 2) {
961 for (x = sx; x >= 0 && x < params->w; x += dx) {
962 array[x] = -2 * params->h * dy;
963 for (y = sy; y >= 0 && y < params->h; y += dy) {
964 if (index(params, grid, x, y) == -1 &&
965 (x == sx || dy*y <= dy*array[x-dx]))
966 array[x] = y;
967 else
968 break;
969 }
970 }
971 }
972 }
973
974 /*
975 * Now scan again to work out the largest rectangles we can fit
976 * in the grid, so that we can terminate the following loops
977 * early once we get down to not having much space left in the
978 * grid.
979 */
980 realmaxarea = 0;
981 for (x = 0; x < params->w; x++) {
982 int x2;
983
984 rh = bottom[x] - top[x] + 1;
985 if (rh <= 0)
986 continue; /* no rectangles can start here */
987
988 dx = (x > sx ? -1 : +1);
989 for (x2 = x; x2 >= 0 && x2 < params->w; x2 += dx)
990 if (bottom[x2] < bottom[x] || top[x2] > top[x])
991 break;
992
993 rw = abs(x2 - x);
994 if (realmaxarea < rw * rh)
995 realmaxarea = rw * rh;
996 }
997
998 if (realmaxarea > maxarea)
999 realmaxarea = maxarea;
1000
1001 /*
1002 * Rectangles which go right the way across the grid are
1003 * boring, although they can't be helped in the case of
1004 * extremely small grids. (Also they might be generated later
1005 * on by the singleton-removal process; we can't help that.)
1006 */
1007 mw = params->w - 1;
1008 if (mw < 3) mw++;
1009 mh = params->h - 1;
1010 if (mh < 3) mh++;
1011
1012 for (rw = 1; rw <= mw; rw++)
1013 for (rh = 1; rh <= mh; rh++) {
1014 if (rw * rh > realmaxarea)
1015 continue;
1016 if (rw * rh == 1)
1017 continue;
1018 for (x = max(sx - rw + 1, 0); x <= min(sx, params->w - rw); x++)
1019 for (y = max(sy - rh + 1, 0); y <= min(sy, params->h - rh);
1020 y++) {
1021 /*
1022 * Check this rectangle against the region we
1023 * defined above.
1024 */
1025 if (top[x] <= y && top[x+rw-1] <= y &&
1026 bottom[x] >= y+rh-1 && bottom[x+rw-1] >= y+rh-1) {
1027 if (r && index == *n) {
1028 r->x = x;
1029 r->y = y;
1030 r->w = rw;
1031 r->h = rh;
1032 return;
1033 }
1034 index++;
1035 }
1036 }
1037 }
1038
1039 assert(!r);
1040 *n = index;
1041}
1042
1043static void place_rect(game_params *params, int *grid, struct rect r)
1044{
1045 int idx = INDEX(params, r.x, r.y);
1046 int x, y;
1047
1048 for (x = r.x; x < r.x+r.w; x++)
1049 for (y = r.y; y < r.y+r.h; y++) {
1050 index(params, grid, x, y) = idx;
1051 }
1052#ifdef GENERATION_DIAGNOSTICS
1053 printf(" placing rectangle at (%d,%d) size %d x %d\n",
1054 r.x, r.y, r.w, r.h);
1055#endif
1056}
1057
1058static struct rect find_rect(game_params *params, int *grid, int x, int y)
1059{
1060 int idx, w, h;
1061 struct rect r;
1062
1063 /*
1064 * Find the top left of the rectangle.
1065 */
1066 idx = index(params, grid, x, y);
1067
1068 if (idx < 0) {
1069 r.x = x;
1070 r.y = y;
1071 r.w = r.h = 1;
1072 return r; /* 1x1 singleton here */
1073 }
1074
1075 y = idx / params->w;
1076 x = idx % params->w;
1077
1078 /*
1079 * Find the width and height of the rectangle.
1080 */
1081 for (w = 1;
1082 (x+w < params->w && index(params,grid,x+w,y)==idx);
1083 w++);
1084 for (h = 1;
1085 (y+h < params->h && index(params,grid,x,y+h)==idx);
1086 h++);
1087
1088 r.x = x;
1089 r.y = y;
1090 r.w = w;
1091 r.h = h;
1092
1093 return r;
1094}
1095
1096#ifdef GENERATION_DIAGNOSTICS
1097static void display_grid(game_params *params, int *grid, int *numbers, int all)
1098{
1099 unsigned char *egrid = snewn((params->w*2+3) * (params->h*2+3),
1100 unsigned char);
1101 int x, y;
1102 int r = (params->w*2+3);
1103
1104 memset(egrid, 0, (params->w*2+3) * (params->h*2+3));
1105
1106 for (x = 0; x < params->w; x++)
1107 for (y = 0; y < params->h; y++) {
1108 int i = index(params, grid, x, y);
1109 if (x == 0 || index(params, grid, x-1, y) != i)
1110 egrid[(2*y+2) * r + (2*x+1)] = 1;
1111 if (x == params->w-1 || index(params, grid, x+1, y) != i)
1112 egrid[(2*y+2) * r + (2*x+3)] = 1;
1113 if (y == 0 || index(params, grid, x, y-1) != i)
1114 egrid[(2*y+1) * r + (2*x+2)] = 1;
1115 if (y == params->h-1 || index(params, grid, x, y+1) != i)
1116 egrid[(2*y+3) * r + (2*x+2)] = 1;
1117 }
1118
1119 for (y = 1; y < 2*params->h+2; y++) {
1120 for (x = 1; x < 2*params->w+2; x++) {
1121 if (!((y|x)&1)) {
1122 int k = numbers ? index(params, numbers, x/2-1, y/2-1) : 0;
1123 if (k || (all && numbers)) printf("%2d", k); else printf(" ");
1124 } else if (!((y&x)&1)) {
1125 int v = egrid[y*r+x];
1126 if ((y&1) && v) v = '-';
1127 if ((x&1) && v) v = '|';
1128 if (!v) v = ' ';
1129 putchar(v);
1130 if (!(x&1)) putchar(v);
1131 } else {
1132 int c, d = 0;
1133 if (egrid[y*r+(x+1)]) d |= 1;
1134 if (egrid[(y-1)*r+x]) d |= 2;
1135 if (egrid[y*r+(x-1)]) d |= 4;
1136 if (egrid[(y+1)*r+x]) d |= 8;
1137 c = " ??+?-++?+|+++++"[d];
1138 putchar(c);
1139 if (!(x&1)) putchar(c);
1140 }
1141 }
1142 putchar('\n');
1143 }
1144
1145 sfree(egrid);
1146}
1147#endif
1148
1149static char *new_game_desc(const game_params *params_in, random_state *rs,
1150 char **aux, bool interactive)
1151{
1152 game_params params_copy = *params_in; /* structure copy */
1153 game_params *params = ¶ms_copy;
1154 int *grid, *numbers = NULL;
1155 int x, y, y2, y2last, yx, run, i, nsquares;
1156 char *desc, *p;
1157 int *enum_rects_scratch;
1158 game_params params2real, *params2 = ¶ms2real;
1159
1160 while (1) {
1161 /*
1162 * Set up the smaller width and height which we will use to
1163 * generate the base grid.
1164 */
1165 params2->w = (int)((float)params->w / (1.0F + params->expandfactor));
1166 if (params2->w < 2 && params->w >= 2) params2->w = 2;
1167 params2->h = (int)((float)params->h / (1.0F + params->expandfactor));
1168 if (params2->h < 2 && params->h >= 2) params2->h = 2;
1169
1170 grid = snewn(params2->w * params2->h, int);
1171
1172 enum_rects_scratch = snewn(2 * params2->w, int);
1173
1174 nsquares = 0;
1175 for (y = 0; y < params2->h; y++)
1176 for (x = 0; x < params2->w; x++) {
1177 index(params2, grid, x, y) = -1;
1178 nsquares++;
1179 }
1180
1181 /*
1182 * Place rectangles until we can't any more. We do this by
1183 * finding a square we haven't yet covered, and randomly
1184 * choosing a rectangle to cover it.
1185 */
1186
1187 while (nsquares > 0) {
1188 int square = random_upto(rs, nsquares);
1189 int n;
1190 struct rect r;
1191
1192 x = params2->w;
1193 y = params2->h;
1194 for (y = 0; y < params2->h; y++) {
1195 for (x = 0; x < params2->w; x++) {
1196 if (index(params2, grid, x, y) == -1 && square-- == 0)
1197 break;
1198 }
1199 if (x < params2->w)
1200 break;
1201 }
1202 assert(x < params2->w && y < params2->h);
1203
1204 /*
1205 * Now see how many rectangles fit around this one.
1206 */
1207 enum_rects(params2, grid, NULL, &n, x, y, enum_rects_scratch);
1208
1209 if (!n) {
1210 /*
1211 * There are no possible rectangles covering this
1212 * square, meaning it must be a singleton. Mark it
1213 * -2 so we know not to keep trying.
1214 */
1215 index(params2, grid, x, y) = -2;
1216 nsquares--;
1217 } else {
1218 /*
1219 * Pick one at random.
1220 */
1221 n = random_upto(rs, n);
1222 enum_rects(params2, grid, &r, &n, x, y, enum_rects_scratch);
1223
1224 /*
1225 * Place it.
1226 */
1227 place_rect(params2, grid, r);
1228 nsquares -= r.w * r.h;
1229 }
1230 }
1231
1232 sfree(enum_rects_scratch);
1233
1234 /*
1235 * Deal with singleton spaces remaining in the grid, one by
1236 * one.
1237 *
1238 * We do this by making a local change to the layout. There are
1239 * several possibilities:
1240 *
1241 * +-----+-----+ Here, we can remove the singleton by
1242 * | | | extending the 1x2 rectangle below it
1243 * +--+--+-----+ into a 1x3.
1244 * | | | |
1245 * | +--+ |
1246 * | | | |
1247 * | | | |
1248 * | | | |
1249 * +--+--+-----+
1250 *
1251 * +--+--+--+ Here, that trick doesn't work: there's no
1252 * | | | 1 x n rectangle with the singleton at one
1253 * | | | end. Instead, we extend a 1 x n rectangle
1254 * | | | _out_ from the singleton, shaving a layer
1255 * +--+--+ | off the end of another rectangle. So if we
1256 * | | | | extended up, we'd make our singleton part
1257 * | +--+--+ of a 1x3 and generate a 1x2 where the 2x2
1258 * | | | used to be; or we could extend right into
1259 * +--+-----+ a 2x1, turning the 1x3 into a 1x2.
1260 *
1261 * +-----+--+ Here, we can't even do _that_, since any
1262 * | | | direction we choose to extend the singleton
1263 * +--+--+ | will produce a new singleton as a result of
1264 * | | | | truncating one of the size-2 rectangles.
1265 * | +--+--+ Fortunately, this case can _only_ occur when
1266 * | | | a singleton is surrounded by four size-2s
1267 * +--+-----+ in this fashion; so instead we can simply
1268 * replace the whole section with a single 3x3.
1269 */
1270 for (x = 0; x < params2->w; x++) {
1271 for (y = 0; y < params2->h; y++) {
1272 if (index(params2, grid, x, y) < 0) {
1273 int dirs[4], ndirs;
1274
1275#ifdef GENERATION_DIAGNOSTICS
1276 display_grid(params2, grid, NULL, false);
1277 printf("singleton at %d,%d\n", x, y);
1278#endif
1279
1280 /*
1281 * Check in which directions we can feasibly extend
1282 * the singleton. We can extend in a particular
1283 * direction iff either:
1284 *
1285 * - the rectangle on that side of the singleton
1286 * is not 2x1, and we are at one end of the edge
1287 * of it we are touching
1288 *
1289 * - it is 2x1 but we are on its short side.
1290 *
1291 * FIXME: we could plausibly choose between these
1292 * based on the sizes of the rectangles they would
1293 * create?
1294 */
1295 ndirs = 0;
1296 if (x < params2->w-1) {
1297 struct rect r = find_rect(params2, grid, x+1, y);
1298 if ((r.w * r.h > 2 && (r.y==y || r.y+r.h-1==y)) || r.h==1)
1299 dirs[ndirs++] = 1; /* right */
1300 }
1301 if (y > 0) {
1302 struct rect r = find_rect(params2, grid, x, y-1);
1303 if ((r.w * r.h > 2 && (r.x==x || r.x+r.w-1==x)) || r.w==1)
1304 dirs[ndirs++] = 2; /* up */
1305 }
1306 if (x > 0) {
1307 struct rect r = find_rect(params2, grid, x-1, y);
1308 if ((r.w * r.h > 2 && (r.y==y || r.y+r.h-1==y)) || r.h==1)
1309 dirs[ndirs++] = 4; /* left */
1310 }
1311 if (y < params2->h-1) {
1312 struct rect r = find_rect(params2, grid, x, y+1);
1313 if ((r.w * r.h > 2 && (r.x==x || r.x+r.w-1==x)) || r.w==1)
1314 dirs[ndirs++] = 8; /* down */
1315 }
1316
1317 if (ndirs > 0) {
1318 int which, dir;
1319 struct rect r1, r2;
1320 memset(&r1, 0, sizeof(struct rect));
1321 memset(&r2, 0, sizeof(struct rect));
1322 which = random_upto(rs, ndirs);
1323 dir = dirs[which];
1324
1325 switch (dir) {
1326 case 1: /* right */
1327 assert(x < params2->w+1);
1328#ifdef GENERATION_DIAGNOSTICS
1329 printf("extending right\n");
1330#endif
1331 r1 = find_rect(params2, grid, x+1, y);
1332 r2.x = x;
1333 r2.y = y;
1334 r2.w = 1 + r1.w;
1335 r2.h = 1;
1336 if (r1.y == y)
1337 r1.y++;
1338 r1.h--;
1339 break;
1340 case 2: /* up */
1341 assert(y > 0);
1342#ifdef GENERATION_DIAGNOSTICS
1343 printf("extending up\n");
1344#endif
1345 r1 = find_rect(params2, grid, x, y-1);
1346 r2.x = x;
1347 r2.y = r1.y;
1348 r2.w = 1;
1349 r2.h = 1 + r1.h;
1350 if (r1.x == x)
1351 r1.x++;
1352 r1.w--;
1353 break;
1354 case 4: /* left */
1355 assert(x > 0);
1356#ifdef GENERATION_DIAGNOSTICS
1357 printf("extending left\n");
1358#endif
1359 r1 = find_rect(params2, grid, x-1, y);
1360 r2.x = r1.x;
1361 r2.y = y;
1362 r2.w = 1 + r1.w;
1363 r2.h = 1;
1364 if (r1.y == y)
1365 r1.y++;
1366 r1.h--;
1367 break;
1368 case 8: /* down */
1369 assert(y < params2->h+1);
1370#ifdef GENERATION_DIAGNOSTICS
1371 printf("extending down\n");
1372#endif
1373 r1 = find_rect(params2, grid, x, y+1);
1374 r2.x = x;
1375 r2.y = y;
1376 r2.w = 1;
1377 r2.h = 1 + r1.h;
1378 if (r1.x == x)
1379 r1.x++;
1380 r1.w--;
1381 break;
1382 default: /* should never happen */
1383 assert(!"invalid direction");
1384 }
1385 if (r1.h > 0 && r1.w > 0)
1386 place_rect(params2, grid, r1);
1387 place_rect(params2, grid, r2);
1388 } else {
1389#ifndef NDEBUG
1390 /*
1391 * Sanity-check that there really is a 3x3
1392 * rectangle surrounding this singleton and it
1393 * contains absolutely everything we could
1394 * possibly need.
1395 */
1396 {
1397 int xx, yy;
1398 assert(x > 0 && x < params2->w-1);
1399 assert(y > 0 && y < params2->h-1);
1400
1401 for (xx = x-1; xx <= x+1; xx++)
1402 for (yy = y-1; yy <= y+1; yy++) {
1403 struct rect r = find_rect(params2,grid,xx,yy);
1404 assert(r.x >= x-1);
1405 assert(r.y >= y-1);
1406 assert(r.x+r.w-1 <= x+1);
1407 assert(r.y+r.h-1 <= y+1);
1408 }
1409 }
1410#endif
1411
1412#ifdef GENERATION_DIAGNOSTICS
1413 printf("need the 3x3 trick\n");
1414#endif
1415
1416 /*
1417 * FIXME: If the maximum rectangle area for
1418 * this grid is less than 9, we ought to
1419 * subdivide the 3x3 in some fashion. There are
1420 * five other possibilities:
1421 *
1422 * - a 6 and a 3
1423 * - a 4, a 3 and a 2
1424 * - three 3s
1425 * - a 3 and three 2s (two different arrangements).
1426 */
1427
1428 {
1429 struct rect r;
1430 r.x = x-1;
1431 r.y = y-1;
1432 r.w = r.h = 3;
1433 place_rect(params2, grid, r);
1434 }
1435 }
1436 }
1437 }
1438 }
1439
1440 /*
1441 * We have now constructed a grid of the size specified in
1442 * params2. Now we extend it into a grid of the size specified
1443 * in params. We do this in two passes: we extend it vertically
1444 * until it's the right height, then we transpose it, then
1445 * extend it vertically again (getting it effectively the right
1446 * width), then finally transpose again.
1447 */
1448 for (i = 0; i < 2; i++) {
1449 int *grid2, *expand, *where;
1450 game_params params3real, *params3 = ¶ms3real;
1451
1452#ifdef GENERATION_DIAGNOSTICS
1453 printf("before expansion:\n");
1454 display_grid(params2, grid, NULL, true);
1455#endif
1456
1457 /*
1458 * Set up the new grid.
1459 */
1460 grid2 = snewn(params2->w * params->h, int);
1461 expand = snewn(params2->h-1, int);
1462 where = snewn(params2->w, int);
1463 params3->w = params2->w;
1464 params3->h = params->h;
1465
1466 /*
1467 * Decide which horizontal edges are going to get expanded,
1468 * and by how much.
1469 */
1470 for (y = 0; y < params2->h-1; y++)
1471 expand[y] = 0;
1472 for (y = params2->h; y < params->h; y++) {
1473 x = random_upto(rs, params2->h-1);
1474 expand[x]++;
1475 }
1476
1477#ifdef GENERATION_DIAGNOSTICS
1478 printf("expand[] = {");
1479 for (y = 0; y < params2->h-1; y++)
1480 printf(" %d", expand[y]);
1481 printf(" }\n");
1482#endif
1483
1484 /*
1485 * Perform the expansion. The way this works is that we
1486 * alternately:
1487 *
1488 * - copy a row from grid into grid2
1489 *
1490 * - invent some number of additional rows in grid2 where
1491 * there was previously only a horizontal line between
1492 * rows in grid, and make random decisions about where
1493 * among these to place each rectangle edge that ran
1494 * along this line.
1495 */
1496 for (y = y2 = y2last = 0; y < params2->h; y++) {
1497 /*
1498 * Copy a single line from row y of grid into row y2 of
1499 * grid2.
1500 */
1501 for (x = 0; x < params2->w; x++) {
1502 int val = index(params2, grid, x, y);
1503 if (val / params2->w == y && /* rect starts on this line */
1504 (y2 == 0 || /* we're at the very top, or... */
1505 index(params3, grid2, x, y2-1) / params3->w < y2last
1506 /* this rect isn't already started */))
1507 index(params3, grid2, x, y2) =
1508 INDEX(params3, val % params2->w, y2);
1509 else
1510 index(params3, grid2, x, y2) =
1511 index(params3, grid2, x, y2-1);
1512 }
1513
1514 /*
1515 * If that was the last line, terminate the loop early.
1516 */
1517 if (++y2 == params3->h)
1518 break;
1519
1520 y2last = y2;
1521
1522 /*
1523 * Invent some number of additional lines. First walk
1524 * along this line working out where to put all the
1525 * edges that coincide with it.
1526 */
1527 yx = -1;
1528 for (x = 0; x < params2->w; x++) {
1529 if (index(params2, grid, x, y) !=
1530 index(params2, grid, x, y+1)) {
1531 /*
1532 * This is a horizontal edge, so it needs
1533 * placing.
1534 */
1535 if (x == 0 ||
1536 (index(params2, grid, x-1, y) !=
1537 index(params2, grid, x, y) &&
1538 index(params2, grid, x-1, y+1) !=
1539 index(params2, grid, x, y+1))) {
1540 /*
1541 * Here we have the chance to make a new
1542 * decision.
1543 */
1544 yx = random_upto(rs, expand[y]+1);
1545 } else {
1546 /*
1547 * Here we just reuse the previous value of
1548 * yx.
1549 */
1550 }
1551 } else
1552 yx = -1;
1553 where[x] = yx;
1554 }
1555
1556 for (yx = 0; yx < expand[y]; yx++) {
1557 /*
1558 * Invent a single row. For each square in the row,
1559 * we copy the grid entry from the square above it,
1560 * unless we're starting the new rectangle here.
1561 */
1562 for (x = 0; x < params2->w; x++) {
1563 if (yx == where[x]) {
1564 int val = index(params2, grid, x, y+1);
1565 val %= params2->w;
1566 val = INDEX(params3, val, y2);
1567 index(params3, grid2, x, y2) = val;
1568 } else
1569 index(params3, grid2, x, y2) =
1570 index(params3, grid2, x, y2-1);
1571 }
1572
1573 y2++;
1574 }
1575 }
1576
1577 sfree(expand);
1578 sfree(where);
1579
1580#ifdef GENERATION_DIAGNOSTICS
1581 printf("after expansion:\n");
1582 display_grid(params3, grid2, NULL, true);
1583#endif
1584 /*
1585 * Transpose.
1586 */
1587 params2->w = params3->h;
1588 params2->h = params3->w;
1589 sfree(grid);
1590 grid = snewn(params2->w * params2->h, int);
1591 for (x = 0; x < params2->w; x++)
1592 for (y = 0; y < params2->h; y++) {
1593 int idx1 = INDEX(params2, x, y);
1594 int idx2 = INDEX(params3, y, x);
1595 int tmp;
1596
1597 tmp = grid2[idx2];
1598 tmp = (tmp % params3->w) * params2->w + (tmp / params3->w);
1599 grid[idx1] = tmp;
1600 }
1601
1602 sfree(grid2);
1603
1604 {
1605 int tmp;
1606 tmp = params->w;
1607 params->w = params->h;
1608 params->h = tmp;
1609 }
1610
1611#ifdef GENERATION_DIAGNOSTICS
1612 printf("after transposition:\n");
1613 display_grid(params2, grid, NULL, true);
1614#endif
1615 }
1616
1617 /*
1618 * Run the solver to narrow down the possible number
1619 * placements.
1620 */
1621 {
1622 struct numberdata *nd;
1623 int nnumbers, i, ret;
1624
1625 /* Count the rectangles. */
1626 nnumbers = 0;
1627 for (y = 0; y < params->h; y++) {
1628 for (x = 0; x < params->w; x++) {
1629 int idx = INDEX(params, x, y);
1630 if (index(params, grid, x, y) == idx)
1631 nnumbers++;
1632 }
1633 }
1634
1635 nd = snewn(nnumbers, struct numberdata);
1636
1637 /* Now set up each number's candidate position list. */
1638 i = 0;
1639 for (y = 0; y < params->h; y++) {
1640 for (x = 0; x < params->w; x++) {
1641 int idx = INDEX(params, x, y);
1642 if (index(params, grid, x, y) == idx) {
1643 struct rect r = find_rect(params, grid, x, y);
1644 int j, k, m;
1645
1646 nd[i].area = r.w * r.h;
1647 nd[i].npoints = nd[i].area;
1648 nd[i].points = snewn(nd[i].npoints, struct point);
1649 m = 0;
1650 for (j = 0; j < r.h; j++)
1651 for (k = 0; k < r.w; k++) {
1652 nd[i].points[m].x = k + r.x;
1653 nd[i].points[m].y = j + r.y;
1654 m++;
1655 }
1656 assert(m == nd[i].npoints);
1657
1658 i++;
1659 }
1660 }
1661 }
1662
1663 if (params->unique)
1664 ret = rect_solver(params->w, params->h, nnumbers, nd,
1665 NULL, NULL, rs);
1666 else
1667 ret = 1; /* allow any number placement at all */
1668
1669 if (ret == 1) {
1670 /*
1671 * Now place the numbers according to the solver's
1672 * recommendations.
1673 */
1674 numbers = snewn(params->w * params->h, int);
1675
1676 for (y = 0; y < params->h; y++)
1677 for (x = 0; x < params->w; x++) {
1678 index(params, numbers, x, y) = 0;
1679 }
1680
1681 for (i = 0; i < nnumbers; i++) {
1682 int idx = random_upto(rs, nd[i].npoints);
1683 int x = nd[i].points[idx].x;
1684 int y = nd[i].points[idx].y;
1685 index(params,numbers,x,y) = nd[i].area;
1686 }
1687 }
1688
1689 /*
1690 * Clean up.
1691 */
1692 for (i = 0; i < nnumbers; i++)
1693 sfree(nd[i].points);
1694 sfree(nd);
1695
1696 /*
1697 * If we've succeeded, then terminate the loop.
1698 */
1699 if (ret == 1)
1700 break;
1701 }
1702
1703 /*
1704 * Give up and go round again.
1705 */
1706 sfree(grid);
1707 }
1708
1709 /*
1710 * Store the solution in aux.
1711 */
1712 {
1713 char *ai;
1714 int len;
1715
1716 len = 2 + (params->w-1)*params->h + (params->h-1)*params->w;
1717 ai = snewn(len, char);
1718
1719 ai[0] = 'S';
1720
1721 p = ai+1;
1722
1723 for (y = 0; y < params->h; y++)
1724 for (x = 1; x < params->w; x++)
1725 *p++ = (index(params, grid, x, y) !=
1726 index(params, grid, x-1, y) ? '1' : '0');
1727
1728 for (y = 1; y < params->h; y++)
1729 for (x = 0; x < params->w; x++)
1730 *p++ = (index(params, grid, x, y) !=
1731 index(params, grid, x, y-1) ? '1' : '0');
1732
1733 assert(p - ai == len-1);
1734 *p = '\0';
1735
1736 *aux = ai;
1737 }
1738
1739#ifdef GENERATION_DIAGNOSTICS
1740 display_grid(params, grid, numbers, false);
1741#endif
1742
1743 desc = snewn(11 * params->w * params->h, char);
1744 p = desc;
1745 run = 0;
1746 for (i = 0; i <= params->w * params->h; i++) {
1747 int n = (i < params->w * params->h ? numbers[i] : -1);
1748
1749 if (!n)
1750 run++;
1751 else {
1752 if (run) {
1753 while (run > 0) {
1754 int c = 'a' - 1 + run;
1755 if (run > 26)
1756 c = 'z';
1757 *p++ = c;
1758 run -= c - ('a' - 1);
1759 }
1760 } else {
1761 /*
1762 * If there's a number in the very top left or
1763 * bottom right, there's no point putting an
1764 * unnecessary _ before or after it.
1765 */
1766 if (p > desc && n > 0)
1767 *p++ = '_';
1768 }
1769 if (n > 0)
1770 p += sprintf(p, "%d", n);
1771 run = 0;
1772 }
1773 }
1774 *p = '\0';
1775
1776 sfree(grid);
1777 sfree(numbers);
1778
1779 return desc;
1780}
1781
1782static const char *validate_desc(const game_params *params, const char *desc)
1783{
1784 int area = params->w * params->h;
1785 int squares = 0;
1786
1787 while (*desc) {
1788 int n = *desc++;
1789 if (n >= 'a' && n <= 'z') {
1790 squares += n - 'a' + 1;
1791 } else if (n == '_') {
1792 /* do nothing */;
1793 } else if (n > '0' && n <= '9') {
1794 squares++;
1795 while (*desc >= '0' && *desc <= '9')
1796 desc++;
1797 } else
1798 return "Invalid character in game description";
1799 }
1800
1801 if (squares < area)
1802 return "Not enough data to fill grid";
1803
1804 if (squares > area)
1805 return "Too much data to fit in grid";
1806
1807 return NULL;
1808}
1809
1810static unsigned char *get_correct(game_state *state)
1811{
1812 unsigned char *ret;
1813 int x, y;
1814
1815 ret = snewn(state->w * state->h, unsigned char);
1816 memset(ret, 0xFF, state->w * state->h);
1817
1818 for (x = 0; x < state->w; x++)
1819 for (y = 0; y < state->h; y++)
1820 if (index(state,ret,x,y) == 0xFF) {
1821 int rw, rh;
1822 int xx, yy;
1823 int num, area;
1824 bool valid;
1825
1826 /*
1827 * Find a rectangle starting at this point.
1828 */
1829 rw = 1;
1830 while (x+rw < state->w && !vedge(state,x+rw,y))
1831 rw++;
1832 rh = 1;
1833 while (y+rh < state->h && !hedge(state,x,y+rh))
1834 rh++;
1835
1836 /*
1837 * We know what the dimensions of the rectangle
1838 * should be if it's there at all. Find out if we
1839 * really have a valid rectangle.
1840 */
1841 valid = true;
1842 /* Check the horizontal edges. */
1843 for (xx = x; xx < x+rw; xx++) {
1844 for (yy = y; yy <= y+rh; yy++) {
1845 int e = !HRANGE(state,xx,yy) || hedge(state,xx,yy);
1846 int ec = (yy == y || yy == y+rh);
1847 if (e != ec)
1848 valid = false;
1849 }
1850 }
1851 /* Check the vertical edges. */
1852 for (yy = y; yy < y+rh; yy++) {
1853 for (xx = x; xx <= x+rw; xx++) {
1854 int e = !VRANGE(state,xx,yy) || vedge(state,xx,yy);
1855 int ec = (xx == x || xx == x+rw);
1856 if (e != ec)
1857 valid = false;
1858 }
1859 }
1860
1861 /*
1862 * If this is not a valid rectangle with no other
1863 * edges inside it, we just mark this square as not
1864 * complete and proceed to the next square.
1865 */
1866 if (!valid) {
1867 index(state, ret, x, y) = 0;
1868 continue;
1869 }
1870
1871 /*
1872 * We have a rectangle. Now see what its area is,
1873 * and how many numbers are in it.
1874 */
1875 num = 0;
1876 area = 0;
1877 for (xx = x; xx < x+rw; xx++) {
1878 for (yy = y; yy < y+rh; yy++) {
1879 area++;
1880 if (grid(state,xx,yy)) {
1881 if (num > 0)
1882 valid = false; /* two numbers */
1883 num = grid(state,xx,yy);
1884 }
1885 }
1886 }
1887 if (num != area)
1888 valid = false;
1889
1890 /*
1891 * Now fill in the whole rectangle based on the
1892 * value of `valid'.
1893 */
1894 for (xx = x; xx < x+rw; xx++) {
1895 for (yy = y; yy < y+rh; yy++) {
1896 index(state, ret, xx, yy) = valid;
1897 }
1898 }
1899 }
1900
1901 return ret;
1902}
1903
1904static game_state *new_game(midend *me, const game_params *params,
1905 const char *desc)
1906{
1907 game_state *state = snew(game_state);
1908 int x, y, i, area;
1909
1910 state->w = params->w;
1911 state->h = params->h;
1912
1913 area = state->w * state->h;
1914
1915 state->grid = snewn(area, int);
1916 state->vedge = snewn(area, unsigned char);
1917 state->hedge = snewn(area, unsigned char);
1918 state->completed = false;
1919 state->cheated = false;
1920
1921 i = 0;
1922 while (*desc) {
1923 int n = *desc++;
1924 if (n >= 'a' && n <= 'z') {
1925 int run = n - 'a' + 1;
1926 assert(i + run <= area);
1927 while (run-- > 0)
1928 state->grid[i++] = 0;
1929 } else if (n == '_') {
1930 /* do nothing */;
1931 } else if (n > '0' && n <= '9') {
1932 assert(i < area);
1933 state->grid[i++] = atoi(desc-1);
1934 while (*desc >= '0' && *desc <= '9')
1935 desc++;
1936 } else {
1937 assert(!"We can't get here");
1938 }
1939 }
1940 assert(i == area);
1941
1942 for (y = 0; y < state->h; y++)
1943 for (x = 0; x < state->w; x++)
1944 vedge(state,x,y) = hedge(state,x,y) = 0;
1945
1946 state->correct = get_correct(state);
1947
1948 return state;
1949}
1950
1951static game_state *dup_game(const game_state *state)
1952{
1953 game_state *ret = snew(game_state);
1954
1955 ret->w = state->w;
1956 ret->h = state->h;
1957
1958 ret->vedge = snewn(state->w * state->h, unsigned char);
1959 ret->hedge = snewn(state->w * state->h, unsigned char);
1960 ret->grid = snewn(state->w * state->h, int);
1961 ret->correct = snewn(ret->w * ret->h, unsigned char);
1962
1963 ret->completed = state->completed;
1964 ret->cheated = state->cheated;
1965
1966 memcpy(ret->grid, state->grid, state->w * state->h * sizeof(int));
1967 memcpy(ret->vedge, state->vedge, state->w*state->h*sizeof(unsigned char));
1968 memcpy(ret->hedge, state->hedge, state->w*state->h*sizeof(unsigned char));
1969
1970 memcpy(ret->correct, state->correct, state->w*state->h*sizeof(unsigned char));
1971
1972 return ret;
1973}
1974
1975static void free_game(game_state *state)
1976{
1977 sfree(state->grid);
1978 sfree(state->vedge);
1979 sfree(state->hedge);
1980 sfree(state->correct);
1981 sfree(state);
1982}
1983
1984static char *solve_game(const game_state *state, const game_state *currstate,
1985 const char *ai, const char **error)
1986{
1987 unsigned char *vedge, *hedge;
1988 int x, y, len;
1989 char *ret, *p;
1990 int i, j, n;
1991 struct numberdata *nd;
1992
1993 if (ai)
1994 return dupstr(ai);
1995
1996 /*
1997 * Attempt the in-built solver.
1998 */
1999
2000 /* Set up each number's (very short) candidate position list. */
2001 for (i = n = 0; i < state->h * state->w; i++)
2002 if (state->grid[i])
2003 n++;
2004
2005 nd = snewn(n, struct numberdata);
2006
2007 for (i = j = 0; i < state->h * state->w; i++)
2008 if (state->grid[i]) {
2009 nd[j].area = state->grid[i];
2010 nd[j].npoints = 1;
2011 nd[j].points = snewn(1, struct point);
2012 nd[j].points[0].x = i % state->w;
2013 nd[j].points[0].y = i / state->w;
2014 j++;
2015 }
2016
2017 assert(j == n);
2018
2019 vedge = snewn(state->w * state->h, unsigned char);
2020 hedge = snewn(state->w * state->h, unsigned char);
2021 memset(vedge, 0, state->w * state->h);
2022 memset(hedge, 0, state->w * state->h);
2023
2024 rect_solver(state->w, state->h, n, nd, hedge, vedge, NULL);
2025
2026 /*
2027 * Clean up.
2028 */
2029 for (i = 0; i < n; i++)
2030 sfree(nd[i].points);
2031 sfree(nd);
2032
2033 len = 2 + (state->w-1)*state->h + (state->h-1)*state->w;
2034 ret = snewn(len, char);
2035
2036 p = ret;
2037 *p++ = 'S';
2038 for (y = 0; y < state->h; y++)
2039 for (x = 1; x < state->w; x++)
2040 *p++ = vedge[y*state->w+x] ? '1' : '0';
2041 for (y = 1; y < state->h; y++)
2042 for (x = 0; x < state->w; x++)
2043 *p++ = hedge[y*state->w+x] ? '1' : '0';
2044 *p++ = '\0';
2045 assert(p - ret == len);
2046
2047 sfree(vedge);
2048 sfree(hedge);
2049
2050 return ret;
2051}
2052
2053static bool game_can_format_as_text_now(const game_params *params)
2054{
2055 return true;
2056}
2057
2058static char *game_text_format(const game_state *state)
2059{
2060 char *ret, *p, buf[80];
2061 int i, x, y, col, maxlen;
2062
2063 /*
2064 * First determine the number of spaces required to display a
2065 * number. We'll use at least two, because one looks a bit
2066 * silly.
2067 */
2068 col = 2;
2069 for (i = 0; i < state->w * state->h; i++) {
2070 x = sprintf(buf, "%d", state->grid[i]);
2071 if (col < x) col = x;
2072 }
2073
2074 /*
2075 * Now we know the exact total size of the grid we're going to
2076 * produce: it's got 2*h+1 rows, each containing w lots of col,
2077 * w+1 boundary characters and a trailing newline.
2078 */
2079 maxlen = (2*state->h+1) * (state->w * (col+1) + 2);
2080
2081 ret = snewn(maxlen+1, char);
2082 p = ret;
2083
2084 for (y = 0; y <= 2*state->h; y++) {
2085 for (x = 0; x <= 2*state->w; x++) {
2086 if (x & y & 1) {
2087 /*
2088 * Display a number.
2089 */
2090 int v = grid(state, x/2, y/2);
2091 if (v)
2092 sprintf(buf, "%*d", col, v);
2093 else
2094 sprintf(buf, "%*s", col, "");
2095 memcpy(p, buf, col);
2096 p += col;
2097 } else if (x & 1) {
2098 /*
2099 * Display a horizontal edge or nothing.
2100 */
2101 int h = (y==0 || y==2*state->h ? 1 :
2102 HRANGE(state, x/2, y/2) && hedge(state, x/2, y/2));
2103 int i;
2104 if (h)
2105 h = '-';
2106 else
2107 h = ' ';
2108 for (i = 0; i < col; i++)
2109 *p++ = h;
2110 } else if (y & 1) {
2111 /*
2112 * Display a vertical edge or nothing.
2113 */
2114 int v = (x==0 || x==2*state->w ? 1 :
2115 VRANGE(state, x/2, y/2) && vedge(state, x/2, y/2));
2116 if (v)
2117 *p++ = '|';
2118 else
2119 *p++ = ' ';
2120 } else {
2121 /*
2122 * Display a corner, or a vertical edge, or a
2123 * horizontal edge, or nothing.
2124 */
2125 int hl = (y==0 || y==2*state->h ? 1 :
2126 HRANGE(state, (x-1)/2, y/2) && hedge(state, (x-1)/2, y/2));
2127 int hr = (y==0 || y==2*state->h ? 1 :
2128 HRANGE(state, (x+1)/2, y/2) && hedge(state, (x+1)/2, y/2));
2129 int vu = (x==0 || x==2*state->w ? 1 :
2130 VRANGE(state, x/2, (y-1)/2) && vedge(state, x/2, (y-1)/2));
2131 int vd = (x==0 || x==2*state->w ? 1 :
2132 VRANGE(state, x/2, (y+1)/2) && vedge(state, x/2, (y+1)/2));
2133 if (!hl && !hr && !vu && !vd)
2134 *p++ = ' ';
2135 else if (hl && hr && !vu && !vd)
2136 *p++ = '-';
2137 else if (!hl && !hr && vu && vd)
2138 *p++ = '|';
2139 else
2140 *p++ = '+';
2141 }
2142 }
2143 *p++ = '\n';
2144 }
2145
2146 assert(p - ret == maxlen);
2147 *p = '\0';
2148 return ret;
2149}
2150
2151struct game_ui {
2152 /*
2153 * These coordinates are 2 times the obvious grid coordinates.
2154 * Hence, the top left of the grid is (0,0), the grid point to
2155 * the right of that is (2,0), the one _below that_ is (2,2)
2156 * and so on. This is so that we can specify a drag start point
2157 * on an edge (one odd coordinate) or in the middle of a square
2158 * (two odd coordinates) rather than always at a corner.
2159 *
2160 * -1,-1 means no drag is in progress.
2161 */
2162 int drag_start_x;
2163 int drag_start_y;
2164 int drag_end_x;
2165 int drag_end_y;
2166 /*
2167 * This flag is set as soon as a dragging action moves the
2168 * mouse pointer away from its starting point, so that even if
2169 * the pointer _returns_ to its starting point the action is
2170 * treated as a small drag rather than a click.
2171 */
2172 bool dragged;
2173 /* This flag is set if we're doing an erase operation (i.e.
2174 * removing edges in the centre of the rectangle without altering
2175 * the outlines).
2176 */
2177 bool erasing;
2178 /*
2179 * These are the co-ordinates of the top-left and bottom-right squares
2180 * in the drag box, respectively, or -1 otherwise.
2181 */
2182 int x1;
2183 int y1;
2184 int x2;
2185 int y2;
2186 /*
2187 * These are the coordinates of a cursor, whether it's visible, and
2188 * whether it was used to start a drag.
2189 */
2190 int cur_x, cur_y;
2191 bool cur_visible, cur_dragging;
2192};
2193
2194static void reset_ui(game_ui *ui)
2195{
2196 ui->drag_start_x = -1;
2197 ui->drag_start_y = -1;
2198 ui->drag_end_x = -1;
2199 ui->drag_end_y = -1;
2200 ui->x1 = -1;
2201 ui->y1 = -1;
2202 ui->x2 = -1;
2203 ui->y2 = -1;
2204 ui->dragged = false;
2205}
2206
2207static game_ui *new_ui(const game_state *state)
2208{
2209 game_ui *ui = snew(game_ui);
2210 reset_ui(ui);
2211 ui->erasing = false;
2212 ui->cur_x = ui->cur_y = 0;
2213 ui->cur_visible = getenv_bool("PUZZLES_SHOW_CURSOR", false);
2214 ui->cur_dragging = false;
2215 return ui;
2216}
2217
2218static void free_ui(game_ui *ui)
2219{
2220 sfree(ui);
2221}
2222
2223static void coord_round(float x, float y, int *xr, int *yr)
2224{
2225 float xs, ys, xv, yv, dx, dy, dist;
2226
2227 /*
2228 * Find the nearest square-centre.
2229 */
2230 xs = (float)floor(x) + 0.5F;
2231 ys = (float)floor(y) + 0.5F;
2232
2233 /*
2234 * And find the nearest grid vertex.
2235 */
2236 xv = (float)floor(x + 0.5F);
2237 yv = (float)floor(y + 0.5F);
2238
2239 /*
2240 * We allocate clicks in parts of the grid square to either
2241 * corners, edges or square centres, as follows:
2242 *
2243 * +--+--------+--+
2244 * | | | |
2245 * +--+ +--+
2246 * | `. ,' |
2247 * | +--+ |
2248 * | | | |
2249 * | +--+ |
2250 * | ,' `. |
2251 * +--+ +--+
2252 * | | | |
2253 * +--+--------+--+
2254 *
2255 * (Not to scale!)
2256 *
2257 * In other words: we measure the square distance (i.e.
2258 * max(dx,dy)) from the click to the nearest corner, and if
2259 * it's within CORNER_TOLERANCE then we return a corner click.
2260 * We measure the square distance from the click to the nearest
2261 * centre, and if that's within CENTRE_TOLERANCE we return a
2262 * centre click. Failing that, we find which of the two edge
2263 * centres is nearer to the click and return that edge.
2264 */
2265
2266 /*
2267 * Check for corner click.
2268 */
2269 dx = (float)fabs(x - xv);
2270 dy = (float)fabs(y - yv);
2271 dist = (dx > dy ? dx : dy);
2272 if (dist < CORNER_TOLERANCE) {
2273 *xr = 2 * (int)xv;
2274 *yr = 2 * (int)yv;
2275 } else {
2276 /*
2277 * Check for centre click.
2278 */
2279 dx = (float)fabs(x - xs);
2280 dy = (float)fabs(y - ys);
2281 dist = (dx > dy ? dx : dy);
2282 if (dist < CENTRE_TOLERANCE) {
2283 *xr = 1 + 2 * (int)xs;
2284 *yr = 1 + 2 * (int)ys;
2285 } else {
2286 /*
2287 * Failing both of those, see which edge we're closer to.
2288 * Conveniently, this is simply done by testing the relative
2289 * magnitude of dx and dy (which are currently distances from
2290 * the square centre).
2291 */
2292 if (dx > dy) {
2293 /* Vertical edge: x-coord of corner,
2294 * y-coord of square centre. */
2295 *xr = 2 * (int)xv;
2296 *yr = 1 + 2 * (int)floor(ys);
2297 } else {
2298 /* Horizontal edge: x-coord of square centre,
2299 * y-coord of corner. */
2300 *xr = 1 + 2 * (int)floor(xs);
2301 *yr = 2 * (int)yv;
2302 }
2303 }
2304 }
2305}
2306
2307/*
2308 * Returns true if it has made any change to the grid.
2309 */
2310static bool grid_draw_rect(const game_state *state,
2311 unsigned char *hedge, unsigned char *vedge,
2312 int c, bool really, bool outline,
2313 int x1, int y1, int x2, int y2)
2314{
2315 int x, y;
2316 bool changed = false;
2317
2318 /*
2319 * Draw horizontal edges of rectangles.
2320 */
2321 for (x = x1; x < x2; x++)
2322 for (y = y1; y <= y2; y++)
2323 if (HRANGE(state,x,y)) {
2324 int val = index(state,hedge,x,y);
2325 if (y == y1 || y == y2) {
2326 if (!outline) continue;
2327 val = c;
2328 } else if (c == 1)
2329 val = 0;
2330 changed = changed || (index(state,hedge,x,y) != val);
2331 if (really)
2332 index(state,hedge,x,y) = val;
2333 }
2334
2335 /*
2336 * Draw vertical edges of rectangles.
2337 */
2338 for (y = y1; y < y2; y++)
2339 for (x = x1; x <= x2; x++)
2340 if (VRANGE(state,x,y)) {
2341 int val = index(state,vedge,x,y);
2342 if (x == x1 || x == x2) {
2343 if (!outline) continue;
2344 val = c;
2345 } else if (c == 1)
2346 val = 0;
2347 changed = changed || (index(state,vedge,x,y) != val);
2348 if (really)
2349 index(state,vedge,x,y) = val;
2350 }
2351
2352 return changed;
2353}
2354
2355static bool ui_draw_rect(const game_state *state, const game_ui *ui,
2356 unsigned char *hedge, unsigned char *vedge, int c,
2357 bool really, bool outline)
2358{
2359 return grid_draw_rect(state, hedge, vedge, c, really, outline,
2360 ui->x1, ui->y1, ui->x2, ui->y2);
2361}
2362
2363static void game_changed_state(game_ui *ui, const game_state *oldstate,
2364 const game_state *newstate)
2365{
2366}
2367
2368struct game_drawstate {
2369 bool started;
2370 int w, h, tilesize;
2371 unsigned long *visible;
2372};
2373
2374static const char *current_key_label(const game_ui *ui,
2375 const game_state *state, int button)
2376{
2377 if (IS_CURSOR_SELECT(button) && ui->cur_visible &&
2378 !(ui->drag_start_x >= 0 && !ui->cur_dragging)) {
2379 if (ui->cur_dragging) {
2380 if (!ui->dragged) return "Cancel";
2381 if ((button == CURSOR_SELECT2) == ui->erasing) return "Done";
2382 return "Cancel";
2383 }
2384 return button == CURSOR_SELECT ? "Mark" : "Erase";
2385 }
2386 return "";
2387}
2388
2389static char *interpret_move(const game_state *from, game_ui *ui,
2390 const game_drawstate *ds,
2391 int x, int y, int button)
2392{
2393 int xc, yc;
2394 bool startdrag = false, enddrag = false, active = false, erasing = false;
2395 char buf[80], *ret;
2396
2397 button = STRIP_BUTTON_MODIFIERS(button);
2398
2399 coord_round(FROMCOORD((float)x), FROMCOORD((float)y), &xc, &yc);
2400
2401 if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
2402 if (ui->drag_start_x >= 0 && ui->cur_dragging)
2403 reset_ui(ui); /* cancel keyboard dragging */
2404 startdrag = true;
2405 ui->cur_visible = ui->cur_dragging = false;
2406 active = true;
2407 erasing = (button == RIGHT_BUTTON);
2408 } else if (button == LEFT_RELEASE || button == RIGHT_RELEASE) {
2409 /* We assert we should have had a LEFT_BUTTON first. */
2410 if (ui->cur_visible) {
2411 ui->cur_visible = false;
2412 active = true;
2413 }
2414 assert(!ui->cur_dragging);
2415 enddrag = true;
2416 erasing = (button == RIGHT_RELEASE);
2417 } else if (IS_CURSOR_MOVE(button)) {
2418 char *ret;
2419 ret = move_cursor(button, &ui->cur_x, &ui->cur_y, from->w, from->h,
2420 false, &ui->cur_visible);
2421 active = true;
2422 if (!ui->cur_dragging || ret != MOVE_UI_UPDATE) return ret;
2423 coord_round((float)ui->cur_x + 0.5F, (float)ui->cur_y + 0.5F, &xc, &yc);
2424 } else if (IS_CURSOR_SELECT(button)) {
2425 if (ui->drag_start_x >= 0 && !ui->cur_dragging) {
2426 /*
2427 * If a mouse drag is in progress, ignore attempts to
2428 * start a keyboard one.
2429 */
2430 return NULL;
2431 }
2432 if (!ui->cur_visible) {
2433 assert(!ui->cur_dragging);
2434 ui->cur_visible = true;
2435 return MOVE_UI_UPDATE;
2436 }
2437 coord_round((float)ui->cur_x + 0.5F, (float)ui->cur_y + 0.5F, &xc, &yc);
2438 erasing = (button == CURSOR_SELECT2);
2439 if (ui->cur_dragging) {
2440 ui->cur_dragging = false;
2441 enddrag = true;
2442 active = true;
2443 } else {
2444 ui->cur_dragging = true;
2445 startdrag = true;
2446 active = true;
2447 }
2448 } else if (button == '\b' || button == 27) {
2449 if (!ui->cur_dragging) {
2450 ui->cur_visible = false;
2451 } else {
2452 assert(ui->cur_visible);
2453 reset_ui(ui); /* cancel keyboard dragging */
2454 ui->cur_dragging = false;
2455 }
2456 return MOVE_UI_UPDATE;
2457 } else if (button != LEFT_DRAG && button != RIGHT_DRAG) {
2458 return NULL;
2459 }
2460
2461 if (startdrag &&
2462 xc >= 0 && xc <= 2*from->w &&
2463 yc >= 0 && yc <= 2*from->h) {
2464
2465 ui->drag_start_x = xc;
2466 ui->drag_start_y = yc;
2467 ui->drag_end_x = -1;
2468 ui->drag_end_y = -1;
2469 ui->dragged = false;
2470 ui->erasing = erasing;
2471 active = true;
2472 }
2473
2474 if (ui->drag_start_x >= 0 &&
2475 (xc != ui->drag_end_x || yc != ui->drag_end_y)) {
2476 int t;
2477
2478 if (ui->drag_end_x != -1 && ui->drag_end_y != -1)
2479 ui->dragged = true;
2480 ui->drag_end_x = xc;
2481 ui->drag_end_y = yc;
2482 active = true;
2483
2484 if (xc >= 0 && xc <= 2*from->w &&
2485 yc >= 0 && yc <= 2*from->h) {
2486 ui->x1 = ui->drag_start_x;
2487 ui->x2 = ui->drag_end_x;
2488 if (ui->x2 < ui->x1) { t = ui->x1; ui->x1 = ui->x2; ui->x2 = t; }
2489
2490 ui->y1 = ui->drag_start_y;
2491 ui->y2 = ui->drag_end_y;
2492 if (ui->y2 < ui->y1) { t = ui->y1; ui->y1 = ui->y2; ui->y2 = t; }
2493
2494 ui->x1 = ui->x1 / 2; /* rounds down */
2495 ui->x2 = (ui->x2+1) / 2; /* rounds up */
2496 ui->y1 = ui->y1 / 2; /* rounds down */
2497 ui->y2 = (ui->y2+1) / 2; /* rounds up */
2498 } else {
2499 ui->x1 = -1;
2500 ui->y1 = -1;
2501 ui->x2 = -1;
2502 ui->y2 = -1;
2503 }
2504 }
2505
2506 ret = NULL;
2507
2508 if (enddrag && (ui->drag_start_x >= 0)) {
2509 if (xc >= 0 && xc <= 2*from->w &&
2510 yc >= 0 && yc <= 2*from->h &&
2511 erasing == ui->erasing) {
2512
2513 if (ui->dragged) {
2514 if (ui_draw_rect(from, ui, from->hedge,
2515 from->vedge, 1, false, !ui->erasing)) {
2516 sprintf(buf, "%c%d,%d,%d,%d",
2517 (int)(ui->erasing ? 'E' : 'R'),
2518 ui->x1, ui->y1, ui->x2 - ui->x1, ui->y2 - ui->y1);
2519 ret = dupstr(buf);
2520 }
2521 } else {
2522 if ((xc & 1) && !(yc & 1) && HRANGE(from,xc/2,yc/2)) {
2523 sprintf(buf, "H%d,%d", xc/2, yc/2);
2524 ret = dupstr(buf);
2525 }
2526 if ((yc & 1) && !(xc & 1) && VRANGE(from,xc/2,yc/2)) {
2527 sprintf(buf, "V%d,%d", xc/2, yc/2);
2528 ret = dupstr(buf);
2529 }
2530 }
2531 }
2532
2533 reset_ui(ui);
2534 active = true;
2535 }
2536
2537 if (ret)
2538 return ret; /* a move has been made */
2539 else if (active)
2540 return MOVE_UI_UPDATE;
2541 else
2542 return NULL;
2543}
2544
2545static game_state *execute_move(const game_state *from, const char *move)
2546{
2547 game_state *ret;
2548 int x1, y1, x2, y2, mode;
2549
2550 if (move[0] == 'S') {
2551 const char *p = move+1;
2552 int x, y;
2553
2554 ret = dup_game(from);
2555 ret->cheated = true;
2556
2557 for (y = 0; y < ret->h; y++)
2558 for (x = 1; x < ret->w; x++) {
2559 vedge(ret, x, y) = (*p == '1');
2560 if (*p) p++;
2561 }
2562 for (y = 1; y < ret->h; y++)
2563 for (x = 0; x < ret->w; x++) {
2564 hedge(ret, x, y) = (*p == '1');
2565 if (*p) p++;
2566 }
2567
2568 sfree(ret->correct);
2569 ret->correct = get_correct(ret);
2570
2571 return ret;
2572
2573 } else if ((move[0] == 'R' || move[0] == 'E') &&
2574 sscanf(move+1, "%d,%d,%d,%d", &x1, &y1, &x2, &y2) == 4 &&
2575 x1 >= 0 && x2 >= 0 && x1+x2 <= from->w &&
2576 y1 >= 0 && y2 >= 0 && y1+y2 <= from->h) {
2577 x2 += x1;
2578 y2 += y1;
2579 mode = move[0];
2580 } else if ((move[0] == 'H' || move[0] == 'V') &&
2581 sscanf(move+1, "%d,%d", &x1, &y1) == 2 &&
2582 (move[0] == 'H' ? HRANGE(from, x1, y1) :
2583 VRANGE(from, x1, y1))) {
2584 mode = move[0];
2585 } else
2586 return NULL; /* can't parse move string */
2587
2588 ret = dup_game(from);
2589
2590 if (mode == 'R' || mode == 'E') {
2591 grid_draw_rect(ret, ret->hedge, ret->vedge, 1, true,
2592 mode == 'R', x1, y1, x2, y2);
2593 } else if (mode == 'H') {
2594 hedge(ret,x1,y1) = !hedge(ret,x1,y1);
2595 } else if (mode == 'V') {
2596 vedge(ret,x1,y1) = !vedge(ret,x1,y1);
2597 }
2598
2599 sfree(ret->correct);
2600 ret->correct = get_correct(ret);
2601
2602 /*
2603 * We've made a real change to the grid. Check to see
2604 * if the game has been completed.
2605 */
2606 if (!ret->completed) {
2607 int x, y;
2608 bool ok;
2609
2610 ok = true;
2611 for (x = 0; x < ret->w; x++)
2612 for (y = 0; y < ret->h; y++)
2613 if (!index(ret, ret->correct, x, y))
2614 ok = false;
2615
2616 if (ok)
2617 ret->completed = true;
2618 }
2619
2620 return ret;
2621}
2622
2623/* ----------------------------------------------------------------------
2624 * Drawing routines.
2625 */
2626
2627#define CORRECT (1L<<16)
2628#define CURSOR (1L<<17)
2629
2630#define COLOUR(k) ( (k)==1 ? COL_LINE : (k)==2 ? COL_DRAG : COL_DRAGERASE )
2631#define MAX4(x,y,z,w) ( max(max(x,y),max(z,w)) )
2632
2633static void game_compute_size(const game_params *params, int tilesize,
2634 const game_ui *ui, int *x, int *y)
2635{
2636 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
2637 struct { int tilesize; } ads, *ds = &ads;
2638 ads.tilesize = tilesize;
2639
2640 *x = params->w * TILE_SIZE + 2*BORDER + 1;
2641 *y = params->h * TILE_SIZE + 2*BORDER + 1;
2642}
2643
2644static void game_set_size(drawing *dr, game_drawstate *ds,
2645 const game_params *params, int tilesize)
2646{
2647 ds->tilesize = tilesize;
2648}
2649
2650static float *game_colours(frontend *fe, int *ncolours)
2651{
2652 float *ret = snewn(3 * NCOLOURS, float);
2653
2654 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
2655
2656 ret[COL_GRID * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
2657 ret[COL_GRID * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
2658 ret[COL_GRID * 3 + 2] = 0.5F * ret[COL_BACKGROUND * 3 + 2];
2659
2660 ret[COL_DRAG * 3 + 0] = 1.0F;
2661 ret[COL_DRAG * 3 + 1] = 0.0F;
2662 ret[COL_DRAG * 3 + 2] = 0.0F;
2663
2664 ret[COL_DRAGERASE * 3 + 0] = 0.2F;
2665 ret[COL_DRAGERASE * 3 + 1] = 0.2F;
2666 ret[COL_DRAGERASE * 3 + 2] = 1.0F;
2667
2668 ret[COL_CORRECT * 3 + 0] = 0.75F * ret[COL_BACKGROUND * 3 + 0];
2669 ret[COL_CORRECT * 3 + 1] = 0.75F * ret[COL_BACKGROUND * 3 + 1];
2670 ret[COL_CORRECT * 3 + 2] = 0.75F * ret[COL_BACKGROUND * 3 + 2];
2671
2672 ret[COL_LINE * 3 + 0] = 0.0F;
2673 ret[COL_LINE * 3 + 1] = 0.0F;
2674 ret[COL_LINE * 3 + 2] = 0.0F;
2675
2676 ret[COL_TEXT * 3 + 0] = 0.0F;
2677 ret[COL_TEXT * 3 + 1] = 0.0F;
2678 ret[COL_TEXT * 3 + 2] = 0.0F;
2679
2680 ret[COL_CURSOR * 3 + 0] = 1.0F;
2681 ret[COL_CURSOR * 3 + 1] = 0.5F;
2682 ret[COL_CURSOR * 3 + 2] = 0.5F;
2683
2684 *ncolours = NCOLOURS;
2685 return ret;
2686}
2687
2688static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state)
2689{
2690 struct game_drawstate *ds = snew(struct game_drawstate);
2691 int i;
2692
2693 ds->started = false;
2694 ds->w = state->w;
2695 ds->h = state->h;
2696 ds->visible = snewn(ds->w * ds->h, unsigned long);
2697 ds->tilesize = 0; /* not decided yet */
2698 for (i = 0; i < ds->w * ds->h; i++)
2699 ds->visible[i] = 0xFFFF;
2700
2701 return ds;
2702}
2703
2704static void game_free_drawstate(drawing *dr, game_drawstate *ds)
2705{
2706 sfree(ds->visible);
2707 sfree(ds);
2708}
2709
2710static void draw_tile(drawing *dr, game_drawstate *ds, const game_state *state,
2711 int x, int y, unsigned char *hedge, unsigned char *vedge,
2712 unsigned char *corners, unsigned long bgflags)
2713{
2714 int cx = COORD(x), cy = COORD(y);
2715 char str[80];
2716
2717 draw_rect(dr, cx, cy, TILE_SIZE+1, TILE_SIZE+1, COL_GRID);
2718 draw_rect(dr, cx+1, cy+1, TILE_SIZE-1, TILE_SIZE-1,
2719 (bgflags & CURSOR) ? COL_CURSOR :
2720 (bgflags & CORRECT) ? COL_CORRECT : COL_BACKGROUND);
2721
2722 if (grid(state,x,y)) {
2723 sprintf(str, "%d", grid(state,x,y));
2724 draw_text(dr, cx+TILE_SIZE/2, cy+TILE_SIZE/2, FONT_VARIABLE,
2725 TILE_SIZE/2, ALIGN_HCENTRE | ALIGN_VCENTRE, COL_TEXT, str);
2726 }
2727
2728 /*
2729 * Draw edges.
2730 */
2731 if (!HRANGE(state,x,y) || index(state,hedge,x,y))
2732 draw_rect(dr, cx, cy, TILE_SIZE+1, 2,
2733 HRANGE(state,x,y) ? COLOUR(index(state,hedge,x,y)) :
2734 COL_LINE);
2735 if (!HRANGE(state,x,y+1) || index(state,hedge,x,y+1))
2736 draw_rect(dr, cx, cy+TILE_SIZE-1, TILE_SIZE+1, 2,
2737 HRANGE(state,x,y+1) ? COLOUR(index(state,hedge,x,y+1)) :
2738 COL_LINE);
2739 if (!VRANGE(state,x,y) || index(state,vedge,x,y))
2740 draw_rect(dr, cx, cy, 2, TILE_SIZE+1,
2741 VRANGE(state,x,y) ? COLOUR(index(state,vedge,x,y)) :
2742 COL_LINE);
2743 if (!VRANGE(state,x+1,y) || index(state,vedge,x+1,y))
2744 draw_rect(dr, cx+TILE_SIZE-1, cy, 2, TILE_SIZE+1,
2745 VRANGE(state,x+1,y) ? COLOUR(index(state,vedge,x+1,y)) :
2746 COL_LINE);
2747
2748 /*
2749 * Draw corners.
2750 */
2751 if (index(state,corners,x,y))
2752 draw_rect(dr, cx, cy, 2, 2,
2753 COLOUR(index(state,corners,x,y)));
2754 if (x+1 < state->w && index(state,corners,x+1,y))
2755 draw_rect(dr, cx+TILE_SIZE-1, cy, 2, 2,
2756 COLOUR(index(state,corners,x+1,y)));
2757 if (y+1 < state->h && index(state,corners,x,y+1))
2758 draw_rect(dr, cx, cy+TILE_SIZE-1, 2, 2,
2759 COLOUR(index(state,corners,x,y+1)));
2760 if (x+1 < state->w && y+1 < state->h && index(state,corners,x+1,y+1))
2761 draw_rect(dr, cx+TILE_SIZE-1, cy+TILE_SIZE-1, 2, 2,
2762 COLOUR(index(state,corners,x+1,y+1)));
2763
2764 draw_update(dr, cx, cy, TILE_SIZE+1, TILE_SIZE+1);
2765}
2766
2767static void game_redraw(drawing *dr, game_drawstate *ds,
2768 const game_state *oldstate, const game_state *state,
2769 int dir, const game_ui *ui,
2770 float animtime, float flashtime)
2771{
2772 int x, y;
2773 unsigned char *hedge, *vedge, *corners;
2774
2775 if (ui->dragged) {
2776 hedge = snewn(state->w*state->h, unsigned char);
2777 vedge = snewn(state->w*state->h, unsigned char);
2778 memcpy(hedge, state->hedge, state->w*state->h);
2779 memcpy(vedge, state->vedge, state->w*state->h);
2780 ui_draw_rect(state, ui, hedge, vedge, ui->erasing ? 3 : 2, true, true);
2781 } else {
2782 hedge = state->hedge;
2783 vedge = state->vedge;
2784 }
2785
2786 corners = snewn(state->w * state->h, unsigned char);
2787 memset(corners, 0, state->w * state->h);
2788 for (x = 0; x < state->w; x++)
2789 for (y = 0; y < state->h; y++) {
2790 if (x > 0) {
2791 int e = index(state, vedge, x, y);
2792 if (index(state,corners,x,y) < e)
2793 index(state,corners,x,y) = e;
2794 if (y+1 < state->h &&
2795 index(state,corners,x,y+1) < e)
2796 index(state,corners,x,y+1) = e;
2797 }
2798 if (y > 0) {
2799 int e = index(state, hedge, x, y);
2800 if (index(state,corners,x,y) < e)
2801 index(state,corners,x,y) = e;
2802 if (x+1 < state->w &&
2803 index(state,corners,x+1,y) < e)
2804 index(state,corners,x+1,y) = e;
2805 }
2806 }
2807
2808 if (!ds->started) {
2809 draw_rect(dr, COORD(0)-1, COORD(0)-1,
2810 ds->w*TILE_SIZE+3, ds->h*TILE_SIZE+3, COL_LINE);
2811 ds->started = true;
2812 draw_update(dr, 0, 0,
2813 state->w * TILE_SIZE + 2*BORDER + 1,
2814 state->h * TILE_SIZE + 2*BORDER + 1);
2815 }
2816
2817 for (x = 0; x < state->w; x++)
2818 for (y = 0; y < state->h; y++) {
2819 unsigned long c = 0;
2820
2821 if (HRANGE(state,x,y))
2822 c |= index(state,hedge,x,y);
2823 if (HRANGE(state,x,y+1))
2824 c |= index(state,hedge,x,y+1) << 2;
2825 if (VRANGE(state,x,y))
2826 c |= index(state,vedge,x,y) << 4;
2827 if (VRANGE(state,x+1,y))
2828 c |= index(state,vedge,x+1,y) << 6;
2829 c |= index(state,corners,x,y) << 8;
2830 if (x+1 < state->w)
2831 c |= index(state,corners,x+1,y) << 10;
2832 if (y+1 < state->h)
2833 c |= index(state,corners,x,y+1) << 12;
2834 if (x+1 < state->w && y+1 < state->h)
2835 /* cast to prevent 2<<14 sign-extending on promotion to long */
2836 c |= (unsigned long)index(state,corners,x+1,y+1) << 14;
2837 if (index(state, state->correct, x, y) && !flashtime)
2838 c |= CORRECT;
2839 if (ui->cur_visible && ui->cur_x == x && ui->cur_y == y)
2840 c |= CURSOR;
2841
2842 if (index(ds,ds->visible,x,y) != c) {
2843 draw_tile(dr, ds, state, x, y, hedge, vedge, corners,
2844 (c & (CORRECT|CURSOR)) );
2845 index(ds,ds->visible,x,y) = c;
2846 }
2847 }
2848
2849 {
2850 char buf[256];
2851
2852 if (ui->dragged &&
2853 ui->x1 >= 0 && ui->y1 >= 0 &&
2854 ui->x2 >= 0 && ui->y2 >= 0) {
2855 sprintf(buf, "%dx%d ",
2856 ui->x2-ui->x1,
2857 ui->y2-ui->y1);
2858 } else {
2859 buf[0] = '\0';
2860 }
2861
2862 if (state->cheated)
2863 strcat(buf, "Auto-solved.");
2864 else if (state->completed)
2865 strcat(buf, "COMPLETED!");
2866
2867 status_bar(dr, buf);
2868 }
2869
2870 if (hedge != state->hedge) {
2871 sfree(hedge);
2872 sfree(vedge);
2873 }
2874
2875 sfree(corners);
2876}
2877
2878static float game_anim_length(const game_state *oldstate,
2879 const game_state *newstate, int dir, game_ui *ui)
2880{
2881 return 0.0F;
2882}
2883
2884static float game_flash_length(const game_state *oldstate,
2885 const game_state *newstate, int dir, game_ui *ui)
2886{
2887 if (!oldstate->completed && newstate->completed &&
2888 !oldstate->cheated && !newstate->cheated)
2889 return FLASH_TIME;
2890 return 0.0F;
2891}
2892
2893static void game_get_cursor_location(const game_ui *ui,
2894 const game_drawstate *ds,
2895 const game_state *state,
2896 const game_params *params,
2897 int *x, int *y, int *w, int *h)
2898{
2899 if(ui->cur_visible) {
2900 *x = COORD(ui->cur_x);
2901 *y = COORD(ui->cur_y);
2902 *w = *h = TILE_SIZE;
2903 }
2904}
2905
2906static int game_status(const game_state *state)
2907{
2908 return state->completed ? +1 : 0;
2909}
2910
2911static void game_print_size(const game_params *params, const game_ui *ui,
2912 float *x, float *y)
2913{
2914 int pw, ph;
2915
2916 /*
2917 * I'll use 5mm squares by default.
2918 */
2919 game_compute_size(params, 500, ui, &pw, &ph);
2920 *x = pw / 100.0F;
2921 *y = ph / 100.0F;
2922}
2923
2924static void game_print(drawing *dr, const game_state *state, const game_ui *ui,
2925 int tilesize)
2926{
2927 int w = state->w, h = state->h;
2928 int ink = print_mono_colour(dr, 0);
2929 int x, y;
2930
2931 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
2932 game_drawstate ads, *ds = &ads;
2933 game_set_size(dr, ds, NULL, tilesize);
2934
2935 /*
2936 * Border.
2937 */
2938 print_line_width(dr, TILE_SIZE / 10);
2939 draw_rect_outline(dr, COORD(0), COORD(0), w*TILE_SIZE, h*TILE_SIZE, ink);
2940
2941 /*
2942 * Grid. We have to make the grid lines particularly thin,
2943 * because users will be drawing lines _along_ them and we want
2944 * those lines to be visible.
2945 */
2946 print_line_width(dr, TILE_SIZE / 256);
2947 for (x = 1; x < w; x++)
2948 draw_line(dr, COORD(x), COORD(0), COORD(x), COORD(h), ink);
2949 for (y = 1; y < h; y++)
2950 draw_line(dr, COORD(0), COORD(y), COORD(w), COORD(y), ink);
2951
2952 /*
2953 * Solution.
2954 */
2955 print_line_width(dr, TILE_SIZE / 10);
2956 for (y = 0; y <= h; y++)
2957 for (x = 0; x <= w; x++) {
2958 if (HRANGE(state,x,y) && hedge(state,x,y))
2959 draw_line(dr, COORD(x), COORD(y), COORD(x+1), COORD(y), ink);
2960 if (VRANGE(state,x,y) && vedge(state,x,y))
2961 draw_line(dr, COORD(x), COORD(y), COORD(x), COORD(y+1), ink);
2962 }
2963
2964 /*
2965 * Clues.
2966 */
2967 for (y = 0; y < h; y++)
2968 for (x = 0; x < w; x++)
2969 if (grid(state,x,y)) {
2970 char str[80];
2971 sprintf(str, "%d", grid(state,x,y));
2972 draw_text(dr, COORD(x)+TILE_SIZE/2, COORD(y)+TILE_SIZE/2,
2973 FONT_VARIABLE, TILE_SIZE/2,
2974 ALIGN_HCENTRE | ALIGN_VCENTRE, ink, str);
2975 }
2976}
2977
2978#ifdef COMBINED
2979#define thegame rect
2980#endif
2981
2982const struct game thegame = {
2983 "Rectangles", "games.rectangles", "rect",
2984 default_params,
2985 game_fetch_preset, NULL,
2986 decode_params,
2987 encode_params,
2988 free_params,
2989 dup_params,
2990 true, game_configure, custom_params,
2991 validate_params,
2992 new_game_desc,
2993 validate_desc,
2994 new_game,
2995 dup_game,
2996 free_game,
2997 true, solve_game,
2998 true, game_can_format_as_text_now, game_text_format,
2999 NULL, NULL, /* get_prefs, set_prefs */
3000 new_ui,
3001 free_ui,
3002 NULL, /* encode_ui */
3003 NULL, /* decode_ui */
3004 NULL, /* game_request_keys */
3005 game_changed_state,
3006 current_key_label,
3007 interpret_move,
3008 execute_move,
3009 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
3010 game_colours,
3011 game_new_drawstate,
3012 game_free_drawstate,
3013 game_redraw,
3014 game_anim_length,
3015 game_flash_length,
3016 game_get_cursor_location,
3017 game_status,
3018 true, false, game_print_size, game_print,
3019 true, /* wants_statusbar */
3020 false, NULL, /* timing_state */
3021 0, /* flags */
3022};
3023
3024/* vim: set shiftwidth=4 tabstop=8: */