at v6.9 79 kB view raw
1// SPDX-License-Identifier: Apache-2.0 OR MIT 2 3//! The `Box<T>` type for heap allocation. 4//! 5//! [`Box<T>`], casually referred to as a 'box', provides the simplest form of 6//! heap allocation in Rust. Boxes provide ownership for this allocation, and 7//! drop their contents when they go out of scope. Boxes also ensure that they 8//! never allocate more than `isize::MAX` bytes. 9//! 10//! # Examples 11//! 12//! Move a value from the stack to the heap by creating a [`Box`]: 13//! 14//! ``` 15//! let val: u8 = 5; 16//! let boxed: Box<u8> = Box::new(val); 17//! ``` 18//! 19//! Move a value from a [`Box`] back to the stack by [dereferencing]: 20//! 21//! ``` 22//! let boxed: Box<u8> = Box::new(5); 23//! let val: u8 = *boxed; 24//! ``` 25//! 26//! Creating a recursive data structure: 27//! 28//! ``` 29//! #[derive(Debug)] 30//! enum List<T> { 31//! Cons(T, Box<List<T>>), 32//! Nil, 33//! } 34//! 35//! let list: List<i32> = List::Cons(1, Box::new(List::Cons(2, Box::new(List::Nil)))); 36//! println!("{list:?}"); 37//! ``` 38//! 39//! This will print `Cons(1, Cons(2, Nil))`. 40//! 41//! Recursive structures must be boxed, because if the definition of `Cons` 42//! looked like this: 43//! 44//! ```compile_fail,E0072 45//! # enum List<T> { 46//! Cons(T, List<T>), 47//! # } 48//! ``` 49//! 50//! It wouldn't work. This is because the size of a `List` depends on how many 51//! elements are in the list, and so we don't know how much memory to allocate 52//! for a `Cons`. By introducing a [`Box<T>`], which has a defined size, we know how 53//! big `Cons` needs to be. 54//! 55//! # Memory layout 56//! 57//! For non-zero-sized values, a [`Box`] will use the [`Global`] allocator for 58//! its allocation. It is valid to convert both ways between a [`Box`] and a 59//! raw pointer allocated with the [`Global`] allocator, given that the 60//! [`Layout`] used with the allocator is correct for the type. More precisely, 61//! a `value: *mut T` that has been allocated with the [`Global`] allocator 62//! with `Layout::for_value(&*value)` may be converted into a box using 63//! [`Box::<T>::from_raw(value)`]. Conversely, the memory backing a `value: *mut 64//! T` obtained from [`Box::<T>::into_raw`] may be deallocated using the 65//! [`Global`] allocator with [`Layout::for_value(&*value)`]. 66//! 67//! For zero-sized values, the `Box` pointer still has to be [valid] for reads 68//! and writes and sufficiently aligned. In particular, casting any aligned 69//! non-zero integer literal to a raw pointer produces a valid pointer, but a 70//! pointer pointing into previously allocated memory that since got freed is 71//! not valid. The recommended way to build a Box to a ZST if `Box::new` cannot 72//! be used is to use [`ptr::NonNull::dangling`]. 73//! 74//! So long as `T: Sized`, a `Box<T>` is guaranteed to be represented 75//! as a single pointer and is also ABI-compatible with C pointers 76//! (i.e. the C type `T*`). This means that if you have extern "C" 77//! Rust functions that will be called from C, you can define those 78//! Rust functions using `Box<T>` types, and use `T*` as corresponding 79//! type on the C side. As an example, consider this C header which 80//! declares functions that create and destroy some kind of `Foo` 81//! value: 82//! 83//! ```c 84//! /* C header */ 85//! 86//! /* Returns ownership to the caller */ 87//! struct Foo* foo_new(void); 88//! 89//! /* Takes ownership from the caller; no-op when invoked with null */ 90//! void foo_delete(struct Foo*); 91//! ``` 92//! 93//! These two functions might be implemented in Rust as follows. Here, the 94//! `struct Foo*` type from C is translated to `Box<Foo>`, which captures 95//! the ownership constraints. Note also that the nullable argument to 96//! `foo_delete` is represented in Rust as `Option<Box<Foo>>`, since `Box<Foo>` 97//! cannot be null. 98//! 99//! ``` 100//! #[repr(C)] 101//! pub struct Foo; 102//! 103//! #[no_mangle] 104//! pub extern "C" fn foo_new() -> Box<Foo> { 105//! Box::new(Foo) 106//! } 107//! 108//! #[no_mangle] 109//! pub extern "C" fn foo_delete(_: Option<Box<Foo>>) {} 110//! ``` 111//! 112//! Even though `Box<T>` has the same representation and C ABI as a C pointer, 113//! this does not mean that you can convert an arbitrary `T*` into a `Box<T>` 114//! and expect things to work. `Box<T>` values will always be fully aligned, 115//! non-null pointers. Moreover, the destructor for `Box<T>` will attempt to 116//! free the value with the global allocator. In general, the best practice 117//! is to only use `Box<T>` for pointers that originated from the global 118//! allocator. 119//! 120//! **Important.** At least at present, you should avoid using 121//! `Box<T>` types for functions that are defined in C but invoked 122//! from Rust. In those cases, you should directly mirror the C types 123//! as closely as possible. Using types like `Box<T>` where the C 124//! definition is just using `T*` can lead to undefined behavior, as 125//! described in [rust-lang/unsafe-code-guidelines#198][ucg#198]. 126//! 127//! # Considerations for unsafe code 128//! 129//! **Warning: This section is not normative and is subject to change, possibly 130//! being relaxed in the future! It is a simplified summary of the rules 131//! currently implemented in the compiler.** 132//! 133//! The aliasing rules for `Box<T>` are the same as for `&mut T`. `Box<T>` 134//! asserts uniqueness over its content. Using raw pointers derived from a box 135//! after that box has been mutated through, moved or borrowed as `&mut T` 136//! is not allowed. For more guidance on working with box from unsafe code, see 137//! [rust-lang/unsafe-code-guidelines#326][ucg#326]. 138//! 139//! 140//! [ucg#198]: https://github.com/rust-lang/unsafe-code-guidelines/issues/198 141//! [ucg#326]: https://github.com/rust-lang/unsafe-code-guidelines/issues/326 142//! [dereferencing]: core::ops::Deref 143//! [`Box::<T>::from_raw(value)`]: Box::from_raw 144//! [`Global`]: crate::alloc::Global 145//! [`Layout`]: crate::alloc::Layout 146//! [`Layout::for_value(&*value)`]: crate::alloc::Layout::for_value 147//! [valid]: ptr#safety 148 149#![stable(feature = "rust1", since = "1.0.0")] 150 151use core::any::Any; 152use core::async_iter::AsyncIterator; 153use core::borrow; 154use core::cmp::Ordering; 155use core::error::Error; 156use core::fmt; 157use core::future::Future; 158use core::hash::{Hash, Hasher}; 159use core::iter::FusedIterator; 160use core::marker::Tuple; 161use core::marker::Unsize; 162use core::mem::{self, SizedTypeProperties}; 163use core::ops::{ 164 CoerceUnsized, Coroutine, CoroutineState, Deref, DerefMut, DispatchFromDyn, Receiver, 165}; 166use core::pin::Pin; 167use core::ptr::{self, NonNull, Unique}; 168use core::task::{Context, Poll}; 169 170#[cfg(not(no_global_oom_handling))] 171use crate::alloc::{handle_alloc_error, WriteCloneIntoRaw}; 172use crate::alloc::{AllocError, Allocator, Global, Layout}; 173#[cfg(not(no_global_oom_handling))] 174use crate::borrow::Cow; 175use crate::raw_vec::RawVec; 176#[cfg(not(no_global_oom_handling))] 177use crate::str::from_boxed_utf8_unchecked; 178#[cfg(not(no_global_oom_handling))] 179use crate::string::String; 180#[cfg(not(no_global_oom_handling))] 181use crate::vec::Vec; 182 183#[cfg(not(no_thin))] 184#[unstable(feature = "thin_box", issue = "92791")] 185pub use thin::ThinBox; 186 187#[cfg(not(no_thin))] 188mod thin; 189 190/// A pointer type that uniquely owns a heap allocation of type `T`. 191/// 192/// See the [module-level documentation](../../std/boxed/index.html) for more. 193#[lang = "owned_box"] 194#[fundamental] 195#[stable(feature = "rust1", since = "1.0.0")] 196// The declaration of the `Box` struct must be kept in sync with the 197// `alloc::alloc::box_free` function or ICEs will happen. See the comment 198// on `box_free` for more details. 199pub struct Box< 200 T: ?Sized, 201 #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global, 202>(Unique<T>, A); 203 204impl<T> Box<T> { 205 /// Allocates memory on the heap and then places `x` into it. 206 /// 207 /// This doesn't actually allocate if `T` is zero-sized. 208 /// 209 /// # Examples 210 /// 211 /// ``` 212 /// let five = Box::new(5); 213 /// ``` 214 #[cfg(not(no_global_oom_handling))] 215 #[inline(always)] 216 #[stable(feature = "rust1", since = "1.0.0")] 217 #[must_use] 218 #[rustc_diagnostic_item = "box_new"] 219 pub fn new(x: T) -> Self { 220 #[rustc_box] 221 Box::new(x) 222 } 223 224 /// Constructs a new box with uninitialized contents. 225 /// 226 /// # Examples 227 /// 228 /// ``` 229 /// #![feature(new_uninit)] 230 /// 231 /// let mut five = Box::<u32>::new_uninit(); 232 /// 233 /// let five = unsafe { 234 /// // Deferred initialization: 235 /// five.as_mut_ptr().write(5); 236 /// 237 /// five.assume_init() 238 /// }; 239 /// 240 /// assert_eq!(*five, 5) 241 /// ``` 242 #[cfg(not(no_global_oom_handling))] 243 #[unstable(feature = "new_uninit", issue = "63291")] 244 #[must_use] 245 #[inline] 246 pub fn new_uninit() -> Box<mem::MaybeUninit<T>> { 247 Self::new_uninit_in(Global) 248 } 249 250 /// Constructs a new `Box` with uninitialized contents, with the memory 251 /// being filled with `0` bytes. 252 /// 253 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage 254 /// of this method. 255 /// 256 /// # Examples 257 /// 258 /// ``` 259 /// #![feature(new_uninit)] 260 /// 261 /// let zero = Box::<u32>::new_zeroed(); 262 /// let zero = unsafe { zero.assume_init() }; 263 /// 264 /// assert_eq!(*zero, 0) 265 /// ``` 266 /// 267 /// [zeroed]: mem::MaybeUninit::zeroed 268 #[cfg(not(no_global_oom_handling))] 269 #[inline] 270 #[unstable(feature = "new_uninit", issue = "63291")] 271 #[must_use] 272 pub fn new_zeroed() -> Box<mem::MaybeUninit<T>> { 273 Self::new_zeroed_in(Global) 274 } 275 276 /// Constructs a new `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then 277 /// `x` will be pinned in memory and unable to be moved. 278 /// 279 /// Constructing and pinning of the `Box` can also be done in two steps: `Box::pin(x)` 280 /// does the same as <code>[Box::into_pin]\([Box::new]\(x))</code>. Consider using 281 /// [`into_pin`](Box::into_pin) if you already have a `Box<T>`, or if you want to 282 /// construct a (pinned) `Box` in a different way than with [`Box::new`]. 283 #[cfg(not(no_global_oom_handling))] 284 #[stable(feature = "pin", since = "1.33.0")] 285 #[must_use] 286 #[inline(always)] 287 pub fn pin(x: T) -> Pin<Box<T>> { 288 Box::new(x).into() 289 } 290 291 /// Allocates memory on the heap then places `x` into it, 292 /// returning an error if the allocation fails 293 /// 294 /// This doesn't actually allocate if `T` is zero-sized. 295 /// 296 /// # Examples 297 /// 298 /// ``` 299 /// #![feature(allocator_api)] 300 /// 301 /// let five = Box::try_new(5)?; 302 /// # Ok::<(), std::alloc::AllocError>(()) 303 /// ``` 304 #[unstable(feature = "allocator_api", issue = "32838")] 305 #[inline] 306 pub fn try_new(x: T) -> Result<Self, AllocError> { 307 Self::try_new_in(x, Global) 308 } 309 310 /// Constructs a new box with uninitialized contents on the heap, 311 /// returning an error if the allocation fails 312 /// 313 /// # Examples 314 /// 315 /// ``` 316 /// #![feature(allocator_api, new_uninit)] 317 /// 318 /// let mut five = Box::<u32>::try_new_uninit()?; 319 /// 320 /// let five = unsafe { 321 /// // Deferred initialization: 322 /// five.as_mut_ptr().write(5); 323 /// 324 /// five.assume_init() 325 /// }; 326 /// 327 /// assert_eq!(*five, 5); 328 /// # Ok::<(), std::alloc::AllocError>(()) 329 /// ``` 330 #[unstable(feature = "allocator_api", issue = "32838")] 331 // #[unstable(feature = "new_uninit", issue = "63291")] 332 #[inline] 333 pub fn try_new_uninit() -> Result<Box<mem::MaybeUninit<T>>, AllocError> { 334 Box::try_new_uninit_in(Global) 335 } 336 337 /// Constructs a new `Box` with uninitialized contents, with the memory 338 /// being filled with `0` bytes on the heap 339 /// 340 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage 341 /// of this method. 342 /// 343 /// # Examples 344 /// 345 /// ``` 346 /// #![feature(allocator_api, new_uninit)] 347 /// 348 /// let zero = Box::<u32>::try_new_zeroed()?; 349 /// let zero = unsafe { zero.assume_init() }; 350 /// 351 /// assert_eq!(*zero, 0); 352 /// # Ok::<(), std::alloc::AllocError>(()) 353 /// ``` 354 /// 355 /// [zeroed]: mem::MaybeUninit::zeroed 356 #[unstable(feature = "allocator_api", issue = "32838")] 357 // #[unstable(feature = "new_uninit", issue = "63291")] 358 #[inline] 359 pub fn try_new_zeroed() -> Result<Box<mem::MaybeUninit<T>>, AllocError> { 360 Box::try_new_zeroed_in(Global) 361 } 362} 363 364impl<T, A: Allocator> Box<T, A> { 365 /// Allocates memory in the given allocator then places `x` into it. 366 /// 367 /// This doesn't actually allocate if `T` is zero-sized. 368 /// 369 /// # Examples 370 /// 371 /// ``` 372 /// #![feature(allocator_api)] 373 /// 374 /// use std::alloc::System; 375 /// 376 /// let five = Box::new_in(5, System); 377 /// ``` 378 #[cfg(not(no_global_oom_handling))] 379 #[unstable(feature = "allocator_api", issue = "32838")] 380 #[must_use] 381 #[inline] 382 pub fn new_in(x: T, alloc: A) -> Self 383 where 384 A: Allocator, 385 { 386 let mut boxed = Self::new_uninit_in(alloc); 387 unsafe { 388 boxed.as_mut_ptr().write(x); 389 boxed.assume_init() 390 } 391 } 392 393 /// Allocates memory in the given allocator then places `x` into it, 394 /// returning an error if the allocation fails 395 /// 396 /// This doesn't actually allocate if `T` is zero-sized. 397 /// 398 /// # Examples 399 /// 400 /// ``` 401 /// #![feature(allocator_api)] 402 /// 403 /// use std::alloc::System; 404 /// 405 /// let five = Box::try_new_in(5, System)?; 406 /// # Ok::<(), std::alloc::AllocError>(()) 407 /// ``` 408 #[unstable(feature = "allocator_api", issue = "32838")] 409 #[inline] 410 pub fn try_new_in(x: T, alloc: A) -> Result<Self, AllocError> 411 where 412 A: Allocator, 413 { 414 let mut boxed = Self::try_new_uninit_in(alloc)?; 415 unsafe { 416 boxed.as_mut_ptr().write(x); 417 Ok(boxed.assume_init()) 418 } 419 } 420 421 /// Constructs a new box with uninitialized contents in the provided allocator. 422 /// 423 /// # Examples 424 /// 425 /// ``` 426 /// #![feature(allocator_api, new_uninit)] 427 /// 428 /// use std::alloc::System; 429 /// 430 /// let mut five = Box::<u32, _>::new_uninit_in(System); 431 /// 432 /// let five = unsafe { 433 /// // Deferred initialization: 434 /// five.as_mut_ptr().write(5); 435 /// 436 /// five.assume_init() 437 /// }; 438 /// 439 /// assert_eq!(*five, 5) 440 /// ``` 441 #[unstable(feature = "allocator_api", issue = "32838")] 442 #[cfg(not(no_global_oom_handling))] 443 #[must_use] 444 // #[unstable(feature = "new_uninit", issue = "63291")] 445 pub fn new_uninit_in(alloc: A) -> Box<mem::MaybeUninit<T>, A> 446 where 447 A: Allocator, 448 { 449 let layout = Layout::new::<mem::MaybeUninit<T>>(); 450 // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable. 451 // That would make code size bigger. 452 match Box::try_new_uninit_in(alloc) { 453 Ok(m) => m, 454 Err(_) => handle_alloc_error(layout), 455 } 456 } 457 458 /// Constructs a new box with uninitialized contents in the provided allocator, 459 /// returning an error if the allocation fails 460 /// 461 /// # Examples 462 /// 463 /// ``` 464 /// #![feature(allocator_api, new_uninit)] 465 /// 466 /// use std::alloc::System; 467 /// 468 /// let mut five = Box::<u32, _>::try_new_uninit_in(System)?; 469 /// 470 /// let five = unsafe { 471 /// // Deferred initialization: 472 /// five.as_mut_ptr().write(5); 473 /// 474 /// five.assume_init() 475 /// }; 476 /// 477 /// assert_eq!(*five, 5); 478 /// # Ok::<(), std::alloc::AllocError>(()) 479 /// ``` 480 #[unstable(feature = "allocator_api", issue = "32838")] 481 // #[unstable(feature = "new_uninit", issue = "63291")] 482 pub fn try_new_uninit_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError> 483 where 484 A: Allocator, 485 { 486 let ptr = if T::IS_ZST { 487 NonNull::dangling() 488 } else { 489 let layout = Layout::new::<mem::MaybeUninit<T>>(); 490 alloc.allocate(layout)?.cast() 491 }; 492 unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) } 493 } 494 495 /// Constructs a new `Box` with uninitialized contents, with the memory 496 /// being filled with `0` bytes in the provided allocator. 497 /// 498 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage 499 /// of this method. 500 /// 501 /// # Examples 502 /// 503 /// ``` 504 /// #![feature(allocator_api, new_uninit)] 505 /// 506 /// use std::alloc::System; 507 /// 508 /// let zero = Box::<u32, _>::new_zeroed_in(System); 509 /// let zero = unsafe { zero.assume_init() }; 510 /// 511 /// assert_eq!(*zero, 0) 512 /// ``` 513 /// 514 /// [zeroed]: mem::MaybeUninit::zeroed 515 #[unstable(feature = "allocator_api", issue = "32838")] 516 #[cfg(not(no_global_oom_handling))] 517 // #[unstable(feature = "new_uninit", issue = "63291")] 518 #[must_use] 519 pub fn new_zeroed_in(alloc: A) -> Box<mem::MaybeUninit<T>, A> 520 where 521 A: Allocator, 522 { 523 let layout = Layout::new::<mem::MaybeUninit<T>>(); 524 // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable. 525 // That would make code size bigger. 526 match Box::try_new_zeroed_in(alloc) { 527 Ok(m) => m, 528 Err(_) => handle_alloc_error(layout), 529 } 530 } 531 532 /// Constructs a new `Box` with uninitialized contents, with the memory 533 /// being filled with `0` bytes in the provided allocator, 534 /// returning an error if the allocation fails, 535 /// 536 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage 537 /// of this method. 538 /// 539 /// # Examples 540 /// 541 /// ``` 542 /// #![feature(allocator_api, new_uninit)] 543 /// 544 /// use std::alloc::System; 545 /// 546 /// let zero = Box::<u32, _>::try_new_zeroed_in(System)?; 547 /// let zero = unsafe { zero.assume_init() }; 548 /// 549 /// assert_eq!(*zero, 0); 550 /// # Ok::<(), std::alloc::AllocError>(()) 551 /// ``` 552 /// 553 /// [zeroed]: mem::MaybeUninit::zeroed 554 #[unstable(feature = "allocator_api", issue = "32838")] 555 // #[unstable(feature = "new_uninit", issue = "63291")] 556 pub fn try_new_zeroed_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError> 557 where 558 A: Allocator, 559 { 560 let ptr = if T::IS_ZST { 561 NonNull::dangling() 562 } else { 563 let layout = Layout::new::<mem::MaybeUninit<T>>(); 564 alloc.allocate_zeroed(layout)?.cast() 565 }; 566 unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) } 567 } 568 569 /// Constructs a new `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then 570 /// `x` will be pinned in memory and unable to be moved. 571 /// 572 /// Constructing and pinning of the `Box` can also be done in two steps: `Box::pin_in(x, alloc)` 573 /// does the same as <code>[Box::into_pin]\([Box::new_in]\(x, alloc))</code>. Consider using 574 /// [`into_pin`](Box::into_pin) if you already have a `Box<T, A>`, or if you want to 575 /// construct a (pinned) `Box` in a different way than with [`Box::new_in`]. 576 #[cfg(not(no_global_oom_handling))] 577 #[unstable(feature = "allocator_api", issue = "32838")] 578 #[must_use] 579 #[inline(always)] 580 pub fn pin_in(x: T, alloc: A) -> Pin<Self> 581 where 582 A: 'static + Allocator, 583 { 584 Self::into_pin(Self::new_in(x, alloc)) 585 } 586 587 /// Converts a `Box<T>` into a `Box<[T]>` 588 /// 589 /// This conversion does not allocate on the heap and happens in place. 590 #[unstable(feature = "box_into_boxed_slice", issue = "71582")] 591 pub fn into_boxed_slice(boxed: Self) -> Box<[T], A> { 592 let (raw, alloc) = Box::into_raw_with_allocator(boxed); 593 unsafe { Box::from_raw_in(raw as *mut [T; 1], alloc) } 594 } 595 596 /// Consumes the `Box`, returning the wrapped value. 597 /// 598 /// # Examples 599 /// 600 /// ``` 601 /// #![feature(box_into_inner)] 602 /// 603 /// let c = Box::new(5); 604 /// 605 /// assert_eq!(Box::into_inner(c), 5); 606 /// ``` 607 #[unstable(feature = "box_into_inner", issue = "80437")] 608 #[inline] 609 pub fn into_inner(boxed: Self) -> T { 610 *boxed 611 } 612} 613 614impl<T> Box<[T]> { 615 /// Constructs a new boxed slice with uninitialized contents. 616 /// 617 /// # Examples 618 /// 619 /// ``` 620 /// #![feature(new_uninit)] 621 /// 622 /// let mut values = Box::<[u32]>::new_uninit_slice(3); 623 /// 624 /// let values = unsafe { 625 /// // Deferred initialization: 626 /// values[0].as_mut_ptr().write(1); 627 /// values[1].as_mut_ptr().write(2); 628 /// values[2].as_mut_ptr().write(3); 629 /// 630 /// values.assume_init() 631 /// }; 632 /// 633 /// assert_eq!(*values, [1, 2, 3]) 634 /// ``` 635 #[cfg(not(no_global_oom_handling))] 636 #[unstable(feature = "new_uninit", issue = "63291")] 637 #[must_use] 638 pub fn new_uninit_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> { 639 unsafe { RawVec::with_capacity(len).into_box(len) } 640 } 641 642 /// Constructs a new boxed slice with uninitialized contents, with the memory 643 /// being filled with `0` bytes. 644 /// 645 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage 646 /// of this method. 647 /// 648 /// # Examples 649 /// 650 /// ``` 651 /// #![feature(new_uninit)] 652 /// 653 /// let values = Box::<[u32]>::new_zeroed_slice(3); 654 /// let values = unsafe { values.assume_init() }; 655 /// 656 /// assert_eq!(*values, [0, 0, 0]) 657 /// ``` 658 /// 659 /// [zeroed]: mem::MaybeUninit::zeroed 660 #[cfg(not(no_global_oom_handling))] 661 #[unstable(feature = "new_uninit", issue = "63291")] 662 #[must_use] 663 pub fn new_zeroed_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> { 664 unsafe { RawVec::with_capacity_zeroed(len).into_box(len) } 665 } 666 667 /// Constructs a new boxed slice with uninitialized contents. Returns an error if 668 /// the allocation fails 669 /// 670 /// # Examples 671 /// 672 /// ``` 673 /// #![feature(allocator_api, new_uninit)] 674 /// 675 /// let mut values = Box::<[u32]>::try_new_uninit_slice(3)?; 676 /// let values = unsafe { 677 /// // Deferred initialization: 678 /// values[0].as_mut_ptr().write(1); 679 /// values[1].as_mut_ptr().write(2); 680 /// values[2].as_mut_ptr().write(3); 681 /// values.assume_init() 682 /// }; 683 /// 684 /// assert_eq!(*values, [1, 2, 3]); 685 /// # Ok::<(), std::alloc::AllocError>(()) 686 /// ``` 687 #[unstable(feature = "allocator_api", issue = "32838")] 688 #[inline] 689 pub fn try_new_uninit_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> { 690 let ptr = if T::IS_ZST || len == 0 { 691 NonNull::dangling() 692 } else { 693 let layout = match Layout::array::<mem::MaybeUninit<T>>(len) { 694 Ok(l) => l, 695 Err(_) => return Err(AllocError), 696 }; 697 Global.allocate(layout)?.cast() 698 }; 699 unsafe { Ok(RawVec::from_raw_parts_in(ptr.as_ptr(), len, Global).into_box(len)) } 700 } 701 702 /// Constructs a new boxed slice with uninitialized contents, with the memory 703 /// being filled with `0` bytes. Returns an error if the allocation fails 704 /// 705 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage 706 /// of this method. 707 /// 708 /// # Examples 709 /// 710 /// ``` 711 /// #![feature(allocator_api, new_uninit)] 712 /// 713 /// let values = Box::<[u32]>::try_new_zeroed_slice(3)?; 714 /// let values = unsafe { values.assume_init() }; 715 /// 716 /// assert_eq!(*values, [0, 0, 0]); 717 /// # Ok::<(), std::alloc::AllocError>(()) 718 /// ``` 719 /// 720 /// [zeroed]: mem::MaybeUninit::zeroed 721 #[unstable(feature = "allocator_api", issue = "32838")] 722 #[inline] 723 pub fn try_new_zeroed_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> { 724 let ptr = if T::IS_ZST || len == 0 { 725 NonNull::dangling() 726 } else { 727 let layout = match Layout::array::<mem::MaybeUninit<T>>(len) { 728 Ok(l) => l, 729 Err(_) => return Err(AllocError), 730 }; 731 Global.allocate_zeroed(layout)?.cast() 732 }; 733 unsafe { Ok(RawVec::from_raw_parts_in(ptr.as_ptr(), len, Global).into_box(len)) } 734 } 735} 736 737impl<T, A: Allocator> Box<[T], A> { 738 /// Constructs a new boxed slice with uninitialized contents in the provided allocator. 739 /// 740 /// # Examples 741 /// 742 /// ``` 743 /// #![feature(allocator_api, new_uninit)] 744 /// 745 /// use std::alloc::System; 746 /// 747 /// let mut values = Box::<[u32], _>::new_uninit_slice_in(3, System); 748 /// 749 /// let values = unsafe { 750 /// // Deferred initialization: 751 /// values[0].as_mut_ptr().write(1); 752 /// values[1].as_mut_ptr().write(2); 753 /// values[2].as_mut_ptr().write(3); 754 /// 755 /// values.assume_init() 756 /// }; 757 /// 758 /// assert_eq!(*values, [1, 2, 3]) 759 /// ``` 760 #[cfg(not(no_global_oom_handling))] 761 #[unstable(feature = "allocator_api", issue = "32838")] 762 // #[unstable(feature = "new_uninit", issue = "63291")] 763 #[must_use] 764 pub fn new_uninit_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> { 765 unsafe { RawVec::with_capacity_in(len, alloc).into_box(len) } 766 } 767 768 /// Constructs a new boxed slice with uninitialized contents in the provided allocator, 769 /// with the memory being filled with `0` bytes. 770 /// 771 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage 772 /// of this method. 773 /// 774 /// # Examples 775 /// 776 /// ``` 777 /// #![feature(allocator_api, new_uninit)] 778 /// 779 /// use std::alloc::System; 780 /// 781 /// let values = Box::<[u32], _>::new_zeroed_slice_in(3, System); 782 /// let values = unsafe { values.assume_init() }; 783 /// 784 /// assert_eq!(*values, [0, 0, 0]) 785 /// ``` 786 /// 787 /// [zeroed]: mem::MaybeUninit::zeroed 788 #[cfg(not(no_global_oom_handling))] 789 #[unstable(feature = "allocator_api", issue = "32838")] 790 // #[unstable(feature = "new_uninit", issue = "63291")] 791 #[must_use] 792 pub fn new_zeroed_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> { 793 unsafe { RawVec::with_capacity_zeroed_in(len, alloc).into_box(len) } 794 } 795} 796 797impl<T, A: Allocator> Box<mem::MaybeUninit<T>, A> { 798 /// Converts to `Box<T, A>`. 799 /// 800 /// # Safety 801 /// 802 /// As with [`MaybeUninit::assume_init`], 803 /// it is up to the caller to guarantee that the value 804 /// really is in an initialized state. 805 /// Calling this when the content is not yet fully initialized 806 /// causes immediate undefined behavior. 807 /// 808 /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init 809 /// 810 /// # Examples 811 /// 812 /// ``` 813 /// #![feature(new_uninit)] 814 /// 815 /// let mut five = Box::<u32>::new_uninit(); 816 /// 817 /// let five: Box<u32> = unsafe { 818 /// // Deferred initialization: 819 /// five.as_mut_ptr().write(5); 820 /// 821 /// five.assume_init() 822 /// }; 823 /// 824 /// assert_eq!(*five, 5) 825 /// ``` 826 #[unstable(feature = "new_uninit", issue = "63291")] 827 #[inline] 828 pub unsafe fn assume_init(self) -> Box<T, A> { 829 let (raw, alloc) = Box::into_raw_with_allocator(self); 830 unsafe { Box::from_raw_in(raw as *mut T, alloc) } 831 } 832 833 /// Writes the value and converts to `Box<T, A>`. 834 /// 835 /// This method converts the box similarly to [`Box::assume_init`] but 836 /// writes `value` into it before conversion thus guaranteeing safety. 837 /// In some scenarios use of this method may improve performance because 838 /// the compiler may be able to optimize copying from stack. 839 /// 840 /// # Examples 841 /// 842 /// ``` 843 /// #![feature(new_uninit)] 844 /// 845 /// let big_box = Box::<[usize; 1024]>::new_uninit(); 846 /// 847 /// let mut array = [0; 1024]; 848 /// for (i, place) in array.iter_mut().enumerate() { 849 /// *place = i; 850 /// } 851 /// 852 /// // The optimizer may be able to elide this copy, so previous code writes 853 /// // to heap directly. 854 /// let big_box = Box::write(big_box, array); 855 /// 856 /// for (i, x) in big_box.iter().enumerate() { 857 /// assert_eq!(*x, i); 858 /// } 859 /// ``` 860 #[unstable(feature = "new_uninit", issue = "63291")] 861 #[inline] 862 pub fn write(mut boxed: Self, value: T) -> Box<T, A> { 863 unsafe { 864 (*boxed).write(value); 865 boxed.assume_init() 866 } 867 } 868} 869 870impl<T, A: Allocator> Box<[mem::MaybeUninit<T>], A> { 871 /// Converts to `Box<[T], A>`. 872 /// 873 /// # Safety 874 /// 875 /// As with [`MaybeUninit::assume_init`], 876 /// it is up to the caller to guarantee that the values 877 /// really are in an initialized state. 878 /// Calling this when the content is not yet fully initialized 879 /// causes immediate undefined behavior. 880 /// 881 /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init 882 /// 883 /// # Examples 884 /// 885 /// ``` 886 /// #![feature(new_uninit)] 887 /// 888 /// let mut values = Box::<[u32]>::new_uninit_slice(3); 889 /// 890 /// let values = unsafe { 891 /// // Deferred initialization: 892 /// values[0].as_mut_ptr().write(1); 893 /// values[1].as_mut_ptr().write(2); 894 /// values[2].as_mut_ptr().write(3); 895 /// 896 /// values.assume_init() 897 /// }; 898 /// 899 /// assert_eq!(*values, [1, 2, 3]) 900 /// ``` 901 #[unstable(feature = "new_uninit", issue = "63291")] 902 #[inline] 903 pub unsafe fn assume_init(self) -> Box<[T], A> { 904 let (raw, alloc) = Box::into_raw_with_allocator(self); 905 unsafe { Box::from_raw_in(raw as *mut [T], alloc) } 906 } 907} 908 909impl<T: ?Sized> Box<T> { 910 /// Constructs a box from a raw pointer. 911 /// 912 /// After calling this function, the raw pointer is owned by the 913 /// resulting `Box`. Specifically, the `Box` destructor will call 914 /// the destructor of `T` and free the allocated memory. For this 915 /// to be safe, the memory must have been allocated in accordance 916 /// with the [memory layout] used by `Box` . 917 /// 918 /// # Safety 919 /// 920 /// This function is unsafe because improper use may lead to 921 /// memory problems. For example, a double-free may occur if the 922 /// function is called twice on the same raw pointer. 923 /// 924 /// The safety conditions are described in the [memory layout] section. 925 /// 926 /// # Examples 927 /// 928 /// Recreate a `Box` which was previously converted to a raw pointer 929 /// using [`Box::into_raw`]: 930 /// ``` 931 /// let x = Box::new(5); 932 /// let ptr = Box::into_raw(x); 933 /// let x = unsafe { Box::from_raw(ptr) }; 934 /// ``` 935 /// Manually create a `Box` from scratch by using the global allocator: 936 /// ``` 937 /// use std::alloc::{alloc, Layout}; 938 /// 939 /// unsafe { 940 /// let ptr = alloc(Layout::new::<i32>()) as *mut i32; 941 /// // In general .write is required to avoid attempting to destruct 942 /// // the (uninitialized) previous contents of `ptr`, though for this 943 /// // simple example `*ptr = 5` would have worked as well. 944 /// ptr.write(5); 945 /// let x = Box::from_raw(ptr); 946 /// } 947 /// ``` 948 /// 949 /// [memory layout]: self#memory-layout 950 /// [`Layout`]: crate::Layout 951 #[stable(feature = "box_raw", since = "1.4.0")] 952 #[inline] 953 #[must_use = "call `drop(Box::from_raw(ptr))` if you intend to drop the `Box`"] 954 pub unsafe fn from_raw(raw: *mut T) -> Self { 955 unsafe { Self::from_raw_in(raw, Global) } 956 } 957} 958 959impl<T: ?Sized, A: Allocator> Box<T, A> { 960 /// Constructs a box from a raw pointer in the given allocator. 961 /// 962 /// After calling this function, the raw pointer is owned by the 963 /// resulting `Box`. Specifically, the `Box` destructor will call 964 /// the destructor of `T` and free the allocated memory. For this 965 /// to be safe, the memory must have been allocated in accordance 966 /// with the [memory layout] used by `Box` . 967 /// 968 /// # Safety 969 /// 970 /// This function is unsafe because improper use may lead to 971 /// memory problems. For example, a double-free may occur if the 972 /// function is called twice on the same raw pointer. 973 /// 974 /// 975 /// # Examples 976 /// 977 /// Recreate a `Box` which was previously converted to a raw pointer 978 /// using [`Box::into_raw_with_allocator`]: 979 /// ``` 980 /// #![feature(allocator_api)] 981 /// 982 /// use std::alloc::System; 983 /// 984 /// let x = Box::new_in(5, System); 985 /// let (ptr, alloc) = Box::into_raw_with_allocator(x); 986 /// let x = unsafe { Box::from_raw_in(ptr, alloc) }; 987 /// ``` 988 /// Manually create a `Box` from scratch by using the system allocator: 989 /// ``` 990 /// #![feature(allocator_api, slice_ptr_get)] 991 /// 992 /// use std::alloc::{Allocator, Layout, System}; 993 /// 994 /// unsafe { 995 /// let ptr = System.allocate(Layout::new::<i32>())?.as_mut_ptr() as *mut i32; 996 /// // In general .write is required to avoid attempting to destruct 997 /// // the (uninitialized) previous contents of `ptr`, though for this 998 /// // simple example `*ptr = 5` would have worked as well. 999 /// ptr.write(5); 1000 /// let x = Box::from_raw_in(ptr, System); 1001 /// } 1002 /// # Ok::<(), std::alloc::AllocError>(()) 1003 /// ``` 1004 /// 1005 /// [memory layout]: self#memory-layout 1006 /// [`Layout`]: crate::Layout 1007 #[unstable(feature = "allocator_api", issue = "32838")] 1008 #[rustc_const_unstable(feature = "const_box", issue = "92521")] 1009 #[inline] 1010 pub const unsafe fn from_raw_in(raw: *mut T, alloc: A) -> Self { 1011 Box(unsafe { Unique::new_unchecked(raw) }, alloc) 1012 } 1013 1014 /// Consumes the `Box`, returning a wrapped raw pointer. 1015 /// 1016 /// The pointer will be properly aligned and non-null. 1017 /// 1018 /// After calling this function, the caller is responsible for the 1019 /// memory previously managed by the `Box`. In particular, the 1020 /// caller should properly destroy `T` and release the memory, taking 1021 /// into account the [memory layout] used by `Box`. The easiest way to 1022 /// do this is to convert the raw pointer back into a `Box` with the 1023 /// [`Box::from_raw`] function, allowing the `Box` destructor to perform 1024 /// the cleanup. 1025 /// 1026 /// Note: this is an associated function, which means that you have 1027 /// to call it as `Box::into_raw(b)` instead of `b.into_raw()`. This 1028 /// is so that there is no conflict with a method on the inner type. 1029 /// 1030 /// # Examples 1031 /// Converting the raw pointer back into a `Box` with [`Box::from_raw`] 1032 /// for automatic cleanup: 1033 /// ``` 1034 /// let x = Box::new(String::from("Hello")); 1035 /// let ptr = Box::into_raw(x); 1036 /// let x = unsafe { Box::from_raw(ptr) }; 1037 /// ``` 1038 /// Manual cleanup by explicitly running the destructor and deallocating 1039 /// the memory: 1040 /// ``` 1041 /// use std::alloc::{dealloc, Layout}; 1042 /// use std::ptr; 1043 /// 1044 /// let x = Box::new(String::from("Hello")); 1045 /// let ptr = Box::into_raw(x); 1046 /// unsafe { 1047 /// ptr::drop_in_place(ptr); 1048 /// dealloc(ptr as *mut u8, Layout::new::<String>()); 1049 /// } 1050 /// ``` 1051 /// Note: This is equivalent to the following: 1052 /// ``` 1053 /// let x = Box::new(String::from("Hello")); 1054 /// let ptr = Box::into_raw(x); 1055 /// unsafe { 1056 /// drop(Box::from_raw(ptr)); 1057 /// } 1058 /// ``` 1059 /// 1060 /// [memory layout]: self#memory-layout 1061 #[stable(feature = "box_raw", since = "1.4.0")] 1062 #[inline] 1063 pub fn into_raw(b: Self) -> *mut T { 1064 Self::into_raw_with_allocator(b).0 1065 } 1066 1067 /// Consumes the `Box`, returning a wrapped raw pointer and the allocator. 1068 /// 1069 /// The pointer will be properly aligned and non-null. 1070 /// 1071 /// After calling this function, the caller is responsible for the 1072 /// memory previously managed by the `Box`. In particular, the 1073 /// caller should properly destroy `T` and release the memory, taking 1074 /// into account the [memory layout] used by `Box`. The easiest way to 1075 /// do this is to convert the raw pointer back into a `Box` with the 1076 /// [`Box::from_raw_in`] function, allowing the `Box` destructor to perform 1077 /// the cleanup. 1078 /// 1079 /// Note: this is an associated function, which means that you have 1080 /// to call it as `Box::into_raw_with_allocator(b)` instead of `b.into_raw_with_allocator()`. This 1081 /// is so that there is no conflict with a method on the inner type. 1082 /// 1083 /// # Examples 1084 /// Converting the raw pointer back into a `Box` with [`Box::from_raw_in`] 1085 /// for automatic cleanup: 1086 /// ``` 1087 /// #![feature(allocator_api)] 1088 /// 1089 /// use std::alloc::System; 1090 /// 1091 /// let x = Box::new_in(String::from("Hello"), System); 1092 /// let (ptr, alloc) = Box::into_raw_with_allocator(x); 1093 /// let x = unsafe { Box::from_raw_in(ptr, alloc) }; 1094 /// ``` 1095 /// Manual cleanup by explicitly running the destructor and deallocating 1096 /// the memory: 1097 /// ``` 1098 /// #![feature(allocator_api)] 1099 /// 1100 /// use std::alloc::{Allocator, Layout, System}; 1101 /// use std::ptr::{self, NonNull}; 1102 /// 1103 /// let x = Box::new_in(String::from("Hello"), System); 1104 /// let (ptr, alloc) = Box::into_raw_with_allocator(x); 1105 /// unsafe { 1106 /// ptr::drop_in_place(ptr); 1107 /// let non_null = NonNull::new_unchecked(ptr); 1108 /// alloc.deallocate(non_null.cast(), Layout::new::<String>()); 1109 /// } 1110 /// ``` 1111 /// 1112 /// [memory layout]: self#memory-layout 1113 #[unstable(feature = "allocator_api", issue = "32838")] 1114 #[inline] 1115 pub fn into_raw_with_allocator(b: Self) -> (*mut T, A) { 1116 let (leaked, alloc) = Box::into_unique(b); 1117 (leaked.as_ptr(), alloc) 1118 } 1119 1120 #[unstable( 1121 feature = "ptr_internals", 1122 issue = "none", 1123 reason = "use `Box::leak(b).into()` or `Unique::from(Box::leak(b))` instead" 1124 )] 1125 #[inline] 1126 #[doc(hidden)] 1127 pub fn into_unique(b: Self) -> (Unique<T>, A) { 1128 // Box is recognized as a "unique pointer" by Stacked Borrows, but internally it is a 1129 // raw pointer for the type system. Turning it directly into a raw pointer would not be 1130 // recognized as "releasing" the unique pointer to permit aliased raw accesses, 1131 // so all raw pointer methods have to go through `Box::leak`. Turning *that* to a raw pointer 1132 // behaves correctly. 1133 let alloc = unsafe { ptr::read(&b.1) }; 1134 (Unique::from(Box::leak(b)), alloc) 1135 } 1136 1137 /// Returns a reference to the underlying allocator. 1138 /// 1139 /// Note: this is an associated function, which means that you have 1140 /// to call it as `Box::allocator(&b)` instead of `b.allocator()`. This 1141 /// is so that there is no conflict with a method on the inner type. 1142 #[unstable(feature = "allocator_api", issue = "32838")] 1143 #[rustc_const_unstable(feature = "const_box", issue = "92521")] 1144 #[inline] 1145 pub const fn allocator(b: &Self) -> &A { 1146 &b.1 1147 } 1148 1149 /// Consumes and leaks the `Box`, returning a mutable reference, 1150 /// `&'a mut T`. Note that the type `T` must outlive the chosen lifetime 1151 /// `'a`. If the type has only static references, or none at all, then this 1152 /// may be chosen to be `'static`. 1153 /// 1154 /// This function is mainly useful for data that lives for the remainder of 1155 /// the program's life. Dropping the returned reference will cause a memory 1156 /// leak. If this is not acceptable, the reference should first be wrapped 1157 /// with the [`Box::from_raw`] function producing a `Box`. This `Box` can 1158 /// then be dropped which will properly destroy `T` and release the 1159 /// allocated memory. 1160 /// 1161 /// Note: this is an associated function, which means that you have 1162 /// to call it as `Box::leak(b)` instead of `b.leak()`. This 1163 /// is so that there is no conflict with a method on the inner type. 1164 /// 1165 /// # Examples 1166 /// 1167 /// Simple usage: 1168 /// 1169 /// ``` 1170 /// let x = Box::new(41); 1171 /// let static_ref: &'static mut usize = Box::leak(x); 1172 /// *static_ref += 1; 1173 /// assert_eq!(*static_ref, 42); 1174 /// ``` 1175 /// 1176 /// Unsized data: 1177 /// 1178 /// ``` 1179 /// let x = vec![1, 2, 3].into_boxed_slice(); 1180 /// let static_ref = Box::leak(x); 1181 /// static_ref[0] = 4; 1182 /// assert_eq!(*static_ref, [4, 2, 3]); 1183 /// ``` 1184 #[stable(feature = "box_leak", since = "1.26.0")] 1185 #[inline] 1186 pub fn leak<'a>(b: Self) -> &'a mut T 1187 where 1188 A: 'a, 1189 { 1190 unsafe { &mut *mem::ManuallyDrop::new(b).0.as_ptr() } 1191 } 1192 1193 /// Converts a `Box<T>` into a `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then 1194 /// `*boxed` will be pinned in memory and unable to be moved. 1195 /// 1196 /// This conversion does not allocate on the heap and happens in place. 1197 /// 1198 /// This is also available via [`From`]. 1199 /// 1200 /// Constructing and pinning a `Box` with <code>Box::into_pin([Box::new]\(x))</code> 1201 /// can also be written more concisely using <code>[Box::pin]\(x)</code>. 1202 /// This `into_pin` method is useful if you already have a `Box<T>`, or you are 1203 /// constructing a (pinned) `Box` in a different way than with [`Box::new`]. 1204 /// 1205 /// # Notes 1206 /// 1207 /// It's not recommended that crates add an impl like `From<Box<T>> for Pin<T>`, 1208 /// as it'll introduce an ambiguity when calling `Pin::from`. 1209 /// A demonstration of such a poor impl is shown below. 1210 /// 1211 /// ```compile_fail 1212 /// # use std::pin::Pin; 1213 /// struct Foo; // A type defined in this crate. 1214 /// impl From<Box<()>> for Pin<Foo> { 1215 /// fn from(_: Box<()>) -> Pin<Foo> { 1216 /// Pin::new(Foo) 1217 /// } 1218 /// } 1219 /// 1220 /// let foo = Box::new(()); 1221 /// let bar = Pin::from(foo); 1222 /// ``` 1223 #[stable(feature = "box_into_pin", since = "1.63.0")] 1224 #[rustc_const_unstable(feature = "const_box", issue = "92521")] 1225 pub const fn into_pin(boxed: Self) -> Pin<Self> 1226 where 1227 A: 'static, 1228 { 1229 // It's not possible to move or replace the insides of a `Pin<Box<T>>` 1230 // when `T: !Unpin`, so it's safe to pin it directly without any 1231 // additional requirements. 1232 unsafe { Pin::new_unchecked(boxed) } 1233 } 1234} 1235 1236#[stable(feature = "rust1", since = "1.0.0")] 1237unsafe impl<#[may_dangle] T: ?Sized, A: Allocator> Drop for Box<T, A> { 1238 #[inline] 1239 fn drop(&mut self) { 1240 // the T in the Box is dropped by the compiler before the destructor is run 1241 1242 let ptr = self.0; 1243 1244 unsafe { 1245 let layout = Layout::for_value_raw(ptr.as_ptr()); 1246 if layout.size() != 0 { 1247 self.1.deallocate(From::from(ptr.cast()), layout); 1248 } 1249 } 1250 } 1251} 1252 1253#[cfg(not(no_global_oom_handling))] 1254#[stable(feature = "rust1", since = "1.0.0")] 1255impl<T: Default> Default for Box<T> { 1256 /// Creates a `Box<T>`, with the `Default` value for T. 1257 #[inline] 1258 fn default() -> Self { 1259 Box::new(T::default()) 1260 } 1261} 1262 1263#[cfg(not(no_global_oom_handling))] 1264#[stable(feature = "rust1", since = "1.0.0")] 1265impl<T> Default for Box<[T]> { 1266 #[inline] 1267 fn default() -> Self { 1268 let ptr: Unique<[T]> = Unique::<[T; 0]>::dangling(); 1269 Box(ptr, Global) 1270 } 1271} 1272 1273#[cfg(not(no_global_oom_handling))] 1274#[stable(feature = "default_box_extra", since = "1.17.0")] 1275impl Default for Box<str> { 1276 #[inline] 1277 fn default() -> Self { 1278 // SAFETY: This is the same as `Unique::cast<U>` but with an unsized `U = str`. 1279 let ptr: Unique<str> = unsafe { 1280 let bytes: Unique<[u8]> = Unique::<[u8; 0]>::dangling(); 1281 Unique::new_unchecked(bytes.as_ptr() as *mut str) 1282 }; 1283 Box(ptr, Global) 1284 } 1285} 1286 1287#[cfg(not(no_global_oom_handling))] 1288#[stable(feature = "rust1", since = "1.0.0")] 1289impl<T: Clone, A: Allocator + Clone> Clone for Box<T, A> { 1290 /// Returns a new box with a `clone()` of this box's contents. 1291 /// 1292 /// # Examples 1293 /// 1294 /// ``` 1295 /// let x = Box::new(5); 1296 /// let y = x.clone(); 1297 /// 1298 /// // The value is the same 1299 /// assert_eq!(x, y); 1300 /// 1301 /// // But they are unique objects 1302 /// assert_ne!(&*x as *const i32, &*y as *const i32); 1303 /// ``` 1304 #[inline] 1305 fn clone(&self) -> Self { 1306 // Pre-allocate memory to allow writing the cloned value directly. 1307 let mut boxed = Self::new_uninit_in(self.1.clone()); 1308 unsafe { 1309 (**self).write_clone_into_raw(boxed.as_mut_ptr()); 1310 boxed.assume_init() 1311 } 1312 } 1313 1314 /// Copies `source`'s contents into `self` without creating a new allocation. 1315 /// 1316 /// # Examples 1317 /// 1318 /// ``` 1319 /// let x = Box::new(5); 1320 /// let mut y = Box::new(10); 1321 /// let yp: *const i32 = &*y; 1322 /// 1323 /// y.clone_from(&x); 1324 /// 1325 /// // The value is the same 1326 /// assert_eq!(x, y); 1327 /// 1328 /// // And no allocation occurred 1329 /// assert_eq!(yp, &*y); 1330 /// ``` 1331 #[inline] 1332 fn clone_from(&mut self, source: &Self) { 1333 (**self).clone_from(&(**source)); 1334 } 1335} 1336 1337#[cfg(not(no_global_oom_handling))] 1338#[stable(feature = "box_slice_clone", since = "1.3.0")] 1339impl Clone for Box<str> { 1340 fn clone(&self) -> Self { 1341 // this makes a copy of the data 1342 let buf: Box<[u8]> = self.as_bytes().into(); 1343 unsafe { from_boxed_utf8_unchecked(buf) } 1344 } 1345} 1346 1347#[stable(feature = "rust1", since = "1.0.0")] 1348impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for Box<T, A> { 1349 #[inline] 1350 fn eq(&self, other: &Self) -> bool { 1351 PartialEq::eq(&**self, &**other) 1352 } 1353 #[inline] 1354 fn ne(&self, other: &Self) -> bool { 1355 PartialEq::ne(&**self, &**other) 1356 } 1357} 1358#[stable(feature = "rust1", since = "1.0.0")] 1359impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for Box<T, A> { 1360 #[inline] 1361 fn partial_cmp(&self, other: &Self) -> Option<Ordering> { 1362 PartialOrd::partial_cmp(&**self, &**other) 1363 } 1364 #[inline] 1365 fn lt(&self, other: &Self) -> bool { 1366 PartialOrd::lt(&**self, &**other) 1367 } 1368 #[inline] 1369 fn le(&self, other: &Self) -> bool { 1370 PartialOrd::le(&**self, &**other) 1371 } 1372 #[inline] 1373 fn ge(&self, other: &Self) -> bool { 1374 PartialOrd::ge(&**self, &**other) 1375 } 1376 #[inline] 1377 fn gt(&self, other: &Self) -> bool { 1378 PartialOrd::gt(&**self, &**other) 1379 } 1380} 1381#[stable(feature = "rust1", since = "1.0.0")] 1382impl<T: ?Sized + Ord, A: Allocator> Ord for Box<T, A> { 1383 #[inline] 1384 fn cmp(&self, other: &Self) -> Ordering { 1385 Ord::cmp(&**self, &**other) 1386 } 1387} 1388#[stable(feature = "rust1", since = "1.0.0")] 1389impl<T: ?Sized + Eq, A: Allocator> Eq for Box<T, A> {} 1390 1391#[stable(feature = "rust1", since = "1.0.0")] 1392impl<T: ?Sized + Hash, A: Allocator> Hash for Box<T, A> { 1393 fn hash<H: Hasher>(&self, state: &mut H) { 1394 (**self).hash(state); 1395 } 1396} 1397 1398#[stable(feature = "indirect_hasher_impl", since = "1.22.0")] 1399impl<T: ?Sized + Hasher, A: Allocator> Hasher for Box<T, A> { 1400 fn finish(&self) -> u64 { 1401 (**self).finish() 1402 } 1403 fn write(&mut self, bytes: &[u8]) { 1404 (**self).write(bytes) 1405 } 1406 fn write_u8(&mut self, i: u8) { 1407 (**self).write_u8(i) 1408 } 1409 fn write_u16(&mut self, i: u16) { 1410 (**self).write_u16(i) 1411 } 1412 fn write_u32(&mut self, i: u32) { 1413 (**self).write_u32(i) 1414 } 1415 fn write_u64(&mut self, i: u64) { 1416 (**self).write_u64(i) 1417 } 1418 fn write_u128(&mut self, i: u128) { 1419 (**self).write_u128(i) 1420 } 1421 fn write_usize(&mut self, i: usize) { 1422 (**self).write_usize(i) 1423 } 1424 fn write_i8(&mut self, i: i8) { 1425 (**self).write_i8(i) 1426 } 1427 fn write_i16(&mut self, i: i16) { 1428 (**self).write_i16(i) 1429 } 1430 fn write_i32(&mut self, i: i32) { 1431 (**self).write_i32(i) 1432 } 1433 fn write_i64(&mut self, i: i64) { 1434 (**self).write_i64(i) 1435 } 1436 fn write_i128(&mut self, i: i128) { 1437 (**self).write_i128(i) 1438 } 1439 fn write_isize(&mut self, i: isize) { 1440 (**self).write_isize(i) 1441 } 1442 fn write_length_prefix(&mut self, len: usize) { 1443 (**self).write_length_prefix(len) 1444 } 1445 fn write_str(&mut self, s: &str) { 1446 (**self).write_str(s) 1447 } 1448} 1449 1450#[cfg(not(no_global_oom_handling))] 1451#[stable(feature = "from_for_ptrs", since = "1.6.0")] 1452impl<T> From<T> for Box<T> { 1453 /// Converts a `T` into a `Box<T>` 1454 /// 1455 /// The conversion allocates on the heap and moves `t` 1456 /// from the stack into it. 1457 /// 1458 /// # Examples 1459 /// 1460 /// ```rust 1461 /// let x = 5; 1462 /// let boxed = Box::new(5); 1463 /// 1464 /// assert_eq!(Box::from(x), boxed); 1465 /// ``` 1466 fn from(t: T) -> Self { 1467 Box::new(t) 1468 } 1469} 1470 1471#[stable(feature = "pin", since = "1.33.0")] 1472impl<T: ?Sized, A: Allocator> From<Box<T, A>> for Pin<Box<T, A>> 1473where 1474 A: 'static, 1475{ 1476 /// Converts a `Box<T>` into a `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then 1477 /// `*boxed` will be pinned in memory and unable to be moved. 1478 /// 1479 /// This conversion does not allocate on the heap and happens in place. 1480 /// 1481 /// This is also available via [`Box::into_pin`]. 1482 /// 1483 /// Constructing and pinning a `Box` with <code><Pin<Box\<T>>>::from([Box::new]\(x))</code> 1484 /// can also be written more concisely using <code>[Box::pin]\(x)</code>. 1485 /// This `From` implementation is useful if you already have a `Box<T>`, or you are 1486 /// constructing a (pinned) `Box` in a different way than with [`Box::new`]. 1487 fn from(boxed: Box<T, A>) -> Self { 1488 Box::into_pin(boxed) 1489 } 1490} 1491 1492/// Specialization trait used for `From<&[T]>`. 1493#[cfg(not(no_global_oom_handling))] 1494trait BoxFromSlice<T> { 1495 fn from_slice(slice: &[T]) -> Self; 1496} 1497 1498#[cfg(not(no_global_oom_handling))] 1499impl<T: Clone> BoxFromSlice<T> for Box<[T]> { 1500 #[inline] 1501 default fn from_slice(slice: &[T]) -> Self { 1502 slice.to_vec().into_boxed_slice() 1503 } 1504} 1505 1506#[cfg(not(no_global_oom_handling))] 1507impl<T: Copy> BoxFromSlice<T> for Box<[T]> { 1508 #[inline] 1509 fn from_slice(slice: &[T]) -> Self { 1510 let len = slice.len(); 1511 let buf = RawVec::with_capacity(len); 1512 unsafe { 1513 ptr::copy_nonoverlapping(slice.as_ptr(), buf.ptr(), len); 1514 buf.into_box(slice.len()).assume_init() 1515 } 1516 } 1517} 1518 1519#[cfg(not(no_global_oom_handling))] 1520#[stable(feature = "box_from_slice", since = "1.17.0")] 1521impl<T: Clone> From<&[T]> for Box<[T]> { 1522 /// Converts a `&[T]` into a `Box<[T]>` 1523 /// 1524 /// This conversion allocates on the heap 1525 /// and performs a copy of `slice` and its contents. 1526 /// 1527 /// # Examples 1528 /// ```rust 1529 /// // create a &[u8] which will be used to create a Box<[u8]> 1530 /// let slice: &[u8] = &[104, 101, 108, 108, 111]; 1531 /// let boxed_slice: Box<[u8]> = Box::from(slice); 1532 /// 1533 /// println!("{boxed_slice:?}"); 1534 /// ``` 1535 #[inline] 1536 fn from(slice: &[T]) -> Box<[T]> { 1537 <Self as BoxFromSlice<T>>::from_slice(slice) 1538 } 1539} 1540 1541#[cfg(not(no_global_oom_handling))] 1542#[stable(feature = "box_from_cow", since = "1.45.0")] 1543impl<T: Clone> From<Cow<'_, [T]>> for Box<[T]> { 1544 /// Converts a `Cow<'_, [T]>` into a `Box<[T]>` 1545 /// 1546 /// When `cow` is the `Cow::Borrowed` variant, this 1547 /// conversion allocates on the heap and copies the 1548 /// underlying slice. Otherwise, it will try to reuse the owned 1549 /// `Vec`'s allocation. 1550 #[inline] 1551 fn from(cow: Cow<'_, [T]>) -> Box<[T]> { 1552 match cow { 1553 Cow::Borrowed(slice) => Box::from(slice), 1554 Cow::Owned(slice) => Box::from(slice), 1555 } 1556 } 1557} 1558 1559#[cfg(not(no_global_oom_handling))] 1560#[stable(feature = "box_from_slice", since = "1.17.0")] 1561impl From<&str> for Box<str> { 1562 /// Converts a `&str` into a `Box<str>` 1563 /// 1564 /// This conversion allocates on the heap 1565 /// and performs a copy of `s`. 1566 /// 1567 /// # Examples 1568 /// 1569 /// ```rust 1570 /// let boxed: Box<str> = Box::from("hello"); 1571 /// println!("{boxed}"); 1572 /// ``` 1573 #[inline] 1574 fn from(s: &str) -> Box<str> { 1575 unsafe { from_boxed_utf8_unchecked(Box::from(s.as_bytes())) } 1576 } 1577} 1578 1579#[cfg(not(no_global_oom_handling))] 1580#[stable(feature = "box_from_cow", since = "1.45.0")] 1581impl From<Cow<'_, str>> for Box<str> { 1582 /// Converts a `Cow<'_, str>` into a `Box<str>` 1583 /// 1584 /// When `cow` is the `Cow::Borrowed` variant, this 1585 /// conversion allocates on the heap and copies the 1586 /// underlying `str`. Otherwise, it will try to reuse the owned 1587 /// `String`'s allocation. 1588 /// 1589 /// # Examples 1590 /// 1591 /// ```rust 1592 /// use std::borrow::Cow; 1593 /// 1594 /// let unboxed = Cow::Borrowed("hello"); 1595 /// let boxed: Box<str> = Box::from(unboxed); 1596 /// println!("{boxed}"); 1597 /// ``` 1598 /// 1599 /// ```rust 1600 /// # use std::borrow::Cow; 1601 /// let unboxed = Cow::Owned("hello".to_string()); 1602 /// let boxed: Box<str> = Box::from(unboxed); 1603 /// println!("{boxed}"); 1604 /// ``` 1605 #[inline] 1606 fn from(cow: Cow<'_, str>) -> Box<str> { 1607 match cow { 1608 Cow::Borrowed(s) => Box::from(s), 1609 Cow::Owned(s) => Box::from(s), 1610 } 1611 } 1612} 1613 1614#[stable(feature = "boxed_str_conv", since = "1.19.0")] 1615impl<A: Allocator> From<Box<str, A>> for Box<[u8], A> { 1616 /// Converts a `Box<str>` into a `Box<[u8]>` 1617 /// 1618 /// This conversion does not allocate on the heap and happens in place. 1619 /// 1620 /// # Examples 1621 /// ```rust 1622 /// // create a Box<str> which will be used to create a Box<[u8]> 1623 /// let boxed: Box<str> = Box::from("hello"); 1624 /// let boxed_str: Box<[u8]> = Box::from(boxed); 1625 /// 1626 /// // create a &[u8] which will be used to create a Box<[u8]> 1627 /// let slice: &[u8] = &[104, 101, 108, 108, 111]; 1628 /// let boxed_slice = Box::from(slice); 1629 /// 1630 /// assert_eq!(boxed_slice, boxed_str); 1631 /// ``` 1632 #[inline] 1633 fn from(s: Box<str, A>) -> Self { 1634 let (raw, alloc) = Box::into_raw_with_allocator(s); 1635 unsafe { Box::from_raw_in(raw as *mut [u8], alloc) } 1636 } 1637} 1638 1639#[cfg(not(no_global_oom_handling))] 1640#[stable(feature = "box_from_array", since = "1.45.0")] 1641impl<T, const N: usize> From<[T; N]> for Box<[T]> { 1642 /// Converts a `[T; N]` into a `Box<[T]>` 1643 /// 1644 /// This conversion moves the array to newly heap-allocated memory. 1645 /// 1646 /// # Examples 1647 /// 1648 /// ```rust 1649 /// let boxed: Box<[u8]> = Box::from([4, 2]); 1650 /// println!("{boxed:?}"); 1651 /// ``` 1652 fn from(array: [T; N]) -> Box<[T]> { 1653 Box::new(array) 1654 } 1655} 1656 1657/// Casts a boxed slice to a boxed array. 1658/// 1659/// # Safety 1660/// 1661/// `boxed_slice.len()` must be exactly `N`. 1662unsafe fn boxed_slice_as_array_unchecked<T, A: Allocator, const N: usize>( 1663 boxed_slice: Box<[T], A>, 1664) -> Box<[T; N], A> { 1665 debug_assert_eq!(boxed_slice.len(), N); 1666 1667 let (ptr, alloc) = Box::into_raw_with_allocator(boxed_slice); 1668 // SAFETY: Pointer and allocator came from an existing box, 1669 // and our safety condition requires that the length is exactly `N` 1670 unsafe { Box::from_raw_in(ptr as *mut [T; N], alloc) } 1671} 1672 1673#[stable(feature = "boxed_slice_try_from", since = "1.43.0")] 1674impl<T, const N: usize> TryFrom<Box<[T]>> for Box<[T; N]> { 1675 type Error = Box<[T]>; 1676 1677 /// Attempts to convert a `Box<[T]>` into a `Box<[T; N]>`. 1678 /// 1679 /// The conversion occurs in-place and does not require a 1680 /// new memory allocation. 1681 /// 1682 /// # Errors 1683 /// 1684 /// Returns the old `Box<[T]>` in the `Err` variant if 1685 /// `boxed_slice.len()` does not equal `N`. 1686 fn try_from(boxed_slice: Box<[T]>) -> Result<Self, Self::Error> { 1687 if boxed_slice.len() == N { 1688 Ok(unsafe { boxed_slice_as_array_unchecked(boxed_slice) }) 1689 } else { 1690 Err(boxed_slice) 1691 } 1692 } 1693} 1694 1695#[cfg(not(no_global_oom_handling))] 1696#[stable(feature = "boxed_array_try_from_vec", since = "1.66.0")] 1697impl<T, const N: usize> TryFrom<Vec<T>> for Box<[T; N]> { 1698 type Error = Vec<T>; 1699 1700 /// Attempts to convert a `Vec<T>` into a `Box<[T; N]>`. 1701 /// 1702 /// Like [`Vec::into_boxed_slice`], this is in-place if `vec.capacity() == N`, 1703 /// but will require a reallocation otherwise. 1704 /// 1705 /// # Errors 1706 /// 1707 /// Returns the original `Vec<T>` in the `Err` variant if 1708 /// `boxed_slice.len()` does not equal `N`. 1709 /// 1710 /// # Examples 1711 /// 1712 /// This can be used with [`vec!`] to create an array on the heap: 1713 /// 1714 /// ``` 1715 /// let state: Box<[f32; 100]> = vec![1.0; 100].try_into().unwrap(); 1716 /// assert_eq!(state.len(), 100); 1717 /// ``` 1718 fn try_from(vec: Vec<T>) -> Result<Self, Self::Error> { 1719 if vec.len() == N { 1720 let boxed_slice = vec.into_boxed_slice(); 1721 Ok(unsafe { boxed_slice_as_array_unchecked(boxed_slice) }) 1722 } else { 1723 Err(vec) 1724 } 1725 } 1726} 1727 1728impl<A: Allocator> Box<dyn Any, A> { 1729 /// Attempt to downcast the box to a concrete type. 1730 /// 1731 /// # Examples 1732 /// 1733 /// ``` 1734 /// use std::any::Any; 1735 /// 1736 /// fn print_if_string(value: Box<dyn Any>) { 1737 /// if let Ok(string) = value.downcast::<String>() { 1738 /// println!("String ({}): {}", string.len(), string); 1739 /// } 1740 /// } 1741 /// 1742 /// let my_string = "Hello World".to_string(); 1743 /// print_if_string(Box::new(my_string)); 1744 /// print_if_string(Box::new(0i8)); 1745 /// ``` 1746 #[inline] 1747 #[stable(feature = "rust1", since = "1.0.0")] 1748 pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> { 1749 if self.is::<T>() { unsafe { Ok(self.downcast_unchecked::<T>()) } } else { Err(self) } 1750 } 1751 1752 /// Downcasts the box to a concrete type. 1753 /// 1754 /// For a safe alternative see [`downcast`]. 1755 /// 1756 /// # Examples 1757 /// 1758 /// ``` 1759 /// #![feature(downcast_unchecked)] 1760 /// 1761 /// use std::any::Any; 1762 /// 1763 /// let x: Box<dyn Any> = Box::new(1_usize); 1764 /// 1765 /// unsafe { 1766 /// assert_eq!(*x.downcast_unchecked::<usize>(), 1); 1767 /// } 1768 /// ``` 1769 /// 1770 /// # Safety 1771 /// 1772 /// The contained value must be of type `T`. Calling this method 1773 /// with the incorrect type is *undefined behavior*. 1774 /// 1775 /// [`downcast`]: Self::downcast 1776 #[inline] 1777 #[unstable(feature = "downcast_unchecked", issue = "90850")] 1778 pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> { 1779 debug_assert!(self.is::<T>()); 1780 unsafe { 1781 let (raw, alloc): (*mut dyn Any, _) = Box::into_raw_with_allocator(self); 1782 Box::from_raw_in(raw as *mut T, alloc) 1783 } 1784 } 1785} 1786 1787impl<A: Allocator> Box<dyn Any + Send, A> { 1788 /// Attempt to downcast the box to a concrete type. 1789 /// 1790 /// # Examples 1791 /// 1792 /// ``` 1793 /// use std::any::Any; 1794 /// 1795 /// fn print_if_string(value: Box<dyn Any + Send>) { 1796 /// if let Ok(string) = value.downcast::<String>() { 1797 /// println!("String ({}): {}", string.len(), string); 1798 /// } 1799 /// } 1800 /// 1801 /// let my_string = "Hello World".to_string(); 1802 /// print_if_string(Box::new(my_string)); 1803 /// print_if_string(Box::new(0i8)); 1804 /// ``` 1805 #[inline] 1806 #[stable(feature = "rust1", since = "1.0.0")] 1807 pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> { 1808 if self.is::<T>() { unsafe { Ok(self.downcast_unchecked::<T>()) } } else { Err(self) } 1809 } 1810 1811 /// Downcasts the box to a concrete type. 1812 /// 1813 /// For a safe alternative see [`downcast`]. 1814 /// 1815 /// # Examples 1816 /// 1817 /// ``` 1818 /// #![feature(downcast_unchecked)] 1819 /// 1820 /// use std::any::Any; 1821 /// 1822 /// let x: Box<dyn Any + Send> = Box::new(1_usize); 1823 /// 1824 /// unsafe { 1825 /// assert_eq!(*x.downcast_unchecked::<usize>(), 1); 1826 /// } 1827 /// ``` 1828 /// 1829 /// # Safety 1830 /// 1831 /// The contained value must be of type `T`. Calling this method 1832 /// with the incorrect type is *undefined behavior*. 1833 /// 1834 /// [`downcast`]: Self::downcast 1835 #[inline] 1836 #[unstable(feature = "downcast_unchecked", issue = "90850")] 1837 pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> { 1838 debug_assert!(self.is::<T>()); 1839 unsafe { 1840 let (raw, alloc): (*mut (dyn Any + Send), _) = Box::into_raw_with_allocator(self); 1841 Box::from_raw_in(raw as *mut T, alloc) 1842 } 1843 } 1844} 1845 1846impl<A: Allocator> Box<dyn Any + Send + Sync, A> { 1847 /// Attempt to downcast the box to a concrete type. 1848 /// 1849 /// # Examples 1850 /// 1851 /// ``` 1852 /// use std::any::Any; 1853 /// 1854 /// fn print_if_string(value: Box<dyn Any + Send + Sync>) { 1855 /// if let Ok(string) = value.downcast::<String>() { 1856 /// println!("String ({}): {}", string.len(), string); 1857 /// } 1858 /// } 1859 /// 1860 /// let my_string = "Hello World".to_string(); 1861 /// print_if_string(Box::new(my_string)); 1862 /// print_if_string(Box::new(0i8)); 1863 /// ``` 1864 #[inline] 1865 #[stable(feature = "box_send_sync_any_downcast", since = "1.51.0")] 1866 pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> { 1867 if self.is::<T>() { unsafe { Ok(self.downcast_unchecked::<T>()) } } else { Err(self) } 1868 } 1869 1870 /// Downcasts the box to a concrete type. 1871 /// 1872 /// For a safe alternative see [`downcast`]. 1873 /// 1874 /// # Examples 1875 /// 1876 /// ``` 1877 /// #![feature(downcast_unchecked)] 1878 /// 1879 /// use std::any::Any; 1880 /// 1881 /// let x: Box<dyn Any + Send + Sync> = Box::new(1_usize); 1882 /// 1883 /// unsafe { 1884 /// assert_eq!(*x.downcast_unchecked::<usize>(), 1); 1885 /// } 1886 /// ``` 1887 /// 1888 /// # Safety 1889 /// 1890 /// The contained value must be of type `T`. Calling this method 1891 /// with the incorrect type is *undefined behavior*. 1892 /// 1893 /// [`downcast`]: Self::downcast 1894 #[inline] 1895 #[unstable(feature = "downcast_unchecked", issue = "90850")] 1896 pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> { 1897 debug_assert!(self.is::<T>()); 1898 unsafe { 1899 let (raw, alloc): (*mut (dyn Any + Send + Sync), _) = 1900 Box::into_raw_with_allocator(self); 1901 Box::from_raw_in(raw as *mut T, alloc) 1902 } 1903 } 1904} 1905 1906#[stable(feature = "rust1", since = "1.0.0")] 1907impl<T: fmt::Display + ?Sized, A: Allocator> fmt::Display for Box<T, A> { 1908 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 1909 fmt::Display::fmt(&**self, f) 1910 } 1911} 1912 1913#[stable(feature = "rust1", since = "1.0.0")] 1914impl<T: fmt::Debug + ?Sized, A: Allocator> fmt::Debug for Box<T, A> { 1915 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 1916 fmt::Debug::fmt(&**self, f) 1917 } 1918} 1919 1920#[stable(feature = "rust1", since = "1.0.0")] 1921impl<T: ?Sized, A: Allocator> fmt::Pointer for Box<T, A> { 1922 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 1923 // It's not possible to extract the inner Uniq directly from the Box, 1924 // instead we cast it to a *const which aliases the Unique 1925 let ptr: *const T = &**self; 1926 fmt::Pointer::fmt(&ptr, f) 1927 } 1928} 1929 1930#[stable(feature = "rust1", since = "1.0.0")] 1931impl<T: ?Sized, A: Allocator> Deref for Box<T, A> { 1932 type Target = T; 1933 1934 fn deref(&self) -> &T { 1935 &**self 1936 } 1937} 1938 1939#[stable(feature = "rust1", since = "1.0.0")] 1940impl<T: ?Sized, A: Allocator> DerefMut for Box<T, A> { 1941 fn deref_mut(&mut self) -> &mut T { 1942 &mut **self 1943 } 1944} 1945 1946#[unstable(feature = "receiver_trait", issue = "none")] 1947impl<T: ?Sized, A: Allocator> Receiver for Box<T, A> {} 1948 1949#[stable(feature = "rust1", since = "1.0.0")] 1950impl<I: Iterator + ?Sized, A: Allocator> Iterator for Box<I, A> { 1951 type Item = I::Item; 1952 fn next(&mut self) -> Option<I::Item> { 1953 (**self).next() 1954 } 1955 fn size_hint(&self) -> (usize, Option<usize>) { 1956 (**self).size_hint() 1957 } 1958 fn nth(&mut self, n: usize) -> Option<I::Item> { 1959 (**self).nth(n) 1960 } 1961 fn last(self) -> Option<I::Item> { 1962 BoxIter::last(self) 1963 } 1964} 1965 1966trait BoxIter { 1967 type Item; 1968 fn last(self) -> Option<Self::Item>; 1969} 1970 1971impl<I: Iterator + ?Sized, A: Allocator> BoxIter for Box<I, A> { 1972 type Item = I::Item; 1973 default fn last(self) -> Option<I::Item> { 1974 #[inline] 1975 fn some<T>(_: Option<T>, x: T) -> Option<T> { 1976 Some(x) 1977 } 1978 1979 self.fold(None, some) 1980 } 1981} 1982 1983/// Specialization for sized `I`s that uses `I`s implementation of `last()` 1984/// instead of the default. 1985#[stable(feature = "rust1", since = "1.0.0")] 1986impl<I: Iterator, A: Allocator> BoxIter for Box<I, A> { 1987 fn last(self) -> Option<I::Item> { 1988 (*self).last() 1989 } 1990} 1991 1992#[stable(feature = "rust1", since = "1.0.0")] 1993impl<I: DoubleEndedIterator + ?Sized, A: Allocator> DoubleEndedIterator for Box<I, A> { 1994 fn next_back(&mut self) -> Option<I::Item> { 1995 (**self).next_back() 1996 } 1997 fn nth_back(&mut self, n: usize) -> Option<I::Item> { 1998 (**self).nth_back(n) 1999 } 2000} 2001#[stable(feature = "rust1", since = "1.0.0")] 2002impl<I: ExactSizeIterator + ?Sized, A: Allocator> ExactSizeIterator for Box<I, A> { 2003 fn len(&self) -> usize { 2004 (**self).len() 2005 } 2006 fn is_empty(&self) -> bool { 2007 (**self).is_empty() 2008 } 2009} 2010 2011#[stable(feature = "fused", since = "1.26.0")] 2012impl<I: FusedIterator + ?Sized, A: Allocator> FusedIterator for Box<I, A> {} 2013 2014#[stable(feature = "boxed_closure_impls", since = "1.35.0")] 2015impl<Args: Tuple, F: FnOnce<Args> + ?Sized, A: Allocator> FnOnce<Args> for Box<F, A> { 2016 type Output = <F as FnOnce<Args>>::Output; 2017 2018 extern "rust-call" fn call_once(self, args: Args) -> Self::Output { 2019 <F as FnOnce<Args>>::call_once(*self, args) 2020 } 2021} 2022 2023#[stable(feature = "boxed_closure_impls", since = "1.35.0")] 2024impl<Args: Tuple, F: FnMut<Args> + ?Sized, A: Allocator> FnMut<Args> for Box<F, A> { 2025 extern "rust-call" fn call_mut(&mut self, args: Args) -> Self::Output { 2026 <F as FnMut<Args>>::call_mut(self, args) 2027 } 2028} 2029 2030#[stable(feature = "boxed_closure_impls", since = "1.35.0")] 2031impl<Args: Tuple, F: Fn<Args> + ?Sized, A: Allocator> Fn<Args> for Box<F, A> { 2032 extern "rust-call" fn call(&self, args: Args) -> Self::Output { 2033 <F as Fn<Args>>::call(self, args) 2034 } 2035} 2036 2037#[unstable(feature = "coerce_unsized", issue = "18598")] 2038impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<Box<U, A>> for Box<T, A> {} 2039 2040#[unstable(feature = "dispatch_from_dyn", issue = "none")] 2041impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Box<U>> for Box<T, Global> {} 2042 2043#[cfg(not(no_global_oom_handling))] 2044#[stable(feature = "boxed_slice_from_iter", since = "1.32.0")] 2045impl<I> FromIterator<I> for Box<[I]> { 2046 fn from_iter<T: IntoIterator<Item = I>>(iter: T) -> Self { 2047 iter.into_iter().collect::<Vec<_>>().into_boxed_slice() 2048 } 2049} 2050 2051#[cfg(not(no_global_oom_handling))] 2052#[stable(feature = "box_slice_clone", since = "1.3.0")] 2053impl<T: Clone, A: Allocator + Clone> Clone for Box<[T], A> { 2054 fn clone(&self) -> Self { 2055 let alloc = Box::allocator(self).clone(); 2056 self.to_vec_in(alloc).into_boxed_slice() 2057 } 2058 2059 fn clone_from(&mut self, other: &Self) { 2060 if self.len() == other.len() { 2061 self.clone_from_slice(&other); 2062 } else { 2063 *self = other.clone(); 2064 } 2065 } 2066} 2067 2068#[stable(feature = "box_borrow", since = "1.1.0")] 2069impl<T: ?Sized, A: Allocator> borrow::Borrow<T> for Box<T, A> { 2070 fn borrow(&self) -> &T { 2071 &**self 2072 } 2073} 2074 2075#[stable(feature = "box_borrow", since = "1.1.0")] 2076impl<T: ?Sized, A: Allocator> borrow::BorrowMut<T> for Box<T, A> { 2077 fn borrow_mut(&mut self) -> &mut T { 2078 &mut **self 2079 } 2080} 2081 2082#[stable(since = "1.5.0", feature = "smart_ptr_as_ref")] 2083impl<T: ?Sized, A: Allocator> AsRef<T> for Box<T, A> { 2084 fn as_ref(&self) -> &T { 2085 &**self 2086 } 2087} 2088 2089#[stable(since = "1.5.0", feature = "smart_ptr_as_ref")] 2090impl<T: ?Sized, A: Allocator> AsMut<T> for Box<T, A> { 2091 fn as_mut(&mut self) -> &mut T { 2092 &mut **self 2093 } 2094} 2095 2096/* Nota bene 2097 * 2098 * We could have chosen not to add this impl, and instead have written a 2099 * function of Pin<Box<T>> to Pin<T>. Such a function would not be sound, 2100 * because Box<T> implements Unpin even when T does not, as a result of 2101 * this impl. 2102 * 2103 * We chose this API instead of the alternative for a few reasons: 2104 * - Logically, it is helpful to understand pinning in regard to the 2105 * memory region being pointed to. For this reason none of the 2106 * standard library pointer types support projecting through a pin 2107 * (Box<T> is the only pointer type in std for which this would be 2108 * safe.) 2109 * - It is in practice very useful to have Box<T> be unconditionally 2110 * Unpin because of trait objects, for which the structural auto 2111 * trait functionality does not apply (e.g., Box<dyn Foo> would 2112 * otherwise not be Unpin). 2113 * 2114 * Another type with the same semantics as Box but only a conditional 2115 * implementation of `Unpin` (where `T: Unpin`) would be valid/safe, and 2116 * could have a method to project a Pin<T> from it. 2117 */ 2118#[stable(feature = "pin", since = "1.33.0")] 2119impl<T: ?Sized, A: Allocator> Unpin for Box<T, A> where A: 'static {} 2120 2121#[unstable(feature = "coroutine_trait", issue = "43122")] 2122impl<G: ?Sized + Coroutine<R> + Unpin, R, A: Allocator> Coroutine<R> for Box<G, A> 2123where 2124 A: 'static, 2125{ 2126 type Yield = G::Yield; 2127 type Return = G::Return; 2128 2129 fn resume(mut self: Pin<&mut Self>, arg: R) -> CoroutineState<Self::Yield, Self::Return> { 2130 G::resume(Pin::new(&mut *self), arg) 2131 } 2132} 2133 2134#[unstable(feature = "coroutine_trait", issue = "43122")] 2135impl<G: ?Sized + Coroutine<R>, R, A: Allocator> Coroutine<R> for Pin<Box<G, A>> 2136where 2137 A: 'static, 2138{ 2139 type Yield = G::Yield; 2140 type Return = G::Return; 2141 2142 fn resume(mut self: Pin<&mut Self>, arg: R) -> CoroutineState<Self::Yield, Self::Return> { 2143 G::resume((*self).as_mut(), arg) 2144 } 2145} 2146 2147#[stable(feature = "futures_api", since = "1.36.0")] 2148impl<F: ?Sized + Future + Unpin, A: Allocator> Future for Box<F, A> 2149where 2150 A: 'static, 2151{ 2152 type Output = F::Output; 2153 2154 fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> { 2155 F::poll(Pin::new(&mut *self), cx) 2156 } 2157} 2158 2159#[unstable(feature = "async_iterator", issue = "79024")] 2160impl<S: ?Sized + AsyncIterator + Unpin> AsyncIterator for Box<S> { 2161 type Item = S::Item; 2162 2163 fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> { 2164 Pin::new(&mut **self).poll_next(cx) 2165 } 2166 2167 fn size_hint(&self) -> (usize, Option<usize>) { 2168 (**self).size_hint() 2169 } 2170} 2171 2172impl dyn Error { 2173 #[inline] 2174 #[stable(feature = "error_downcast", since = "1.3.0")] 2175 #[rustc_allow_incoherent_impl] 2176 /// Attempts to downcast the box to a concrete type. 2177 pub fn downcast<T: Error + 'static>(self: Box<Self>) -> Result<Box<T>, Box<dyn Error>> { 2178 if self.is::<T>() { 2179 unsafe { 2180 let raw: *mut dyn Error = Box::into_raw(self); 2181 Ok(Box::from_raw(raw as *mut T)) 2182 } 2183 } else { 2184 Err(self) 2185 } 2186 } 2187} 2188 2189impl dyn Error + Send { 2190 #[inline] 2191 #[stable(feature = "error_downcast", since = "1.3.0")] 2192 #[rustc_allow_incoherent_impl] 2193 /// Attempts to downcast the box to a concrete type. 2194 pub fn downcast<T: Error + 'static>(self: Box<Self>) -> Result<Box<T>, Box<dyn Error + Send>> { 2195 let err: Box<dyn Error> = self; 2196 <dyn Error>::downcast(err).map_err(|s| unsafe { 2197 // Reapply the `Send` marker. 2198 Box::from_raw(Box::into_raw(s) as *mut (dyn Error + Send)) 2199 }) 2200 } 2201} 2202 2203impl dyn Error + Send + Sync { 2204 #[inline] 2205 #[stable(feature = "error_downcast", since = "1.3.0")] 2206 #[rustc_allow_incoherent_impl] 2207 /// Attempts to downcast the box to a concrete type. 2208 pub fn downcast<T: Error + 'static>(self: Box<Self>) -> Result<Box<T>, Box<Self>> { 2209 let err: Box<dyn Error> = self; 2210 <dyn Error>::downcast(err).map_err(|s| unsafe { 2211 // Reapply the `Send + Sync` marker. 2212 Box::from_raw(Box::into_raw(s) as *mut (dyn Error + Send + Sync)) 2213 }) 2214 } 2215} 2216 2217#[cfg(not(no_global_oom_handling))] 2218#[stable(feature = "rust1", since = "1.0.0")] 2219impl<'a, E: Error + 'a> From<E> for Box<dyn Error + 'a> { 2220 /// Converts a type of [`Error`] into a box of dyn [`Error`]. 2221 /// 2222 /// # Examples 2223 /// 2224 /// ``` 2225 /// use std::error::Error; 2226 /// use std::fmt; 2227 /// use std::mem; 2228 /// 2229 /// #[derive(Debug)] 2230 /// struct AnError; 2231 /// 2232 /// impl fmt::Display for AnError { 2233 /// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 2234 /// write!(f, "An error") 2235 /// } 2236 /// } 2237 /// 2238 /// impl Error for AnError {} 2239 /// 2240 /// let an_error = AnError; 2241 /// assert!(0 == mem::size_of_val(&an_error)); 2242 /// let a_boxed_error = Box::<dyn Error>::from(an_error); 2243 /// assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error)) 2244 /// ``` 2245 fn from(err: E) -> Box<dyn Error + 'a> { 2246 Box::new(err) 2247 } 2248} 2249 2250#[cfg(not(no_global_oom_handling))] 2251#[stable(feature = "rust1", since = "1.0.0")] 2252impl<'a, E: Error + Send + Sync + 'a> From<E> for Box<dyn Error + Send + Sync + 'a> { 2253 /// Converts a type of [`Error`] + [`Send`] + [`Sync`] into a box of 2254 /// dyn [`Error`] + [`Send`] + [`Sync`]. 2255 /// 2256 /// # Examples 2257 /// 2258 /// ``` 2259 /// use std::error::Error; 2260 /// use std::fmt; 2261 /// use std::mem; 2262 /// 2263 /// #[derive(Debug)] 2264 /// struct AnError; 2265 /// 2266 /// impl fmt::Display for AnError { 2267 /// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 2268 /// write!(f, "An error") 2269 /// } 2270 /// } 2271 /// 2272 /// impl Error for AnError {} 2273 /// 2274 /// unsafe impl Send for AnError {} 2275 /// 2276 /// unsafe impl Sync for AnError {} 2277 /// 2278 /// let an_error = AnError; 2279 /// assert!(0 == mem::size_of_val(&an_error)); 2280 /// let a_boxed_error = Box::<dyn Error + Send + Sync>::from(an_error); 2281 /// assert!( 2282 /// mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error)) 2283 /// ``` 2284 fn from(err: E) -> Box<dyn Error + Send + Sync + 'a> { 2285 Box::new(err) 2286 } 2287} 2288 2289#[cfg(not(no_global_oom_handling))] 2290#[stable(feature = "rust1", since = "1.0.0")] 2291impl From<String> for Box<dyn Error + Send + Sync> { 2292 /// Converts a [`String`] into a box of dyn [`Error`] + [`Send`] + [`Sync`]. 2293 /// 2294 /// # Examples 2295 /// 2296 /// ``` 2297 /// use std::error::Error; 2298 /// use std::mem; 2299 /// 2300 /// let a_string_error = "a string error".to_string(); 2301 /// let a_boxed_error = Box::<dyn Error + Send + Sync>::from(a_string_error); 2302 /// assert!( 2303 /// mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error)) 2304 /// ``` 2305 #[inline] 2306 fn from(err: String) -> Box<dyn Error + Send + Sync> { 2307 struct StringError(String); 2308 2309 impl Error for StringError { 2310 #[allow(deprecated)] 2311 fn description(&self) -> &str { 2312 &self.0 2313 } 2314 } 2315 2316 impl fmt::Display for StringError { 2317 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 2318 fmt::Display::fmt(&self.0, f) 2319 } 2320 } 2321 2322 // Purposefully skip printing "StringError(..)" 2323 impl fmt::Debug for StringError { 2324 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 2325 fmt::Debug::fmt(&self.0, f) 2326 } 2327 } 2328 2329 Box::new(StringError(err)) 2330 } 2331} 2332 2333#[cfg(not(no_global_oom_handling))] 2334#[stable(feature = "string_box_error", since = "1.6.0")] 2335impl From<String> for Box<dyn Error> { 2336 /// Converts a [`String`] into a box of dyn [`Error`]. 2337 /// 2338 /// # Examples 2339 /// 2340 /// ``` 2341 /// use std::error::Error; 2342 /// use std::mem; 2343 /// 2344 /// let a_string_error = "a string error".to_string(); 2345 /// let a_boxed_error = Box::<dyn Error>::from(a_string_error); 2346 /// assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error)) 2347 /// ``` 2348 fn from(str_err: String) -> Box<dyn Error> { 2349 let err1: Box<dyn Error + Send + Sync> = From::from(str_err); 2350 let err2: Box<dyn Error> = err1; 2351 err2 2352 } 2353} 2354 2355#[cfg(not(no_global_oom_handling))] 2356#[stable(feature = "rust1", since = "1.0.0")] 2357impl<'a> From<&str> for Box<dyn Error + Send + Sync + 'a> { 2358 /// Converts a [`str`] into a box of dyn [`Error`] + [`Send`] + [`Sync`]. 2359 /// 2360 /// [`str`]: prim@str 2361 /// 2362 /// # Examples 2363 /// 2364 /// ``` 2365 /// use std::error::Error; 2366 /// use std::mem; 2367 /// 2368 /// let a_str_error = "a str error"; 2369 /// let a_boxed_error = Box::<dyn Error + Send + Sync>::from(a_str_error); 2370 /// assert!( 2371 /// mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error)) 2372 /// ``` 2373 #[inline] 2374 fn from(err: &str) -> Box<dyn Error + Send + Sync + 'a> { 2375 From::from(String::from(err)) 2376 } 2377} 2378 2379#[cfg(not(no_global_oom_handling))] 2380#[stable(feature = "string_box_error", since = "1.6.0")] 2381impl From<&str> for Box<dyn Error> { 2382 /// Converts a [`str`] into a box of dyn [`Error`]. 2383 /// 2384 /// [`str`]: prim@str 2385 /// 2386 /// # Examples 2387 /// 2388 /// ``` 2389 /// use std::error::Error; 2390 /// use std::mem; 2391 /// 2392 /// let a_str_error = "a str error"; 2393 /// let a_boxed_error = Box::<dyn Error>::from(a_str_error); 2394 /// assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error)) 2395 /// ``` 2396 fn from(err: &str) -> Box<dyn Error> { 2397 From::from(String::from(err)) 2398 } 2399} 2400 2401#[cfg(not(no_global_oom_handling))] 2402#[stable(feature = "cow_box_error", since = "1.22.0")] 2403impl<'a, 'b> From<Cow<'b, str>> for Box<dyn Error + Send + Sync + 'a> { 2404 /// Converts a [`Cow`] into a box of dyn [`Error`] + [`Send`] + [`Sync`]. 2405 /// 2406 /// # Examples 2407 /// 2408 /// ``` 2409 /// use std::error::Error; 2410 /// use std::mem; 2411 /// use std::borrow::Cow; 2412 /// 2413 /// let a_cow_str_error = Cow::from("a str error"); 2414 /// let a_boxed_error = Box::<dyn Error + Send + Sync>::from(a_cow_str_error); 2415 /// assert!( 2416 /// mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error)) 2417 /// ``` 2418 fn from(err: Cow<'b, str>) -> Box<dyn Error + Send + Sync + 'a> { 2419 From::from(String::from(err)) 2420 } 2421} 2422 2423#[cfg(not(no_global_oom_handling))] 2424#[stable(feature = "cow_box_error", since = "1.22.0")] 2425impl<'a> From<Cow<'a, str>> for Box<dyn Error> { 2426 /// Converts a [`Cow`] into a box of dyn [`Error`]. 2427 /// 2428 /// # Examples 2429 /// 2430 /// ``` 2431 /// use std::error::Error; 2432 /// use std::mem; 2433 /// use std::borrow::Cow; 2434 /// 2435 /// let a_cow_str_error = Cow::from("a str error"); 2436 /// let a_boxed_error = Box::<dyn Error>::from(a_cow_str_error); 2437 /// assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error)) 2438 /// ``` 2439 fn from(err: Cow<'a, str>) -> Box<dyn Error> { 2440 From::from(String::from(err)) 2441 } 2442} 2443 2444#[stable(feature = "box_error", since = "1.8.0")] 2445impl<T: core::error::Error> core::error::Error for Box<T> { 2446 #[allow(deprecated, deprecated_in_future)] 2447 fn description(&self) -> &str { 2448 core::error::Error::description(&**self) 2449 } 2450 2451 #[allow(deprecated)] 2452 fn cause(&self) -> Option<&dyn core::error::Error> { 2453 core::error::Error::cause(&**self) 2454 } 2455 2456 fn source(&self) -> Option<&(dyn core::error::Error + 'static)> { 2457 core::error::Error::source(&**self) 2458 } 2459 2460 fn provide<'b>(&'b self, request: &mut core::error::Request<'b>) { 2461 core::error::Error::provide(&**self, request); 2462 } 2463}