at v6.9-rc2 611 lines 25 kB view raw
1// SPDX-License-Identifier: Apache-2.0 OR MIT 2 3#![unstable(feature = "raw_vec_internals", reason = "unstable const warnings", issue = "none")] 4 5use core::alloc::LayoutError; 6use core::cmp; 7use core::intrinsics; 8use core::mem::{self, ManuallyDrop, MaybeUninit, SizedTypeProperties}; 9use core::ptr::{self, NonNull, Unique}; 10use core::slice; 11 12#[cfg(not(no_global_oom_handling))] 13use crate::alloc::handle_alloc_error; 14use crate::alloc::{Allocator, Global, Layout}; 15use crate::boxed::Box; 16use crate::collections::TryReserveError; 17use crate::collections::TryReserveErrorKind::*; 18 19#[cfg(test)] 20mod tests; 21 22enum AllocInit { 23 /// The contents of the new memory are uninitialized. 24 Uninitialized, 25 /// The new memory is guaranteed to be zeroed. 26 #[allow(dead_code)] 27 Zeroed, 28} 29 30#[repr(transparent)] 31#[cfg_attr(target_pointer_width = "16", rustc_layout_scalar_valid_range_end(0x7fff))] 32#[cfg_attr(target_pointer_width = "32", rustc_layout_scalar_valid_range_end(0x7fff_ffff))] 33#[cfg_attr(target_pointer_width = "64", rustc_layout_scalar_valid_range_end(0x7fff_ffff_ffff_ffff))] 34struct Cap(usize); 35 36impl Cap { 37 const ZERO: Cap = unsafe { Cap(0) }; 38} 39 40/// A low-level utility for more ergonomically allocating, reallocating, and deallocating 41/// a buffer of memory on the heap without having to worry about all the corner cases 42/// involved. This type is excellent for building your own data structures like Vec and VecDeque. 43/// In particular: 44/// 45/// * Produces `Unique::dangling()` on zero-sized types. 46/// * Produces `Unique::dangling()` on zero-length allocations. 47/// * Avoids freeing `Unique::dangling()`. 48/// * Catches all overflows in capacity computations (promotes them to "capacity overflow" panics). 49/// * Guards against 32-bit systems allocating more than isize::MAX bytes. 50/// * Guards against overflowing your length. 51/// * Calls `handle_alloc_error` for fallible allocations. 52/// * Contains a `ptr::Unique` and thus endows the user with all related benefits. 53/// * Uses the excess returned from the allocator to use the largest available capacity. 54/// 55/// This type does not in anyway inspect the memory that it manages. When dropped it *will* 56/// free its memory, but it *won't* try to drop its contents. It is up to the user of `RawVec` 57/// to handle the actual things *stored* inside of a `RawVec`. 58/// 59/// Note that the excess of a zero-sized types is always infinite, so `capacity()` always returns 60/// `usize::MAX`. This means that you need to be careful when round-tripping this type with a 61/// `Box<[T]>`, since `capacity()` won't yield the length. 62#[allow(missing_debug_implementations)] 63pub(crate) struct RawVec<T, A: Allocator = Global> { 64 ptr: Unique<T>, 65 /// Never used for ZSTs; it's `capacity()`'s responsibility to return usize::MAX in that case. 66 /// 67 /// # Safety 68 /// 69 /// `cap` must be in the `0..=isize::MAX` range. 70 cap: Cap, 71 alloc: A, 72} 73 74impl<T> RawVec<T, Global> { 75 /// HACK(Centril): This exists because stable `const fn` can only call stable `const fn`, so 76 /// they cannot call `Self::new()`. 77 /// 78 /// If you change `RawVec<T>::new` or dependencies, please take care to not introduce anything 79 /// that would truly const-call something unstable. 80 pub const NEW: Self = Self::new(); 81 82 /// Creates the biggest possible `RawVec` (on the system heap) 83 /// without allocating. If `T` has positive size, then this makes a 84 /// `RawVec` with capacity `0`. If `T` is zero-sized, then it makes a 85 /// `RawVec` with capacity `usize::MAX`. Useful for implementing 86 /// delayed allocation. 87 #[must_use] 88 pub const fn new() -> Self { 89 Self::new_in(Global) 90 } 91 92 /// Creates a `RawVec` (on the system heap) with exactly the 93 /// capacity and alignment requirements for a `[T; capacity]`. This is 94 /// equivalent to calling `RawVec::new` when `capacity` is `0` or `T` is 95 /// zero-sized. Note that if `T` is zero-sized this means you will 96 /// *not* get a `RawVec` with the requested capacity. 97 /// 98 /// # Panics 99 /// 100 /// Panics if the requested capacity exceeds `isize::MAX` bytes. 101 /// 102 /// # Aborts 103 /// 104 /// Aborts on OOM. 105 #[cfg(not(any(no_global_oom_handling, test)))] 106 #[must_use] 107 #[inline] 108 pub fn with_capacity(capacity: usize) -> Self { 109 Self::with_capacity_in(capacity, Global) 110 } 111 112 /// Like `with_capacity`, but guarantees the buffer is zeroed. 113 #[cfg(not(any(no_global_oom_handling, test)))] 114 #[must_use] 115 #[inline] 116 pub fn with_capacity_zeroed(capacity: usize) -> Self { 117 Self::with_capacity_zeroed_in(capacity, Global) 118 } 119} 120 121impl<T, A: Allocator> RawVec<T, A> { 122 // Tiny Vecs are dumb. Skip to: 123 // - 8 if the element size is 1, because any heap allocators is likely 124 // to round up a request of less than 8 bytes to at least 8 bytes. 125 // - 4 if elements are moderate-sized (<= 1 KiB). 126 // - 1 otherwise, to avoid wasting too much space for very short Vecs. 127 pub(crate) const MIN_NON_ZERO_CAP: usize = if mem::size_of::<T>() == 1 { 128 8 129 } else if mem::size_of::<T>() <= 1024 { 130 4 131 } else { 132 1 133 }; 134 135 /// Like `new`, but parameterized over the choice of allocator for 136 /// the returned `RawVec`. 137 pub const fn new_in(alloc: A) -> Self { 138 // `cap: 0` means "unallocated". zero-sized types are ignored. 139 Self { ptr: Unique::dangling(), cap: Cap::ZERO, alloc } 140 } 141 142 /// Like `with_capacity`, but parameterized over the choice of 143 /// allocator for the returned `RawVec`. 144 #[cfg(not(no_global_oom_handling))] 145 #[inline] 146 pub fn with_capacity_in(capacity: usize, alloc: A) -> Self { 147 Self::allocate_in(capacity, AllocInit::Uninitialized, alloc) 148 } 149 150 /// Like `try_with_capacity`, but parameterized over the choice of 151 /// allocator for the returned `RawVec`. 152 #[inline] 153 pub fn try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, TryReserveError> { 154 Self::try_allocate_in(capacity, AllocInit::Uninitialized, alloc) 155 } 156 157 /// Like `with_capacity_zeroed`, but parameterized over the choice 158 /// of allocator for the returned `RawVec`. 159 #[cfg(not(no_global_oom_handling))] 160 #[inline] 161 pub fn with_capacity_zeroed_in(capacity: usize, alloc: A) -> Self { 162 Self::allocate_in(capacity, AllocInit::Zeroed, alloc) 163 } 164 165 /// Converts the entire buffer into `Box<[MaybeUninit<T>]>` with the specified `len`. 166 /// 167 /// Note that this will correctly reconstitute any `cap` changes 168 /// that may have been performed. (See description of type for details.) 169 /// 170 /// # Safety 171 /// 172 /// * `len` must be greater than or equal to the most recently requested capacity, and 173 /// * `len` must be less than or equal to `self.capacity()`. 174 /// 175 /// Note, that the requested capacity and `self.capacity()` could differ, as 176 /// an allocator could overallocate and return a greater memory block than requested. 177 pub unsafe fn into_box(self, len: usize) -> Box<[MaybeUninit<T>], A> { 178 // Sanity-check one half of the safety requirement (we cannot check the other half). 179 debug_assert!( 180 len <= self.capacity(), 181 "`len` must be smaller than or equal to `self.capacity()`" 182 ); 183 184 let me = ManuallyDrop::new(self); 185 unsafe { 186 let slice = slice::from_raw_parts_mut(me.ptr() as *mut MaybeUninit<T>, len); 187 Box::from_raw_in(slice, ptr::read(&me.alloc)) 188 } 189 } 190 191 #[cfg(not(no_global_oom_handling))] 192 fn allocate_in(capacity: usize, init: AllocInit, alloc: A) -> Self { 193 // Don't allocate here because `Drop` will not deallocate when `capacity` is 0. 194 if T::IS_ZST || capacity == 0 { 195 Self::new_in(alloc) 196 } else { 197 // We avoid `unwrap_or_else` here because it bloats the amount of 198 // LLVM IR generated. 199 let layout = match Layout::array::<T>(capacity) { 200 Ok(layout) => layout, 201 Err(_) => capacity_overflow(), 202 }; 203 match alloc_guard(layout.size()) { 204 Ok(_) => {} 205 Err(_) => capacity_overflow(), 206 } 207 let result = match init { 208 AllocInit::Uninitialized => alloc.allocate(layout), 209 AllocInit::Zeroed => alloc.allocate_zeroed(layout), 210 }; 211 let ptr = match result { 212 Ok(ptr) => ptr, 213 Err(_) => handle_alloc_error(layout), 214 }; 215 216 // Allocators currently return a `NonNull<[u8]>` whose length 217 // matches the size requested. If that ever changes, the capacity 218 // here should change to `ptr.len() / mem::size_of::<T>()`. 219 Self { 220 ptr: unsafe { Unique::new_unchecked(ptr.cast().as_ptr()) }, 221 cap: unsafe { Cap(capacity) }, 222 alloc, 223 } 224 } 225 } 226 227 fn try_allocate_in(capacity: usize, init: AllocInit, alloc: A) -> Result<Self, TryReserveError> { 228 // Don't allocate here because `Drop` will not deallocate when `capacity` is 0. 229 if T::IS_ZST || capacity == 0 { 230 return Ok(Self::new_in(alloc)); 231 } 232 233 let layout = Layout::array::<T>(capacity).map_err(|_| CapacityOverflow)?; 234 alloc_guard(layout.size())?; 235 let result = match init { 236 AllocInit::Uninitialized => alloc.allocate(layout), 237 AllocInit::Zeroed => alloc.allocate_zeroed(layout), 238 }; 239 let ptr = result.map_err(|_| AllocError { layout, non_exhaustive: () })?; 240 241 // Allocators currently return a `NonNull<[u8]>` whose length 242 // matches the size requested. If that ever changes, the capacity 243 // here should change to `ptr.len() / mem::size_of::<T>()`. 244 Ok(Self { 245 ptr: unsafe { Unique::new_unchecked(ptr.cast().as_ptr()) }, 246 cap: unsafe { Cap(capacity) }, 247 alloc, 248 }) 249 } 250 251 /// Reconstitutes a `RawVec` from a pointer, capacity, and allocator. 252 /// 253 /// # Safety 254 /// 255 /// The `ptr` must be allocated (via the given allocator `alloc`), and with the given 256 /// `capacity`. 257 /// The `capacity` cannot exceed `isize::MAX` for sized types. (only a concern on 32-bit 258 /// systems). For ZSTs capacity is ignored. 259 /// If the `ptr` and `capacity` come from a `RawVec` created via `alloc`, then this is 260 /// guaranteed. 261 #[inline] 262 pub unsafe fn from_raw_parts_in(ptr: *mut T, capacity: usize, alloc: A) -> Self { 263 let cap = if T::IS_ZST { Cap::ZERO } else { unsafe { Cap(capacity) } }; 264 Self { ptr: unsafe { Unique::new_unchecked(ptr) }, cap, alloc } 265 } 266 267 /// Gets a raw pointer to the start of the allocation. Note that this is 268 /// `Unique::dangling()` if `capacity == 0` or `T` is zero-sized. In the former case, you must 269 /// be careful. 270 #[inline] 271 pub fn ptr(&self) -> *mut T { 272 self.ptr.as_ptr() 273 } 274 275 /// Gets the capacity of the allocation. 276 /// 277 /// This will always be `usize::MAX` if `T` is zero-sized. 278 #[inline(always)] 279 pub fn capacity(&self) -> usize { 280 if T::IS_ZST { usize::MAX } else { self.cap.0 } 281 } 282 283 /// Returns a shared reference to the allocator backing this `RawVec`. 284 pub fn allocator(&self) -> &A { 285 &self.alloc 286 } 287 288 fn current_memory(&self) -> Option<(NonNull<u8>, Layout)> { 289 if T::IS_ZST || self.cap.0 == 0 { 290 None 291 } else { 292 // We could use Layout::array here which ensures the absence of isize and usize overflows 293 // and could hypothetically handle differences between stride and size, but this memory 294 // has already been allocated so we know it can't overflow and currently rust does not 295 // support such types. So we can do better by skipping some checks and avoid an unwrap. 296 let _: () = const { assert!(mem::size_of::<T>() % mem::align_of::<T>() == 0) }; 297 unsafe { 298 let align = mem::align_of::<T>(); 299 let size = mem::size_of::<T>().unchecked_mul(self.cap.0); 300 let layout = Layout::from_size_align_unchecked(size, align); 301 Some((self.ptr.cast().into(), layout)) 302 } 303 } 304 } 305 306 /// Ensures that the buffer contains at least enough space to hold `len + 307 /// additional` elements. If it doesn't already have enough capacity, will 308 /// reallocate enough space plus comfortable slack space to get amortized 309 /// *O*(1) behavior. Will limit this behavior if it would needlessly cause 310 /// itself to panic. 311 /// 312 /// If `len` exceeds `self.capacity()`, this may fail to actually allocate 313 /// the requested space. This is not really unsafe, but the unsafe 314 /// code *you* write that relies on the behavior of this function may break. 315 /// 316 /// This is ideal for implementing a bulk-push operation like `extend`. 317 /// 318 /// # Panics 319 /// 320 /// Panics if the new capacity exceeds `isize::MAX` bytes. 321 /// 322 /// # Aborts 323 /// 324 /// Aborts on OOM. 325 #[cfg(not(no_global_oom_handling))] 326 #[inline] 327 pub fn reserve(&mut self, len: usize, additional: usize) { 328 // Callers expect this function to be very cheap when there is already sufficient capacity. 329 // Therefore, we move all the resizing and error-handling logic from grow_amortized and 330 // handle_reserve behind a call, while making sure that this function is likely to be 331 // inlined as just a comparison and a call if the comparison fails. 332 #[cold] 333 fn do_reserve_and_handle<T, A: Allocator>( 334 slf: &mut RawVec<T, A>, 335 len: usize, 336 additional: usize, 337 ) { 338 handle_reserve(slf.grow_amortized(len, additional)); 339 } 340 341 if self.needs_to_grow(len, additional) { 342 do_reserve_and_handle(self, len, additional); 343 } 344 } 345 346 /// A specialized version of `reserve()` used only by the hot and 347 /// oft-instantiated `Vec::push()`, which does its own capacity check. 348 #[cfg(not(no_global_oom_handling))] 349 #[inline(never)] 350 pub fn reserve_for_push(&mut self, len: usize) { 351 handle_reserve(self.grow_amortized(len, 1)); 352 } 353 354 /// The same as `reserve`, but returns on errors instead of panicking or aborting. 355 pub fn try_reserve(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> { 356 if self.needs_to_grow(len, additional) { 357 self.grow_amortized(len, additional)?; 358 } 359 unsafe { 360 // Inform the optimizer that the reservation has succeeded or wasn't needed 361 core::intrinsics::assume(!self.needs_to_grow(len, additional)); 362 } 363 Ok(()) 364 } 365 366 /// The same as `reserve_for_push`, but returns on errors instead of panicking or aborting. 367 #[inline(never)] 368 pub fn try_reserve_for_push(&mut self, len: usize) -> Result<(), TryReserveError> { 369 self.grow_amortized(len, 1) 370 } 371 372 /// Ensures that the buffer contains at least enough space to hold `len + 373 /// additional` elements. If it doesn't already, will reallocate the 374 /// minimum possible amount of memory necessary. Generally this will be 375 /// exactly the amount of memory necessary, but in principle the allocator 376 /// is free to give back more than we asked for. 377 /// 378 /// If `len` exceeds `self.capacity()`, this may fail to actually allocate 379 /// the requested space. This is not really unsafe, but the unsafe code 380 /// *you* write that relies on the behavior of this function may break. 381 /// 382 /// # Panics 383 /// 384 /// Panics if the new capacity exceeds `isize::MAX` bytes. 385 /// 386 /// # Aborts 387 /// 388 /// Aborts on OOM. 389 #[cfg(not(no_global_oom_handling))] 390 pub fn reserve_exact(&mut self, len: usize, additional: usize) { 391 handle_reserve(self.try_reserve_exact(len, additional)); 392 } 393 394 /// The same as `reserve_exact`, but returns on errors instead of panicking or aborting. 395 pub fn try_reserve_exact( 396 &mut self, 397 len: usize, 398 additional: usize, 399 ) -> Result<(), TryReserveError> { 400 if self.needs_to_grow(len, additional) { 401 self.grow_exact(len, additional)?; 402 } 403 unsafe { 404 // Inform the optimizer that the reservation has succeeded or wasn't needed 405 core::intrinsics::assume(!self.needs_to_grow(len, additional)); 406 } 407 Ok(()) 408 } 409 410 /// Shrinks the buffer down to the specified capacity. If the given amount 411 /// is 0, actually completely deallocates. 412 /// 413 /// # Panics 414 /// 415 /// Panics if the given amount is *larger* than the current capacity. 416 /// 417 /// # Aborts 418 /// 419 /// Aborts on OOM. 420 #[cfg(not(no_global_oom_handling))] 421 pub fn shrink_to_fit(&mut self, cap: usize) { 422 handle_reserve(self.shrink(cap)); 423 } 424} 425 426impl<T, A: Allocator> RawVec<T, A> { 427 /// Returns if the buffer needs to grow to fulfill the needed extra capacity. 428 /// Mainly used to make inlining reserve-calls possible without inlining `grow`. 429 fn needs_to_grow(&self, len: usize, additional: usize) -> bool { 430 additional > self.capacity().wrapping_sub(len) 431 } 432 433 /// # Safety: 434 /// 435 /// `cap` must not exceed `isize::MAX`. 436 unsafe fn set_ptr_and_cap(&mut self, ptr: NonNull<[u8]>, cap: usize) { 437 // Allocators currently return a `NonNull<[u8]>` whose length matches 438 // the size requested. If that ever changes, the capacity here should 439 // change to `ptr.len() / mem::size_of::<T>()`. 440 self.ptr = unsafe { Unique::new_unchecked(ptr.cast().as_ptr()) }; 441 self.cap = unsafe { Cap(cap) }; 442 } 443 444 // This method is usually instantiated many times. So we want it to be as 445 // small as possible, to improve compile times. But we also want as much of 446 // its contents to be statically computable as possible, to make the 447 // generated code run faster. Therefore, this method is carefully written 448 // so that all of the code that depends on `T` is within it, while as much 449 // of the code that doesn't depend on `T` as possible is in functions that 450 // are non-generic over `T`. 451 fn grow_amortized(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> { 452 // This is ensured by the calling contexts. 453 debug_assert!(additional > 0); 454 455 if T::IS_ZST { 456 // Since we return a capacity of `usize::MAX` when `elem_size` is 457 // 0, getting to here necessarily means the `RawVec` is overfull. 458 return Err(CapacityOverflow.into()); 459 } 460 461 // Nothing we can really do about these checks, sadly. 462 let required_cap = len.checked_add(additional).ok_or(CapacityOverflow)?; 463 464 // This guarantees exponential growth. The doubling cannot overflow 465 // because `cap <= isize::MAX` and the type of `cap` is `usize`. 466 let cap = cmp::max(self.cap.0 * 2, required_cap); 467 let cap = cmp::max(Self::MIN_NON_ZERO_CAP, cap); 468 469 let new_layout = Layout::array::<T>(cap); 470 471 // `finish_grow` is non-generic over `T`. 472 let ptr = finish_grow(new_layout, self.current_memory(), &mut self.alloc)?; 473 // SAFETY: finish_grow would have resulted in a capacity overflow if we tried to allocate more than isize::MAX items 474 unsafe { self.set_ptr_and_cap(ptr, cap) }; 475 Ok(()) 476 } 477 478 // The constraints on this method are much the same as those on 479 // `grow_amortized`, but this method is usually instantiated less often so 480 // it's less critical. 481 fn grow_exact(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> { 482 if T::IS_ZST { 483 // Since we return a capacity of `usize::MAX` when the type size is 484 // 0, getting to here necessarily means the `RawVec` is overfull. 485 return Err(CapacityOverflow.into()); 486 } 487 488 let cap = len.checked_add(additional).ok_or(CapacityOverflow)?; 489 let new_layout = Layout::array::<T>(cap); 490 491 // `finish_grow` is non-generic over `T`. 492 let ptr = finish_grow(new_layout, self.current_memory(), &mut self.alloc)?; 493 // SAFETY: finish_grow would have resulted in a capacity overflow if we tried to allocate more than isize::MAX items 494 unsafe { 495 self.set_ptr_and_cap(ptr, cap); 496 } 497 Ok(()) 498 } 499 500 #[cfg(not(no_global_oom_handling))] 501 fn shrink(&mut self, cap: usize) -> Result<(), TryReserveError> { 502 assert!(cap <= self.capacity(), "Tried to shrink to a larger capacity"); 503 504 let (ptr, layout) = if let Some(mem) = self.current_memory() { mem } else { return Ok(()) }; 505 // See current_memory() why this assert is here 506 let _: () = const { assert!(mem::size_of::<T>() % mem::align_of::<T>() == 0) }; 507 508 // If shrinking to 0, deallocate the buffer. We don't reach this point 509 // for the T::IS_ZST case since current_memory() will have returned 510 // None. 511 if cap == 0 { 512 unsafe { self.alloc.deallocate(ptr, layout) }; 513 self.ptr = Unique::dangling(); 514 self.cap = Cap::ZERO; 515 } else { 516 let ptr = unsafe { 517 // `Layout::array` cannot overflow here because it would have 518 // overflowed earlier when capacity was larger. 519 let new_size = mem::size_of::<T>().unchecked_mul(cap); 520 let new_layout = Layout::from_size_align_unchecked(new_size, layout.align()); 521 self.alloc 522 .shrink(ptr, layout, new_layout) 523 .map_err(|_| AllocError { layout: new_layout, non_exhaustive: () })? 524 }; 525 // SAFETY: if the allocation is valid, then the capacity is too 526 unsafe { 527 self.set_ptr_and_cap(ptr, cap); 528 } 529 } 530 Ok(()) 531 } 532} 533 534// This function is outside `RawVec` to minimize compile times. See the comment 535// above `RawVec::grow_amortized` for details. (The `A` parameter isn't 536// significant, because the number of different `A` types seen in practice is 537// much smaller than the number of `T` types.) 538#[inline(never)] 539fn finish_grow<A>( 540 new_layout: Result<Layout, LayoutError>, 541 current_memory: Option<(NonNull<u8>, Layout)>, 542 alloc: &mut A, 543) -> Result<NonNull<[u8]>, TryReserveError> 544where 545 A: Allocator, 546{ 547 // Check for the error here to minimize the size of `RawVec::grow_*`. 548 let new_layout = new_layout.map_err(|_| CapacityOverflow)?; 549 550 alloc_guard(new_layout.size())?; 551 552 let memory = if let Some((ptr, old_layout)) = current_memory { 553 debug_assert_eq!(old_layout.align(), new_layout.align()); 554 unsafe { 555 // The allocator checks for alignment equality 556 intrinsics::assume(old_layout.align() == new_layout.align()); 557 alloc.grow(ptr, old_layout, new_layout) 558 } 559 } else { 560 alloc.allocate(new_layout) 561 }; 562 563 memory.map_err(|_| AllocError { layout: new_layout, non_exhaustive: () }.into()) 564} 565 566unsafe impl<#[may_dangle] T, A: Allocator> Drop for RawVec<T, A> { 567 /// Frees the memory owned by the `RawVec` *without* trying to drop its contents. 568 fn drop(&mut self) { 569 if let Some((ptr, layout)) = self.current_memory() { 570 unsafe { self.alloc.deallocate(ptr, layout) } 571 } 572 } 573} 574 575// Central function for reserve error handling. 576#[cfg(not(no_global_oom_handling))] 577#[inline] 578fn handle_reserve(result: Result<(), TryReserveError>) { 579 match result.map_err(|e| e.kind()) { 580 Err(CapacityOverflow) => capacity_overflow(), 581 Err(AllocError { layout, .. }) => handle_alloc_error(layout), 582 Ok(()) => { /* yay */ } 583 } 584} 585 586// We need to guarantee the following: 587// * We don't ever allocate `> isize::MAX` byte-size objects. 588// * We don't overflow `usize::MAX` and actually allocate too little. 589// 590// On 64-bit we just need to check for overflow since trying to allocate 591// `> isize::MAX` bytes will surely fail. On 32-bit and 16-bit we need to add 592// an extra guard for this in case we're running on a platform which can use 593// all 4GB in user-space, e.g., PAE or x32. 594 595#[inline] 596fn alloc_guard(alloc_size: usize) -> Result<(), TryReserveError> { 597 if usize::BITS < 64 && alloc_size > isize::MAX as usize { 598 Err(CapacityOverflow.into()) 599 } else { 600 Ok(()) 601 } 602} 603 604// One central function responsible for reporting capacity overflows. This'll 605// ensure that the code generation related to these panics is minimal as there's 606// only one location which panics rather than a bunch throughout the module. 607#[cfg(not(no_global_oom_handling))] 608#[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))] 609fn capacity_overflow() -> ! { 610 panic!("capacity overflow"); 611}