Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2017-2018 Christoph Hellwig.
4 */
5
6#include <linux/backing-dev.h>
7#include <linux/moduleparam.h>
8#include <linux/vmalloc.h>
9#include <trace/events/block.h>
10#include "nvme.h"
11
12bool multipath = true;
13module_param(multipath, bool, 0444);
14MODULE_PARM_DESC(multipath,
15 "turn on native support for multiple controllers per subsystem");
16
17static const char *nvme_iopolicy_names[] = {
18 [NVME_IOPOLICY_NUMA] = "numa",
19 [NVME_IOPOLICY_RR] = "round-robin",
20};
21
22static int iopolicy = NVME_IOPOLICY_NUMA;
23
24static int nvme_set_iopolicy(const char *val, const struct kernel_param *kp)
25{
26 if (!val)
27 return -EINVAL;
28 if (!strncmp(val, "numa", 4))
29 iopolicy = NVME_IOPOLICY_NUMA;
30 else if (!strncmp(val, "round-robin", 11))
31 iopolicy = NVME_IOPOLICY_RR;
32 else
33 return -EINVAL;
34
35 return 0;
36}
37
38static int nvme_get_iopolicy(char *buf, const struct kernel_param *kp)
39{
40 return sprintf(buf, "%s\n", nvme_iopolicy_names[iopolicy]);
41}
42
43module_param_call(iopolicy, nvme_set_iopolicy, nvme_get_iopolicy,
44 &iopolicy, 0644);
45MODULE_PARM_DESC(iopolicy,
46 "Default multipath I/O policy; 'numa' (default) or 'round-robin'");
47
48void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys)
49{
50 subsys->iopolicy = iopolicy;
51}
52
53void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
54{
55 struct nvme_ns_head *h;
56
57 lockdep_assert_held(&subsys->lock);
58 list_for_each_entry(h, &subsys->nsheads, entry)
59 if (h->disk)
60 blk_mq_unfreeze_queue(h->disk->queue);
61}
62
63void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
64{
65 struct nvme_ns_head *h;
66
67 lockdep_assert_held(&subsys->lock);
68 list_for_each_entry(h, &subsys->nsheads, entry)
69 if (h->disk)
70 blk_mq_freeze_queue_wait(h->disk->queue);
71}
72
73void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
74{
75 struct nvme_ns_head *h;
76
77 lockdep_assert_held(&subsys->lock);
78 list_for_each_entry(h, &subsys->nsheads, entry)
79 if (h->disk)
80 blk_freeze_queue_start(h->disk->queue);
81}
82
83void nvme_failover_req(struct request *req)
84{
85 struct nvme_ns *ns = req->q->queuedata;
86 u16 status = nvme_req(req)->status & 0x7ff;
87 unsigned long flags;
88 struct bio *bio;
89
90 nvme_mpath_clear_current_path(ns);
91
92 /*
93 * If we got back an ANA error, we know the controller is alive but not
94 * ready to serve this namespace. Kick of a re-read of the ANA
95 * information page, and just try any other available path for now.
96 */
97 if (nvme_is_ana_error(status) && ns->ctrl->ana_log_buf) {
98 set_bit(NVME_NS_ANA_PENDING, &ns->flags);
99 queue_work(nvme_wq, &ns->ctrl->ana_work);
100 }
101
102 spin_lock_irqsave(&ns->head->requeue_lock, flags);
103 for (bio = req->bio; bio; bio = bio->bi_next) {
104 bio_set_dev(bio, ns->head->disk->part0);
105 if (bio->bi_opf & REQ_POLLED) {
106 bio->bi_opf &= ~REQ_POLLED;
107 bio->bi_cookie = BLK_QC_T_NONE;
108 }
109 /*
110 * The alternate request queue that we may end up submitting
111 * the bio to may be frozen temporarily, in this case REQ_NOWAIT
112 * will fail the I/O immediately with EAGAIN to the issuer.
113 * We are not in the issuer context which cannot block. Clear
114 * the flag to avoid spurious EAGAIN I/O failures.
115 */
116 bio->bi_opf &= ~REQ_NOWAIT;
117 }
118 blk_steal_bios(&ns->head->requeue_list, req);
119 spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
120
121 blk_mq_end_request(req, 0);
122 kblockd_schedule_work(&ns->head->requeue_work);
123}
124
125void nvme_mpath_start_request(struct request *rq)
126{
127 struct nvme_ns *ns = rq->q->queuedata;
128 struct gendisk *disk = ns->head->disk;
129
130 if (!blk_queue_io_stat(disk->queue) || blk_rq_is_passthrough(rq))
131 return;
132
133 nvme_req(rq)->flags |= NVME_MPATH_IO_STATS;
134 nvme_req(rq)->start_time = bdev_start_io_acct(disk->part0, req_op(rq),
135 jiffies);
136}
137EXPORT_SYMBOL_GPL(nvme_mpath_start_request);
138
139void nvme_mpath_end_request(struct request *rq)
140{
141 struct nvme_ns *ns = rq->q->queuedata;
142
143 if (!(nvme_req(rq)->flags & NVME_MPATH_IO_STATS))
144 return;
145 bdev_end_io_acct(ns->head->disk->part0, req_op(rq),
146 blk_rq_bytes(rq) >> SECTOR_SHIFT,
147 nvme_req(rq)->start_time);
148}
149
150void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
151{
152 struct nvme_ns *ns;
153
154 down_read(&ctrl->namespaces_rwsem);
155 list_for_each_entry(ns, &ctrl->namespaces, list) {
156 if (!ns->head->disk)
157 continue;
158 kblockd_schedule_work(&ns->head->requeue_work);
159 if (nvme_ctrl_state(ns->ctrl) == NVME_CTRL_LIVE)
160 disk_uevent(ns->head->disk, KOBJ_CHANGE);
161 }
162 up_read(&ctrl->namespaces_rwsem);
163}
164
165static const char *nvme_ana_state_names[] = {
166 [0] = "invalid state",
167 [NVME_ANA_OPTIMIZED] = "optimized",
168 [NVME_ANA_NONOPTIMIZED] = "non-optimized",
169 [NVME_ANA_INACCESSIBLE] = "inaccessible",
170 [NVME_ANA_PERSISTENT_LOSS] = "persistent-loss",
171 [NVME_ANA_CHANGE] = "change",
172};
173
174bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
175{
176 struct nvme_ns_head *head = ns->head;
177 bool changed = false;
178 int node;
179
180 if (!head)
181 goto out;
182
183 for_each_node(node) {
184 if (ns == rcu_access_pointer(head->current_path[node])) {
185 rcu_assign_pointer(head->current_path[node], NULL);
186 changed = true;
187 }
188 }
189out:
190 return changed;
191}
192
193void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
194{
195 struct nvme_ns *ns;
196
197 down_read(&ctrl->namespaces_rwsem);
198 list_for_each_entry(ns, &ctrl->namespaces, list) {
199 nvme_mpath_clear_current_path(ns);
200 kblockd_schedule_work(&ns->head->requeue_work);
201 }
202 up_read(&ctrl->namespaces_rwsem);
203}
204
205void nvme_mpath_revalidate_paths(struct nvme_ns *ns)
206{
207 struct nvme_ns_head *head = ns->head;
208 sector_t capacity = get_capacity(head->disk);
209 int node;
210 int srcu_idx;
211
212 srcu_idx = srcu_read_lock(&head->srcu);
213 list_for_each_entry_rcu(ns, &head->list, siblings) {
214 if (capacity != get_capacity(ns->disk))
215 clear_bit(NVME_NS_READY, &ns->flags);
216 }
217 srcu_read_unlock(&head->srcu, srcu_idx);
218
219 for_each_node(node)
220 rcu_assign_pointer(head->current_path[node], NULL);
221 kblockd_schedule_work(&head->requeue_work);
222}
223
224static bool nvme_path_is_disabled(struct nvme_ns *ns)
225{
226 enum nvme_ctrl_state state = nvme_ctrl_state(ns->ctrl);
227
228 /*
229 * We don't treat NVME_CTRL_DELETING as a disabled path as I/O should
230 * still be able to complete assuming that the controller is connected.
231 * Otherwise it will fail immediately and return to the requeue list.
232 */
233 if (state != NVME_CTRL_LIVE && state != NVME_CTRL_DELETING)
234 return true;
235 if (test_bit(NVME_NS_ANA_PENDING, &ns->flags) ||
236 !test_bit(NVME_NS_READY, &ns->flags))
237 return true;
238 return false;
239}
240
241static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node)
242{
243 int found_distance = INT_MAX, fallback_distance = INT_MAX, distance;
244 struct nvme_ns *found = NULL, *fallback = NULL, *ns;
245
246 list_for_each_entry_rcu(ns, &head->list, siblings) {
247 if (nvme_path_is_disabled(ns))
248 continue;
249
250 if (ns->ctrl->numa_node != NUMA_NO_NODE &&
251 READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA)
252 distance = node_distance(node, ns->ctrl->numa_node);
253 else
254 distance = LOCAL_DISTANCE;
255
256 switch (ns->ana_state) {
257 case NVME_ANA_OPTIMIZED:
258 if (distance < found_distance) {
259 found_distance = distance;
260 found = ns;
261 }
262 break;
263 case NVME_ANA_NONOPTIMIZED:
264 if (distance < fallback_distance) {
265 fallback_distance = distance;
266 fallback = ns;
267 }
268 break;
269 default:
270 break;
271 }
272 }
273
274 if (!found)
275 found = fallback;
276 if (found)
277 rcu_assign_pointer(head->current_path[node], found);
278 return found;
279}
280
281static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head,
282 struct nvme_ns *ns)
283{
284 ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns,
285 siblings);
286 if (ns)
287 return ns;
288 return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings);
289}
290
291static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head,
292 int node, struct nvme_ns *old)
293{
294 struct nvme_ns *ns, *found = NULL;
295
296 if (list_is_singular(&head->list)) {
297 if (nvme_path_is_disabled(old))
298 return NULL;
299 return old;
300 }
301
302 for (ns = nvme_next_ns(head, old);
303 ns && ns != old;
304 ns = nvme_next_ns(head, ns)) {
305 if (nvme_path_is_disabled(ns))
306 continue;
307
308 if (ns->ana_state == NVME_ANA_OPTIMIZED) {
309 found = ns;
310 goto out;
311 }
312 if (ns->ana_state == NVME_ANA_NONOPTIMIZED)
313 found = ns;
314 }
315
316 /*
317 * The loop above skips the current path for round-robin semantics.
318 * Fall back to the current path if either:
319 * - no other optimized path found and current is optimized,
320 * - no other usable path found and current is usable.
321 */
322 if (!nvme_path_is_disabled(old) &&
323 (old->ana_state == NVME_ANA_OPTIMIZED ||
324 (!found && old->ana_state == NVME_ANA_NONOPTIMIZED)))
325 return old;
326
327 if (!found)
328 return NULL;
329out:
330 rcu_assign_pointer(head->current_path[node], found);
331 return found;
332}
333
334static inline bool nvme_path_is_optimized(struct nvme_ns *ns)
335{
336 return nvme_ctrl_state(ns->ctrl) == NVME_CTRL_LIVE &&
337 ns->ana_state == NVME_ANA_OPTIMIZED;
338}
339
340inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
341{
342 int node = numa_node_id();
343 struct nvme_ns *ns;
344
345 ns = srcu_dereference(head->current_path[node], &head->srcu);
346 if (unlikely(!ns))
347 return __nvme_find_path(head, node);
348
349 if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR)
350 return nvme_round_robin_path(head, node, ns);
351 if (unlikely(!nvme_path_is_optimized(ns)))
352 return __nvme_find_path(head, node);
353 return ns;
354}
355
356static bool nvme_available_path(struct nvme_ns_head *head)
357{
358 struct nvme_ns *ns;
359
360 list_for_each_entry_rcu(ns, &head->list, siblings) {
361 if (test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ns->ctrl->flags))
362 continue;
363 switch (nvme_ctrl_state(ns->ctrl)) {
364 case NVME_CTRL_LIVE:
365 case NVME_CTRL_RESETTING:
366 case NVME_CTRL_CONNECTING:
367 /* fallthru */
368 return true;
369 default:
370 break;
371 }
372 }
373 return false;
374}
375
376static void nvme_ns_head_submit_bio(struct bio *bio)
377{
378 struct nvme_ns_head *head = bio->bi_bdev->bd_disk->private_data;
379 struct device *dev = disk_to_dev(head->disk);
380 struct nvme_ns *ns;
381 int srcu_idx;
382
383 /*
384 * The namespace might be going away and the bio might be moved to a
385 * different queue via blk_steal_bios(), so we need to use the bio_split
386 * pool from the original queue to allocate the bvecs from.
387 */
388 bio = bio_split_to_limits(bio);
389 if (!bio)
390 return;
391
392 srcu_idx = srcu_read_lock(&head->srcu);
393 ns = nvme_find_path(head);
394 if (likely(ns)) {
395 bio_set_dev(bio, ns->disk->part0);
396 bio->bi_opf |= REQ_NVME_MPATH;
397 trace_block_bio_remap(bio, disk_devt(ns->head->disk),
398 bio->bi_iter.bi_sector);
399 submit_bio_noacct(bio);
400 } else if (nvme_available_path(head)) {
401 dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n");
402
403 spin_lock_irq(&head->requeue_lock);
404 bio_list_add(&head->requeue_list, bio);
405 spin_unlock_irq(&head->requeue_lock);
406 } else {
407 dev_warn_ratelimited(dev, "no available path - failing I/O\n");
408
409 bio_io_error(bio);
410 }
411
412 srcu_read_unlock(&head->srcu, srcu_idx);
413}
414
415static int nvme_ns_head_open(struct gendisk *disk, blk_mode_t mode)
416{
417 if (!nvme_tryget_ns_head(disk->private_data))
418 return -ENXIO;
419 return 0;
420}
421
422static void nvme_ns_head_release(struct gendisk *disk)
423{
424 nvme_put_ns_head(disk->private_data);
425}
426
427#ifdef CONFIG_BLK_DEV_ZONED
428static int nvme_ns_head_report_zones(struct gendisk *disk, sector_t sector,
429 unsigned int nr_zones, report_zones_cb cb, void *data)
430{
431 struct nvme_ns_head *head = disk->private_data;
432 struct nvme_ns *ns;
433 int srcu_idx, ret = -EWOULDBLOCK;
434
435 srcu_idx = srcu_read_lock(&head->srcu);
436 ns = nvme_find_path(head);
437 if (ns)
438 ret = nvme_ns_report_zones(ns, sector, nr_zones, cb, data);
439 srcu_read_unlock(&head->srcu, srcu_idx);
440 return ret;
441}
442#else
443#define nvme_ns_head_report_zones NULL
444#endif /* CONFIG_BLK_DEV_ZONED */
445
446const struct block_device_operations nvme_ns_head_ops = {
447 .owner = THIS_MODULE,
448 .submit_bio = nvme_ns_head_submit_bio,
449 .open = nvme_ns_head_open,
450 .release = nvme_ns_head_release,
451 .ioctl = nvme_ns_head_ioctl,
452 .compat_ioctl = blkdev_compat_ptr_ioctl,
453 .getgeo = nvme_getgeo,
454 .report_zones = nvme_ns_head_report_zones,
455 .pr_ops = &nvme_pr_ops,
456};
457
458static inline struct nvme_ns_head *cdev_to_ns_head(struct cdev *cdev)
459{
460 return container_of(cdev, struct nvme_ns_head, cdev);
461}
462
463static int nvme_ns_head_chr_open(struct inode *inode, struct file *file)
464{
465 if (!nvme_tryget_ns_head(cdev_to_ns_head(inode->i_cdev)))
466 return -ENXIO;
467 return 0;
468}
469
470static int nvme_ns_head_chr_release(struct inode *inode, struct file *file)
471{
472 nvme_put_ns_head(cdev_to_ns_head(inode->i_cdev));
473 return 0;
474}
475
476static const struct file_operations nvme_ns_head_chr_fops = {
477 .owner = THIS_MODULE,
478 .open = nvme_ns_head_chr_open,
479 .release = nvme_ns_head_chr_release,
480 .unlocked_ioctl = nvme_ns_head_chr_ioctl,
481 .compat_ioctl = compat_ptr_ioctl,
482 .uring_cmd = nvme_ns_head_chr_uring_cmd,
483 .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
484};
485
486static int nvme_add_ns_head_cdev(struct nvme_ns_head *head)
487{
488 int ret;
489
490 head->cdev_device.parent = &head->subsys->dev;
491 ret = dev_set_name(&head->cdev_device, "ng%dn%d",
492 head->subsys->instance, head->instance);
493 if (ret)
494 return ret;
495 ret = nvme_cdev_add(&head->cdev, &head->cdev_device,
496 &nvme_ns_head_chr_fops, THIS_MODULE);
497 return ret;
498}
499
500static void nvme_requeue_work(struct work_struct *work)
501{
502 struct nvme_ns_head *head =
503 container_of(work, struct nvme_ns_head, requeue_work);
504 struct bio *bio, *next;
505
506 spin_lock_irq(&head->requeue_lock);
507 next = bio_list_get(&head->requeue_list);
508 spin_unlock_irq(&head->requeue_lock);
509
510 while ((bio = next) != NULL) {
511 next = bio->bi_next;
512 bio->bi_next = NULL;
513
514 submit_bio_noacct(bio);
515 }
516}
517
518int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
519{
520 struct queue_limits lim;
521 bool vwc = false;
522
523 mutex_init(&head->lock);
524 bio_list_init(&head->requeue_list);
525 spin_lock_init(&head->requeue_lock);
526 INIT_WORK(&head->requeue_work, nvme_requeue_work);
527
528 /*
529 * Add a multipath node if the subsystems supports multiple controllers.
530 * We also do this for private namespaces as the namespace sharing flag
531 * could change after a rescan.
532 */
533 if (!(ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
534 !nvme_is_unique_nsid(ctrl, head) || !multipath)
535 return 0;
536
537 blk_set_stacking_limits(&lim);
538 lim.dma_alignment = 3;
539 if (head->ids.csi != NVME_CSI_ZNS)
540 lim.max_zone_append_sectors = 0;
541
542 head->disk = blk_alloc_disk(&lim, ctrl->numa_node);
543 if (IS_ERR(head->disk))
544 return PTR_ERR(head->disk);
545 head->disk->fops = &nvme_ns_head_ops;
546 head->disk->private_data = head;
547 sprintf(head->disk->disk_name, "nvme%dn%d",
548 ctrl->subsys->instance, head->instance);
549
550 blk_queue_flag_set(QUEUE_FLAG_NONROT, head->disk->queue);
551 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, head->disk->queue);
552 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, head->disk->queue);
553 /*
554 * This assumes all controllers that refer to a namespace either
555 * support poll queues or not. That is not a strict guarantee,
556 * but if the assumption is wrong the effect is only suboptimal
557 * performance but not correctness problem.
558 */
559 if (ctrl->tagset->nr_maps > HCTX_TYPE_POLL &&
560 ctrl->tagset->map[HCTX_TYPE_POLL].nr_queues)
561 blk_queue_flag_set(QUEUE_FLAG_POLL, head->disk->queue);
562
563 /* we need to propagate up the VMC settings */
564 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
565 vwc = true;
566 blk_queue_write_cache(head->disk->queue, vwc, vwc);
567 return 0;
568}
569
570static void nvme_mpath_set_live(struct nvme_ns *ns)
571{
572 struct nvme_ns_head *head = ns->head;
573 int rc;
574
575 if (!head->disk)
576 return;
577
578 /*
579 * test_and_set_bit() is used because it is protecting against two nvme
580 * paths simultaneously calling device_add_disk() on the same namespace
581 * head.
582 */
583 if (!test_and_set_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
584 rc = device_add_disk(&head->subsys->dev, head->disk,
585 nvme_ns_attr_groups);
586 if (rc) {
587 clear_bit(NVME_NSHEAD_DISK_LIVE, &ns->flags);
588 return;
589 }
590 nvme_add_ns_head_cdev(head);
591 }
592
593 mutex_lock(&head->lock);
594 if (nvme_path_is_optimized(ns)) {
595 int node, srcu_idx;
596
597 srcu_idx = srcu_read_lock(&head->srcu);
598 for_each_node(node)
599 __nvme_find_path(head, node);
600 srcu_read_unlock(&head->srcu, srcu_idx);
601 }
602 mutex_unlock(&head->lock);
603
604 synchronize_srcu(&head->srcu);
605 kblockd_schedule_work(&head->requeue_work);
606}
607
608static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data,
609 int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *,
610 void *))
611{
612 void *base = ctrl->ana_log_buf;
613 size_t offset = sizeof(struct nvme_ana_rsp_hdr);
614 int error, i;
615
616 lockdep_assert_held(&ctrl->ana_lock);
617
618 for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) {
619 struct nvme_ana_group_desc *desc = base + offset;
620 u32 nr_nsids;
621 size_t nsid_buf_size;
622
623 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc)))
624 return -EINVAL;
625
626 nr_nsids = le32_to_cpu(desc->nnsids);
627 nsid_buf_size = flex_array_size(desc, nsids, nr_nsids);
628
629 if (WARN_ON_ONCE(desc->grpid == 0))
630 return -EINVAL;
631 if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax))
632 return -EINVAL;
633 if (WARN_ON_ONCE(desc->state == 0))
634 return -EINVAL;
635 if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE))
636 return -EINVAL;
637
638 offset += sizeof(*desc);
639 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size))
640 return -EINVAL;
641
642 error = cb(ctrl, desc, data);
643 if (error)
644 return error;
645
646 offset += nsid_buf_size;
647 }
648
649 return 0;
650}
651
652static inline bool nvme_state_is_live(enum nvme_ana_state state)
653{
654 return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED;
655}
656
657static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc,
658 struct nvme_ns *ns)
659{
660 ns->ana_grpid = le32_to_cpu(desc->grpid);
661 ns->ana_state = desc->state;
662 clear_bit(NVME_NS_ANA_PENDING, &ns->flags);
663 /*
664 * nvme_mpath_set_live() will trigger I/O to the multipath path device
665 * and in turn to this path device. However we cannot accept this I/O
666 * if the controller is not live. This may deadlock if called from
667 * nvme_mpath_init_identify() and the ctrl will never complete
668 * initialization, preventing I/O from completing. For this case we
669 * will reprocess the ANA log page in nvme_mpath_update() once the
670 * controller is ready.
671 */
672 if (nvme_state_is_live(ns->ana_state) &&
673 nvme_ctrl_state(ns->ctrl) == NVME_CTRL_LIVE)
674 nvme_mpath_set_live(ns);
675}
676
677static int nvme_update_ana_state(struct nvme_ctrl *ctrl,
678 struct nvme_ana_group_desc *desc, void *data)
679{
680 u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0;
681 unsigned *nr_change_groups = data;
682 struct nvme_ns *ns;
683
684 dev_dbg(ctrl->device, "ANA group %d: %s.\n",
685 le32_to_cpu(desc->grpid),
686 nvme_ana_state_names[desc->state]);
687
688 if (desc->state == NVME_ANA_CHANGE)
689 (*nr_change_groups)++;
690
691 if (!nr_nsids)
692 return 0;
693
694 down_read(&ctrl->namespaces_rwsem);
695 list_for_each_entry(ns, &ctrl->namespaces, list) {
696 unsigned nsid;
697again:
698 nsid = le32_to_cpu(desc->nsids[n]);
699 if (ns->head->ns_id < nsid)
700 continue;
701 if (ns->head->ns_id == nsid)
702 nvme_update_ns_ana_state(desc, ns);
703 if (++n == nr_nsids)
704 break;
705 if (ns->head->ns_id > nsid)
706 goto again;
707 }
708 up_read(&ctrl->namespaces_rwsem);
709 return 0;
710}
711
712static int nvme_read_ana_log(struct nvme_ctrl *ctrl)
713{
714 u32 nr_change_groups = 0;
715 int error;
716
717 mutex_lock(&ctrl->ana_lock);
718 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, NVME_CSI_NVM,
719 ctrl->ana_log_buf, ctrl->ana_log_size, 0);
720 if (error) {
721 dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error);
722 goto out_unlock;
723 }
724
725 error = nvme_parse_ana_log(ctrl, &nr_change_groups,
726 nvme_update_ana_state);
727 if (error)
728 goto out_unlock;
729
730 /*
731 * In theory we should have an ANATT timer per group as they might enter
732 * the change state at different times. But that is a lot of overhead
733 * just to protect against a target that keeps entering new changes
734 * states while never finishing previous ones. But we'll still
735 * eventually time out once all groups are in change state, so this
736 * isn't a big deal.
737 *
738 * We also double the ANATT value to provide some slack for transports
739 * or AEN processing overhead.
740 */
741 if (nr_change_groups)
742 mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies);
743 else
744 del_timer_sync(&ctrl->anatt_timer);
745out_unlock:
746 mutex_unlock(&ctrl->ana_lock);
747 return error;
748}
749
750static void nvme_ana_work(struct work_struct *work)
751{
752 struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work);
753
754 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
755 return;
756
757 nvme_read_ana_log(ctrl);
758}
759
760void nvme_mpath_update(struct nvme_ctrl *ctrl)
761{
762 u32 nr_change_groups = 0;
763
764 if (!ctrl->ana_log_buf)
765 return;
766
767 mutex_lock(&ctrl->ana_lock);
768 nvme_parse_ana_log(ctrl, &nr_change_groups, nvme_update_ana_state);
769 mutex_unlock(&ctrl->ana_lock);
770}
771
772static void nvme_anatt_timeout(struct timer_list *t)
773{
774 struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer);
775
776 dev_info(ctrl->device, "ANATT timeout, resetting controller.\n");
777 nvme_reset_ctrl(ctrl);
778}
779
780void nvme_mpath_stop(struct nvme_ctrl *ctrl)
781{
782 if (!nvme_ctrl_use_ana(ctrl))
783 return;
784 del_timer_sync(&ctrl->anatt_timer);
785 cancel_work_sync(&ctrl->ana_work);
786}
787
788#define SUBSYS_ATTR_RW(_name, _mode, _show, _store) \
789 struct device_attribute subsys_attr_##_name = \
790 __ATTR(_name, _mode, _show, _store)
791
792static ssize_t nvme_subsys_iopolicy_show(struct device *dev,
793 struct device_attribute *attr, char *buf)
794{
795 struct nvme_subsystem *subsys =
796 container_of(dev, struct nvme_subsystem, dev);
797
798 return sysfs_emit(buf, "%s\n",
799 nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]);
800}
801
802static ssize_t nvme_subsys_iopolicy_store(struct device *dev,
803 struct device_attribute *attr, const char *buf, size_t count)
804{
805 struct nvme_subsystem *subsys =
806 container_of(dev, struct nvme_subsystem, dev);
807 int i;
808
809 for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) {
810 if (sysfs_streq(buf, nvme_iopolicy_names[i])) {
811 WRITE_ONCE(subsys->iopolicy, i);
812 return count;
813 }
814 }
815
816 return -EINVAL;
817}
818SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR,
819 nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store);
820
821static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr,
822 char *buf)
823{
824 return sysfs_emit(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid);
825}
826DEVICE_ATTR_RO(ana_grpid);
827
828static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr,
829 char *buf)
830{
831 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
832
833 return sysfs_emit(buf, "%s\n", nvme_ana_state_names[ns->ana_state]);
834}
835DEVICE_ATTR_RO(ana_state);
836
837static int nvme_lookup_ana_group_desc(struct nvme_ctrl *ctrl,
838 struct nvme_ana_group_desc *desc, void *data)
839{
840 struct nvme_ana_group_desc *dst = data;
841
842 if (desc->grpid != dst->grpid)
843 return 0;
844
845 *dst = *desc;
846 return -ENXIO; /* just break out of the loop */
847}
848
849void nvme_mpath_add_disk(struct nvme_ns *ns, __le32 anagrpid)
850{
851 if (nvme_ctrl_use_ana(ns->ctrl)) {
852 struct nvme_ana_group_desc desc = {
853 .grpid = anagrpid,
854 .state = 0,
855 };
856
857 mutex_lock(&ns->ctrl->ana_lock);
858 ns->ana_grpid = le32_to_cpu(anagrpid);
859 nvme_parse_ana_log(ns->ctrl, &desc, nvme_lookup_ana_group_desc);
860 mutex_unlock(&ns->ctrl->ana_lock);
861 if (desc.state) {
862 /* found the group desc: update */
863 nvme_update_ns_ana_state(&desc, ns);
864 } else {
865 /* group desc not found: trigger a re-read */
866 set_bit(NVME_NS_ANA_PENDING, &ns->flags);
867 queue_work(nvme_wq, &ns->ctrl->ana_work);
868 }
869 } else {
870 ns->ana_state = NVME_ANA_OPTIMIZED;
871 nvme_mpath_set_live(ns);
872 }
873
874 if (blk_queue_stable_writes(ns->queue) && ns->head->disk)
875 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES,
876 ns->head->disk->queue);
877#ifdef CONFIG_BLK_DEV_ZONED
878 if (blk_queue_is_zoned(ns->queue) && ns->head->disk)
879 ns->head->disk->nr_zones = ns->disk->nr_zones;
880#endif
881}
882
883void nvme_mpath_shutdown_disk(struct nvme_ns_head *head)
884{
885 if (!head->disk)
886 return;
887 kblockd_schedule_work(&head->requeue_work);
888 if (test_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
889 nvme_cdev_del(&head->cdev, &head->cdev_device);
890 del_gendisk(head->disk);
891 }
892}
893
894void nvme_mpath_remove_disk(struct nvme_ns_head *head)
895{
896 if (!head->disk)
897 return;
898 /* make sure all pending bios are cleaned up */
899 kblockd_schedule_work(&head->requeue_work);
900 flush_work(&head->requeue_work);
901 put_disk(head->disk);
902}
903
904void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl)
905{
906 mutex_init(&ctrl->ana_lock);
907 timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0);
908 INIT_WORK(&ctrl->ana_work, nvme_ana_work);
909}
910
911int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
912{
913 size_t max_transfer_size = ctrl->max_hw_sectors << SECTOR_SHIFT;
914 size_t ana_log_size;
915 int error = 0;
916
917 /* check if multipath is enabled and we have the capability */
918 if (!multipath || !ctrl->subsys ||
919 !(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA))
920 return 0;
921
922 if (!ctrl->max_namespaces ||
923 ctrl->max_namespaces > le32_to_cpu(id->nn)) {
924 dev_err(ctrl->device,
925 "Invalid MNAN value %u\n", ctrl->max_namespaces);
926 return -EINVAL;
927 }
928
929 ctrl->anacap = id->anacap;
930 ctrl->anatt = id->anatt;
931 ctrl->nanagrpid = le32_to_cpu(id->nanagrpid);
932 ctrl->anagrpmax = le32_to_cpu(id->anagrpmax);
933
934 ana_log_size = sizeof(struct nvme_ana_rsp_hdr) +
935 ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc) +
936 ctrl->max_namespaces * sizeof(__le32);
937 if (ana_log_size > max_transfer_size) {
938 dev_err(ctrl->device,
939 "ANA log page size (%zd) larger than MDTS (%zd).\n",
940 ana_log_size, max_transfer_size);
941 dev_err(ctrl->device, "disabling ANA support.\n");
942 goto out_uninit;
943 }
944 if (ana_log_size > ctrl->ana_log_size) {
945 nvme_mpath_stop(ctrl);
946 nvme_mpath_uninit(ctrl);
947 ctrl->ana_log_buf = kvmalloc(ana_log_size, GFP_KERNEL);
948 if (!ctrl->ana_log_buf)
949 return -ENOMEM;
950 }
951 ctrl->ana_log_size = ana_log_size;
952 error = nvme_read_ana_log(ctrl);
953 if (error)
954 goto out_uninit;
955 return 0;
956
957out_uninit:
958 nvme_mpath_uninit(ctrl);
959 return error;
960}
961
962void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
963{
964 kvfree(ctrl->ana_log_buf);
965 ctrl->ana_log_buf = NULL;
966 ctrl->ana_log_size = 0;
967}