Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
5#include <linux/errno.h>
6#include <linux/mmdebug.h>
7#include <linux/gfp.h>
8#include <linux/bug.h>
9#include <linux/list.h>
10#include <linux/mmzone.h>
11#include <linux/rbtree.h>
12#include <linux/atomic.h>
13#include <linux/debug_locks.h>
14#include <linux/mm_types.h>
15#include <linux/mmap_lock.h>
16#include <linux/range.h>
17#include <linux/pfn.h>
18#include <linux/percpu-refcount.h>
19#include <linux/bit_spinlock.h>
20#include <linux/shrinker.h>
21#include <linux/resource.h>
22#include <linux/page_ext.h>
23#include <linux/err.h>
24#include <linux/page-flags.h>
25#include <linux/page_ref.h>
26#include <linux/overflow.h>
27#include <linux/sizes.h>
28#include <linux/sched.h>
29#include <linux/pgtable.h>
30#include <linux/kasan.h>
31#include <linux/memremap.h>
32#include <linux/slab.h>
33
34struct mempolicy;
35struct anon_vma;
36struct anon_vma_chain;
37struct user_struct;
38struct pt_regs;
39struct folio_batch;
40
41extern int sysctl_page_lock_unfairness;
42
43void mm_core_init(void);
44void init_mm_internals(void);
45
46#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
47extern unsigned long max_mapnr;
48
49static inline void set_max_mapnr(unsigned long limit)
50{
51 max_mapnr = limit;
52}
53#else
54static inline void set_max_mapnr(unsigned long limit) { }
55#endif
56
57extern atomic_long_t _totalram_pages;
58static inline unsigned long totalram_pages(void)
59{
60 return (unsigned long)atomic_long_read(&_totalram_pages);
61}
62
63static inline void totalram_pages_inc(void)
64{
65 atomic_long_inc(&_totalram_pages);
66}
67
68static inline void totalram_pages_dec(void)
69{
70 atomic_long_dec(&_totalram_pages);
71}
72
73static inline void totalram_pages_add(long count)
74{
75 atomic_long_add(count, &_totalram_pages);
76}
77
78extern void * high_memory;
79extern int page_cluster;
80extern const int page_cluster_max;
81
82#ifdef CONFIG_SYSCTL
83extern int sysctl_legacy_va_layout;
84#else
85#define sysctl_legacy_va_layout 0
86#endif
87
88#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
89extern const int mmap_rnd_bits_min;
90extern int mmap_rnd_bits_max __ro_after_init;
91extern int mmap_rnd_bits __read_mostly;
92#endif
93#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
94extern const int mmap_rnd_compat_bits_min;
95extern const int mmap_rnd_compat_bits_max;
96extern int mmap_rnd_compat_bits __read_mostly;
97#endif
98
99#include <asm/page.h>
100#include <asm/processor.h>
101
102#ifndef __pa_symbol
103#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
104#endif
105
106#ifndef page_to_virt
107#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
108#endif
109
110#ifndef lm_alias
111#define lm_alias(x) __va(__pa_symbol(x))
112#endif
113
114/*
115 * To prevent common memory management code establishing
116 * a zero page mapping on a read fault.
117 * This macro should be defined within <asm/pgtable.h>.
118 * s390 does this to prevent multiplexing of hardware bits
119 * related to the physical page in case of virtualization.
120 */
121#ifndef mm_forbids_zeropage
122#define mm_forbids_zeropage(X) (0)
123#endif
124
125/*
126 * On some architectures it is expensive to call memset() for small sizes.
127 * If an architecture decides to implement their own version of
128 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
129 * define their own version of this macro in <asm/pgtable.h>
130 */
131#if BITS_PER_LONG == 64
132/* This function must be updated when the size of struct page grows above 96
133 * or reduces below 56. The idea that compiler optimizes out switch()
134 * statement, and only leaves move/store instructions. Also the compiler can
135 * combine write statements if they are both assignments and can be reordered,
136 * this can result in several of the writes here being dropped.
137 */
138#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
139static inline void __mm_zero_struct_page(struct page *page)
140{
141 unsigned long *_pp = (void *)page;
142
143 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
144 BUILD_BUG_ON(sizeof(struct page) & 7);
145 BUILD_BUG_ON(sizeof(struct page) < 56);
146 BUILD_BUG_ON(sizeof(struct page) > 96);
147
148 switch (sizeof(struct page)) {
149 case 96:
150 _pp[11] = 0;
151 fallthrough;
152 case 88:
153 _pp[10] = 0;
154 fallthrough;
155 case 80:
156 _pp[9] = 0;
157 fallthrough;
158 case 72:
159 _pp[8] = 0;
160 fallthrough;
161 case 64:
162 _pp[7] = 0;
163 fallthrough;
164 case 56:
165 _pp[6] = 0;
166 _pp[5] = 0;
167 _pp[4] = 0;
168 _pp[3] = 0;
169 _pp[2] = 0;
170 _pp[1] = 0;
171 _pp[0] = 0;
172 }
173}
174#else
175#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
176#endif
177
178/*
179 * Default maximum number of active map areas, this limits the number of vmas
180 * per mm struct. Users can overwrite this number by sysctl but there is a
181 * problem.
182 *
183 * When a program's coredump is generated as ELF format, a section is created
184 * per a vma. In ELF, the number of sections is represented in unsigned short.
185 * This means the number of sections should be smaller than 65535 at coredump.
186 * Because the kernel adds some informative sections to a image of program at
187 * generating coredump, we need some margin. The number of extra sections is
188 * 1-3 now and depends on arch. We use "5" as safe margin, here.
189 *
190 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
191 * not a hard limit any more. Although some userspace tools can be surprised by
192 * that.
193 */
194#define MAPCOUNT_ELF_CORE_MARGIN (5)
195#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
196
197extern int sysctl_max_map_count;
198
199extern unsigned long sysctl_user_reserve_kbytes;
200extern unsigned long sysctl_admin_reserve_kbytes;
201
202extern int sysctl_overcommit_memory;
203extern int sysctl_overcommit_ratio;
204extern unsigned long sysctl_overcommit_kbytes;
205
206int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
207 loff_t *);
208int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
209 loff_t *);
210int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
211 loff_t *);
212
213#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
214#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
215#define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
216#else
217#define nth_page(page,n) ((page) + (n))
218#define folio_page_idx(folio, p) ((p) - &(folio)->page)
219#endif
220
221/* to align the pointer to the (next) page boundary */
222#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
223
224/* to align the pointer to the (prev) page boundary */
225#define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
226
227/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
228#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
229
230static inline struct folio *lru_to_folio(struct list_head *head)
231{
232 return list_entry((head)->prev, struct folio, lru);
233}
234
235void setup_initial_init_mm(void *start_code, void *end_code,
236 void *end_data, void *brk);
237
238/*
239 * Linux kernel virtual memory manager primitives.
240 * The idea being to have a "virtual" mm in the same way
241 * we have a virtual fs - giving a cleaner interface to the
242 * mm details, and allowing different kinds of memory mappings
243 * (from shared memory to executable loading to arbitrary
244 * mmap() functions).
245 */
246
247struct vm_area_struct *vm_area_alloc(struct mm_struct *);
248struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
249void vm_area_free(struct vm_area_struct *);
250/* Use only if VMA has no other users */
251void __vm_area_free(struct vm_area_struct *vma);
252
253#ifndef CONFIG_MMU
254extern struct rb_root nommu_region_tree;
255extern struct rw_semaphore nommu_region_sem;
256
257extern unsigned int kobjsize(const void *objp);
258#endif
259
260/*
261 * vm_flags in vm_area_struct, see mm_types.h.
262 * When changing, update also include/trace/events/mmflags.h
263 */
264#define VM_NONE 0x00000000
265
266#define VM_READ 0x00000001 /* currently active flags */
267#define VM_WRITE 0x00000002
268#define VM_EXEC 0x00000004
269#define VM_SHARED 0x00000008
270
271/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
272#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
273#define VM_MAYWRITE 0x00000020
274#define VM_MAYEXEC 0x00000040
275#define VM_MAYSHARE 0x00000080
276
277#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
278#ifdef CONFIG_MMU
279#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
280#else /* CONFIG_MMU */
281#define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
282#define VM_UFFD_MISSING 0
283#endif /* CONFIG_MMU */
284#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
285#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
286
287#define VM_LOCKED 0x00002000
288#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
289
290 /* Used by sys_madvise() */
291#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
292#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
293
294#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
295#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
296#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
297#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
298#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
299#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
300#define VM_SYNC 0x00800000 /* Synchronous page faults */
301#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
302#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
303#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
304
305#ifdef CONFIG_MEM_SOFT_DIRTY
306# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
307#else
308# define VM_SOFTDIRTY 0
309#endif
310
311#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
312#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
313#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
314#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
315
316#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
317#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
318#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
319#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
320#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
321#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
322#define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */
323#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
324#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
325#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
326#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
327#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
328#define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5)
329#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
330
331#ifdef CONFIG_ARCH_HAS_PKEYS
332# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
333# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
334# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
335# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
336# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
337#ifdef CONFIG_PPC
338# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
339#else
340# define VM_PKEY_BIT4 0
341#endif
342#endif /* CONFIG_ARCH_HAS_PKEYS */
343
344#ifdef CONFIG_X86_USER_SHADOW_STACK
345/*
346 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
347 * support core mm.
348 *
349 * These VMAs will get a single end guard page. This helps userspace protect
350 * itself from attacks. A single page is enough for current shadow stack archs
351 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
352 * for more details on the guard size.
353 */
354# define VM_SHADOW_STACK VM_HIGH_ARCH_5
355#else
356# define VM_SHADOW_STACK VM_NONE
357#endif
358
359#if defined(CONFIG_X86)
360# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
361#elif defined(CONFIG_PPC)
362# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
363#elif defined(CONFIG_PARISC)
364# define VM_GROWSUP VM_ARCH_1
365#elif defined(CONFIG_SPARC64)
366# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
367# define VM_ARCH_CLEAR VM_SPARC_ADI
368#elif defined(CONFIG_ARM64)
369# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
370# define VM_ARCH_CLEAR VM_ARM64_BTI
371#elif !defined(CONFIG_MMU)
372# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
373#endif
374
375#if defined(CONFIG_ARM64_MTE)
376# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
377# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
378#else
379# define VM_MTE VM_NONE
380# define VM_MTE_ALLOWED VM_NONE
381#endif
382
383#ifndef VM_GROWSUP
384# define VM_GROWSUP VM_NONE
385#endif
386
387#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
388# define VM_UFFD_MINOR_BIT 38
389# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
390#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
391# define VM_UFFD_MINOR VM_NONE
392#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
393
394/*
395 * This flag is used to connect VFIO to arch specific KVM code. It
396 * indicates that the memory under this VMA is safe for use with any
397 * non-cachable memory type inside KVM. Some VFIO devices, on some
398 * platforms, are thought to be unsafe and can cause machine crashes
399 * if KVM does not lock down the memory type.
400 */
401#ifdef CONFIG_64BIT
402#define VM_ALLOW_ANY_UNCACHED_BIT 39
403#define VM_ALLOW_ANY_UNCACHED BIT(VM_ALLOW_ANY_UNCACHED_BIT)
404#else
405#define VM_ALLOW_ANY_UNCACHED VM_NONE
406#endif
407
408/* Bits set in the VMA until the stack is in its final location */
409#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
410
411#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
412
413/* Common data flag combinations */
414#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
415 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
416#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
417 VM_MAYWRITE | VM_MAYEXEC)
418#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
419 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
420
421#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
422#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
423#endif
424
425#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
426#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
427#endif
428
429#define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
430
431#ifdef CONFIG_STACK_GROWSUP
432#define VM_STACK VM_GROWSUP
433#define VM_STACK_EARLY VM_GROWSDOWN
434#else
435#define VM_STACK VM_GROWSDOWN
436#define VM_STACK_EARLY 0
437#endif
438
439#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
440
441/* VMA basic access permission flags */
442#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
443
444
445/*
446 * Special vmas that are non-mergable, non-mlock()able.
447 */
448#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
449
450/* This mask prevents VMA from being scanned with khugepaged */
451#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
452
453/* This mask defines which mm->def_flags a process can inherit its parent */
454#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
455
456/* This mask represents all the VMA flag bits used by mlock */
457#define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT)
458
459/* Arch-specific flags to clear when updating VM flags on protection change */
460#ifndef VM_ARCH_CLEAR
461# define VM_ARCH_CLEAR VM_NONE
462#endif
463#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
464
465/*
466 * mapping from the currently active vm_flags protection bits (the
467 * low four bits) to a page protection mask..
468 */
469
470/*
471 * The default fault flags that should be used by most of the
472 * arch-specific page fault handlers.
473 */
474#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
475 FAULT_FLAG_KILLABLE | \
476 FAULT_FLAG_INTERRUPTIBLE)
477
478/**
479 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
480 * @flags: Fault flags.
481 *
482 * This is mostly used for places where we want to try to avoid taking
483 * the mmap_lock for too long a time when waiting for another condition
484 * to change, in which case we can try to be polite to release the
485 * mmap_lock in the first round to avoid potential starvation of other
486 * processes that would also want the mmap_lock.
487 *
488 * Return: true if the page fault allows retry and this is the first
489 * attempt of the fault handling; false otherwise.
490 */
491static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
492{
493 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
494 (!(flags & FAULT_FLAG_TRIED));
495}
496
497#define FAULT_FLAG_TRACE \
498 { FAULT_FLAG_WRITE, "WRITE" }, \
499 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
500 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
501 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
502 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
503 { FAULT_FLAG_TRIED, "TRIED" }, \
504 { FAULT_FLAG_USER, "USER" }, \
505 { FAULT_FLAG_REMOTE, "REMOTE" }, \
506 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
507 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \
508 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" }
509
510/*
511 * vm_fault is filled by the pagefault handler and passed to the vma's
512 * ->fault function. The vma's ->fault is responsible for returning a bitmask
513 * of VM_FAULT_xxx flags that give details about how the fault was handled.
514 *
515 * MM layer fills up gfp_mask for page allocations but fault handler might
516 * alter it if its implementation requires a different allocation context.
517 *
518 * pgoff should be used in favour of virtual_address, if possible.
519 */
520struct vm_fault {
521 const struct {
522 struct vm_area_struct *vma; /* Target VMA */
523 gfp_t gfp_mask; /* gfp mask to be used for allocations */
524 pgoff_t pgoff; /* Logical page offset based on vma */
525 unsigned long address; /* Faulting virtual address - masked */
526 unsigned long real_address; /* Faulting virtual address - unmasked */
527 };
528 enum fault_flag flags; /* FAULT_FLAG_xxx flags
529 * XXX: should really be 'const' */
530 pmd_t *pmd; /* Pointer to pmd entry matching
531 * the 'address' */
532 pud_t *pud; /* Pointer to pud entry matching
533 * the 'address'
534 */
535 union {
536 pte_t orig_pte; /* Value of PTE at the time of fault */
537 pmd_t orig_pmd; /* Value of PMD at the time of fault,
538 * used by PMD fault only.
539 */
540 };
541
542 struct page *cow_page; /* Page handler may use for COW fault */
543 struct page *page; /* ->fault handlers should return a
544 * page here, unless VM_FAULT_NOPAGE
545 * is set (which is also implied by
546 * VM_FAULT_ERROR).
547 */
548 /* These three entries are valid only while holding ptl lock */
549 pte_t *pte; /* Pointer to pte entry matching
550 * the 'address'. NULL if the page
551 * table hasn't been allocated.
552 */
553 spinlock_t *ptl; /* Page table lock.
554 * Protects pte page table if 'pte'
555 * is not NULL, otherwise pmd.
556 */
557 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
558 * vm_ops->map_pages() sets up a page
559 * table from atomic context.
560 * do_fault_around() pre-allocates
561 * page table to avoid allocation from
562 * atomic context.
563 */
564};
565
566/*
567 * These are the virtual MM functions - opening of an area, closing and
568 * unmapping it (needed to keep files on disk up-to-date etc), pointer
569 * to the functions called when a no-page or a wp-page exception occurs.
570 */
571struct vm_operations_struct {
572 void (*open)(struct vm_area_struct * area);
573 /**
574 * @close: Called when the VMA is being removed from the MM.
575 * Context: User context. May sleep. Caller holds mmap_lock.
576 */
577 void (*close)(struct vm_area_struct * area);
578 /* Called any time before splitting to check if it's allowed */
579 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
580 int (*mremap)(struct vm_area_struct *area);
581 /*
582 * Called by mprotect() to make driver-specific permission
583 * checks before mprotect() is finalised. The VMA must not
584 * be modified. Returns 0 if mprotect() can proceed.
585 */
586 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
587 unsigned long end, unsigned long newflags);
588 vm_fault_t (*fault)(struct vm_fault *vmf);
589 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
590 vm_fault_t (*map_pages)(struct vm_fault *vmf,
591 pgoff_t start_pgoff, pgoff_t end_pgoff);
592 unsigned long (*pagesize)(struct vm_area_struct * area);
593
594 /* notification that a previously read-only page is about to become
595 * writable, if an error is returned it will cause a SIGBUS */
596 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
597
598 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
599 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
600
601 /* called by access_process_vm when get_user_pages() fails, typically
602 * for use by special VMAs. See also generic_access_phys() for a generic
603 * implementation useful for any iomem mapping.
604 */
605 int (*access)(struct vm_area_struct *vma, unsigned long addr,
606 void *buf, int len, int write);
607
608 /* Called by the /proc/PID/maps code to ask the vma whether it
609 * has a special name. Returning non-NULL will also cause this
610 * vma to be dumped unconditionally. */
611 const char *(*name)(struct vm_area_struct *vma);
612
613#ifdef CONFIG_NUMA
614 /*
615 * set_policy() op must add a reference to any non-NULL @new mempolicy
616 * to hold the policy upon return. Caller should pass NULL @new to
617 * remove a policy and fall back to surrounding context--i.e. do not
618 * install a MPOL_DEFAULT policy, nor the task or system default
619 * mempolicy.
620 */
621 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
622
623 /*
624 * get_policy() op must add reference [mpol_get()] to any policy at
625 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
626 * in mm/mempolicy.c will do this automatically.
627 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
628 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
629 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
630 * must return NULL--i.e., do not "fallback" to task or system default
631 * policy.
632 */
633 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
634 unsigned long addr, pgoff_t *ilx);
635#endif
636 /*
637 * Called by vm_normal_page() for special PTEs to find the
638 * page for @addr. This is useful if the default behavior
639 * (using pte_page()) would not find the correct page.
640 */
641 struct page *(*find_special_page)(struct vm_area_struct *vma,
642 unsigned long addr);
643};
644
645#ifdef CONFIG_NUMA_BALANCING
646static inline void vma_numab_state_init(struct vm_area_struct *vma)
647{
648 vma->numab_state = NULL;
649}
650static inline void vma_numab_state_free(struct vm_area_struct *vma)
651{
652 kfree(vma->numab_state);
653}
654#else
655static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
656static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
657#endif /* CONFIG_NUMA_BALANCING */
658
659#ifdef CONFIG_PER_VMA_LOCK
660/*
661 * Try to read-lock a vma. The function is allowed to occasionally yield false
662 * locked result to avoid performance overhead, in which case we fall back to
663 * using mmap_lock. The function should never yield false unlocked result.
664 */
665static inline bool vma_start_read(struct vm_area_struct *vma)
666{
667 /*
668 * Check before locking. A race might cause false locked result.
669 * We can use READ_ONCE() for the mm_lock_seq here, and don't need
670 * ACQUIRE semantics, because this is just a lockless check whose result
671 * we don't rely on for anything - the mm_lock_seq read against which we
672 * need ordering is below.
673 */
674 if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq))
675 return false;
676
677 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
678 return false;
679
680 /*
681 * Overflow might produce false locked result.
682 * False unlocked result is impossible because we modify and check
683 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
684 * modification invalidates all existing locks.
685 *
686 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are
687 * racing with vma_end_write_all(), we only start reading from the VMA
688 * after it has been unlocked.
689 * This pairs with RELEASE semantics in vma_end_write_all().
690 */
691 if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) {
692 up_read(&vma->vm_lock->lock);
693 return false;
694 }
695 return true;
696}
697
698static inline void vma_end_read(struct vm_area_struct *vma)
699{
700 rcu_read_lock(); /* keeps vma alive till the end of up_read */
701 up_read(&vma->vm_lock->lock);
702 rcu_read_unlock();
703}
704
705/* WARNING! Can only be used if mmap_lock is expected to be write-locked */
706static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
707{
708 mmap_assert_write_locked(vma->vm_mm);
709
710 /*
711 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
712 * mm->mm_lock_seq can't be concurrently modified.
713 */
714 *mm_lock_seq = vma->vm_mm->mm_lock_seq;
715 return (vma->vm_lock_seq == *mm_lock_seq);
716}
717
718/*
719 * Begin writing to a VMA.
720 * Exclude concurrent readers under the per-VMA lock until the currently
721 * write-locked mmap_lock is dropped or downgraded.
722 */
723static inline void vma_start_write(struct vm_area_struct *vma)
724{
725 int mm_lock_seq;
726
727 if (__is_vma_write_locked(vma, &mm_lock_seq))
728 return;
729
730 down_write(&vma->vm_lock->lock);
731 /*
732 * We should use WRITE_ONCE() here because we can have concurrent reads
733 * from the early lockless pessimistic check in vma_start_read().
734 * We don't really care about the correctness of that early check, but
735 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy.
736 */
737 WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq);
738 up_write(&vma->vm_lock->lock);
739}
740
741static inline void vma_assert_write_locked(struct vm_area_struct *vma)
742{
743 int mm_lock_seq;
744
745 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
746}
747
748static inline void vma_assert_locked(struct vm_area_struct *vma)
749{
750 if (!rwsem_is_locked(&vma->vm_lock->lock))
751 vma_assert_write_locked(vma);
752}
753
754static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
755{
756 /* When detaching vma should be write-locked */
757 if (detached)
758 vma_assert_write_locked(vma);
759 vma->detached = detached;
760}
761
762static inline void release_fault_lock(struct vm_fault *vmf)
763{
764 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
765 vma_end_read(vmf->vma);
766 else
767 mmap_read_unlock(vmf->vma->vm_mm);
768}
769
770static inline void assert_fault_locked(struct vm_fault *vmf)
771{
772 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
773 vma_assert_locked(vmf->vma);
774 else
775 mmap_assert_locked(vmf->vma->vm_mm);
776}
777
778struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
779 unsigned long address);
780
781#else /* CONFIG_PER_VMA_LOCK */
782
783static inline bool vma_start_read(struct vm_area_struct *vma)
784 { return false; }
785static inline void vma_end_read(struct vm_area_struct *vma) {}
786static inline void vma_start_write(struct vm_area_struct *vma) {}
787static inline void vma_assert_write_locked(struct vm_area_struct *vma)
788 { mmap_assert_write_locked(vma->vm_mm); }
789static inline void vma_mark_detached(struct vm_area_struct *vma,
790 bool detached) {}
791
792static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
793 unsigned long address)
794{
795 return NULL;
796}
797
798static inline void vma_assert_locked(struct vm_area_struct *vma)
799{
800 mmap_assert_locked(vma->vm_mm);
801}
802
803static inline void release_fault_lock(struct vm_fault *vmf)
804{
805 mmap_read_unlock(vmf->vma->vm_mm);
806}
807
808static inline void assert_fault_locked(struct vm_fault *vmf)
809{
810 mmap_assert_locked(vmf->vma->vm_mm);
811}
812
813#endif /* CONFIG_PER_VMA_LOCK */
814
815extern const struct vm_operations_struct vma_dummy_vm_ops;
816
817/*
818 * WARNING: vma_init does not initialize vma->vm_lock.
819 * Use vm_area_alloc()/vm_area_free() if vma needs locking.
820 */
821static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
822{
823 memset(vma, 0, sizeof(*vma));
824 vma->vm_mm = mm;
825 vma->vm_ops = &vma_dummy_vm_ops;
826 INIT_LIST_HEAD(&vma->anon_vma_chain);
827 vma_mark_detached(vma, false);
828 vma_numab_state_init(vma);
829}
830
831/* Use when VMA is not part of the VMA tree and needs no locking */
832static inline void vm_flags_init(struct vm_area_struct *vma,
833 vm_flags_t flags)
834{
835 ACCESS_PRIVATE(vma, __vm_flags) = flags;
836}
837
838/*
839 * Use when VMA is part of the VMA tree and modifications need coordination
840 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
841 * it should be locked explicitly beforehand.
842 */
843static inline void vm_flags_reset(struct vm_area_struct *vma,
844 vm_flags_t flags)
845{
846 vma_assert_write_locked(vma);
847 vm_flags_init(vma, flags);
848}
849
850static inline void vm_flags_reset_once(struct vm_area_struct *vma,
851 vm_flags_t flags)
852{
853 vma_assert_write_locked(vma);
854 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
855}
856
857static inline void vm_flags_set(struct vm_area_struct *vma,
858 vm_flags_t flags)
859{
860 vma_start_write(vma);
861 ACCESS_PRIVATE(vma, __vm_flags) |= flags;
862}
863
864static inline void vm_flags_clear(struct vm_area_struct *vma,
865 vm_flags_t flags)
866{
867 vma_start_write(vma);
868 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
869}
870
871/*
872 * Use only if VMA is not part of the VMA tree or has no other users and
873 * therefore needs no locking.
874 */
875static inline void __vm_flags_mod(struct vm_area_struct *vma,
876 vm_flags_t set, vm_flags_t clear)
877{
878 vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
879}
880
881/*
882 * Use only when the order of set/clear operations is unimportant, otherwise
883 * use vm_flags_{set|clear} explicitly.
884 */
885static inline void vm_flags_mod(struct vm_area_struct *vma,
886 vm_flags_t set, vm_flags_t clear)
887{
888 vma_start_write(vma);
889 __vm_flags_mod(vma, set, clear);
890}
891
892static inline void vma_set_anonymous(struct vm_area_struct *vma)
893{
894 vma->vm_ops = NULL;
895}
896
897static inline bool vma_is_anonymous(struct vm_area_struct *vma)
898{
899 return !vma->vm_ops;
900}
901
902/*
903 * Indicate if the VMA is a heap for the given task; for
904 * /proc/PID/maps that is the heap of the main task.
905 */
906static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
907{
908 return vma->vm_start < vma->vm_mm->brk &&
909 vma->vm_end > vma->vm_mm->start_brk;
910}
911
912/*
913 * Indicate if the VMA is a stack for the given task; for
914 * /proc/PID/maps that is the stack of the main task.
915 */
916static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
917{
918 /*
919 * We make no effort to guess what a given thread considers to be
920 * its "stack". It's not even well-defined for programs written
921 * languages like Go.
922 */
923 return vma->vm_start <= vma->vm_mm->start_stack &&
924 vma->vm_end >= vma->vm_mm->start_stack;
925}
926
927static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
928{
929 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
930
931 if (!maybe_stack)
932 return false;
933
934 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
935 VM_STACK_INCOMPLETE_SETUP)
936 return true;
937
938 return false;
939}
940
941static inline bool vma_is_foreign(struct vm_area_struct *vma)
942{
943 if (!current->mm)
944 return true;
945
946 if (current->mm != vma->vm_mm)
947 return true;
948
949 return false;
950}
951
952static inline bool vma_is_accessible(struct vm_area_struct *vma)
953{
954 return vma->vm_flags & VM_ACCESS_FLAGS;
955}
956
957static inline bool is_shared_maywrite(vm_flags_t vm_flags)
958{
959 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
960 (VM_SHARED | VM_MAYWRITE);
961}
962
963static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma)
964{
965 return is_shared_maywrite(vma->vm_flags);
966}
967
968static inline
969struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
970{
971 return mas_find(&vmi->mas, max - 1);
972}
973
974static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
975{
976 /*
977 * Uses mas_find() to get the first VMA when the iterator starts.
978 * Calling mas_next() could skip the first entry.
979 */
980 return mas_find(&vmi->mas, ULONG_MAX);
981}
982
983static inline
984struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
985{
986 return mas_next_range(&vmi->mas, ULONG_MAX);
987}
988
989
990static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
991{
992 return mas_prev(&vmi->mas, 0);
993}
994
995static inline
996struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi)
997{
998 return mas_prev_range(&vmi->mas, 0);
999}
1000
1001static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
1002{
1003 return vmi->mas.index;
1004}
1005
1006static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
1007{
1008 return vmi->mas.last + 1;
1009}
1010static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
1011 unsigned long count)
1012{
1013 return mas_expected_entries(&vmi->mas, count);
1014}
1015
1016static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
1017 unsigned long start, unsigned long end, gfp_t gfp)
1018{
1019 __mas_set_range(&vmi->mas, start, end - 1);
1020 mas_store_gfp(&vmi->mas, NULL, gfp);
1021 if (unlikely(mas_is_err(&vmi->mas)))
1022 return -ENOMEM;
1023
1024 return 0;
1025}
1026
1027/* Free any unused preallocations */
1028static inline void vma_iter_free(struct vma_iterator *vmi)
1029{
1030 mas_destroy(&vmi->mas);
1031}
1032
1033static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
1034 struct vm_area_struct *vma)
1035{
1036 vmi->mas.index = vma->vm_start;
1037 vmi->mas.last = vma->vm_end - 1;
1038 mas_store(&vmi->mas, vma);
1039 if (unlikely(mas_is_err(&vmi->mas)))
1040 return -ENOMEM;
1041
1042 return 0;
1043}
1044
1045static inline void vma_iter_invalidate(struct vma_iterator *vmi)
1046{
1047 mas_pause(&vmi->mas);
1048}
1049
1050static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
1051{
1052 mas_set(&vmi->mas, addr);
1053}
1054
1055#define for_each_vma(__vmi, __vma) \
1056 while (((__vma) = vma_next(&(__vmi))) != NULL)
1057
1058/* The MM code likes to work with exclusive end addresses */
1059#define for_each_vma_range(__vmi, __vma, __end) \
1060 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
1061
1062#ifdef CONFIG_SHMEM
1063/*
1064 * The vma_is_shmem is not inline because it is used only by slow
1065 * paths in userfault.
1066 */
1067bool vma_is_shmem(struct vm_area_struct *vma);
1068bool vma_is_anon_shmem(struct vm_area_struct *vma);
1069#else
1070static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1071static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
1072#endif
1073
1074int vma_is_stack_for_current(struct vm_area_struct *vma);
1075
1076/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
1077#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
1078
1079struct mmu_gather;
1080struct inode;
1081
1082/*
1083 * compound_order() can be called without holding a reference, which means
1084 * that niceties like page_folio() don't work. These callers should be
1085 * prepared to handle wild return values. For example, PG_head may be
1086 * set before the order is initialised, or this may be a tail page.
1087 * See compaction.c for some good examples.
1088 */
1089static inline unsigned int compound_order(struct page *page)
1090{
1091 struct folio *folio = (struct folio *)page;
1092
1093 if (!test_bit(PG_head, &folio->flags))
1094 return 0;
1095 return folio->_flags_1 & 0xff;
1096}
1097
1098/**
1099 * folio_order - The allocation order of a folio.
1100 * @folio: The folio.
1101 *
1102 * A folio is composed of 2^order pages. See get_order() for the definition
1103 * of order.
1104 *
1105 * Return: The order of the folio.
1106 */
1107static inline unsigned int folio_order(struct folio *folio)
1108{
1109 if (!folio_test_large(folio))
1110 return 0;
1111 return folio->_flags_1 & 0xff;
1112}
1113
1114#include <linux/huge_mm.h>
1115
1116/*
1117 * Methods to modify the page usage count.
1118 *
1119 * What counts for a page usage:
1120 * - cache mapping (page->mapping)
1121 * - private data (page->private)
1122 * - page mapped in a task's page tables, each mapping
1123 * is counted separately
1124 *
1125 * Also, many kernel routines increase the page count before a critical
1126 * routine so they can be sure the page doesn't go away from under them.
1127 */
1128
1129/*
1130 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1131 */
1132static inline int put_page_testzero(struct page *page)
1133{
1134 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1135 return page_ref_dec_and_test(page);
1136}
1137
1138static inline int folio_put_testzero(struct folio *folio)
1139{
1140 return put_page_testzero(&folio->page);
1141}
1142
1143/*
1144 * Try to grab a ref unless the page has a refcount of zero, return false if
1145 * that is the case.
1146 * This can be called when MMU is off so it must not access
1147 * any of the virtual mappings.
1148 */
1149static inline bool get_page_unless_zero(struct page *page)
1150{
1151 return page_ref_add_unless(page, 1, 0);
1152}
1153
1154static inline struct folio *folio_get_nontail_page(struct page *page)
1155{
1156 if (unlikely(!get_page_unless_zero(page)))
1157 return NULL;
1158 return (struct folio *)page;
1159}
1160
1161extern int page_is_ram(unsigned long pfn);
1162
1163enum {
1164 REGION_INTERSECTS,
1165 REGION_DISJOINT,
1166 REGION_MIXED,
1167};
1168
1169int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1170 unsigned long desc);
1171
1172/* Support for virtually mapped pages */
1173struct page *vmalloc_to_page(const void *addr);
1174unsigned long vmalloc_to_pfn(const void *addr);
1175
1176/*
1177 * Determine if an address is within the vmalloc range
1178 *
1179 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1180 * is no special casing required.
1181 */
1182#ifdef CONFIG_MMU
1183extern bool is_vmalloc_addr(const void *x);
1184extern int is_vmalloc_or_module_addr(const void *x);
1185#else
1186static inline bool is_vmalloc_addr(const void *x)
1187{
1188 return false;
1189}
1190static inline int is_vmalloc_or_module_addr(const void *x)
1191{
1192 return 0;
1193}
1194#endif
1195
1196/*
1197 * How many times the entire folio is mapped as a single unit (eg by a
1198 * PMD or PUD entry). This is probably not what you want, except for
1199 * debugging purposes - it does not include PTE-mapped sub-pages; look
1200 * at folio_mapcount() or page_mapcount() instead.
1201 */
1202static inline int folio_entire_mapcount(struct folio *folio)
1203{
1204 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1205 return atomic_read(&folio->_entire_mapcount) + 1;
1206}
1207
1208/*
1209 * The atomic page->_mapcount, starts from -1: so that transitions
1210 * both from it and to it can be tracked, using atomic_inc_and_test
1211 * and atomic_add_negative(-1).
1212 */
1213static inline void page_mapcount_reset(struct page *page)
1214{
1215 atomic_set(&(page)->_mapcount, -1);
1216}
1217
1218/**
1219 * page_mapcount() - Number of times this precise page is mapped.
1220 * @page: The page.
1221 *
1222 * The number of times this page is mapped. If this page is part of
1223 * a large folio, it includes the number of times this page is mapped
1224 * as part of that folio.
1225 *
1226 * Will report 0 for pages which cannot be mapped into userspace, eg
1227 * slab, page tables and similar.
1228 */
1229static inline int page_mapcount(struct page *page)
1230{
1231 int mapcount = atomic_read(&page->_mapcount) + 1;
1232
1233 /* Handle page_has_type() pages */
1234 if (mapcount < 0)
1235 mapcount = 0;
1236 if (unlikely(PageCompound(page)))
1237 mapcount += folio_entire_mapcount(page_folio(page));
1238
1239 return mapcount;
1240}
1241
1242int folio_total_mapcount(struct folio *folio);
1243
1244/**
1245 * folio_mapcount() - Calculate the number of mappings of this folio.
1246 * @folio: The folio.
1247 *
1248 * A large folio tracks both how many times the entire folio is mapped,
1249 * and how many times each individual page in the folio is mapped.
1250 * This function calculates the total number of times the folio is
1251 * mapped.
1252 *
1253 * Return: The number of times this folio is mapped.
1254 */
1255static inline int folio_mapcount(struct folio *folio)
1256{
1257 if (likely(!folio_test_large(folio)))
1258 return atomic_read(&folio->_mapcount) + 1;
1259 return folio_total_mapcount(folio);
1260}
1261
1262static inline bool folio_large_is_mapped(struct folio *folio)
1263{
1264 /*
1265 * Reading _entire_mapcount below could be omitted if hugetlb
1266 * participated in incrementing nr_pages_mapped when compound mapped.
1267 */
1268 return atomic_read(&folio->_nr_pages_mapped) > 0 ||
1269 atomic_read(&folio->_entire_mapcount) >= 0;
1270}
1271
1272/**
1273 * folio_mapped - Is this folio mapped into userspace?
1274 * @folio: The folio.
1275 *
1276 * Return: True if any page in this folio is referenced by user page tables.
1277 */
1278static inline bool folio_mapped(struct folio *folio)
1279{
1280 if (likely(!folio_test_large(folio)))
1281 return atomic_read(&folio->_mapcount) >= 0;
1282 return folio_large_is_mapped(folio);
1283}
1284
1285/*
1286 * Return true if this page is mapped into pagetables.
1287 * For compound page it returns true if any sub-page of compound page is mapped,
1288 * even if this particular sub-page is not itself mapped by any PTE or PMD.
1289 */
1290static inline bool page_mapped(struct page *page)
1291{
1292 if (likely(!PageCompound(page)))
1293 return atomic_read(&page->_mapcount) >= 0;
1294 return folio_large_is_mapped(page_folio(page));
1295}
1296
1297static inline struct page *virt_to_head_page(const void *x)
1298{
1299 struct page *page = virt_to_page(x);
1300
1301 return compound_head(page);
1302}
1303
1304static inline struct folio *virt_to_folio(const void *x)
1305{
1306 struct page *page = virt_to_page(x);
1307
1308 return page_folio(page);
1309}
1310
1311void __folio_put(struct folio *folio);
1312
1313void put_pages_list(struct list_head *pages);
1314
1315void split_page(struct page *page, unsigned int order);
1316void folio_copy(struct folio *dst, struct folio *src);
1317
1318unsigned long nr_free_buffer_pages(void);
1319
1320void destroy_large_folio(struct folio *folio);
1321
1322/* Returns the number of bytes in this potentially compound page. */
1323static inline unsigned long page_size(struct page *page)
1324{
1325 return PAGE_SIZE << compound_order(page);
1326}
1327
1328/* Returns the number of bits needed for the number of bytes in a page */
1329static inline unsigned int page_shift(struct page *page)
1330{
1331 return PAGE_SHIFT + compound_order(page);
1332}
1333
1334/**
1335 * thp_order - Order of a transparent huge page.
1336 * @page: Head page of a transparent huge page.
1337 */
1338static inline unsigned int thp_order(struct page *page)
1339{
1340 VM_BUG_ON_PGFLAGS(PageTail(page), page);
1341 return compound_order(page);
1342}
1343
1344/**
1345 * thp_size - Size of a transparent huge page.
1346 * @page: Head page of a transparent huge page.
1347 *
1348 * Return: Number of bytes in this page.
1349 */
1350static inline unsigned long thp_size(struct page *page)
1351{
1352 return PAGE_SIZE << thp_order(page);
1353}
1354
1355#ifdef CONFIG_MMU
1356/*
1357 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1358 * servicing faults for write access. In the normal case, do always want
1359 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1360 * that do not have writing enabled, when used by access_process_vm.
1361 */
1362static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1363{
1364 if (likely(vma->vm_flags & VM_WRITE))
1365 pte = pte_mkwrite(pte, vma);
1366 return pte;
1367}
1368
1369vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1370void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1371 struct page *page, unsigned int nr, unsigned long addr);
1372
1373vm_fault_t finish_fault(struct vm_fault *vmf);
1374#endif
1375
1376/*
1377 * Multiple processes may "see" the same page. E.g. for untouched
1378 * mappings of /dev/null, all processes see the same page full of
1379 * zeroes, and text pages of executables and shared libraries have
1380 * only one copy in memory, at most, normally.
1381 *
1382 * For the non-reserved pages, page_count(page) denotes a reference count.
1383 * page_count() == 0 means the page is free. page->lru is then used for
1384 * freelist management in the buddy allocator.
1385 * page_count() > 0 means the page has been allocated.
1386 *
1387 * Pages are allocated by the slab allocator in order to provide memory
1388 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1389 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1390 * unless a particular usage is carefully commented. (the responsibility of
1391 * freeing the kmalloc memory is the caller's, of course).
1392 *
1393 * A page may be used by anyone else who does a __get_free_page().
1394 * In this case, page_count still tracks the references, and should only
1395 * be used through the normal accessor functions. The top bits of page->flags
1396 * and page->virtual store page management information, but all other fields
1397 * are unused and could be used privately, carefully. The management of this
1398 * page is the responsibility of the one who allocated it, and those who have
1399 * subsequently been given references to it.
1400 *
1401 * The other pages (we may call them "pagecache pages") are completely
1402 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1403 * The following discussion applies only to them.
1404 *
1405 * A pagecache page contains an opaque `private' member, which belongs to the
1406 * page's address_space. Usually, this is the address of a circular list of
1407 * the page's disk buffers. PG_private must be set to tell the VM to call
1408 * into the filesystem to release these pages.
1409 *
1410 * A page may belong to an inode's memory mapping. In this case, page->mapping
1411 * is the pointer to the inode, and page->index is the file offset of the page,
1412 * in units of PAGE_SIZE.
1413 *
1414 * If pagecache pages are not associated with an inode, they are said to be
1415 * anonymous pages. These may become associated with the swapcache, and in that
1416 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1417 *
1418 * In either case (swapcache or inode backed), the pagecache itself holds one
1419 * reference to the page. Setting PG_private should also increment the
1420 * refcount. The each user mapping also has a reference to the page.
1421 *
1422 * The pagecache pages are stored in a per-mapping radix tree, which is
1423 * rooted at mapping->i_pages, and indexed by offset.
1424 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1425 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1426 *
1427 * All pagecache pages may be subject to I/O:
1428 * - inode pages may need to be read from disk,
1429 * - inode pages which have been modified and are MAP_SHARED may need
1430 * to be written back to the inode on disk,
1431 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1432 * modified may need to be swapped out to swap space and (later) to be read
1433 * back into memory.
1434 */
1435
1436#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1437DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1438
1439bool __put_devmap_managed_page_refs(struct page *page, int refs);
1440static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1441{
1442 if (!static_branch_unlikely(&devmap_managed_key))
1443 return false;
1444 if (!is_zone_device_page(page))
1445 return false;
1446 return __put_devmap_managed_page_refs(page, refs);
1447}
1448#else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1449static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1450{
1451 return false;
1452}
1453#endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1454
1455static inline bool put_devmap_managed_page(struct page *page)
1456{
1457 return put_devmap_managed_page_refs(page, 1);
1458}
1459
1460/* 127: arbitrary random number, small enough to assemble well */
1461#define folio_ref_zero_or_close_to_overflow(folio) \
1462 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1463
1464/**
1465 * folio_get - Increment the reference count on a folio.
1466 * @folio: The folio.
1467 *
1468 * Context: May be called in any context, as long as you know that
1469 * you have a refcount on the folio. If you do not already have one,
1470 * folio_try_get() may be the right interface for you to use.
1471 */
1472static inline void folio_get(struct folio *folio)
1473{
1474 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1475 folio_ref_inc(folio);
1476}
1477
1478static inline void get_page(struct page *page)
1479{
1480 folio_get(page_folio(page));
1481}
1482
1483static inline __must_check bool try_get_page(struct page *page)
1484{
1485 page = compound_head(page);
1486 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1487 return false;
1488 page_ref_inc(page);
1489 return true;
1490}
1491
1492/**
1493 * folio_put - Decrement the reference count on a folio.
1494 * @folio: The folio.
1495 *
1496 * If the folio's reference count reaches zero, the memory will be
1497 * released back to the page allocator and may be used by another
1498 * allocation immediately. Do not access the memory or the struct folio
1499 * after calling folio_put() unless you can be sure that it wasn't the
1500 * last reference.
1501 *
1502 * Context: May be called in process or interrupt context, but not in NMI
1503 * context. May be called while holding a spinlock.
1504 */
1505static inline void folio_put(struct folio *folio)
1506{
1507 if (folio_put_testzero(folio))
1508 __folio_put(folio);
1509}
1510
1511/**
1512 * folio_put_refs - Reduce the reference count on a folio.
1513 * @folio: The folio.
1514 * @refs: The amount to subtract from the folio's reference count.
1515 *
1516 * If the folio's reference count reaches zero, the memory will be
1517 * released back to the page allocator and may be used by another
1518 * allocation immediately. Do not access the memory or the struct folio
1519 * after calling folio_put_refs() unless you can be sure that these weren't
1520 * the last references.
1521 *
1522 * Context: May be called in process or interrupt context, but not in NMI
1523 * context. May be called while holding a spinlock.
1524 */
1525static inline void folio_put_refs(struct folio *folio, int refs)
1526{
1527 if (folio_ref_sub_and_test(folio, refs))
1528 __folio_put(folio);
1529}
1530
1531void folios_put_refs(struct folio_batch *folios, unsigned int *refs);
1532
1533/*
1534 * union release_pages_arg - an array of pages or folios
1535 *
1536 * release_pages() releases a simple array of multiple pages, and
1537 * accepts various different forms of said page array: either
1538 * a regular old boring array of pages, an array of folios, or
1539 * an array of encoded page pointers.
1540 *
1541 * The transparent union syntax for this kind of "any of these
1542 * argument types" is all kinds of ugly, so look away.
1543 */
1544typedef union {
1545 struct page **pages;
1546 struct folio **folios;
1547 struct encoded_page **encoded_pages;
1548} release_pages_arg __attribute__ ((__transparent_union__));
1549
1550void release_pages(release_pages_arg, int nr);
1551
1552/**
1553 * folios_put - Decrement the reference count on an array of folios.
1554 * @folios: The folios.
1555 *
1556 * Like folio_put(), but for a batch of folios. This is more efficient
1557 * than writing the loop yourself as it will optimise the locks which need
1558 * to be taken if the folios are freed. The folios batch is returned
1559 * empty and ready to be reused for another batch; there is no need to
1560 * reinitialise it.
1561 *
1562 * Context: May be called in process or interrupt context, but not in NMI
1563 * context. May be called while holding a spinlock.
1564 */
1565static inline void folios_put(struct folio_batch *folios)
1566{
1567 folios_put_refs(folios, NULL);
1568}
1569
1570static inline void put_page(struct page *page)
1571{
1572 struct folio *folio = page_folio(page);
1573
1574 /*
1575 * For some devmap managed pages we need to catch refcount transition
1576 * from 2 to 1:
1577 */
1578 if (put_devmap_managed_page(&folio->page))
1579 return;
1580 folio_put(folio);
1581}
1582
1583/*
1584 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1585 * the page's refcount so that two separate items are tracked: the original page
1586 * reference count, and also a new count of how many pin_user_pages() calls were
1587 * made against the page. ("gup-pinned" is another term for the latter).
1588 *
1589 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1590 * distinct from normal pages. As such, the unpin_user_page() call (and its
1591 * variants) must be used in order to release gup-pinned pages.
1592 *
1593 * Choice of value:
1594 *
1595 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1596 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1597 * simpler, due to the fact that adding an even power of two to the page
1598 * refcount has the effect of using only the upper N bits, for the code that
1599 * counts up using the bias value. This means that the lower bits are left for
1600 * the exclusive use of the original code that increments and decrements by one
1601 * (or at least, by much smaller values than the bias value).
1602 *
1603 * Of course, once the lower bits overflow into the upper bits (and this is
1604 * OK, because subtraction recovers the original values), then visual inspection
1605 * no longer suffices to directly view the separate counts. However, for normal
1606 * applications that don't have huge page reference counts, this won't be an
1607 * issue.
1608 *
1609 * Locking: the lockless algorithm described in folio_try_get_rcu()
1610 * provides safe operation for get_user_pages(), page_mkclean() and
1611 * other calls that race to set up page table entries.
1612 */
1613#define GUP_PIN_COUNTING_BIAS (1U << 10)
1614
1615void unpin_user_page(struct page *page);
1616void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1617 bool make_dirty);
1618void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1619 bool make_dirty);
1620void unpin_user_pages(struct page **pages, unsigned long npages);
1621
1622static inline bool is_cow_mapping(vm_flags_t flags)
1623{
1624 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1625}
1626
1627#ifndef CONFIG_MMU
1628static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1629{
1630 /*
1631 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1632 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1633 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1634 * underlying memory if ptrace is active, so this is only possible if
1635 * ptrace does not apply. Note that there is no mprotect() to upgrade
1636 * write permissions later.
1637 */
1638 return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1639}
1640#endif
1641
1642#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1643#define SECTION_IN_PAGE_FLAGS
1644#endif
1645
1646/*
1647 * The identification function is mainly used by the buddy allocator for
1648 * determining if two pages could be buddies. We are not really identifying
1649 * the zone since we could be using the section number id if we do not have
1650 * node id available in page flags.
1651 * We only guarantee that it will return the same value for two combinable
1652 * pages in a zone.
1653 */
1654static inline int page_zone_id(struct page *page)
1655{
1656 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1657}
1658
1659#ifdef NODE_NOT_IN_PAGE_FLAGS
1660int page_to_nid(const struct page *page);
1661#else
1662static inline int page_to_nid(const struct page *page)
1663{
1664 return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK;
1665}
1666#endif
1667
1668static inline int folio_nid(const struct folio *folio)
1669{
1670 return page_to_nid(&folio->page);
1671}
1672
1673#ifdef CONFIG_NUMA_BALANCING
1674/* page access time bits needs to hold at least 4 seconds */
1675#define PAGE_ACCESS_TIME_MIN_BITS 12
1676#if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1677#define PAGE_ACCESS_TIME_BUCKETS \
1678 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1679#else
1680#define PAGE_ACCESS_TIME_BUCKETS 0
1681#endif
1682
1683#define PAGE_ACCESS_TIME_MASK \
1684 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1685
1686static inline int cpu_pid_to_cpupid(int cpu, int pid)
1687{
1688 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1689}
1690
1691static inline int cpupid_to_pid(int cpupid)
1692{
1693 return cpupid & LAST__PID_MASK;
1694}
1695
1696static inline int cpupid_to_cpu(int cpupid)
1697{
1698 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1699}
1700
1701static inline int cpupid_to_nid(int cpupid)
1702{
1703 return cpu_to_node(cpupid_to_cpu(cpupid));
1704}
1705
1706static inline bool cpupid_pid_unset(int cpupid)
1707{
1708 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1709}
1710
1711static inline bool cpupid_cpu_unset(int cpupid)
1712{
1713 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1714}
1715
1716static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1717{
1718 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1719}
1720
1721#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1722#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1723static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1724{
1725 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1726}
1727
1728static inline int folio_last_cpupid(struct folio *folio)
1729{
1730 return folio->_last_cpupid;
1731}
1732static inline void page_cpupid_reset_last(struct page *page)
1733{
1734 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1735}
1736#else
1737static inline int folio_last_cpupid(struct folio *folio)
1738{
1739 return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1740}
1741
1742int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
1743
1744static inline void page_cpupid_reset_last(struct page *page)
1745{
1746 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1747}
1748#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1749
1750static inline int folio_xchg_access_time(struct folio *folio, int time)
1751{
1752 int last_time;
1753
1754 last_time = folio_xchg_last_cpupid(folio,
1755 time >> PAGE_ACCESS_TIME_BUCKETS);
1756 return last_time << PAGE_ACCESS_TIME_BUCKETS;
1757}
1758
1759static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1760{
1761 unsigned int pid_bit;
1762
1763 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1764 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1765 __set_bit(pid_bit, &vma->numab_state->pids_active[1]);
1766 }
1767}
1768#else /* !CONFIG_NUMA_BALANCING */
1769static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1770{
1771 return folio_nid(folio); /* XXX */
1772}
1773
1774static inline int folio_xchg_access_time(struct folio *folio, int time)
1775{
1776 return 0;
1777}
1778
1779static inline int folio_last_cpupid(struct folio *folio)
1780{
1781 return folio_nid(folio); /* XXX */
1782}
1783
1784static inline int cpupid_to_nid(int cpupid)
1785{
1786 return -1;
1787}
1788
1789static inline int cpupid_to_pid(int cpupid)
1790{
1791 return -1;
1792}
1793
1794static inline int cpupid_to_cpu(int cpupid)
1795{
1796 return -1;
1797}
1798
1799static inline int cpu_pid_to_cpupid(int nid, int pid)
1800{
1801 return -1;
1802}
1803
1804static inline bool cpupid_pid_unset(int cpupid)
1805{
1806 return true;
1807}
1808
1809static inline void page_cpupid_reset_last(struct page *page)
1810{
1811}
1812
1813static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1814{
1815 return false;
1816}
1817
1818static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1819{
1820}
1821#endif /* CONFIG_NUMA_BALANCING */
1822
1823#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1824
1825/*
1826 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1827 * setting tags for all pages to native kernel tag value 0xff, as the default
1828 * value 0x00 maps to 0xff.
1829 */
1830
1831static inline u8 page_kasan_tag(const struct page *page)
1832{
1833 u8 tag = KASAN_TAG_KERNEL;
1834
1835 if (kasan_enabled()) {
1836 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1837 tag ^= 0xff;
1838 }
1839
1840 return tag;
1841}
1842
1843static inline void page_kasan_tag_set(struct page *page, u8 tag)
1844{
1845 unsigned long old_flags, flags;
1846
1847 if (!kasan_enabled())
1848 return;
1849
1850 tag ^= 0xff;
1851 old_flags = READ_ONCE(page->flags);
1852 do {
1853 flags = old_flags;
1854 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1855 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1856 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1857}
1858
1859static inline void page_kasan_tag_reset(struct page *page)
1860{
1861 if (kasan_enabled())
1862 page_kasan_tag_set(page, KASAN_TAG_KERNEL);
1863}
1864
1865#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1866
1867static inline u8 page_kasan_tag(const struct page *page)
1868{
1869 return 0xff;
1870}
1871
1872static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1873static inline void page_kasan_tag_reset(struct page *page) { }
1874
1875#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1876
1877static inline struct zone *page_zone(const struct page *page)
1878{
1879 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1880}
1881
1882static inline pg_data_t *page_pgdat(const struct page *page)
1883{
1884 return NODE_DATA(page_to_nid(page));
1885}
1886
1887static inline struct zone *folio_zone(const struct folio *folio)
1888{
1889 return page_zone(&folio->page);
1890}
1891
1892static inline pg_data_t *folio_pgdat(const struct folio *folio)
1893{
1894 return page_pgdat(&folio->page);
1895}
1896
1897#ifdef SECTION_IN_PAGE_FLAGS
1898static inline void set_page_section(struct page *page, unsigned long section)
1899{
1900 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1901 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1902}
1903
1904static inline unsigned long page_to_section(const struct page *page)
1905{
1906 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1907}
1908#endif
1909
1910/**
1911 * folio_pfn - Return the Page Frame Number of a folio.
1912 * @folio: The folio.
1913 *
1914 * A folio may contain multiple pages. The pages have consecutive
1915 * Page Frame Numbers.
1916 *
1917 * Return: The Page Frame Number of the first page in the folio.
1918 */
1919static inline unsigned long folio_pfn(struct folio *folio)
1920{
1921 return page_to_pfn(&folio->page);
1922}
1923
1924static inline struct folio *pfn_folio(unsigned long pfn)
1925{
1926 return page_folio(pfn_to_page(pfn));
1927}
1928
1929/**
1930 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1931 * @folio: The folio.
1932 *
1933 * This function checks if a folio has been pinned via a call to
1934 * a function in the pin_user_pages() family.
1935 *
1936 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1937 * because it means "definitely not pinned for DMA", but true means "probably
1938 * pinned for DMA, but possibly a false positive due to having at least
1939 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1940 *
1941 * False positives are OK, because: a) it's unlikely for a folio to
1942 * get that many refcounts, and b) all the callers of this routine are
1943 * expected to be able to deal gracefully with a false positive.
1944 *
1945 * For large folios, the result will be exactly correct. That's because
1946 * we have more tracking data available: the _pincount field is used
1947 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1948 *
1949 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1950 *
1951 * Return: True, if it is likely that the page has been "dma-pinned".
1952 * False, if the page is definitely not dma-pinned.
1953 */
1954static inline bool folio_maybe_dma_pinned(struct folio *folio)
1955{
1956 if (folio_test_large(folio))
1957 return atomic_read(&folio->_pincount) > 0;
1958
1959 /*
1960 * folio_ref_count() is signed. If that refcount overflows, then
1961 * folio_ref_count() returns a negative value, and callers will avoid
1962 * further incrementing the refcount.
1963 *
1964 * Here, for that overflow case, use the sign bit to count a little
1965 * bit higher via unsigned math, and thus still get an accurate result.
1966 */
1967 return ((unsigned int)folio_ref_count(folio)) >=
1968 GUP_PIN_COUNTING_BIAS;
1969}
1970
1971static inline bool page_maybe_dma_pinned(struct page *page)
1972{
1973 return folio_maybe_dma_pinned(page_folio(page));
1974}
1975
1976/*
1977 * This should most likely only be called during fork() to see whether we
1978 * should break the cow immediately for an anon page on the src mm.
1979 *
1980 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1981 */
1982static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma,
1983 struct folio *folio)
1984{
1985 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1986
1987 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1988 return false;
1989
1990 return folio_maybe_dma_pinned(folio);
1991}
1992
1993/**
1994 * is_zero_page - Query if a page is a zero page
1995 * @page: The page to query
1996 *
1997 * This returns true if @page is one of the permanent zero pages.
1998 */
1999static inline bool is_zero_page(const struct page *page)
2000{
2001 return is_zero_pfn(page_to_pfn(page));
2002}
2003
2004/**
2005 * is_zero_folio - Query if a folio is a zero page
2006 * @folio: The folio to query
2007 *
2008 * This returns true if @folio is one of the permanent zero pages.
2009 */
2010static inline bool is_zero_folio(const struct folio *folio)
2011{
2012 return is_zero_page(&folio->page);
2013}
2014
2015/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
2016#ifdef CONFIG_MIGRATION
2017static inline bool folio_is_longterm_pinnable(struct folio *folio)
2018{
2019#ifdef CONFIG_CMA
2020 int mt = folio_migratetype(folio);
2021
2022 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
2023 return false;
2024#endif
2025 /* The zero page can be "pinned" but gets special handling. */
2026 if (is_zero_folio(folio))
2027 return true;
2028
2029 /* Coherent device memory must always allow eviction. */
2030 if (folio_is_device_coherent(folio))
2031 return false;
2032
2033 /* Otherwise, non-movable zone folios can be pinned. */
2034 return !folio_is_zone_movable(folio);
2035
2036}
2037#else
2038static inline bool folio_is_longterm_pinnable(struct folio *folio)
2039{
2040 return true;
2041}
2042#endif
2043
2044static inline void set_page_zone(struct page *page, enum zone_type zone)
2045{
2046 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
2047 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
2048}
2049
2050static inline void set_page_node(struct page *page, unsigned long node)
2051{
2052 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
2053 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
2054}
2055
2056static inline void set_page_links(struct page *page, enum zone_type zone,
2057 unsigned long node, unsigned long pfn)
2058{
2059 set_page_zone(page, zone);
2060 set_page_node(page, node);
2061#ifdef SECTION_IN_PAGE_FLAGS
2062 set_page_section(page, pfn_to_section_nr(pfn));
2063#endif
2064}
2065
2066/**
2067 * folio_nr_pages - The number of pages in the folio.
2068 * @folio: The folio.
2069 *
2070 * Return: A positive power of two.
2071 */
2072static inline long folio_nr_pages(struct folio *folio)
2073{
2074 if (!folio_test_large(folio))
2075 return 1;
2076#ifdef CONFIG_64BIT
2077 return folio->_folio_nr_pages;
2078#else
2079 return 1L << (folio->_flags_1 & 0xff);
2080#endif
2081}
2082
2083/* Only hugetlbfs can allocate folios larger than MAX_ORDER */
2084#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
2085#define MAX_FOLIO_NR_PAGES (1UL << PUD_ORDER)
2086#else
2087#define MAX_FOLIO_NR_PAGES MAX_ORDER_NR_PAGES
2088#endif
2089
2090/*
2091 * compound_nr() returns the number of pages in this potentially compound
2092 * page. compound_nr() can be called on a tail page, and is defined to
2093 * return 1 in that case.
2094 */
2095static inline unsigned long compound_nr(struct page *page)
2096{
2097 struct folio *folio = (struct folio *)page;
2098
2099 if (!test_bit(PG_head, &folio->flags))
2100 return 1;
2101#ifdef CONFIG_64BIT
2102 return folio->_folio_nr_pages;
2103#else
2104 return 1L << (folio->_flags_1 & 0xff);
2105#endif
2106}
2107
2108/**
2109 * thp_nr_pages - The number of regular pages in this huge page.
2110 * @page: The head page of a huge page.
2111 */
2112static inline int thp_nr_pages(struct page *page)
2113{
2114 return folio_nr_pages((struct folio *)page);
2115}
2116
2117/**
2118 * folio_next - Move to the next physical folio.
2119 * @folio: The folio we're currently operating on.
2120 *
2121 * If you have physically contiguous memory which may span more than
2122 * one folio (eg a &struct bio_vec), use this function to move from one
2123 * folio to the next. Do not use it if the memory is only virtually
2124 * contiguous as the folios are almost certainly not adjacent to each
2125 * other. This is the folio equivalent to writing ``page++``.
2126 *
2127 * Context: We assume that the folios are refcounted and/or locked at a
2128 * higher level and do not adjust the reference counts.
2129 * Return: The next struct folio.
2130 */
2131static inline struct folio *folio_next(struct folio *folio)
2132{
2133 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2134}
2135
2136/**
2137 * folio_shift - The size of the memory described by this folio.
2138 * @folio: The folio.
2139 *
2140 * A folio represents a number of bytes which is a power-of-two in size.
2141 * This function tells you which power-of-two the folio is. See also
2142 * folio_size() and folio_order().
2143 *
2144 * Context: The caller should have a reference on the folio to prevent
2145 * it from being split. It is not necessary for the folio to be locked.
2146 * Return: The base-2 logarithm of the size of this folio.
2147 */
2148static inline unsigned int folio_shift(struct folio *folio)
2149{
2150 return PAGE_SHIFT + folio_order(folio);
2151}
2152
2153/**
2154 * folio_size - The number of bytes in a folio.
2155 * @folio: The folio.
2156 *
2157 * Context: The caller should have a reference on the folio to prevent
2158 * it from being split. It is not necessary for the folio to be locked.
2159 * Return: The number of bytes in this folio.
2160 */
2161static inline size_t folio_size(struct folio *folio)
2162{
2163 return PAGE_SIZE << folio_order(folio);
2164}
2165
2166/**
2167 * folio_estimated_sharers - Estimate the number of sharers of a folio.
2168 * @folio: The folio.
2169 *
2170 * folio_estimated_sharers() aims to serve as a function to efficiently
2171 * estimate the number of processes sharing a folio. This is done by
2172 * looking at the precise mapcount of the first subpage in the folio, and
2173 * assuming the other subpages are the same. This may not be true for large
2174 * folios. If you want exact mapcounts for exact calculations, look at
2175 * page_mapcount() or folio_total_mapcount().
2176 *
2177 * Return: The estimated number of processes sharing a folio.
2178 */
2179static inline int folio_estimated_sharers(struct folio *folio)
2180{
2181 return page_mapcount(folio_page(folio, 0));
2182}
2183
2184#ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
2185static inline int arch_make_page_accessible(struct page *page)
2186{
2187 return 0;
2188}
2189#endif
2190
2191#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2192static inline int arch_make_folio_accessible(struct folio *folio)
2193{
2194 int ret;
2195 long i, nr = folio_nr_pages(folio);
2196
2197 for (i = 0; i < nr; i++) {
2198 ret = arch_make_page_accessible(folio_page(folio, i));
2199 if (ret)
2200 break;
2201 }
2202
2203 return ret;
2204}
2205#endif
2206
2207/*
2208 * Some inline functions in vmstat.h depend on page_zone()
2209 */
2210#include <linux/vmstat.h>
2211
2212#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2213#define HASHED_PAGE_VIRTUAL
2214#endif
2215
2216#if defined(WANT_PAGE_VIRTUAL)
2217static inline void *page_address(const struct page *page)
2218{
2219 return page->virtual;
2220}
2221static inline void set_page_address(struct page *page, void *address)
2222{
2223 page->virtual = address;
2224}
2225#define page_address_init() do { } while(0)
2226#endif
2227
2228#if defined(HASHED_PAGE_VIRTUAL)
2229void *page_address(const struct page *page);
2230void set_page_address(struct page *page, void *virtual);
2231void page_address_init(void);
2232#endif
2233
2234static __always_inline void *lowmem_page_address(const struct page *page)
2235{
2236 return page_to_virt(page);
2237}
2238
2239#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2240#define page_address(page) lowmem_page_address(page)
2241#define set_page_address(page, address) do { } while(0)
2242#define page_address_init() do { } while(0)
2243#endif
2244
2245static inline void *folio_address(const struct folio *folio)
2246{
2247 return page_address(&folio->page);
2248}
2249
2250extern pgoff_t __page_file_index(struct page *page);
2251
2252/*
2253 * Return the pagecache index of the passed page. Regular pagecache pages
2254 * use ->index whereas swapcache pages use swp_offset(->private)
2255 */
2256static inline pgoff_t page_index(struct page *page)
2257{
2258 if (unlikely(PageSwapCache(page)))
2259 return __page_file_index(page);
2260 return page->index;
2261}
2262
2263/*
2264 * Return true only if the page has been allocated with
2265 * ALLOC_NO_WATERMARKS and the low watermark was not
2266 * met implying that the system is under some pressure.
2267 */
2268static inline bool page_is_pfmemalloc(const struct page *page)
2269{
2270 /*
2271 * lru.next has bit 1 set if the page is allocated from the
2272 * pfmemalloc reserves. Callers may simply overwrite it if
2273 * they do not need to preserve that information.
2274 */
2275 return (uintptr_t)page->lru.next & BIT(1);
2276}
2277
2278/*
2279 * Return true only if the folio has been allocated with
2280 * ALLOC_NO_WATERMARKS and the low watermark was not
2281 * met implying that the system is under some pressure.
2282 */
2283static inline bool folio_is_pfmemalloc(const struct folio *folio)
2284{
2285 /*
2286 * lru.next has bit 1 set if the page is allocated from the
2287 * pfmemalloc reserves. Callers may simply overwrite it if
2288 * they do not need to preserve that information.
2289 */
2290 return (uintptr_t)folio->lru.next & BIT(1);
2291}
2292
2293/*
2294 * Only to be called by the page allocator on a freshly allocated
2295 * page.
2296 */
2297static inline void set_page_pfmemalloc(struct page *page)
2298{
2299 page->lru.next = (void *)BIT(1);
2300}
2301
2302static inline void clear_page_pfmemalloc(struct page *page)
2303{
2304 page->lru.next = NULL;
2305}
2306
2307/*
2308 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2309 */
2310extern void pagefault_out_of_memory(void);
2311
2312#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
2313#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
2314#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2315
2316/*
2317 * Parameter block passed down to zap_pte_range in exceptional cases.
2318 */
2319struct zap_details {
2320 struct folio *single_folio; /* Locked folio to be unmapped */
2321 bool even_cows; /* Zap COWed private pages too? */
2322 zap_flags_t zap_flags; /* Extra flags for zapping */
2323};
2324
2325/*
2326 * Whether to drop the pte markers, for example, the uffd-wp information for
2327 * file-backed memory. This should only be specified when we will completely
2328 * drop the page in the mm, either by truncation or unmapping of the vma. By
2329 * default, the flag is not set.
2330 */
2331#define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
2332/* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */
2333#define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1))
2334
2335#ifdef CONFIG_SCHED_MM_CID
2336void sched_mm_cid_before_execve(struct task_struct *t);
2337void sched_mm_cid_after_execve(struct task_struct *t);
2338void sched_mm_cid_fork(struct task_struct *t);
2339void sched_mm_cid_exit_signals(struct task_struct *t);
2340static inline int task_mm_cid(struct task_struct *t)
2341{
2342 return t->mm_cid;
2343}
2344#else
2345static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2346static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2347static inline void sched_mm_cid_fork(struct task_struct *t) { }
2348static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2349static inline int task_mm_cid(struct task_struct *t)
2350{
2351 /*
2352 * Use the processor id as a fall-back when the mm cid feature is
2353 * disabled. This provides functional per-cpu data structure accesses
2354 * in user-space, althrough it won't provide the memory usage benefits.
2355 */
2356 return raw_smp_processor_id();
2357}
2358#endif
2359
2360#ifdef CONFIG_MMU
2361extern bool can_do_mlock(void);
2362#else
2363static inline bool can_do_mlock(void) { return false; }
2364#endif
2365extern int user_shm_lock(size_t, struct ucounts *);
2366extern void user_shm_unlock(size_t, struct ucounts *);
2367
2368struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2369 pte_t pte);
2370struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2371 pte_t pte);
2372struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
2373 unsigned long addr, pmd_t pmd);
2374struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2375 pmd_t pmd);
2376
2377void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2378 unsigned long size);
2379void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2380 unsigned long size, struct zap_details *details);
2381static inline void zap_vma_pages(struct vm_area_struct *vma)
2382{
2383 zap_page_range_single(vma, vma->vm_start,
2384 vma->vm_end - vma->vm_start, NULL);
2385}
2386void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2387 struct vm_area_struct *start_vma, unsigned long start,
2388 unsigned long end, unsigned long tree_end, bool mm_wr_locked);
2389
2390struct mmu_notifier_range;
2391
2392void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2393 unsigned long end, unsigned long floor, unsigned long ceiling);
2394int
2395copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2396int follow_pte(struct mm_struct *mm, unsigned long address,
2397 pte_t **ptepp, spinlock_t **ptlp);
2398int follow_pfn(struct vm_area_struct *vma, unsigned long address,
2399 unsigned long *pfn);
2400int follow_phys(struct vm_area_struct *vma, unsigned long address,
2401 unsigned int flags, unsigned long *prot, resource_size_t *phys);
2402int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2403 void *buf, int len, int write);
2404
2405extern void truncate_pagecache(struct inode *inode, loff_t new);
2406extern void truncate_setsize(struct inode *inode, loff_t newsize);
2407void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2408void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2409int generic_error_remove_folio(struct address_space *mapping,
2410 struct folio *folio);
2411
2412struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2413 unsigned long address, struct pt_regs *regs);
2414
2415#ifdef CONFIG_MMU
2416extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2417 unsigned long address, unsigned int flags,
2418 struct pt_regs *regs);
2419extern int fixup_user_fault(struct mm_struct *mm,
2420 unsigned long address, unsigned int fault_flags,
2421 bool *unlocked);
2422void unmap_mapping_pages(struct address_space *mapping,
2423 pgoff_t start, pgoff_t nr, bool even_cows);
2424void unmap_mapping_range(struct address_space *mapping,
2425 loff_t const holebegin, loff_t const holelen, int even_cows);
2426#else
2427static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2428 unsigned long address, unsigned int flags,
2429 struct pt_regs *regs)
2430{
2431 /* should never happen if there's no MMU */
2432 BUG();
2433 return VM_FAULT_SIGBUS;
2434}
2435static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2436 unsigned int fault_flags, bool *unlocked)
2437{
2438 /* should never happen if there's no MMU */
2439 BUG();
2440 return -EFAULT;
2441}
2442static inline void unmap_mapping_pages(struct address_space *mapping,
2443 pgoff_t start, pgoff_t nr, bool even_cows) { }
2444static inline void unmap_mapping_range(struct address_space *mapping,
2445 loff_t const holebegin, loff_t const holelen, int even_cows) { }
2446#endif
2447
2448static inline void unmap_shared_mapping_range(struct address_space *mapping,
2449 loff_t const holebegin, loff_t const holelen)
2450{
2451 unmap_mapping_range(mapping, holebegin, holelen, 0);
2452}
2453
2454static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2455 unsigned long addr);
2456
2457extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2458 void *buf, int len, unsigned int gup_flags);
2459extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2460 void *buf, int len, unsigned int gup_flags);
2461
2462long get_user_pages_remote(struct mm_struct *mm,
2463 unsigned long start, unsigned long nr_pages,
2464 unsigned int gup_flags, struct page **pages,
2465 int *locked);
2466long pin_user_pages_remote(struct mm_struct *mm,
2467 unsigned long start, unsigned long nr_pages,
2468 unsigned int gup_flags, struct page **pages,
2469 int *locked);
2470
2471/*
2472 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2473 */
2474static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2475 unsigned long addr,
2476 int gup_flags,
2477 struct vm_area_struct **vmap)
2478{
2479 struct page *page;
2480 struct vm_area_struct *vma;
2481 int got;
2482
2483 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
2484 return ERR_PTR(-EINVAL);
2485
2486 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2487
2488 if (got < 0)
2489 return ERR_PTR(got);
2490
2491 vma = vma_lookup(mm, addr);
2492 if (WARN_ON_ONCE(!vma)) {
2493 put_page(page);
2494 return ERR_PTR(-EINVAL);
2495 }
2496
2497 *vmap = vma;
2498 return page;
2499}
2500
2501long get_user_pages(unsigned long start, unsigned long nr_pages,
2502 unsigned int gup_flags, struct page **pages);
2503long pin_user_pages(unsigned long start, unsigned long nr_pages,
2504 unsigned int gup_flags, struct page **pages);
2505long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2506 struct page **pages, unsigned int gup_flags);
2507long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2508 struct page **pages, unsigned int gup_flags);
2509
2510int get_user_pages_fast(unsigned long start, int nr_pages,
2511 unsigned int gup_flags, struct page **pages);
2512int pin_user_pages_fast(unsigned long start, int nr_pages,
2513 unsigned int gup_flags, struct page **pages);
2514void folio_add_pin(struct folio *folio);
2515
2516int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2517int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2518 struct task_struct *task, bool bypass_rlim);
2519
2520struct kvec;
2521struct page *get_dump_page(unsigned long addr);
2522
2523bool folio_mark_dirty(struct folio *folio);
2524bool set_page_dirty(struct page *page);
2525int set_page_dirty_lock(struct page *page);
2526
2527int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2528
2529extern unsigned long move_page_tables(struct vm_area_struct *vma,
2530 unsigned long old_addr, struct vm_area_struct *new_vma,
2531 unsigned long new_addr, unsigned long len,
2532 bool need_rmap_locks, bool for_stack);
2533
2534/*
2535 * Flags used by change_protection(). For now we make it a bitmap so
2536 * that we can pass in multiple flags just like parameters. However
2537 * for now all the callers are only use one of the flags at the same
2538 * time.
2539 */
2540/*
2541 * Whether we should manually check if we can map individual PTEs writable,
2542 * because something (e.g., COW, uffd-wp) blocks that from happening for all
2543 * PTEs automatically in a writable mapping.
2544 */
2545#define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
2546/* Whether this protection change is for NUMA hints */
2547#define MM_CP_PROT_NUMA (1UL << 1)
2548/* Whether this change is for write protecting */
2549#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2550#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2551#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2552 MM_CP_UFFD_WP_RESOLVE)
2553
2554bool vma_needs_dirty_tracking(struct vm_area_struct *vma);
2555int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2556static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
2557{
2558 /*
2559 * We want to check manually if we can change individual PTEs writable
2560 * if we can't do that automatically for all PTEs in a mapping. For
2561 * private mappings, that's always the case when we have write
2562 * permissions as we properly have to handle COW.
2563 */
2564 if (vma->vm_flags & VM_SHARED)
2565 return vma_wants_writenotify(vma, vma->vm_page_prot);
2566 return !!(vma->vm_flags & VM_WRITE);
2567
2568}
2569bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2570 pte_t pte);
2571extern long change_protection(struct mmu_gather *tlb,
2572 struct vm_area_struct *vma, unsigned long start,
2573 unsigned long end, unsigned long cp_flags);
2574extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2575 struct vm_area_struct *vma, struct vm_area_struct **pprev,
2576 unsigned long start, unsigned long end, unsigned long newflags);
2577
2578/*
2579 * doesn't attempt to fault and will return short.
2580 */
2581int get_user_pages_fast_only(unsigned long start, int nr_pages,
2582 unsigned int gup_flags, struct page **pages);
2583
2584static inline bool get_user_page_fast_only(unsigned long addr,
2585 unsigned int gup_flags, struct page **pagep)
2586{
2587 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2588}
2589/*
2590 * per-process(per-mm_struct) statistics.
2591 */
2592static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2593{
2594 return percpu_counter_read_positive(&mm->rss_stat[member]);
2595}
2596
2597void mm_trace_rss_stat(struct mm_struct *mm, int member);
2598
2599static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2600{
2601 percpu_counter_add(&mm->rss_stat[member], value);
2602
2603 mm_trace_rss_stat(mm, member);
2604}
2605
2606static inline void inc_mm_counter(struct mm_struct *mm, int member)
2607{
2608 percpu_counter_inc(&mm->rss_stat[member]);
2609
2610 mm_trace_rss_stat(mm, member);
2611}
2612
2613static inline void dec_mm_counter(struct mm_struct *mm, int member)
2614{
2615 percpu_counter_dec(&mm->rss_stat[member]);
2616
2617 mm_trace_rss_stat(mm, member);
2618}
2619
2620/* Optimized variant when folio is already known not to be anon */
2621static inline int mm_counter_file(struct folio *folio)
2622{
2623 if (folio_test_swapbacked(folio))
2624 return MM_SHMEMPAGES;
2625 return MM_FILEPAGES;
2626}
2627
2628static inline int mm_counter(struct folio *folio)
2629{
2630 if (folio_test_anon(folio))
2631 return MM_ANONPAGES;
2632 return mm_counter_file(folio);
2633}
2634
2635static inline unsigned long get_mm_rss(struct mm_struct *mm)
2636{
2637 return get_mm_counter(mm, MM_FILEPAGES) +
2638 get_mm_counter(mm, MM_ANONPAGES) +
2639 get_mm_counter(mm, MM_SHMEMPAGES);
2640}
2641
2642static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2643{
2644 return max(mm->hiwater_rss, get_mm_rss(mm));
2645}
2646
2647static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2648{
2649 return max(mm->hiwater_vm, mm->total_vm);
2650}
2651
2652static inline void update_hiwater_rss(struct mm_struct *mm)
2653{
2654 unsigned long _rss = get_mm_rss(mm);
2655
2656 if ((mm)->hiwater_rss < _rss)
2657 (mm)->hiwater_rss = _rss;
2658}
2659
2660static inline void update_hiwater_vm(struct mm_struct *mm)
2661{
2662 if (mm->hiwater_vm < mm->total_vm)
2663 mm->hiwater_vm = mm->total_vm;
2664}
2665
2666static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2667{
2668 mm->hiwater_rss = get_mm_rss(mm);
2669}
2670
2671static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2672 struct mm_struct *mm)
2673{
2674 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2675
2676 if (*maxrss < hiwater_rss)
2677 *maxrss = hiwater_rss;
2678}
2679
2680#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2681static inline int pte_special(pte_t pte)
2682{
2683 return 0;
2684}
2685
2686static inline pte_t pte_mkspecial(pte_t pte)
2687{
2688 return pte;
2689}
2690#endif
2691
2692#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2693static inline int pte_devmap(pte_t pte)
2694{
2695 return 0;
2696}
2697#endif
2698
2699extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2700 spinlock_t **ptl);
2701static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2702 spinlock_t **ptl)
2703{
2704 pte_t *ptep;
2705 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2706 return ptep;
2707}
2708
2709#ifdef __PAGETABLE_P4D_FOLDED
2710static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2711 unsigned long address)
2712{
2713 return 0;
2714}
2715#else
2716int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2717#endif
2718
2719#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2720static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2721 unsigned long address)
2722{
2723 return 0;
2724}
2725static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2726static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2727
2728#else
2729int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2730
2731static inline void mm_inc_nr_puds(struct mm_struct *mm)
2732{
2733 if (mm_pud_folded(mm))
2734 return;
2735 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2736}
2737
2738static inline void mm_dec_nr_puds(struct mm_struct *mm)
2739{
2740 if (mm_pud_folded(mm))
2741 return;
2742 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2743}
2744#endif
2745
2746#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2747static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2748 unsigned long address)
2749{
2750 return 0;
2751}
2752
2753static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2754static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2755
2756#else
2757int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2758
2759static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2760{
2761 if (mm_pmd_folded(mm))
2762 return;
2763 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2764}
2765
2766static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2767{
2768 if (mm_pmd_folded(mm))
2769 return;
2770 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2771}
2772#endif
2773
2774#ifdef CONFIG_MMU
2775static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2776{
2777 atomic_long_set(&mm->pgtables_bytes, 0);
2778}
2779
2780static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2781{
2782 return atomic_long_read(&mm->pgtables_bytes);
2783}
2784
2785static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2786{
2787 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2788}
2789
2790static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2791{
2792 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2793}
2794#else
2795
2796static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2797static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2798{
2799 return 0;
2800}
2801
2802static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2803static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2804#endif
2805
2806int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2807int __pte_alloc_kernel(pmd_t *pmd);
2808
2809#if defined(CONFIG_MMU)
2810
2811static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2812 unsigned long address)
2813{
2814 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2815 NULL : p4d_offset(pgd, address);
2816}
2817
2818static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2819 unsigned long address)
2820{
2821 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2822 NULL : pud_offset(p4d, address);
2823}
2824
2825static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2826{
2827 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2828 NULL: pmd_offset(pud, address);
2829}
2830#endif /* CONFIG_MMU */
2831
2832static inline struct ptdesc *virt_to_ptdesc(const void *x)
2833{
2834 return page_ptdesc(virt_to_page(x));
2835}
2836
2837static inline void *ptdesc_to_virt(const struct ptdesc *pt)
2838{
2839 return page_to_virt(ptdesc_page(pt));
2840}
2841
2842static inline void *ptdesc_address(const struct ptdesc *pt)
2843{
2844 return folio_address(ptdesc_folio(pt));
2845}
2846
2847static inline bool pagetable_is_reserved(struct ptdesc *pt)
2848{
2849 return folio_test_reserved(ptdesc_folio(pt));
2850}
2851
2852/**
2853 * pagetable_alloc - Allocate pagetables
2854 * @gfp: GFP flags
2855 * @order: desired pagetable order
2856 *
2857 * pagetable_alloc allocates memory for page tables as well as a page table
2858 * descriptor to describe that memory.
2859 *
2860 * Return: The ptdesc describing the allocated page tables.
2861 */
2862static inline struct ptdesc *pagetable_alloc(gfp_t gfp, unsigned int order)
2863{
2864 struct page *page = alloc_pages(gfp | __GFP_COMP, order);
2865
2866 return page_ptdesc(page);
2867}
2868
2869/**
2870 * pagetable_free - Free pagetables
2871 * @pt: The page table descriptor
2872 *
2873 * pagetable_free frees the memory of all page tables described by a page
2874 * table descriptor and the memory for the descriptor itself.
2875 */
2876static inline void pagetable_free(struct ptdesc *pt)
2877{
2878 struct page *page = ptdesc_page(pt);
2879
2880 __free_pages(page, compound_order(page));
2881}
2882
2883#if USE_SPLIT_PTE_PTLOCKS
2884#if ALLOC_SPLIT_PTLOCKS
2885void __init ptlock_cache_init(void);
2886bool ptlock_alloc(struct ptdesc *ptdesc);
2887void ptlock_free(struct ptdesc *ptdesc);
2888
2889static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2890{
2891 return ptdesc->ptl;
2892}
2893#else /* ALLOC_SPLIT_PTLOCKS */
2894static inline void ptlock_cache_init(void)
2895{
2896}
2897
2898static inline bool ptlock_alloc(struct ptdesc *ptdesc)
2899{
2900 return true;
2901}
2902
2903static inline void ptlock_free(struct ptdesc *ptdesc)
2904{
2905}
2906
2907static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2908{
2909 return &ptdesc->ptl;
2910}
2911#endif /* ALLOC_SPLIT_PTLOCKS */
2912
2913static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2914{
2915 return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
2916}
2917
2918static inline bool ptlock_init(struct ptdesc *ptdesc)
2919{
2920 /*
2921 * prep_new_page() initialize page->private (and therefore page->ptl)
2922 * with 0. Make sure nobody took it in use in between.
2923 *
2924 * It can happen if arch try to use slab for page table allocation:
2925 * slab code uses page->slab_cache, which share storage with page->ptl.
2926 */
2927 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
2928 if (!ptlock_alloc(ptdesc))
2929 return false;
2930 spin_lock_init(ptlock_ptr(ptdesc));
2931 return true;
2932}
2933
2934#else /* !USE_SPLIT_PTE_PTLOCKS */
2935/*
2936 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2937 */
2938static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2939{
2940 return &mm->page_table_lock;
2941}
2942static inline void ptlock_cache_init(void) {}
2943static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
2944static inline void ptlock_free(struct ptdesc *ptdesc) {}
2945#endif /* USE_SPLIT_PTE_PTLOCKS */
2946
2947static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc)
2948{
2949 struct folio *folio = ptdesc_folio(ptdesc);
2950
2951 if (!ptlock_init(ptdesc))
2952 return false;
2953 __folio_set_pgtable(folio);
2954 lruvec_stat_add_folio(folio, NR_PAGETABLE);
2955 return true;
2956}
2957
2958static inline void pagetable_pte_dtor(struct ptdesc *ptdesc)
2959{
2960 struct folio *folio = ptdesc_folio(ptdesc);
2961
2962 ptlock_free(ptdesc);
2963 __folio_clear_pgtable(folio);
2964 lruvec_stat_sub_folio(folio, NR_PAGETABLE);
2965}
2966
2967pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
2968static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
2969{
2970 return __pte_offset_map(pmd, addr, NULL);
2971}
2972
2973pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2974 unsigned long addr, spinlock_t **ptlp);
2975static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2976 unsigned long addr, spinlock_t **ptlp)
2977{
2978 pte_t *pte;
2979
2980 __cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp));
2981 return pte;
2982}
2983
2984pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd,
2985 unsigned long addr, spinlock_t **ptlp);
2986
2987#define pte_unmap_unlock(pte, ptl) do { \
2988 spin_unlock(ptl); \
2989 pte_unmap(pte); \
2990} while (0)
2991
2992#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2993
2994#define pte_alloc_map(mm, pmd, address) \
2995 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2996
2997#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
2998 (pte_alloc(mm, pmd) ? \
2999 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
3000
3001#define pte_alloc_kernel(pmd, address) \
3002 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
3003 NULL: pte_offset_kernel(pmd, address))
3004
3005#if USE_SPLIT_PMD_PTLOCKS
3006
3007static inline struct page *pmd_pgtable_page(pmd_t *pmd)
3008{
3009 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
3010 return virt_to_page((void *)((unsigned long) pmd & mask));
3011}
3012
3013static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
3014{
3015 return page_ptdesc(pmd_pgtable_page(pmd));
3016}
3017
3018static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3019{
3020 return ptlock_ptr(pmd_ptdesc(pmd));
3021}
3022
3023static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
3024{
3025#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3026 ptdesc->pmd_huge_pte = NULL;
3027#endif
3028 return ptlock_init(ptdesc);
3029}
3030
3031static inline void pmd_ptlock_free(struct ptdesc *ptdesc)
3032{
3033#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3034 VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc));
3035#endif
3036 ptlock_free(ptdesc);
3037}
3038
3039#define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
3040
3041#else
3042
3043static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3044{
3045 return &mm->page_table_lock;
3046}
3047
3048static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
3049static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {}
3050
3051#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3052
3053#endif
3054
3055static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3056{
3057 spinlock_t *ptl = pmd_lockptr(mm, pmd);
3058 spin_lock(ptl);
3059 return ptl;
3060}
3061
3062static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc)
3063{
3064 struct folio *folio = ptdesc_folio(ptdesc);
3065
3066 if (!pmd_ptlock_init(ptdesc))
3067 return false;
3068 __folio_set_pgtable(folio);
3069 lruvec_stat_add_folio(folio, NR_PAGETABLE);
3070 return true;
3071}
3072
3073static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc)
3074{
3075 struct folio *folio = ptdesc_folio(ptdesc);
3076
3077 pmd_ptlock_free(ptdesc);
3078 __folio_clear_pgtable(folio);
3079 lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3080}
3081
3082/*
3083 * No scalability reason to split PUD locks yet, but follow the same pattern
3084 * as the PMD locks to make it easier if we decide to. The VM should not be
3085 * considered ready to switch to split PUD locks yet; there may be places
3086 * which need to be converted from page_table_lock.
3087 */
3088static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3089{
3090 return &mm->page_table_lock;
3091}
3092
3093static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3094{
3095 spinlock_t *ptl = pud_lockptr(mm, pud);
3096
3097 spin_lock(ptl);
3098 return ptl;
3099}
3100
3101static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
3102{
3103 struct folio *folio = ptdesc_folio(ptdesc);
3104
3105 __folio_set_pgtable(folio);
3106 lruvec_stat_add_folio(folio, NR_PAGETABLE);
3107}
3108
3109static inline void pagetable_pud_dtor(struct ptdesc *ptdesc)
3110{
3111 struct folio *folio = ptdesc_folio(ptdesc);
3112
3113 __folio_clear_pgtable(folio);
3114 lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3115}
3116
3117extern void __init pagecache_init(void);
3118extern void free_initmem(void);
3119
3120/*
3121 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3122 * into the buddy system. The freed pages will be poisoned with pattern
3123 * "poison" if it's within range [0, UCHAR_MAX].
3124 * Return pages freed into the buddy system.
3125 */
3126extern unsigned long free_reserved_area(void *start, void *end,
3127 int poison, const char *s);
3128
3129extern void adjust_managed_page_count(struct page *page, long count);
3130
3131extern void reserve_bootmem_region(phys_addr_t start,
3132 phys_addr_t end, int nid);
3133
3134/* Free the reserved page into the buddy system, so it gets managed. */
3135static inline void free_reserved_page(struct page *page)
3136{
3137 ClearPageReserved(page);
3138 init_page_count(page);
3139 __free_page(page);
3140 adjust_managed_page_count(page, 1);
3141}
3142#define free_highmem_page(page) free_reserved_page(page)
3143
3144static inline void mark_page_reserved(struct page *page)
3145{
3146 SetPageReserved(page);
3147 adjust_managed_page_count(page, -1);
3148}
3149
3150static inline void free_reserved_ptdesc(struct ptdesc *pt)
3151{
3152 free_reserved_page(ptdesc_page(pt));
3153}
3154
3155/*
3156 * Default method to free all the __init memory into the buddy system.
3157 * The freed pages will be poisoned with pattern "poison" if it's within
3158 * range [0, UCHAR_MAX].
3159 * Return pages freed into the buddy system.
3160 */
3161static inline unsigned long free_initmem_default(int poison)
3162{
3163 extern char __init_begin[], __init_end[];
3164
3165 return free_reserved_area(&__init_begin, &__init_end,
3166 poison, "unused kernel image (initmem)");
3167}
3168
3169static inline unsigned long get_num_physpages(void)
3170{
3171 int nid;
3172 unsigned long phys_pages = 0;
3173
3174 for_each_online_node(nid)
3175 phys_pages += node_present_pages(nid);
3176
3177 return phys_pages;
3178}
3179
3180/*
3181 * Using memblock node mappings, an architecture may initialise its
3182 * zones, allocate the backing mem_map and account for memory holes in an
3183 * architecture independent manner.
3184 *
3185 * An architecture is expected to register range of page frames backed by
3186 * physical memory with memblock_add[_node]() before calling
3187 * free_area_init() passing in the PFN each zone ends at. At a basic
3188 * usage, an architecture is expected to do something like
3189 *
3190 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3191 * max_highmem_pfn};
3192 * for_each_valid_physical_page_range()
3193 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3194 * free_area_init(max_zone_pfns);
3195 */
3196void free_area_init(unsigned long *max_zone_pfn);
3197unsigned long node_map_pfn_alignment(void);
3198unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
3199 unsigned long end_pfn);
3200extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3201 unsigned long end_pfn);
3202extern void get_pfn_range_for_nid(unsigned int nid,
3203 unsigned long *start_pfn, unsigned long *end_pfn);
3204
3205#ifndef CONFIG_NUMA
3206static inline int early_pfn_to_nid(unsigned long pfn)
3207{
3208 return 0;
3209}
3210#else
3211/* please see mm/page_alloc.c */
3212extern int __meminit early_pfn_to_nid(unsigned long pfn);
3213#endif
3214
3215extern void set_dma_reserve(unsigned long new_dma_reserve);
3216extern void mem_init(void);
3217extern void __init mmap_init(void);
3218
3219extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
3220static inline void show_mem(void)
3221{
3222 __show_mem(0, NULL, MAX_NR_ZONES - 1);
3223}
3224extern long si_mem_available(void);
3225extern void si_meminfo(struct sysinfo * val);
3226extern void si_meminfo_node(struct sysinfo *val, int nid);
3227#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
3228extern unsigned long arch_reserved_kernel_pages(void);
3229#endif
3230
3231extern __printf(3, 4)
3232void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3233
3234extern void setup_per_cpu_pageset(void);
3235
3236/* nommu.c */
3237extern atomic_long_t mmap_pages_allocated;
3238extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3239
3240/* interval_tree.c */
3241void vma_interval_tree_insert(struct vm_area_struct *node,
3242 struct rb_root_cached *root);
3243void vma_interval_tree_insert_after(struct vm_area_struct *node,
3244 struct vm_area_struct *prev,
3245 struct rb_root_cached *root);
3246void vma_interval_tree_remove(struct vm_area_struct *node,
3247 struct rb_root_cached *root);
3248struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3249 unsigned long start, unsigned long last);
3250struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3251 unsigned long start, unsigned long last);
3252
3253#define vma_interval_tree_foreach(vma, root, start, last) \
3254 for (vma = vma_interval_tree_iter_first(root, start, last); \
3255 vma; vma = vma_interval_tree_iter_next(vma, start, last))
3256
3257void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3258 struct rb_root_cached *root);
3259void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3260 struct rb_root_cached *root);
3261struct anon_vma_chain *
3262anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3263 unsigned long start, unsigned long last);
3264struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3265 struct anon_vma_chain *node, unsigned long start, unsigned long last);
3266#ifdef CONFIG_DEBUG_VM_RB
3267void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3268#endif
3269
3270#define anon_vma_interval_tree_foreach(avc, root, start, last) \
3271 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3272 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3273
3274/* mmap.c */
3275extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3276extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
3277 unsigned long start, unsigned long end, pgoff_t pgoff,
3278 struct vm_area_struct *next);
3279extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
3280 unsigned long start, unsigned long end, pgoff_t pgoff);
3281extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
3282extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3283extern void unlink_file_vma(struct vm_area_struct *);
3284extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
3285 unsigned long addr, unsigned long len, pgoff_t pgoff,
3286 bool *need_rmap_locks);
3287extern void exit_mmap(struct mm_struct *);
3288struct vm_area_struct *vma_modify(struct vma_iterator *vmi,
3289 struct vm_area_struct *prev,
3290 struct vm_area_struct *vma,
3291 unsigned long start, unsigned long end,
3292 unsigned long vm_flags,
3293 struct mempolicy *policy,
3294 struct vm_userfaultfd_ctx uffd_ctx,
3295 struct anon_vma_name *anon_name);
3296
3297/* We are about to modify the VMA's flags. */
3298static inline struct vm_area_struct
3299*vma_modify_flags(struct vma_iterator *vmi,
3300 struct vm_area_struct *prev,
3301 struct vm_area_struct *vma,
3302 unsigned long start, unsigned long end,
3303 unsigned long new_flags)
3304{
3305 return vma_modify(vmi, prev, vma, start, end, new_flags,
3306 vma_policy(vma), vma->vm_userfaultfd_ctx,
3307 anon_vma_name(vma));
3308}
3309
3310/* We are about to modify the VMA's flags and/or anon_name. */
3311static inline struct vm_area_struct
3312*vma_modify_flags_name(struct vma_iterator *vmi,
3313 struct vm_area_struct *prev,
3314 struct vm_area_struct *vma,
3315 unsigned long start,
3316 unsigned long end,
3317 unsigned long new_flags,
3318 struct anon_vma_name *new_name)
3319{
3320 return vma_modify(vmi, prev, vma, start, end, new_flags,
3321 vma_policy(vma), vma->vm_userfaultfd_ctx, new_name);
3322}
3323
3324/* We are about to modify the VMA's memory policy. */
3325static inline struct vm_area_struct
3326*vma_modify_policy(struct vma_iterator *vmi,
3327 struct vm_area_struct *prev,
3328 struct vm_area_struct *vma,
3329 unsigned long start, unsigned long end,
3330 struct mempolicy *new_pol)
3331{
3332 return vma_modify(vmi, prev, vma, start, end, vma->vm_flags,
3333 new_pol, vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3334}
3335
3336/* We are about to modify the VMA's flags and/or uffd context. */
3337static inline struct vm_area_struct
3338*vma_modify_flags_uffd(struct vma_iterator *vmi,
3339 struct vm_area_struct *prev,
3340 struct vm_area_struct *vma,
3341 unsigned long start, unsigned long end,
3342 unsigned long new_flags,
3343 struct vm_userfaultfd_ctx new_ctx)
3344{
3345 return vma_modify(vmi, prev, vma, start, end, new_flags,
3346 vma_policy(vma), new_ctx, anon_vma_name(vma));
3347}
3348
3349static inline int check_data_rlimit(unsigned long rlim,
3350 unsigned long new,
3351 unsigned long start,
3352 unsigned long end_data,
3353 unsigned long start_data)
3354{
3355 if (rlim < RLIM_INFINITY) {
3356 if (((new - start) + (end_data - start_data)) > rlim)
3357 return -ENOSPC;
3358 }
3359
3360 return 0;
3361}
3362
3363extern int mm_take_all_locks(struct mm_struct *mm);
3364extern void mm_drop_all_locks(struct mm_struct *mm);
3365
3366extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3367extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3368extern struct file *get_mm_exe_file(struct mm_struct *mm);
3369extern struct file *get_task_exe_file(struct task_struct *task);
3370
3371extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3372extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3373
3374extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3375 const struct vm_special_mapping *sm);
3376extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3377 unsigned long addr, unsigned long len,
3378 unsigned long flags,
3379 const struct vm_special_mapping *spec);
3380/* This is an obsolete alternative to _install_special_mapping. */
3381extern int install_special_mapping(struct mm_struct *mm,
3382 unsigned long addr, unsigned long len,
3383 unsigned long flags, struct page **pages);
3384
3385unsigned long randomize_stack_top(unsigned long stack_top);
3386unsigned long randomize_page(unsigned long start, unsigned long range);
3387
3388extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
3389
3390extern unsigned long mmap_region(struct file *file, unsigned long addr,
3391 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
3392 struct list_head *uf);
3393extern unsigned long do_mmap(struct file *file, unsigned long addr,
3394 unsigned long len, unsigned long prot, unsigned long flags,
3395 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3396 struct list_head *uf);
3397extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3398 unsigned long start, size_t len, struct list_head *uf,
3399 bool unlock);
3400extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3401 struct list_head *uf);
3402extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3403
3404#ifdef CONFIG_MMU
3405extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3406 unsigned long start, unsigned long end,
3407 struct list_head *uf, bool unlock);
3408extern int __mm_populate(unsigned long addr, unsigned long len,
3409 int ignore_errors);
3410static inline void mm_populate(unsigned long addr, unsigned long len)
3411{
3412 /* Ignore errors */
3413 (void) __mm_populate(addr, len, 1);
3414}
3415#else
3416static inline void mm_populate(unsigned long addr, unsigned long len) {}
3417#endif
3418
3419/* This takes the mm semaphore itself */
3420extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3421extern int vm_munmap(unsigned long, size_t);
3422extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3423 unsigned long, unsigned long,
3424 unsigned long, unsigned long);
3425
3426struct vm_unmapped_area_info {
3427#define VM_UNMAPPED_AREA_TOPDOWN 1
3428 unsigned long flags;
3429 unsigned long length;
3430 unsigned long low_limit;
3431 unsigned long high_limit;
3432 unsigned long align_mask;
3433 unsigned long align_offset;
3434};
3435
3436extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3437
3438/* truncate.c */
3439extern void truncate_inode_pages(struct address_space *, loff_t);
3440extern void truncate_inode_pages_range(struct address_space *,
3441 loff_t lstart, loff_t lend);
3442extern void truncate_inode_pages_final(struct address_space *);
3443
3444/* generic vm_area_ops exported for stackable file systems */
3445extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3446extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3447 pgoff_t start_pgoff, pgoff_t end_pgoff);
3448extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3449
3450extern unsigned long stack_guard_gap;
3451/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3452int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3453struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3454
3455/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
3456int expand_downwards(struct vm_area_struct *vma, unsigned long address);
3457
3458/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
3459extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3460extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3461 struct vm_area_struct **pprev);
3462
3463/*
3464 * Look up the first VMA which intersects the interval [start_addr, end_addr)
3465 * NULL if none. Assume start_addr < end_addr.
3466 */
3467struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3468 unsigned long start_addr, unsigned long end_addr);
3469
3470/**
3471 * vma_lookup() - Find a VMA at a specific address
3472 * @mm: The process address space.
3473 * @addr: The user address.
3474 *
3475 * Return: The vm_area_struct at the given address, %NULL otherwise.
3476 */
3477static inline
3478struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3479{
3480 return mtree_load(&mm->mm_mt, addr);
3481}
3482
3483static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
3484{
3485 if (vma->vm_flags & VM_GROWSDOWN)
3486 return stack_guard_gap;
3487
3488 /* See reasoning around the VM_SHADOW_STACK definition */
3489 if (vma->vm_flags & VM_SHADOW_STACK)
3490 return PAGE_SIZE;
3491
3492 return 0;
3493}
3494
3495static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3496{
3497 unsigned long gap = stack_guard_start_gap(vma);
3498 unsigned long vm_start = vma->vm_start;
3499
3500 vm_start -= gap;
3501 if (vm_start > vma->vm_start)
3502 vm_start = 0;
3503 return vm_start;
3504}
3505
3506static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3507{
3508 unsigned long vm_end = vma->vm_end;
3509
3510 if (vma->vm_flags & VM_GROWSUP) {
3511 vm_end += stack_guard_gap;
3512 if (vm_end < vma->vm_end)
3513 vm_end = -PAGE_SIZE;
3514 }
3515 return vm_end;
3516}
3517
3518static inline unsigned long vma_pages(struct vm_area_struct *vma)
3519{
3520 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3521}
3522
3523/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3524static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3525 unsigned long vm_start, unsigned long vm_end)
3526{
3527 struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3528
3529 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3530 vma = NULL;
3531
3532 return vma;
3533}
3534
3535static inline bool range_in_vma(struct vm_area_struct *vma,
3536 unsigned long start, unsigned long end)
3537{
3538 return (vma && vma->vm_start <= start && end <= vma->vm_end);
3539}
3540
3541#ifdef CONFIG_MMU
3542pgprot_t vm_get_page_prot(unsigned long vm_flags);
3543void vma_set_page_prot(struct vm_area_struct *vma);
3544#else
3545static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3546{
3547 return __pgprot(0);
3548}
3549static inline void vma_set_page_prot(struct vm_area_struct *vma)
3550{
3551 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3552}
3553#endif
3554
3555void vma_set_file(struct vm_area_struct *vma, struct file *file);
3556
3557#ifdef CONFIG_NUMA_BALANCING
3558unsigned long change_prot_numa(struct vm_area_struct *vma,
3559 unsigned long start, unsigned long end);
3560#endif
3561
3562struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3563 unsigned long addr);
3564int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3565 unsigned long pfn, unsigned long size, pgprot_t);
3566int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3567 unsigned long pfn, unsigned long size, pgprot_t prot);
3568int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3569int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3570 struct page **pages, unsigned long *num);
3571int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3572 unsigned long num);
3573int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3574 unsigned long num);
3575vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3576 unsigned long pfn);
3577vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3578 unsigned long pfn, pgprot_t pgprot);
3579vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3580 pfn_t pfn);
3581vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3582 unsigned long addr, pfn_t pfn);
3583int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3584
3585static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3586 unsigned long addr, struct page *page)
3587{
3588 int err = vm_insert_page(vma, addr, page);
3589
3590 if (err == -ENOMEM)
3591 return VM_FAULT_OOM;
3592 if (err < 0 && err != -EBUSY)
3593 return VM_FAULT_SIGBUS;
3594
3595 return VM_FAULT_NOPAGE;
3596}
3597
3598#ifndef io_remap_pfn_range
3599static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3600 unsigned long addr, unsigned long pfn,
3601 unsigned long size, pgprot_t prot)
3602{
3603 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3604}
3605#endif
3606
3607static inline vm_fault_t vmf_error(int err)
3608{
3609 if (err == -ENOMEM)
3610 return VM_FAULT_OOM;
3611 else if (err == -EHWPOISON)
3612 return VM_FAULT_HWPOISON;
3613 return VM_FAULT_SIGBUS;
3614}
3615
3616/*
3617 * Convert errno to return value for ->page_mkwrite() calls.
3618 *
3619 * This should eventually be merged with vmf_error() above, but will need a
3620 * careful audit of all vmf_error() callers.
3621 */
3622static inline vm_fault_t vmf_fs_error(int err)
3623{
3624 if (err == 0)
3625 return VM_FAULT_LOCKED;
3626 if (err == -EFAULT || err == -EAGAIN)
3627 return VM_FAULT_NOPAGE;
3628 if (err == -ENOMEM)
3629 return VM_FAULT_OOM;
3630 /* -ENOSPC, -EDQUOT, -EIO ... */
3631 return VM_FAULT_SIGBUS;
3632}
3633
3634struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
3635 unsigned int foll_flags);
3636
3637static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3638{
3639 if (vm_fault & VM_FAULT_OOM)
3640 return -ENOMEM;
3641 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3642 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3643 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3644 return -EFAULT;
3645 return 0;
3646}
3647
3648/*
3649 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3650 * a (NUMA hinting) fault is required.
3651 */
3652static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
3653 unsigned int flags)
3654{
3655 /*
3656 * If callers don't want to honor NUMA hinting faults, no need to
3657 * determine if we would actually have to trigger a NUMA hinting fault.
3658 */
3659 if (!(flags & FOLL_HONOR_NUMA_FAULT))
3660 return true;
3661
3662 /*
3663 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3664 *
3665 * Requiring a fault here even for inaccessible VMAs would mean that
3666 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3667 * refuses to process NUMA hinting faults in inaccessible VMAs.
3668 */
3669 return !vma_is_accessible(vma);
3670}
3671
3672typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3673extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3674 unsigned long size, pte_fn_t fn, void *data);
3675extern int apply_to_existing_page_range(struct mm_struct *mm,
3676 unsigned long address, unsigned long size,
3677 pte_fn_t fn, void *data);
3678
3679#ifdef CONFIG_PAGE_POISONING
3680extern void __kernel_poison_pages(struct page *page, int numpages);
3681extern void __kernel_unpoison_pages(struct page *page, int numpages);
3682extern bool _page_poisoning_enabled_early;
3683DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3684static inline bool page_poisoning_enabled(void)
3685{
3686 return _page_poisoning_enabled_early;
3687}
3688/*
3689 * For use in fast paths after init_mem_debugging() has run, or when a
3690 * false negative result is not harmful when called too early.
3691 */
3692static inline bool page_poisoning_enabled_static(void)
3693{
3694 return static_branch_unlikely(&_page_poisoning_enabled);
3695}
3696static inline void kernel_poison_pages(struct page *page, int numpages)
3697{
3698 if (page_poisoning_enabled_static())
3699 __kernel_poison_pages(page, numpages);
3700}
3701static inline void kernel_unpoison_pages(struct page *page, int numpages)
3702{
3703 if (page_poisoning_enabled_static())
3704 __kernel_unpoison_pages(page, numpages);
3705}
3706#else
3707static inline bool page_poisoning_enabled(void) { return false; }
3708static inline bool page_poisoning_enabled_static(void) { return false; }
3709static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3710static inline void kernel_poison_pages(struct page *page, int numpages) { }
3711static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3712#endif
3713
3714DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3715static inline bool want_init_on_alloc(gfp_t flags)
3716{
3717 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3718 &init_on_alloc))
3719 return true;
3720 return flags & __GFP_ZERO;
3721}
3722
3723DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3724static inline bool want_init_on_free(void)
3725{
3726 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3727 &init_on_free);
3728}
3729
3730extern bool _debug_pagealloc_enabled_early;
3731DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3732
3733static inline bool debug_pagealloc_enabled(void)
3734{
3735 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3736 _debug_pagealloc_enabled_early;
3737}
3738
3739/*
3740 * For use in fast paths after mem_debugging_and_hardening_init() has run,
3741 * or when a false negative result is not harmful when called too early.
3742 */
3743static inline bool debug_pagealloc_enabled_static(void)
3744{
3745 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3746 return false;
3747
3748 return static_branch_unlikely(&_debug_pagealloc_enabled);
3749}
3750
3751/*
3752 * To support DEBUG_PAGEALLOC architecture must ensure that
3753 * __kernel_map_pages() never fails
3754 */
3755extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3756#ifdef CONFIG_DEBUG_PAGEALLOC
3757static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3758{
3759 if (debug_pagealloc_enabled_static())
3760 __kernel_map_pages(page, numpages, 1);
3761}
3762
3763static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3764{
3765 if (debug_pagealloc_enabled_static())
3766 __kernel_map_pages(page, numpages, 0);
3767}
3768
3769extern unsigned int _debug_guardpage_minorder;
3770DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3771
3772static inline unsigned int debug_guardpage_minorder(void)
3773{
3774 return _debug_guardpage_minorder;
3775}
3776
3777static inline bool debug_guardpage_enabled(void)
3778{
3779 return static_branch_unlikely(&_debug_guardpage_enabled);
3780}
3781
3782static inline bool page_is_guard(struct page *page)
3783{
3784 if (!debug_guardpage_enabled())
3785 return false;
3786
3787 return PageGuard(page);
3788}
3789
3790bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order,
3791 int migratetype);
3792static inline bool set_page_guard(struct zone *zone, struct page *page,
3793 unsigned int order, int migratetype)
3794{
3795 if (!debug_guardpage_enabled())
3796 return false;
3797 return __set_page_guard(zone, page, order, migratetype);
3798}
3799
3800void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order,
3801 int migratetype);
3802static inline void clear_page_guard(struct zone *zone, struct page *page,
3803 unsigned int order, int migratetype)
3804{
3805 if (!debug_guardpage_enabled())
3806 return;
3807 __clear_page_guard(zone, page, order, migratetype);
3808}
3809
3810#else /* CONFIG_DEBUG_PAGEALLOC */
3811static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3812static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3813static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3814static inline bool debug_guardpage_enabled(void) { return false; }
3815static inline bool page_is_guard(struct page *page) { return false; }
3816static inline bool set_page_guard(struct zone *zone, struct page *page,
3817 unsigned int order, int migratetype) { return false; }
3818static inline void clear_page_guard(struct zone *zone, struct page *page,
3819 unsigned int order, int migratetype) {}
3820#endif /* CONFIG_DEBUG_PAGEALLOC */
3821
3822#ifdef __HAVE_ARCH_GATE_AREA
3823extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3824extern int in_gate_area_no_mm(unsigned long addr);
3825extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3826#else
3827static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3828{
3829 return NULL;
3830}
3831static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3832static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3833{
3834 return 0;
3835}
3836#endif /* __HAVE_ARCH_GATE_AREA */
3837
3838extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3839
3840#ifdef CONFIG_SYSCTL
3841extern int sysctl_drop_caches;
3842int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3843 loff_t *);
3844#endif
3845
3846void drop_slab(void);
3847
3848#ifndef CONFIG_MMU
3849#define randomize_va_space 0
3850#else
3851extern int randomize_va_space;
3852#endif
3853
3854const char * arch_vma_name(struct vm_area_struct *vma);
3855#ifdef CONFIG_MMU
3856void print_vma_addr(char *prefix, unsigned long rip);
3857#else
3858static inline void print_vma_addr(char *prefix, unsigned long rip)
3859{
3860}
3861#endif
3862
3863void *sparse_buffer_alloc(unsigned long size);
3864struct page * __populate_section_memmap(unsigned long pfn,
3865 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3866 struct dev_pagemap *pgmap);
3867void pmd_init(void *addr);
3868void pud_init(void *addr);
3869pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3870p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3871pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3872pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3873pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3874 struct vmem_altmap *altmap, struct page *reuse);
3875void *vmemmap_alloc_block(unsigned long size, int node);
3876struct vmem_altmap;
3877void *vmemmap_alloc_block_buf(unsigned long size, int node,
3878 struct vmem_altmap *altmap);
3879void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3880void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3881 unsigned long addr, unsigned long next);
3882int vmemmap_check_pmd(pmd_t *pmd, int node,
3883 unsigned long addr, unsigned long next);
3884int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3885 int node, struct vmem_altmap *altmap);
3886int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3887 int node, struct vmem_altmap *altmap);
3888int vmemmap_populate(unsigned long start, unsigned long end, int node,
3889 struct vmem_altmap *altmap);
3890void vmemmap_populate_print_last(void);
3891#ifdef CONFIG_MEMORY_HOTPLUG
3892void vmemmap_free(unsigned long start, unsigned long end,
3893 struct vmem_altmap *altmap);
3894#endif
3895
3896#ifdef CONFIG_SPARSEMEM_VMEMMAP
3897static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3898{
3899 /* number of pfns from base where pfn_to_page() is valid */
3900 if (altmap)
3901 return altmap->reserve + altmap->free;
3902 return 0;
3903}
3904
3905static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3906 unsigned long nr_pfns)
3907{
3908 altmap->alloc -= nr_pfns;
3909}
3910#else
3911static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3912{
3913 return 0;
3914}
3915
3916static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3917 unsigned long nr_pfns)
3918{
3919}
3920#endif
3921
3922#define VMEMMAP_RESERVE_NR 2
3923#ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
3924static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3925 struct dev_pagemap *pgmap)
3926{
3927 unsigned long nr_pages;
3928 unsigned long nr_vmemmap_pages;
3929
3930 if (!pgmap || !is_power_of_2(sizeof(struct page)))
3931 return false;
3932
3933 nr_pages = pgmap_vmemmap_nr(pgmap);
3934 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
3935 /*
3936 * For vmemmap optimization with DAX we need minimum 2 vmemmap
3937 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
3938 */
3939 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
3940}
3941/*
3942 * If we don't have an architecture override, use the generic rule
3943 */
3944#ifndef vmemmap_can_optimize
3945#define vmemmap_can_optimize __vmemmap_can_optimize
3946#endif
3947
3948#else
3949static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3950 struct dev_pagemap *pgmap)
3951{
3952 return false;
3953}
3954#endif
3955
3956void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3957 unsigned long nr_pages);
3958
3959enum mf_flags {
3960 MF_COUNT_INCREASED = 1 << 0,
3961 MF_ACTION_REQUIRED = 1 << 1,
3962 MF_MUST_KILL = 1 << 2,
3963 MF_SOFT_OFFLINE = 1 << 3,
3964 MF_UNPOISON = 1 << 4,
3965 MF_SW_SIMULATED = 1 << 5,
3966 MF_NO_RETRY = 1 << 6,
3967 MF_MEM_PRE_REMOVE = 1 << 7,
3968};
3969int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3970 unsigned long count, int mf_flags);
3971extern int memory_failure(unsigned long pfn, int flags);
3972extern void memory_failure_queue_kick(int cpu);
3973extern int unpoison_memory(unsigned long pfn);
3974extern void shake_page(struct page *p);
3975extern atomic_long_t num_poisoned_pages __read_mostly;
3976extern int soft_offline_page(unsigned long pfn, int flags);
3977#ifdef CONFIG_MEMORY_FAILURE
3978/*
3979 * Sysfs entries for memory failure handling statistics.
3980 */
3981extern const struct attribute_group memory_failure_attr_group;
3982extern void memory_failure_queue(unsigned long pfn, int flags);
3983extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3984 bool *migratable_cleared);
3985void num_poisoned_pages_inc(unsigned long pfn);
3986void num_poisoned_pages_sub(unsigned long pfn, long i);
3987struct task_struct *task_early_kill(struct task_struct *tsk, int force_early);
3988#else
3989static inline void memory_failure_queue(unsigned long pfn, int flags)
3990{
3991}
3992
3993static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3994 bool *migratable_cleared)
3995{
3996 return 0;
3997}
3998
3999static inline void num_poisoned_pages_inc(unsigned long pfn)
4000{
4001}
4002
4003static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
4004{
4005}
4006#endif
4007
4008#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_KSM)
4009void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
4010 struct vm_area_struct *vma, struct list_head *to_kill,
4011 unsigned long ksm_addr);
4012#endif
4013
4014#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
4015extern void memblk_nr_poison_inc(unsigned long pfn);
4016extern void memblk_nr_poison_sub(unsigned long pfn, long i);
4017#else
4018static inline void memblk_nr_poison_inc(unsigned long pfn)
4019{
4020}
4021
4022static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
4023{
4024}
4025#endif
4026
4027#ifndef arch_memory_failure
4028static inline int arch_memory_failure(unsigned long pfn, int flags)
4029{
4030 return -ENXIO;
4031}
4032#endif
4033
4034#ifndef arch_is_platform_page
4035static inline bool arch_is_platform_page(u64 paddr)
4036{
4037 return false;
4038}
4039#endif
4040
4041/*
4042 * Error handlers for various types of pages.
4043 */
4044enum mf_result {
4045 MF_IGNORED, /* Error: cannot be handled */
4046 MF_FAILED, /* Error: handling failed */
4047 MF_DELAYED, /* Will be handled later */
4048 MF_RECOVERED, /* Successfully recovered */
4049};
4050
4051enum mf_action_page_type {
4052 MF_MSG_KERNEL,
4053 MF_MSG_KERNEL_HIGH_ORDER,
4054 MF_MSG_SLAB,
4055 MF_MSG_DIFFERENT_COMPOUND,
4056 MF_MSG_HUGE,
4057 MF_MSG_FREE_HUGE,
4058 MF_MSG_UNMAP_FAILED,
4059 MF_MSG_DIRTY_SWAPCACHE,
4060 MF_MSG_CLEAN_SWAPCACHE,
4061 MF_MSG_DIRTY_MLOCKED_LRU,
4062 MF_MSG_CLEAN_MLOCKED_LRU,
4063 MF_MSG_DIRTY_UNEVICTABLE_LRU,
4064 MF_MSG_CLEAN_UNEVICTABLE_LRU,
4065 MF_MSG_DIRTY_LRU,
4066 MF_MSG_CLEAN_LRU,
4067 MF_MSG_TRUNCATED_LRU,
4068 MF_MSG_BUDDY,
4069 MF_MSG_DAX,
4070 MF_MSG_UNSPLIT_THP,
4071 MF_MSG_UNKNOWN,
4072};
4073
4074#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4075extern void clear_huge_page(struct page *page,
4076 unsigned long addr_hint,
4077 unsigned int pages_per_huge_page);
4078int copy_user_large_folio(struct folio *dst, struct folio *src,
4079 unsigned long addr_hint,
4080 struct vm_area_struct *vma);
4081long copy_folio_from_user(struct folio *dst_folio,
4082 const void __user *usr_src,
4083 bool allow_pagefault);
4084
4085/**
4086 * vma_is_special_huge - Are transhuge page-table entries considered special?
4087 * @vma: Pointer to the struct vm_area_struct to consider
4088 *
4089 * Whether transhuge page-table entries are considered "special" following
4090 * the definition in vm_normal_page().
4091 *
4092 * Return: true if transhuge page-table entries should be considered special,
4093 * false otherwise.
4094 */
4095static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4096{
4097 return vma_is_dax(vma) || (vma->vm_file &&
4098 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4099}
4100
4101#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4102
4103#if MAX_NUMNODES > 1
4104void __init setup_nr_node_ids(void);
4105#else
4106static inline void setup_nr_node_ids(void) {}
4107#endif
4108
4109extern int memcmp_pages(struct page *page1, struct page *page2);
4110
4111static inline int pages_identical(struct page *page1, struct page *page2)
4112{
4113 return !memcmp_pages(page1, page2);
4114}
4115
4116#ifdef CONFIG_MAPPING_DIRTY_HELPERS
4117unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4118 pgoff_t first_index, pgoff_t nr,
4119 pgoff_t bitmap_pgoff,
4120 unsigned long *bitmap,
4121 pgoff_t *start,
4122 pgoff_t *end);
4123
4124unsigned long wp_shared_mapping_range(struct address_space *mapping,
4125 pgoff_t first_index, pgoff_t nr);
4126#endif
4127
4128extern int sysctl_nr_trim_pages;
4129
4130#ifdef CONFIG_PRINTK
4131void mem_dump_obj(void *object);
4132#else
4133static inline void mem_dump_obj(void *object) {}
4134#endif
4135
4136/**
4137 * seal_check_write - Check for F_SEAL_WRITE or F_SEAL_FUTURE_WRITE flags and
4138 * handle them.
4139 * @seals: the seals to check
4140 * @vma: the vma to operate on
4141 *
4142 * Check whether F_SEAL_WRITE or F_SEAL_FUTURE_WRITE are set; if so, do proper
4143 * check/handling on the vma flags. Return 0 if check pass, or <0 for errors.
4144 */
4145static inline int seal_check_write(int seals, struct vm_area_struct *vma)
4146{
4147 if (seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
4148 /*
4149 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
4150 * write seals are active.
4151 */
4152 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
4153 return -EPERM;
4154
4155 /*
4156 * Since an F_SEAL_[FUTURE_]WRITE sealed memfd can be mapped as
4157 * MAP_SHARED and read-only, take care to not allow mprotect to
4158 * revert protections on such mappings. Do this only for shared
4159 * mappings. For private mappings, don't need to mask
4160 * VM_MAYWRITE as we still want them to be COW-writable.
4161 */
4162 if (vma->vm_flags & VM_SHARED)
4163 vm_flags_clear(vma, VM_MAYWRITE);
4164 }
4165
4166 return 0;
4167}
4168
4169#ifdef CONFIG_ANON_VMA_NAME
4170int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4171 unsigned long len_in,
4172 struct anon_vma_name *anon_name);
4173#else
4174static inline int
4175madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4176 unsigned long len_in, struct anon_vma_name *anon_name) {
4177 return 0;
4178}
4179#endif
4180
4181#ifdef CONFIG_UNACCEPTED_MEMORY
4182
4183bool range_contains_unaccepted_memory(phys_addr_t start, phys_addr_t end);
4184void accept_memory(phys_addr_t start, phys_addr_t end);
4185
4186#else
4187
4188static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4189 phys_addr_t end)
4190{
4191 return false;
4192}
4193
4194static inline void accept_memory(phys_addr_t start, phys_addr_t end)
4195{
4196}
4197
4198#endif
4199
4200static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
4201{
4202 phys_addr_t paddr = pfn << PAGE_SHIFT;
4203
4204 return range_contains_unaccepted_memory(paddr, paddr + PAGE_SIZE);
4205}
4206
4207#endif /* _LINUX_MM_H */