Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
4 * Copyright 2012 Google, Inc.
5 */
6
7#include "bcachefs.h"
8#include "alloc_foreground.h"
9#include "bkey_buf.h"
10#include "bset.h"
11#include "btree_update.h"
12#include "buckets.h"
13#include "checksum.h"
14#include "clock.h"
15#include "compress.h"
16#include "debug.h"
17#include "ec.h"
18#include "error.h"
19#include "extent_update.h"
20#include "inode.h"
21#include "io_write.h"
22#include "journal.h"
23#include "keylist.h"
24#include "move.h"
25#include "nocow_locking.h"
26#include "rebalance.h"
27#include "subvolume.h"
28#include "super.h"
29#include "super-io.h"
30#include "trace.h"
31
32#include <linux/blkdev.h>
33#include <linux/prefetch.h>
34#include <linux/random.h>
35#include <linux/sched/mm.h>
36
37#ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT
38
39static inline void bch2_congested_acct(struct bch_dev *ca, u64 io_latency,
40 u64 now, int rw)
41{
42 u64 latency_capable =
43 ca->io_latency[rw].quantiles.entries[QUANTILE_IDX(1)].m;
44 /* ideally we'd be taking into account the device's variance here: */
45 u64 latency_threshold = latency_capable << (rw == READ ? 2 : 3);
46 s64 latency_over = io_latency - latency_threshold;
47
48 if (latency_threshold && latency_over > 0) {
49 /*
50 * bump up congested by approximately latency_over * 4 /
51 * latency_threshold - we don't need much accuracy here so don't
52 * bother with the divide:
53 */
54 if (atomic_read(&ca->congested) < CONGESTED_MAX)
55 atomic_add(latency_over >>
56 max_t(int, ilog2(latency_threshold) - 2, 0),
57 &ca->congested);
58
59 ca->congested_last = now;
60 } else if (atomic_read(&ca->congested) > 0) {
61 atomic_dec(&ca->congested);
62 }
63}
64
65void bch2_latency_acct(struct bch_dev *ca, u64 submit_time, int rw)
66{
67 atomic64_t *latency = &ca->cur_latency[rw];
68 u64 now = local_clock();
69 u64 io_latency = time_after64(now, submit_time)
70 ? now - submit_time
71 : 0;
72 u64 old, new, v = atomic64_read(latency);
73
74 do {
75 old = v;
76
77 /*
78 * If the io latency was reasonably close to the current
79 * latency, skip doing the update and atomic operation - most of
80 * the time:
81 */
82 if (abs((int) (old - io_latency)) < (old >> 1) &&
83 now & ~(~0U << 5))
84 break;
85
86 new = ewma_add(old, io_latency, 5);
87 } while ((v = atomic64_cmpxchg(latency, old, new)) != old);
88
89 bch2_congested_acct(ca, io_latency, now, rw);
90
91 __bch2_time_stats_update(&ca->io_latency[rw].stats, submit_time, now);
92}
93
94#endif
95
96/* Allocate, free from mempool: */
97
98void bch2_bio_free_pages_pool(struct bch_fs *c, struct bio *bio)
99{
100 struct bvec_iter_all iter;
101 struct bio_vec *bv;
102
103 bio_for_each_segment_all(bv, bio, iter)
104 if (bv->bv_page != ZERO_PAGE(0))
105 mempool_free(bv->bv_page, &c->bio_bounce_pages);
106 bio->bi_vcnt = 0;
107}
108
109static struct page *__bio_alloc_page_pool(struct bch_fs *c, bool *using_mempool)
110{
111 struct page *page;
112
113 if (likely(!*using_mempool)) {
114 page = alloc_page(GFP_NOFS);
115 if (unlikely(!page)) {
116 mutex_lock(&c->bio_bounce_pages_lock);
117 *using_mempool = true;
118 goto pool_alloc;
119
120 }
121 } else {
122pool_alloc:
123 page = mempool_alloc(&c->bio_bounce_pages, GFP_NOFS);
124 }
125
126 return page;
127}
128
129void bch2_bio_alloc_pages_pool(struct bch_fs *c, struct bio *bio,
130 size_t size)
131{
132 bool using_mempool = false;
133
134 while (size) {
135 struct page *page = __bio_alloc_page_pool(c, &using_mempool);
136 unsigned len = min_t(size_t, PAGE_SIZE, size);
137
138 BUG_ON(!bio_add_page(bio, page, len, 0));
139 size -= len;
140 }
141
142 if (using_mempool)
143 mutex_unlock(&c->bio_bounce_pages_lock);
144}
145
146/* Extent update path: */
147
148int bch2_sum_sector_overwrites(struct btree_trans *trans,
149 struct btree_iter *extent_iter,
150 struct bkey_i *new,
151 bool *usage_increasing,
152 s64 *i_sectors_delta,
153 s64 *disk_sectors_delta)
154{
155 struct bch_fs *c = trans->c;
156 struct btree_iter iter;
157 struct bkey_s_c old;
158 unsigned new_replicas = bch2_bkey_replicas(c, bkey_i_to_s_c(new));
159 bool new_compressed = bch2_bkey_sectors_compressed(bkey_i_to_s_c(new));
160 int ret = 0;
161
162 *usage_increasing = false;
163 *i_sectors_delta = 0;
164 *disk_sectors_delta = 0;
165
166 bch2_trans_copy_iter(&iter, extent_iter);
167
168 for_each_btree_key_upto_continue_norestart(iter,
169 new->k.p, BTREE_ITER_SLOTS, old, ret) {
170 s64 sectors = min(new->k.p.offset, old.k->p.offset) -
171 max(bkey_start_offset(&new->k),
172 bkey_start_offset(old.k));
173
174 *i_sectors_delta += sectors *
175 (bkey_extent_is_allocation(&new->k) -
176 bkey_extent_is_allocation(old.k));
177
178 *disk_sectors_delta += sectors * bch2_bkey_nr_ptrs_allocated(bkey_i_to_s_c(new));
179 *disk_sectors_delta -= new->k.p.snapshot == old.k->p.snapshot
180 ? sectors * bch2_bkey_nr_ptrs_fully_allocated(old)
181 : 0;
182
183 if (!*usage_increasing &&
184 (new->k.p.snapshot != old.k->p.snapshot ||
185 new_replicas > bch2_bkey_replicas(c, old) ||
186 (!new_compressed && bch2_bkey_sectors_compressed(old))))
187 *usage_increasing = true;
188
189 if (bkey_ge(old.k->p, new->k.p))
190 break;
191 }
192
193 bch2_trans_iter_exit(trans, &iter);
194 return ret;
195}
196
197static inline int bch2_extent_update_i_size_sectors(struct btree_trans *trans,
198 struct btree_iter *extent_iter,
199 u64 new_i_size,
200 s64 i_sectors_delta)
201{
202 /*
203 * Crazy performance optimization:
204 * Every extent update needs to also update the inode: the inode trigger
205 * will set bi->journal_seq to the journal sequence number of this
206 * transaction - for fsync.
207 *
208 * But if that's the only reason we're updating the inode (we're not
209 * updating bi_size or bi_sectors), then we don't need the inode update
210 * to be journalled - if we crash, the bi_journal_seq update will be
211 * lost, but that's fine.
212 */
213 unsigned inode_update_flags = BTREE_UPDATE_NOJOURNAL;
214
215 struct btree_iter iter;
216 struct bkey_s_c k = bch2_bkey_get_iter(trans, &iter, BTREE_ID_inodes,
217 SPOS(0,
218 extent_iter->pos.inode,
219 extent_iter->snapshot),
220 BTREE_ITER_CACHED);
221 int ret = bkey_err(k);
222 if (unlikely(ret))
223 return ret;
224
225 /*
226 * varint_decode_fast(), in the inode .invalid method, reads up to 7
227 * bytes past the end of the buffer:
228 */
229 struct bkey_i *k_mut = bch2_trans_kmalloc_nomemzero(trans, bkey_bytes(k.k) + 8);
230 ret = PTR_ERR_OR_ZERO(k_mut);
231 if (unlikely(ret))
232 goto err;
233
234 bkey_reassemble(k_mut, k);
235
236 if (unlikely(k_mut->k.type != KEY_TYPE_inode_v3)) {
237 k_mut = bch2_inode_to_v3(trans, k_mut);
238 ret = PTR_ERR_OR_ZERO(k_mut);
239 if (unlikely(ret))
240 goto err;
241 }
242
243 struct bkey_i_inode_v3 *inode = bkey_i_to_inode_v3(k_mut);
244
245 if (!(le64_to_cpu(inode->v.bi_flags) & BCH_INODE_i_size_dirty) &&
246 new_i_size > le64_to_cpu(inode->v.bi_size)) {
247 inode->v.bi_size = cpu_to_le64(new_i_size);
248 inode_update_flags = 0;
249 }
250
251 if (i_sectors_delta) {
252 le64_add_cpu(&inode->v.bi_sectors, i_sectors_delta);
253 inode_update_flags = 0;
254 }
255
256 if (inode->k.p.snapshot != iter.snapshot) {
257 inode->k.p.snapshot = iter.snapshot;
258 inode_update_flags = 0;
259 }
260
261 ret = bch2_trans_update(trans, &iter, &inode->k_i,
262 BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE|
263 inode_update_flags);
264err:
265 bch2_trans_iter_exit(trans, &iter);
266 return ret;
267}
268
269int bch2_extent_update(struct btree_trans *trans,
270 subvol_inum inum,
271 struct btree_iter *iter,
272 struct bkey_i *k,
273 struct disk_reservation *disk_res,
274 u64 new_i_size,
275 s64 *i_sectors_delta_total,
276 bool check_enospc)
277{
278 struct bpos next_pos;
279 bool usage_increasing;
280 s64 i_sectors_delta = 0, disk_sectors_delta = 0;
281 int ret;
282
283 /*
284 * This traverses us the iterator without changing iter->path->pos to
285 * search_key() (which is pos + 1 for extents): we want there to be a
286 * path already traversed at iter->pos because
287 * bch2_trans_extent_update() will use it to attempt extent merging
288 */
289 ret = __bch2_btree_iter_traverse(iter);
290 if (ret)
291 return ret;
292
293 ret = bch2_extent_trim_atomic(trans, iter, k);
294 if (ret)
295 return ret;
296
297 next_pos = k->k.p;
298
299 ret = bch2_sum_sector_overwrites(trans, iter, k,
300 &usage_increasing,
301 &i_sectors_delta,
302 &disk_sectors_delta);
303 if (ret)
304 return ret;
305
306 if (disk_res &&
307 disk_sectors_delta > (s64) disk_res->sectors) {
308 ret = bch2_disk_reservation_add(trans->c, disk_res,
309 disk_sectors_delta - disk_res->sectors,
310 !check_enospc || !usage_increasing
311 ? BCH_DISK_RESERVATION_NOFAIL : 0);
312 if (ret)
313 return ret;
314 }
315
316 /*
317 * Note:
318 * We always have to do an inode update - even when i_size/i_sectors
319 * aren't changing - for fsync to work properly; fsync relies on
320 * inode->bi_journal_seq which is updated by the trigger code:
321 */
322 ret = bch2_extent_update_i_size_sectors(trans, iter,
323 min(k->k.p.offset << 9, new_i_size),
324 i_sectors_delta) ?:
325 bch2_trans_update(trans, iter, k, 0) ?:
326 bch2_trans_commit(trans, disk_res, NULL,
327 BCH_TRANS_COMMIT_no_check_rw|
328 BCH_TRANS_COMMIT_no_enospc);
329 if (unlikely(ret))
330 return ret;
331
332 if (i_sectors_delta_total)
333 *i_sectors_delta_total += i_sectors_delta;
334 bch2_btree_iter_set_pos(iter, next_pos);
335 return 0;
336}
337
338static int bch2_write_index_default(struct bch_write_op *op)
339{
340 struct bch_fs *c = op->c;
341 struct bkey_buf sk;
342 struct keylist *keys = &op->insert_keys;
343 struct bkey_i *k = bch2_keylist_front(keys);
344 struct btree_trans *trans = bch2_trans_get(c);
345 struct btree_iter iter;
346 subvol_inum inum = {
347 .subvol = op->subvol,
348 .inum = k->k.p.inode,
349 };
350 int ret;
351
352 BUG_ON(!inum.subvol);
353
354 bch2_bkey_buf_init(&sk);
355
356 do {
357 bch2_trans_begin(trans);
358
359 k = bch2_keylist_front(keys);
360 bch2_bkey_buf_copy(&sk, c, k);
361
362 ret = bch2_subvolume_get_snapshot(trans, inum.subvol,
363 &sk.k->k.p.snapshot);
364 if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
365 continue;
366 if (ret)
367 break;
368
369 bch2_trans_iter_init(trans, &iter, BTREE_ID_extents,
370 bkey_start_pos(&sk.k->k),
371 BTREE_ITER_SLOTS|BTREE_ITER_INTENT);
372
373 ret = bch2_bkey_set_needs_rebalance(c, sk.k, &op->opts) ?:
374 bch2_extent_update(trans, inum, &iter, sk.k,
375 &op->res,
376 op->new_i_size, &op->i_sectors_delta,
377 op->flags & BCH_WRITE_CHECK_ENOSPC);
378 bch2_trans_iter_exit(trans, &iter);
379
380 if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
381 continue;
382 if (ret)
383 break;
384
385 if (bkey_ge(iter.pos, k->k.p))
386 bch2_keylist_pop_front(&op->insert_keys);
387 else
388 bch2_cut_front(iter.pos, k);
389 } while (!bch2_keylist_empty(keys));
390
391 bch2_trans_put(trans);
392 bch2_bkey_buf_exit(&sk, c);
393
394 return ret;
395}
396
397/* Writes */
398
399void bch2_submit_wbio_replicas(struct bch_write_bio *wbio, struct bch_fs *c,
400 enum bch_data_type type,
401 const struct bkey_i *k,
402 bool nocow)
403{
404 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(bkey_i_to_s_c(k));
405 struct bch_write_bio *n;
406
407 BUG_ON(c->opts.nochanges);
408
409 bkey_for_each_ptr(ptrs, ptr) {
410 BUG_ON(!bch2_dev_exists2(c, ptr->dev));
411
412 struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev);
413
414 if (to_entry(ptr + 1) < ptrs.end) {
415 n = to_wbio(bio_alloc_clone(NULL, &wbio->bio,
416 GFP_NOFS, &ca->replica_set));
417
418 n->bio.bi_end_io = wbio->bio.bi_end_io;
419 n->bio.bi_private = wbio->bio.bi_private;
420 n->parent = wbio;
421 n->split = true;
422 n->bounce = false;
423 n->put_bio = true;
424 n->bio.bi_opf = wbio->bio.bi_opf;
425 bio_inc_remaining(&wbio->bio);
426 } else {
427 n = wbio;
428 n->split = false;
429 }
430
431 n->c = c;
432 n->dev = ptr->dev;
433 n->have_ioref = nocow || bch2_dev_get_ioref(ca,
434 type == BCH_DATA_btree ? READ : WRITE);
435 n->nocow = nocow;
436 n->submit_time = local_clock();
437 n->inode_offset = bkey_start_offset(&k->k);
438 n->bio.bi_iter.bi_sector = ptr->offset;
439
440 if (likely(n->have_ioref)) {
441 this_cpu_add(ca->io_done->sectors[WRITE][type],
442 bio_sectors(&n->bio));
443
444 bio_set_dev(&n->bio, ca->disk_sb.bdev);
445
446 if (type != BCH_DATA_btree && unlikely(c->opts.no_data_io)) {
447 bio_endio(&n->bio);
448 continue;
449 }
450
451 submit_bio(&n->bio);
452 } else {
453 n->bio.bi_status = BLK_STS_REMOVED;
454 bio_endio(&n->bio);
455 }
456 }
457}
458
459static void __bch2_write(struct bch_write_op *);
460
461static void bch2_write_done(struct closure *cl)
462{
463 struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
464 struct bch_fs *c = op->c;
465
466 EBUG_ON(op->open_buckets.nr);
467
468 bch2_time_stats_update(&c->times[BCH_TIME_data_write], op->start_time);
469 bch2_disk_reservation_put(c, &op->res);
470
471 if (!(op->flags & BCH_WRITE_MOVE))
472 bch2_write_ref_put(c, BCH_WRITE_REF_write);
473 bch2_keylist_free(&op->insert_keys, op->inline_keys);
474
475 EBUG_ON(cl->parent);
476 closure_debug_destroy(cl);
477 if (op->end_io)
478 op->end_io(op);
479}
480
481static noinline int bch2_write_drop_io_error_ptrs(struct bch_write_op *op)
482{
483 struct keylist *keys = &op->insert_keys;
484 struct bch_extent_ptr *ptr;
485 struct bkey_i *src, *dst = keys->keys, *n;
486
487 for (src = keys->keys; src != keys->top; src = n) {
488 n = bkey_next(src);
489
490 if (bkey_extent_is_direct_data(&src->k)) {
491 bch2_bkey_drop_ptrs(bkey_i_to_s(src), ptr,
492 test_bit(ptr->dev, op->failed.d));
493
494 if (!bch2_bkey_nr_ptrs(bkey_i_to_s_c(src)))
495 return -EIO;
496 }
497
498 if (dst != src)
499 memmove_u64s_down(dst, src, src->k.u64s);
500 dst = bkey_next(dst);
501 }
502
503 keys->top = dst;
504 return 0;
505}
506
507/**
508 * __bch2_write_index - after a write, update index to point to new data
509 * @op: bch_write_op to process
510 */
511static void __bch2_write_index(struct bch_write_op *op)
512{
513 struct bch_fs *c = op->c;
514 struct keylist *keys = &op->insert_keys;
515 unsigned dev;
516 int ret = 0;
517
518 if (unlikely(op->flags & BCH_WRITE_IO_ERROR)) {
519 ret = bch2_write_drop_io_error_ptrs(op);
520 if (ret)
521 goto err;
522 }
523
524 if (!bch2_keylist_empty(keys)) {
525 u64 sectors_start = keylist_sectors(keys);
526
527 ret = !(op->flags & BCH_WRITE_MOVE)
528 ? bch2_write_index_default(op)
529 : bch2_data_update_index_update(op);
530
531 BUG_ON(bch2_err_matches(ret, BCH_ERR_transaction_restart));
532 BUG_ON(keylist_sectors(keys) && !ret);
533
534 op->written += sectors_start - keylist_sectors(keys);
535
536 if (ret && !bch2_err_matches(ret, EROFS)) {
537 struct bkey_i *insert = bch2_keylist_front(&op->insert_keys);
538
539 bch_err_inum_offset_ratelimited(c,
540 insert->k.p.inode, insert->k.p.offset << 9,
541 "%s write error while doing btree update: %s",
542 op->flags & BCH_WRITE_MOVE ? "move" : "user",
543 bch2_err_str(ret));
544 }
545
546 if (ret)
547 goto err;
548 }
549out:
550 /* If some a bucket wasn't written, we can't erasure code it: */
551 for_each_set_bit(dev, op->failed.d, BCH_SB_MEMBERS_MAX)
552 bch2_open_bucket_write_error(c, &op->open_buckets, dev);
553
554 bch2_open_buckets_put(c, &op->open_buckets);
555 return;
556err:
557 keys->top = keys->keys;
558 op->error = ret;
559 op->flags |= BCH_WRITE_DONE;
560 goto out;
561}
562
563static inline void __wp_update_state(struct write_point *wp, enum write_point_state state)
564{
565 if (state != wp->state) {
566 u64 now = ktime_get_ns();
567
568 if (wp->last_state_change &&
569 time_after64(now, wp->last_state_change))
570 wp->time[wp->state] += now - wp->last_state_change;
571 wp->state = state;
572 wp->last_state_change = now;
573 }
574}
575
576static inline void wp_update_state(struct write_point *wp, bool running)
577{
578 enum write_point_state state;
579
580 state = running ? WRITE_POINT_running :
581 !list_empty(&wp->writes) ? WRITE_POINT_waiting_io
582 : WRITE_POINT_stopped;
583
584 __wp_update_state(wp, state);
585}
586
587static CLOSURE_CALLBACK(bch2_write_index)
588{
589 closure_type(op, struct bch_write_op, cl);
590 struct write_point *wp = op->wp;
591 struct workqueue_struct *wq = index_update_wq(op);
592 unsigned long flags;
593
594 if ((op->flags & BCH_WRITE_DONE) &&
595 (op->flags & BCH_WRITE_MOVE))
596 bch2_bio_free_pages_pool(op->c, &op->wbio.bio);
597
598 spin_lock_irqsave(&wp->writes_lock, flags);
599 if (wp->state == WRITE_POINT_waiting_io)
600 __wp_update_state(wp, WRITE_POINT_waiting_work);
601 list_add_tail(&op->wp_list, &wp->writes);
602 spin_unlock_irqrestore (&wp->writes_lock, flags);
603
604 queue_work(wq, &wp->index_update_work);
605}
606
607static inline void bch2_write_queue(struct bch_write_op *op, struct write_point *wp)
608{
609 op->wp = wp;
610
611 if (wp->state == WRITE_POINT_stopped) {
612 spin_lock_irq(&wp->writes_lock);
613 __wp_update_state(wp, WRITE_POINT_waiting_io);
614 spin_unlock_irq(&wp->writes_lock);
615 }
616}
617
618void bch2_write_point_do_index_updates(struct work_struct *work)
619{
620 struct write_point *wp =
621 container_of(work, struct write_point, index_update_work);
622 struct bch_write_op *op;
623
624 while (1) {
625 spin_lock_irq(&wp->writes_lock);
626 op = list_first_entry_or_null(&wp->writes, struct bch_write_op, wp_list);
627 if (op)
628 list_del(&op->wp_list);
629 wp_update_state(wp, op != NULL);
630 spin_unlock_irq(&wp->writes_lock);
631
632 if (!op)
633 break;
634
635 op->flags |= BCH_WRITE_IN_WORKER;
636
637 __bch2_write_index(op);
638
639 if (!(op->flags & BCH_WRITE_DONE))
640 __bch2_write(op);
641 else
642 bch2_write_done(&op->cl);
643 }
644}
645
646static void bch2_write_endio(struct bio *bio)
647{
648 struct closure *cl = bio->bi_private;
649 struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
650 struct bch_write_bio *wbio = to_wbio(bio);
651 struct bch_write_bio *parent = wbio->split ? wbio->parent : NULL;
652 struct bch_fs *c = wbio->c;
653 struct bch_dev *ca = bch_dev_bkey_exists(c, wbio->dev);
654
655 if (bch2_dev_inum_io_err_on(bio->bi_status, ca, BCH_MEMBER_ERROR_write,
656 op->pos.inode,
657 wbio->inode_offset << 9,
658 "data write error: %s",
659 bch2_blk_status_to_str(bio->bi_status))) {
660 set_bit(wbio->dev, op->failed.d);
661 op->flags |= BCH_WRITE_IO_ERROR;
662 }
663
664 if (wbio->nocow)
665 set_bit(wbio->dev, op->devs_need_flush->d);
666
667 if (wbio->have_ioref) {
668 bch2_latency_acct(ca, wbio->submit_time, WRITE);
669 percpu_ref_put(&ca->io_ref);
670 }
671
672 if (wbio->bounce)
673 bch2_bio_free_pages_pool(c, bio);
674
675 if (wbio->put_bio)
676 bio_put(bio);
677
678 if (parent)
679 bio_endio(&parent->bio);
680 else
681 closure_put(cl);
682}
683
684static void init_append_extent(struct bch_write_op *op,
685 struct write_point *wp,
686 struct bversion version,
687 struct bch_extent_crc_unpacked crc)
688{
689 struct bkey_i_extent *e;
690
691 op->pos.offset += crc.uncompressed_size;
692
693 e = bkey_extent_init(op->insert_keys.top);
694 e->k.p = op->pos;
695 e->k.size = crc.uncompressed_size;
696 e->k.version = version;
697
698 if (crc.csum_type ||
699 crc.compression_type ||
700 crc.nonce)
701 bch2_extent_crc_append(&e->k_i, crc);
702
703 bch2_alloc_sectors_append_ptrs_inlined(op->c, wp, &e->k_i, crc.compressed_size,
704 op->flags & BCH_WRITE_CACHED);
705
706 bch2_keylist_push(&op->insert_keys);
707}
708
709static struct bio *bch2_write_bio_alloc(struct bch_fs *c,
710 struct write_point *wp,
711 struct bio *src,
712 bool *page_alloc_failed,
713 void *buf)
714{
715 struct bch_write_bio *wbio;
716 struct bio *bio;
717 unsigned output_available =
718 min(wp->sectors_free << 9, src->bi_iter.bi_size);
719 unsigned pages = DIV_ROUND_UP(output_available +
720 (buf
721 ? ((unsigned long) buf & (PAGE_SIZE - 1))
722 : 0), PAGE_SIZE);
723
724 pages = min(pages, BIO_MAX_VECS);
725
726 bio = bio_alloc_bioset(NULL, pages, 0,
727 GFP_NOFS, &c->bio_write);
728 wbio = wbio_init(bio);
729 wbio->put_bio = true;
730 /* copy WRITE_SYNC flag */
731 wbio->bio.bi_opf = src->bi_opf;
732
733 if (buf) {
734 bch2_bio_map(bio, buf, output_available);
735 return bio;
736 }
737
738 wbio->bounce = true;
739
740 /*
741 * We can't use mempool for more than c->sb.encoded_extent_max
742 * worth of pages, but we'd like to allocate more if we can:
743 */
744 bch2_bio_alloc_pages_pool(c, bio,
745 min_t(unsigned, output_available,
746 c->opts.encoded_extent_max));
747
748 if (bio->bi_iter.bi_size < output_available)
749 *page_alloc_failed =
750 bch2_bio_alloc_pages(bio,
751 output_available -
752 bio->bi_iter.bi_size,
753 GFP_NOFS) != 0;
754
755 return bio;
756}
757
758static int bch2_write_rechecksum(struct bch_fs *c,
759 struct bch_write_op *op,
760 unsigned new_csum_type)
761{
762 struct bio *bio = &op->wbio.bio;
763 struct bch_extent_crc_unpacked new_crc;
764 int ret;
765
766 /* bch2_rechecksum_bio() can't encrypt or decrypt data: */
767
768 if (bch2_csum_type_is_encryption(op->crc.csum_type) !=
769 bch2_csum_type_is_encryption(new_csum_type))
770 new_csum_type = op->crc.csum_type;
771
772 ret = bch2_rechecksum_bio(c, bio, op->version, op->crc,
773 NULL, &new_crc,
774 op->crc.offset, op->crc.live_size,
775 new_csum_type);
776 if (ret)
777 return ret;
778
779 bio_advance(bio, op->crc.offset << 9);
780 bio->bi_iter.bi_size = op->crc.live_size << 9;
781 op->crc = new_crc;
782 return 0;
783}
784
785static int bch2_write_decrypt(struct bch_write_op *op)
786{
787 struct bch_fs *c = op->c;
788 struct nonce nonce = extent_nonce(op->version, op->crc);
789 struct bch_csum csum;
790 int ret;
791
792 if (!bch2_csum_type_is_encryption(op->crc.csum_type))
793 return 0;
794
795 /*
796 * If we need to decrypt data in the write path, we'll no longer be able
797 * to verify the existing checksum (poly1305 mac, in this case) after
798 * it's decrypted - this is the last point we'll be able to reverify the
799 * checksum:
800 */
801 csum = bch2_checksum_bio(c, op->crc.csum_type, nonce, &op->wbio.bio);
802 if (bch2_crc_cmp(op->crc.csum, csum) && !c->opts.no_data_io)
803 return -EIO;
804
805 ret = bch2_encrypt_bio(c, op->crc.csum_type, nonce, &op->wbio.bio);
806 op->crc.csum_type = 0;
807 op->crc.csum = (struct bch_csum) { 0, 0 };
808 return ret;
809}
810
811static enum prep_encoded_ret {
812 PREP_ENCODED_OK,
813 PREP_ENCODED_ERR,
814 PREP_ENCODED_CHECKSUM_ERR,
815 PREP_ENCODED_DO_WRITE,
816} bch2_write_prep_encoded_data(struct bch_write_op *op, struct write_point *wp)
817{
818 struct bch_fs *c = op->c;
819 struct bio *bio = &op->wbio.bio;
820
821 if (!(op->flags & BCH_WRITE_DATA_ENCODED))
822 return PREP_ENCODED_OK;
823
824 BUG_ON(bio_sectors(bio) != op->crc.compressed_size);
825
826 /* Can we just write the entire extent as is? */
827 if (op->crc.uncompressed_size == op->crc.live_size &&
828 op->crc.uncompressed_size <= c->opts.encoded_extent_max >> 9 &&
829 op->crc.compressed_size <= wp->sectors_free &&
830 (op->crc.compression_type == bch2_compression_opt_to_type(op->compression_opt) ||
831 op->incompressible)) {
832 if (!crc_is_compressed(op->crc) &&
833 op->csum_type != op->crc.csum_type &&
834 bch2_write_rechecksum(c, op, op->csum_type) &&
835 !c->opts.no_data_io)
836 return PREP_ENCODED_CHECKSUM_ERR;
837
838 return PREP_ENCODED_DO_WRITE;
839 }
840
841 /*
842 * If the data is compressed and we couldn't write the entire extent as
843 * is, we have to decompress it:
844 */
845 if (crc_is_compressed(op->crc)) {
846 struct bch_csum csum;
847
848 if (bch2_write_decrypt(op))
849 return PREP_ENCODED_CHECKSUM_ERR;
850
851 /* Last point we can still verify checksum: */
852 csum = bch2_checksum_bio(c, op->crc.csum_type,
853 extent_nonce(op->version, op->crc),
854 bio);
855 if (bch2_crc_cmp(op->crc.csum, csum) && !c->opts.no_data_io)
856 return PREP_ENCODED_CHECKSUM_ERR;
857
858 if (bch2_bio_uncompress_inplace(c, bio, &op->crc))
859 return PREP_ENCODED_ERR;
860 }
861
862 /*
863 * No longer have compressed data after this point - data might be
864 * encrypted:
865 */
866
867 /*
868 * If the data is checksummed and we're only writing a subset,
869 * rechecksum and adjust bio to point to currently live data:
870 */
871 if ((op->crc.live_size != op->crc.uncompressed_size ||
872 op->crc.csum_type != op->csum_type) &&
873 bch2_write_rechecksum(c, op, op->csum_type) &&
874 !c->opts.no_data_io)
875 return PREP_ENCODED_CHECKSUM_ERR;
876
877 /*
878 * If we want to compress the data, it has to be decrypted:
879 */
880 if ((op->compression_opt ||
881 bch2_csum_type_is_encryption(op->crc.csum_type) !=
882 bch2_csum_type_is_encryption(op->csum_type)) &&
883 bch2_write_decrypt(op))
884 return PREP_ENCODED_CHECKSUM_ERR;
885
886 return PREP_ENCODED_OK;
887}
888
889static int bch2_write_extent(struct bch_write_op *op, struct write_point *wp,
890 struct bio **_dst)
891{
892 struct bch_fs *c = op->c;
893 struct bio *src = &op->wbio.bio, *dst = src;
894 struct bvec_iter saved_iter;
895 void *ec_buf;
896 unsigned total_output = 0, total_input = 0;
897 bool bounce = false;
898 bool page_alloc_failed = false;
899 int ret, more = 0;
900
901 BUG_ON(!bio_sectors(src));
902
903 ec_buf = bch2_writepoint_ec_buf(c, wp);
904
905 switch (bch2_write_prep_encoded_data(op, wp)) {
906 case PREP_ENCODED_OK:
907 break;
908 case PREP_ENCODED_ERR:
909 ret = -EIO;
910 goto err;
911 case PREP_ENCODED_CHECKSUM_ERR:
912 goto csum_err;
913 case PREP_ENCODED_DO_WRITE:
914 /* XXX look for bug here */
915 if (ec_buf) {
916 dst = bch2_write_bio_alloc(c, wp, src,
917 &page_alloc_failed,
918 ec_buf);
919 bio_copy_data(dst, src);
920 bounce = true;
921 }
922 init_append_extent(op, wp, op->version, op->crc);
923 goto do_write;
924 }
925
926 if (ec_buf ||
927 op->compression_opt ||
928 (op->csum_type &&
929 !(op->flags & BCH_WRITE_PAGES_STABLE)) ||
930 (bch2_csum_type_is_encryption(op->csum_type) &&
931 !(op->flags & BCH_WRITE_PAGES_OWNED))) {
932 dst = bch2_write_bio_alloc(c, wp, src,
933 &page_alloc_failed,
934 ec_buf);
935 bounce = true;
936 }
937
938 saved_iter = dst->bi_iter;
939
940 do {
941 struct bch_extent_crc_unpacked crc = { 0 };
942 struct bversion version = op->version;
943 size_t dst_len = 0, src_len = 0;
944
945 if (page_alloc_failed &&
946 dst->bi_iter.bi_size < (wp->sectors_free << 9) &&
947 dst->bi_iter.bi_size < c->opts.encoded_extent_max)
948 break;
949
950 BUG_ON(op->compression_opt &&
951 (op->flags & BCH_WRITE_DATA_ENCODED) &&
952 bch2_csum_type_is_encryption(op->crc.csum_type));
953 BUG_ON(op->compression_opt && !bounce);
954
955 crc.compression_type = op->incompressible
956 ? BCH_COMPRESSION_TYPE_incompressible
957 : op->compression_opt
958 ? bch2_bio_compress(c, dst, &dst_len, src, &src_len,
959 op->compression_opt)
960 : 0;
961 if (!crc_is_compressed(crc)) {
962 dst_len = min(dst->bi_iter.bi_size, src->bi_iter.bi_size);
963 dst_len = min_t(unsigned, dst_len, wp->sectors_free << 9);
964
965 if (op->csum_type)
966 dst_len = min_t(unsigned, dst_len,
967 c->opts.encoded_extent_max);
968
969 if (bounce) {
970 swap(dst->bi_iter.bi_size, dst_len);
971 bio_copy_data(dst, src);
972 swap(dst->bi_iter.bi_size, dst_len);
973 }
974
975 src_len = dst_len;
976 }
977
978 BUG_ON(!src_len || !dst_len);
979
980 if (bch2_csum_type_is_encryption(op->csum_type)) {
981 if (bversion_zero(version)) {
982 version.lo = atomic64_inc_return(&c->key_version);
983 } else {
984 crc.nonce = op->nonce;
985 op->nonce += src_len >> 9;
986 }
987 }
988
989 if ((op->flags & BCH_WRITE_DATA_ENCODED) &&
990 !crc_is_compressed(crc) &&
991 bch2_csum_type_is_encryption(op->crc.csum_type) ==
992 bch2_csum_type_is_encryption(op->csum_type)) {
993 u8 compression_type = crc.compression_type;
994 u16 nonce = crc.nonce;
995 /*
996 * Note: when we're using rechecksum(), we need to be
997 * checksumming @src because it has all the data our
998 * existing checksum covers - if we bounced (because we
999 * were trying to compress), @dst will only have the
1000 * part of the data the new checksum will cover.
1001 *
1002 * But normally we want to be checksumming post bounce,
1003 * because part of the reason for bouncing is so the
1004 * data can't be modified (by userspace) while it's in
1005 * flight.
1006 */
1007 if (bch2_rechecksum_bio(c, src, version, op->crc,
1008 &crc, &op->crc,
1009 src_len >> 9,
1010 bio_sectors(src) - (src_len >> 9),
1011 op->csum_type))
1012 goto csum_err;
1013 /*
1014 * rchecksum_bio sets compression_type on crc from op->crc,
1015 * this isn't always correct as sometimes we're changing
1016 * an extent from uncompressed to incompressible.
1017 */
1018 crc.compression_type = compression_type;
1019 crc.nonce = nonce;
1020 } else {
1021 if ((op->flags & BCH_WRITE_DATA_ENCODED) &&
1022 bch2_rechecksum_bio(c, src, version, op->crc,
1023 NULL, &op->crc,
1024 src_len >> 9,
1025 bio_sectors(src) - (src_len >> 9),
1026 op->crc.csum_type))
1027 goto csum_err;
1028
1029 crc.compressed_size = dst_len >> 9;
1030 crc.uncompressed_size = src_len >> 9;
1031 crc.live_size = src_len >> 9;
1032
1033 swap(dst->bi_iter.bi_size, dst_len);
1034 ret = bch2_encrypt_bio(c, op->csum_type,
1035 extent_nonce(version, crc), dst);
1036 if (ret)
1037 goto err;
1038
1039 crc.csum = bch2_checksum_bio(c, op->csum_type,
1040 extent_nonce(version, crc), dst);
1041 crc.csum_type = op->csum_type;
1042 swap(dst->bi_iter.bi_size, dst_len);
1043 }
1044
1045 init_append_extent(op, wp, version, crc);
1046
1047 if (dst != src)
1048 bio_advance(dst, dst_len);
1049 bio_advance(src, src_len);
1050 total_output += dst_len;
1051 total_input += src_len;
1052 } while (dst->bi_iter.bi_size &&
1053 src->bi_iter.bi_size &&
1054 wp->sectors_free &&
1055 !bch2_keylist_realloc(&op->insert_keys,
1056 op->inline_keys,
1057 ARRAY_SIZE(op->inline_keys),
1058 BKEY_EXTENT_U64s_MAX));
1059
1060 more = src->bi_iter.bi_size != 0;
1061
1062 dst->bi_iter = saved_iter;
1063
1064 if (dst == src && more) {
1065 BUG_ON(total_output != total_input);
1066
1067 dst = bio_split(src, total_input >> 9,
1068 GFP_NOFS, &c->bio_write);
1069 wbio_init(dst)->put_bio = true;
1070 /* copy WRITE_SYNC flag */
1071 dst->bi_opf = src->bi_opf;
1072 }
1073
1074 dst->bi_iter.bi_size = total_output;
1075do_write:
1076 *_dst = dst;
1077 return more;
1078csum_err:
1079 bch_err(c, "%s writ error: error verifying existing checksum while rewriting existing data (memory corruption?)",
1080 op->flags & BCH_WRITE_MOVE ? "move" : "user");
1081 ret = -EIO;
1082err:
1083 if (to_wbio(dst)->bounce)
1084 bch2_bio_free_pages_pool(c, dst);
1085 if (to_wbio(dst)->put_bio)
1086 bio_put(dst);
1087
1088 return ret;
1089}
1090
1091static bool bch2_extent_is_writeable(struct bch_write_op *op,
1092 struct bkey_s_c k)
1093{
1094 struct bch_fs *c = op->c;
1095 struct bkey_s_c_extent e;
1096 struct extent_ptr_decoded p;
1097 const union bch_extent_entry *entry;
1098 unsigned replicas = 0;
1099
1100 if (k.k->type != KEY_TYPE_extent)
1101 return false;
1102
1103 e = bkey_s_c_to_extent(k);
1104 extent_for_each_ptr_decode(e, p, entry) {
1105 if (crc_is_encoded(p.crc) || p.has_ec)
1106 return false;
1107
1108 replicas += bch2_extent_ptr_durability(c, &p);
1109 }
1110
1111 return replicas >= op->opts.data_replicas;
1112}
1113
1114static inline void bch2_nocow_write_unlock(struct bch_write_op *op)
1115{
1116 struct bch_fs *c = op->c;
1117
1118 for_each_keylist_key(&op->insert_keys, k) {
1119 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(bkey_i_to_s_c(k));
1120
1121 bkey_for_each_ptr(ptrs, ptr)
1122 bch2_bucket_nocow_unlock(&c->nocow_locks,
1123 PTR_BUCKET_POS(c, ptr),
1124 BUCKET_NOCOW_LOCK_UPDATE);
1125 }
1126}
1127
1128static int bch2_nocow_write_convert_one_unwritten(struct btree_trans *trans,
1129 struct btree_iter *iter,
1130 struct bkey_i *orig,
1131 struct bkey_s_c k,
1132 u64 new_i_size)
1133{
1134 if (!bch2_extents_match(bkey_i_to_s_c(orig), k)) {
1135 /* trace this */
1136 return 0;
1137 }
1138
1139 struct bkey_i *new = bch2_bkey_make_mut_noupdate(trans, k);
1140 int ret = PTR_ERR_OR_ZERO(new);
1141 if (ret)
1142 return ret;
1143
1144 bch2_cut_front(bkey_start_pos(&orig->k), new);
1145 bch2_cut_back(orig->k.p, new);
1146
1147 struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(new));
1148 bkey_for_each_ptr(ptrs, ptr)
1149 ptr->unwritten = 0;
1150
1151 /*
1152 * Note that we're not calling bch2_subvol_get_snapshot() in this path -
1153 * that was done when we kicked off the write, and here it's important
1154 * that we update the extent that we wrote to - even if a snapshot has
1155 * since been created. The write is still outstanding, so we're ok
1156 * w.r.t. snapshot atomicity:
1157 */
1158 return bch2_extent_update_i_size_sectors(trans, iter,
1159 min(new->k.p.offset << 9, new_i_size), 0) ?:
1160 bch2_trans_update(trans, iter, new,
1161 BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE);
1162}
1163
1164static void bch2_nocow_write_convert_unwritten(struct bch_write_op *op)
1165{
1166 struct bch_fs *c = op->c;
1167 struct btree_trans *trans = bch2_trans_get(c);
1168
1169 for_each_keylist_key(&op->insert_keys, orig) {
1170 int ret = for_each_btree_key_upto_commit(trans, iter, BTREE_ID_extents,
1171 bkey_start_pos(&orig->k), orig->k.p,
1172 BTREE_ITER_INTENT, k,
1173 NULL, NULL, BCH_TRANS_COMMIT_no_enospc, ({
1174 bch2_nocow_write_convert_one_unwritten(trans, &iter, orig, k, op->new_i_size);
1175 }));
1176
1177 if (ret && !bch2_err_matches(ret, EROFS)) {
1178 struct bkey_i *insert = bch2_keylist_front(&op->insert_keys);
1179
1180 bch_err_inum_offset_ratelimited(c,
1181 insert->k.p.inode, insert->k.p.offset << 9,
1182 "%s write error while doing btree update: %s",
1183 op->flags & BCH_WRITE_MOVE ? "move" : "user",
1184 bch2_err_str(ret));
1185 }
1186
1187 if (ret) {
1188 op->error = ret;
1189 break;
1190 }
1191 }
1192
1193 bch2_trans_put(trans);
1194}
1195
1196static void __bch2_nocow_write_done(struct bch_write_op *op)
1197{
1198 bch2_nocow_write_unlock(op);
1199
1200 if (unlikely(op->flags & BCH_WRITE_IO_ERROR)) {
1201 op->error = -EIO;
1202 } else if (unlikely(op->flags & BCH_WRITE_CONVERT_UNWRITTEN))
1203 bch2_nocow_write_convert_unwritten(op);
1204}
1205
1206static CLOSURE_CALLBACK(bch2_nocow_write_done)
1207{
1208 closure_type(op, struct bch_write_op, cl);
1209
1210 __bch2_nocow_write_done(op);
1211 bch2_write_done(cl);
1212}
1213
1214struct bucket_to_lock {
1215 struct bpos b;
1216 unsigned gen;
1217 struct nocow_lock_bucket *l;
1218};
1219
1220static void bch2_nocow_write(struct bch_write_op *op)
1221{
1222 struct bch_fs *c = op->c;
1223 struct btree_trans *trans;
1224 struct btree_iter iter;
1225 struct bkey_s_c k;
1226 DARRAY_PREALLOCATED(struct bucket_to_lock, 3) buckets;
1227 u32 snapshot;
1228 struct bucket_to_lock *stale_at;
1229 int ret;
1230
1231 if (op->flags & BCH_WRITE_MOVE)
1232 return;
1233
1234 darray_init(&buckets);
1235 trans = bch2_trans_get(c);
1236retry:
1237 bch2_trans_begin(trans);
1238
1239 ret = bch2_subvolume_get_snapshot(trans, op->subvol, &snapshot);
1240 if (unlikely(ret))
1241 goto err;
1242
1243 bch2_trans_iter_init(trans, &iter, BTREE_ID_extents,
1244 SPOS(op->pos.inode, op->pos.offset, snapshot),
1245 BTREE_ITER_SLOTS);
1246 while (1) {
1247 struct bio *bio = &op->wbio.bio;
1248
1249 buckets.nr = 0;
1250
1251 k = bch2_btree_iter_peek_slot(&iter);
1252 ret = bkey_err(k);
1253 if (ret)
1254 break;
1255
1256 /* fall back to normal cow write path? */
1257 if (unlikely(k.k->p.snapshot != snapshot ||
1258 !bch2_extent_is_writeable(op, k)))
1259 break;
1260
1261 if (bch2_keylist_realloc(&op->insert_keys,
1262 op->inline_keys,
1263 ARRAY_SIZE(op->inline_keys),
1264 k.k->u64s))
1265 break;
1266
1267 /* Get iorefs before dropping btree locks: */
1268 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
1269 bkey_for_each_ptr(ptrs, ptr) {
1270 struct bpos b = PTR_BUCKET_POS(c, ptr);
1271 struct nocow_lock_bucket *l =
1272 bucket_nocow_lock(&c->nocow_locks, bucket_to_u64(b));
1273 prefetch(l);
1274
1275 if (unlikely(!bch2_dev_get_ioref(bch_dev_bkey_exists(c, ptr->dev), WRITE)))
1276 goto err_get_ioref;
1277
1278 /* XXX allocating memory with btree locks held - rare */
1279 darray_push_gfp(&buckets, ((struct bucket_to_lock) {
1280 .b = b, .gen = ptr->gen, .l = l,
1281 }), GFP_KERNEL|__GFP_NOFAIL);
1282
1283 if (ptr->unwritten)
1284 op->flags |= BCH_WRITE_CONVERT_UNWRITTEN;
1285 }
1286
1287 /* Unlock before taking nocow locks, doing IO: */
1288 bkey_reassemble(op->insert_keys.top, k);
1289 bch2_trans_unlock(trans);
1290
1291 bch2_cut_front(op->pos, op->insert_keys.top);
1292 if (op->flags & BCH_WRITE_CONVERT_UNWRITTEN)
1293 bch2_cut_back(POS(op->pos.inode, op->pos.offset + bio_sectors(bio)), op->insert_keys.top);
1294
1295 darray_for_each(buckets, i) {
1296 struct bch_dev *ca = bch_dev_bkey_exists(c, i->b.inode);
1297
1298 __bch2_bucket_nocow_lock(&c->nocow_locks, i->l,
1299 bucket_to_u64(i->b),
1300 BUCKET_NOCOW_LOCK_UPDATE);
1301
1302 rcu_read_lock();
1303 bool stale = gen_after(*bucket_gen(ca, i->b.offset), i->gen);
1304 rcu_read_unlock();
1305
1306 if (unlikely(stale)) {
1307 stale_at = i;
1308 goto err_bucket_stale;
1309 }
1310 }
1311
1312 bio = &op->wbio.bio;
1313 if (k.k->p.offset < op->pos.offset + bio_sectors(bio)) {
1314 bio = bio_split(bio, k.k->p.offset - op->pos.offset,
1315 GFP_KERNEL, &c->bio_write);
1316 wbio_init(bio)->put_bio = true;
1317 bio->bi_opf = op->wbio.bio.bi_opf;
1318 } else {
1319 op->flags |= BCH_WRITE_DONE;
1320 }
1321
1322 op->pos.offset += bio_sectors(bio);
1323 op->written += bio_sectors(bio);
1324
1325 bio->bi_end_io = bch2_write_endio;
1326 bio->bi_private = &op->cl;
1327 bio->bi_opf |= REQ_OP_WRITE;
1328 closure_get(&op->cl);
1329 bch2_submit_wbio_replicas(to_wbio(bio), c, BCH_DATA_user,
1330 op->insert_keys.top, true);
1331
1332 bch2_keylist_push(&op->insert_keys);
1333 if (op->flags & BCH_WRITE_DONE)
1334 break;
1335 bch2_btree_iter_advance(&iter);
1336 }
1337out:
1338 bch2_trans_iter_exit(trans, &iter);
1339err:
1340 if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
1341 goto retry;
1342
1343 if (ret) {
1344 bch_err_inum_offset_ratelimited(c,
1345 op->pos.inode, op->pos.offset << 9,
1346 "%s: btree lookup error %s", __func__, bch2_err_str(ret));
1347 op->error = ret;
1348 op->flags |= BCH_WRITE_DONE;
1349 }
1350
1351 bch2_trans_put(trans);
1352 darray_exit(&buckets);
1353
1354 /* fallback to cow write path? */
1355 if (!(op->flags & BCH_WRITE_DONE)) {
1356 closure_sync(&op->cl);
1357 __bch2_nocow_write_done(op);
1358 op->insert_keys.top = op->insert_keys.keys;
1359 } else if (op->flags & BCH_WRITE_SYNC) {
1360 closure_sync(&op->cl);
1361 bch2_nocow_write_done(&op->cl.work);
1362 } else {
1363 /*
1364 * XXX
1365 * needs to run out of process context because ei_quota_lock is
1366 * a mutex
1367 */
1368 continue_at(&op->cl, bch2_nocow_write_done, index_update_wq(op));
1369 }
1370 return;
1371err_get_ioref:
1372 darray_for_each(buckets, i)
1373 percpu_ref_put(&bch_dev_bkey_exists(c, i->b.inode)->io_ref);
1374
1375 /* Fall back to COW path: */
1376 goto out;
1377err_bucket_stale:
1378 darray_for_each(buckets, i) {
1379 bch2_bucket_nocow_unlock(&c->nocow_locks, i->b, BUCKET_NOCOW_LOCK_UPDATE);
1380 if (i == stale_at)
1381 break;
1382 }
1383
1384 /* We can retry this: */
1385 ret = -BCH_ERR_transaction_restart;
1386 goto err_get_ioref;
1387}
1388
1389static void __bch2_write(struct bch_write_op *op)
1390{
1391 struct bch_fs *c = op->c;
1392 struct write_point *wp = NULL;
1393 struct bio *bio = NULL;
1394 unsigned nofs_flags;
1395 int ret;
1396
1397 nofs_flags = memalloc_nofs_save();
1398
1399 if (unlikely(op->opts.nocow && c->opts.nocow_enabled)) {
1400 bch2_nocow_write(op);
1401 if (op->flags & BCH_WRITE_DONE)
1402 goto out_nofs_restore;
1403 }
1404again:
1405 memset(&op->failed, 0, sizeof(op->failed));
1406
1407 do {
1408 struct bkey_i *key_to_write;
1409 unsigned key_to_write_offset = op->insert_keys.top_p -
1410 op->insert_keys.keys_p;
1411
1412 /* +1 for possible cache device: */
1413 if (op->open_buckets.nr + op->nr_replicas + 1 >
1414 ARRAY_SIZE(op->open_buckets.v))
1415 break;
1416
1417 if (bch2_keylist_realloc(&op->insert_keys,
1418 op->inline_keys,
1419 ARRAY_SIZE(op->inline_keys),
1420 BKEY_EXTENT_U64s_MAX))
1421 break;
1422
1423 /*
1424 * The copygc thread is now global, which means it's no longer
1425 * freeing up space on specific disks, which means that
1426 * allocations for specific disks may hang arbitrarily long:
1427 */
1428 ret = bch2_trans_do(c, NULL, NULL, 0,
1429 bch2_alloc_sectors_start_trans(trans,
1430 op->target,
1431 op->opts.erasure_code && !(op->flags & BCH_WRITE_CACHED),
1432 op->write_point,
1433 &op->devs_have,
1434 op->nr_replicas,
1435 op->nr_replicas_required,
1436 op->watermark,
1437 op->flags,
1438 (op->flags & (BCH_WRITE_ALLOC_NOWAIT|
1439 BCH_WRITE_ONLY_SPECIFIED_DEVS))
1440 ? NULL : &op->cl, &wp));
1441 if (unlikely(ret)) {
1442 if (bch2_err_matches(ret, BCH_ERR_operation_blocked))
1443 break;
1444
1445 goto err;
1446 }
1447
1448 EBUG_ON(!wp);
1449
1450 bch2_open_bucket_get(c, wp, &op->open_buckets);
1451 ret = bch2_write_extent(op, wp, &bio);
1452
1453 bch2_alloc_sectors_done_inlined(c, wp);
1454err:
1455 if (ret <= 0) {
1456 op->flags |= BCH_WRITE_DONE;
1457
1458 if (ret < 0) {
1459 if (!(op->flags & BCH_WRITE_ALLOC_NOWAIT))
1460 bch_err_inum_offset_ratelimited(c,
1461 op->pos.inode,
1462 op->pos.offset << 9,
1463 "%s(): %s error: %s", __func__,
1464 op->flags & BCH_WRITE_MOVE ? "move" : "user",
1465 bch2_err_str(ret));
1466 op->error = ret;
1467 break;
1468 }
1469 }
1470
1471 bio->bi_end_io = bch2_write_endio;
1472 bio->bi_private = &op->cl;
1473 bio->bi_opf |= REQ_OP_WRITE;
1474
1475 closure_get(bio->bi_private);
1476
1477 key_to_write = (void *) (op->insert_keys.keys_p +
1478 key_to_write_offset);
1479
1480 bch2_submit_wbio_replicas(to_wbio(bio), c, BCH_DATA_user,
1481 key_to_write, false);
1482 } while (ret);
1483
1484 /*
1485 * Sync or no?
1486 *
1487 * If we're running asynchronously, wne may still want to block
1488 * synchronously here if we weren't able to submit all of the IO at
1489 * once, as that signals backpressure to the caller.
1490 */
1491 if ((op->flags & BCH_WRITE_SYNC) ||
1492 (!(op->flags & BCH_WRITE_DONE) &&
1493 !(op->flags & BCH_WRITE_IN_WORKER))) {
1494 closure_sync(&op->cl);
1495 __bch2_write_index(op);
1496
1497 if (!(op->flags & BCH_WRITE_DONE))
1498 goto again;
1499 bch2_write_done(&op->cl);
1500 } else {
1501 bch2_write_queue(op, wp);
1502 continue_at(&op->cl, bch2_write_index, NULL);
1503 }
1504out_nofs_restore:
1505 memalloc_nofs_restore(nofs_flags);
1506}
1507
1508static void bch2_write_data_inline(struct bch_write_op *op, unsigned data_len)
1509{
1510 struct bio *bio = &op->wbio.bio;
1511 struct bvec_iter iter;
1512 struct bkey_i_inline_data *id;
1513 unsigned sectors;
1514 int ret;
1515
1516 memset(&op->failed, 0, sizeof(op->failed));
1517
1518 op->flags |= BCH_WRITE_WROTE_DATA_INLINE;
1519 op->flags |= BCH_WRITE_DONE;
1520
1521 bch2_check_set_feature(op->c, BCH_FEATURE_inline_data);
1522
1523 ret = bch2_keylist_realloc(&op->insert_keys, op->inline_keys,
1524 ARRAY_SIZE(op->inline_keys),
1525 BKEY_U64s + DIV_ROUND_UP(data_len, 8));
1526 if (ret) {
1527 op->error = ret;
1528 goto err;
1529 }
1530
1531 sectors = bio_sectors(bio);
1532 op->pos.offset += sectors;
1533
1534 id = bkey_inline_data_init(op->insert_keys.top);
1535 id->k.p = op->pos;
1536 id->k.version = op->version;
1537 id->k.size = sectors;
1538
1539 iter = bio->bi_iter;
1540 iter.bi_size = data_len;
1541 memcpy_from_bio(id->v.data, bio, iter);
1542
1543 while (data_len & 7)
1544 id->v.data[data_len++] = '\0';
1545 set_bkey_val_bytes(&id->k, data_len);
1546 bch2_keylist_push(&op->insert_keys);
1547
1548 __bch2_write_index(op);
1549err:
1550 bch2_write_done(&op->cl);
1551}
1552
1553/**
1554 * bch2_write() - handle a write to a cache device or flash only volume
1555 * @cl: &bch_write_op->cl
1556 *
1557 * This is the starting point for any data to end up in a cache device; it could
1558 * be from a normal write, or a writeback write, or a write to a flash only
1559 * volume - it's also used by the moving garbage collector to compact data in
1560 * mostly empty buckets.
1561 *
1562 * It first writes the data to the cache, creating a list of keys to be inserted
1563 * (if the data won't fit in a single open bucket, there will be multiple keys);
1564 * after the data is written it calls bch_journal, and after the keys have been
1565 * added to the next journal write they're inserted into the btree.
1566 *
1567 * If op->discard is true, instead of inserting the data it invalidates the
1568 * region of the cache represented by op->bio and op->inode.
1569 */
1570CLOSURE_CALLBACK(bch2_write)
1571{
1572 closure_type(op, struct bch_write_op, cl);
1573 struct bio *bio = &op->wbio.bio;
1574 struct bch_fs *c = op->c;
1575 unsigned data_len;
1576
1577 EBUG_ON(op->cl.parent);
1578 BUG_ON(!op->nr_replicas);
1579 BUG_ON(!op->write_point.v);
1580 BUG_ON(bkey_eq(op->pos, POS_MAX));
1581
1582 op->nr_replicas_required = min_t(unsigned, op->nr_replicas_required, op->nr_replicas);
1583 op->start_time = local_clock();
1584 bch2_keylist_init(&op->insert_keys, op->inline_keys);
1585 wbio_init(bio)->put_bio = false;
1586
1587 if (bio->bi_iter.bi_size & (c->opts.block_size - 1)) {
1588 bch_err_inum_offset_ratelimited(c,
1589 op->pos.inode,
1590 op->pos.offset << 9,
1591 "%s write error: misaligned write",
1592 op->flags & BCH_WRITE_MOVE ? "move" : "user");
1593 op->error = -EIO;
1594 goto err;
1595 }
1596
1597 if (c->opts.nochanges) {
1598 op->error = -BCH_ERR_erofs_no_writes;
1599 goto err;
1600 }
1601
1602 if (!(op->flags & BCH_WRITE_MOVE) &&
1603 !bch2_write_ref_tryget(c, BCH_WRITE_REF_write)) {
1604 op->error = -BCH_ERR_erofs_no_writes;
1605 goto err;
1606 }
1607
1608 this_cpu_add(c->counters[BCH_COUNTER_io_write], bio_sectors(bio));
1609 bch2_increment_clock(c, bio_sectors(bio), WRITE);
1610
1611 data_len = min_t(u64, bio->bi_iter.bi_size,
1612 op->new_i_size - (op->pos.offset << 9));
1613
1614 if (c->opts.inline_data &&
1615 data_len <= min(block_bytes(c) / 2, 1024U)) {
1616 bch2_write_data_inline(op, data_len);
1617 return;
1618 }
1619
1620 __bch2_write(op);
1621 return;
1622err:
1623 bch2_disk_reservation_put(c, &op->res);
1624
1625 closure_debug_destroy(&op->cl);
1626 if (op->end_io)
1627 op->end_io(op);
1628}
1629
1630static const char * const bch2_write_flags[] = {
1631#define x(f) #f,
1632 BCH_WRITE_FLAGS()
1633#undef x
1634 NULL
1635};
1636
1637void bch2_write_op_to_text(struct printbuf *out, struct bch_write_op *op)
1638{
1639 prt_str(out, "pos: ");
1640 bch2_bpos_to_text(out, op->pos);
1641 prt_newline(out);
1642 printbuf_indent_add(out, 2);
1643
1644 prt_str(out, "started: ");
1645 bch2_pr_time_units(out, local_clock() - op->start_time);
1646 prt_newline(out);
1647
1648 prt_str(out, "flags: ");
1649 prt_bitflags(out, bch2_write_flags, op->flags);
1650 prt_newline(out);
1651
1652 prt_printf(out, "ref: %u", closure_nr_remaining(&op->cl));
1653 prt_newline(out);
1654
1655 printbuf_indent_sub(out, 2);
1656}
1657
1658void bch2_fs_io_write_exit(struct bch_fs *c)
1659{
1660 mempool_exit(&c->bio_bounce_pages);
1661 bioset_exit(&c->bio_write);
1662}
1663
1664int bch2_fs_io_write_init(struct bch_fs *c)
1665{
1666 if (bioset_init(&c->bio_write, 1, offsetof(struct bch_write_bio, bio),
1667 BIOSET_NEED_BVECS))
1668 return -BCH_ERR_ENOMEM_bio_write_init;
1669
1670 if (mempool_init_page_pool(&c->bio_bounce_pages,
1671 max_t(unsigned,
1672 c->opts.btree_node_size,
1673 c->opts.encoded_extent_max) /
1674 PAGE_SIZE, 0))
1675 return -BCH_ERR_ENOMEM_bio_bounce_pages_init;
1676
1677 return 0;
1678}