Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * tools/testing/selftests/kvm/include/x86_64/processor.h
4 *
5 * Copyright (C) 2018, Google LLC.
6 */
7
8#ifndef SELFTEST_KVM_PROCESSOR_H
9#define SELFTEST_KVM_PROCESSOR_H
10
11#include <assert.h>
12#include <stdint.h>
13#include <syscall.h>
14
15#include <asm/msr-index.h>
16#include <asm/prctl.h>
17
18#include <linux/kvm_para.h>
19#include <linux/stringify.h>
20
21#include "../kvm_util.h"
22
23extern bool host_cpu_is_intel;
24extern bool host_cpu_is_amd;
25
26enum vm_guest_x86_subtype {
27 VM_SUBTYPE_NONE = 0,
28 VM_SUBTYPE_SEV,
29 VM_SUBTYPE_SEV_ES,
30};
31
32/* Forced emulation prefix, used to invoke the emulator unconditionally. */
33#define KVM_FEP "ud2; .byte 'k', 'v', 'm';"
34
35#define NMI_VECTOR 0x02
36
37#define X86_EFLAGS_FIXED (1u << 1)
38
39#define X86_CR4_VME (1ul << 0)
40#define X86_CR4_PVI (1ul << 1)
41#define X86_CR4_TSD (1ul << 2)
42#define X86_CR4_DE (1ul << 3)
43#define X86_CR4_PSE (1ul << 4)
44#define X86_CR4_PAE (1ul << 5)
45#define X86_CR4_MCE (1ul << 6)
46#define X86_CR4_PGE (1ul << 7)
47#define X86_CR4_PCE (1ul << 8)
48#define X86_CR4_OSFXSR (1ul << 9)
49#define X86_CR4_OSXMMEXCPT (1ul << 10)
50#define X86_CR4_UMIP (1ul << 11)
51#define X86_CR4_LA57 (1ul << 12)
52#define X86_CR4_VMXE (1ul << 13)
53#define X86_CR4_SMXE (1ul << 14)
54#define X86_CR4_FSGSBASE (1ul << 16)
55#define X86_CR4_PCIDE (1ul << 17)
56#define X86_CR4_OSXSAVE (1ul << 18)
57#define X86_CR4_SMEP (1ul << 20)
58#define X86_CR4_SMAP (1ul << 21)
59#define X86_CR4_PKE (1ul << 22)
60
61struct xstate_header {
62 u64 xstate_bv;
63 u64 xcomp_bv;
64 u64 reserved[6];
65} __attribute__((packed));
66
67struct xstate {
68 u8 i387[512];
69 struct xstate_header header;
70 u8 extended_state_area[0];
71} __attribute__ ((packed, aligned (64)));
72
73#define XFEATURE_MASK_FP BIT_ULL(0)
74#define XFEATURE_MASK_SSE BIT_ULL(1)
75#define XFEATURE_MASK_YMM BIT_ULL(2)
76#define XFEATURE_MASK_BNDREGS BIT_ULL(3)
77#define XFEATURE_MASK_BNDCSR BIT_ULL(4)
78#define XFEATURE_MASK_OPMASK BIT_ULL(5)
79#define XFEATURE_MASK_ZMM_Hi256 BIT_ULL(6)
80#define XFEATURE_MASK_Hi16_ZMM BIT_ULL(7)
81#define XFEATURE_MASK_PT BIT_ULL(8)
82#define XFEATURE_MASK_PKRU BIT_ULL(9)
83#define XFEATURE_MASK_PASID BIT_ULL(10)
84#define XFEATURE_MASK_CET_USER BIT_ULL(11)
85#define XFEATURE_MASK_CET_KERNEL BIT_ULL(12)
86#define XFEATURE_MASK_LBR BIT_ULL(15)
87#define XFEATURE_MASK_XTILE_CFG BIT_ULL(17)
88#define XFEATURE_MASK_XTILE_DATA BIT_ULL(18)
89
90#define XFEATURE_MASK_AVX512 (XFEATURE_MASK_OPMASK | \
91 XFEATURE_MASK_ZMM_Hi256 | \
92 XFEATURE_MASK_Hi16_ZMM)
93#define XFEATURE_MASK_XTILE (XFEATURE_MASK_XTILE_DATA | \
94 XFEATURE_MASK_XTILE_CFG)
95
96/* Note, these are ordered alphabetically to match kvm_cpuid_entry2. Eww. */
97enum cpuid_output_regs {
98 KVM_CPUID_EAX,
99 KVM_CPUID_EBX,
100 KVM_CPUID_ECX,
101 KVM_CPUID_EDX
102};
103
104/*
105 * Pack the information into a 64-bit value so that each X86_FEATURE_XXX can be
106 * passed by value with no overhead.
107 */
108struct kvm_x86_cpu_feature {
109 u32 function;
110 u16 index;
111 u8 reg;
112 u8 bit;
113};
114#define KVM_X86_CPU_FEATURE(fn, idx, gpr, __bit) \
115({ \
116 struct kvm_x86_cpu_feature feature = { \
117 .function = fn, \
118 .index = idx, \
119 .reg = KVM_CPUID_##gpr, \
120 .bit = __bit, \
121 }; \
122 \
123 kvm_static_assert((fn & 0xc0000000) == 0 || \
124 (fn & 0xc0000000) == 0x40000000 || \
125 (fn & 0xc0000000) == 0x80000000 || \
126 (fn & 0xc0000000) == 0xc0000000); \
127 kvm_static_assert(idx < BIT(sizeof(feature.index) * BITS_PER_BYTE)); \
128 feature; \
129})
130
131/*
132 * Basic Leafs, a.k.a. Intel defined
133 */
134#define X86_FEATURE_MWAIT KVM_X86_CPU_FEATURE(0x1, 0, ECX, 3)
135#define X86_FEATURE_VMX KVM_X86_CPU_FEATURE(0x1, 0, ECX, 5)
136#define X86_FEATURE_SMX KVM_X86_CPU_FEATURE(0x1, 0, ECX, 6)
137#define X86_FEATURE_PDCM KVM_X86_CPU_FEATURE(0x1, 0, ECX, 15)
138#define X86_FEATURE_PCID KVM_X86_CPU_FEATURE(0x1, 0, ECX, 17)
139#define X86_FEATURE_X2APIC KVM_X86_CPU_FEATURE(0x1, 0, ECX, 21)
140#define X86_FEATURE_MOVBE KVM_X86_CPU_FEATURE(0x1, 0, ECX, 22)
141#define X86_FEATURE_TSC_DEADLINE_TIMER KVM_X86_CPU_FEATURE(0x1, 0, ECX, 24)
142#define X86_FEATURE_XSAVE KVM_X86_CPU_FEATURE(0x1, 0, ECX, 26)
143#define X86_FEATURE_OSXSAVE KVM_X86_CPU_FEATURE(0x1, 0, ECX, 27)
144#define X86_FEATURE_RDRAND KVM_X86_CPU_FEATURE(0x1, 0, ECX, 30)
145#define X86_FEATURE_HYPERVISOR KVM_X86_CPU_FEATURE(0x1, 0, ECX, 31)
146#define X86_FEATURE_PAE KVM_X86_CPU_FEATURE(0x1, 0, EDX, 6)
147#define X86_FEATURE_MCE KVM_X86_CPU_FEATURE(0x1, 0, EDX, 7)
148#define X86_FEATURE_APIC KVM_X86_CPU_FEATURE(0x1, 0, EDX, 9)
149#define X86_FEATURE_CLFLUSH KVM_X86_CPU_FEATURE(0x1, 0, EDX, 19)
150#define X86_FEATURE_XMM KVM_X86_CPU_FEATURE(0x1, 0, EDX, 25)
151#define X86_FEATURE_XMM2 KVM_X86_CPU_FEATURE(0x1, 0, EDX, 26)
152#define X86_FEATURE_FSGSBASE KVM_X86_CPU_FEATURE(0x7, 0, EBX, 0)
153#define X86_FEATURE_TSC_ADJUST KVM_X86_CPU_FEATURE(0x7, 0, EBX, 1)
154#define X86_FEATURE_SGX KVM_X86_CPU_FEATURE(0x7, 0, EBX, 2)
155#define X86_FEATURE_HLE KVM_X86_CPU_FEATURE(0x7, 0, EBX, 4)
156#define X86_FEATURE_SMEP KVM_X86_CPU_FEATURE(0x7, 0, EBX, 7)
157#define X86_FEATURE_INVPCID KVM_X86_CPU_FEATURE(0x7, 0, EBX, 10)
158#define X86_FEATURE_RTM KVM_X86_CPU_FEATURE(0x7, 0, EBX, 11)
159#define X86_FEATURE_MPX KVM_X86_CPU_FEATURE(0x7, 0, EBX, 14)
160#define X86_FEATURE_SMAP KVM_X86_CPU_FEATURE(0x7, 0, EBX, 20)
161#define X86_FEATURE_PCOMMIT KVM_X86_CPU_FEATURE(0x7, 0, EBX, 22)
162#define X86_FEATURE_CLFLUSHOPT KVM_X86_CPU_FEATURE(0x7, 0, EBX, 23)
163#define X86_FEATURE_CLWB KVM_X86_CPU_FEATURE(0x7, 0, EBX, 24)
164#define X86_FEATURE_UMIP KVM_X86_CPU_FEATURE(0x7, 0, ECX, 2)
165#define X86_FEATURE_PKU KVM_X86_CPU_FEATURE(0x7, 0, ECX, 3)
166#define X86_FEATURE_OSPKE KVM_X86_CPU_FEATURE(0x7, 0, ECX, 4)
167#define X86_FEATURE_LA57 KVM_X86_CPU_FEATURE(0x7, 0, ECX, 16)
168#define X86_FEATURE_RDPID KVM_X86_CPU_FEATURE(0x7, 0, ECX, 22)
169#define X86_FEATURE_SGX_LC KVM_X86_CPU_FEATURE(0x7, 0, ECX, 30)
170#define X86_FEATURE_SHSTK KVM_X86_CPU_FEATURE(0x7, 0, ECX, 7)
171#define X86_FEATURE_IBT KVM_X86_CPU_FEATURE(0x7, 0, EDX, 20)
172#define X86_FEATURE_AMX_TILE KVM_X86_CPU_FEATURE(0x7, 0, EDX, 24)
173#define X86_FEATURE_SPEC_CTRL KVM_X86_CPU_FEATURE(0x7, 0, EDX, 26)
174#define X86_FEATURE_ARCH_CAPABILITIES KVM_X86_CPU_FEATURE(0x7, 0, EDX, 29)
175#define X86_FEATURE_PKS KVM_X86_CPU_FEATURE(0x7, 0, ECX, 31)
176#define X86_FEATURE_XTILECFG KVM_X86_CPU_FEATURE(0xD, 0, EAX, 17)
177#define X86_FEATURE_XTILEDATA KVM_X86_CPU_FEATURE(0xD, 0, EAX, 18)
178#define X86_FEATURE_XSAVES KVM_X86_CPU_FEATURE(0xD, 1, EAX, 3)
179#define X86_FEATURE_XFD KVM_X86_CPU_FEATURE(0xD, 1, EAX, 4)
180#define X86_FEATURE_XTILEDATA_XFD KVM_X86_CPU_FEATURE(0xD, 18, ECX, 2)
181
182/*
183 * Extended Leafs, a.k.a. AMD defined
184 */
185#define X86_FEATURE_SVM KVM_X86_CPU_FEATURE(0x80000001, 0, ECX, 2)
186#define X86_FEATURE_NX KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 20)
187#define X86_FEATURE_GBPAGES KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 26)
188#define X86_FEATURE_RDTSCP KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 27)
189#define X86_FEATURE_LM KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 29)
190#define X86_FEATURE_INVTSC KVM_X86_CPU_FEATURE(0x80000007, 0, EDX, 8)
191#define X86_FEATURE_RDPRU KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 4)
192#define X86_FEATURE_AMD_IBPB KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 12)
193#define X86_FEATURE_NPT KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 0)
194#define X86_FEATURE_LBRV KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 1)
195#define X86_FEATURE_NRIPS KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 3)
196#define X86_FEATURE_TSCRATEMSR KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 4)
197#define X86_FEATURE_PAUSEFILTER KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 10)
198#define X86_FEATURE_PFTHRESHOLD KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 12)
199#define X86_FEATURE_VGIF KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 16)
200#define X86_FEATURE_SEV KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 1)
201#define X86_FEATURE_SEV_ES KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 3)
202
203/*
204 * KVM defined paravirt features.
205 */
206#define X86_FEATURE_KVM_CLOCKSOURCE KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 0)
207#define X86_FEATURE_KVM_NOP_IO_DELAY KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 1)
208#define X86_FEATURE_KVM_MMU_OP KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 2)
209#define X86_FEATURE_KVM_CLOCKSOURCE2 KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 3)
210#define X86_FEATURE_KVM_ASYNC_PF KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 4)
211#define X86_FEATURE_KVM_STEAL_TIME KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 5)
212#define X86_FEATURE_KVM_PV_EOI KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 6)
213#define X86_FEATURE_KVM_PV_UNHALT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 7)
214/* Bit 8 apparently isn't used?!?! */
215#define X86_FEATURE_KVM_PV_TLB_FLUSH KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 9)
216#define X86_FEATURE_KVM_ASYNC_PF_VMEXIT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 10)
217#define X86_FEATURE_KVM_PV_SEND_IPI KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 11)
218#define X86_FEATURE_KVM_POLL_CONTROL KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 12)
219#define X86_FEATURE_KVM_PV_SCHED_YIELD KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 13)
220#define X86_FEATURE_KVM_ASYNC_PF_INT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 14)
221#define X86_FEATURE_KVM_MSI_EXT_DEST_ID KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 15)
222#define X86_FEATURE_KVM_HC_MAP_GPA_RANGE KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 16)
223#define X86_FEATURE_KVM_MIGRATION_CONTROL KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 17)
224
225/*
226 * Same idea as X86_FEATURE_XXX, but X86_PROPERTY_XXX retrieves a multi-bit
227 * value/property as opposed to a single-bit feature. Again, pack the info
228 * into a 64-bit value to pass by value with no overhead.
229 */
230struct kvm_x86_cpu_property {
231 u32 function;
232 u8 index;
233 u8 reg;
234 u8 lo_bit;
235 u8 hi_bit;
236};
237#define KVM_X86_CPU_PROPERTY(fn, idx, gpr, low_bit, high_bit) \
238({ \
239 struct kvm_x86_cpu_property property = { \
240 .function = fn, \
241 .index = idx, \
242 .reg = KVM_CPUID_##gpr, \
243 .lo_bit = low_bit, \
244 .hi_bit = high_bit, \
245 }; \
246 \
247 kvm_static_assert(low_bit < high_bit); \
248 kvm_static_assert((fn & 0xc0000000) == 0 || \
249 (fn & 0xc0000000) == 0x40000000 || \
250 (fn & 0xc0000000) == 0x80000000 || \
251 (fn & 0xc0000000) == 0xc0000000); \
252 kvm_static_assert(idx < BIT(sizeof(property.index) * BITS_PER_BYTE)); \
253 property; \
254})
255
256#define X86_PROPERTY_MAX_BASIC_LEAF KVM_X86_CPU_PROPERTY(0, 0, EAX, 0, 31)
257#define X86_PROPERTY_PMU_VERSION KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 0, 7)
258#define X86_PROPERTY_PMU_NR_GP_COUNTERS KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 8, 15)
259#define X86_PROPERTY_PMU_GP_COUNTERS_BIT_WIDTH KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 16, 23)
260#define X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 24, 31)
261#define X86_PROPERTY_PMU_EVENTS_MASK KVM_X86_CPU_PROPERTY(0xa, 0, EBX, 0, 7)
262#define X86_PROPERTY_PMU_FIXED_COUNTERS_BITMASK KVM_X86_CPU_PROPERTY(0xa, 0, ECX, 0, 31)
263#define X86_PROPERTY_PMU_NR_FIXED_COUNTERS KVM_X86_CPU_PROPERTY(0xa, 0, EDX, 0, 4)
264#define X86_PROPERTY_PMU_FIXED_COUNTERS_BIT_WIDTH KVM_X86_CPU_PROPERTY(0xa, 0, EDX, 5, 12)
265
266#define X86_PROPERTY_SUPPORTED_XCR0_LO KVM_X86_CPU_PROPERTY(0xd, 0, EAX, 0, 31)
267#define X86_PROPERTY_XSTATE_MAX_SIZE_XCR0 KVM_X86_CPU_PROPERTY(0xd, 0, EBX, 0, 31)
268#define X86_PROPERTY_XSTATE_MAX_SIZE KVM_X86_CPU_PROPERTY(0xd, 0, ECX, 0, 31)
269#define X86_PROPERTY_SUPPORTED_XCR0_HI KVM_X86_CPU_PROPERTY(0xd, 0, EDX, 0, 31)
270
271#define X86_PROPERTY_XSTATE_TILE_SIZE KVM_X86_CPU_PROPERTY(0xd, 18, EAX, 0, 31)
272#define X86_PROPERTY_XSTATE_TILE_OFFSET KVM_X86_CPU_PROPERTY(0xd, 18, EBX, 0, 31)
273#define X86_PROPERTY_AMX_MAX_PALETTE_TABLES KVM_X86_CPU_PROPERTY(0x1d, 0, EAX, 0, 31)
274#define X86_PROPERTY_AMX_TOTAL_TILE_BYTES KVM_X86_CPU_PROPERTY(0x1d, 1, EAX, 0, 15)
275#define X86_PROPERTY_AMX_BYTES_PER_TILE KVM_X86_CPU_PROPERTY(0x1d, 1, EAX, 16, 31)
276#define X86_PROPERTY_AMX_BYTES_PER_ROW KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 0, 15)
277#define X86_PROPERTY_AMX_NR_TILE_REGS KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 16, 31)
278#define X86_PROPERTY_AMX_MAX_ROWS KVM_X86_CPU_PROPERTY(0x1d, 1, ECX, 0, 15)
279
280#define X86_PROPERTY_MAX_KVM_LEAF KVM_X86_CPU_PROPERTY(0x40000000, 0, EAX, 0, 31)
281
282#define X86_PROPERTY_MAX_EXT_LEAF KVM_X86_CPU_PROPERTY(0x80000000, 0, EAX, 0, 31)
283#define X86_PROPERTY_MAX_PHY_ADDR KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 0, 7)
284#define X86_PROPERTY_MAX_VIRT_ADDR KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 8, 15)
285#define X86_PROPERTY_SEV_C_BIT KVM_X86_CPU_PROPERTY(0x8000001F, 0, EBX, 0, 5)
286#define X86_PROPERTY_PHYS_ADDR_REDUCTION KVM_X86_CPU_PROPERTY(0x8000001F, 0, EBX, 6, 11)
287
288#define X86_PROPERTY_MAX_CENTAUR_LEAF KVM_X86_CPU_PROPERTY(0xC0000000, 0, EAX, 0, 31)
289
290/*
291 * Intel's architectural PMU events are bizarre. They have a "feature" bit
292 * that indicates the feature is _not_ supported, and a property that states
293 * the length of the bit mask of unsupported features. A feature is supported
294 * if the size of the bit mask is larger than the "unavailable" bit, and said
295 * bit is not set. Fixed counters also bizarre enumeration, but inverted from
296 * arch events for general purpose counters. Fixed counters are supported if a
297 * feature flag is set **OR** the total number of fixed counters is greater
298 * than index of the counter.
299 *
300 * Wrap the events for general purpose and fixed counters to simplify checking
301 * whether or not a given architectural event is supported.
302 */
303struct kvm_x86_pmu_feature {
304 struct kvm_x86_cpu_feature f;
305};
306#define KVM_X86_PMU_FEATURE(__reg, __bit) \
307({ \
308 struct kvm_x86_pmu_feature feature = { \
309 .f = KVM_X86_CPU_FEATURE(0xa, 0, __reg, __bit), \
310 }; \
311 \
312 kvm_static_assert(KVM_CPUID_##__reg == KVM_CPUID_EBX || \
313 KVM_CPUID_##__reg == KVM_CPUID_ECX); \
314 feature; \
315})
316
317#define X86_PMU_FEATURE_CPU_CYCLES KVM_X86_PMU_FEATURE(EBX, 0)
318#define X86_PMU_FEATURE_INSNS_RETIRED KVM_X86_PMU_FEATURE(EBX, 1)
319#define X86_PMU_FEATURE_REFERENCE_CYCLES KVM_X86_PMU_FEATURE(EBX, 2)
320#define X86_PMU_FEATURE_LLC_REFERENCES KVM_X86_PMU_FEATURE(EBX, 3)
321#define X86_PMU_FEATURE_LLC_MISSES KVM_X86_PMU_FEATURE(EBX, 4)
322#define X86_PMU_FEATURE_BRANCH_INSNS_RETIRED KVM_X86_PMU_FEATURE(EBX, 5)
323#define X86_PMU_FEATURE_BRANCHES_MISPREDICTED KVM_X86_PMU_FEATURE(EBX, 6)
324#define X86_PMU_FEATURE_TOPDOWN_SLOTS KVM_X86_PMU_FEATURE(EBX, 7)
325
326#define X86_PMU_FEATURE_INSNS_RETIRED_FIXED KVM_X86_PMU_FEATURE(ECX, 0)
327#define X86_PMU_FEATURE_CPU_CYCLES_FIXED KVM_X86_PMU_FEATURE(ECX, 1)
328#define X86_PMU_FEATURE_REFERENCE_TSC_CYCLES_FIXED KVM_X86_PMU_FEATURE(ECX, 2)
329#define X86_PMU_FEATURE_TOPDOWN_SLOTS_FIXED KVM_X86_PMU_FEATURE(ECX, 3)
330
331static inline unsigned int x86_family(unsigned int eax)
332{
333 unsigned int x86;
334
335 x86 = (eax >> 8) & 0xf;
336
337 if (x86 == 0xf)
338 x86 += (eax >> 20) & 0xff;
339
340 return x86;
341}
342
343static inline unsigned int x86_model(unsigned int eax)
344{
345 return ((eax >> 12) & 0xf0) | ((eax >> 4) & 0x0f);
346}
347
348/* Page table bitfield declarations */
349#define PTE_PRESENT_MASK BIT_ULL(0)
350#define PTE_WRITABLE_MASK BIT_ULL(1)
351#define PTE_USER_MASK BIT_ULL(2)
352#define PTE_ACCESSED_MASK BIT_ULL(5)
353#define PTE_DIRTY_MASK BIT_ULL(6)
354#define PTE_LARGE_MASK BIT_ULL(7)
355#define PTE_GLOBAL_MASK BIT_ULL(8)
356#define PTE_NX_MASK BIT_ULL(63)
357
358#define PHYSICAL_PAGE_MASK GENMASK_ULL(51, 12)
359
360#define PAGE_SHIFT 12
361#define PAGE_SIZE (1ULL << PAGE_SHIFT)
362#define PAGE_MASK (~(PAGE_SIZE-1) & PHYSICAL_PAGE_MASK)
363
364#define HUGEPAGE_SHIFT(x) (PAGE_SHIFT + (((x) - 1) * 9))
365#define HUGEPAGE_SIZE(x) (1UL << HUGEPAGE_SHIFT(x))
366#define HUGEPAGE_MASK(x) (~(HUGEPAGE_SIZE(x) - 1) & PHYSICAL_PAGE_MASK)
367
368#define PTE_GET_PA(pte) ((pte) & PHYSICAL_PAGE_MASK)
369#define PTE_GET_PFN(pte) (PTE_GET_PA(pte) >> PAGE_SHIFT)
370
371/* General Registers in 64-Bit Mode */
372struct gpr64_regs {
373 u64 rax;
374 u64 rcx;
375 u64 rdx;
376 u64 rbx;
377 u64 rsp;
378 u64 rbp;
379 u64 rsi;
380 u64 rdi;
381 u64 r8;
382 u64 r9;
383 u64 r10;
384 u64 r11;
385 u64 r12;
386 u64 r13;
387 u64 r14;
388 u64 r15;
389};
390
391struct desc64 {
392 uint16_t limit0;
393 uint16_t base0;
394 unsigned base1:8, type:4, s:1, dpl:2, p:1;
395 unsigned limit1:4, avl:1, l:1, db:1, g:1, base2:8;
396 uint32_t base3;
397 uint32_t zero1;
398} __attribute__((packed));
399
400struct desc_ptr {
401 uint16_t size;
402 uint64_t address;
403} __attribute__((packed));
404
405struct kvm_x86_state {
406 struct kvm_xsave *xsave;
407 struct kvm_vcpu_events events;
408 struct kvm_mp_state mp_state;
409 struct kvm_regs regs;
410 struct kvm_xcrs xcrs;
411 struct kvm_sregs sregs;
412 struct kvm_debugregs debugregs;
413 union {
414 struct kvm_nested_state nested;
415 char nested_[16384];
416 };
417 struct kvm_msrs msrs;
418};
419
420static inline uint64_t get_desc64_base(const struct desc64 *desc)
421{
422 return ((uint64_t)desc->base3 << 32) |
423 (desc->base0 | ((desc->base1) << 16) | ((desc->base2) << 24));
424}
425
426static inline uint64_t rdtsc(void)
427{
428 uint32_t eax, edx;
429 uint64_t tsc_val;
430 /*
431 * The lfence is to wait (on Intel CPUs) until all previous
432 * instructions have been executed. If software requires RDTSC to be
433 * executed prior to execution of any subsequent instruction, it can
434 * execute LFENCE immediately after RDTSC
435 */
436 __asm__ __volatile__("lfence; rdtsc; lfence" : "=a"(eax), "=d"(edx));
437 tsc_val = ((uint64_t)edx) << 32 | eax;
438 return tsc_val;
439}
440
441static inline uint64_t rdtscp(uint32_t *aux)
442{
443 uint32_t eax, edx;
444
445 __asm__ __volatile__("rdtscp" : "=a"(eax), "=d"(edx), "=c"(*aux));
446 return ((uint64_t)edx) << 32 | eax;
447}
448
449static inline uint64_t rdmsr(uint32_t msr)
450{
451 uint32_t a, d;
452
453 __asm__ __volatile__("rdmsr" : "=a"(a), "=d"(d) : "c"(msr) : "memory");
454
455 return a | ((uint64_t) d << 32);
456}
457
458static inline void wrmsr(uint32_t msr, uint64_t value)
459{
460 uint32_t a = value;
461 uint32_t d = value >> 32;
462
463 __asm__ __volatile__("wrmsr" :: "a"(a), "d"(d), "c"(msr) : "memory");
464}
465
466
467static inline uint16_t inw(uint16_t port)
468{
469 uint16_t tmp;
470
471 __asm__ __volatile__("in %%dx, %%ax"
472 : /* output */ "=a" (tmp)
473 : /* input */ "d" (port));
474
475 return tmp;
476}
477
478static inline uint16_t get_es(void)
479{
480 uint16_t es;
481
482 __asm__ __volatile__("mov %%es, %[es]"
483 : /* output */ [es]"=rm"(es));
484 return es;
485}
486
487static inline uint16_t get_cs(void)
488{
489 uint16_t cs;
490
491 __asm__ __volatile__("mov %%cs, %[cs]"
492 : /* output */ [cs]"=rm"(cs));
493 return cs;
494}
495
496static inline uint16_t get_ss(void)
497{
498 uint16_t ss;
499
500 __asm__ __volatile__("mov %%ss, %[ss]"
501 : /* output */ [ss]"=rm"(ss));
502 return ss;
503}
504
505static inline uint16_t get_ds(void)
506{
507 uint16_t ds;
508
509 __asm__ __volatile__("mov %%ds, %[ds]"
510 : /* output */ [ds]"=rm"(ds));
511 return ds;
512}
513
514static inline uint16_t get_fs(void)
515{
516 uint16_t fs;
517
518 __asm__ __volatile__("mov %%fs, %[fs]"
519 : /* output */ [fs]"=rm"(fs));
520 return fs;
521}
522
523static inline uint16_t get_gs(void)
524{
525 uint16_t gs;
526
527 __asm__ __volatile__("mov %%gs, %[gs]"
528 : /* output */ [gs]"=rm"(gs));
529 return gs;
530}
531
532static inline uint16_t get_tr(void)
533{
534 uint16_t tr;
535
536 __asm__ __volatile__("str %[tr]"
537 : /* output */ [tr]"=rm"(tr));
538 return tr;
539}
540
541static inline uint64_t get_cr0(void)
542{
543 uint64_t cr0;
544
545 __asm__ __volatile__("mov %%cr0, %[cr0]"
546 : /* output */ [cr0]"=r"(cr0));
547 return cr0;
548}
549
550static inline uint64_t get_cr3(void)
551{
552 uint64_t cr3;
553
554 __asm__ __volatile__("mov %%cr3, %[cr3]"
555 : /* output */ [cr3]"=r"(cr3));
556 return cr3;
557}
558
559static inline uint64_t get_cr4(void)
560{
561 uint64_t cr4;
562
563 __asm__ __volatile__("mov %%cr4, %[cr4]"
564 : /* output */ [cr4]"=r"(cr4));
565 return cr4;
566}
567
568static inline void set_cr4(uint64_t val)
569{
570 __asm__ __volatile__("mov %0, %%cr4" : : "r" (val) : "memory");
571}
572
573static inline u64 xgetbv(u32 index)
574{
575 u32 eax, edx;
576
577 __asm__ __volatile__("xgetbv;"
578 : "=a" (eax), "=d" (edx)
579 : "c" (index));
580 return eax | ((u64)edx << 32);
581}
582
583static inline void xsetbv(u32 index, u64 value)
584{
585 u32 eax = value;
586 u32 edx = value >> 32;
587
588 __asm__ __volatile__("xsetbv" :: "a" (eax), "d" (edx), "c" (index));
589}
590
591static inline void wrpkru(u32 pkru)
592{
593 /* Note, ECX and EDX are architecturally required to be '0'. */
594 asm volatile(".byte 0x0f,0x01,0xef\n\t"
595 : : "a" (pkru), "c"(0), "d"(0));
596}
597
598static inline struct desc_ptr get_gdt(void)
599{
600 struct desc_ptr gdt;
601 __asm__ __volatile__("sgdt %[gdt]"
602 : /* output */ [gdt]"=m"(gdt));
603 return gdt;
604}
605
606static inline struct desc_ptr get_idt(void)
607{
608 struct desc_ptr idt;
609 __asm__ __volatile__("sidt %[idt]"
610 : /* output */ [idt]"=m"(idt));
611 return idt;
612}
613
614static inline void outl(uint16_t port, uint32_t value)
615{
616 __asm__ __volatile__("outl %%eax, %%dx" : : "d"(port), "a"(value));
617}
618
619static inline void __cpuid(uint32_t function, uint32_t index,
620 uint32_t *eax, uint32_t *ebx,
621 uint32_t *ecx, uint32_t *edx)
622{
623 *eax = function;
624 *ecx = index;
625
626 asm volatile("cpuid"
627 : "=a" (*eax),
628 "=b" (*ebx),
629 "=c" (*ecx),
630 "=d" (*edx)
631 : "0" (*eax), "2" (*ecx)
632 : "memory");
633}
634
635static inline void cpuid(uint32_t function,
636 uint32_t *eax, uint32_t *ebx,
637 uint32_t *ecx, uint32_t *edx)
638{
639 return __cpuid(function, 0, eax, ebx, ecx, edx);
640}
641
642static inline uint32_t this_cpu_fms(void)
643{
644 uint32_t eax, ebx, ecx, edx;
645
646 cpuid(1, &eax, &ebx, &ecx, &edx);
647 return eax;
648}
649
650static inline uint32_t this_cpu_family(void)
651{
652 return x86_family(this_cpu_fms());
653}
654
655static inline uint32_t this_cpu_model(void)
656{
657 return x86_model(this_cpu_fms());
658}
659
660static inline bool this_cpu_vendor_string_is(const char *vendor)
661{
662 const uint32_t *chunk = (const uint32_t *)vendor;
663 uint32_t eax, ebx, ecx, edx;
664
665 cpuid(0, &eax, &ebx, &ecx, &edx);
666 return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]);
667}
668
669static inline bool this_cpu_is_intel(void)
670{
671 return this_cpu_vendor_string_is("GenuineIntel");
672}
673
674/*
675 * Exclude early K5 samples with a vendor string of "AMDisbetter!"
676 */
677static inline bool this_cpu_is_amd(void)
678{
679 return this_cpu_vendor_string_is("AuthenticAMD");
680}
681
682static inline uint32_t __this_cpu_has(uint32_t function, uint32_t index,
683 uint8_t reg, uint8_t lo, uint8_t hi)
684{
685 uint32_t gprs[4];
686
687 __cpuid(function, index,
688 &gprs[KVM_CPUID_EAX], &gprs[KVM_CPUID_EBX],
689 &gprs[KVM_CPUID_ECX], &gprs[KVM_CPUID_EDX]);
690
691 return (gprs[reg] & GENMASK(hi, lo)) >> lo;
692}
693
694static inline bool this_cpu_has(struct kvm_x86_cpu_feature feature)
695{
696 return __this_cpu_has(feature.function, feature.index,
697 feature.reg, feature.bit, feature.bit);
698}
699
700static inline uint32_t this_cpu_property(struct kvm_x86_cpu_property property)
701{
702 return __this_cpu_has(property.function, property.index,
703 property.reg, property.lo_bit, property.hi_bit);
704}
705
706static __always_inline bool this_cpu_has_p(struct kvm_x86_cpu_property property)
707{
708 uint32_t max_leaf;
709
710 switch (property.function & 0xc0000000) {
711 case 0:
712 max_leaf = this_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF);
713 break;
714 case 0x40000000:
715 max_leaf = this_cpu_property(X86_PROPERTY_MAX_KVM_LEAF);
716 break;
717 case 0x80000000:
718 max_leaf = this_cpu_property(X86_PROPERTY_MAX_EXT_LEAF);
719 break;
720 case 0xc0000000:
721 max_leaf = this_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF);
722 }
723 return max_leaf >= property.function;
724}
725
726static inline bool this_pmu_has(struct kvm_x86_pmu_feature feature)
727{
728 uint32_t nr_bits;
729
730 if (feature.f.reg == KVM_CPUID_EBX) {
731 nr_bits = this_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH);
732 return nr_bits > feature.f.bit && !this_cpu_has(feature.f);
733 }
734
735 GUEST_ASSERT(feature.f.reg == KVM_CPUID_ECX);
736 nr_bits = this_cpu_property(X86_PROPERTY_PMU_NR_FIXED_COUNTERS);
737 return nr_bits > feature.f.bit || this_cpu_has(feature.f);
738}
739
740static __always_inline uint64_t this_cpu_supported_xcr0(void)
741{
742 if (!this_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO))
743 return 0;
744
745 return this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) |
746 ((uint64_t)this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32);
747}
748
749typedef u32 __attribute__((vector_size(16))) sse128_t;
750#define __sse128_u union { sse128_t vec; u64 as_u64[2]; u32 as_u32[4]; }
751#define sse128_lo(x) ({ __sse128_u t; t.vec = x; t.as_u64[0]; })
752#define sse128_hi(x) ({ __sse128_u t; t.vec = x; t.as_u64[1]; })
753
754static inline void read_sse_reg(int reg, sse128_t *data)
755{
756 switch (reg) {
757 case 0:
758 asm("movdqa %%xmm0, %0" : "=m"(*data));
759 break;
760 case 1:
761 asm("movdqa %%xmm1, %0" : "=m"(*data));
762 break;
763 case 2:
764 asm("movdqa %%xmm2, %0" : "=m"(*data));
765 break;
766 case 3:
767 asm("movdqa %%xmm3, %0" : "=m"(*data));
768 break;
769 case 4:
770 asm("movdqa %%xmm4, %0" : "=m"(*data));
771 break;
772 case 5:
773 asm("movdqa %%xmm5, %0" : "=m"(*data));
774 break;
775 case 6:
776 asm("movdqa %%xmm6, %0" : "=m"(*data));
777 break;
778 case 7:
779 asm("movdqa %%xmm7, %0" : "=m"(*data));
780 break;
781 default:
782 BUG();
783 }
784}
785
786static inline void write_sse_reg(int reg, const sse128_t *data)
787{
788 switch (reg) {
789 case 0:
790 asm("movdqa %0, %%xmm0" : : "m"(*data));
791 break;
792 case 1:
793 asm("movdqa %0, %%xmm1" : : "m"(*data));
794 break;
795 case 2:
796 asm("movdqa %0, %%xmm2" : : "m"(*data));
797 break;
798 case 3:
799 asm("movdqa %0, %%xmm3" : : "m"(*data));
800 break;
801 case 4:
802 asm("movdqa %0, %%xmm4" : : "m"(*data));
803 break;
804 case 5:
805 asm("movdqa %0, %%xmm5" : : "m"(*data));
806 break;
807 case 6:
808 asm("movdqa %0, %%xmm6" : : "m"(*data));
809 break;
810 case 7:
811 asm("movdqa %0, %%xmm7" : : "m"(*data));
812 break;
813 default:
814 BUG();
815 }
816}
817
818static inline void cpu_relax(void)
819{
820 asm volatile("rep; nop" ::: "memory");
821}
822
823#define ud2() \
824 __asm__ __volatile__( \
825 "ud2\n" \
826 )
827
828#define hlt() \
829 __asm__ __volatile__( \
830 "hlt\n" \
831 )
832
833struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu);
834void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state);
835void kvm_x86_state_cleanup(struct kvm_x86_state *state);
836
837const struct kvm_msr_list *kvm_get_msr_index_list(void);
838const struct kvm_msr_list *kvm_get_feature_msr_index_list(void);
839bool kvm_msr_is_in_save_restore_list(uint32_t msr_index);
840uint64_t kvm_get_feature_msr(uint64_t msr_index);
841
842static inline void vcpu_msrs_get(struct kvm_vcpu *vcpu,
843 struct kvm_msrs *msrs)
844{
845 int r = __vcpu_ioctl(vcpu, KVM_GET_MSRS, msrs);
846
847 TEST_ASSERT(r == msrs->nmsrs,
848 "KVM_GET_MSRS failed, r: %i (failed on MSR %x)",
849 r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index);
850}
851static inline void vcpu_msrs_set(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs)
852{
853 int r = __vcpu_ioctl(vcpu, KVM_SET_MSRS, msrs);
854
855 TEST_ASSERT(r == msrs->nmsrs,
856 "KVM_SET_MSRS failed, r: %i (failed on MSR %x)",
857 r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index);
858}
859static inline void vcpu_debugregs_get(struct kvm_vcpu *vcpu,
860 struct kvm_debugregs *debugregs)
861{
862 vcpu_ioctl(vcpu, KVM_GET_DEBUGREGS, debugregs);
863}
864static inline void vcpu_debugregs_set(struct kvm_vcpu *vcpu,
865 struct kvm_debugregs *debugregs)
866{
867 vcpu_ioctl(vcpu, KVM_SET_DEBUGREGS, debugregs);
868}
869static inline void vcpu_xsave_get(struct kvm_vcpu *vcpu,
870 struct kvm_xsave *xsave)
871{
872 vcpu_ioctl(vcpu, KVM_GET_XSAVE, xsave);
873}
874static inline void vcpu_xsave2_get(struct kvm_vcpu *vcpu,
875 struct kvm_xsave *xsave)
876{
877 vcpu_ioctl(vcpu, KVM_GET_XSAVE2, xsave);
878}
879static inline void vcpu_xsave_set(struct kvm_vcpu *vcpu,
880 struct kvm_xsave *xsave)
881{
882 vcpu_ioctl(vcpu, KVM_SET_XSAVE, xsave);
883}
884static inline void vcpu_xcrs_get(struct kvm_vcpu *vcpu,
885 struct kvm_xcrs *xcrs)
886{
887 vcpu_ioctl(vcpu, KVM_GET_XCRS, xcrs);
888}
889static inline void vcpu_xcrs_set(struct kvm_vcpu *vcpu, struct kvm_xcrs *xcrs)
890{
891 vcpu_ioctl(vcpu, KVM_SET_XCRS, xcrs);
892}
893
894const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid,
895 uint32_t function, uint32_t index);
896const struct kvm_cpuid2 *kvm_get_supported_cpuid(void);
897const struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void);
898const struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vcpu *vcpu);
899
900static inline uint32_t kvm_cpu_fms(void)
901{
902 return get_cpuid_entry(kvm_get_supported_cpuid(), 0x1, 0)->eax;
903}
904
905static inline uint32_t kvm_cpu_family(void)
906{
907 return x86_family(kvm_cpu_fms());
908}
909
910static inline uint32_t kvm_cpu_model(void)
911{
912 return x86_model(kvm_cpu_fms());
913}
914
915bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid,
916 struct kvm_x86_cpu_feature feature);
917
918static inline bool kvm_cpu_has(struct kvm_x86_cpu_feature feature)
919{
920 return kvm_cpuid_has(kvm_get_supported_cpuid(), feature);
921}
922
923uint32_t kvm_cpuid_property(const struct kvm_cpuid2 *cpuid,
924 struct kvm_x86_cpu_property property);
925
926static inline uint32_t kvm_cpu_property(struct kvm_x86_cpu_property property)
927{
928 return kvm_cpuid_property(kvm_get_supported_cpuid(), property);
929}
930
931static __always_inline bool kvm_cpu_has_p(struct kvm_x86_cpu_property property)
932{
933 uint32_t max_leaf;
934
935 switch (property.function & 0xc0000000) {
936 case 0:
937 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF);
938 break;
939 case 0x40000000:
940 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_KVM_LEAF);
941 break;
942 case 0x80000000:
943 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_EXT_LEAF);
944 break;
945 case 0xc0000000:
946 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF);
947 }
948 return max_leaf >= property.function;
949}
950
951static inline bool kvm_pmu_has(struct kvm_x86_pmu_feature feature)
952{
953 uint32_t nr_bits;
954
955 if (feature.f.reg == KVM_CPUID_EBX) {
956 nr_bits = kvm_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH);
957 return nr_bits > feature.f.bit && !kvm_cpu_has(feature.f);
958 }
959
960 TEST_ASSERT_EQ(feature.f.reg, KVM_CPUID_ECX);
961 nr_bits = kvm_cpu_property(X86_PROPERTY_PMU_NR_FIXED_COUNTERS);
962 return nr_bits > feature.f.bit || kvm_cpu_has(feature.f);
963}
964
965static __always_inline uint64_t kvm_cpu_supported_xcr0(void)
966{
967 if (!kvm_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO))
968 return 0;
969
970 return kvm_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) |
971 ((uint64_t)kvm_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32);
972}
973
974static inline size_t kvm_cpuid2_size(int nr_entries)
975{
976 return sizeof(struct kvm_cpuid2) +
977 sizeof(struct kvm_cpuid_entry2) * nr_entries;
978}
979
980/*
981 * Allocate a "struct kvm_cpuid2* instance, with the 0-length arrary of
982 * entries sized to hold @nr_entries. The caller is responsible for freeing
983 * the struct.
984 */
985static inline struct kvm_cpuid2 *allocate_kvm_cpuid2(int nr_entries)
986{
987 struct kvm_cpuid2 *cpuid;
988
989 cpuid = malloc(kvm_cpuid2_size(nr_entries));
990 TEST_ASSERT(cpuid, "-ENOMEM when allocating kvm_cpuid2");
991
992 cpuid->nent = nr_entries;
993
994 return cpuid;
995}
996
997void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid);
998void vcpu_set_hv_cpuid(struct kvm_vcpu *vcpu);
999
1000static inline struct kvm_cpuid_entry2 *__vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu,
1001 uint32_t function,
1002 uint32_t index)
1003{
1004 return (struct kvm_cpuid_entry2 *)get_cpuid_entry(vcpu->cpuid,
1005 function, index);
1006}
1007
1008static inline struct kvm_cpuid_entry2 *vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu,
1009 uint32_t function)
1010{
1011 return __vcpu_get_cpuid_entry(vcpu, function, 0);
1012}
1013
1014static inline int __vcpu_set_cpuid(struct kvm_vcpu *vcpu)
1015{
1016 int r;
1017
1018 TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first");
1019 r = __vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid);
1020 if (r)
1021 return r;
1022
1023 /* On success, refresh the cache to pick up adjustments made by KVM. */
1024 vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid);
1025 return 0;
1026}
1027
1028static inline void vcpu_set_cpuid(struct kvm_vcpu *vcpu)
1029{
1030 TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first");
1031 vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid);
1032
1033 /* Refresh the cache to pick up adjustments made by KVM. */
1034 vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid);
1035}
1036
1037void vcpu_set_cpuid_property(struct kvm_vcpu *vcpu,
1038 struct kvm_x86_cpu_property property,
1039 uint32_t value);
1040void vcpu_set_cpuid_maxphyaddr(struct kvm_vcpu *vcpu, uint8_t maxphyaddr);
1041
1042void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function);
1043
1044static inline bool vcpu_cpuid_has(struct kvm_vcpu *vcpu,
1045 struct kvm_x86_cpu_feature feature)
1046{
1047 struct kvm_cpuid_entry2 *entry;
1048
1049 entry = __vcpu_get_cpuid_entry(vcpu, feature.function, feature.index);
1050 return *((&entry->eax) + feature.reg) & BIT(feature.bit);
1051}
1052
1053void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu,
1054 struct kvm_x86_cpu_feature feature,
1055 bool set);
1056
1057static inline void vcpu_set_cpuid_feature(struct kvm_vcpu *vcpu,
1058 struct kvm_x86_cpu_feature feature)
1059{
1060 vcpu_set_or_clear_cpuid_feature(vcpu, feature, true);
1061
1062}
1063
1064static inline void vcpu_clear_cpuid_feature(struct kvm_vcpu *vcpu,
1065 struct kvm_x86_cpu_feature feature)
1066{
1067 vcpu_set_or_clear_cpuid_feature(vcpu, feature, false);
1068}
1069
1070uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index);
1071int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value);
1072
1073/*
1074 * Assert on an MSR access(es) and pretty print the MSR name when possible.
1075 * Note, the caller provides the stringified name so that the name of macro is
1076 * printed, not the value the macro resolves to (due to macro expansion).
1077 */
1078#define TEST_ASSERT_MSR(cond, fmt, msr, str, args...) \
1079do { \
1080 if (__builtin_constant_p(msr)) { \
1081 TEST_ASSERT(cond, fmt, str, args); \
1082 } else if (!(cond)) { \
1083 char buf[16]; \
1084 \
1085 snprintf(buf, sizeof(buf), "MSR 0x%x", msr); \
1086 TEST_ASSERT(cond, fmt, buf, args); \
1087 } \
1088} while (0)
1089
1090/*
1091 * Returns true if KVM should return the last written value when reading an MSR
1092 * from userspace, e.g. the MSR isn't a command MSR, doesn't emulate state that
1093 * is changing, etc. This is NOT an exhaustive list! The intent is to filter
1094 * out MSRs that are not durable _and_ that a selftest wants to write.
1095 */
1096static inline bool is_durable_msr(uint32_t msr)
1097{
1098 return msr != MSR_IA32_TSC;
1099}
1100
1101#define vcpu_set_msr(vcpu, msr, val) \
1102do { \
1103 uint64_t r, v = val; \
1104 \
1105 TEST_ASSERT_MSR(_vcpu_set_msr(vcpu, msr, v) == 1, \
1106 "KVM_SET_MSRS failed on %s, value = 0x%lx", msr, #msr, v); \
1107 if (!is_durable_msr(msr)) \
1108 break; \
1109 r = vcpu_get_msr(vcpu, msr); \
1110 TEST_ASSERT_MSR(r == v, "Set %s to '0x%lx', got back '0x%lx'", msr, #msr, v, r);\
1111} while (0)
1112
1113void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits);
1114void kvm_init_vm_address_properties(struct kvm_vm *vm);
1115bool vm_is_unrestricted_guest(struct kvm_vm *vm);
1116
1117struct ex_regs {
1118 uint64_t rax, rcx, rdx, rbx;
1119 uint64_t rbp, rsi, rdi;
1120 uint64_t r8, r9, r10, r11;
1121 uint64_t r12, r13, r14, r15;
1122 uint64_t vector;
1123 uint64_t error_code;
1124 uint64_t rip;
1125 uint64_t cs;
1126 uint64_t rflags;
1127};
1128
1129struct idt_entry {
1130 uint16_t offset0;
1131 uint16_t selector;
1132 uint16_t ist : 3;
1133 uint16_t : 5;
1134 uint16_t type : 4;
1135 uint16_t : 1;
1136 uint16_t dpl : 2;
1137 uint16_t p : 1;
1138 uint16_t offset1;
1139 uint32_t offset2; uint32_t reserved;
1140};
1141
1142void vm_init_descriptor_tables(struct kvm_vm *vm);
1143void vcpu_init_descriptor_tables(struct kvm_vcpu *vcpu);
1144void vm_install_exception_handler(struct kvm_vm *vm, int vector,
1145 void (*handler)(struct ex_regs *));
1146
1147/* If a toddler were to say "abracadabra". */
1148#define KVM_EXCEPTION_MAGIC 0xabacadabaULL
1149
1150/*
1151 * KVM selftest exception fixup uses registers to coordinate with the exception
1152 * handler, versus the kernel's in-memory tables and KVM-Unit-Tests's in-memory
1153 * per-CPU data. Using only registers avoids having to map memory into the
1154 * guest, doesn't require a valid, stable GS.base, and reduces the risk of
1155 * for recursive faults when accessing memory in the handler. The downside to
1156 * using registers is that it restricts what registers can be used by the actual
1157 * instruction. But, selftests are 64-bit only, making register* pressure a
1158 * minor concern. Use r9-r11 as they are volatile, i.e. don't need to be saved
1159 * by the callee, and except for r11 are not implicit parameters to any
1160 * instructions. Ideally, fixup would use r8-r10 and thus avoid implicit
1161 * parameters entirely, but Hyper-V's hypercall ABI uses r8 and testing Hyper-V
1162 * is higher priority than testing non-faulting SYSCALL/SYSRET.
1163 *
1164 * Note, the fixup handler deliberately does not handle #DE, i.e. the vector
1165 * is guaranteed to be non-zero on fault.
1166 *
1167 * REGISTER INPUTS:
1168 * r9 = MAGIC
1169 * r10 = RIP
1170 * r11 = new RIP on fault
1171 *
1172 * REGISTER OUTPUTS:
1173 * r9 = exception vector (non-zero)
1174 * r10 = error code
1175 */
1176#define __KVM_ASM_SAFE(insn, fep) \
1177 "mov $" __stringify(KVM_EXCEPTION_MAGIC) ", %%r9\n\t" \
1178 "lea 1f(%%rip), %%r10\n\t" \
1179 "lea 2f(%%rip), %%r11\n\t" \
1180 fep "1: " insn "\n\t" \
1181 "xor %%r9, %%r9\n\t" \
1182 "2:\n\t" \
1183 "mov %%r9b, %[vector]\n\t" \
1184 "mov %%r10, %[error_code]\n\t"
1185
1186#define KVM_ASM_SAFE(insn) __KVM_ASM_SAFE(insn, "")
1187#define KVM_ASM_SAFE_FEP(insn) __KVM_ASM_SAFE(insn, KVM_FEP)
1188
1189#define KVM_ASM_SAFE_OUTPUTS(v, ec) [vector] "=qm"(v), [error_code] "=rm"(ec)
1190#define KVM_ASM_SAFE_CLOBBERS "r9", "r10", "r11"
1191
1192#define kvm_asm_safe(insn, inputs...) \
1193({ \
1194 uint64_t ign_error_code; \
1195 uint8_t vector; \
1196 \
1197 asm volatile(KVM_ASM_SAFE(insn) \
1198 : KVM_ASM_SAFE_OUTPUTS(vector, ign_error_code) \
1199 : inputs \
1200 : KVM_ASM_SAFE_CLOBBERS); \
1201 vector; \
1202})
1203
1204#define kvm_asm_safe_ec(insn, error_code, inputs...) \
1205({ \
1206 uint8_t vector; \
1207 \
1208 asm volatile(KVM_ASM_SAFE(insn) \
1209 : KVM_ASM_SAFE_OUTPUTS(vector, error_code) \
1210 : inputs \
1211 : KVM_ASM_SAFE_CLOBBERS); \
1212 vector; \
1213})
1214
1215#define kvm_asm_safe_fep(insn, inputs...) \
1216({ \
1217 uint64_t ign_error_code; \
1218 uint8_t vector; \
1219 \
1220 asm volatile(KVM_ASM_SAFE(insn) \
1221 : KVM_ASM_SAFE_OUTPUTS(vector, ign_error_code) \
1222 : inputs \
1223 : KVM_ASM_SAFE_CLOBBERS); \
1224 vector; \
1225})
1226
1227#define kvm_asm_safe_ec_fep(insn, error_code, inputs...) \
1228({ \
1229 uint8_t vector; \
1230 \
1231 asm volatile(KVM_ASM_SAFE_FEP(insn) \
1232 : KVM_ASM_SAFE_OUTPUTS(vector, error_code) \
1233 : inputs \
1234 : KVM_ASM_SAFE_CLOBBERS); \
1235 vector; \
1236})
1237
1238#define BUILD_READ_U64_SAFE_HELPER(insn, _fep, _FEP) \
1239static inline uint8_t insn##_safe ##_fep(uint32_t idx, uint64_t *val) \
1240{ \
1241 uint64_t error_code; \
1242 uint8_t vector; \
1243 uint32_t a, d; \
1244 \
1245 asm volatile(KVM_ASM_SAFE##_FEP(#insn) \
1246 : "=a"(a), "=d"(d), \
1247 KVM_ASM_SAFE_OUTPUTS(vector, error_code) \
1248 : "c"(idx) \
1249 : KVM_ASM_SAFE_CLOBBERS); \
1250 \
1251 *val = (uint64_t)a | ((uint64_t)d << 32); \
1252 return vector; \
1253}
1254
1255/*
1256 * Generate {insn}_safe() and {insn}_safe_fep() helpers for instructions that
1257 * use ECX as in input index, and EDX:EAX as a 64-bit output.
1258 */
1259#define BUILD_READ_U64_SAFE_HELPERS(insn) \
1260 BUILD_READ_U64_SAFE_HELPER(insn, , ) \
1261 BUILD_READ_U64_SAFE_HELPER(insn, _fep, _FEP) \
1262
1263BUILD_READ_U64_SAFE_HELPERS(rdmsr)
1264BUILD_READ_U64_SAFE_HELPERS(rdpmc)
1265BUILD_READ_U64_SAFE_HELPERS(xgetbv)
1266
1267static inline uint8_t wrmsr_safe(uint32_t msr, uint64_t val)
1268{
1269 return kvm_asm_safe("wrmsr", "a"(val & -1u), "d"(val >> 32), "c"(msr));
1270}
1271
1272static inline uint8_t xsetbv_safe(uint32_t index, uint64_t value)
1273{
1274 u32 eax = value;
1275 u32 edx = value >> 32;
1276
1277 return kvm_asm_safe("xsetbv", "a" (eax), "d" (edx), "c" (index));
1278}
1279
1280bool kvm_is_tdp_enabled(void);
1281
1282static inline bool kvm_is_pmu_enabled(void)
1283{
1284 return get_kvm_param_bool("enable_pmu");
1285}
1286
1287static inline bool kvm_is_forced_emulation_enabled(void)
1288{
1289 return !!get_kvm_param_integer("force_emulation_prefix");
1290}
1291
1292uint64_t *__vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr,
1293 int *level);
1294uint64_t *vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr);
1295
1296uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2,
1297 uint64_t a3);
1298uint64_t __xen_hypercall(uint64_t nr, uint64_t a0, void *a1);
1299void xen_hypercall(uint64_t nr, uint64_t a0, void *a1);
1300
1301static inline uint64_t __kvm_hypercall_map_gpa_range(uint64_t gpa,
1302 uint64_t size, uint64_t flags)
1303{
1304 return kvm_hypercall(KVM_HC_MAP_GPA_RANGE, gpa, size >> PAGE_SHIFT, flags, 0);
1305}
1306
1307static inline void kvm_hypercall_map_gpa_range(uint64_t gpa, uint64_t size,
1308 uint64_t flags)
1309{
1310 uint64_t ret = __kvm_hypercall_map_gpa_range(gpa, size, flags);
1311
1312 GUEST_ASSERT(!ret);
1313}
1314
1315void __vm_xsave_require_permission(uint64_t xfeature, const char *name);
1316
1317#define vm_xsave_require_permission(xfeature) \
1318 __vm_xsave_require_permission(xfeature, #xfeature)
1319
1320enum pg_level {
1321 PG_LEVEL_NONE,
1322 PG_LEVEL_4K,
1323 PG_LEVEL_2M,
1324 PG_LEVEL_1G,
1325 PG_LEVEL_512G,
1326 PG_LEVEL_NUM
1327};
1328
1329#define PG_LEVEL_SHIFT(_level) ((_level - 1) * 9 + 12)
1330#define PG_LEVEL_SIZE(_level) (1ull << PG_LEVEL_SHIFT(_level))
1331
1332#define PG_SIZE_4K PG_LEVEL_SIZE(PG_LEVEL_4K)
1333#define PG_SIZE_2M PG_LEVEL_SIZE(PG_LEVEL_2M)
1334#define PG_SIZE_1G PG_LEVEL_SIZE(PG_LEVEL_1G)
1335
1336void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level);
1337void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1338 uint64_t nr_bytes, int level);
1339
1340/*
1341 * Basic CPU control in CR0
1342 */
1343#define X86_CR0_PE (1UL<<0) /* Protection Enable */
1344#define X86_CR0_MP (1UL<<1) /* Monitor Coprocessor */
1345#define X86_CR0_EM (1UL<<2) /* Emulation */
1346#define X86_CR0_TS (1UL<<3) /* Task Switched */
1347#define X86_CR0_ET (1UL<<4) /* Extension Type */
1348#define X86_CR0_NE (1UL<<5) /* Numeric Error */
1349#define X86_CR0_WP (1UL<<16) /* Write Protect */
1350#define X86_CR0_AM (1UL<<18) /* Alignment Mask */
1351#define X86_CR0_NW (1UL<<29) /* Not Write-through */
1352#define X86_CR0_CD (1UL<<30) /* Cache Disable */
1353#define X86_CR0_PG (1UL<<31) /* Paging */
1354
1355#define PFERR_PRESENT_BIT 0
1356#define PFERR_WRITE_BIT 1
1357#define PFERR_USER_BIT 2
1358#define PFERR_RSVD_BIT 3
1359#define PFERR_FETCH_BIT 4
1360#define PFERR_PK_BIT 5
1361#define PFERR_SGX_BIT 15
1362#define PFERR_GUEST_FINAL_BIT 32
1363#define PFERR_GUEST_PAGE_BIT 33
1364#define PFERR_IMPLICIT_ACCESS_BIT 48
1365
1366#define PFERR_PRESENT_MASK BIT(PFERR_PRESENT_BIT)
1367#define PFERR_WRITE_MASK BIT(PFERR_WRITE_BIT)
1368#define PFERR_USER_MASK BIT(PFERR_USER_BIT)
1369#define PFERR_RSVD_MASK BIT(PFERR_RSVD_BIT)
1370#define PFERR_FETCH_MASK BIT(PFERR_FETCH_BIT)
1371#define PFERR_PK_MASK BIT(PFERR_PK_BIT)
1372#define PFERR_SGX_MASK BIT(PFERR_SGX_BIT)
1373#define PFERR_GUEST_FINAL_MASK BIT_ULL(PFERR_GUEST_FINAL_BIT)
1374#define PFERR_GUEST_PAGE_MASK BIT_ULL(PFERR_GUEST_PAGE_BIT)
1375#define PFERR_IMPLICIT_ACCESS BIT_ULL(PFERR_IMPLICIT_ACCESS_BIT)
1376
1377bool sys_clocksource_is_based_on_tsc(void);
1378
1379#endif /* SELFTEST_KVM_PROCESSOR_H */