1{ stdenv, lib, fetchFromGitHub, fetchpatch, buildPythonPackage, python,
2 cudaSupport ? false, cudatoolkit ? null, cudnn ? null, nccl ? null, magma ? null,
3 mklDnnSupport ? true, useSystemNccl ? true,
4 openMPISupport ? false, openmpi ? null,
5 buildDocs ? false,
6 cudaArchList ? null,
7 numpy, pyyaml, cffi, click, typing, cmake, hypothesis, numactl, psutil,
8 linkFarm, symlinkJoin,
9
10 # virtual pkg that consistently instantiates blas across nixpkgs
11 # See https://github.com/NixOS/nixpkgs/pull/83888
12 blas,
13
14 # ninja (https://ninja-build.org) must be available to run C++ extensions tests,
15 ninja,
16
17 # dependencies for torch.utils.tensorboard
18 pillow, six, future, tensorflow-tensorboard, protobuf,
19
20 utillinux, which, isPy3k }:
21
22assert !openMPISupport || openmpi != null;
23
24# assert that everything needed for cuda is present and that the correct cuda versions are used
25assert !cudaSupport || cudatoolkit != null;
26assert cudnn == null || cudatoolkit != null;
27assert !cudaSupport || (let majorIs = lib.versions.major cudatoolkit.version;
28 in majorIs == "9" || majorIs == "10" || majorIs == "11");
29
30# confirm that cudatoolkits are sync'd across dependencies
31assert !(openMPISupport && cudaSupport) || openmpi.cudatoolkit == cudatoolkit;
32assert !cudaSupport || magma.cudatoolkit == cudatoolkit;
33
34let
35 cudatoolkit_joined = symlinkJoin {
36 name = "${cudatoolkit.name}-unsplit";
37 # nccl is here purely for semantic grouping it could be moved to nativeBuildInputs
38 paths = [ cudatoolkit.out cudatoolkit.lib nccl.dev nccl.out ];
39 };
40
41 # Give an explicit list of supported architectures for the build, See:
42 # - pytorch bug report: https://github.com/pytorch/pytorch/issues/23573
43 # - pytorch-1.2.0 build on nixpks: https://github.com/NixOS/nixpkgs/pull/65041
44 #
45 # This list was selected by omitting the TORCH_CUDA_ARCH_LIST parameter,
46 # observing the fallback option (which selected all architectures known
47 # from cudatoolkit_10_0, pytorch-1.2, and python-3.6), and doing a binary
48 # searching to find offending architectures.
49 #
50 # NOTE: Because of sandboxing, this derivation can't auto-detect the hardware's
51 # cuda architecture, so there is also now a problem around new architectures
52 # not being supported until explicitly added to this derivation.
53 #
54 # FIXME: CMake is throwing the following warning on python-1.2:
55 #
56 # ```
57 # CMake Warning at cmake/public/utils.cmake:172 (message):
58 # In the future we will require one to explicitly pass TORCH_CUDA_ARCH_LIST
59 # to cmake instead of implicitly setting it as an env variable. This will
60 # become a FATAL_ERROR in future version of pytorch.
61 # ```
62 # If this is causing problems for your build, this derivation may have to strip
63 # away the standard `buildPythonPackage` and use the
64 # [*Adjust Build Options*](https://github.com/pytorch/pytorch/tree/v1.2.0#adjust-build-options-optional)
65 # instructions. This will also add more flexibility around configurations
66 # (allowing FBGEMM to be built in pytorch-1.1), and may future proof this
67 # derivation.
68 brokenArchs = [ "3.0" ]; # this variable is only used as documentation.
69 cuda9ArchList = [
70 "3.5"
71 "5.0"
72 "5.2"
73 "6.0"
74 "6.1"
75 "7.0"
76 "7.0+PTX" # I am getting a "undefined architecture compute_75" on cuda 9
77 # which leads me to believe this is the final cuda-9-compatible architecture.
78 ];
79 cuda10ArchList = cuda9ArchList ++ [
80 "7.5"
81 "7.5+PTX" # < most recent architecture as of cudatoolkit_10_0 and pytorch-1.2.0
82 ];
83 final_cudaArchList =
84 if !cudaSupport || cudaArchList != null
85 then cudaArchList
86 else
87 if lib.versions.major cudatoolkit.version == "9"
88 then cuda9ArchList
89 else cuda10ArchList; # the assert above removes any ambiguity here.
90
91 # Normally libcuda.so.1 is provided at runtime by nvidia-x11 via
92 # LD_LIBRARY_PATH=/run/opengl-driver/lib. We only use the stub
93 # libcuda.so from cudatoolkit for running tests, so that we don’t have
94 # to recompile pytorch on every update to nvidia-x11 or the kernel.
95 cudaStub = linkFarm "cuda-stub" [{
96 name = "libcuda.so.1";
97 path = "${cudatoolkit}/lib/stubs/libcuda.so";
98 }];
99 cudaStubEnv = lib.optionalString cudaSupport
100 "LD_LIBRARY_PATH=${cudaStub}\${LD_LIBRARY_PATH:+:}$LD_LIBRARY_PATH ";
101
102in buildPythonPackage rec {
103 pname = "pytorch";
104 # Don't forget to update pytorch-bin to the same version.
105 version = "1.6.0";
106
107 disabled = !isPy3k;
108
109 outputs = [
110 "out" # output standard python package
111 "dev" # output libtorch headers
112 "lib" # output libtorch libraries
113 ];
114
115 src = fetchFromGitHub {
116 owner = "pytorch";
117 repo = "pytorch";
118 rev = "v${version}";
119 fetchSubmodules = true;
120 sha256 = "14hhjsi6fnpaw9m1a3bhvdinsks6fhss6bbcrfk6jgns64abqdaz";
121 };
122
123 patches = lib.optionals stdenv.isAarch64 [
124 # GNU aarch64 assembler does not support 4s on neon mov:
125 # https://github.com/pytorch/pytorch/issues/33124
126 #
127 # Fix from:
128 # https://github.com/pytorch/pytorch/pull/40584
129 #
130 # This patch can be removed with the next major version (1.7.0).
131 (fetchpatch {
132 name = "qnnpack-neon-fix.patch";
133 url = "https://github.com/pytorch/pytorch/commit/7676682584d0caf9243bce74ea0a88711ec4a807.diff";
134 sha256 = "13spncaqlpsp8qk2850yly7xqwmhhfwznhmzkk8jgpslkbx75vgq";
135 })
136 ] ++ lib.optionals stdenv.isDarwin [
137 # pthreadpool added support for Grand Central Dispatch in April
138 # 2020. However, this relies on functionality (DISPATCH_APPLY_AUTO)
139 # that is available starting with macOS 10.13. However, our current
140 # base is 10.12. Until we upgrade, we can fall back on the older
141 # pthread support.
142 ./pthreadpool-disable-gcd.diff
143 ];
144
145 preConfigure = lib.optionalString cudaSupport ''
146 export TORCH_CUDA_ARCH_LIST="${lib.strings.concatStringsSep ";" final_cudaArchList}"
147 export CC=${cudatoolkit.cc}/bin/gcc CXX=${cudatoolkit.cc}/bin/g++
148 '' + lib.optionalString (cudaSupport && cudnn != null) ''
149 export CUDNN_INCLUDE_DIR=${cudnn}/include
150 '';
151
152 # Use pytorch's custom configurations
153 dontUseCmakeConfigure = true;
154
155 BUILD_NAMEDTENSOR = true;
156 BUILD_DOCS = buildDocs;
157
158 USE_MKL = blas.implementation == "mkl";
159
160 # Unlike MKL, oneDNN (née MKLDNN) is FOSS, so we enable support for
161 # it by default. PyTorch currently uses its own vendored version
162 # of oneDNN through Intel iDeep.
163 USE_MKLDNN = mklDnnSupport;
164 USE_MKLDNN_CBLAS = mklDnnSupport;
165
166 preBuild = ''
167 export MAX_JOBS=$NIX_BUILD_CORES
168 ${python.interpreter} setup.py build --cmake-only
169 ${cmake}/bin/cmake build
170 '';
171
172 preFixup = ''
173 function join_by { local IFS="$1"; shift; echo "$*"; }
174 function strip2 {
175 IFS=':'
176 read -ra RP <<< $(patchelf --print-rpath $1)
177 IFS=' '
178 RP_NEW=$(join_by : ''${RP[@]:2})
179 patchelf --set-rpath \$ORIGIN:''${RP_NEW} "$1"
180 }
181 for f in $(find ''${out} -name 'libcaffe2*.so')
182 do
183 strip2 $f
184 done
185 '';
186
187 # Override the (weirdly) wrong version set by default. See
188 # https://github.com/NixOS/nixpkgs/pull/52437#issuecomment-449718038
189 # https://github.com/pytorch/pytorch/blob/v1.0.0/setup.py#L267
190 PYTORCH_BUILD_VERSION = version;
191 PYTORCH_BUILD_NUMBER = 0;
192
193 USE_SYSTEM_NCCL=useSystemNccl; # don't build pytorch's third_party NCCL
194
195 # Suppress a weird warning in mkl-dnn, part of ideep in pytorch
196 # (upstream seems to have fixed this in the wrong place?)
197 # https://github.com/intel/mkl-dnn/commit/8134d346cdb7fe1695a2aa55771071d455fae0bc
198 # https://github.com/pytorch/pytorch/issues/22346
199 #
200 # Also of interest: pytorch ignores CXXFLAGS uses CFLAGS for both C and C++:
201 # https://github.com/pytorch/pytorch/blob/v1.2.0/setup.py#L17
202 NIX_CFLAGS_COMPILE = lib.optionals (blas.implementation == "mkl") [ "-Wno-error=array-bounds" ];
203
204 nativeBuildInputs = [
205 cmake
206 utillinux
207 which
208 ninja
209 ] ++ lib.optionals cudaSupport [ cudatoolkit_joined ];
210
211 buildInputs = [ blas blas.provider ]
212 ++ lib.optionals cudaSupport [ cudnn magma nccl ]
213 ++ lib.optionals stdenv.isLinux [ numactl ];
214
215 propagatedBuildInputs = [
216 cffi
217 click
218 numpy
219 pyyaml
220 # the following are required for tensorboard support
221 pillow six future tensorflow-tensorboard protobuf
222 ] ++ lib.optionals openMPISupport [ openmpi ];
223
224 checkInputs = [ hypothesis ninja psutil ];
225
226 # Tests take a long time and may be flaky, so just sanity-check imports
227 doCheck = false;
228 pythonImportsCheck = [
229 "torch"
230 ];
231
232 checkPhase = with lib.versions; with lib.strings; concatStringsSep " " [
233 cudaStubEnv
234 "${python.interpreter} test/run_test.py"
235 "--exclude"
236 (concatStringsSep " " [
237 "utils" # utils requires git, which is not allowed in the check phase
238
239 # "dataloader" # psutils correctly finds and triggers multiprocessing, but is too sandboxed to run -- resulting in numerous errors
240 # ^^^^^^^^^^^^ NOTE: while test_dataloader does return errors, these are acceptable errors and do not interfere with the build
241
242 # tensorboard has acceptable failures for pytorch 1.3.x due to dependencies on tensorboard-plugins
243 (optionalString (majorMinor version == "1.3" ) "tensorboard")
244 ])
245 ];
246 postInstall = ''
247 mkdir $dev
248 cp -r $out/${python.sitePackages}/torch/include $dev/include
249 cp -r $out/${python.sitePackages}/torch/share $dev/share
250
251 mkdir $lib
252 cp -r $out/${python.sitePackages}/torch/lib $lib/lib
253 '';
254
255 postFixup = stdenv.lib.optionalString stdenv.isDarwin ''
256 for f in $(ls $lib/lib/*.dylib); do
257 install_name_tool -id $lib/lib/$(basename $f) $f || true
258 done
259
260 install_name_tool -change @rpath/libshm.dylib $lib/lib/libshm.dylib $lib/lib/libtorch_python.dylib
261 install_name_tool -change @rpath/libtorch.dylib $lib/lib/libtorch.dylib $lib/lib/libtorch_python.dylib
262 install_name_tool -change @rpath/libc10.dylib $lib/lib/libc10.dylib $lib/lib/libtorch_python.dylib
263
264 install_name_tool -change @rpath/libc10.dylib $lib/lib/libc10.dylib $lib/lib/libtorch.dylib
265
266 install_name_tool -change @rpath/libtorch.dylib $lib/lib/libtorch.dylib $lib/lib/libcaffe2_observers.dylib
267 install_name_tool -change @rpath/libc10.dylib $lib/lib/libc10.dylib $lib/lib/libcaffe2_observers.dylib
268
269 install_name_tool -change @rpath/libtorch.dylib $lib/lib/libtorch.dylib $lib/lib/libcaffe2_module_test_dynamic.dylib
270 install_name_tool -change @rpath/libc10.dylib $lib/lib/libc10.dylib $lib/lib/libcaffe2_module_test_dynamic.dylib
271
272 install_name_tool -change @rpath/libtorch.dylib $lib/lib/libtorch.dylib $lib/lib/libcaffe2_detectron_ops.dylib
273 install_name_tool -change @rpath/libc10.dylib $lib/lib/libc10.dylib $lib/lib/libcaffe2_detectron_ops.dylib
274
275 install_name_tool -change @rpath/libtorch.dylib $lib/lib/libtorch.dylib $lib/lib/libshm.dylib
276 install_name_tool -change @rpath/libc10.dylib $lib/lib/libc10.dylib $lib/lib/libshm.dylib
277 '';
278
279
280 meta = {
281 description = "Open source, prototype-to-production deep learning platform";
282 homepage = "https://pytorch.org/";
283 license = lib.licenses.bsd3;
284 platforms = with lib.platforms; linux ++ lib.optionals (!cudaSupport) darwin;
285 maintainers = with lib.maintainers; [ teh thoughtpolice tscholak ]; # tscholak esp. for darwin-related builds
286 };
287}