A modern Music Player Daemon based on Rockbox open source high quality audio player
libadwaita
audio
rust
zig
deno
mpris
rockbox
mpd
1/*
2 * cube.c: Cube game.
3 */
4
5#include <stdio.h>
6#include <stdlib.h>
7#include <string.h>
8#include <assert.h>
9#include <ctype.h>
10#ifdef NO_TGMATH_H
11# include <math.h>
12#else
13# include <tgmath.h>
14#endif
15
16#include "puzzles.h"
17
18#define MAXVERTICES 20
19#define MAXFACES 20
20#define MAXORDER 4
21struct solid {
22 int nvertices;
23 float vertices[MAXVERTICES * 3]; /* 3*npoints coordinates */
24 int order;
25 int nfaces;
26 int faces[MAXFACES * MAXORDER]; /* order*nfaces point indices */
27 float normals[MAXFACES * 3]; /* 3*npoints vector components */
28 float shear; /* isometric shear for nice drawing */
29 float border; /* border required around arena */
30};
31
32static const struct solid s_tetrahedron = {
33 4,
34 {
35 0.0F, -0.57735026919F, -0.20412414523F,
36 -0.5F, 0.28867513459F, -0.20412414523F,
37 0.0F, -0.0F, 0.6123724357F,
38 0.5F, 0.28867513459F, -0.20412414523F,
39 },
40 3, 4,
41 {
42 0,2,1, 3,1,2, 2,0,3, 1,3,0
43 },
44 {
45 -0.816496580928F, -0.471404520791F, 0.333333333334F,
46 0.0F, 0.942809041583F, 0.333333333333F,
47 0.816496580928F, -0.471404520791F, 0.333333333334F,
48 0.0F, 0.0F, -1.0F,
49 },
50 0.0F, 0.3F
51};
52
53static const struct solid s_cube = {
54 8,
55 {
56 -0.5F,-0.5F,-0.5F, -0.5F,-0.5F,+0.5F,
57 -0.5F,+0.5F,-0.5F, -0.5F,+0.5F,+0.5F,
58 +0.5F,-0.5F,-0.5F, +0.5F,-0.5F,+0.5F,
59 +0.5F,+0.5F,-0.5F, +0.5F,+0.5F,+0.5F,
60 },
61 4, 6,
62 {
63 0,1,3,2, 1,5,7,3, 5,4,6,7, 4,0,2,6, 0,4,5,1, 3,7,6,2
64 },
65 {
66 -1.0F,0.0F,0.0F, 0.0F,0.0F,+1.0F,
67 +1.0F,0.0F,0.0F, 0.0F,0.0F,-1.0F,
68 0.0F,-1.0F,0.0F, 0.0F,+1.0F,0.0F
69 },
70 0.3F, 0.5F
71};
72
73static const struct solid s_octahedron = {
74 6,
75 {
76 -0.5F, -0.28867513459472505F, 0.4082482904638664F,
77 0.5F, 0.28867513459472505F, -0.4082482904638664F,
78 -0.5F, 0.28867513459472505F, -0.4082482904638664F,
79 0.5F, -0.28867513459472505F, 0.4082482904638664F,
80 0.0F, -0.57735026918945009F, -0.4082482904638664F,
81 0.0F, 0.57735026918945009F, 0.4082482904638664F,
82 },
83 3, 8,
84 {
85 4,0,2, 0,5,2, 0,4,3, 5,0,3, 1,4,2, 5,1,2, 4,1,3, 1,5,3
86 },
87 {
88 -0.816496580928F, -0.471404520791F, -0.333333333334F,
89 -0.816496580928F, 0.471404520791F, 0.333333333334F,
90 0.0F, -0.942809041583F, 0.333333333333F,
91 0.0F, 0.0F, 1.0F,
92 0.0F, 0.0F, -1.0F,
93 0.0F, 0.942809041583F, -0.333333333333F,
94 0.816496580928F, -0.471404520791F, -0.333333333334F,
95 0.816496580928F, 0.471404520791F, 0.333333333334F,
96 },
97 0.0F, 0.5F
98};
99
100static const struct solid s_icosahedron = {
101 12,
102 {
103 0.0F, 0.57735026919F, 0.75576131408F,
104 0.0F, -0.93417235896F, 0.17841104489F,
105 0.0F, 0.93417235896F, -0.17841104489F,
106 0.0F, -0.57735026919F, -0.75576131408F,
107 -0.5F, -0.28867513459F, 0.75576131408F,
108 -0.5F, 0.28867513459F, -0.75576131408F,
109 0.5F, -0.28867513459F, 0.75576131408F,
110 0.5F, 0.28867513459F, -0.75576131408F,
111 -0.80901699437F, 0.46708617948F, 0.17841104489F,
112 0.80901699437F, 0.46708617948F, 0.17841104489F,
113 -0.80901699437F, -0.46708617948F, -0.17841104489F,
114 0.80901699437F, -0.46708617948F, -0.17841104489F,
115 },
116 3, 20,
117 {
118 8,0,2, 0,9,2, 1,10,3, 11,1,3, 0,4,6,
119 4,1,6, 5,2,7, 3,5,7, 4,8,10, 8,5,10,
120 9,6,11, 7,9,11, 0,8,4, 9,0,6, 10,1,4,
121 1,11,6, 8,2,5, 2,9,7, 3,10,5, 11,3,7,
122 },
123 {
124 -0.356822089773F, 0.87267799625F, 0.333333333333F,
125 0.356822089773F, 0.87267799625F, 0.333333333333F,
126 -0.356822089773F, -0.87267799625F, -0.333333333333F,
127 0.356822089773F, -0.87267799625F, -0.333333333333F,
128 -0.0F, 0.0F, 1.0F,
129 0.0F, -0.666666666667F, 0.745355992501F,
130 0.0F, 0.666666666667F, -0.745355992501F,
131 0.0F, 0.0F, -1.0F,
132 -0.934172358963F, -0.12732200375F, 0.333333333333F,
133 -0.934172358963F, 0.12732200375F, -0.333333333333F,
134 0.934172358963F, -0.12732200375F, 0.333333333333F,
135 0.934172358963F, 0.12732200375F, -0.333333333333F,
136 -0.57735026919F, 0.333333333334F, 0.745355992501F,
137 0.57735026919F, 0.333333333334F, 0.745355992501F,
138 -0.57735026919F, -0.745355992501F, 0.333333333334F,
139 0.57735026919F, -0.745355992501F, 0.333333333334F,
140 -0.57735026919F, 0.745355992501F, -0.333333333334F,
141 0.57735026919F, 0.745355992501F, -0.333333333334F,
142 -0.57735026919F, -0.333333333334F, -0.745355992501F,
143 0.57735026919F, -0.333333333334F, -0.745355992501F,
144 },
145 0.0F, 0.8F
146};
147
148enum {
149 TETRAHEDRON, CUBE, OCTAHEDRON, ICOSAHEDRON
150};
151static const struct solid *solids[] = {
152 &s_tetrahedron, &s_cube, &s_octahedron, &s_icosahedron
153};
154
155enum {
156 COL_BACKGROUND,
157 COL_BORDER,
158 COL_BLUE,
159 NCOLOURS
160};
161
162enum { LEFT, RIGHT, UP, DOWN, UP_LEFT, UP_RIGHT, DOWN_LEFT, DOWN_RIGHT };
163
164#define PREFERRED_GRID_SCALE 48
165#define GRID_SCALE (ds->gridscale)
166#define ROLLTIME 0.13F
167
168#define SQ(x) ( (x) * (x) )
169
170#define MATMUL(ra,m,a) do { \
171 float rx, ry, rz, xx = (a)[0], yy = (a)[1], zz = (a)[2], *mat = (m); \
172 rx = mat[0] * xx + mat[3] * yy + mat[6] * zz; \
173 ry = mat[1] * xx + mat[4] * yy + mat[7] * zz; \
174 rz = mat[2] * xx + mat[5] * yy + mat[8] * zz; \
175 (ra)[0] = rx; (ra)[1] = ry; (ra)[2] = rz; \
176} while (0)
177
178#define APPROXEQ(x,y) ( SQ(x-y) < 0.1F )
179
180struct grid_square {
181 float x, y;
182 int npoints;
183 float points[8]; /* maximum */
184 int directions[8]; /* bit masks showing point pairs */
185 bool flip;
186 int tetra_class;
187};
188
189struct game_params {
190 int solid;
191 /*
192 * Grid dimensions. For a square grid these are width and
193 * height respectively; otherwise the grid is a hexagon, with
194 * the top side and the two lower diagonals having length d1
195 * and the remaining three sides having length d2 (so that
196 * d1==d2 gives a regular hexagon, and d2==0 gives a triangle).
197 */
198 int d1, d2;
199};
200
201typedef struct game_grid game_grid;
202struct game_grid {
203 int refcount;
204 struct grid_square *squares;
205 int nsquares;
206};
207
208#define SET_SQUARE(state, i, val) \
209 ((state)->bluemask[(i)/32] &= ~(1UL << ((i)%32)), \
210 (state)->bluemask[(i)/32] |= ((unsigned long)(!!val) << ((i)%32)))
211#define GET_SQUARE(state, i) \
212 (((state)->bluemask[(i)/32] >> ((i)%32)) & 1)
213
214struct game_state {
215 struct game_params params;
216 const struct solid *solid;
217 int *facecolours;
218 game_grid *grid;
219 unsigned long *bluemask;
220 int current; /* index of current grid square */
221 int sgkey[2]; /* key-point indices into grid sq */
222 int dgkey[2]; /* key-point indices into grid sq */
223 int spkey[2]; /* key-point indices into polyhedron */
224 int dpkey[2]; /* key-point indices into polyhedron */
225 int previous;
226 float angle;
227 int completed; /* stores move count at completion */
228 int movecount;
229};
230
231static game_params *default_params(void)
232{
233 game_params *ret = snew(game_params);
234
235 ret->solid = CUBE;
236 ret->d1 = 4;
237 ret->d2 = 4;
238
239 return ret;
240}
241
242static bool game_fetch_preset(int i, char **name, game_params **params)
243{
244 game_params *ret = snew(game_params);
245 const char *str;
246
247 switch (i) {
248 case 0:
249 str = "Cube";
250 ret->solid = CUBE;
251 ret->d1 = 4;
252 ret->d2 = 4;
253 break;
254 case 1:
255 str = "Tetrahedron";
256 ret->solid = TETRAHEDRON;
257 ret->d1 = 1;
258 ret->d2 = 2;
259 break;
260 case 2:
261 str = "Octahedron";
262 ret->solid = OCTAHEDRON;
263 ret->d1 = 2;
264 ret->d2 = 2;
265 break;
266 case 3:
267 str = "Icosahedron";
268 ret->solid = ICOSAHEDRON;
269 ret->d1 = 3;
270 ret->d2 = 3;
271 break;
272 default:
273 sfree(ret);
274 return false;
275 }
276
277 *name = dupstr(str);
278 *params = ret;
279 return true;
280}
281
282static void free_params(game_params *params)
283{
284 sfree(params);
285}
286
287static game_params *dup_params(const game_params *params)
288{
289 game_params *ret = snew(game_params);
290 *ret = *params; /* structure copy */
291 return ret;
292}
293
294static void decode_params(game_params *ret, char const *string)
295{
296 switch (*string) {
297 case 't': ret->solid = TETRAHEDRON; string++; break;
298 case 'c': ret->solid = CUBE; string++; break;
299 case 'o': ret->solid = OCTAHEDRON; string++; break;
300 case 'i': ret->solid = ICOSAHEDRON; string++; break;
301 default: break;
302 }
303 ret->d1 = ret->d2 = atoi(string);
304 while (*string && isdigit((unsigned char)*string)) string++;
305 if (*string == 'x') {
306 string++;
307 ret->d2 = atoi(string);
308 }
309}
310
311static char *encode_params(const game_params *params, bool full)
312{
313 char data[256];
314
315 assert(params->solid >= 0 && params->solid < 4);
316 sprintf(data, "%c%dx%d", "tcoi"[params->solid], params->d1, params->d2);
317
318 return dupstr(data);
319}
320typedef void (*egc_callback)(void *, struct grid_square *);
321
322static void enum_grid_squares(const game_params *params, egc_callback callback,
323 void *ctx)
324{
325 const struct solid *solid = solids[params->solid];
326
327 if (solid->order == 4) {
328 int x, y;
329
330 for (y = 0; y < params->d2; y++)
331 for (x = 0; x < params->d1; x++) {
332 struct grid_square sq;
333
334 sq.x = (float)x;
335 sq.y = (float)y;
336 sq.points[0] = x - 0.5F;
337 sq.points[1] = y - 0.5F;
338 sq.points[2] = x - 0.5F;
339 sq.points[3] = y + 0.5F;
340 sq.points[4] = x + 0.5F;
341 sq.points[5] = y + 0.5F;
342 sq.points[6] = x + 0.5F;
343 sq.points[7] = y - 0.5F;
344 sq.npoints = 4;
345
346 sq.directions[LEFT] = 0x03; /* 0,1 */
347 sq.directions[RIGHT] = 0x0C; /* 2,3 */
348 sq.directions[UP] = 0x09; /* 0,3 */
349 sq.directions[DOWN] = 0x06; /* 1,2 */
350 sq.directions[UP_LEFT] = 0; /* no diagonals in a square */
351 sq.directions[UP_RIGHT] = 0; /* no diagonals in a square */
352 sq.directions[DOWN_LEFT] = 0; /* no diagonals in a square */
353 sq.directions[DOWN_RIGHT] = 0; /* no diagonals in a square */
354
355 sq.flip = false;
356
357 /*
358 * This is supremely irrelevant, but just to avoid
359 * having any uninitialised structure members...
360 */
361 sq.tetra_class = 0;
362
363 callback(ctx, &sq);
364 }
365 } else {
366 int row, rowlen, other, i, firstix = -1;
367 float theight = (float)(sqrt(3) / 2.0);
368
369 for (row = 0; row < params->d1 + params->d2; row++) {
370 if (row < params->d2) {
371 other = +1;
372 rowlen = row + params->d1;
373 } else {
374 other = -1;
375 rowlen = 2*params->d2 + params->d1 - row;
376 }
377
378 /*
379 * There are `rowlen' down-pointing triangles.
380 */
381 for (i = 0; i < rowlen; i++) {
382 struct grid_square sq;
383 int ix;
384 float x, y;
385
386 ix = (2 * i - (rowlen-1));
387 x = ix * 0.5F;
388 y = theight * row;
389 sq.x = x;
390 sq.y = y + theight / 3;
391 sq.points[0] = x - 0.5F;
392 sq.points[1] = y;
393 sq.points[2] = x;
394 sq.points[3] = y + theight;
395 sq.points[4] = x + 0.5F;
396 sq.points[5] = y;
397 sq.npoints = 3;
398
399 sq.directions[LEFT] = 0x03; /* 0,1 */
400 sq.directions[RIGHT] = 0x06; /* 1,2 */
401 sq.directions[UP] = 0x05; /* 0,2 */
402 sq.directions[DOWN] = 0; /* invalid move */
403
404 /*
405 * Down-pointing triangle: both the up diagonals go
406 * up, and the down ones go left and right.
407 */
408 sq.directions[UP_LEFT] = sq.directions[UP_RIGHT] =
409 sq.directions[UP];
410 sq.directions[DOWN_LEFT] = sq.directions[LEFT];
411 sq.directions[DOWN_RIGHT] = sq.directions[RIGHT];
412
413 sq.flip = true;
414
415 if (firstix < 0)
416 firstix = ix & 3;
417 ix -= firstix;
418 sq.tetra_class = ((row+(ix&1)) & 2) ^ (ix & 3);
419
420 callback(ctx, &sq);
421 }
422
423 /*
424 * There are `rowlen+other' up-pointing triangles.
425 */
426 for (i = 0; i < rowlen+other; i++) {
427 struct grid_square sq;
428 int ix;
429 float x, y;
430
431 ix = (2 * i - (rowlen+other-1));
432 x = ix * 0.5F;
433 y = theight * row;
434 sq.x = x;
435 sq.y = y + 2*theight / 3;
436 sq.points[0] = x + 0.5F;
437 sq.points[1] = y + theight;
438 sq.points[2] = x;
439 sq.points[3] = y;
440 sq.points[4] = x - 0.5F;
441 sq.points[5] = y + theight;
442 sq.npoints = 3;
443
444 sq.directions[LEFT] = 0x06; /* 1,2 */
445 sq.directions[RIGHT] = 0x03; /* 0,1 */
446 sq.directions[DOWN] = 0x05; /* 0,2 */
447 sq.directions[UP] = 0; /* invalid move */
448
449 /*
450 * Up-pointing triangle: both the down diagonals go
451 * down, and the up ones go left and right.
452 */
453 sq.directions[DOWN_LEFT] = sq.directions[DOWN_RIGHT] =
454 sq.directions[DOWN];
455 sq.directions[UP_LEFT] = sq.directions[LEFT];
456 sq.directions[UP_RIGHT] = sq.directions[RIGHT];
457
458 sq.flip = false;
459
460 if (firstix < 0)
461 firstix = (ix - 1) & 3;
462 ix -= firstix;
463 sq.tetra_class = ((row+(ix&1)) & 2) ^ (ix & 3);
464
465 callback(ctx, &sq);
466 }
467 }
468 }
469}
470
471static int grid_area(int d1, int d2, int order)
472{
473 /*
474 * An NxM grid of squares has NM squares in it.
475 *
476 * A grid of triangles with dimensions A and B has a total of
477 * A^2 + B^2 + 4AB triangles in it. (You can divide it up into
478 * a side-A triangle containing A^2 subtriangles, a side-B
479 * triangle containing B^2, and two congruent parallelograms,
480 * each with side lengths A and B, each therefore containing AB
481 * two-triangle rhombuses.)
482 */
483 if (order == 4)
484 return d1 * d2;
485 else
486 return d1*d1 + d2*d2 + 4*d1*d2;
487}
488
489static config_item *game_configure(const game_params *params)
490{
491 config_item *ret = snewn(4, config_item);
492 char buf[80];
493
494 ret[0].name = "Type of solid";
495 ret[0].type = C_CHOICES;
496 ret[0].u.choices.choicenames = ":Tetrahedron:Cube:Octahedron:Icosahedron";
497 ret[0].u.choices.selected = params->solid;
498
499 ret[1].name = "Width / top";
500 ret[1].type = C_STRING;
501 sprintf(buf, "%d", params->d1);
502 ret[1].u.string.sval = dupstr(buf);
503
504 ret[2].name = "Height / bottom";
505 ret[2].type = C_STRING;
506 sprintf(buf, "%d", params->d2);
507 ret[2].u.string.sval = dupstr(buf);
508
509 ret[3].name = NULL;
510 ret[3].type = C_END;
511
512 return ret;
513}
514
515static game_params *custom_params(const config_item *cfg)
516{
517 game_params *ret = snew(game_params);
518
519 ret->solid = cfg[0].u.choices.selected;
520 ret->d1 = atoi(cfg[1].u.string.sval);
521 ret->d2 = atoi(cfg[2].u.string.sval);
522
523 return ret;
524}
525
526static void count_grid_square_callback(void *ctx, struct grid_square *sq)
527{
528 int *classes = (int *)ctx;
529 int thisclass;
530
531 if (classes[4] == 4)
532 thisclass = sq->tetra_class;
533 else if (classes[4] == 2)
534 thisclass = sq->flip;
535 else
536 thisclass = 0;
537
538 classes[thisclass]++;
539}
540
541static const char *validate_params(const game_params *params, bool full)
542{
543 int classes[5];
544 int i;
545
546 if (params->solid < 0 || params->solid >= lenof(solids))
547 return "Unrecognised solid type";
548
549 if (params->d1 < 0 || params->d2 < 0)
550 return "Grid dimensions may not be negative";
551
552 if (solids[params->solid]->order == 4) {
553 if (params->d1 <= 1 || params->d2 <= 1)
554 return "Both grid dimensions must be greater than one";
555 if (params->d2 > INT_MAX / params->d1)
556 return "Grid area must not be unreasonably large";
557 } else {
558 if (params->d1 <= 0 && params->d2 <= 0)
559 return "At least one grid dimension must be greater than zero";
560
561 /*
562 * Check whether d1^2 + d2^2 + 4 d1 d2 > INT_MAX, without overflow:
563 *
564 * First check d1^2 doesn't overflow by itself.
565 *
566 * Then check d2^2 doesn't exceed the remaining space between
567 * d1^2 and INT_MAX.
568 *
569 * If that's all OK then we know both d1 and d2 are
570 * individually less than the square root of INT_MAX, so we
571 * can safely multiply them and compare against the
572 * _remaining_ space.
573 */
574 if ((params->d1 > 0 && params->d1 > INT_MAX / params->d1) ||
575 (params->d2 > 0 &&
576 params->d2 > (INT_MAX - params->d1*params->d1) / params->d2) ||
577 (params->d2 > 0 &&
578 params->d1*params->d2 > (INT_MAX - params->d1*params->d1 -
579 params->d2*params->d2) / params->d2))
580 return "Grid area must not be unreasonably large";
581 }
582
583 for (i = 0; i < 4; i++)
584 classes[i] = 0;
585 if (params->solid == TETRAHEDRON)
586 classes[4] = 4;
587 else if (params->solid == OCTAHEDRON)
588 classes[4] = 2;
589 else
590 classes[4] = 1;
591 enum_grid_squares(params, count_grid_square_callback, classes);
592
593 for (i = 0; i < classes[4]; i++)
594 if (classes[i] < solids[params->solid]->nfaces / classes[4])
595 return "Not enough grid space to place all blue faces";
596
597 if (grid_area(params->d1, params->d2, solids[params->solid]->order) <
598 solids[params->solid]->nfaces + 1)
599 return "Not enough space to place the solid on an empty square";
600
601 return NULL;
602}
603
604struct grid_data {
605 int *gridptrs[4];
606 int nsquares[4];
607 int nclasses;
608 int squareindex;
609};
610
611static void classify_grid_square_callback(void *ctx, struct grid_square *sq)
612{
613 struct grid_data *data = (struct grid_data *)ctx;
614 int thisclass;
615
616 if (data->nclasses == 4)
617 thisclass = sq->tetra_class;
618 else if (data->nclasses == 2)
619 thisclass = sq->flip;
620 else
621 thisclass = 0;
622
623 data->gridptrs[thisclass][data->nsquares[thisclass]++] =
624 data->squareindex++;
625}
626
627static char *new_game_desc(const game_params *params, random_state *rs,
628 char **aux, bool interactive)
629{
630 struct grid_data data;
631 int i, j, k, m, area, facesperclass;
632 bool *flags;
633 char *desc, *p;
634
635 /*
636 * Enumerate the grid squares, dividing them into equivalence
637 * classes as appropriate. (For the tetrahedron, there is one
638 * equivalence class for each face; for the octahedron there
639 * are two classes; for the other two solids there's only one.)
640 */
641
642 area = grid_area(params->d1, params->d2, solids[params->solid]->order);
643 if (params->solid == TETRAHEDRON)
644 data.nclasses = 4;
645 else if (params->solid == OCTAHEDRON)
646 data.nclasses = 2;
647 else
648 data.nclasses = 1;
649 data.gridptrs[0] = snewn(data.nclasses * area, int);
650 for (i = 0; i < data.nclasses; i++) {
651 data.gridptrs[i] = data.gridptrs[0] + i * area;
652 data.nsquares[i] = 0;
653 }
654 data.squareindex = 0;
655 enum_grid_squares(params, classify_grid_square_callback, &data);
656
657 facesperclass = solids[params->solid]->nfaces / data.nclasses;
658
659 for (i = 0; i < data.nclasses; i++)
660 assert(data.nsquares[i] >= facesperclass);
661 assert(data.squareindex == area);
662
663 /*
664 * So now we know how many faces to allocate in each class. Get
665 * on with it.
666 */
667 flags = snewn(area, bool);
668 for (i = 0; i < area; i++)
669 flags[i] = false;
670
671 for (i = 0; i < data.nclasses; i++) {
672 for (j = 0; j < facesperclass; j++) {
673 int n = random_upto(rs, data.nsquares[i]);
674
675 assert(!flags[data.gridptrs[i][n]]);
676 flags[data.gridptrs[i][n]] = true;
677
678 /*
679 * Move everything else up the array. I ought to use a
680 * better data structure for this, but for such small
681 * numbers it hardly seems worth the effort.
682 */
683 while (n < data.nsquares[i]-1) {
684 data.gridptrs[i][n] = data.gridptrs[i][n+1];
685 n++;
686 }
687 data.nsquares[i]--;
688 }
689 }
690
691 /*
692 * Now we know precisely which squares are blue. Encode this
693 * information in hex. While we're looping over this, collect
694 * the non-blue squares into a list in the now-unused gridptrs
695 * array.
696 */
697 desc = snewn(area / 4 + 40, char);
698 p = desc;
699 j = 0;
700 k = 8;
701 m = 0;
702 for (i = 0; i < area; i++) {
703 if (flags[i]) {
704 j |= k;
705 } else {
706 data.gridptrs[0][m++] = i;
707 }
708 k >>= 1;
709 if (!k) {
710 *p++ = "0123456789ABCDEF"[j];
711 k = 8;
712 j = 0;
713 }
714 }
715 if (k != 8)
716 *p++ = "0123456789ABCDEF"[j];
717
718 /*
719 * Choose a non-blue square for the polyhedron.
720 */
721 sprintf(p, ",%d", data.gridptrs[0][random_upto(rs, m)]);
722
723 sfree(data.gridptrs[0]);
724 sfree(flags);
725
726 return desc;
727}
728
729static void add_grid_square_callback(void *ctx, struct grid_square *sq)
730{
731 game_grid *grid = (game_grid *)ctx;
732
733 grid->squares[grid->nsquares++] = *sq; /* structure copy */
734}
735
736static int lowest_face(const struct solid *solid)
737{
738 int i, j, best;
739 float zmin;
740
741 best = 0;
742 zmin = 0.0;
743 for (i = 0; i < solid->nfaces; i++) {
744 float z = 0;
745
746 for (j = 0; j < solid->order; j++) {
747 int f = solid->faces[i*solid->order + j];
748 z += solid->vertices[f*3+2];
749 }
750
751 if (i == 0 || zmin > z) {
752 zmin = z;
753 best = i;
754 }
755 }
756
757 return best;
758}
759
760static bool align_poly(const struct solid *solid, struct grid_square *sq,
761 int *pkey)
762{
763 float zmin;
764 int i, j;
765 int flip = (sq->flip ? -1 : +1);
766
767 /*
768 * First, find the lowest z-coordinate present in the solid.
769 */
770 zmin = 0.0;
771 for (i = 0; i < solid->nvertices; i++)
772 if (zmin > solid->vertices[i*3+2])
773 zmin = solid->vertices[i*3+2];
774
775 /*
776 * Now go round the grid square. For each point in the grid
777 * square, we're looking for a point of the polyhedron with the
778 * same x- and y-coordinates (relative to the square's centre),
779 * and z-coordinate equal to zmin (near enough).
780 */
781 for (j = 0; j < sq->npoints; j++) {
782 int matches, index;
783
784 matches = 0;
785 index = -1;
786
787 for (i = 0; i < solid->nvertices; i++) {
788 float dist = 0;
789
790 dist += SQ(solid->vertices[i*3+0] * flip - sq->points[j*2+0] + sq->x);
791 dist += SQ(solid->vertices[i*3+1] * flip - sq->points[j*2+1] + sq->y);
792 dist += SQ(solid->vertices[i*3+2] - zmin);
793
794 if (dist < 0.1F) {
795 matches++;
796 index = i;
797 }
798 }
799
800 if (matches != 1 || index < 0)
801 return false;
802 pkey[j] = index;
803 }
804
805 return true;
806}
807
808static void flip_poly(struct solid *solid, bool flip)
809{
810 int i;
811
812 if (flip) {
813 for (i = 0; i < solid->nvertices; i++) {
814 solid->vertices[i*3+0] *= -1;
815 solid->vertices[i*3+1] *= -1;
816 }
817 for (i = 0; i < solid->nfaces; i++) {
818 solid->normals[i*3+0] *= -1;
819 solid->normals[i*3+1] *= -1;
820 }
821 }
822}
823
824static struct solid *transform_poly(const struct solid *solid, bool flip,
825 int key0, int key1, float angle)
826{
827 struct solid *ret = snew(struct solid);
828 float vx, vy, ax, ay;
829 float vmatrix[9], amatrix[9], vmatrix2[9];
830 int i;
831
832 *ret = *solid; /* structure copy */
833
834 flip_poly(ret, flip);
835
836 /*
837 * Now rotate the polyhedron through the given angle. We must
838 * rotate about the Z-axis to bring the two vertices key0 and
839 * key1 into horizontal alignment, then rotate about the
840 * X-axis, then rotate back again.
841 */
842 vx = ret->vertices[key1*3+0] - ret->vertices[key0*3+0];
843 vy = ret->vertices[key1*3+1] - ret->vertices[key0*3+1];
844 assert(APPROXEQ(vx*vx + vy*vy, 1.0F));
845
846 vmatrix[0] = vx; vmatrix[3] = vy; vmatrix[6] = 0;
847 vmatrix[1] = -vy; vmatrix[4] = vx; vmatrix[7] = 0;
848 vmatrix[2] = 0; vmatrix[5] = 0; vmatrix[8] = 1;
849
850 ax = (float)cos(angle);
851 ay = (float)sin(angle);
852
853 amatrix[0] = 1; amatrix[3] = 0; amatrix[6] = 0;
854 amatrix[1] = 0; amatrix[4] = ax; amatrix[7] = ay;
855 amatrix[2] = 0; amatrix[5] = -ay; amatrix[8] = ax;
856
857 memcpy(vmatrix2, vmatrix, sizeof(vmatrix));
858 vmatrix2[1] = vy;
859 vmatrix2[3] = -vy;
860
861 for (i = 0; i < ret->nvertices; i++) {
862 MATMUL(ret->vertices + 3*i, vmatrix, ret->vertices + 3*i);
863 MATMUL(ret->vertices + 3*i, amatrix, ret->vertices + 3*i);
864 MATMUL(ret->vertices + 3*i, vmatrix2, ret->vertices + 3*i);
865 }
866 for (i = 0; i < ret->nfaces; i++) {
867 MATMUL(ret->normals + 3*i, vmatrix, ret->normals + 3*i);
868 MATMUL(ret->normals + 3*i, amatrix, ret->normals + 3*i);
869 MATMUL(ret->normals + 3*i, vmatrix2, ret->normals + 3*i);
870 }
871
872 return ret;
873}
874
875static const char *validate_desc(const game_params *params, const char *desc)
876{
877 int area = grid_area(params->d1, params->d2, solids[params->solid]->order);
878 int i, j;
879
880 i = (area + 3) / 4;
881 for (j = 0; j < i; j++) {
882 int c = desc[j];
883 if (c >= '0' && c <= '9') continue;
884 if (c >= 'A' && c <= 'F') continue;
885 if (c >= 'a' && c <= 'f') continue;
886 return "Not enough hex digits at start of string";
887 /* NB if desc[j]=='\0' that will also be caught here, so we're safe */
888 }
889
890 if (desc[i] != ',')
891 return "Expected ',' after hex digits";
892
893 i++;
894 do {
895 if (desc[i] < '0' || desc[i] > '9')
896 return "Expected decimal integer after ','";
897 i++;
898 } while (desc[i]);
899
900 return NULL;
901}
902
903static game_state *new_game(midend *me, const game_params *params,
904 const char *desc)
905{
906 game_grid *grid = snew(game_grid);
907 game_state *state = snew(game_state);
908 int area;
909
910 state->params = *params; /* structure copy */
911 state->solid = solids[params->solid];
912
913 area = grid_area(params->d1, params->d2, state->solid->order);
914 grid->squares = snewn(area, struct grid_square);
915 grid->nsquares = 0;
916 enum_grid_squares(params, add_grid_square_callback, grid);
917 assert(grid->nsquares == area);
918 state->grid = grid;
919 grid->refcount = 1;
920
921 state->facecolours = snewn(state->solid->nfaces, int);
922 memset(state->facecolours, 0, state->solid->nfaces * sizeof(int));
923
924 state->bluemask = snewn((state->grid->nsquares + 31) / 32, unsigned long);
925 memset(state->bluemask, 0, (state->grid->nsquares + 31) / 32 *
926 sizeof(unsigned long));
927
928 /*
929 * Set up the blue squares and polyhedron position according to
930 * the game description.
931 */
932 {
933 const char *p = desc;
934 int i, j, v;
935
936 j = 8;
937 v = 0;
938 for (i = 0; i < state->grid->nsquares; i++) {
939 if (j == 8) {
940 v = *p++;
941 if (v >= '0' && v <= '9')
942 v -= '0';
943 else if (v >= 'A' && v <= 'F')
944 v -= 'A' - 10;
945 else if (v >= 'a' && v <= 'f')
946 v -= 'a' - 10;
947 else
948 break;
949 }
950 if (v & j)
951 SET_SQUARE(state, i, true);
952 j >>= 1;
953 if (j == 0)
954 j = 8;
955 }
956
957 if (*p == ',')
958 p++;
959
960 state->current = atoi(p);
961 if (state->current < 0 || state->current >= state->grid->nsquares)
962 state->current = 0; /* got to do _something_ */
963 }
964
965 /*
966 * Align the polyhedron with its grid square and determine
967 * initial key points.
968 */
969 {
970 int pkey[4];
971 bool ret;
972
973 ret = align_poly(state->solid, &state->grid->squares[state->current], pkey);
974 assert(ret);
975
976 state->dpkey[0] = state->spkey[0] = pkey[0];
977 state->dpkey[1] = state->spkey[0] = pkey[1];
978 state->dgkey[0] = state->sgkey[0] = 0;
979 state->dgkey[1] = state->sgkey[0] = 1;
980 }
981
982 state->previous = state->current;
983 state->angle = 0.0;
984 state->completed = 0;
985 state->movecount = 0;
986
987 return state;
988}
989
990static game_state *dup_game(const game_state *state)
991{
992 game_state *ret = snew(game_state);
993
994 ret->params = state->params; /* structure copy */
995 ret->solid = state->solid;
996 ret->facecolours = snewn(ret->solid->nfaces, int);
997 memcpy(ret->facecolours, state->facecolours,
998 ret->solid->nfaces * sizeof(int));
999 ret->current = state->current;
1000 ret->grid = state->grid;
1001 ret->grid->refcount++;
1002 ret->bluemask = snewn((ret->grid->nsquares + 31) / 32, unsigned long);
1003 memcpy(ret->bluemask, state->bluemask, (ret->grid->nsquares + 31) / 32 *
1004 sizeof(unsigned long));
1005 ret->dpkey[0] = state->dpkey[0];
1006 ret->dpkey[1] = state->dpkey[1];
1007 ret->dgkey[0] = state->dgkey[0];
1008 ret->dgkey[1] = state->dgkey[1];
1009 ret->spkey[0] = state->spkey[0];
1010 ret->spkey[1] = state->spkey[1];
1011 ret->sgkey[0] = state->sgkey[0];
1012 ret->sgkey[1] = state->sgkey[1];
1013 ret->previous = state->previous;
1014 ret->angle = state->angle;
1015 ret->completed = state->completed;
1016 ret->movecount = state->movecount;
1017
1018 return ret;
1019}
1020
1021static void free_game(game_state *state)
1022{
1023 if (--state->grid->refcount <= 0) {
1024 sfree(state->grid->squares);
1025 sfree(state->grid);
1026 }
1027 sfree(state->bluemask);
1028 sfree(state->facecolours);
1029 sfree(state);
1030}
1031
1032static game_ui *new_ui(const game_state *state)
1033{
1034 return NULL;
1035}
1036
1037static void free_ui(game_ui *ui)
1038{
1039}
1040
1041static void game_changed_state(game_ui *ui, const game_state *oldstate,
1042 const game_state *newstate)
1043{
1044}
1045
1046struct game_drawstate {
1047 float gridscale;
1048 int ox, oy; /* pixel position of float origin */
1049};
1050
1051/*
1052 * Code shared between interpret_move() and execute_move().
1053 */
1054static int find_move_dest(const game_state *from, int direction,
1055 int *skey, int *dkey)
1056{
1057 int mask, dest, i, j;
1058 float points[4];
1059
1060 /*
1061 * Find the two points in the current grid square which
1062 * correspond to this move.
1063 */
1064 mask = from->grid->squares[from->current].directions[direction];
1065 if (mask == 0)
1066 return -1;
1067 for (i = j = 0; i < from->grid->squares[from->current].npoints; i++)
1068 if (mask & (1 << i)) {
1069 points[j*2] = from->grid->squares[from->current].points[i*2];
1070 points[j*2+1] = from->grid->squares[from->current].points[i*2+1];
1071 skey[j] = i;
1072 j++;
1073 }
1074 assert(j == 2);
1075
1076 /*
1077 * Now find the other grid square which shares those points.
1078 * This is our move destination.
1079 */
1080 dest = -1;
1081 for (i = 0; i < from->grid->nsquares; i++)
1082 if (i != from->current) {
1083 int match = 0;
1084 float dist;
1085
1086 for (j = 0; j < from->grid->squares[i].npoints; j++) {
1087 dist = (SQ(from->grid->squares[i].points[j*2] - points[0]) +
1088 SQ(from->grid->squares[i].points[j*2+1] - points[1]));
1089 if (dist < 0.1F)
1090 dkey[match++] = j;
1091 dist = (SQ(from->grid->squares[i].points[j*2] - points[2]) +
1092 SQ(from->grid->squares[i].points[j*2+1] - points[3]));
1093 if (dist < 0.1F)
1094 dkey[match++] = j;
1095 }
1096
1097 if (match == 2) {
1098 dest = i;
1099 break;
1100 }
1101 }
1102
1103 return dest;
1104}
1105
1106static char *interpret_move(const game_state *state, game_ui *ui,
1107 const game_drawstate *ds,
1108 int x, int y, int button)
1109{
1110 int direction, mask, i;
1111 int skey[2], dkey[2];
1112
1113 button = button & (~MOD_MASK | MOD_NUM_KEYPAD);
1114
1115 /*
1116 * Moves can be made with the cursor keys or numeric keypad, or
1117 * alternatively you can left-click and the polyhedron will
1118 * move in the general direction of the mouse pointer.
1119 */
1120 if (button == CURSOR_UP || button == (MOD_NUM_KEYPAD | '8'))
1121 direction = UP;
1122 else if (button == CURSOR_DOWN || button == (MOD_NUM_KEYPAD | '2'))
1123 direction = DOWN;
1124 else if (button == CURSOR_LEFT || button == (MOD_NUM_KEYPAD | '4'))
1125 direction = LEFT;
1126 else if (button == CURSOR_RIGHT || button == (MOD_NUM_KEYPAD | '6'))
1127 direction = RIGHT;
1128 else if (button == (MOD_NUM_KEYPAD | '7'))
1129 direction = UP_LEFT;
1130 else if (button == (MOD_NUM_KEYPAD | '1'))
1131 direction = DOWN_LEFT;
1132 else if (button == (MOD_NUM_KEYPAD | '9'))
1133 direction = UP_RIGHT;
1134 else if (button == (MOD_NUM_KEYPAD | '3'))
1135 direction = DOWN_RIGHT;
1136 else if (button == LEFT_BUTTON) {
1137 /*
1138 * Find the bearing of the click point from the current
1139 * square's centre.
1140 */
1141 int cx, cy;
1142 double angle;
1143
1144 cx = (int)(state->grid->squares[state->current].x * GRID_SCALE) + ds->ox;
1145 cy = (int)(state->grid->squares[state->current].y * GRID_SCALE) + ds->oy;
1146
1147 if (x == cx && y == cy)
1148 return MOVE_NO_EFFECT; /* clicked in exact centre! */
1149 angle = atan2(y - cy, x - cx);
1150
1151 /*
1152 * There are three possibilities.
1153 *
1154 * - This square is a square, so we choose between UP,
1155 * DOWN, LEFT and RIGHT by dividing the available angle
1156 * at the 45-degree points.
1157 *
1158 * - This square is an up-pointing triangle, so we choose
1159 * between DOWN, LEFT and RIGHT by dividing into
1160 * 120-degree arcs.
1161 *
1162 * - This square is a down-pointing triangle, so we choose
1163 * between UP, LEFT and RIGHT in the inverse manner.
1164 *
1165 * Don't forget that since our y-coordinates increase
1166 * downwards, `angle' is measured _clockwise_ from the
1167 * x-axis, not anticlockwise as most mathematicians would
1168 * instinctively assume.
1169 */
1170 if (state->grid->squares[state->current].npoints == 4) {
1171 /* Square. */
1172 if (fabs(angle) > 3*PI/4)
1173 direction = LEFT;
1174 else if (fabs(angle) < PI/4)
1175 direction = RIGHT;
1176 else if (angle > 0)
1177 direction = DOWN;
1178 else
1179 direction = UP;
1180 } else if (state->grid->squares[state->current].directions[UP] == 0) {
1181 /* Up-pointing triangle. */
1182 if (angle < -PI/2 || angle > 5*PI/6)
1183 direction = LEFT;
1184 else if (angle > PI/6)
1185 direction = DOWN;
1186 else
1187 direction = RIGHT;
1188 } else {
1189 /* Down-pointing triangle. */
1190 assert(state->grid->squares[state->current].directions[DOWN] == 0);
1191 if (angle > PI/2 || angle < -5*PI/6)
1192 direction = LEFT;
1193 else if (angle < -PI/6)
1194 direction = UP;
1195 else
1196 direction = RIGHT;
1197 }
1198 } else
1199 return MOVE_UNUSED;
1200
1201 mask = state->grid->squares[state->current].directions[direction];
1202 if (mask == 0)
1203 return MOVE_NO_EFFECT;
1204
1205 /*
1206 * Translate diagonal directions into orthogonal ones.
1207 */
1208 if (direction > DOWN) {
1209 for (i = LEFT; i <= DOWN; i++)
1210 if (state->grid->squares[state->current].directions[i] == mask) {
1211 direction = i;
1212 break;
1213 }
1214 assert(direction <= DOWN);
1215 }
1216
1217 if (find_move_dest(state, direction, skey, dkey) < 0)
1218 return MOVE_NO_EFFECT;
1219
1220 if (direction == LEFT) return dupstr("L");
1221 if (direction == RIGHT) return dupstr("R");
1222 if (direction == UP) return dupstr("U");
1223 if (direction == DOWN) return dupstr("D");
1224
1225 return MOVE_NO_EFFECT; /* should never happen */
1226}
1227
1228static game_state *execute_move(const game_state *from, const char *move)
1229{
1230 game_state *ret;
1231 float angle;
1232 struct solid *poly;
1233 int pkey[2];
1234 int skey[2], dkey[2];
1235 int i, j, dest;
1236 int direction;
1237
1238 switch (*move) {
1239 case 'L': direction = LEFT; break;
1240 case 'R': direction = RIGHT; break;
1241 case 'U': direction = UP; break;
1242 case 'D': direction = DOWN; break;
1243 default: return NULL;
1244 }
1245
1246 dest = find_move_dest(from, direction, skey, dkey);
1247 if (dest < 0)
1248 return NULL;
1249
1250 ret = dup_game(from);
1251 ret->current = dest;
1252
1253 /*
1254 * So we know what grid square we're aiming for, and we also
1255 * know the two key points (as indices in both the source and
1256 * destination grid squares) which are invariant between source
1257 * and destination.
1258 *
1259 * Next we must roll the polyhedron on to that square. So we
1260 * find the indices of the key points within the polyhedron's
1261 * vertex array, then use those in a call to transform_poly,
1262 * and align the result on the new grid square.
1263 */
1264 {
1265 int all_pkey[4];
1266 align_poly(from->solid, &from->grid->squares[from->current], all_pkey);
1267 pkey[0] = all_pkey[skey[0]];
1268 pkey[1] = all_pkey[skey[1]];
1269 /*
1270 * Now pkey[0] corresponds to skey[0] and dkey[0], and
1271 * likewise [1].
1272 */
1273 }
1274
1275 /*
1276 * Now find the angle through which to rotate the polyhedron.
1277 * Do this by finding the two faces that share the two vertices
1278 * we've found, and taking the dot product of their normals.
1279 */
1280 {
1281 int f[2], nf = 0;
1282 float dp;
1283
1284 for (i = 0; i < from->solid->nfaces; i++) {
1285 int match = 0;
1286 for (j = 0; j < from->solid->order; j++)
1287 if (from->solid->faces[i*from->solid->order + j] == pkey[0] ||
1288 from->solid->faces[i*from->solid->order + j] == pkey[1])
1289 match++;
1290 if (match == 2) {
1291 assert(nf < 2);
1292 f[nf++] = i;
1293 }
1294 }
1295
1296 assert(nf == 2);
1297
1298 dp = 0;
1299 for (i = 0; i < 3; i++)
1300 dp += (from->solid->normals[f[0]*3+i] *
1301 from->solid->normals[f[1]*3+i]);
1302 angle = (float)acos(dp);
1303 }
1304
1305 /*
1306 * Now transform the polyhedron. We aren't entirely sure
1307 * whether we need to rotate through angle or -angle, and the
1308 * simplest way round this is to try both and see which one
1309 * aligns successfully!
1310 *
1311 * Unfortunately, _both_ will align successfully if this is a
1312 * cube, which won't tell us anything much. So for that
1313 * particular case, I resort to gross hackery: I simply negate
1314 * the angle before trying the alignment, depending on the
1315 * direction. Which directions work which way is determined by
1316 * pure trial and error. I said it was gross :-/
1317 */
1318 {
1319 int all_pkey[4];
1320 bool success;
1321
1322 if (from->solid->order == 4 && direction == UP)
1323 angle = -angle; /* HACK */
1324
1325 poly = transform_poly(from->solid,
1326 from->grid->squares[from->current].flip,
1327 pkey[0], pkey[1], angle);
1328 flip_poly(poly, from->grid->squares[ret->current].flip);
1329 success = align_poly(poly, &from->grid->squares[ret->current], all_pkey);
1330
1331 if (!success) {
1332 sfree(poly);
1333 angle = -angle;
1334 poly = transform_poly(from->solid,
1335 from->grid->squares[from->current].flip,
1336 pkey[0], pkey[1], angle);
1337 flip_poly(poly, from->grid->squares[ret->current].flip);
1338 success = align_poly(poly, &from->grid->squares[ret->current], all_pkey);
1339 }
1340
1341 assert(success);
1342 }
1343
1344 /*
1345 * Now we have our rotated polyhedron, which we expect to be
1346 * exactly congruent to the one we started with - but with the
1347 * faces permuted. So we map that congruence and thereby figure
1348 * out how to permute the faces as a result of the polyhedron
1349 * having rolled.
1350 */
1351 {
1352 int *newcolours = snewn(from->solid->nfaces, int);
1353
1354 for (i = 0; i < from->solid->nfaces; i++)
1355 newcolours[i] = -1;
1356
1357 for (i = 0; i < from->solid->nfaces; i++) {
1358 int nmatch = 0;
1359
1360 /*
1361 * Now go through the transformed polyhedron's faces
1362 * and figure out which one's normal is approximately
1363 * equal to this one.
1364 */
1365 for (j = 0; j < poly->nfaces; j++) {
1366 float dist;
1367 int k;
1368
1369 dist = 0;
1370
1371 for (k = 0; k < 3; k++)
1372 dist += SQ(poly->normals[j*3+k] -
1373 from->solid->normals[i*3+k]);
1374
1375 if (APPROXEQ(dist, 0)) {
1376 nmatch++;
1377 newcolours[i] = ret->facecolours[j];
1378 }
1379 }
1380
1381 assert(nmatch == 1);
1382 }
1383
1384 for (i = 0; i < from->solid->nfaces; i++)
1385 assert(newcolours[i] != -1);
1386
1387 sfree(ret->facecolours);
1388 ret->facecolours = newcolours;
1389 }
1390
1391 ret->movecount++;
1392
1393 /*
1394 * And finally, swap the colour between the bottom face of the
1395 * polyhedron and the face we've just landed on.
1396 *
1397 * We don't do this if the game is already complete, since we
1398 * allow the user to roll the fully blue polyhedron around the
1399 * grid as a feeble reward.
1400 */
1401 if (!ret->completed) {
1402 i = lowest_face(from->solid);
1403 j = ret->facecolours[i];
1404 ret->facecolours[i] = GET_SQUARE(ret, ret->current);
1405 SET_SQUARE(ret, ret->current, j);
1406
1407 /*
1408 * Detect game completion.
1409 */
1410 j = 0;
1411 for (i = 0; i < ret->solid->nfaces; i++)
1412 if (ret->facecolours[i])
1413 j++;
1414 if (j == ret->solid->nfaces)
1415 ret->completed = ret->movecount;
1416 }
1417
1418 sfree(poly);
1419
1420 /*
1421 * Align the normal polyhedron with its grid square, to get key
1422 * points for non-animated display.
1423 */
1424 {
1425 int pkey[4];
1426 bool success;
1427
1428 success = align_poly(ret->solid, &ret->grid->squares[ret->current], pkey);
1429 assert(success);
1430
1431 ret->dpkey[0] = pkey[0];
1432 ret->dpkey[1] = pkey[1];
1433 ret->dgkey[0] = 0;
1434 ret->dgkey[1] = 1;
1435 }
1436
1437
1438 ret->spkey[0] = pkey[0];
1439 ret->spkey[1] = pkey[1];
1440 ret->sgkey[0] = skey[0];
1441 ret->sgkey[1] = skey[1];
1442 ret->previous = from->current;
1443 ret->angle = angle;
1444
1445 return ret;
1446}
1447
1448/* ----------------------------------------------------------------------
1449 * Drawing routines.
1450 */
1451
1452struct bbox {
1453 float l, r, u, d;
1454};
1455
1456static void find_bbox_callback(void *ctx, struct grid_square *sq)
1457{
1458 struct bbox *bb = (struct bbox *)ctx;
1459 int i;
1460
1461 for (i = 0; i < sq->npoints; i++) {
1462 if (bb->l > sq->points[i*2]) bb->l = sq->points[i*2];
1463 if (bb->r < sq->points[i*2]) bb->r = sq->points[i*2];
1464 if (bb->u > sq->points[i*2+1]) bb->u = sq->points[i*2+1];
1465 if (bb->d < sq->points[i*2+1]) bb->d = sq->points[i*2+1];
1466 }
1467}
1468
1469static struct bbox find_bbox(const game_params *params)
1470{
1471 struct bbox bb;
1472
1473 /*
1474 * These should be hugely more than the real bounding box will
1475 * be.
1476 */
1477 bb.l = 2.0F * (params->d1 + params->d2);
1478 bb.r = -2.0F * (params->d1 + params->d2);
1479 bb.u = 2.0F * (params->d1 + params->d2);
1480 bb.d = -2.0F * (params->d1 + params->d2);
1481 enum_grid_squares(params, find_bbox_callback, &bb);
1482
1483 return bb;
1484}
1485
1486#define XSIZE(gs, bb, solid) \
1487 ((int)(((bb).r - (bb).l + 2*(solid)->border) * gs))
1488#define YSIZE(gs, bb, solid) \
1489 ((int)(((bb).d - (bb).u + 2*(solid)->border) * gs))
1490
1491static void game_compute_size(const game_params *params, int tilesize,
1492 const game_ui *ui, int *x, int *y)
1493{
1494 struct bbox bb = find_bbox(params);
1495
1496 *x = XSIZE(tilesize, bb, solids[params->solid]);
1497 *y = YSIZE(tilesize, bb, solids[params->solid]);
1498}
1499
1500static void game_set_size(drawing *dr, game_drawstate *ds,
1501 const game_params *params, int tilesize)
1502{
1503 struct bbox bb = find_bbox(params);
1504
1505 ds->gridscale = (float)tilesize;
1506 ds->ox = (int)(-(bb.l - solids[params->solid]->border) * ds->gridscale);
1507 ds->oy = (int)(-(bb.u - solids[params->solid]->border) * ds->gridscale);
1508}
1509
1510static float *game_colours(frontend *fe, int *ncolours)
1511{
1512 float *ret = snewn(3 * NCOLOURS, float);
1513
1514 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
1515
1516 ret[COL_BORDER * 3 + 0] = 0.0;
1517 ret[COL_BORDER * 3 + 1] = 0.0;
1518 ret[COL_BORDER * 3 + 2] = 0.0;
1519
1520 ret[COL_BLUE * 3 + 0] = 0.0;
1521 ret[COL_BLUE * 3 + 1] = 0.0;
1522 ret[COL_BLUE * 3 + 2] = 1.0;
1523
1524 *ncolours = NCOLOURS;
1525 return ret;
1526}
1527
1528static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state)
1529{
1530 struct game_drawstate *ds = snew(struct game_drawstate);
1531
1532 ds->ox = ds->oy = 0;
1533 ds->gridscale = 0.0F; /* not decided yet */
1534
1535 return ds;
1536}
1537
1538static void game_free_drawstate(drawing *dr, game_drawstate *ds)
1539{
1540 sfree(ds);
1541}
1542
1543static void game_get_cursor_location(const game_ui *ui,
1544 const game_drawstate *ds,
1545 const game_state *state,
1546 const game_params *params,
1547 int *x, int *y, int *w, int *h)
1548{
1549 struct bbox bb;
1550
1551 bb.l = 2.0F * (params->d1 + params->d2);
1552 bb.r = -2.0F * (params->d1 + params->d2);
1553 bb.u = 2.0F * (params->d1 + params->d2);
1554 bb.d = -2.0F * (params->d1 + params->d2);
1555
1556 find_bbox_callback(&bb, state->grid->squares + state->current);
1557
1558 *x = ((int)(bb.l * GRID_SCALE) + ds->ox);
1559 *y = ((int)(bb.u * GRID_SCALE) + ds->oy);
1560 *w = (bb.r - bb.l) * GRID_SCALE;
1561 *h = (bb.d - bb.u) * GRID_SCALE;
1562}
1563
1564static void game_redraw(drawing *dr, game_drawstate *ds,
1565 const game_state *oldstate, const game_state *state,
1566 int dir, const game_ui *ui,
1567 float animtime, float flashtime)
1568{
1569 int i, j;
1570 struct bbox bb = find_bbox(&state->params);
1571 struct solid *poly;
1572 const int *pkey, *gkey;
1573 float t[3];
1574 float angle;
1575 int square;
1576
1577 draw_rect(dr, 0, 0, XSIZE(GRID_SCALE, bb, state->solid),
1578 YSIZE(GRID_SCALE, bb, state->solid), COL_BACKGROUND);
1579
1580 if (dir < 0) {
1581 const game_state *t;
1582
1583 /*
1584 * This is an Undo. So reverse the order of the states, and
1585 * run the roll timer backwards.
1586 */
1587 assert(oldstate);
1588
1589 t = oldstate;
1590 oldstate = state;
1591 state = t;
1592
1593 animtime = ROLLTIME - animtime;
1594 }
1595
1596 if (!oldstate) {
1597 oldstate = state;
1598 angle = 0.0;
1599 square = state->current;
1600 pkey = state->dpkey;
1601 gkey = state->dgkey;
1602 } else {
1603 angle = state->angle * animtime / ROLLTIME;
1604 square = state->previous;
1605 pkey = state->spkey;
1606 gkey = state->sgkey;
1607 }
1608 state = oldstate;
1609
1610 for (i = 0; i < state->grid->nsquares; i++) {
1611 int coords[8];
1612
1613 for (j = 0; j < state->grid->squares[i].npoints; j++) {
1614 coords[2*j] = ((int)(state->grid->squares[i].points[2*j] * GRID_SCALE)
1615 + ds->ox);
1616 coords[2*j+1] = ((int)(state->grid->squares[i].points[2*j+1]*GRID_SCALE)
1617 + ds->oy);
1618 }
1619
1620 draw_polygon(dr, coords, state->grid->squares[i].npoints,
1621 GET_SQUARE(state, i) ? COL_BLUE : COL_BACKGROUND,
1622 COL_BORDER);
1623 }
1624
1625 /*
1626 * Now compute and draw the polyhedron.
1627 */
1628 poly = transform_poly(state->solid, state->grid->squares[square].flip,
1629 pkey[0], pkey[1], angle);
1630
1631 /*
1632 * Compute the translation required to align the two key points
1633 * on the polyhedron with the same key points on the current
1634 * face.
1635 */
1636 for (i = 0; i < 3; i++) {
1637 float tc = 0.0;
1638
1639 for (j = 0; j < 2; j++) {
1640 float grid_coord;
1641
1642 if (i < 2) {
1643 grid_coord =
1644 state->grid->squares[square].points[gkey[j]*2+i];
1645 } else {
1646 grid_coord = 0.0;
1647 }
1648
1649 tc += (grid_coord - poly->vertices[pkey[j]*3+i]);
1650 }
1651
1652 t[i] = tc / 2;
1653 }
1654 for (i = 0; i < poly->nvertices; i++)
1655 for (j = 0; j < 3; j++)
1656 poly->vertices[i*3+j] += t[j];
1657
1658 /*
1659 * Now actually draw each face.
1660 */
1661 for (i = 0; i < poly->nfaces; i++) {
1662 float points[8];
1663 int coords[8];
1664
1665 for (j = 0; j < poly->order; j++) {
1666 int f = poly->faces[i*poly->order + j];
1667 points[j*2] = (poly->vertices[f*3+0] -
1668 poly->vertices[f*3+2] * poly->shear);
1669 points[j*2+1] = (poly->vertices[f*3+1] -
1670 poly->vertices[f*3+2] * poly->shear);
1671 }
1672
1673 for (j = 0; j < poly->order; j++) {
1674 coords[j*2] = (int)floor(points[j*2] * GRID_SCALE) + ds->ox;
1675 coords[j*2+1] = (int)floor(points[j*2+1] * GRID_SCALE) + ds->oy;
1676 }
1677
1678 /*
1679 * Find out whether these points are in a clockwise or
1680 * anticlockwise arrangement. If the latter, discard the
1681 * face because it's facing away from the viewer.
1682 *
1683 * This would involve fiddly winding-number stuff for a
1684 * general polygon, but for the simple parallelograms we'll
1685 * be seeing here, all we have to do is check whether the
1686 * corners turn right or left. So we'll take the vector
1687 * from point 0 to point 1, turn it right 90 degrees,
1688 * and check the sign of the dot product with that and the
1689 * next vector (point 1 to point 2).
1690 */
1691 {
1692 float v1x = points[2]-points[0];
1693 float v1y = points[3]-points[1];
1694 float v2x = points[4]-points[2];
1695 float v2y = points[5]-points[3];
1696 float dp = v1x * v2y - v1y * v2x;
1697
1698 if (dp <= 0)
1699 continue;
1700 }
1701
1702 draw_polygon(dr, coords, poly->order,
1703 state->facecolours[i] ? COL_BLUE : COL_BACKGROUND,
1704 COL_BORDER);
1705 }
1706 sfree(poly);
1707
1708 draw_update(dr, 0, 0, XSIZE(GRID_SCALE, bb, state->solid),
1709 YSIZE(GRID_SCALE, bb, state->solid));
1710
1711 /*
1712 * Update the status bar.
1713 */
1714 {
1715 char statusbuf[256];
1716
1717 sprintf(statusbuf, "%sMoves: %d",
1718 (state->completed ? "COMPLETED! " : ""),
1719 (state->completed ? state->completed : state->movecount));
1720
1721 status_bar(dr, statusbuf);
1722 }
1723}
1724
1725static float game_anim_length(const game_state *oldstate,
1726 const game_state *newstate, int dir, game_ui *ui)
1727{
1728 return ROLLTIME;
1729}
1730
1731static float game_flash_length(const game_state *oldstate,
1732 const game_state *newstate, int dir, game_ui *ui)
1733{
1734 return 0.0F;
1735}
1736
1737static int game_status(const game_state *state)
1738{
1739 return state->completed ? +1 : 0;
1740}
1741
1742#ifdef COMBINED
1743#define thegame cube
1744#endif
1745
1746const struct game thegame = {
1747 "Cube", "games.cube", "cube",
1748 default_params,
1749 game_fetch_preset, NULL,
1750 decode_params,
1751 encode_params,
1752 free_params,
1753 dup_params,
1754 true, game_configure, custom_params,
1755 validate_params,
1756 new_game_desc,
1757 validate_desc,
1758 new_game,
1759 dup_game,
1760 free_game,
1761 false, NULL, /* solve */
1762 false, NULL, NULL, /* can_format_as_text_now, text_format */
1763 NULL, NULL, /* get_prefs, set_prefs */
1764 new_ui,
1765 free_ui,
1766 NULL, /* encode_ui */
1767 NULL, /* decode_ui */
1768 NULL, /* game_request_keys */
1769 game_changed_state,
1770 NULL, /* current_key_label */
1771 interpret_move,
1772 execute_move,
1773 PREFERRED_GRID_SCALE, game_compute_size, game_set_size,
1774 game_colours,
1775 game_new_drawstate,
1776 game_free_drawstate,
1777 game_redraw,
1778 game_anim_length,
1779 game_flash_length,
1780 game_get_cursor_location,
1781 game_status,
1782 false, false, NULL, NULL, /* print_size, print */
1783 true, /* wants_statusbar */
1784 false, NULL, /* timing_state */
1785 0, /* flags */
1786};