A modern Music Player Daemon based on Rockbox open source high quality audio player
libadwaita audio rust zig deno mpris rockbox mpd
at master 1890 lines 59 kB view raw
1/* 2 * range.c: implementation of the Nikoli game 'Kurodoko' / 'Kuromasu'. 3 */ 4 5/* 6 * Puzzle rules: the player is given a WxH grid of white squares, some 7 * of which contain numbers. The goal is to paint some of the squares 8 * black, such that: 9 * 10 * - no cell (err, cell = square) with a number is painted black 11 * - no black cells have an adjacent (horz/vert) black cell 12 * - the white cells are all connected (through other white cells) 13 * - if a cell contains a number n, let h and v be the lengths of the 14 * maximal horizontal and vertical white sequences containing that 15 * cell. Then n must equal h + v - 1. 16 */ 17 18/* example instance with its encoding and textual representation, both 19 * solved and unsolved (made by thegame.solve and thegame.text_format) 20 * 21 * +--+--+--+--+--+--+--+ 22 * | | | | | 7| | | 23 * +--+--+--+--+--+--+--+ 24 * | 3| | | | | | 8| 25 * +--+--+--+--+--+--+--+ 26 * | | | | | | 5| | 27 * +--+--+--+--+--+--+--+ 28 * | | | 7| | 7| | | 29 * +--+--+--+--+--+--+--+ 30 * | |13| | | | | | 31 * +--+--+--+--+--+--+--+ 32 * | 4| | | | | | 8| 33 * +--+--+--+--+--+--+--+ 34 * | | | 4| | | | | 35 * +--+--+--+--+--+--+--+ 36 * 37 * 7x7:d7b3e8e5c7a7c13e4d8b4d 38 * 39 * +--+--+--+--+--+--+--+ 40 * |..|..|..|..| 7|..|..| 41 * +--+--+--+--+--+--+--+ 42 * | 3|..|##|..|##|..| 8| 43 * +--+--+--+--+--+--+--+ 44 * |##|..|..|##|..| 5|..| 45 * +--+--+--+--+--+--+--+ 46 * |..|..| 7|..| 7|##|..| 47 * +--+--+--+--+--+--+--+ 48 * |..|13|..|..|..|..|..| 49 * +--+--+--+--+--+--+--+ 50 * | 4|..|##|..|##|..| 8| 51 * +--+--+--+--+--+--+--+ 52 * |##|..| 4|..|..|##|..| 53 * +--+--+--+--+--+--+--+ 54 */ 55 56#include <stdio.h> 57#include <stdlib.h> 58#include <string.h> 59#include <assert.h> 60#include <ctype.h> 61#ifdef NO_TGMATH_H 62# include <math.h> 63#else 64# include <tgmath.h> 65#endif 66 67#include "puzzles.h" 68 69#include <stdarg.h> 70 71#define setmember(obj, field) ( (obj) . field = field ) 72 73static char *nfmtstr(int n, const char *fmt, ...) { 74 va_list va; 75 char *ret = snewn(n+1, char); 76 va_start(va, fmt); 77 vsprintf(ret, fmt, va); 78 va_end(va); 79 return ret; 80} 81 82#define SWAP(type, lvar1, lvar2) do { \ 83 type tmp = (lvar1); \ 84 (lvar1) = (lvar2); \ 85 (lvar2) = tmp; \ 86} while (0) 87 88/* ---------------------------------------------------------------------- 89 * Game parameters, presets, states 90 */ 91 92typedef signed char puzzle_size; 93 94struct game_params { 95 puzzle_size w; 96 puzzle_size h; 97}; 98 99enum { 100 PREF_MOUSE_BUTTON_ORDER, 101 N_PREF_ITEMS 102}; 103 104struct game_state { 105 struct game_params params; 106 bool has_cheated, was_solved; 107 puzzle_size *grid; 108}; 109 110#define DEFAULT_PRESET 0 111static struct game_params range_presets[] = {{9, 6}, {12, 8}, {13, 9}, {16, 11}}; 112/* rationale: I want all four combinations of {odd/even, odd/even}, as 113 * they play out differently with respect to two-way symmetry. I also 114 * want them to be generated relatively fast yet still be large enough 115 * to be entertaining for a decent amount of time, and I want them to 116 * make good use of monitor real estate (the typical screen resolution 117 * is why I do 13x9 and not 9x13). 118 */ 119 120static game_params *default_params(void) 121{ 122 game_params *ret = snew(game_params); 123 *ret = range_presets[DEFAULT_PRESET]; /* structure copy */ 124 return ret; 125} 126 127static game_params *dup_params(const game_params *params) 128{ 129 game_params *ret = snew(game_params); 130 *ret = *params; /* structure copy */ 131 return ret; 132} 133 134static bool game_fetch_preset(int i, char **name, game_params **params) 135{ 136 game_params *ret; 137 138 if (i < 0 || i >= lenof(range_presets)) return false; 139 140 ret = default_params(); 141 *ret = range_presets[i]; /* struct copy */ 142 *params = ret; 143 144 *name = nfmtstr(40, "%d x %d", range_presets[i].w, range_presets[i].h); 145 146 return true; 147} 148 149static void free_params(game_params *params) 150{ 151 sfree(params); 152} 153 154static void decode_params(game_params *params, char const *string) 155{ 156 /* FIXME check for puzzle_size overflow and decoding issues */ 157 params->w = params->h = atoi(string); 158 while (*string && isdigit((unsigned char) *string)) ++string; 159 if (*string == 'x') { 160 string++; 161 params->h = atoi(string); 162 while (*string && isdigit((unsigned char)*string)) string++; 163 } 164} 165 166static char *encode_params(const game_params *params, bool full) 167{ 168 char str[80]; 169 sprintf(str, "%dx%d", params->w, params->h); 170 return dupstr(str); 171} 172 173static config_item *game_configure(const game_params *params) 174{ 175 config_item *ret; 176 177 ret = snewn(3, config_item); 178 179 ret[0].name = "Width"; 180 ret[0].type = C_STRING; 181 ret[0].u.string.sval = nfmtstr(10, "%d", params->w); 182 183 ret[1].name = "Height"; 184 ret[1].type = C_STRING; 185 ret[1].u.string.sval = nfmtstr(10, "%d", params->h); 186 187 ret[2].name = NULL; 188 ret[2].type = C_END; 189 190 return ret; 191} 192 193static game_params *custom_params(const config_item *configuration) 194{ 195 game_params *ret = snew(game_params); 196 ret->w = atoi(configuration[0].u.string.sval); 197 ret->h = atoi(configuration[1].u.string.sval); 198 return ret; 199} 200 201#define memdup(dst, src, n, type) do { \ 202 dst = snewn(n, type); \ 203 memcpy(dst, src, n * sizeof (type)); \ 204} while (0) 205 206static game_state *dup_game(const game_state *state) 207{ 208 game_state *ret = snew(game_state); 209 int const n = state->params.w * state->params.h; 210 211 *ret = *state; /* structure copy */ 212 213 /* copy the poin_tee_, set a new value of the poin_ter_ */ 214 memdup(ret->grid, state->grid, n, puzzle_size); 215 216 return ret; 217} 218 219static void free_game(game_state *state) 220{ 221 sfree(state->grid); 222 sfree(state); 223} 224 225 226/* ---------------------------------------------------------------------- 227 * The solver subsystem. 228 * 229 * The solver is used for two purposes: 230 * - To solve puzzles when the user selects `Solve'. 231 * - To test solubility of a grid as clues are being removed from it 232 * during the puzzle generation. 233 * 234 * It supports the following ways of reasoning: 235 * 236 * - A cell adjacent to a black cell must be white. 237 * 238 * - If painting a square black would bisect the white regions, that 239 * square is white (by finding biconnected components' cut points) 240 * 241 * - A cell with number n, covering at most k white squares in three 242 * directions must white-cover n-k squares in the last direction. 243 * 244 * - A cell with number n known to cover k squares, if extending the 245 * cover by one square in a given direction causes the cell to 246 * cover _more_ than n squares, that extension cell must be black. 247 * 248 * (either if the square already covers n, or if it extends into a 249 * chunk of size > n - k) 250 * 251 * - Recursion. Pick any cell and see if this leads to either a 252 * contradiction or a solution (and then act appropriately). 253 * 254 * 255 * TODO: 256 * 257 * (propagation upper limit) 258 * - If one has two numbers on the same line, the smaller limits the 259 * larger. Example: in |b|_|_|8|4|_|_|b|, only two _'s can be both 260 * white and connected to the "8" cell; so that cell will propagate 261 * at least four cells orthogonally to the displayed line (which is 262 * better than the current "at least 2"). 263 * 264 * (propagation upper limit) 265 * - cells can't propagate into other cells if doing so exceeds that 266 * number. Example: in |b|4|.|.|2|b|, at most one _ can be white; 267 * otherwise, the |2| would have too many reaching white cells. 268 * 269 * (propagation lower and upper limit) 270 * - `Full Combo': in each four directions d_1 ... d_4, find a set of 271 * possible propagation distances S_1 ... S_4. For each i=1..4, 272 * for each x in S_i: if not exists (y, z, w) in the other sets 273 * such that (x+y+z+w+1 == clue value): then remove x from S_i. 274 * Repeat until this stabilizes. If any cell would contradict 275 */ 276 277#define idx(i, j, w) ((i)*(w) + (j)) 278#define out_of_bounds(r, c, w, h) \ 279 ((r) < 0 || (r) >= h || (c) < 0 || (c) >= w) 280 281typedef struct square { 282 puzzle_size r, c; 283} square; 284 285enum {BLACK = -2, WHITE, EMPTY}; 286/* white is for pencil marks, empty is undecided */ 287 288static int const dr[4] = {+1, 0, -1, 0}; 289static int const dc[4] = { 0, +1, 0, -1}; 290static int const cursors[4] = /* must match dr and dc */ 291{CURSOR_DOWN, CURSOR_RIGHT, CURSOR_UP, CURSOR_LEFT}; 292 293typedef struct move { 294 square square; 295 unsigned int colour: 1; 296} move; 297enum {M_BLACK = 0, M_WHITE = 1}; 298 299typedef move *(reasoning)(game_state *state, 300 int nclues, 301 const square *clues, 302 move *buf); 303 304static reasoning solver_reasoning_not_too_big; 305static reasoning solver_reasoning_adjacency; 306static reasoning solver_reasoning_connectedness; 307static reasoning solver_reasoning_recursion; 308 309enum { 310 DIFF_NOT_TOO_BIG, 311 DIFF_ADJACENCY, 312 DIFF_CONNECTEDNESS, 313 DIFF_RECURSION 314}; 315 316static move *solve_internal(const game_state *state, move *base, int diff); 317 318static char *solve_game(const game_state *orig, const game_state *curpos, 319 const char *aux, const char **error) 320{ 321 int const n = orig->params.w * orig->params.h; 322 move *const base = snewn(n, move); 323 move *moves = solve_internal(orig, base, DIFF_RECURSION); 324 325 char *ret = NULL; 326 327 if (moves != NULL) { 328 int const k = moves - base; 329 char *str = ret = snewn(15*k + 2, char); 330 char colour[2] = "BW"; 331 move *it; 332 *str++ = 'S'; 333 *str = '\0'; 334 for (it = base; it < moves; ++it) 335 str += sprintf(str, "%c,%d,%d", colour[it->colour], 336 it->square.r, it->square.c); 337 } else *error = "This puzzle instance contains a contradiction"; 338 339 sfree(base); 340 return ret; 341} 342 343static square *find_clues(const game_state *state, int *ret_nclues); 344static move *do_solve(game_state *state, 345 int nclues, 346 const square *clues, 347 move *move_buffer, 348 int difficulty); 349 350/* new_game_desc entry point in the solver subsystem */ 351static move *solve_internal(const game_state *state, move *base, int diff) 352{ 353 int nclues; 354 square *const clues = find_clues(state, &nclues); 355 game_state *dup = dup_game(state); 356 move *const moves = do_solve(dup, nclues, clues, base, diff); 357 free_game(dup); 358 sfree(clues); 359 return moves; 360} 361 362static reasoning *const reasonings[] = { 363 solver_reasoning_not_too_big, 364 solver_reasoning_adjacency, 365 solver_reasoning_connectedness, 366 solver_reasoning_recursion 367}; 368 369static move *do_solve(game_state *state, 370 int nclues, 371 const square *clues, 372 move *move_buffer, 373 int difficulty) 374{ 375 struct move *buf = move_buffer, *oldbuf; 376 int i; 377 378 do { 379 oldbuf = buf; 380 for (i = 0; i < lenof(reasonings) && i <= difficulty; ++i) { 381 /* only recurse if all else fails */ 382 if (i == DIFF_RECURSION && buf > oldbuf) continue; 383 buf = (*reasonings[i])(state, nclues, clues, buf); 384 if (buf == NULL) return NULL; 385 } 386 } while (buf > oldbuf); 387 388 return buf; 389} 390 391#define MASK(n) (1 << ((n) + 2)) 392 393static int runlength(puzzle_size r, puzzle_size c, 394 puzzle_size dr, puzzle_size dc, 395 const game_state *state, int colourmask) 396{ 397 int const w = state->params.w, h = state->params.h; 398 int sz = 0; 399 while (true) { 400 int cell = idx(r, c, w); 401 if (out_of_bounds(r, c, w, h)) break; 402 if (state->grid[cell] > 0) { 403 if (!(colourmask & ~(MASK(BLACK) | MASK(WHITE) | MASK(EMPTY)))) 404 break; 405 } else if (!(MASK(state->grid[cell]) & colourmask)) break; 406 ++sz; 407 r += dr; 408 c += dc; 409 } 410 return sz; 411} 412 413static void solver_makemove(puzzle_size r, puzzle_size c, int colour, 414 game_state *state, move **buffer_ptr) 415{ 416 int const cell = idx(r, c, state->params.w); 417 if (out_of_bounds(r, c, state->params.w, state->params.h)) return; 418 if (state->grid[cell] != EMPTY) return; 419 setmember((*buffer_ptr)->square, r); 420 setmember((*buffer_ptr)->square, c); 421 setmember(**buffer_ptr, colour); 422 ++*buffer_ptr; 423 state->grid[cell] = (colour == M_BLACK ? BLACK : WHITE); 424} 425 426static move *solver_reasoning_adjacency(game_state *state, 427 int nclues, 428 const square *clues, 429 move *buf) 430{ 431 int r, c, i; 432 for (r = 0; r < state->params.h; ++r) 433 for (c = 0; c < state->params.w; ++c) { 434 int const cell = idx(r, c, state->params.w); 435 if (state->grid[cell] != BLACK) continue; 436 for (i = 0; i < 4; ++i) 437 solver_makemove(r + dr[i], c + dc[i], M_WHITE, state, &buf); 438 } 439 return buf; 440} 441 442enum {NOT_VISITED = -1}; 443 444static int dfs_biconnect_visit(puzzle_size r, puzzle_size c, 445 game_state *state, 446 square *dfs_parent, int *dfs_depth, 447 move **buf); 448 449static move *solver_reasoning_connectedness(game_state *state, 450 int nclues, 451 const square *clues, 452 move *buf) 453{ 454 int const w = state->params.w, h = state->params.h, n = w * h; 455 456 square *const dfs_parent = snewn(n, square); 457 int *const dfs_depth = snewn(n, int); 458 459 int i; 460 for (i = 0; i < n; ++i) { 461 dfs_parent[i].r = NOT_VISITED; 462 dfs_depth[i] = -n; 463 } 464 465 for (i = 0; i < n && state->grid[i] == BLACK; ++i); 466 467 dfs_parent[i].r = i / w; 468 dfs_parent[i].c = i % w; /* `dfs root`.parent == `dfs root` */ 469 dfs_depth[i] = 0; 470 471 dfs_biconnect_visit(i / w, i % w, state, dfs_parent, dfs_depth, &buf); 472 473 sfree(dfs_parent); 474 sfree(dfs_depth); 475 476 return buf; 477} 478 479/* returns the `lowpoint` of (r, c) */ 480static int dfs_biconnect_visit(puzzle_size r, puzzle_size c, 481 game_state *state, 482 square *dfs_parent, int *dfs_depth, 483 move **buf) 484{ 485 const puzzle_size w = state->params.w, h = state->params.h; 486 int const i = idx(r, c, w), mydepth = dfs_depth[i]; 487 int lowpoint = mydepth, j, nchildren = 0; 488 489 for (j = 0; j < 4; ++j) { 490 const puzzle_size rr = r + dr[j], cc = c + dc[j]; 491 int const cell = idx(rr, cc, w); 492 493 if (out_of_bounds(rr, cc, w, h)) continue; 494 if (state->grid[cell] == BLACK) continue; 495 496 if (dfs_parent[cell].r == NOT_VISITED) { 497 int child_lowpoint; 498 dfs_parent[cell].r = r; 499 dfs_parent[cell].c = c; 500 dfs_depth[cell] = mydepth + 1; 501 child_lowpoint = dfs_biconnect_visit(rr, cc, state, dfs_parent, 502 dfs_depth, buf); 503 504 if (child_lowpoint >= mydepth && mydepth > 0) 505 solver_makemove(r, c, M_WHITE, state, buf); 506 507 lowpoint = min(lowpoint, child_lowpoint); 508 ++nchildren; 509 } else if (rr != dfs_parent[i].r || cc != dfs_parent[i].c) { 510 lowpoint = min(lowpoint, dfs_depth[cell]); 511 } 512 } 513 514 if (mydepth == 0 && nchildren >= 2) 515 solver_makemove(r, c, M_WHITE, state, buf); 516 517 return lowpoint; 518} 519 520static move *solver_reasoning_not_too_big(game_state *state, 521 int nclues, 522 const square *clues, 523 move *buf) 524{ 525 int const w = state->params.w, runmasks[4] = { 526 ~(MASK(BLACK) | MASK(EMPTY)), 527 MASK(EMPTY), 528 ~(MASK(BLACK) | MASK(EMPTY)), 529 ~(MASK(BLACK)) 530 }; 531 enum {RUN_WHITE, RUN_EMPTY, RUN_BEYOND, RUN_SPACE}; 532 533 int i, runlengths[4][4]; 534 535 for (i = 0; i < nclues; ++i) { 536 int j, k, whites, space; 537 538 const puzzle_size row = clues[i].r, col = clues[i].c; 539 int const clue = state->grid[idx(row, col, w)]; 540 541 for (j = 0; j < 4; ++j) { 542 puzzle_size r = row + dr[j], c = col + dc[j]; 543 runlengths[RUN_SPACE][j] = 0; 544 for (k = 0; k <= RUN_SPACE; ++k) { 545 int l = runlength(r, c, dr[j], dc[j], state, runmasks[k]); 546 if (k < RUN_SPACE) { 547 runlengths[k][j] = l; 548 r += dr[j] * l; 549 c += dc[j] * l; 550 } 551 runlengths[RUN_SPACE][j] += l; 552 } 553 } 554 555 whites = 1; 556 for (j = 0; j < 4; ++j) whites += runlengths[RUN_WHITE][j]; 557 558 for (j = 0; j < 4; ++j) { 559 int const delta = 1 + runlengths[RUN_WHITE][j]; 560 const puzzle_size r = row + delta * dr[j]; 561 const puzzle_size c = col + delta * dc[j]; 562 563 if (whites == clue) { 564 solver_makemove(r, c, M_BLACK, state, &buf); 565 continue; 566 } 567 568 if (runlengths[RUN_EMPTY][j] == 1 && 569 whites 570 + runlengths[RUN_EMPTY][j] 571 + runlengths[RUN_BEYOND][j] 572 > clue) { 573 solver_makemove(r, c, M_BLACK, state, &buf); 574 continue; 575 } 576 577 if (whites 578 + runlengths[RUN_EMPTY][j] 579 + runlengths[RUN_BEYOND][j] 580 > clue) { 581 runlengths[RUN_SPACE][j] = 582 runlengths[RUN_WHITE][j] + 583 runlengths[RUN_EMPTY][j] - 1; 584 585 if (runlengths[RUN_EMPTY][j] == 1) 586 solver_makemove(r, c, M_BLACK, state, &buf); 587 } 588 } 589 590 space = 1; 591 for (j = 0; j < 4; ++j) space += runlengths[RUN_SPACE][j]; 592 for (j = 0; j < 4; ++j) { 593 puzzle_size r = row + dr[j], c = col + dc[j]; 594 595 int k = space - runlengths[RUN_SPACE][j]; 596 if (k >= clue) continue; 597 598 for (; k < clue; ++k, r += dr[j], c += dc[j]) 599 solver_makemove(r, c, M_WHITE, state, &buf); 600 } 601 } 602 return buf; 603} 604 605static move *solver_reasoning_recursion(game_state *state, 606 int nclues, 607 const square *clues, 608 move *buf) 609{ 610 int const w = state->params.w, n = w * state->params.h; 611 int cell, colour; 612 613 for (cell = 0; cell < n; ++cell) { 614 int const r = cell / w, c = cell % w; 615 int i; 616 game_state *newstate; 617 move *recursive_result; 618 619 if (state->grid[cell] != EMPTY) continue; 620 621 /* FIXME: add enum alias for smallest and largest (or N) */ 622 for (colour = M_BLACK; colour <= M_WHITE; ++colour) { 623 newstate = dup_game(state); 624 newstate->grid[cell] = colour == M_BLACK ? BLACK : WHITE; 625 recursive_result = do_solve(newstate, nclues, clues, buf, 626 DIFF_RECURSION); 627 if (recursive_result == NULL) { 628 free_game(newstate); 629 solver_makemove(r, c, M_BLACK + M_WHITE - colour, state, &buf); 630 return buf; 631 } 632 for (i = 0; i < n && newstate->grid[i] != EMPTY; ++i); 633 free_game(newstate); 634 if (i == n) return buf; 635 } 636 } 637 return buf; 638} 639 640static square *find_clues(const game_state *state, int *ret_nclues) 641{ 642 int r, c, i, nclues = 0; 643 square *ret = snewn(state->params.w * state->params.h, struct square); 644 645 for (i = r = 0; r < state->params.h; ++r) 646 for (c = 0; c < state->params.w; ++c, ++i) 647 if (state->grid[i] > 0) { 648 ret[nclues].r = r; 649 ret[nclues].c = c; 650 ++nclues; 651 } 652 653 *ret_nclues = nclues; 654 return sresize(ret, nclues + (nclues == 0), square); 655} 656 657/* ---------------------------------------------------------------------- 658 * Puzzle generation 659 * 660 * Generating kurodoko instances is rather straightforward: 661 * 662 * - Start with a white grid and add black squares at randomly chosen 663 * locations, unless colouring that square black would violate 664 * either the adjacency or connectedness constraints. 665 * 666 * - For each white square, compute the number it would contain if it 667 * were given as a clue. 668 * 669 * - From a starting point of "give _every_ white square as a clue", 670 * for each white square (in a random order), see if the board is 671 * solvable when that square is not given as a clue. If not, don't 672 * give it as a clue, otherwise do. 673 * 674 * This never fails, but it's only _almost_ what I do. The real final 675 * step is this: 676 * 677 * - From a starting point of "give _every_ white square as a clue", 678 * first remove all clues that are two-way rotationally symmetric 679 * to a black square. If this leaves the puzzle unsolvable, throw 680 * it out and try again. Otherwise, remove all _pairs_ of clues 681 * (that are rotationally symmetric) which can be removed without 682 * rendering the puzzle unsolvable. 683 * 684 * This can fail even if one only removes the black and symmetric 685 * clues; indeed it happens often (avg. once or twice per puzzle) when 686 * generating 1xN instances. (If you add black cells they must be in 687 * the end, and if you only add one, it's ambiguous where). 688 */ 689 690/* forward declarations of internal calls */ 691static void newdesc_choose_black_squares(game_state *state, 692 const int *shuffle_1toN); 693static void newdesc_compute_clues(game_state *state); 694static int newdesc_strip_clues(game_state *state, int *shuffle_1toN); 695static char *newdesc_encode_game_description(int n, puzzle_size *grid); 696 697static char *new_game_desc(const game_params *params, random_state *rs, 698 char **aux, bool interactive) 699{ 700 int const w = params->w, h = params->h, n = w * h; 701 702 puzzle_size *const grid = snewn(n, puzzle_size); 703 int *const shuffle_1toN = snewn(n, int); 704 705 int i, clues_removed; 706 707 char *encoding; 708 709 game_state state; 710 state.params = *params; 711 state.grid = grid; 712 713 interactive = false; /* I don't need it, I shouldn't use it*/ 714 715 for (i = 0; i < n; ++i) shuffle_1toN[i] = i; 716 717 while (true) { 718 shuffle(shuffle_1toN, n, sizeof (int), rs); 719 newdesc_choose_black_squares(&state, shuffle_1toN); 720 721 newdesc_compute_clues(&state); 722 723 shuffle(shuffle_1toN, n, sizeof (int), rs); 724 clues_removed = newdesc_strip_clues(&state, shuffle_1toN); 725 726 if (clues_removed < 0) continue; else break; 727 } 728 729 encoding = newdesc_encode_game_description(n, grid); 730 731 sfree(grid); 732 sfree(shuffle_1toN); 733 734 return encoding; 735} 736 737static int dfs_count_white(game_state *state, int cell); 738 739static void newdesc_choose_black_squares(game_state *state, 740 const int *shuffle_1toN) 741{ 742 int const w = state->params.w, h = state->params.h, n = w * h; 743 744 int k, any_white_cell, n_black_cells; 745 746 for (k = 0; k < n; ++k) state->grid[k] = WHITE; 747 748 any_white_cell = shuffle_1toN[n - 1]; 749 n_black_cells = 0; 750 751 /* I like the puzzles that result from n / 3, but maybe this 752 * could be made a (generation, i.e. non-full) parameter? */ 753 for (k = 0; k < n / 3; ++k) { 754 int const i = shuffle_1toN[k], c = i % w, r = i / w; 755 756 int j; 757 for (j = 0; j < 4; ++j) { 758 int const rr = r + dr[j], cc = c + dc[j], cell = idx(rr, cc, w); 759 /* if you're out of bounds, we skip you */ 760 if (out_of_bounds(rr, cc, w, h)) continue; 761 if (state->grid[cell] == BLACK) break; /* I can't be black */ 762 } if (j < 4) continue; /* I have black neighbour: I'm white */ 763 764 state->grid[i] = BLACK; 765 ++n_black_cells; 766 767 j = dfs_count_white(state, any_white_cell); 768 if (j + n_black_cells < n) { 769 state->grid[i] = WHITE; 770 --n_black_cells; 771 } 772 } 773} 774 775static void newdesc_compute_clues(game_state *state) 776{ 777 int const w = state->params.w, h = state->params.h; 778 int r, c; 779 780 for (r = 0; r < h; ++r) { 781 int run_size = 0, c, cc; 782 for (c = 0; c <= w; ++c) { 783 if (c == w || state->grid[idx(r, c, w)] == BLACK) { 784 for (cc = c - run_size; cc < c; ++cc) 785 state->grid[idx(r, cc, w)] += run_size; 786 run_size = 0; 787 } else ++run_size; 788 } 789 } 790 791 for (c = 0; c < w; ++c) { 792 int run_size = 0, r, rr; 793 for (r = 0; r <= h; ++r) { 794 if (r == h || state->grid[idx(r, c, w)] == BLACK) { 795 for (rr = r - run_size; rr < r; ++rr) 796 state->grid[idx(rr, c, w)] += run_size; 797 run_size = 0; 798 } else ++run_size; 799 } 800 } 801} 802 803#define rotate(x) (n - 1 - (x)) 804 805static int newdesc_strip_clues(game_state *state, int *shuffle_1toN) 806{ 807 int const w = state->params.w, n = w * state->params.h; 808 809 move *const move_buffer = snewn(n, move); 810 move *buf; 811 game_state *dupstate; 812 813 /* 814 * do a partition/pivot of shuffle_1toN into three groups: 815 * (1) squares rotationally-symmetric to (3) 816 * (2) squares not in (1) or (3) 817 * (3) black squares 818 * 819 * They go from [0, left), [left, right) and [right, n) in 820 * shuffle_1toN (and from there into state->grid[ ]) 821 * 822 * Then, remove clues from the grid one by one in shuffle_1toN 823 * order, until the solver becomes unhappy. If we didn't remove 824 * all of (1), return (-1). Else, we're happy. 825 */ 826 827 /* do the partition */ 828 int clues_removed, k = 0, left = 0, right = n; 829 830 for (;; ++k) { 831 while (k < right && state->grid[shuffle_1toN[k]] == BLACK) { 832 --right; 833 SWAP(int, shuffle_1toN[right], shuffle_1toN[k]); 834 assert(state->grid[shuffle_1toN[right]] == BLACK); 835 } 836 if (k >= right) break; 837 assert (k >= left); 838 if (state->grid[rotate(shuffle_1toN[k])] == BLACK) { 839 SWAP(int, shuffle_1toN[k], shuffle_1toN[left]); 840 ++left; 841 } 842 assert (state->grid[rotate(shuffle_1toN[k])] != BLACK 843 || k == left - 1); 844 } 845 846 for (k = 0; k < left; ++k) { 847 assert (state->grid[rotate(shuffle_1toN[k])] == BLACK); 848 state->grid[shuffle_1toN[k]] = EMPTY; 849 } 850 for (k = left; k < right; ++k) { 851 assert (state->grid[rotate(shuffle_1toN[k])] != BLACK); 852 assert (state->grid[shuffle_1toN[k]] != BLACK); 853 } 854 for (k = right; k < n; ++k) { 855 assert (state->grid[shuffle_1toN[k]] == BLACK); 856 state->grid[shuffle_1toN[k]] = EMPTY; 857 } 858 859 clues_removed = (left - 0) + (n - right); 860 861 dupstate = dup_game(state); 862 buf = solve_internal(dupstate, move_buffer, DIFF_RECURSION - 1); 863 free_game(dupstate); 864 if (buf - move_buffer < clues_removed) { 865 /* branch prediction: I don't think I'll go here */ 866 clues_removed = -1; 867 goto ret; 868 } 869 870 for (k = left; k < right; ++k) { 871 const int i = shuffle_1toN[k], j = rotate(i); 872 int const clue = state->grid[i], clue_rot = state->grid[j]; 873 if (clue == BLACK) continue; 874 state->grid[i] = state->grid[j] = EMPTY; 875 dupstate = dup_game(state); 876 buf = solve_internal(dupstate, move_buffer, DIFF_RECURSION - 1); 877 free_game(dupstate); 878 clues_removed += 2 - (i == j); 879 /* if i is the center square, then i == (j = rotate(i)) 880 * when i and j are one, removing i and j removes only one */ 881 if (buf - move_buffer == clues_removed) continue; 882 /* if the solver is sound, refilling all removed clues means 883 * we have filled all squares, i.e. solved the puzzle. */ 884 state->grid[i] = clue; 885 state->grid[j] = clue_rot; 886 clues_removed -= 2 - (i == j); 887 } 888 889ret: 890 sfree(move_buffer); 891 return clues_removed; 892} 893 894static int dfs_count_rec(puzzle_size *grid, int r, int c, int w, int h) 895{ 896 int const cell = idx(r, c, w); 897 if (out_of_bounds(r, c, w, h)) return 0; 898 if (grid[cell] != WHITE) return 0; 899 grid[cell] = EMPTY; 900 return 1 + 901 dfs_count_rec(grid, r + 0, c + 1, w, h) + 902 dfs_count_rec(grid, r + 0, c - 1, w, h) + 903 dfs_count_rec(grid, r + 1, c + 0, w, h) + 904 dfs_count_rec(grid, r - 1, c + 0, w, h); 905} 906 907static int dfs_count_white(game_state *state, int cell) 908{ 909 int const w = state->params.w, h = state->params.h, n = w * h; 910 int const r = cell / w, c = cell % w; 911 int i, k = dfs_count_rec(state->grid, r, c, w, h); 912 for (i = 0; i < n; ++i) 913 if (state->grid[i] == EMPTY) 914 state->grid[i] = WHITE; 915 return k; 916} 917 918static const char *validate_params(const game_params *params, bool full) 919{ 920 int const w = params->w, h = params->h; 921 if (w < 1) return "Error: width is less than 1"; 922 if (h < 1) return "Error: height is less than 1"; 923 if (w > SCHAR_MAX - (h - 1)) return "Error: w + h is too big"; 924 if (w * h < 1) return "Error: size is less than 1"; 925 /* I might be unable to store clues in my puzzle_size *grid; */ 926 if (full) { 927 if (w == 2 && h == 2) return "Error: can't create 2x2 puzzles"; 928 if (w == 1 && h == 2) return "Error: can't create 1x2 puzzles"; 929 if (w == 2 && h == 1) return "Error: can't create 2x1 puzzles"; 930 if (w == 1 && h == 1) return "Error: can't create 1x1 puzzles"; 931 } 932 return NULL; 933} 934 935/* Definition: a puzzle instance is _good_ if: 936 * - it has a unique solution 937 * - the solver can find this solution without using recursion 938 * - the solution contains at least one black square 939 * - the clues are 2-way rotationally symmetric 940 * 941 * (the idea being: the generator can not output any _bad_ puzzles) 942 * 943 * Theorem: validate_params, when full != 0, discards exactly the set 944 * of parameters for which there are _no_ good puzzle instances. 945 * 946 * Proof: it's an immediate consequence of the five lemmas below. 947 * 948 * Observation: not only do puzzles on non-tiny grids exist, the 949 * generator is pretty fast about coming up with them. On my pre-2004 950 * desktop box, it generates 100 puzzles on the highest preset (16x11) 951 * in 8.383 seconds, or <= 0.1 second per puzzle. 952 * 953 * ---------------------------------------------------------------------- 954 * 955 * Lemma: On a 1x1 grid, there are no good puzzles. 956 * 957 * Proof: the one square can't be a clue because at least one square 958 * is black. But both a white square and a black square satisfy the 959 * solution criteria, so the puzzle is ambiguous (and hence bad). 960 * 961 * Lemma: On a 1x2 grid, there are no good puzzles. 962 * 963 * Proof: let's name the squares l and r. Note that there can be at 964 * most one black square, or adjacency is violated. By assumption at 965 * least one square is black, so let's call that one l. By clue 966 * symmetry, neither l nor r can be given as a clue, so the puzzle 967 * instance is blank and thus ambiguous. 968 * 969 * Corollary: On a 2x1 grid, there are no good puzzles. 970 * Proof: rotate the above proof 90 degrees ;-) 971 * 972 * ---------------------------------------------------------------------- 973 * 974 * Lemma: On a 2x2 grid, there are no soluble puzzles with 2-way 975 * rotational symmetric clues and at least one black square. 976 * 977 * Proof: Let's name the squares a, b, c, and d, with a and b on the 978 * top row, a and c in the left column. Let's consider the case where 979 * a is black. Then no other square can be black: b and c would both 980 * violate the adjacency constraint; d would disconnect b from c. 981 * 982 * So exactly one square is black (and by 4-way rotation symmetry of 983 * the 2x2 square, it doesn't matter which one, so let's stick to a). 984 * By 2-way rotational symmetry of the clues and the rule about not 985 * painting numbers black, neither a nor d can be clues. A blank 986 * puzzle would be ambiguous, so one of {b, c} is a clue; by symmetry, 987 * so is the other one. 988 * 989 * It is readily seen that their clue value is 2. But "a is black" 990 * and "d is black" are both valid solutions in this case, so the 991 * puzzle is ambiguous (and hence bad). 992 * 993 * ---------------------------------------------------------------------- 994 * 995 * Lemma: On a wxh grid with w, h >= 1 and (w > 2 or h > 2), there is 996 * at least one good puzzle. 997 * 998 * Proof: assume that w > h (otherwise rotate the proof again). Paint 999 * the top left and bottom right corners black, and fill a clue into 1000 * all the other squares. Present this board to the solver code (or 1001 * player, hypothetically), except with the two black squares as blank 1002 * squares. 1003 * 1004 * For an Nx1 puzzle, observe that every clue is N - 2, and there are 1005 * N - 2 of them in one connected sequence, so the remaining two 1006 * squares can be deduced to be black, which solves the puzzle. 1007 * 1008 * For any other puzzle, let j be a cell in the same row as a black 1009 * cell, but not in the same column (such a cell doesn't exist in 2x3 1010 * puzzles, but we assume w > h and such cells exist in 3x2 puzzles). 1011 * 1012 * Note that the number of cells in axis parallel `rays' going out 1013 * from j exceeds j's clue value by one. Only one such cell is a 1014 * non-clue, so it must be black. Similarly for the other corner (let 1015 * j' be a cell in the same row as the _other_ black cell, but not in 1016 * the same column as _any_ black cell; repeat this argument at j'). 1017 * 1018 * This fills the grid and satisfies all clues and the adjacency 1019 * constraint and doesn't paint on top of any clues. All that is left 1020 * to see is connectedness. 1021 * 1022 * Observe that the white cells in each column form a single connected 1023 * `run', and each column contains a white cell adjacent to a white 1024 * cell in the column to the right, if that column exists. 1025 * 1026 * Thus, any cell in the left-most column can reach any other cell: 1027 * first go to the target column (by repeatedly going to the cell in 1028 * your current column that lets you go right, then going right), then 1029 * go up or down to the desired cell. 1030 * 1031 * As reachability is symmetric (in undirected graphs) and transitive, 1032 * any cell can reach any left-column cell, and from there any other 1033 * cell. 1034 */ 1035 1036/* ---------------------------------------------------------------------- 1037 * Game encoding and decoding 1038 */ 1039 1040#define NDIGITS_BASE '!' 1041 1042static char *newdesc_encode_game_description(int area, puzzle_size *grid) 1043{ 1044 char *desc = NULL; 1045 int desclen = 0, descsize = 0; 1046 int run, i; 1047 1048 run = 0; 1049 for (i = 0; i <= area; i++) { 1050 int n = (i < area ? grid[i] : -1); 1051 1052 if (!n) 1053 run++; 1054 else { 1055 if (descsize < desclen + 40) { 1056 descsize = desclen * 3 / 2 + 40; 1057 desc = sresize(desc, descsize, char); 1058 } 1059 if (run) { 1060 while (run > 0) { 1061 int c = 'a' - 1 + run; 1062 if (run > 26) 1063 c = 'z'; 1064 desc[desclen++] = c; 1065 run -= c - ('a' - 1); 1066 } 1067 } else { 1068 /* 1069 * If there's a number in the very top left or 1070 * bottom right, there's no point putting an 1071 * unnecessary _ before or after it. 1072 */ 1073 if (desclen > 0 && n > 0) 1074 desc[desclen++] = '_'; 1075 } 1076 if (n > 0) 1077 desclen += sprintf(desc+desclen, "%d", n); 1078 run = 0; 1079 } 1080 } 1081 desc[desclen] = '\0'; 1082 return desc; 1083} 1084 1085static const char *validate_desc(const game_params *params, const char *desc) 1086{ 1087 int const n = params->w * params->h; 1088 int squares = 0; 1089 int range = params->w + params->h - 1; /* maximum cell value */ 1090 1091 while (*desc && *desc != ',') { 1092 int c = *desc++; 1093 if (c >= 'a' && c <= 'z') { 1094 squares += c - 'a' + 1; 1095 } else if (c == '_') { 1096 /* do nothing */; 1097 } else if (c > '0' && c <= '9') { 1098 int val = atoi(desc-1); 1099 if (val < 1 || val > range) 1100 return "Out-of-range number in game description"; 1101 squares++; 1102 while (*desc >= '0' && *desc <= '9') 1103 desc++; 1104 } else 1105 return "Invalid character in game description"; 1106 } 1107 1108 if (squares < n) 1109 return "Not enough data to fill grid"; 1110 1111 if (squares > n) 1112 return "Too much data to fit in grid"; 1113 1114 return NULL; 1115} 1116 1117static game_state *new_game(midend *me, const game_params *params, 1118 const char *desc) 1119{ 1120 int i; 1121 const char *p; 1122 1123 int const n = params->w * params->h; 1124 game_state *state = snew(game_state); 1125 1126 me = NULL; /* I don't need it, I shouldn't use it */ 1127 1128 state->params = *params; /* structure copy */ 1129 state->grid = snewn(n, puzzle_size); 1130 1131 p = desc; 1132 i = 0; 1133 while (i < n && *p) { 1134 int c = *p++; 1135 if (c >= 'a' && c <= 'z') { 1136 int squares = c - 'a' + 1; 1137 while (squares--) 1138 state->grid[i++] = 0; 1139 } else if (c == '_') { 1140 /* do nothing */; 1141 } else if (c > '0' && c <= '9') { 1142 int val = atoi(p-1); 1143 assert(val >= 1 && val <= params->w+params->h-1); 1144 state->grid[i++] = val; 1145 while (*p >= '0' && *p <= '9') 1146 p++; 1147 } 1148 } 1149 assert(i == n); 1150 state->has_cheated = false; 1151 state->was_solved = false; 1152 1153 return state; 1154} 1155 1156/* ---------------------------------------------------------------------- 1157 * User interface: ascii 1158 */ 1159 1160static bool game_can_format_as_text_now(const game_params *params) 1161{ 1162 return true; 1163} 1164 1165static char *game_text_format(const game_state *state) 1166{ 1167 int r, c, i, w_string, h_string, n_string; 1168 char cellsize; 1169 char *ret, *buf, *gridline; 1170 1171 int const w = state->params.w, h = state->params.h; 1172 1173 cellsize = 0; /* or may be used uninitialized */ 1174 1175 for (c = 0; c < w; ++c) { 1176 for (r = 0; r < h; ++r) { 1177 puzzle_size k = state->grid[idx(r, c, w)]; 1178 int d; 1179 for (d = 0; k; k /= 10, ++d); 1180 cellsize = max(cellsize, d); 1181 } 1182 } 1183 1184 ++cellsize; 1185 1186 w_string = w * cellsize + 2; /* "|%d|%d|...|\n" */ 1187 h_string = 2 * h + 1; /* "+--+--+...+\n%s\n+--+--+...+\n" */ 1188 n_string = w_string * h_string; 1189 1190 gridline = snewn(w_string + 1, char); /* +1: NUL terminator */ 1191 memset(gridline, '-', w_string); 1192 for (c = 0; c <= w; ++c) gridline[c * cellsize] = '+'; 1193 gridline[w_string - 1] = '\n'; 1194 gridline[w_string - 0] = '\0'; 1195 1196 buf = ret = snewn(n_string + 1, char); /* +1: NUL terminator */ 1197 for (i = r = 0; r < h; ++r) { 1198 memcpy(buf, gridline, w_string); 1199 buf += w_string; 1200 for (c = 0; c < w; ++c, ++i) { 1201 char ch; 1202 switch (state->grid[i]) { 1203 case BLACK: ch = '#'; break; 1204 case WHITE: ch = '.'; break; 1205 case EMPTY: ch = ' '; break; 1206 default: 1207 buf += sprintf(buf, "|%*d", cellsize - 1, state->grid[i]); 1208 continue; 1209 } 1210 *buf++ = '|'; 1211 memset(buf, ch, cellsize - 1); 1212 buf += cellsize - 1; 1213 } 1214 buf += sprintf(buf, "|\n"); 1215 } 1216 memcpy(buf, gridline, w_string); 1217 buf += w_string; 1218 assert (buf - ret == n_string); 1219 *buf = '\0'; 1220 1221 sfree(gridline); 1222 1223 return ret; 1224} 1225 1226/* ---------------------------------------------------------------------- 1227 * User interfaces: interactive 1228 */ 1229 1230struct game_ui { 1231 puzzle_size r, c; /* cursor position */ 1232 bool cursor_show; 1233 1234 /* 1235 * User preference option to swap the left and right mouse 1236 * buttons. 1237 * 1238 * The original puzzle submitter thought it would be more useful 1239 * to have the left button turn an empty square into a dotted one, 1240 * on the grounds that that was what you did most often; I (SGT) 1241 * felt instinctively that the left button ought to place black 1242 * squares and the right button place dots, on the grounds that 1243 * that was consistent with many other puzzles in which the left 1244 * button fills in the data used by the solution checker while the 1245 * right button places pencil marks for the user's convenience. 1246 * 1247 * My first beta-player wasn't sure either, so I thought I'd 1248 * pre-emptively put in a 'configuration' mechanism just in case. 1249 */ 1250 bool swap_buttons; 1251}; 1252 1253static void legacy_prefs_override(struct game_ui *ui_out) 1254{ 1255 static int initialised = false; 1256 static int swap_buttons = -1; 1257 1258 if (!initialised) { 1259 initialised = true; 1260 swap_buttons = getenv_bool("RANGE_SWAP_BUTTONS", -1); 1261 } 1262 1263 if (swap_buttons != -1) 1264 ui_out->swap_buttons = swap_buttons; 1265} 1266 1267static game_ui *new_ui(const game_state *state) 1268{ 1269 struct game_ui *ui = snew(game_ui); 1270 ui->r = ui->c = 0; 1271 ui->cursor_show = getenv_bool("PUZZLES_SHOW_CURSOR", false); 1272 1273 ui->swap_buttons = false; 1274 legacy_prefs_override(ui); 1275 1276 return ui; 1277} 1278 1279static config_item *get_prefs(game_ui *ui) 1280{ 1281 config_item *ret; 1282 1283 ret = snewn(N_PREF_ITEMS+1, config_item); 1284 1285 ret[PREF_MOUSE_BUTTON_ORDER].name = "Mouse button order"; 1286 ret[PREF_MOUSE_BUTTON_ORDER].kw = "left-mouse-button"; 1287 ret[PREF_MOUSE_BUTTON_ORDER].type = C_CHOICES; 1288 ret[PREF_MOUSE_BUTTON_ORDER].u.choices.choicenames = 1289 ":Left to fill, right to dot:Left to dot, right to fill"; 1290 ret[PREF_MOUSE_BUTTON_ORDER].u.choices.choicekws = ":fill:dot"; 1291 ret[PREF_MOUSE_BUTTON_ORDER].u.choices.selected = ui->swap_buttons; 1292 1293 ret[N_PREF_ITEMS].name = NULL; 1294 ret[N_PREF_ITEMS].type = C_END; 1295 1296 return ret; 1297} 1298 1299static void set_prefs(game_ui *ui, const config_item *cfg) 1300{ 1301 ui->swap_buttons = cfg[PREF_MOUSE_BUTTON_ORDER].u.choices.selected; 1302} 1303 1304static void free_ui(game_ui *ui) 1305{ 1306 sfree(ui); 1307} 1308 1309static const char *current_key_label(const game_ui *ui, 1310 const game_state *state, int button) 1311{ 1312 int cell; 1313 1314 if (IS_CURSOR_SELECT(button)) { 1315 cell = state->grid[idx(ui->r, ui->c, state->params.w)]; 1316 if (!ui->cursor_show || cell > 0) return ""; 1317 switch (cell) { 1318 case EMPTY: 1319 return button == CURSOR_SELECT ? "Fill" : "Dot"; 1320 case WHITE: 1321 return button == CURSOR_SELECT ? "Empty" : "Fill"; 1322 case BLACK: 1323 return button == CURSOR_SELECT ? "Dot" : "Empty"; 1324 } 1325 } 1326 return ""; 1327 1328} 1329 1330typedef struct drawcell { 1331 puzzle_size value; 1332 bool error, cursor, flash; 1333} drawcell; 1334 1335struct game_drawstate { 1336 int tilesize; 1337 drawcell *grid; 1338}; 1339 1340#define TILESIZE (ds->tilesize) 1341#define BORDER (TILESIZE / 2) 1342#define COORD(x) ((x) * TILESIZE + BORDER) 1343#define FROMCOORD(x) (((x) - BORDER) / TILESIZE) 1344 1345static char *interpret_move(const game_state *state, game_ui *ui, 1346 const game_drawstate *ds, 1347 int x, int y, int button) 1348{ 1349 enum {none, forwards, backwards, hint}; 1350 int const w = state->params.w, h = state->params.h; 1351 int r = ui->r, c = ui->c, action = none, cell; 1352 bool shift = button & MOD_SHFT; 1353 button &= ~MOD_SHFT; 1354 1355 if (IS_CURSOR_SELECT(button) && !ui->cursor_show) return NULL; 1356 1357 if (IS_MOUSE_DOWN(button)) { 1358 r = FROMCOORD(y + TILESIZE) - 1; /* or (x, y) < TILESIZE) */ 1359 c = FROMCOORD(x + TILESIZE) - 1; /* are considered inside */ 1360 if (out_of_bounds(r, c, w, h)) return NULL; 1361 ui->r = r; 1362 ui->c = c; 1363 ui->cursor_show = false; 1364 } 1365 1366 if (button == LEFT_BUTTON || button == RIGHT_BUTTON) { 1367 if (ui->swap_buttons) { 1368 if (button == LEFT_BUTTON) 1369 button = RIGHT_BUTTON; 1370 else 1371 button = LEFT_BUTTON; 1372 } 1373 } 1374 1375 switch (button) { 1376 case CURSOR_SELECT : case LEFT_BUTTON: action = backwards; break; 1377 case CURSOR_SELECT2: case RIGHT_BUTTON: action = forwards; break; 1378 case 'h': case 'H' : action = hint; break; 1379 case CURSOR_UP: case CURSOR_DOWN: 1380 case CURSOR_LEFT: case CURSOR_RIGHT: 1381 if (ui->cursor_show) { 1382 int i; 1383 for (i = 0; i < 4 && cursors[i] != button; ++i); 1384 assert (i < 4); 1385 if (shift) { 1386 int pre_r = r, pre_c = c; 1387 bool do_pre, do_post; 1388 cell = state->grid[idx(r, c, state->params.w)]; 1389 do_pre = (cell == EMPTY); 1390 1391 if (out_of_bounds(ui->r + dr[i], ui->c + dc[i], w, h)) { 1392 if (do_pre) 1393 return nfmtstr(40, "W,%d,%d", pre_r, pre_c); 1394 else 1395 return NULL; 1396 } 1397 1398 ui->r += dr[i]; 1399 ui->c += dc[i]; 1400 1401 cell = state->grid[idx(ui->r, ui->c, state->params.w)]; 1402 do_post = (cell == EMPTY); 1403 1404 /* (do_pre ? "..." : "") concat (do_post ? "..." : "") */ 1405 if (do_pre && do_post) 1406 return nfmtstr(80, "W,%d,%dW,%d,%d", 1407 pre_r, pre_c, ui->r, ui->c); 1408 else if (do_pre) 1409 return nfmtstr(40, "W,%d,%d", pre_r, pre_c); 1410 else if (do_post) 1411 return nfmtstr(40, "W,%d,%d", ui->r, ui->c); 1412 else 1413 return MOVE_UI_UPDATE; 1414 1415 } else if (!out_of_bounds(ui->r + dr[i], ui->c + dc[i], w, h)) { 1416 ui->r += dr[i]; 1417 ui->c += dc[i]; 1418 } 1419 } else ui->cursor_show = true; 1420 return MOVE_UI_UPDATE; 1421 } 1422 1423 if (action == hint) { 1424 move *end, *buf = snewn(state->params.w * state->params.h, 1425 struct move); 1426 char *ret = NULL; 1427 end = solve_internal(state, buf, DIFF_RECURSION); 1428 if (end != NULL && end > buf) { 1429 ret = nfmtstr(40, "%c,%d,%d", 1430 buf->colour == M_BLACK ? 'B' : 'W', 1431 buf->square.r, buf->square.c); 1432 /* We used to set a flag here in the game_ui indicating 1433 * that the player had used the hint function. I (SGT) 1434 * retired it, on grounds of consistency with other games 1435 * (most of these games will still flash to indicate 1436 * completion if you solved and undid it, so why not if 1437 * you got a hint?) and because the flash is as much about 1438 * checking you got it all right than about congratulating 1439 * you on a job well done. */ 1440 } 1441 sfree(buf); 1442 return ret; 1443 } 1444 1445 cell = state->grid[idx(r, c, state->params.w)]; 1446 if (cell > 0) return NULL; 1447 1448 if (action == forwards) switch (cell) { 1449 case EMPTY: return nfmtstr(40, "W,%d,%d", r, c); 1450 case WHITE: return nfmtstr(40, "B,%d,%d", r, c); 1451 case BLACK: return nfmtstr(40, "E,%d,%d", r, c); 1452 } 1453 1454 else if (action == backwards) switch (cell) { 1455 case BLACK: return nfmtstr(40, "W,%d,%d", r, c); 1456 case WHITE: return nfmtstr(40, "E,%d,%d", r, c); 1457 case EMPTY: return nfmtstr(40, "B,%d,%d", r, c); 1458 } 1459 1460 return NULL; 1461} 1462 1463static bool find_errors(const game_state *state, bool *report) 1464{ 1465 int const w = state->params.w, h = state->params.h, n = w * h; 1466 DSF *dsf; 1467 1468 int r, c, i; 1469 1470 int nblack = 0, any_white_cell = -1; 1471 game_state *dup = dup_game(state); 1472 1473 for (i = r = 0; r < h; ++r) 1474 for (c = 0; c < w; ++c, ++i) { 1475 switch (state->grid[i]) { 1476 1477 case BLACK: 1478 { 1479 int j; 1480 ++nblack; 1481 for (j = 0; j < 4; ++j) { 1482 int const rr = r + dr[j], cc = c + dc[j]; 1483 if (out_of_bounds(rr, cc, w, h)) continue; 1484 if (state->grid[idx(rr, cc, w)] != BLACK) continue; 1485 if (!report) goto found_error; 1486 report[i] = true; 1487 break; 1488 } 1489 } 1490 break; 1491 default: 1492 { 1493 int j, runs; 1494 for (runs = 1, j = 0; j < 4; ++j) { 1495 int const rr = r + dr[j], cc = c + dc[j]; 1496 runs += runlength(rr, cc, dr[j], dc[j], state, 1497 ~MASK(BLACK)); 1498 } 1499 if (!report) { 1500 if (runs != state->grid[i]) goto found_error; 1501 } else if (runs < state->grid[i]) report[i] = true; 1502 else { 1503 for (runs = 1, j = 0; j < 4; ++j) { 1504 int const rr = r + dr[j], cc = c + dc[j]; 1505 runs += runlength(rr, cc, dr[j], dc[j], state, 1506 ~(MASK(BLACK) | MASK(EMPTY))); 1507 } 1508 if (runs > state->grid[i]) report[i] = true; 1509 } 1510 } 1511 1512 /* note: fallthrough _into_ these cases */ 1513 case EMPTY: 1514 case WHITE: any_white_cell = i; 1515 } 1516 } 1517 1518 /* 1519 * Check that all the white cells form a single connected component. 1520 */ 1521 dsf = dsf_new(n); 1522 for (r = 0; r < h-1; ++r) 1523 for (c = 0; c < w; ++c) 1524 if (state->grid[r*w+c] != BLACK && 1525 state->grid[(r+1)*w+c] != BLACK) 1526 dsf_merge(dsf, r*w+c, (r+1)*w+c); 1527 for (r = 0; r < h; ++r) 1528 for (c = 0; c < w-1; ++c) 1529 if (state->grid[r*w+c] != BLACK && 1530 state->grid[r*w+(c+1)] != BLACK) 1531 dsf_merge(dsf, r*w+c, r*w+(c+1)); 1532 if (any_white_cell != -1 && 1533 nblack + dsf_size(dsf, any_white_cell) < n) { 1534 int biggest, canonical; 1535 1536 if (!report) { 1537 dsf_free(dsf); 1538 goto found_error; 1539 } 1540 1541 /* 1542 * Report this error by choosing one component to be the 1543 * canonical one (we pick the largest, arbitrarily 1544 * tie-breaking towards lower array indices) and highlighting 1545 * as an error any square in a different component. 1546 */ 1547 canonical = -1; 1548 biggest = 0; 1549 for (i = 0; i < n; ++i) 1550 if (state->grid[i] != BLACK) { 1551 int size = dsf_size(dsf, i); 1552 if (size > biggest) { 1553 biggest = size; 1554 canonical = dsf_canonify(dsf, i); 1555 } 1556 } 1557 1558 for (i = 0; i < n; ++i) 1559 if (state->grid[i] != BLACK && dsf_canonify(dsf, i) != canonical) 1560 report[i] = true; 1561 } 1562 dsf_free(dsf); 1563 1564 free_game(dup); 1565 return false; /* if report != NULL, this is ignored */ 1566 1567found_error: 1568 free_game(dup); 1569 return true; 1570} 1571 1572static game_state *execute_move(const game_state *state, const char *move) 1573{ 1574 signed int r, c, value, nchars, ntok; 1575 signed char what_to_do; 1576 game_state *ret; 1577 1578 assert (move); 1579 1580 ret = dup_game(state); 1581 1582 if (*move == 'S') { 1583 ++move; 1584 ret->has_cheated = ret->was_solved = true; 1585 } 1586 1587 for (; *move; move += nchars) { 1588 ntok = sscanf(move, "%c,%d,%d%n", &what_to_do, &r, &c, &nchars); 1589 if (ntok < 3) goto failure; 1590 switch (what_to_do) { 1591 case 'W': value = WHITE; break; 1592 case 'E': value = EMPTY; break; 1593 case 'B': value = BLACK; break; 1594 default: goto failure; 1595 } 1596 if (out_of_bounds(r, c, ret->params.w, ret->params.h)) goto failure; 1597 ret->grid[idx(r, c, ret->params.w)] = value; 1598 } 1599 1600 if (!ret->was_solved) 1601 ret->was_solved = !find_errors(ret, NULL); 1602 1603 return ret; 1604 1605failure: 1606 free_game(ret); 1607 return NULL; 1608} 1609 1610static void game_changed_state(game_ui *ui, const game_state *oldstate, 1611 const game_state *newstate) 1612{ 1613} 1614 1615static float game_anim_length(const game_state *oldstate, 1616 const game_state *newstate, int dir, game_ui *ui) 1617{ 1618 return 0.0F; 1619} 1620 1621#define FLASH_TIME 0.7F 1622 1623static float game_flash_length(const game_state *from, 1624 const game_state *to, int dir, game_ui *ui) 1625{ 1626 if (!from->was_solved && to->was_solved && !to->has_cheated) 1627 return FLASH_TIME; 1628 return 0.0F; 1629} 1630 1631static void game_get_cursor_location(const game_ui *ui, 1632 const game_drawstate *ds, 1633 const game_state *state, 1634 const game_params *params, 1635 int *x, int *y, int *w, int *h) 1636{ 1637 if(ui->cursor_show) { 1638 *x = BORDER + TILESIZE * ui->c; 1639 *y = BORDER + TILESIZE * ui->r; 1640 *w = *h = TILESIZE; 1641 } 1642} 1643 1644static int game_status(const game_state *state) 1645{ 1646 return state->was_solved ? +1 : 0; 1647} 1648 1649/* ---------------------------------------------------------------------- 1650 * Drawing routines. 1651 */ 1652 1653#define PREFERRED_TILE_SIZE 32 1654 1655enum { 1656 COL_BACKGROUND = 0, 1657 COL_GRID, 1658 COL_BLACK = COL_GRID, 1659 COL_TEXT = COL_GRID, 1660 COL_USER = COL_GRID, 1661 COL_ERROR, 1662 COL_LOWLIGHT, 1663 COL_CURSOR = COL_LOWLIGHT, 1664 NCOLOURS 1665}; 1666 1667static void game_compute_size(const game_params *params, int tilesize, 1668 const game_ui *ui, int *x, int *y) 1669{ 1670 *x = (1 + params->w) * tilesize; 1671 *y = (1 + params->h) * tilesize; 1672} 1673 1674static void game_set_size(drawing *dr, game_drawstate *ds, 1675 const game_params *params, int tilesize) 1676{ 1677 ds->tilesize = tilesize; 1678} 1679 1680#define COLOUR(ret, i, r, g, b) \ 1681 ((ret[3*(i)+0] = (r)), (ret[3*(i)+1] = (g)), (ret[3*(i)+2] = (b))) 1682 1683static float *game_colours(frontend *fe, int *ncolours) 1684{ 1685 float *ret = snewn(3 * NCOLOURS, float); 1686 1687 game_mkhighlight(fe, ret, COL_BACKGROUND, -1, COL_LOWLIGHT); 1688 COLOUR(ret, COL_GRID, 0.0F, 0.0F, 0.0F); 1689 COLOUR(ret, COL_ERROR, 1.0F, 0.0F, 0.0F); 1690 1691 *ncolours = NCOLOURS; 1692 return ret; 1693} 1694 1695static drawcell makecell(puzzle_size value, 1696 bool error, bool cursor, bool flash) 1697{ 1698 drawcell ret; 1699 setmember(ret, value); 1700 setmember(ret, error); 1701 setmember(ret, cursor); 1702 setmember(ret, flash); 1703 return ret; 1704} 1705 1706static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state) 1707{ 1708 int const w = state->params.w, h = state->params.h, n = w * h; 1709 struct game_drawstate *ds = snew(struct game_drawstate); 1710 int i; 1711 1712 ds->tilesize = 0; 1713 1714 ds->grid = snewn(n, drawcell); 1715 for (i = 0; i < n; ++i) 1716 ds->grid[i] = makecell(w + h, false, false, false); 1717 1718 return ds; 1719} 1720 1721static void game_free_drawstate(drawing *dr, game_drawstate *ds) 1722{ 1723 sfree(ds->grid); 1724 sfree(ds); 1725} 1726 1727#define cmpmember(a, b, field) ((a) . field == (b) . field) 1728 1729static bool cell_eq(drawcell a, drawcell b) 1730{ 1731 return 1732 cmpmember(a, b, value) && 1733 cmpmember(a, b, error) && 1734 cmpmember(a, b, cursor) && 1735 cmpmember(a, b, flash); 1736} 1737 1738static void draw_cell(drawing *dr, game_drawstate *ds, int r, int c, 1739 drawcell cell); 1740 1741static void game_redraw(drawing *dr, game_drawstate *ds, 1742 const game_state *oldstate, const game_state *state, 1743 int dir, const game_ui *ui, 1744 float animtime, float flashtime) 1745{ 1746 int const w = state->params.w, h = state->params.h, n = w * h; 1747 int const flash = ((int) (flashtime * 5 / FLASH_TIME)) % 2; 1748 1749 int r, c, i; 1750 1751 bool *errors = snewn(n, bool); 1752 memset(errors, 0, n * sizeof (bool)); 1753 find_errors(state, errors); 1754 1755 assert (oldstate == NULL); /* only happens if animating moves */ 1756 1757 for (i = r = 0; r < h; ++r) { 1758 for (c = 0; c < w; ++c, ++i) { 1759 drawcell cell = makecell(state->grid[i], errors[i], false, flash); 1760 if (r == ui->r && c == ui->c && ui->cursor_show) 1761 cell.cursor = true; 1762 if (!cell_eq(cell, ds->grid[i])) { 1763 draw_cell(dr, ds, r, c, cell); 1764 ds->grid[i] = cell; 1765 } 1766 } 1767 } 1768 1769 sfree(errors); 1770} 1771 1772static void draw_cell(drawing *draw, game_drawstate *ds, int r, int c, 1773 drawcell cell) 1774{ 1775 int const ts = ds->tilesize; 1776 int const y = BORDER + ts * r, x = BORDER + ts * c; 1777 int const tx = x + (ts / 2), ty = y + (ts / 2); 1778 int const dotsz = (ds->tilesize + 9) / 10; 1779 1780 int const colour = (cell.value == BLACK ? 1781 cell.error ? COL_ERROR : COL_BLACK : 1782 cell.flash || cell.cursor ? 1783 COL_LOWLIGHT : COL_BACKGROUND); 1784 1785 draw_rect_outline(draw, x, y, ts + 1, ts + 1, COL_GRID); 1786 draw_rect (draw, x + 1, y + 1, ts - 1, ts - 1, colour); 1787 if (cell.error) 1788 draw_rect_outline(draw, x + 1, y + 1, ts - 1, ts - 1, COL_ERROR); 1789 1790 switch (cell.value) { 1791 case WHITE: draw_rect(draw, tx - dotsz / 2, ty - dotsz / 2, dotsz, dotsz, 1792 cell.error ? COL_ERROR : COL_USER); 1793 case BLACK: case EMPTY: break; 1794 default: 1795 { 1796 int const colour = (cell.error ? COL_ERROR : COL_GRID); 1797 char *msg = nfmtstr(10, "%d", cell.value); 1798 draw_text(draw, tx, ty, FONT_VARIABLE, ts * 3 / 5, 1799 ALIGN_VCENTRE | ALIGN_HCENTRE, colour, msg); 1800 sfree(msg); 1801 } 1802 } 1803 1804 draw_update(draw, x, y, ts + 1, ts + 1); 1805} 1806 1807/* ---------------------------------------------------------------------- 1808 * User interface: print 1809 */ 1810 1811static void game_print_size(const game_params *params, const game_ui *ui, 1812 float *x, float *y) 1813{ 1814 int print_width, print_height; 1815 game_compute_size(params, 800, ui, &print_width, &print_height); 1816 *x = print_width / 100.0F; 1817 *y = print_height / 100.0F; 1818} 1819 1820static void game_print(drawing *dr, const game_state *state, const game_ui *ui, 1821 int tilesize) 1822{ 1823 int const w = state->params.w, h = state->params.h; 1824 game_drawstate ds_obj, *ds = &ds_obj; 1825 int r, c, i, colour; 1826 1827 ds->tilesize = tilesize; 1828 1829 colour = print_mono_colour(dr, 1); assert(colour == COL_BACKGROUND); 1830 colour = print_mono_colour(dr, 0); assert(colour == COL_GRID); 1831 colour = print_mono_colour(dr, 1); assert(colour == COL_ERROR); 1832 colour = print_mono_colour(dr, 0); assert(colour == COL_LOWLIGHT); 1833 colour = print_mono_colour(dr, 0); assert(colour == NCOLOURS); 1834 1835 for (i = r = 0; r < h; ++r) 1836 for (c = 0; c < w; ++c, ++i) 1837 draw_cell(dr, ds, r, c, 1838 makecell(state->grid[i], false, false, false)); 1839 1840 print_line_width(dr, 3 * tilesize / 40); 1841 draw_rect_outline(dr, BORDER, BORDER, w*TILESIZE, h*TILESIZE, COL_GRID); 1842} 1843 1844/* And that's about it ;-) **************************************************/ 1845 1846#ifdef COMBINED 1847#define thegame range 1848#endif 1849 1850struct game const thegame = { 1851 "Range", "games.range", "range", 1852 default_params, 1853 game_fetch_preset, NULL, 1854 decode_params, 1855 encode_params, 1856 free_params, 1857 dup_params, 1858 true, game_configure, custom_params, 1859 validate_params, 1860 new_game_desc, 1861 validate_desc, 1862 new_game, 1863 dup_game, 1864 free_game, 1865 true, solve_game, 1866 true, game_can_format_as_text_now, game_text_format, 1867 get_prefs, set_prefs, 1868 new_ui, 1869 free_ui, 1870 NULL, /* encode_ui */ 1871 NULL, /* decode_ui */ 1872 NULL, /* game_request_keys */ 1873 game_changed_state, 1874 current_key_label, 1875 interpret_move, 1876 execute_move, 1877 PREFERRED_TILE_SIZE, game_compute_size, game_set_size, 1878 game_colours, 1879 game_new_drawstate, 1880 game_free_drawstate, 1881 game_redraw, 1882 game_anim_length, 1883 game_flash_length, 1884 game_get_cursor_location, 1885 game_status, 1886 true, false, game_print_size, game_print, 1887 false, /* wants_statusbar */ 1888 false, NULL, /* timing_state */ 1889 0, /* flags */ 1890};