Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * drivers/base/core.c - core driver model code (device registration, etc)
4 *
5 * Copyright (c) 2002-3 Patrick Mochel
6 * Copyright (c) 2002-3 Open Source Development Labs
7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8 * Copyright (c) 2006 Novell, Inc.
9 */
10
11#include <linux/acpi.h>
12#include <linux/cpufreq.h>
13#include <linux/device.h>
14#include <linux/err.h>
15#include <linux/fwnode.h>
16#include <linux/init.h>
17#include <linux/kstrtox.h>
18#include <linux/module.h>
19#include <linux/slab.h>
20#include <linux/kdev_t.h>
21#include <linux/notifier.h>
22#include <linux/of.h>
23#include <linux/of_device.h>
24#include <linux/blkdev.h>
25#include <linux/mutex.h>
26#include <linux/pm_runtime.h>
27#include <linux/netdevice.h>
28#include <linux/sched/signal.h>
29#include <linux/sched/mm.h>
30#include <linux/string_helpers.h>
31#include <linux/swiotlb.h>
32#include <linux/sysfs.h>
33#include <linux/dma-map-ops.h> /* for dma_default_coherent */
34
35#include "base.h"
36#include "physical_location.h"
37#include "power/power.h"
38
39/* Device links support. */
40static LIST_HEAD(deferred_sync);
41static unsigned int defer_sync_state_count = 1;
42static DEFINE_MUTEX(fwnode_link_lock);
43static bool fw_devlink_is_permissive(void);
44static void __fw_devlink_link_to_consumers(struct device *dev);
45static bool fw_devlink_drv_reg_done;
46static bool fw_devlink_best_effort;
47
48/**
49 * __fwnode_link_add - Create a link between two fwnode_handles.
50 * @con: Consumer end of the link.
51 * @sup: Supplier end of the link.
52 * @flags: Link flags.
53 *
54 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
55 * represents the detail that the firmware lists @sup fwnode as supplying a
56 * resource to @con.
57 *
58 * The driver core will use the fwnode link to create a device link between the
59 * two device objects corresponding to @con and @sup when they are created. The
60 * driver core will automatically delete the fwnode link between @con and @sup
61 * after doing that.
62 *
63 * Attempts to create duplicate links between the same pair of fwnode handles
64 * are ignored and there is no reference counting.
65 */
66static int __fwnode_link_add(struct fwnode_handle *con,
67 struct fwnode_handle *sup, u8 flags)
68{
69 struct fwnode_link *link;
70
71 list_for_each_entry(link, &sup->consumers, s_hook)
72 if (link->consumer == con) {
73 link->flags |= flags;
74 return 0;
75 }
76
77 link = kzalloc(sizeof(*link), GFP_KERNEL);
78 if (!link)
79 return -ENOMEM;
80
81 link->supplier = sup;
82 INIT_LIST_HEAD(&link->s_hook);
83 link->consumer = con;
84 INIT_LIST_HEAD(&link->c_hook);
85 link->flags = flags;
86
87 list_add(&link->s_hook, &sup->consumers);
88 list_add(&link->c_hook, &con->suppliers);
89 pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n",
90 con, sup);
91
92 return 0;
93}
94
95int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup,
96 u8 flags)
97{
98 int ret;
99
100 mutex_lock(&fwnode_link_lock);
101 ret = __fwnode_link_add(con, sup, flags);
102 mutex_unlock(&fwnode_link_lock);
103 return ret;
104}
105
106/**
107 * __fwnode_link_del - Delete a link between two fwnode_handles.
108 * @link: the fwnode_link to be deleted
109 *
110 * The fwnode_link_lock needs to be held when this function is called.
111 */
112static void __fwnode_link_del(struct fwnode_link *link)
113{
114 pr_debug("%pfwf Dropping the fwnode link to %pfwf\n",
115 link->consumer, link->supplier);
116 list_del(&link->s_hook);
117 list_del(&link->c_hook);
118 kfree(link);
119}
120
121/**
122 * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle.
123 * @link: the fwnode_link to be marked
124 *
125 * The fwnode_link_lock needs to be held when this function is called.
126 */
127static void __fwnode_link_cycle(struct fwnode_link *link)
128{
129 pr_debug("%pfwf: cycle: depends on %pfwf\n",
130 link->consumer, link->supplier);
131 link->flags |= FWLINK_FLAG_CYCLE;
132}
133
134/**
135 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
136 * @fwnode: fwnode whose supplier links need to be deleted
137 *
138 * Deletes all supplier links connecting directly to @fwnode.
139 */
140static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
141{
142 struct fwnode_link *link, *tmp;
143
144 mutex_lock(&fwnode_link_lock);
145 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook)
146 __fwnode_link_del(link);
147 mutex_unlock(&fwnode_link_lock);
148}
149
150/**
151 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
152 * @fwnode: fwnode whose consumer links need to be deleted
153 *
154 * Deletes all consumer links connecting directly to @fwnode.
155 */
156static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
157{
158 struct fwnode_link *link, *tmp;
159
160 mutex_lock(&fwnode_link_lock);
161 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook)
162 __fwnode_link_del(link);
163 mutex_unlock(&fwnode_link_lock);
164}
165
166/**
167 * fwnode_links_purge - Delete all links connected to a fwnode_handle.
168 * @fwnode: fwnode whose links needs to be deleted
169 *
170 * Deletes all links connecting directly to a fwnode.
171 */
172void fwnode_links_purge(struct fwnode_handle *fwnode)
173{
174 fwnode_links_purge_suppliers(fwnode);
175 fwnode_links_purge_consumers(fwnode);
176}
177
178void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
179{
180 struct fwnode_handle *child;
181
182 /* Don't purge consumer links of an added child */
183 if (fwnode->dev)
184 return;
185
186 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
187 fwnode_links_purge_consumers(fwnode);
188
189 fwnode_for_each_available_child_node(fwnode, child)
190 fw_devlink_purge_absent_suppliers(child);
191}
192EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
193
194/**
195 * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle
196 * @from: move consumers away from this fwnode
197 * @to: move consumers to this fwnode
198 *
199 * Move all consumer links from @from fwnode to @to fwnode.
200 */
201static void __fwnode_links_move_consumers(struct fwnode_handle *from,
202 struct fwnode_handle *to)
203{
204 struct fwnode_link *link, *tmp;
205
206 list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) {
207 __fwnode_link_add(link->consumer, to, link->flags);
208 __fwnode_link_del(link);
209 }
210}
211
212/**
213 * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers
214 * @fwnode: fwnode from which to pick up dangling consumers
215 * @new_sup: fwnode of new supplier
216 *
217 * If the @fwnode has a corresponding struct device and the device supports
218 * probing (that is, added to a bus), then we want to let fw_devlink create
219 * MANAGED device links to this device, so leave @fwnode and its descendant's
220 * fwnode links alone.
221 *
222 * Otherwise, move its consumers to the new supplier @new_sup.
223 */
224static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode,
225 struct fwnode_handle *new_sup)
226{
227 struct fwnode_handle *child;
228
229 if (fwnode->dev && fwnode->dev->bus)
230 return;
231
232 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
233 __fwnode_links_move_consumers(fwnode, new_sup);
234
235 fwnode_for_each_available_child_node(fwnode, child)
236 __fw_devlink_pickup_dangling_consumers(child, new_sup);
237}
238
239static DEFINE_MUTEX(device_links_lock);
240DEFINE_STATIC_SRCU(device_links_srcu);
241
242static inline void device_links_write_lock(void)
243{
244 mutex_lock(&device_links_lock);
245}
246
247static inline void device_links_write_unlock(void)
248{
249 mutex_unlock(&device_links_lock);
250}
251
252int device_links_read_lock(void) __acquires(&device_links_srcu)
253{
254 return srcu_read_lock(&device_links_srcu);
255}
256
257void device_links_read_unlock(int idx) __releases(&device_links_srcu)
258{
259 srcu_read_unlock(&device_links_srcu, idx);
260}
261
262int device_links_read_lock_held(void)
263{
264 return srcu_read_lock_held(&device_links_srcu);
265}
266
267static void device_link_synchronize_removal(void)
268{
269 synchronize_srcu(&device_links_srcu);
270}
271
272static void device_link_remove_from_lists(struct device_link *link)
273{
274 list_del_rcu(&link->s_node);
275 list_del_rcu(&link->c_node);
276}
277
278static bool device_is_ancestor(struct device *dev, struct device *target)
279{
280 while (target->parent) {
281 target = target->parent;
282 if (dev == target)
283 return true;
284 }
285 return false;
286}
287
288#define DL_MARKER_FLAGS (DL_FLAG_INFERRED | \
289 DL_FLAG_CYCLE | \
290 DL_FLAG_MANAGED)
291static inline bool device_link_flag_is_sync_state_only(u32 flags)
292{
293 return (flags & ~DL_MARKER_FLAGS) == DL_FLAG_SYNC_STATE_ONLY;
294}
295
296/**
297 * device_is_dependent - Check if one device depends on another one
298 * @dev: Device to check dependencies for.
299 * @target: Device to check against.
300 *
301 * Check if @target depends on @dev or any device dependent on it (its child or
302 * its consumer etc). Return 1 if that is the case or 0 otherwise.
303 */
304static int device_is_dependent(struct device *dev, void *target)
305{
306 struct device_link *link;
307 int ret;
308
309 /*
310 * The "ancestors" check is needed to catch the case when the target
311 * device has not been completely initialized yet and it is still
312 * missing from the list of children of its parent device.
313 */
314 if (dev == target || device_is_ancestor(dev, target))
315 return 1;
316
317 ret = device_for_each_child(dev, target, device_is_dependent);
318 if (ret)
319 return ret;
320
321 list_for_each_entry(link, &dev->links.consumers, s_node) {
322 if (device_link_flag_is_sync_state_only(link->flags))
323 continue;
324
325 if (link->consumer == target)
326 return 1;
327
328 ret = device_is_dependent(link->consumer, target);
329 if (ret)
330 break;
331 }
332 return ret;
333}
334
335static void device_link_init_status(struct device_link *link,
336 struct device *consumer,
337 struct device *supplier)
338{
339 switch (supplier->links.status) {
340 case DL_DEV_PROBING:
341 switch (consumer->links.status) {
342 case DL_DEV_PROBING:
343 /*
344 * A consumer driver can create a link to a supplier
345 * that has not completed its probing yet as long as it
346 * knows that the supplier is already functional (for
347 * example, it has just acquired some resources from the
348 * supplier).
349 */
350 link->status = DL_STATE_CONSUMER_PROBE;
351 break;
352 default:
353 link->status = DL_STATE_DORMANT;
354 break;
355 }
356 break;
357 case DL_DEV_DRIVER_BOUND:
358 switch (consumer->links.status) {
359 case DL_DEV_PROBING:
360 link->status = DL_STATE_CONSUMER_PROBE;
361 break;
362 case DL_DEV_DRIVER_BOUND:
363 link->status = DL_STATE_ACTIVE;
364 break;
365 default:
366 link->status = DL_STATE_AVAILABLE;
367 break;
368 }
369 break;
370 case DL_DEV_UNBINDING:
371 link->status = DL_STATE_SUPPLIER_UNBIND;
372 break;
373 default:
374 link->status = DL_STATE_DORMANT;
375 break;
376 }
377}
378
379static int device_reorder_to_tail(struct device *dev, void *not_used)
380{
381 struct device_link *link;
382
383 /*
384 * Devices that have not been registered yet will be put to the ends
385 * of the lists during the registration, so skip them here.
386 */
387 if (device_is_registered(dev))
388 devices_kset_move_last(dev);
389
390 if (device_pm_initialized(dev))
391 device_pm_move_last(dev);
392
393 device_for_each_child(dev, NULL, device_reorder_to_tail);
394 list_for_each_entry(link, &dev->links.consumers, s_node) {
395 if (device_link_flag_is_sync_state_only(link->flags))
396 continue;
397 device_reorder_to_tail(link->consumer, NULL);
398 }
399
400 return 0;
401}
402
403/**
404 * device_pm_move_to_tail - Move set of devices to the end of device lists
405 * @dev: Device to move
406 *
407 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
408 *
409 * It moves the @dev along with all of its children and all of its consumers
410 * to the ends of the device_kset and dpm_list, recursively.
411 */
412void device_pm_move_to_tail(struct device *dev)
413{
414 int idx;
415
416 idx = device_links_read_lock();
417 device_pm_lock();
418 device_reorder_to_tail(dev, NULL);
419 device_pm_unlock();
420 device_links_read_unlock(idx);
421}
422
423#define to_devlink(dev) container_of((dev), struct device_link, link_dev)
424
425static ssize_t status_show(struct device *dev,
426 struct device_attribute *attr, char *buf)
427{
428 const char *output;
429
430 switch (to_devlink(dev)->status) {
431 case DL_STATE_NONE:
432 output = "not tracked";
433 break;
434 case DL_STATE_DORMANT:
435 output = "dormant";
436 break;
437 case DL_STATE_AVAILABLE:
438 output = "available";
439 break;
440 case DL_STATE_CONSUMER_PROBE:
441 output = "consumer probing";
442 break;
443 case DL_STATE_ACTIVE:
444 output = "active";
445 break;
446 case DL_STATE_SUPPLIER_UNBIND:
447 output = "supplier unbinding";
448 break;
449 default:
450 output = "unknown";
451 break;
452 }
453
454 return sysfs_emit(buf, "%s\n", output);
455}
456static DEVICE_ATTR_RO(status);
457
458static ssize_t auto_remove_on_show(struct device *dev,
459 struct device_attribute *attr, char *buf)
460{
461 struct device_link *link = to_devlink(dev);
462 const char *output;
463
464 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
465 output = "supplier unbind";
466 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
467 output = "consumer unbind";
468 else
469 output = "never";
470
471 return sysfs_emit(buf, "%s\n", output);
472}
473static DEVICE_ATTR_RO(auto_remove_on);
474
475static ssize_t runtime_pm_show(struct device *dev,
476 struct device_attribute *attr, char *buf)
477{
478 struct device_link *link = to_devlink(dev);
479
480 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
481}
482static DEVICE_ATTR_RO(runtime_pm);
483
484static ssize_t sync_state_only_show(struct device *dev,
485 struct device_attribute *attr, char *buf)
486{
487 struct device_link *link = to_devlink(dev);
488
489 return sysfs_emit(buf, "%d\n",
490 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
491}
492static DEVICE_ATTR_RO(sync_state_only);
493
494static struct attribute *devlink_attrs[] = {
495 &dev_attr_status.attr,
496 &dev_attr_auto_remove_on.attr,
497 &dev_attr_runtime_pm.attr,
498 &dev_attr_sync_state_only.attr,
499 NULL,
500};
501ATTRIBUTE_GROUPS(devlink);
502
503static void device_link_release_fn(struct work_struct *work)
504{
505 struct device_link *link = container_of(work, struct device_link, rm_work);
506
507 /* Ensure that all references to the link object have been dropped. */
508 device_link_synchronize_removal();
509
510 pm_runtime_release_supplier(link);
511 /*
512 * If supplier_preactivated is set, the link has been dropped between
513 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls
514 * in __driver_probe_device(). In that case, drop the supplier's
515 * PM-runtime usage counter to remove the reference taken by
516 * pm_runtime_get_suppliers().
517 */
518 if (link->supplier_preactivated)
519 pm_runtime_put_noidle(link->supplier);
520
521 pm_request_idle(link->supplier);
522
523 put_device(link->consumer);
524 put_device(link->supplier);
525 kfree(link);
526}
527
528static void devlink_dev_release(struct device *dev)
529{
530 struct device_link *link = to_devlink(dev);
531
532 INIT_WORK(&link->rm_work, device_link_release_fn);
533 /*
534 * It may take a while to complete this work because of the SRCU
535 * synchronization in device_link_release_fn() and if the consumer or
536 * supplier devices get deleted when it runs, so put it into the "long"
537 * workqueue.
538 */
539 queue_work(system_long_wq, &link->rm_work);
540}
541
542static struct class devlink_class = {
543 .name = "devlink",
544 .dev_groups = devlink_groups,
545 .dev_release = devlink_dev_release,
546};
547
548static int devlink_add_symlinks(struct device *dev)
549{
550 int ret;
551 size_t len;
552 struct device_link *link = to_devlink(dev);
553 struct device *sup = link->supplier;
554 struct device *con = link->consumer;
555 char *buf;
556
557 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
558 strlen(dev_bus_name(con)) + strlen(dev_name(con)));
559 len += strlen(":");
560 len += strlen("supplier:") + 1;
561 buf = kzalloc(len, GFP_KERNEL);
562 if (!buf)
563 return -ENOMEM;
564
565 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
566 if (ret)
567 goto out;
568
569 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
570 if (ret)
571 goto err_con;
572
573 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
574 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
575 if (ret)
576 goto err_con_dev;
577
578 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
579 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
580 if (ret)
581 goto err_sup_dev;
582
583 goto out;
584
585err_sup_dev:
586 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
587 sysfs_remove_link(&sup->kobj, buf);
588err_con_dev:
589 sysfs_remove_link(&link->link_dev.kobj, "consumer");
590err_con:
591 sysfs_remove_link(&link->link_dev.kobj, "supplier");
592out:
593 kfree(buf);
594 return ret;
595}
596
597static void devlink_remove_symlinks(struct device *dev)
598{
599 struct device_link *link = to_devlink(dev);
600 size_t len;
601 struct device *sup = link->supplier;
602 struct device *con = link->consumer;
603 char *buf;
604
605 sysfs_remove_link(&link->link_dev.kobj, "consumer");
606 sysfs_remove_link(&link->link_dev.kobj, "supplier");
607
608 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
609 strlen(dev_bus_name(con)) + strlen(dev_name(con)));
610 len += strlen(":");
611 len += strlen("supplier:") + 1;
612 buf = kzalloc(len, GFP_KERNEL);
613 if (!buf) {
614 WARN(1, "Unable to properly free device link symlinks!\n");
615 return;
616 }
617
618 if (device_is_registered(con)) {
619 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
620 sysfs_remove_link(&con->kobj, buf);
621 }
622 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
623 sysfs_remove_link(&sup->kobj, buf);
624 kfree(buf);
625}
626
627static struct class_interface devlink_class_intf = {
628 .class = &devlink_class,
629 .add_dev = devlink_add_symlinks,
630 .remove_dev = devlink_remove_symlinks,
631};
632
633static int __init devlink_class_init(void)
634{
635 int ret;
636
637 ret = class_register(&devlink_class);
638 if (ret)
639 return ret;
640
641 ret = class_interface_register(&devlink_class_intf);
642 if (ret)
643 class_unregister(&devlink_class);
644
645 return ret;
646}
647postcore_initcall(devlink_class_init);
648
649#define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
650 DL_FLAG_AUTOREMOVE_SUPPLIER | \
651 DL_FLAG_AUTOPROBE_CONSUMER | \
652 DL_FLAG_SYNC_STATE_ONLY | \
653 DL_FLAG_INFERRED | \
654 DL_FLAG_CYCLE)
655
656#define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
657 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
658
659/**
660 * device_link_add - Create a link between two devices.
661 * @consumer: Consumer end of the link.
662 * @supplier: Supplier end of the link.
663 * @flags: Link flags.
664 *
665 * The caller is responsible for the proper synchronization of the link creation
666 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the
667 * runtime PM framework to take the link into account. Second, if the
668 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
669 * be forced into the active meta state and reference-counted upon the creation
670 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
671 * ignored.
672 *
673 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
674 * expected to release the link returned by it directly with the help of either
675 * device_link_del() or device_link_remove().
676 *
677 * If that flag is not set, however, the caller of this function is handing the
678 * management of the link over to the driver core entirely and its return value
679 * can only be used to check whether or not the link is present. In that case,
680 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
681 * flags can be used to indicate to the driver core when the link can be safely
682 * deleted. Namely, setting one of them in @flags indicates to the driver core
683 * that the link is not going to be used (by the given caller of this function)
684 * after unbinding the consumer or supplier driver, respectively, from its
685 * device, so the link can be deleted at that point. If none of them is set,
686 * the link will be maintained until one of the devices pointed to by it (either
687 * the consumer or the supplier) is unregistered.
688 *
689 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
690 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
691 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
692 * be used to request the driver core to automatically probe for a consumer
693 * driver after successfully binding a driver to the supplier device.
694 *
695 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
696 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
697 * the same time is invalid and will cause NULL to be returned upfront.
698 * However, if a device link between the given @consumer and @supplier pair
699 * exists already when this function is called for them, the existing link will
700 * be returned regardless of its current type and status (the link's flags may
701 * be modified then). The caller of this function is then expected to treat
702 * the link as though it has just been created, so (in particular) if
703 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
704 * explicitly when not needed any more (as stated above).
705 *
706 * A side effect of the link creation is re-ordering of dpm_list and the
707 * devices_kset list by moving the consumer device and all devices depending
708 * on it to the ends of these lists (that does not happen to devices that have
709 * not been registered when this function is called).
710 *
711 * The supplier device is required to be registered when this function is called
712 * and NULL will be returned if that is not the case. The consumer device need
713 * not be registered, however.
714 */
715struct device_link *device_link_add(struct device *consumer,
716 struct device *supplier, u32 flags)
717{
718 struct device_link *link;
719
720 if (!consumer || !supplier || consumer == supplier ||
721 flags & ~DL_ADD_VALID_FLAGS ||
722 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
723 (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
724 flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
725 DL_FLAG_AUTOREMOVE_SUPPLIER)))
726 return NULL;
727
728 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
729 if (pm_runtime_get_sync(supplier) < 0) {
730 pm_runtime_put_noidle(supplier);
731 return NULL;
732 }
733 }
734
735 if (!(flags & DL_FLAG_STATELESS))
736 flags |= DL_FLAG_MANAGED;
737
738 if (flags & DL_FLAG_SYNC_STATE_ONLY &&
739 !device_link_flag_is_sync_state_only(flags))
740 return NULL;
741
742 device_links_write_lock();
743 device_pm_lock();
744
745 /*
746 * If the supplier has not been fully registered yet or there is a
747 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
748 * the supplier already in the graph, return NULL. If the link is a
749 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
750 * because it only affects sync_state() callbacks.
751 */
752 if (!device_pm_initialized(supplier)
753 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
754 device_is_dependent(consumer, supplier))) {
755 link = NULL;
756 goto out;
757 }
758
759 /*
760 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
761 * So, only create it if the consumer hasn't probed yet.
762 */
763 if (flags & DL_FLAG_SYNC_STATE_ONLY &&
764 consumer->links.status != DL_DEV_NO_DRIVER &&
765 consumer->links.status != DL_DEV_PROBING) {
766 link = NULL;
767 goto out;
768 }
769
770 /*
771 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
772 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
773 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
774 */
775 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
776 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
777
778 list_for_each_entry(link, &supplier->links.consumers, s_node) {
779 if (link->consumer != consumer)
780 continue;
781
782 if (link->flags & DL_FLAG_INFERRED &&
783 !(flags & DL_FLAG_INFERRED))
784 link->flags &= ~DL_FLAG_INFERRED;
785
786 if (flags & DL_FLAG_PM_RUNTIME) {
787 if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
788 pm_runtime_new_link(consumer);
789 link->flags |= DL_FLAG_PM_RUNTIME;
790 }
791 if (flags & DL_FLAG_RPM_ACTIVE)
792 refcount_inc(&link->rpm_active);
793 }
794
795 if (flags & DL_FLAG_STATELESS) {
796 kref_get(&link->kref);
797 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
798 !(link->flags & DL_FLAG_STATELESS)) {
799 link->flags |= DL_FLAG_STATELESS;
800 goto reorder;
801 } else {
802 link->flags |= DL_FLAG_STATELESS;
803 goto out;
804 }
805 }
806
807 /*
808 * If the life time of the link following from the new flags is
809 * longer than indicated by the flags of the existing link,
810 * update the existing link to stay around longer.
811 */
812 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
813 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
814 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
815 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
816 }
817 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
818 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
819 DL_FLAG_AUTOREMOVE_SUPPLIER);
820 }
821 if (!(link->flags & DL_FLAG_MANAGED)) {
822 kref_get(&link->kref);
823 link->flags |= DL_FLAG_MANAGED;
824 device_link_init_status(link, consumer, supplier);
825 }
826 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
827 !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
828 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
829 goto reorder;
830 }
831
832 goto out;
833 }
834
835 link = kzalloc(sizeof(*link), GFP_KERNEL);
836 if (!link)
837 goto out;
838
839 refcount_set(&link->rpm_active, 1);
840
841 get_device(supplier);
842 link->supplier = supplier;
843 INIT_LIST_HEAD(&link->s_node);
844 get_device(consumer);
845 link->consumer = consumer;
846 INIT_LIST_HEAD(&link->c_node);
847 link->flags = flags;
848 kref_init(&link->kref);
849
850 link->link_dev.class = &devlink_class;
851 device_set_pm_not_required(&link->link_dev);
852 dev_set_name(&link->link_dev, "%s:%s--%s:%s",
853 dev_bus_name(supplier), dev_name(supplier),
854 dev_bus_name(consumer), dev_name(consumer));
855 if (device_register(&link->link_dev)) {
856 put_device(&link->link_dev);
857 link = NULL;
858 goto out;
859 }
860
861 if (flags & DL_FLAG_PM_RUNTIME) {
862 if (flags & DL_FLAG_RPM_ACTIVE)
863 refcount_inc(&link->rpm_active);
864
865 pm_runtime_new_link(consumer);
866 }
867
868 /* Determine the initial link state. */
869 if (flags & DL_FLAG_STATELESS)
870 link->status = DL_STATE_NONE;
871 else
872 device_link_init_status(link, consumer, supplier);
873
874 /*
875 * Some callers expect the link creation during consumer driver probe to
876 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
877 */
878 if (link->status == DL_STATE_CONSUMER_PROBE &&
879 flags & DL_FLAG_PM_RUNTIME)
880 pm_runtime_resume(supplier);
881
882 list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
883 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
884
885 if (flags & DL_FLAG_SYNC_STATE_ONLY) {
886 dev_dbg(consumer,
887 "Linked as a sync state only consumer to %s\n",
888 dev_name(supplier));
889 goto out;
890 }
891
892reorder:
893 /*
894 * Move the consumer and all of the devices depending on it to the end
895 * of dpm_list and the devices_kset list.
896 *
897 * It is necessary to hold dpm_list locked throughout all that or else
898 * we may end up suspending with a wrong ordering of it.
899 */
900 device_reorder_to_tail(consumer, NULL);
901
902 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
903
904out:
905 device_pm_unlock();
906 device_links_write_unlock();
907
908 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
909 pm_runtime_put(supplier);
910
911 return link;
912}
913EXPORT_SYMBOL_GPL(device_link_add);
914
915static void __device_link_del(struct kref *kref)
916{
917 struct device_link *link = container_of(kref, struct device_link, kref);
918
919 dev_dbg(link->consumer, "Dropping the link to %s\n",
920 dev_name(link->supplier));
921
922 pm_runtime_drop_link(link);
923
924 device_link_remove_from_lists(link);
925 device_unregister(&link->link_dev);
926}
927
928static void device_link_put_kref(struct device_link *link)
929{
930 if (link->flags & DL_FLAG_STATELESS)
931 kref_put(&link->kref, __device_link_del);
932 else if (!device_is_registered(link->consumer))
933 __device_link_del(&link->kref);
934 else
935 WARN(1, "Unable to drop a managed device link reference\n");
936}
937
938/**
939 * device_link_del - Delete a stateless link between two devices.
940 * @link: Device link to delete.
941 *
942 * The caller must ensure proper synchronization of this function with runtime
943 * PM. If the link was added multiple times, it needs to be deleted as often.
944 * Care is required for hotplugged devices: Their links are purged on removal
945 * and calling device_link_del() is then no longer allowed.
946 */
947void device_link_del(struct device_link *link)
948{
949 device_links_write_lock();
950 device_link_put_kref(link);
951 device_links_write_unlock();
952}
953EXPORT_SYMBOL_GPL(device_link_del);
954
955/**
956 * device_link_remove - Delete a stateless link between two devices.
957 * @consumer: Consumer end of the link.
958 * @supplier: Supplier end of the link.
959 *
960 * The caller must ensure proper synchronization of this function with runtime
961 * PM.
962 */
963void device_link_remove(void *consumer, struct device *supplier)
964{
965 struct device_link *link;
966
967 if (WARN_ON(consumer == supplier))
968 return;
969
970 device_links_write_lock();
971
972 list_for_each_entry(link, &supplier->links.consumers, s_node) {
973 if (link->consumer == consumer) {
974 device_link_put_kref(link);
975 break;
976 }
977 }
978
979 device_links_write_unlock();
980}
981EXPORT_SYMBOL_GPL(device_link_remove);
982
983static void device_links_missing_supplier(struct device *dev)
984{
985 struct device_link *link;
986
987 list_for_each_entry(link, &dev->links.suppliers, c_node) {
988 if (link->status != DL_STATE_CONSUMER_PROBE)
989 continue;
990
991 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
992 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
993 } else {
994 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
995 WRITE_ONCE(link->status, DL_STATE_DORMANT);
996 }
997 }
998}
999
1000static bool dev_is_best_effort(struct device *dev)
1001{
1002 return (fw_devlink_best_effort && dev->can_match) ||
1003 (dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT));
1004}
1005
1006static struct fwnode_handle *fwnode_links_check_suppliers(
1007 struct fwnode_handle *fwnode)
1008{
1009 struct fwnode_link *link;
1010
1011 if (!fwnode || fw_devlink_is_permissive())
1012 return NULL;
1013
1014 list_for_each_entry(link, &fwnode->suppliers, c_hook)
1015 if (!(link->flags &
1016 (FWLINK_FLAG_CYCLE | FWLINK_FLAG_IGNORE)))
1017 return link->supplier;
1018
1019 return NULL;
1020}
1021
1022/**
1023 * device_links_check_suppliers - Check presence of supplier drivers.
1024 * @dev: Consumer device.
1025 *
1026 * Check links from this device to any suppliers. Walk the list of the device's
1027 * links to suppliers and see if all of them are available. If not, simply
1028 * return -EPROBE_DEFER.
1029 *
1030 * We need to guarantee that the supplier will not go away after the check has
1031 * been positive here. It only can go away in __device_release_driver() and
1032 * that function checks the device's links to consumers. This means we need to
1033 * mark the link as "consumer probe in progress" to make the supplier removal
1034 * wait for us to complete (or bad things may happen).
1035 *
1036 * Links without the DL_FLAG_MANAGED flag set are ignored.
1037 */
1038int device_links_check_suppliers(struct device *dev)
1039{
1040 struct device_link *link;
1041 int ret = 0, fwnode_ret = 0;
1042 struct fwnode_handle *sup_fw;
1043
1044 /*
1045 * Device waiting for supplier to become available is not allowed to
1046 * probe.
1047 */
1048 mutex_lock(&fwnode_link_lock);
1049 sup_fw = fwnode_links_check_suppliers(dev->fwnode);
1050 if (sup_fw) {
1051 if (!dev_is_best_effort(dev)) {
1052 fwnode_ret = -EPROBE_DEFER;
1053 dev_err_probe(dev, -EPROBE_DEFER,
1054 "wait for supplier %pfwf\n", sup_fw);
1055 } else {
1056 fwnode_ret = -EAGAIN;
1057 }
1058 }
1059 mutex_unlock(&fwnode_link_lock);
1060 if (fwnode_ret == -EPROBE_DEFER)
1061 return fwnode_ret;
1062
1063 device_links_write_lock();
1064
1065 list_for_each_entry(link, &dev->links.suppliers, c_node) {
1066 if (!(link->flags & DL_FLAG_MANAGED))
1067 continue;
1068
1069 if (link->status != DL_STATE_AVAILABLE &&
1070 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1071
1072 if (dev_is_best_effort(dev) &&
1073 link->flags & DL_FLAG_INFERRED &&
1074 !link->supplier->can_match) {
1075 ret = -EAGAIN;
1076 continue;
1077 }
1078
1079 device_links_missing_supplier(dev);
1080 dev_err_probe(dev, -EPROBE_DEFER,
1081 "supplier %s not ready\n",
1082 dev_name(link->supplier));
1083 ret = -EPROBE_DEFER;
1084 break;
1085 }
1086 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1087 }
1088 dev->links.status = DL_DEV_PROBING;
1089
1090 device_links_write_unlock();
1091
1092 return ret ? ret : fwnode_ret;
1093}
1094
1095/**
1096 * __device_links_queue_sync_state - Queue a device for sync_state() callback
1097 * @dev: Device to call sync_state() on
1098 * @list: List head to queue the @dev on
1099 *
1100 * Queues a device for a sync_state() callback when the device links write lock
1101 * isn't held. This allows the sync_state() execution flow to use device links
1102 * APIs. The caller must ensure this function is called with
1103 * device_links_write_lock() held.
1104 *
1105 * This function does a get_device() to make sure the device is not freed while
1106 * on this list.
1107 *
1108 * So the caller must also ensure that device_links_flush_sync_list() is called
1109 * as soon as the caller releases device_links_write_lock(). This is necessary
1110 * to make sure the sync_state() is called in a timely fashion and the
1111 * put_device() is called on this device.
1112 */
1113static void __device_links_queue_sync_state(struct device *dev,
1114 struct list_head *list)
1115{
1116 struct device_link *link;
1117
1118 if (!dev_has_sync_state(dev))
1119 return;
1120 if (dev->state_synced)
1121 return;
1122
1123 list_for_each_entry(link, &dev->links.consumers, s_node) {
1124 if (!(link->flags & DL_FLAG_MANAGED))
1125 continue;
1126 if (link->status != DL_STATE_ACTIVE)
1127 return;
1128 }
1129
1130 /*
1131 * Set the flag here to avoid adding the same device to a list more
1132 * than once. This can happen if new consumers get added to the device
1133 * and probed before the list is flushed.
1134 */
1135 dev->state_synced = true;
1136
1137 if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1138 return;
1139
1140 get_device(dev);
1141 list_add_tail(&dev->links.defer_sync, list);
1142}
1143
1144/**
1145 * device_links_flush_sync_list - Call sync_state() on a list of devices
1146 * @list: List of devices to call sync_state() on
1147 * @dont_lock_dev: Device for which lock is already held by the caller
1148 *
1149 * Calls sync_state() on all the devices that have been queued for it. This
1150 * function is used in conjunction with __device_links_queue_sync_state(). The
1151 * @dont_lock_dev parameter is useful when this function is called from a
1152 * context where a device lock is already held.
1153 */
1154static void device_links_flush_sync_list(struct list_head *list,
1155 struct device *dont_lock_dev)
1156{
1157 struct device *dev, *tmp;
1158
1159 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1160 list_del_init(&dev->links.defer_sync);
1161
1162 if (dev != dont_lock_dev)
1163 device_lock(dev);
1164
1165 dev_sync_state(dev);
1166
1167 if (dev != dont_lock_dev)
1168 device_unlock(dev);
1169
1170 put_device(dev);
1171 }
1172}
1173
1174void device_links_supplier_sync_state_pause(void)
1175{
1176 device_links_write_lock();
1177 defer_sync_state_count++;
1178 device_links_write_unlock();
1179}
1180
1181void device_links_supplier_sync_state_resume(void)
1182{
1183 struct device *dev, *tmp;
1184 LIST_HEAD(sync_list);
1185
1186 device_links_write_lock();
1187 if (!defer_sync_state_count) {
1188 WARN(true, "Unmatched sync_state pause/resume!");
1189 goto out;
1190 }
1191 defer_sync_state_count--;
1192 if (defer_sync_state_count)
1193 goto out;
1194
1195 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1196 /*
1197 * Delete from deferred_sync list before queuing it to
1198 * sync_list because defer_sync is used for both lists.
1199 */
1200 list_del_init(&dev->links.defer_sync);
1201 __device_links_queue_sync_state(dev, &sync_list);
1202 }
1203out:
1204 device_links_write_unlock();
1205
1206 device_links_flush_sync_list(&sync_list, NULL);
1207}
1208
1209static int sync_state_resume_initcall(void)
1210{
1211 device_links_supplier_sync_state_resume();
1212 return 0;
1213}
1214late_initcall(sync_state_resume_initcall);
1215
1216static void __device_links_supplier_defer_sync(struct device *sup)
1217{
1218 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1219 list_add_tail(&sup->links.defer_sync, &deferred_sync);
1220}
1221
1222static void device_link_drop_managed(struct device_link *link)
1223{
1224 link->flags &= ~DL_FLAG_MANAGED;
1225 WRITE_ONCE(link->status, DL_STATE_NONE);
1226 kref_put(&link->kref, __device_link_del);
1227}
1228
1229static ssize_t waiting_for_supplier_show(struct device *dev,
1230 struct device_attribute *attr,
1231 char *buf)
1232{
1233 bool val;
1234
1235 device_lock(dev);
1236 mutex_lock(&fwnode_link_lock);
1237 val = !!fwnode_links_check_suppliers(dev->fwnode);
1238 mutex_unlock(&fwnode_link_lock);
1239 device_unlock(dev);
1240 return sysfs_emit(buf, "%u\n", val);
1241}
1242static DEVICE_ATTR_RO(waiting_for_supplier);
1243
1244/**
1245 * device_links_force_bind - Prepares device to be force bound
1246 * @dev: Consumer device.
1247 *
1248 * device_bind_driver() force binds a device to a driver without calling any
1249 * driver probe functions. So the consumer really isn't going to wait for any
1250 * supplier before it's bound to the driver. We still want the device link
1251 * states to be sensible when this happens.
1252 *
1253 * In preparation for device_bind_driver(), this function goes through each
1254 * supplier device links and checks if the supplier is bound. If it is, then
1255 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1256 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1257 */
1258void device_links_force_bind(struct device *dev)
1259{
1260 struct device_link *link, *ln;
1261
1262 device_links_write_lock();
1263
1264 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1265 if (!(link->flags & DL_FLAG_MANAGED))
1266 continue;
1267
1268 if (link->status != DL_STATE_AVAILABLE) {
1269 device_link_drop_managed(link);
1270 continue;
1271 }
1272 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1273 }
1274 dev->links.status = DL_DEV_PROBING;
1275
1276 device_links_write_unlock();
1277}
1278
1279/**
1280 * device_links_driver_bound - Update device links after probing its driver.
1281 * @dev: Device to update the links for.
1282 *
1283 * The probe has been successful, so update links from this device to any
1284 * consumers by changing their status to "available".
1285 *
1286 * Also change the status of @dev's links to suppliers to "active".
1287 *
1288 * Links without the DL_FLAG_MANAGED flag set are ignored.
1289 */
1290void device_links_driver_bound(struct device *dev)
1291{
1292 struct device_link *link, *ln;
1293 LIST_HEAD(sync_list);
1294
1295 /*
1296 * If a device binds successfully, it's expected to have created all
1297 * the device links it needs to or make new device links as it needs
1298 * them. So, fw_devlink no longer needs to create device links to any
1299 * of the device's suppliers.
1300 *
1301 * Also, if a child firmware node of this bound device is not added as a
1302 * device by now, assume it is never going to be added. Make this bound
1303 * device the fallback supplier to the dangling consumers of the child
1304 * firmware node because this bound device is probably implementing the
1305 * child firmware node functionality and we don't want the dangling
1306 * consumers to defer probe indefinitely waiting for a device for the
1307 * child firmware node.
1308 */
1309 if (dev->fwnode && dev->fwnode->dev == dev) {
1310 struct fwnode_handle *child;
1311 fwnode_links_purge_suppliers(dev->fwnode);
1312 mutex_lock(&fwnode_link_lock);
1313 fwnode_for_each_available_child_node(dev->fwnode, child)
1314 __fw_devlink_pickup_dangling_consumers(child,
1315 dev->fwnode);
1316 __fw_devlink_link_to_consumers(dev);
1317 mutex_unlock(&fwnode_link_lock);
1318 }
1319 device_remove_file(dev, &dev_attr_waiting_for_supplier);
1320
1321 device_links_write_lock();
1322
1323 list_for_each_entry(link, &dev->links.consumers, s_node) {
1324 if (!(link->flags & DL_FLAG_MANAGED))
1325 continue;
1326
1327 /*
1328 * Links created during consumer probe may be in the "consumer
1329 * probe" state to start with if the supplier is still probing
1330 * when they are created and they may become "active" if the
1331 * consumer probe returns first. Skip them here.
1332 */
1333 if (link->status == DL_STATE_CONSUMER_PROBE ||
1334 link->status == DL_STATE_ACTIVE)
1335 continue;
1336
1337 WARN_ON(link->status != DL_STATE_DORMANT);
1338 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1339
1340 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1341 driver_deferred_probe_add(link->consumer);
1342 }
1343
1344 if (defer_sync_state_count)
1345 __device_links_supplier_defer_sync(dev);
1346 else
1347 __device_links_queue_sync_state(dev, &sync_list);
1348
1349 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1350 struct device *supplier;
1351
1352 if (!(link->flags & DL_FLAG_MANAGED))
1353 continue;
1354
1355 supplier = link->supplier;
1356 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1357 /*
1358 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1359 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1360 * save to drop the managed link completely.
1361 */
1362 device_link_drop_managed(link);
1363 } else if (dev_is_best_effort(dev) &&
1364 link->flags & DL_FLAG_INFERRED &&
1365 link->status != DL_STATE_CONSUMER_PROBE &&
1366 !link->supplier->can_match) {
1367 /*
1368 * When dev_is_best_effort() is true, we ignore device
1369 * links to suppliers that don't have a driver. If the
1370 * consumer device still managed to probe, there's no
1371 * point in maintaining a device link in a weird state
1372 * (consumer probed before supplier). So delete it.
1373 */
1374 device_link_drop_managed(link);
1375 } else {
1376 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1377 WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1378 }
1379
1380 /*
1381 * This needs to be done even for the deleted
1382 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1383 * device link that was preventing the supplier from getting a
1384 * sync_state() call.
1385 */
1386 if (defer_sync_state_count)
1387 __device_links_supplier_defer_sync(supplier);
1388 else
1389 __device_links_queue_sync_state(supplier, &sync_list);
1390 }
1391
1392 dev->links.status = DL_DEV_DRIVER_BOUND;
1393
1394 device_links_write_unlock();
1395
1396 device_links_flush_sync_list(&sync_list, dev);
1397}
1398
1399/**
1400 * __device_links_no_driver - Update links of a device without a driver.
1401 * @dev: Device without a drvier.
1402 *
1403 * Delete all non-persistent links from this device to any suppliers.
1404 *
1405 * Persistent links stay around, but their status is changed to "available",
1406 * unless they already are in the "supplier unbind in progress" state in which
1407 * case they need not be updated.
1408 *
1409 * Links without the DL_FLAG_MANAGED flag set are ignored.
1410 */
1411static void __device_links_no_driver(struct device *dev)
1412{
1413 struct device_link *link, *ln;
1414
1415 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1416 if (!(link->flags & DL_FLAG_MANAGED))
1417 continue;
1418
1419 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1420 device_link_drop_managed(link);
1421 continue;
1422 }
1423
1424 if (link->status != DL_STATE_CONSUMER_PROBE &&
1425 link->status != DL_STATE_ACTIVE)
1426 continue;
1427
1428 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1429 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1430 } else {
1431 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1432 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1433 }
1434 }
1435
1436 dev->links.status = DL_DEV_NO_DRIVER;
1437}
1438
1439/**
1440 * device_links_no_driver - Update links after failing driver probe.
1441 * @dev: Device whose driver has just failed to probe.
1442 *
1443 * Clean up leftover links to consumers for @dev and invoke
1444 * %__device_links_no_driver() to update links to suppliers for it as
1445 * appropriate.
1446 *
1447 * Links without the DL_FLAG_MANAGED flag set are ignored.
1448 */
1449void device_links_no_driver(struct device *dev)
1450{
1451 struct device_link *link;
1452
1453 device_links_write_lock();
1454
1455 list_for_each_entry(link, &dev->links.consumers, s_node) {
1456 if (!(link->flags & DL_FLAG_MANAGED))
1457 continue;
1458
1459 /*
1460 * The probe has failed, so if the status of the link is
1461 * "consumer probe" or "active", it must have been added by
1462 * a probing consumer while this device was still probing.
1463 * Change its state to "dormant", as it represents a valid
1464 * relationship, but it is not functionally meaningful.
1465 */
1466 if (link->status == DL_STATE_CONSUMER_PROBE ||
1467 link->status == DL_STATE_ACTIVE)
1468 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1469 }
1470
1471 __device_links_no_driver(dev);
1472
1473 device_links_write_unlock();
1474}
1475
1476/**
1477 * device_links_driver_cleanup - Update links after driver removal.
1478 * @dev: Device whose driver has just gone away.
1479 *
1480 * Update links to consumers for @dev by changing their status to "dormant" and
1481 * invoke %__device_links_no_driver() to update links to suppliers for it as
1482 * appropriate.
1483 *
1484 * Links without the DL_FLAG_MANAGED flag set are ignored.
1485 */
1486void device_links_driver_cleanup(struct device *dev)
1487{
1488 struct device_link *link, *ln;
1489
1490 device_links_write_lock();
1491
1492 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1493 if (!(link->flags & DL_FLAG_MANAGED))
1494 continue;
1495
1496 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1497 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1498
1499 /*
1500 * autoremove the links between this @dev and its consumer
1501 * devices that are not active, i.e. where the link state
1502 * has moved to DL_STATE_SUPPLIER_UNBIND.
1503 */
1504 if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1505 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1506 device_link_drop_managed(link);
1507
1508 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1509 }
1510
1511 list_del_init(&dev->links.defer_sync);
1512 __device_links_no_driver(dev);
1513
1514 device_links_write_unlock();
1515}
1516
1517/**
1518 * device_links_busy - Check if there are any busy links to consumers.
1519 * @dev: Device to check.
1520 *
1521 * Check each consumer of the device and return 'true' if its link's status
1522 * is one of "consumer probe" or "active" (meaning that the given consumer is
1523 * probing right now or its driver is present). Otherwise, change the link
1524 * state to "supplier unbind" to prevent the consumer from being probed
1525 * successfully going forward.
1526 *
1527 * Return 'false' if there are no probing or active consumers.
1528 *
1529 * Links without the DL_FLAG_MANAGED flag set are ignored.
1530 */
1531bool device_links_busy(struct device *dev)
1532{
1533 struct device_link *link;
1534 bool ret = false;
1535
1536 device_links_write_lock();
1537
1538 list_for_each_entry(link, &dev->links.consumers, s_node) {
1539 if (!(link->flags & DL_FLAG_MANAGED))
1540 continue;
1541
1542 if (link->status == DL_STATE_CONSUMER_PROBE
1543 || link->status == DL_STATE_ACTIVE) {
1544 ret = true;
1545 break;
1546 }
1547 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1548 }
1549
1550 dev->links.status = DL_DEV_UNBINDING;
1551
1552 device_links_write_unlock();
1553 return ret;
1554}
1555
1556/**
1557 * device_links_unbind_consumers - Force unbind consumers of the given device.
1558 * @dev: Device to unbind the consumers of.
1559 *
1560 * Walk the list of links to consumers for @dev and if any of them is in the
1561 * "consumer probe" state, wait for all device probes in progress to complete
1562 * and start over.
1563 *
1564 * If that's not the case, change the status of the link to "supplier unbind"
1565 * and check if the link was in the "active" state. If so, force the consumer
1566 * driver to unbind and start over (the consumer will not re-probe as we have
1567 * changed the state of the link already).
1568 *
1569 * Links without the DL_FLAG_MANAGED flag set are ignored.
1570 */
1571void device_links_unbind_consumers(struct device *dev)
1572{
1573 struct device_link *link;
1574
1575 start:
1576 device_links_write_lock();
1577
1578 list_for_each_entry(link, &dev->links.consumers, s_node) {
1579 enum device_link_state status;
1580
1581 if (!(link->flags & DL_FLAG_MANAGED) ||
1582 link->flags & DL_FLAG_SYNC_STATE_ONLY)
1583 continue;
1584
1585 status = link->status;
1586 if (status == DL_STATE_CONSUMER_PROBE) {
1587 device_links_write_unlock();
1588
1589 wait_for_device_probe();
1590 goto start;
1591 }
1592 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1593 if (status == DL_STATE_ACTIVE) {
1594 struct device *consumer = link->consumer;
1595
1596 get_device(consumer);
1597
1598 device_links_write_unlock();
1599
1600 device_release_driver_internal(consumer, NULL,
1601 consumer->parent);
1602 put_device(consumer);
1603 goto start;
1604 }
1605 }
1606
1607 device_links_write_unlock();
1608}
1609
1610/**
1611 * device_links_purge - Delete existing links to other devices.
1612 * @dev: Target device.
1613 */
1614static void device_links_purge(struct device *dev)
1615{
1616 struct device_link *link, *ln;
1617
1618 if (dev->class == &devlink_class)
1619 return;
1620
1621 /*
1622 * Delete all of the remaining links from this device to any other
1623 * devices (either consumers or suppliers).
1624 */
1625 device_links_write_lock();
1626
1627 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1628 WARN_ON(link->status == DL_STATE_ACTIVE);
1629 __device_link_del(&link->kref);
1630 }
1631
1632 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1633 WARN_ON(link->status != DL_STATE_DORMANT &&
1634 link->status != DL_STATE_NONE);
1635 __device_link_del(&link->kref);
1636 }
1637
1638 device_links_write_unlock();
1639}
1640
1641#define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \
1642 DL_FLAG_SYNC_STATE_ONLY)
1643#define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \
1644 DL_FLAG_AUTOPROBE_CONSUMER)
1645#define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \
1646 DL_FLAG_PM_RUNTIME)
1647
1648static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1649static int __init fw_devlink_setup(char *arg)
1650{
1651 if (!arg)
1652 return -EINVAL;
1653
1654 if (strcmp(arg, "off") == 0) {
1655 fw_devlink_flags = 0;
1656 } else if (strcmp(arg, "permissive") == 0) {
1657 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1658 } else if (strcmp(arg, "on") == 0) {
1659 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1660 } else if (strcmp(arg, "rpm") == 0) {
1661 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1662 }
1663 return 0;
1664}
1665early_param("fw_devlink", fw_devlink_setup);
1666
1667static bool fw_devlink_strict;
1668static int __init fw_devlink_strict_setup(char *arg)
1669{
1670 return kstrtobool(arg, &fw_devlink_strict);
1671}
1672early_param("fw_devlink.strict", fw_devlink_strict_setup);
1673
1674#define FW_DEVLINK_SYNC_STATE_STRICT 0
1675#define FW_DEVLINK_SYNC_STATE_TIMEOUT 1
1676
1677#ifndef CONFIG_FW_DEVLINK_SYNC_STATE_TIMEOUT
1678static int fw_devlink_sync_state;
1679#else
1680static int fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1681#endif
1682
1683static int __init fw_devlink_sync_state_setup(char *arg)
1684{
1685 if (!arg)
1686 return -EINVAL;
1687
1688 if (strcmp(arg, "strict") == 0) {
1689 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_STRICT;
1690 return 0;
1691 } else if (strcmp(arg, "timeout") == 0) {
1692 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1693 return 0;
1694 }
1695 return -EINVAL;
1696}
1697early_param("fw_devlink.sync_state", fw_devlink_sync_state_setup);
1698
1699static inline u32 fw_devlink_get_flags(u8 fwlink_flags)
1700{
1701 if (fwlink_flags & FWLINK_FLAG_CYCLE)
1702 return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE;
1703
1704 return fw_devlink_flags;
1705}
1706
1707static bool fw_devlink_is_permissive(void)
1708{
1709 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1710}
1711
1712bool fw_devlink_is_strict(void)
1713{
1714 return fw_devlink_strict && !fw_devlink_is_permissive();
1715}
1716
1717static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1718{
1719 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1720 return;
1721
1722 fwnode_call_int_op(fwnode, add_links);
1723 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1724}
1725
1726static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1727{
1728 struct fwnode_handle *child = NULL;
1729
1730 fw_devlink_parse_fwnode(fwnode);
1731
1732 while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1733 fw_devlink_parse_fwtree(child);
1734}
1735
1736static void fw_devlink_relax_link(struct device_link *link)
1737{
1738 if (!(link->flags & DL_FLAG_INFERRED))
1739 return;
1740
1741 if (device_link_flag_is_sync_state_only(link->flags))
1742 return;
1743
1744 pm_runtime_drop_link(link);
1745 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1746 dev_dbg(link->consumer, "Relaxing link with %s\n",
1747 dev_name(link->supplier));
1748}
1749
1750static int fw_devlink_no_driver(struct device *dev, void *data)
1751{
1752 struct device_link *link = to_devlink(dev);
1753
1754 if (!link->supplier->can_match)
1755 fw_devlink_relax_link(link);
1756
1757 return 0;
1758}
1759
1760void fw_devlink_drivers_done(void)
1761{
1762 fw_devlink_drv_reg_done = true;
1763 device_links_write_lock();
1764 class_for_each_device(&devlink_class, NULL, NULL,
1765 fw_devlink_no_driver);
1766 device_links_write_unlock();
1767}
1768
1769static int fw_devlink_dev_sync_state(struct device *dev, void *data)
1770{
1771 struct device_link *link = to_devlink(dev);
1772 struct device *sup = link->supplier;
1773
1774 if (!(link->flags & DL_FLAG_MANAGED) ||
1775 link->status == DL_STATE_ACTIVE || sup->state_synced ||
1776 !dev_has_sync_state(sup))
1777 return 0;
1778
1779 if (fw_devlink_sync_state == FW_DEVLINK_SYNC_STATE_STRICT) {
1780 dev_warn(sup, "sync_state() pending due to %s\n",
1781 dev_name(link->consumer));
1782 return 0;
1783 }
1784
1785 if (!list_empty(&sup->links.defer_sync))
1786 return 0;
1787
1788 dev_warn(sup, "Timed out. Forcing sync_state()\n");
1789 sup->state_synced = true;
1790 get_device(sup);
1791 list_add_tail(&sup->links.defer_sync, data);
1792
1793 return 0;
1794}
1795
1796void fw_devlink_probing_done(void)
1797{
1798 LIST_HEAD(sync_list);
1799
1800 device_links_write_lock();
1801 class_for_each_device(&devlink_class, NULL, &sync_list,
1802 fw_devlink_dev_sync_state);
1803 device_links_write_unlock();
1804 device_links_flush_sync_list(&sync_list, NULL);
1805}
1806
1807/**
1808 * wait_for_init_devices_probe - Try to probe any device needed for init
1809 *
1810 * Some devices might need to be probed and bound successfully before the kernel
1811 * boot sequence can finish and move on to init/userspace. For example, a
1812 * network interface might need to be bound to be able to mount a NFS rootfs.
1813 *
1814 * With fw_devlink=on by default, some of these devices might be blocked from
1815 * probing because they are waiting on a optional supplier that doesn't have a
1816 * driver. While fw_devlink will eventually identify such devices and unblock
1817 * the probing automatically, it might be too late by the time it unblocks the
1818 * probing of devices. For example, the IP4 autoconfig might timeout before
1819 * fw_devlink unblocks probing of the network interface.
1820 *
1821 * This function is available to temporarily try and probe all devices that have
1822 * a driver even if some of their suppliers haven't been added or don't have
1823 * drivers.
1824 *
1825 * The drivers can then decide which of the suppliers are optional vs mandatory
1826 * and probe the device if possible. By the time this function returns, all such
1827 * "best effort" probes are guaranteed to be completed. If a device successfully
1828 * probes in this mode, we delete all fw_devlink discovered dependencies of that
1829 * device where the supplier hasn't yet probed successfully because they have to
1830 * be optional dependencies.
1831 *
1832 * Any devices that didn't successfully probe go back to being treated as if
1833 * this function was never called.
1834 *
1835 * This also means that some devices that aren't needed for init and could have
1836 * waited for their optional supplier to probe (when the supplier's module is
1837 * loaded later on) would end up probing prematurely with limited functionality.
1838 * So call this function only when boot would fail without it.
1839 */
1840void __init wait_for_init_devices_probe(void)
1841{
1842 if (!fw_devlink_flags || fw_devlink_is_permissive())
1843 return;
1844
1845 /*
1846 * Wait for all ongoing probes to finish so that the "best effort" is
1847 * only applied to devices that can't probe otherwise.
1848 */
1849 wait_for_device_probe();
1850
1851 pr_info("Trying to probe devices needed for running init ...\n");
1852 fw_devlink_best_effort = true;
1853 driver_deferred_probe_trigger();
1854
1855 /*
1856 * Wait for all "best effort" probes to finish before going back to
1857 * normal enforcement.
1858 */
1859 wait_for_device_probe();
1860 fw_devlink_best_effort = false;
1861}
1862
1863static void fw_devlink_unblock_consumers(struct device *dev)
1864{
1865 struct device_link *link;
1866
1867 if (!fw_devlink_flags || fw_devlink_is_permissive())
1868 return;
1869
1870 device_links_write_lock();
1871 list_for_each_entry(link, &dev->links.consumers, s_node)
1872 fw_devlink_relax_link(link);
1873 device_links_write_unlock();
1874}
1875
1876#define get_dev_from_fwnode(fwnode) get_device((fwnode)->dev)
1877
1878static bool fwnode_init_without_drv(struct fwnode_handle *fwnode)
1879{
1880 struct device *dev;
1881 bool ret;
1882
1883 if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED))
1884 return false;
1885
1886 dev = get_dev_from_fwnode(fwnode);
1887 ret = !dev || dev->links.status == DL_DEV_NO_DRIVER;
1888 put_device(dev);
1889
1890 return ret;
1891}
1892
1893static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode)
1894{
1895 struct fwnode_handle *parent;
1896
1897 fwnode_for_each_parent_node(fwnode, parent) {
1898 if (fwnode_init_without_drv(parent)) {
1899 fwnode_handle_put(parent);
1900 return true;
1901 }
1902 }
1903
1904 return false;
1905}
1906
1907/**
1908 * fwnode_is_ancestor_of - Test if @ancestor is ancestor of @child
1909 * @ancestor: Firmware which is tested for being an ancestor
1910 * @child: Firmware which is tested for being the child
1911 *
1912 * A node is considered an ancestor of itself too.
1913 *
1914 * Return: true if @ancestor is an ancestor of @child. Otherwise, returns false.
1915 */
1916static bool fwnode_is_ancestor_of(const struct fwnode_handle *ancestor,
1917 const struct fwnode_handle *child)
1918{
1919 struct fwnode_handle *parent;
1920
1921 if (IS_ERR_OR_NULL(ancestor))
1922 return false;
1923
1924 if (child == ancestor)
1925 return true;
1926
1927 fwnode_for_each_parent_node(child, parent) {
1928 if (parent == ancestor) {
1929 fwnode_handle_put(parent);
1930 return true;
1931 }
1932 }
1933 return false;
1934}
1935
1936/**
1937 * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode
1938 * @fwnode: firmware node
1939 *
1940 * Given a firmware node (@fwnode), this function finds its closest ancestor
1941 * firmware node that has a corresponding struct device and returns that struct
1942 * device.
1943 *
1944 * The caller is responsible for calling put_device() on the returned device
1945 * pointer.
1946 *
1947 * Return: a pointer to the device of the @fwnode's closest ancestor.
1948 */
1949static struct device *fwnode_get_next_parent_dev(const struct fwnode_handle *fwnode)
1950{
1951 struct fwnode_handle *parent;
1952 struct device *dev;
1953
1954 fwnode_for_each_parent_node(fwnode, parent) {
1955 dev = get_dev_from_fwnode(parent);
1956 if (dev) {
1957 fwnode_handle_put(parent);
1958 return dev;
1959 }
1960 }
1961 return NULL;
1962}
1963
1964/**
1965 * __fw_devlink_relax_cycles - Relax and mark dependency cycles.
1966 * @con: Potential consumer device.
1967 * @sup_handle: Potential supplier's fwnode.
1968 *
1969 * Needs to be called with fwnode_lock and device link lock held.
1970 *
1971 * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly
1972 * depend on @con. This function can detect multiple cyles between @sup_handle
1973 * and @con. When such dependency cycles are found, convert all device links
1974 * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark
1975 * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are
1976 * converted into a device link in the future, they are created as
1977 * SYNC_STATE_ONLY device links. This is the equivalent of doing
1978 * fw_devlink=permissive just between the devices in the cycle. We need to do
1979 * this because, at this point, fw_devlink can't tell which of these
1980 * dependencies is not a real dependency.
1981 *
1982 * Return true if one or more cycles were found. Otherwise, return false.
1983 */
1984static bool __fw_devlink_relax_cycles(struct device *con,
1985 struct fwnode_handle *sup_handle)
1986{
1987 struct device *sup_dev = NULL, *par_dev = NULL;
1988 struct fwnode_link *link;
1989 struct device_link *dev_link;
1990 bool ret = false;
1991
1992 if (!sup_handle)
1993 return false;
1994
1995 /*
1996 * We aren't trying to find all cycles. Just a cycle between con and
1997 * sup_handle.
1998 */
1999 if (sup_handle->flags & FWNODE_FLAG_VISITED)
2000 return false;
2001
2002 sup_handle->flags |= FWNODE_FLAG_VISITED;
2003
2004 sup_dev = get_dev_from_fwnode(sup_handle);
2005
2006 /* Termination condition. */
2007 if (sup_dev == con) {
2008 pr_debug("----- cycle: start -----\n");
2009 ret = true;
2010 goto out;
2011 }
2012
2013 /*
2014 * If sup_dev is bound to a driver and @con hasn't started binding to a
2015 * driver, sup_dev can't be a consumer of @con. So, no need to check
2016 * further.
2017 */
2018 if (sup_dev && sup_dev->links.status == DL_DEV_DRIVER_BOUND &&
2019 con->links.status == DL_DEV_NO_DRIVER) {
2020 ret = false;
2021 goto out;
2022 }
2023
2024 list_for_each_entry(link, &sup_handle->suppliers, c_hook) {
2025 if (link->flags & FWLINK_FLAG_IGNORE)
2026 continue;
2027
2028 if (__fw_devlink_relax_cycles(con, link->supplier)) {
2029 __fwnode_link_cycle(link);
2030 ret = true;
2031 }
2032 }
2033
2034 /*
2035 * Give priority to device parent over fwnode parent to account for any
2036 * quirks in how fwnodes are converted to devices.
2037 */
2038 if (sup_dev)
2039 par_dev = get_device(sup_dev->parent);
2040 else
2041 par_dev = fwnode_get_next_parent_dev(sup_handle);
2042
2043 if (par_dev && __fw_devlink_relax_cycles(con, par_dev->fwnode)) {
2044 pr_debug("%pfwf: cycle: child of %pfwf\n", sup_handle,
2045 par_dev->fwnode);
2046 ret = true;
2047 }
2048
2049 if (!sup_dev)
2050 goto out;
2051
2052 list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) {
2053 /*
2054 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as
2055 * such due to a cycle.
2056 */
2057 if (device_link_flag_is_sync_state_only(dev_link->flags) &&
2058 !(dev_link->flags & DL_FLAG_CYCLE))
2059 continue;
2060
2061 if (__fw_devlink_relax_cycles(con,
2062 dev_link->supplier->fwnode)) {
2063 pr_debug("%pfwf: cycle: depends on %pfwf\n", sup_handle,
2064 dev_link->supplier->fwnode);
2065 fw_devlink_relax_link(dev_link);
2066 dev_link->flags |= DL_FLAG_CYCLE;
2067 ret = true;
2068 }
2069 }
2070
2071out:
2072 sup_handle->flags &= ~FWNODE_FLAG_VISITED;
2073 put_device(sup_dev);
2074 put_device(par_dev);
2075 return ret;
2076}
2077
2078/**
2079 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
2080 * @con: consumer device for the device link
2081 * @sup_handle: fwnode handle of supplier
2082 * @link: fwnode link that's being converted to a device link
2083 *
2084 * This function will try to create a device link between the consumer device
2085 * @con and the supplier device represented by @sup_handle.
2086 *
2087 * The supplier has to be provided as a fwnode because incorrect cycles in
2088 * fwnode links can sometimes cause the supplier device to never be created.
2089 * This function detects such cases and returns an error if it cannot create a
2090 * device link from the consumer to a missing supplier.
2091 *
2092 * Returns,
2093 * 0 on successfully creating a device link
2094 * -EINVAL if the device link cannot be created as expected
2095 * -EAGAIN if the device link cannot be created right now, but it may be
2096 * possible to do that in the future
2097 */
2098static int fw_devlink_create_devlink(struct device *con,
2099 struct fwnode_handle *sup_handle,
2100 struct fwnode_link *link)
2101{
2102 struct device *sup_dev;
2103 int ret = 0;
2104 u32 flags;
2105
2106 if (link->flags & FWLINK_FLAG_IGNORE)
2107 return 0;
2108
2109 if (con->fwnode == link->consumer)
2110 flags = fw_devlink_get_flags(link->flags);
2111 else
2112 flags = FW_DEVLINK_FLAGS_PERMISSIVE;
2113
2114 /*
2115 * In some cases, a device P might also be a supplier to its child node
2116 * C. However, this would defer the probe of C until the probe of P
2117 * completes successfully. This is perfectly fine in the device driver
2118 * model. device_add() doesn't guarantee probe completion of the device
2119 * by the time it returns.
2120 *
2121 * However, there are a few drivers that assume C will finish probing
2122 * as soon as it's added and before P finishes probing. So, we provide
2123 * a flag to let fw_devlink know not to delay the probe of C until the
2124 * probe of P completes successfully.
2125 *
2126 * When such a flag is set, we can't create device links where P is the
2127 * supplier of C as that would delay the probe of C.
2128 */
2129 if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
2130 fwnode_is_ancestor_of(sup_handle, con->fwnode))
2131 return -EINVAL;
2132
2133 /*
2134 * SYNC_STATE_ONLY device links don't block probing and supports cycles.
2135 * So, one might expect that cycle detection isn't necessary for them.
2136 * However, if the device link was marked as SYNC_STATE_ONLY because
2137 * it's part of a cycle, then we still need to do cycle detection. This
2138 * is because the consumer and supplier might be part of multiple cycles
2139 * and we need to detect all those cycles.
2140 */
2141 if (!device_link_flag_is_sync_state_only(flags) ||
2142 flags & DL_FLAG_CYCLE) {
2143 device_links_write_lock();
2144 if (__fw_devlink_relax_cycles(con, sup_handle)) {
2145 __fwnode_link_cycle(link);
2146 flags = fw_devlink_get_flags(link->flags);
2147 pr_debug("----- cycle: end -----\n");
2148 dev_info(con, "Fixed dependency cycle(s) with %pfwf\n",
2149 sup_handle);
2150 }
2151 device_links_write_unlock();
2152 }
2153
2154 if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE)
2155 sup_dev = fwnode_get_next_parent_dev(sup_handle);
2156 else
2157 sup_dev = get_dev_from_fwnode(sup_handle);
2158
2159 if (sup_dev) {
2160 /*
2161 * If it's one of those drivers that don't actually bind to
2162 * their device using driver core, then don't wait on this
2163 * supplier device indefinitely.
2164 */
2165 if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
2166 sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
2167 dev_dbg(con,
2168 "Not linking %pfwf - dev might never probe\n",
2169 sup_handle);
2170 ret = -EINVAL;
2171 goto out;
2172 }
2173
2174 if (con != sup_dev && !device_link_add(con, sup_dev, flags)) {
2175 dev_err(con, "Failed to create device link (0x%x) with %s\n",
2176 flags, dev_name(sup_dev));
2177 ret = -EINVAL;
2178 }
2179
2180 goto out;
2181 }
2182
2183 /*
2184 * Supplier or supplier's ancestor already initialized without a struct
2185 * device or being probed by a driver.
2186 */
2187 if (fwnode_init_without_drv(sup_handle) ||
2188 fwnode_ancestor_init_without_drv(sup_handle)) {
2189 dev_dbg(con, "Not linking %pfwf - might never become dev\n",
2190 sup_handle);
2191 return -EINVAL;
2192 }
2193
2194 ret = -EAGAIN;
2195out:
2196 put_device(sup_dev);
2197 return ret;
2198}
2199
2200/**
2201 * __fw_devlink_link_to_consumers - Create device links to consumers of a device
2202 * @dev: Device that needs to be linked to its consumers
2203 *
2204 * This function looks at all the consumer fwnodes of @dev and creates device
2205 * links between the consumer device and @dev (supplier).
2206 *
2207 * If the consumer device has not been added yet, then this function creates a
2208 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
2209 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
2210 * sync_state() callback before the real consumer device gets to be added and
2211 * then probed.
2212 *
2213 * Once device links are created from the real consumer to @dev (supplier), the
2214 * fwnode links are deleted.
2215 */
2216static void __fw_devlink_link_to_consumers(struct device *dev)
2217{
2218 struct fwnode_handle *fwnode = dev->fwnode;
2219 struct fwnode_link *link, *tmp;
2220
2221 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
2222 struct device *con_dev;
2223 bool own_link = true;
2224 int ret;
2225
2226 con_dev = get_dev_from_fwnode(link->consumer);
2227 /*
2228 * If consumer device is not available yet, make a "proxy"
2229 * SYNC_STATE_ONLY link from the consumer's parent device to
2230 * the supplier device. This is necessary to make sure the
2231 * supplier doesn't get a sync_state() callback before the real
2232 * consumer can create a device link to the supplier.
2233 *
2234 * This proxy link step is needed to handle the case where the
2235 * consumer's parent device is added before the supplier.
2236 */
2237 if (!con_dev) {
2238 con_dev = fwnode_get_next_parent_dev(link->consumer);
2239 /*
2240 * However, if the consumer's parent device is also the
2241 * parent of the supplier, don't create a
2242 * consumer-supplier link from the parent to its child
2243 * device. Such a dependency is impossible.
2244 */
2245 if (con_dev &&
2246 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
2247 put_device(con_dev);
2248 con_dev = NULL;
2249 } else {
2250 own_link = false;
2251 }
2252 }
2253
2254 if (!con_dev)
2255 continue;
2256
2257 ret = fw_devlink_create_devlink(con_dev, fwnode, link);
2258 put_device(con_dev);
2259 if (!own_link || ret == -EAGAIN)
2260 continue;
2261
2262 __fwnode_link_del(link);
2263 }
2264}
2265
2266/**
2267 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
2268 * @dev: The consumer device that needs to be linked to its suppliers
2269 * @fwnode: Root of the fwnode tree that is used to create device links
2270 *
2271 * This function looks at all the supplier fwnodes of fwnode tree rooted at
2272 * @fwnode and creates device links between @dev (consumer) and all the
2273 * supplier devices of the entire fwnode tree at @fwnode.
2274 *
2275 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
2276 * and the real suppliers of @dev. Once these device links are created, the
2277 * fwnode links are deleted.
2278 *
2279 * In addition, it also looks at all the suppliers of the entire fwnode tree
2280 * because some of the child devices of @dev that have not been added yet
2281 * (because @dev hasn't probed) might already have their suppliers added to
2282 * driver core. So, this function creates SYNC_STATE_ONLY device links between
2283 * @dev (consumer) and these suppliers to make sure they don't execute their
2284 * sync_state() callbacks before these child devices have a chance to create
2285 * their device links. The fwnode links that correspond to the child devices
2286 * aren't delete because they are needed later to create the device links
2287 * between the real consumer and supplier devices.
2288 */
2289static void __fw_devlink_link_to_suppliers(struct device *dev,
2290 struct fwnode_handle *fwnode)
2291{
2292 bool own_link = (dev->fwnode == fwnode);
2293 struct fwnode_link *link, *tmp;
2294 struct fwnode_handle *child = NULL;
2295
2296 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
2297 int ret;
2298 struct fwnode_handle *sup = link->supplier;
2299
2300 ret = fw_devlink_create_devlink(dev, sup, link);
2301 if (!own_link || ret == -EAGAIN)
2302 continue;
2303
2304 __fwnode_link_del(link);
2305 }
2306
2307 /*
2308 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
2309 * all the descendants. This proxy link step is needed to handle the
2310 * case where the supplier is added before the consumer's parent device
2311 * (@dev).
2312 */
2313 while ((child = fwnode_get_next_available_child_node(fwnode, child)))
2314 __fw_devlink_link_to_suppliers(dev, child);
2315}
2316
2317static void fw_devlink_link_device(struct device *dev)
2318{
2319 struct fwnode_handle *fwnode = dev->fwnode;
2320
2321 if (!fw_devlink_flags)
2322 return;
2323
2324 fw_devlink_parse_fwtree(fwnode);
2325
2326 mutex_lock(&fwnode_link_lock);
2327 __fw_devlink_link_to_consumers(dev);
2328 __fw_devlink_link_to_suppliers(dev, fwnode);
2329 mutex_unlock(&fwnode_link_lock);
2330}
2331
2332/* Device links support end. */
2333
2334int (*platform_notify)(struct device *dev) = NULL;
2335int (*platform_notify_remove)(struct device *dev) = NULL;
2336static struct kobject *dev_kobj;
2337
2338/* /sys/dev/char */
2339static struct kobject *sysfs_dev_char_kobj;
2340
2341/* /sys/dev/block */
2342static struct kobject *sysfs_dev_block_kobj;
2343
2344static DEFINE_MUTEX(device_hotplug_lock);
2345
2346void lock_device_hotplug(void)
2347{
2348 mutex_lock(&device_hotplug_lock);
2349}
2350
2351void unlock_device_hotplug(void)
2352{
2353 mutex_unlock(&device_hotplug_lock);
2354}
2355
2356int lock_device_hotplug_sysfs(void)
2357{
2358 if (mutex_trylock(&device_hotplug_lock))
2359 return 0;
2360
2361 /* Avoid busy looping (5 ms of sleep should do). */
2362 msleep(5);
2363 return restart_syscall();
2364}
2365
2366#ifdef CONFIG_BLOCK
2367static inline int device_is_not_partition(struct device *dev)
2368{
2369 return !(dev->type == &part_type);
2370}
2371#else
2372static inline int device_is_not_partition(struct device *dev)
2373{
2374 return 1;
2375}
2376#endif
2377
2378static void device_platform_notify(struct device *dev)
2379{
2380 acpi_device_notify(dev);
2381
2382 software_node_notify(dev);
2383
2384 if (platform_notify)
2385 platform_notify(dev);
2386}
2387
2388static void device_platform_notify_remove(struct device *dev)
2389{
2390 if (platform_notify_remove)
2391 platform_notify_remove(dev);
2392
2393 software_node_notify_remove(dev);
2394
2395 acpi_device_notify_remove(dev);
2396}
2397
2398/**
2399 * dev_driver_string - Return a device's driver name, if at all possible
2400 * @dev: struct device to get the name of
2401 *
2402 * Will return the device's driver's name if it is bound to a device. If
2403 * the device is not bound to a driver, it will return the name of the bus
2404 * it is attached to. If it is not attached to a bus either, an empty
2405 * string will be returned.
2406 */
2407const char *dev_driver_string(const struct device *dev)
2408{
2409 struct device_driver *drv;
2410
2411 /* dev->driver can change to NULL underneath us because of unbinding,
2412 * so be careful about accessing it. dev->bus and dev->class should
2413 * never change once they are set, so they don't need special care.
2414 */
2415 drv = READ_ONCE(dev->driver);
2416 return drv ? drv->name : dev_bus_name(dev);
2417}
2418EXPORT_SYMBOL(dev_driver_string);
2419
2420#define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2421
2422static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2423 char *buf)
2424{
2425 struct device_attribute *dev_attr = to_dev_attr(attr);
2426 struct device *dev = kobj_to_dev(kobj);
2427 ssize_t ret = -EIO;
2428
2429 if (dev_attr->show)
2430 ret = dev_attr->show(dev, dev_attr, buf);
2431 if (ret >= (ssize_t)PAGE_SIZE) {
2432 printk("dev_attr_show: %pS returned bad count\n",
2433 dev_attr->show);
2434 }
2435 return ret;
2436}
2437
2438static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2439 const char *buf, size_t count)
2440{
2441 struct device_attribute *dev_attr = to_dev_attr(attr);
2442 struct device *dev = kobj_to_dev(kobj);
2443 ssize_t ret = -EIO;
2444
2445 if (dev_attr->store)
2446 ret = dev_attr->store(dev, dev_attr, buf, count);
2447 return ret;
2448}
2449
2450static const struct sysfs_ops dev_sysfs_ops = {
2451 .show = dev_attr_show,
2452 .store = dev_attr_store,
2453};
2454
2455#define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2456
2457ssize_t device_store_ulong(struct device *dev,
2458 struct device_attribute *attr,
2459 const char *buf, size_t size)
2460{
2461 struct dev_ext_attribute *ea = to_ext_attr(attr);
2462 int ret;
2463 unsigned long new;
2464
2465 ret = kstrtoul(buf, 0, &new);
2466 if (ret)
2467 return ret;
2468 *(unsigned long *)(ea->var) = new;
2469 /* Always return full write size even if we didn't consume all */
2470 return size;
2471}
2472EXPORT_SYMBOL_GPL(device_store_ulong);
2473
2474ssize_t device_show_ulong(struct device *dev,
2475 struct device_attribute *attr,
2476 char *buf)
2477{
2478 struct dev_ext_attribute *ea = to_ext_attr(attr);
2479 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2480}
2481EXPORT_SYMBOL_GPL(device_show_ulong);
2482
2483ssize_t device_store_int(struct device *dev,
2484 struct device_attribute *attr,
2485 const char *buf, size_t size)
2486{
2487 struct dev_ext_attribute *ea = to_ext_attr(attr);
2488 int ret;
2489 long new;
2490
2491 ret = kstrtol(buf, 0, &new);
2492 if (ret)
2493 return ret;
2494
2495 if (new > INT_MAX || new < INT_MIN)
2496 return -EINVAL;
2497 *(int *)(ea->var) = new;
2498 /* Always return full write size even if we didn't consume all */
2499 return size;
2500}
2501EXPORT_SYMBOL_GPL(device_store_int);
2502
2503ssize_t device_show_int(struct device *dev,
2504 struct device_attribute *attr,
2505 char *buf)
2506{
2507 struct dev_ext_attribute *ea = to_ext_attr(attr);
2508
2509 return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2510}
2511EXPORT_SYMBOL_GPL(device_show_int);
2512
2513ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2514 const char *buf, size_t size)
2515{
2516 struct dev_ext_attribute *ea = to_ext_attr(attr);
2517
2518 if (kstrtobool(buf, ea->var) < 0)
2519 return -EINVAL;
2520
2521 return size;
2522}
2523EXPORT_SYMBOL_GPL(device_store_bool);
2524
2525ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2526 char *buf)
2527{
2528 struct dev_ext_attribute *ea = to_ext_attr(attr);
2529
2530 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2531}
2532EXPORT_SYMBOL_GPL(device_show_bool);
2533
2534/**
2535 * device_release - free device structure.
2536 * @kobj: device's kobject.
2537 *
2538 * This is called once the reference count for the object
2539 * reaches 0. We forward the call to the device's release
2540 * method, which should handle actually freeing the structure.
2541 */
2542static void device_release(struct kobject *kobj)
2543{
2544 struct device *dev = kobj_to_dev(kobj);
2545 struct device_private *p = dev->p;
2546
2547 /*
2548 * Some platform devices are driven without driver attached
2549 * and managed resources may have been acquired. Make sure
2550 * all resources are released.
2551 *
2552 * Drivers still can add resources into device after device
2553 * is deleted but alive, so release devres here to avoid
2554 * possible memory leak.
2555 */
2556 devres_release_all(dev);
2557
2558 kfree(dev->dma_range_map);
2559
2560 if (dev->release)
2561 dev->release(dev);
2562 else if (dev->type && dev->type->release)
2563 dev->type->release(dev);
2564 else if (dev->class && dev->class->dev_release)
2565 dev->class->dev_release(dev);
2566 else
2567 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2568 dev_name(dev));
2569 kfree(p);
2570}
2571
2572static const void *device_namespace(const struct kobject *kobj)
2573{
2574 const struct device *dev = kobj_to_dev(kobj);
2575 const void *ns = NULL;
2576
2577 if (dev->class && dev->class->ns_type)
2578 ns = dev->class->namespace(dev);
2579
2580 return ns;
2581}
2582
2583static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2584{
2585 const struct device *dev = kobj_to_dev(kobj);
2586
2587 if (dev->class && dev->class->get_ownership)
2588 dev->class->get_ownership(dev, uid, gid);
2589}
2590
2591static const struct kobj_type device_ktype = {
2592 .release = device_release,
2593 .sysfs_ops = &dev_sysfs_ops,
2594 .namespace = device_namespace,
2595 .get_ownership = device_get_ownership,
2596};
2597
2598
2599static int dev_uevent_filter(const struct kobject *kobj)
2600{
2601 const struct kobj_type *ktype = get_ktype(kobj);
2602
2603 if (ktype == &device_ktype) {
2604 const struct device *dev = kobj_to_dev(kobj);
2605 if (dev->bus)
2606 return 1;
2607 if (dev->class)
2608 return 1;
2609 }
2610 return 0;
2611}
2612
2613static const char *dev_uevent_name(const struct kobject *kobj)
2614{
2615 const struct device *dev = kobj_to_dev(kobj);
2616
2617 if (dev->bus)
2618 return dev->bus->name;
2619 if (dev->class)
2620 return dev->class->name;
2621 return NULL;
2622}
2623
2624static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
2625{
2626 const struct device *dev = kobj_to_dev(kobj);
2627 int retval = 0;
2628
2629 /* add device node properties if present */
2630 if (MAJOR(dev->devt)) {
2631 const char *tmp;
2632 const char *name;
2633 umode_t mode = 0;
2634 kuid_t uid = GLOBAL_ROOT_UID;
2635 kgid_t gid = GLOBAL_ROOT_GID;
2636
2637 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2638 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2639 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2640 if (name) {
2641 add_uevent_var(env, "DEVNAME=%s", name);
2642 if (mode)
2643 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2644 if (!uid_eq(uid, GLOBAL_ROOT_UID))
2645 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2646 if (!gid_eq(gid, GLOBAL_ROOT_GID))
2647 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2648 kfree(tmp);
2649 }
2650 }
2651
2652 if (dev->type && dev->type->name)
2653 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2654
2655 if (dev->driver)
2656 add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2657
2658 /* Add common DT information about the device */
2659 of_device_uevent(dev, env);
2660
2661 /* have the bus specific function add its stuff */
2662 if (dev->bus && dev->bus->uevent) {
2663 retval = dev->bus->uevent(dev, env);
2664 if (retval)
2665 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2666 dev_name(dev), __func__, retval);
2667 }
2668
2669 /* have the class specific function add its stuff */
2670 if (dev->class && dev->class->dev_uevent) {
2671 retval = dev->class->dev_uevent(dev, env);
2672 if (retval)
2673 pr_debug("device: '%s': %s: class uevent() "
2674 "returned %d\n", dev_name(dev),
2675 __func__, retval);
2676 }
2677
2678 /* have the device type specific function add its stuff */
2679 if (dev->type && dev->type->uevent) {
2680 retval = dev->type->uevent(dev, env);
2681 if (retval)
2682 pr_debug("device: '%s': %s: dev_type uevent() "
2683 "returned %d\n", dev_name(dev),
2684 __func__, retval);
2685 }
2686
2687 return retval;
2688}
2689
2690static const struct kset_uevent_ops device_uevent_ops = {
2691 .filter = dev_uevent_filter,
2692 .name = dev_uevent_name,
2693 .uevent = dev_uevent,
2694};
2695
2696static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2697 char *buf)
2698{
2699 struct kobject *top_kobj;
2700 struct kset *kset;
2701 struct kobj_uevent_env *env = NULL;
2702 int i;
2703 int len = 0;
2704 int retval;
2705
2706 /* search the kset, the device belongs to */
2707 top_kobj = &dev->kobj;
2708 while (!top_kobj->kset && top_kobj->parent)
2709 top_kobj = top_kobj->parent;
2710 if (!top_kobj->kset)
2711 goto out;
2712
2713 kset = top_kobj->kset;
2714 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2715 goto out;
2716
2717 /* respect filter */
2718 if (kset->uevent_ops && kset->uevent_ops->filter)
2719 if (!kset->uevent_ops->filter(&dev->kobj))
2720 goto out;
2721
2722 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2723 if (!env)
2724 return -ENOMEM;
2725
2726 /* let the kset specific function add its keys */
2727 retval = kset->uevent_ops->uevent(&dev->kobj, env);
2728 if (retval)
2729 goto out;
2730
2731 /* copy keys to file */
2732 for (i = 0; i < env->envp_idx; i++)
2733 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2734out:
2735 kfree(env);
2736 return len;
2737}
2738
2739static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2740 const char *buf, size_t count)
2741{
2742 int rc;
2743
2744 rc = kobject_synth_uevent(&dev->kobj, buf, count);
2745
2746 if (rc) {
2747 dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc);
2748 return rc;
2749 }
2750
2751 return count;
2752}
2753static DEVICE_ATTR_RW(uevent);
2754
2755static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2756 char *buf)
2757{
2758 bool val;
2759
2760 device_lock(dev);
2761 val = !dev->offline;
2762 device_unlock(dev);
2763 return sysfs_emit(buf, "%u\n", val);
2764}
2765
2766static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2767 const char *buf, size_t count)
2768{
2769 bool val;
2770 int ret;
2771
2772 ret = kstrtobool(buf, &val);
2773 if (ret < 0)
2774 return ret;
2775
2776 ret = lock_device_hotplug_sysfs();
2777 if (ret)
2778 return ret;
2779
2780 ret = val ? device_online(dev) : device_offline(dev);
2781 unlock_device_hotplug();
2782 return ret < 0 ? ret : count;
2783}
2784static DEVICE_ATTR_RW(online);
2785
2786static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2787 char *buf)
2788{
2789 const char *loc;
2790
2791 switch (dev->removable) {
2792 case DEVICE_REMOVABLE:
2793 loc = "removable";
2794 break;
2795 case DEVICE_FIXED:
2796 loc = "fixed";
2797 break;
2798 default:
2799 loc = "unknown";
2800 }
2801 return sysfs_emit(buf, "%s\n", loc);
2802}
2803static DEVICE_ATTR_RO(removable);
2804
2805int device_add_groups(struct device *dev, const struct attribute_group **groups)
2806{
2807 return sysfs_create_groups(&dev->kobj, groups);
2808}
2809EXPORT_SYMBOL_GPL(device_add_groups);
2810
2811void device_remove_groups(struct device *dev,
2812 const struct attribute_group **groups)
2813{
2814 sysfs_remove_groups(&dev->kobj, groups);
2815}
2816EXPORT_SYMBOL_GPL(device_remove_groups);
2817
2818union device_attr_group_devres {
2819 const struct attribute_group *group;
2820 const struct attribute_group **groups;
2821};
2822
2823static void devm_attr_group_remove(struct device *dev, void *res)
2824{
2825 union device_attr_group_devres *devres = res;
2826 const struct attribute_group *group = devres->group;
2827
2828 dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2829 sysfs_remove_group(&dev->kobj, group);
2830}
2831
2832static void devm_attr_groups_remove(struct device *dev, void *res)
2833{
2834 union device_attr_group_devres *devres = res;
2835 const struct attribute_group **groups = devres->groups;
2836
2837 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2838 sysfs_remove_groups(&dev->kobj, groups);
2839}
2840
2841/**
2842 * devm_device_add_group - given a device, create a managed attribute group
2843 * @dev: The device to create the group for
2844 * @grp: The attribute group to create
2845 *
2846 * This function creates a group for the first time. It will explicitly
2847 * warn and error if any of the attribute files being created already exist.
2848 *
2849 * Returns 0 on success or error code on failure.
2850 */
2851int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2852{
2853 union device_attr_group_devres *devres;
2854 int error;
2855
2856 devres = devres_alloc(devm_attr_group_remove,
2857 sizeof(*devres), GFP_KERNEL);
2858 if (!devres)
2859 return -ENOMEM;
2860
2861 error = sysfs_create_group(&dev->kobj, grp);
2862 if (error) {
2863 devres_free(devres);
2864 return error;
2865 }
2866
2867 devres->group = grp;
2868 devres_add(dev, devres);
2869 return 0;
2870}
2871EXPORT_SYMBOL_GPL(devm_device_add_group);
2872
2873/**
2874 * devm_device_add_groups - create a bunch of managed attribute groups
2875 * @dev: The device to create the group for
2876 * @groups: The attribute groups to create, NULL terminated
2877 *
2878 * This function creates a bunch of managed attribute groups. If an error
2879 * occurs when creating a group, all previously created groups will be
2880 * removed, unwinding everything back to the original state when this
2881 * function was called. It will explicitly warn and error if any of the
2882 * attribute files being created already exist.
2883 *
2884 * Returns 0 on success or error code from sysfs_create_group on failure.
2885 */
2886int devm_device_add_groups(struct device *dev,
2887 const struct attribute_group **groups)
2888{
2889 union device_attr_group_devres *devres;
2890 int error;
2891
2892 devres = devres_alloc(devm_attr_groups_remove,
2893 sizeof(*devres), GFP_KERNEL);
2894 if (!devres)
2895 return -ENOMEM;
2896
2897 error = sysfs_create_groups(&dev->kobj, groups);
2898 if (error) {
2899 devres_free(devres);
2900 return error;
2901 }
2902
2903 devres->groups = groups;
2904 devres_add(dev, devres);
2905 return 0;
2906}
2907EXPORT_SYMBOL_GPL(devm_device_add_groups);
2908
2909static int device_add_attrs(struct device *dev)
2910{
2911 const struct class *class = dev->class;
2912 const struct device_type *type = dev->type;
2913 int error;
2914
2915 if (class) {
2916 error = device_add_groups(dev, class->dev_groups);
2917 if (error)
2918 return error;
2919 }
2920
2921 if (type) {
2922 error = device_add_groups(dev, type->groups);
2923 if (error)
2924 goto err_remove_class_groups;
2925 }
2926
2927 error = device_add_groups(dev, dev->groups);
2928 if (error)
2929 goto err_remove_type_groups;
2930
2931 if (device_supports_offline(dev) && !dev->offline_disabled) {
2932 error = device_create_file(dev, &dev_attr_online);
2933 if (error)
2934 goto err_remove_dev_groups;
2935 }
2936
2937 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2938 error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2939 if (error)
2940 goto err_remove_dev_online;
2941 }
2942
2943 if (dev_removable_is_valid(dev)) {
2944 error = device_create_file(dev, &dev_attr_removable);
2945 if (error)
2946 goto err_remove_dev_waiting_for_supplier;
2947 }
2948
2949 if (dev_add_physical_location(dev)) {
2950 error = device_add_group(dev,
2951 &dev_attr_physical_location_group);
2952 if (error)
2953 goto err_remove_dev_removable;
2954 }
2955
2956 return 0;
2957
2958 err_remove_dev_removable:
2959 device_remove_file(dev, &dev_attr_removable);
2960 err_remove_dev_waiting_for_supplier:
2961 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2962 err_remove_dev_online:
2963 device_remove_file(dev, &dev_attr_online);
2964 err_remove_dev_groups:
2965 device_remove_groups(dev, dev->groups);
2966 err_remove_type_groups:
2967 if (type)
2968 device_remove_groups(dev, type->groups);
2969 err_remove_class_groups:
2970 if (class)
2971 device_remove_groups(dev, class->dev_groups);
2972
2973 return error;
2974}
2975
2976static void device_remove_attrs(struct device *dev)
2977{
2978 const struct class *class = dev->class;
2979 const struct device_type *type = dev->type;
2980
2981 if (dev->physical_location) {
2982 device_remove_group(dev, &dev_attr_physical_location_group);
2983 kfree(dev->physical_location);
2984 }
2985
2986 device_remove_file(dev, &dev_attr_removable);
2987 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2988 device_remove_file(dev, &dev_attr_online);
2989 device_remove_groups(dev, dev->groups);
2990
2991 if (type)
2992 device_remove_groups(dev, type->groups);
2993
2994 if (class)
2995 device_remove_groups(dev, class->dev_groups);
2996}
2997
2998static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2999 char *buf)
3000{
3001 return print_dev_t(buf, dev->devt);
3002}
3003static DEVICE_ATTR_RO(dev);
3004
3005/* /sys/devices/ */
3006struct kset *devices_kset;
3007
3008/**
3009 * devices_kset_move_before - Move device in the devices_kset's list.
3010 * @deva: Device to move.
3011 * @devb: Device @deva should come before.
3012 */
3013static void devices_kset_move_before(struct device *deva, struct device *devb)
3014{
3015 if (!devices_kset)
3016 return;
3017 pr_debug("devices_kset: Moving %s before %s\n",
3018 dev_name(deva), dev_name(devb));
3019 spin_lock(&devices_kset->list_lock);
3020 list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
3021 spin_unlock(&devices_kset->list_lock);
3022}
3023
3024/**
3025 * devices_kset_move_after - Move device in the devices_kset's list.
3026 * @deva: Device to move
3027 * @devb: Device @deva should come after.
3028 */
3029static void devices_kset_move_after(struct device *deva, struct device *devb)
3030{
3031 if (!devices_kset)
3032 return;
3033 pr_debug("devices_kset: Moving %s after %s\n",
3034 dev_name(deva), dev_name(devb));
3035 spin_lock(&devices_kset->list_lock);
3036 list_move(&deva->kobj.entry, &devb->kobj.entry);
3037 spin_unlock(&devices_kset->list_lock);
3038}
3039
3040/**
3041 * devices_kset_move_last - move the device to the end of devices_kset's list.
3042 * @dev: device to move
3043 */
3044void devices_kset_move_last(struct device *dev)
3045{
3046 if (!devices_kset)
3047 return;
3048 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
3049 spin_lock(&devices_kset->list_lock);
3050 list_move_tail(&dev->kobj.entry, &devices_kset->list);
3051 spin_unlock(&devices_kset->list_lock);
3052}
3053
3054/**
3055 * device_create_file - create sysfs attribute file for device.
3056 * @dev: device.
3057 * @attr: device attribute descriptor.
3058 */
3059int device_create_file(struct device *dev,
3060 const struct device_attribute *attr)
3061{
3062 int error = 0;
3063
3064 if (dev) {
3065 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
3066 "Attribute %s: write permission without 'store'\n",
3067 attr->attr.name);
3068 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
3069 "Attribute %s: read permission without 'show'\n",
3070 attr->attr.name);
3071 error = sysfs_create_file(&dev->kobj, &attr->attr);
3072 }
3073
3074 return error;
3075}
3076EXPORT_SYMBOL_GPL(device_create_file);
3077
3078/**
3079 * device_remove_file - remove sysfs attribute file.
3080 * @dev: device.
3081 * @attr: device attribute descriptor.
3082 */
3083void device_remove_file(struct device *dev,
3084 const struct device_attribute *attr)
3085{
3086 if (dev)
3087 sysfs_remove_file(&dev->kobj, &attr->attr);
3088}
3089EXPORT_SYMBOL_GPL(device_remove_file);
3090
3091/**
3092 * device_remove_file_self - remove sysfs attribute file from its own method.
3093 * @dev: device.
3094 * @attr: device attribute descriptor.
3095 *
3096 * See kernfs_remove_self() for details.
3097 */
3098bool device_remove_file_self(struct device *dev,
3099 const struct device_attribute *attr)
3100{
3101 if (dev)
3102 return sysfs_remove_file_self(&dev->kobj, &attr->attr);
3103 else
3104 return false;
3105}
3106EXPORT_SYMBOL_GPL(device_remove_file_self);
3107
3108/**
3109 * device_create_bin_file - create sysfs binary attribute file for device.
3110 * @dev: device.
3111 * @attr: device binary attribute descriptor.
3112 */
3113int device_create_bin_file(struct device *dev,
3114 const struct bin_attribute *attr)
3115{
3116 int error = -EINVAL;
3117 if (dev)
3118 error = sysfs_create_bin_file(&dev->kobj, attr);
3119 return error;
3120}
3121EXPORT_SYMBOL_GPL(device_create_bin_file);
3122
3123/**
3124 * device_remove_bin_file - remove sysfs binary attribute file
3125 * @dev: device.
3126 * @attr: device binary attribute descriptor.
3127 */
3128void device_remove_bin_file(struct device *dev,
3129 const struct bin_attribute *attr)
3130{
3131 if (dev)
3132 sysfs_remove_bin_file(&dev->kobj, attr);
3133}
3134EXPORT_SYMBOL_GPL(device_remove_bin_file);
3135
3136static void klist_children_get(struct klist_node *n)
3137{
3138 struct device_private *p = to_device_private_parent(n);
3139 struct device *dev = p->device;
3140
3141 get_device(dev);
3142}
3143
3144static void klist_children_put(struct klist_node *n)
3145{
3146 struct device_private *p = to_device_private_parent(n);
3147 struct device *dev = p->device;
3148
3149 put_device(dev);
3150}
3151
3152/**
3153 * device_initialize - init device structure.
3154 * @dev: device.
3155 *
3156 * This prepares the device for use by other layers by initializing
3157 * its fields.
3158 * It is the first half of device_register(), if called by
3159 * that function, though it can also be called separately, so one
3160 * may use @dev's fields. In particular, get_device()/put_device()
3161 * may be used for reference counting of @dev after calling this
3162 * function.
3163 *
3164 * All fields in @dev must be initialized by the caller to 0, except
3165 * for those explicitly set to some other value. The simplest
3166 * approach is to use kzalloc() to allocate the structure containing
3167 * @dev.
3168 *
3169 * NOTE: Use put_device() to give up your reference instead of freeing
3170 * @dev directly once you have called this function.
3171 */
3172void device_initialize(struct device *dev)
3173{
3174 dev->kobj.kset = devices_kset;
3175 kobject_init(&dev->kobj, &device_ktype);
3176 INIT_LIST_HEAD(&dev->dma_pools);
3177 mutex_init(&dev->mutex);
3178 lockdep_set_novalidate_class(&dev->mutex);
3179 spin_lock_init(&dev->devres_lock);
3180 INIT_LIST_HEAD(&dev->devres_head);
3181 device_pm_init(dev);
3182 set_dev_node(dev, NUMA_NO_NODE);
3183 INIT_LIST_HEAD(&dev->links.consumers);
3184 INIT_LIST_HEAD(&dev->links.suppliers);
3185 INIT_LIST_HEAD(&dev->links.defer_sync);
3186 dev->links.status = DL_DEV_NO_DRIVER;
3187#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
3188 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
3189 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
3190 dev->dma_coherent = dma_default_coherent;
3191#endif
3192 swiotlb_dev_init(dev);
3193}
3194EXPORT_SYMBOL_GPL(device_initialize);
3195
3196struct kobject *virtual_device_parent(struct device *dev)
3197{
3198 static struct kobject *virtual_dir = NULL;
3199
3200 if (!virtual_dir)
3201 virtual_dir = kobject_create_and_add("virtual",
3202 &devices_kset->kobj);
3203
3204 return virtual_dir;
3205}
3206
3207struct class_dir {
3208 struct kobject kobj;
3209 const struct class *class;
3210};
3211
3212#define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
3213
3214static void class_dir_release(struct kobject *kobj)
3215{
3216 struct class_dir *dir = to_class_dir(kobj);
3217 kfree(dir);
3218}
3219
3220static const
3221struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj)
3222{
3223 const struct class_dir *dir = to_class_dir(kobj);
3224 return dir->class->ns_type;
3225}
3226
3227static const struct kobj_type class_dir_ktype = {
3228 .release = class_dir_release,
3229 .sysfs_ops = &kobj_sysfs_ops,
3230 .child_ns_type = class_dir_child_ns_type
3231};
3232
3233static struct kobject *class_dir_create_and_add(struct subsys_private *sp,
3234 struct kobject *parent_kobj)
3235{
3236 struct class_dir *dir;
3237 int retval;
3238
3239 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
3240 if (!dir)
3241 return ERR_PTR(-ENOMEM);
3242
3243 dir->class = sp->class;
3244 kobject_init(&dir->kobj, &class_dir_ktype);
3245
3246 dir->kobj.kset = &sp->glue_dirs;
3247
3248 retval = kobject_add(&dir->kobj, parent_kobj, "%s", sp->class->name);
3249 if (retval < 0) {
3250 kobject_put(&dir->kobj);
3251 return ERR_PTR(retval);
3252 }
3253 return &dir->kobj;
3254}
3255
3256static DEFINE_MUTEX(gdp_mutex);
3257
3258static struct kobject *get_device_parent(struct device *dev,
3259 struct device *parent)
3260{
3261 struct subsys_private *sp = class_to_subsys(dev->class);
3262 struct kobject *kobj = NULL;
3263
3264 if (sp) {
3265 struct kobject *parent_kobj;
3266 struct kobject *k;
3267
3268 /*
3269 * If we have no parent, we live in "virtual".
3270 * Class-devices with a non class-device as parent, live
3271 * in a "glue" directory to prevent namespace collisions.
3272 */
3273 if (parent == NULL)
3274 parent_kobj = virtual_device_parent(dev);
3275 else if (parent->class && !dev->class->ns_type) {
3276 subsys_put(sp);
3277 return &parent->kobj;
3278 } else {
3279 parent_kobj = &parent->kobj;
3280 }
3281
3282 mutex_lock(&gdp_mutex);
3283
3284 /* find our class-directory at the parent and reference it */
3285 spin_lock(&sp->glue_dirs.list_lock);
3286 list_for_each_entry(k, &sp->glue_dirs.list, entry)
3287 if (k->parent == parent_kobj) {
3288 kobj = kobject_get(k);
3289 break;
3290 }
3291 spin_unlock(&sp->glue_dirs.list_lock);
3292 if (kobj) {
3293 mutex_unlock(&gdp_mutex);
3294 subsys_put(sp);
3295 return kobj;
3296 }
3297
3298 /* or create a new class-directory at the parent device */
3299 k = class_dir_create_and_add(sp, parent_kobj);
3300 /* do not emit an uevent for this simple "glue" directory */
3301 mutex_unlock(&gdp_mutex);
3302 subsys_put(sp);
3303 return k;
3304 }
3305
3306 /* subsystems can specify a default root directory for their devices */
3307 if (!parent && dev->bus) {
3308 struct device *dev_root = bus_get_dev_root(dev->bus);
3309
3310 if (dev_root) {
3311 kobj = &dev_root->kobj;
3312 put_device(dev_root);
3313 return kobj;
3314 }
3315 }
3316
3317 if (parent)
3318 return &parent->kobj;
3319 return NULL;
3320}
3321
3322static inline bool live_in_glue_dir(struct kobject *kobj,
3323 struct device *dev)
3324{
3325 struct subsys_private *sp;
3326 bool retval;
3327
3328 if (!kobj || !dev->class)
3329 return false;
3330
3331 sp = class_to_subsys(dev->class);
3332 if (!sp)
3333 return false;
3334
3335 if (kobj->kset == &sp->glue_dirs)
3336 retval = true;
3337 else
3338 retval = false;
3339
3340 subsys_put(sp);
3341 return retval;
3342}
3343
3344static inline struct kobject *get_glue_dir(struct device *dev)
3345{
3346 return dev->kobj.parent;
3347}
3348
3349/**
3350 * kobject_has_children - Returns whether a kobject has children.
3351 * @kobj: the object to test
3352 *
3353 * This will return whether a kobject has other kobjects as children.
3354 *
3355 * It does NOT account for the presence of attribute files, only sub
3356 * directories. It also assumes there is no concurrent addition or
3357 * removal of such children, and thus relies on external locking.
3358 */
3359static inline bool kobject_has_children(struct kobject *kobj)
3360{
3361 WARN_ON_ONCE(kref_read(&kobj->kref) == 0);
3362
3363 return kobj->sd && kobj->sd->dir.subdirs;
3364}
3365
3366/*
3367 * make sure cleaning up dir as the last step, we need to make
3368 * sure .release handler of kobject is run with holding the
3369 * global lock
3370 */
3371static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3372{
3373 unsigned int ref;
3374
3375 /* see if we live in a "glue" directory */
3376 if (!live_in_glue_dir(glue_dir, dev))
3377 return;
3378
3379 mutex_lock(&gdp_mutex);
3380 /**
3381 * There is a race condition between removing glue directory
3382 * and adding a new device under the glue directory.
3383 *
3384 * CPU1: CPU2:
3385 *
3386 * device_add()
3387 * get_device_parent()
3388 * class_dir_create_and_add()
3389 * kobject_add_internal()
3390 * create_dir() // create glue_dir
3391 *
3392 * device_add()
3393 * get_device_parent()
3394 * kobject_get() // get glue_dir
3395 *
3396 * device_del()
3397 * cleanup_glue_dir()
3398 * kobject_del(glue_dir)
3399 *
3400 * kobject_add()
3401 * kobject_add_internal()
3402 * create_dir() // in glue_dir
3403 * sysfs_create_dir_ns()
3404 * kernfs_create_dir_ns(sd)
3405 *
3406 * sysfs_remove_dir() // glue_dir->sd=NULL
3407 * sysfs_put() // free glue_dir->sd
3408 *
3409 * // sd is freed
3410 * kernfs_new_node(sd)
3411 * kernfs_get(glue_dir)
3412 * kernfs_add_one()
3413 * kernfs_put()
3414 *
3415 * Before CPU1 remove last child device under glue dir, if CPU2 add
3416 * a new device under glue dir, the glue_dir kobject reference count
3417 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3418 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3419 * and sysfs_put(). This result in glue_dir->sd is freed.
3420 *
3421 * Then the CPU2 will see a stale "empty" but still potentially used
3422 * glue dir around in kernfs_new_node().
3423 *
3424 * In order to avoid this happening, we also should make sure that
3425 * kernfs_node for glue_dir is released in CPU1 only when refcount
3426 * for glue_dir kobj is 1.
3427 */
3428 ref = kref_read(&glue_dir->kref);
3429 if (!kobject_has_children(glue_dir) && !--ref)
3430 kobject_del(glue_dir);
3431 kobject_put(glue_dir);
3432 mutex_unlock(&gdp_mutex);
3433}
3434
3435static int device_add_class_symlinks(struct device *dev)
3436{
3437 struct device_node *of_node = dev_of_node(dev);
3438 struct subsys_private *sp;
3439 int error;
3440
3441 if (of_node) {
3442 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3443 if (error)
3444 dev_warn(dev, "Error %d creating of_node link\n",error);
3445 /* An error here doesn't warrant bringing down the device */
3446 }
3447
3448 sp = class_to_subsys(dev->class);
3449 if (!sp)
3450 return 0;
3451
3452 error = sysfs_create_link(&dev->kobj, &sp->subsys.kobj, "subsystem");
3453 if (error)
3454 goto out_devnode;
3455
3456 if (dev->parent && device_is_not_partition(dev)) {
3457 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3458 "device");
3459 if (error)
3460 goto out_subsys;
3461 }
3462
3463 /* link in the class directory pointing to the device */
3464 error = sysfs_create_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3465 if (error)
3466 goto out_device;
3467 goto exit;
3468
3469out_device:
3470 sysfs_remove_link(&dev->kobj, "device");
3471out_subsys:
3472 sysfs_remove_link(&dev->kobj, "subsystem");
3473out_devnode:
3474 sysfs_remove_link(&dev->kobj, "of_node");
3475exit:
3476 subsys_put(sp);
3477 return error;
3478}
3479
3480static void device_remove_class_symlinks(struct device *dev)
3481{
3482 struct subsys_private *sp = class_to_subsys(dev->class);
3483
3484 if (dev_of_node(dev))
3485 sysfs_remove_link(&dev->kobj, "of_node");
3486
3487 if (!sp)
3488 return;
3489
3490 if (dev->parent && device_is_not_partition(dev))
3491 sysfs_remove_link(&dev->kobj, "device");
3492 sysfs_remove_link(&dev->kobj, "subsystem");
3493 sysfs_delete_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3494 subsys_put(sp);
3495}
3496
3497/**
3498 * dev_set_name - set a device name
3499 * @dev: device
3500 * @fmt: format string for the device's name
3501 */
3502int dev_set_name(struct device *dev, const char *fmt, ...)
3503{
3504 va_list vargs;
3505 int err;
3506
3507 va_start(vargs, fmt);
3508 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3509 va_end(vargs);
3510 return err;
3511}
3512EXPORT_SYMBOL_GPL(dev_set_name);
3513
3514/* select a /sys/dev/ directory for the device */
3515static struct kobject *device_to_dev_kobj(struct device *dev)
3516{
3517 if (is_blockdev(dev))
3518 return sysfs_dev_block_kobj;
3519 else
3520 return sysfs_dev_char_kobj;
3521}
3522
3523static int device_create_sys_dev_entry(struct device *dev)
3524{
3525 struct kobject *kobj = device_to_dev_kobj(dev);
3526 int error = 0;
3527 char devt_str[15];
3528
3529 if (kobj) {
3530 format_dev_t(devt_str, dev->devt);
3531 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3532 }
3533
3534 return error;
3535}
3536
3537static void device_remove_sys_dev_entry(struct device *dev)
3538{
3539 struct kobject *kobj = device_to_dev_kobj(dev);
3540 char devt_str[15];
3541
3542 if (kobj) {
3543 format_dev_t(devt_str, dev->devt);
3544 sysfs_remove_link(kobj, devt_str);
3545 }
3546}
3547
3548static int device_private_init(struct device *dev)
3549{
3550 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3551 if (!dev->p)
3552 return -ENOMEM;
3553 dev->p->device = dev;
3554 klist_init(&dev->p->klist_children, klist_children_get,
3555 klist_children_put);
3556 INIT_LIST_HEAD(&dev->p->deferred_probe);
3557 return 0;
3558}
3559
3560/**
3561 * device_add - add device to device hierarchy.
3562 * @dev: device.
3563 *
3564 * This is part 2 of device_register(), though may be called
3565 * separately _iff_ device_initialize() has been called separately.
3566 *
3567 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3568 * to the global and sibling lists for the device, then
3569 * adds it to the other relevant subsystems of the driver model.
3570 *
3571 * Do not call this routine or device_register() more than once for
3572 * any device structure. The driver model core is not designed to work
3573 * with devices that get unregistered and then spring back to life.
3574 * (Among other things, it's very hard to guarantee that all references
3575 * to the previous incarnation of @dev have been dropped.) Allocate
3576 * and register a fresh new struct device instead.
3577 *
3578 * NOTE: _Never_ directly free @dev after calling this function, even
3579 * if it returned an error! Always use put_device() to give up your
3580 * reference instead.
3581 *
3582 * Rule of thumb is: if device_add() succeeds, you should call
3583 * device_del() when you want to get rid of it. If device_add() has
3584 * *not* succeeded, use *only* put_device() to drop the reference
3585 * count.
3586 */
3587int device_add(struct device *dev)
3588{
3589 struct subsys_private *sp;
3590 struct device *parent;
3591 struct kobject *kobj;
3592 struct class_interface *class_intf;
3593 int error = -EINVAL;
3594 struct kobject *glue_dir = NULL;
3595
3596 dev = get_device(dev);
3597 if (!dev)
3598 goto done;
3599
3600 if (!dev->p) {
3601 error = device_private_init(dev);
3602 if (error)
3603 goto done;
3604 }
3605
3606 /*
3607 * for statically allocated devices, which should all be converted
3608 * some day, we need to initialize the name. We prevent reading back
3609 * the name, and force the use of dev_name()
3610 */
3611 if (dev->init_name) {
3612 error = dev_set_name(dev, "%s", dev->init_name);
3613 dev->init_name = NULL;
3614 }
3615
3616 if (dev_name(dev))
3617 error = 0;
3618 /* subsystems can specify simple device enumeration */
3619 else if (dev->bus && dev->bus->dev_name)
3620 error = dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3621 else
3622 error = -EINVAL;
3623 if (error)
3624 goto name_error;
3625
3626 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3627
3628 parent = get_device(dev->parent);
3629 kobj = get_device_parent(dev, parent);
3630 if (IS_ERR(kobj)) {
3631 error = PTR_ERR(kobj);
3632 goto parent_error;
3633 }
3634 if (kobj)
3635 dev->kobj.parent = kobj;
3636
3637 /* use parent numa_node */
3638 if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3639 set_dev_node(dev, dev_to_node(parent));
3640
3641 /* first, register with generic layer. */
3642 /* we require the name to be set before, and pass NULL */
3643 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3644 if (error) {
3645 glue_dir = kobj;
3646 goto Error;
3647 }
3648
3649 /* notify platform of device entry */
3650 device_platform_notify(dev);
3651
3652 error = device_create_file(dev, &dev_attr_uevent);
3653 if (error)
3654 goto attrError;
3655
3656 error = device_add_class_symlinks(dev);
3657 if (error)
3658 goto SymlinkError;
3659 error = device_add_attrs(dev);
3660 if (error)
3661 goto AttrsError;
3662 error = bus_add_device(dev);
3663 if (error)
3664 goto BusError;
3665 error = dpm_sysfs_add(dev);
3666 if (error)
3667 goto DPMError;
3668 device_pm_add(dev);
3669
3670 if (MAJOR(dev->devt)) {
3671 error = device_create_file(dev, &dev_attr_dev);
3672 if (error)
3673 goto DevAttrError;
3674
3675 error = device_create_sys_dev_entry(dev);
3676 if (error)
3677 goto SysEntryError;
3678
3679 devtmpfs_create_node(dev);
3680 }
3681
3682 /* Notify clients of device addition. This call must come
3683 * after dpm_sysfs_add() and before kobject_uevent().
3684 */
3685 bus_notify(dev, BUS_NOTIFY_ADD_DEVICE);
3686 kobject_uevent(&dev->kobj, KOBJ_ADD);
3687
3688 /*
3689 * Check if any of the other devices (consumers) have been waiting for
3690 * this device (supplier) to be added so that they can create a device
3691 * link to it.
3692 *
3693 * This needs to happen after device_pm_add() because device_link_add()
3694 * requires the supplier be registered before it's called.
3695 *
3696 * But this also needs to happen before bus_probe_device() to make sure
3697 * waiting consumers can link to it before the driver is bound to the
3698 * device and the driver sync_state callback is called for this device.
3699 */
3700 if (dev->fwnode && !dev->fwnode->dev) {
3701 dev->fwnode->dev = dev;
3702 fw_devlink_link_device(dev);
3703 }
3704
3705 bus_probe_device(dev);
3706
3707 /*
3708 * If all driver registration is done and a newly added device doesn't
3709 * match with any driver, don't block its consumers from probing in
3710 * case the consumer device is able to operate without this supplier.
3711 */
3712 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3713 fw_devlink_unblock_consumers(dev);
3714
3715 if (parent)
3716 klist_add_tail(&dev->p->knode_parent,
3717 &parent->p->klist_children);
3718
3719 sp = class_to_subsys(dev->class);
3720 if (sp) {
3721 mutex_lock(&sp->mutex);
3722 /* tie the class to the device */
3723 klist_add_tail(&dev->p->knode_class, &sp->klist_devices);
3724
3725 /* notify any interfaces that the device is here */
3726 list_for_each_entry(class_intf, &sp->interfaces, node)
3727 if (class_intf->add_dev)
3728 class_intf->add_dev(dev);
3729 mutex_unlock(&sp->mutex);
3730 subsys_put(sp);
3731 }
3732done:
3733 put_device(dev);
3734 return error;
3735 SysEntryError:
3736 if (MAJOR(dev->devt))
3737 device_remove_file(dev, &dev_attr_dev);
3738 DevAttrError:
3739 device_pm_remove(dev);
3740 dpm_sysfs_remove(dev);
3741 DPMError:
3742 dev->driver = NULL;
3743 bus_remove_device(dev);
3744 BusError:
3745 device_remove_attrs(dev);
3746 AttrsError:
3747 device_remove_class_symlinks(dev);
3748 SymlinkError:
3749 device_remove_file(dev, &dev_attr_uevent);
3750 attrError:
3751 device_platform_notify_remove(dev);
3752 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3753 glue_dir = get_glue_dir(dev);
3754 kobject_del(&dev->kobj);
3755 Error:
3756 cleanup_glue_dir(dev, glue_dir);
3757parent_error:
3758 put_device(parent);
3759name_error:
3760 kfree(dev->p);
3761 dev->p = NULL;
3762 goto done;
3763}
3764EXPORT_SYMBOL_GPL(device_add);
3765
3766/**
3767 * device_register - register a device with the system.
3768 * @dev: pointer to the device structure
3769 *
3770 * This happens in two clean steps - initialize the device
3771 * and add it to the system. The two steps can be called
3772 * separately, but this is the easiest and most common.
3773 * I.e. you should only call the two helpers separately if
3774 * have a clearly defined need to use and refcount the device
3775 * before it is added to the hierarchy.
3776 *
3777 * For more information, see the kerneldoc for device_initialize()
3778 * and device_add().
3779 *
3780 * NOTE: _Never_ directly free @dev after calling this function, even
3781 * if it returned an error! Always use put_device() to give up the
3782 * reference initialized in this function instead.
3783 */
3784int device_register(struct device *dev)
3785{
3786 device_initialize(dev);
3787 return device_add(dev);
3788}
3789EXPORT_SYMBOL_GPL(device_register);
3790
3791/**
3792 * get_device - increment reference count for device.
3793 * @dev: device.
3794 *
3795 * This simply forwards the call to kobject_get(), though
3796 * we do take care to provide for the case that we get a NULL
3797 * pointer passed in.
3798 */
3799struct device *get_device(struct device *dev)
3800{
3801 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3802}
3803EXPORT_SYMBOL_GPL(get_device);
3804
3805/**
3806 * put_device - decrement reference count.
3807 * @dev: device in question.
3808 */
3809void put_device(struct device *dev)
3810{
3811 /* might_sleep(); */
3812 if (dev)
3813 kobject_put(&dev->kobj);
3814}
3815EXPORT_SYMBOL_GPL(put_device);
3816
3817bool kill_device(struct device *dev)
3818{
3819 /*
3820 * Require the device lock and set the "dead" flag to guarantee that
3821 * the update behavior is consistent with the other bitfields near
3822 * it and that we cannot have an asynchronous probe routine trying
3823 * to run while we are tearing out the bus/class/sysfs from
3824 * underneath the device.
3825 */
3826 device_lock_assert(dev);
3827
3828 if (dev->p->dead)
3829 return false;
3830 dev->p->dead = true;
3831 return true;
3832}
3833EXPORT_SYMBOL_GPL(kill_device);
3834
3835/**
3836 * device_del - delete device from system.
3837 * @dev: device.
3838 *
3839 * This is the first part of the device unregistration
3840 * sequence. This removes the device from the lists we control
3841 * from here, has it removed from the other driver model
3842 * subsystems it was added to in device_add(), and removes it
3843 * from the kobject hierarchy.
3844 *
3845 * NOTE: this should be called manually _iff_ device_add() was
3846 * also called manually.
3847 */
3848void device_del(struct device *dev)
3849{
3850 struct subsys_private *sp;
3851 struct device *parent = dev->parent;
3852 struct kobject *glue_dir = NULL;
3853 struct class_interface *class_intf;
3854 unsigned int noio_flag;
3855
3856 device_lock(dev);
3857 kill_device(dev);
3858 device_unlock(dev);
3859
3860 if (dev->fwnode && dev->fwnode->dev == dev)
3861 dev->fwnode->dev = NULL;
3862
3863 /* Notify clients of device removal. This call must come
3864 * before dpm_sysfs_remove().
3865 */
3866 noio_flag = memalloc_noio_save();
3867 bus_notify(dev, BUS_NOTIFY_DEL_DEVICE);
3868
3869 dpm_sysfs_remove(dev);
3870 if (parent)
3871 klist_del(&dev->p->knode_parent);
3872 if (MAJOR(dev->devt)) {
3873 devtmpfs_delete_node(dev);
3874 device_remove_sys_dev_entry(dev);
3875 device_remove_file(dev, &dev_attr_dev);
3876 }
3877
3878 sp = class_to_subsys(dev->class);
3879 if (sp) {
3880 device_remove_class_symlinks(dev);
3881
3882 mutex_lock(&sp->mutex);
3883 /* notify any interfaces that the device is now gone */
3884 list_for_each_entry(class_intf, &sp->interfaces, node)
3885 if (class_intf->remove_dev)
3886 class_intf->remove_dev(dev);
3887 /* remove the device from the class list */
3888 klist_del(&dev->p->knode_class);
3889 mutex_unlock(&sp->mutex);
3890 subsys_put(sp);
3891 }
3892 device_remove_file(dev, &dev_attr_uevent);
3893 device_remove_attrs(dev);
3894 bus_remove_device(dev);
3895 device_pm_remove(dev);
3896 driver_deferred_probe_del(dev);
3897 device_platform_notify_remove(dev);
3898 device_links_purge(dev);
3899
3900 /*
3901 * If a device does not have a driver attached, we need to clean
3902 * up any managed resources. We do this in device_release(), but
3903 * it's never called (and we leak the device) if a managed
3904 * resource holds a reference to the device. So release all
3905 * managed resources here, like we do in driver_detach(). We
3906 * still need to do so again in device_release() in case someone
3907 * adds a new resource after this point, though.
3908 */
3909 devres_release_all(dev);
3910
3911 bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE);
3912 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3913 glue_dir = get_glue_dir(dev);
3914 kobject_del(&dev->kobj);
3915 cleanup_glue_dir(dev, glue_dir);
3916 memalloc_noio_restore(noio_flag);
3917 put_device(parent);
3918}
3919EXPORT_SYMBOL_GPL(device_del);
3920
3921/**
3922 * device_unregister - unregister device from system.
3923 * @dev: device going away.
3924 *
3925 * We do this in two parts, like we do device_register(). First,
3926 * we remove it from all the subsystems with device_del(), then
3927 * we decrement the reference count via put_device(). If that
3928 * is the final reference count, the device will be cleaned up
3929 * via device_release() above. Otherwise, the structure will
3930 * stick around until the final reference to the device is dropped.
3931 */
3932void device_unregister(struct device *dev)
3933{
3934 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3935 device_del(dev);
3936 put_device(dev);
3937}
3938EXPORT_SYMBOL_GPL(device_unregister);
3939
3940static struct device *prev_device(struct klist_iter *i)
3941{
3942 struct klist_node *n = klist_prev(i);
3943 struct device *dev = NULL;
3944 struct device_private *p;
3945
3946 if (n) {
3947 p = to_device_private_parent(n);
3948 dev = p->device;
3949 }
3950 return dev;
3951}
3952
3953static struct device *next_device(struct klist_iter *i)
3954{
3955 struct klist_node *n = klist_next(i);
3956 struct device *dev = NULL;
3957 struct device_private *p;
3958
3959 if (n) {
3960 p = to_device_private_parent(n);
3961 dev = p->device;
3962 }
3963 return dev;
3964}
3965
3966/**
3967 * device_get_devnode - path of device node file
3968 * @dev: device
3969 * @mode: returned file access mode
3970 * @uid: returned file owner
3971 * @gid: returned file group
3972 * @tmp: possibly allocated string
3973 *
3974 * Return the relative path of a possible device node.
3975 * Non-default names may need to allocate a memory to compose
3976 * a name. This memory is returned in tmp and needs to be
3977 * freed by the caller.
3978 */
3979const char *device_get_devnode(const struct device *dev,
3980 umode_t *mode, kuid_t *uid, kgid_t *gid,
3981 const char **tmp)
3982{
3983 char *s;
3984
3985 *tmp = NULL;
3986
3987 /* the device type may provide a specific name */
3988 if (dev->type && dev->type->devnode)
3989 *tmp = dev->type->devnode(dev, mode, uid, gid);
3990 if (*tmp)
3991 return *tmp;
3992
3993 /* the class may provide a specific name */
3994 if (dev->class && dev->class->devnode)
3995 *tmp = dev->class->devnode(dev, mode);
3996 if (*tmp)
3997 return *tmp;
3998
3999 /* return name without allocation, tmp == NULL */
4000 if (strchr(dev_name(dev), '!') == NULL)
4001 return dev_name(dev);
4002
4003 /* replace '!' in the name with '/' */
4004 s = kstrdup_and_replace(dev_name(dev), '!', '/', GFP_KERNEL);
4005 if (!s)
4006 return NULL;
4007 return *tmp = s;
4008}
4009
4010/**
4011 * device_for_each_child - device child iterator.
4012 * @parent: parent struct device.
4013 * @fn: function to be called for each device.
4014 * @data: data for the callback.
4015 *
4016 * Iterate over @parent's child devices, and call @fn for each,
4017 * passing it @data.
4018 *
4019 * We check the return of @fn each time. If it returns anything
4020 * other than 0, we break out and return that value.
4021 */
4022int device_for_each_child(struct device *parent, void *data,
4023 int (*fn)(struct device *dev, void *data))
4024{
4025 struct klist_iter i;
4026 struct device *child;
4027 int error = 0;
4028
4029 if (!parent->p)
4030 return 0;
4031
4032 klist_iter_init(&parent->p->klist_children, &i);
4033 while (!error && (child = next_device(&i)))
4034 error = fn(child, data);
4035 klist_iter_exit(&i);
4036 return error;
4037}
4038EXPORT_SYMBOL_GPL(device_for_each_child);
4039
4040/**
4041 * device_for_each_child_reverse - device child iterator in reversed order.
4042 * @parent: parent struct device.
4043 * @fn: function to be called for each device.
4044 * @data: data for the callback.
4045 *
4046 * Iterate over @parent's child devices, and call @fn for each,
4047 * passing it @data.
4048 *
4049 * We check the return of @fn each time. If it returns anything
4050 * other than 0, we break out and return that value.
4051 */
4052int device_for_each_child_reverse(struct device *parent, void *data,
4053 int (*fn)(struct device *dev, void *data))
4054{
4055 struct klist_iter i;
4056 struct device *child;
4057 int error = 0;
4058
4059 if (!parent->p)
4060 return 0;
4061
4062 klist_iter_init(&parent->p->klist_children, &i);
4063 while ((child = prev_device(&i)) && !error)
4064 error = fn(child, data);
4065 klist_iter_exit(&i);
4066 return error;
4067}
4068EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
4069
4070/**
4071 * device_find_child - device iterator for locating a particular device.
4072 * @parent: parent struct device
4073 * @match: Callback function to check device
4074 * @data: Data to pass to match function
4075 *
4076 * This is similar to the device_for_each_child() function above, but it
4077 * returns a reference to a device that is 'found' for later use, as
4078 * determined by the @match callback.
4079 *
4080 * The callback should return 0 if the device doesn't match and non-zero
4081 * if it does. If the callback returns non-zero and a reference to the
4082 * current device can be obtained, this function will return to the caller
4083 * and not iterate over any more devices.
4084 *
4085 * NOTE: you will need to drop the reference with put_device() after use.
4086 */
4087struct device *device_find_child(struct device *parent, void *data,
4088 int (*match)(struct device *dev, void *data))
4089{
4090 struct klist_iter i;
4091 struct device *child;
4092
4093 if (!parent)
4094 return NULL;
4095
4096 klist_iter_init(&parent->p->klist_children, &i);
4097 while ((child = next_device(&i)))
4098 if (match(child, data) && get_device(child))
4099 break;
4100 klist_iter_exit(&i);
4101 return child;
4102}
4103EXPORT_SYMBOL_GPL(device_find_child);
4104
4105/**
4106 * device_find_child_by_name - device iterator for locating a child device.
4107 * @parent: parent struct device
4108 * @name: name of the child device
4109 *
4110 * This is similar to the device_find_child() function above, but it
4111 * returns a reference to a device that has the name @name.
4112 *
4113 * NOTE: you will need to drop the reference with put_device() after use.
4114 */
4115struct device *device_find_child_by_name(struct device *parent,
4116 const char *name)
4117{
4118 struct klist_iter i;
4119 struct device *child;
4120
4121 if (!parent)
4122 return NULL;
4123
4124 klist_iter_init(&parent->p->klist_children, &i);
4125 while ((child = next_device(&i)))
4126 if (sysfs_streq(dev_name(child), name) && get_device(child))
4127 break;
4128 klist_iter_exit(&i);
4129 return child;
4130}
4131EXPORT_SYMBOL_GPL(device_find_child_by_name);
4132
4133static int match_any(struct device *dev, void *unused)
4134{
4135 return 1;
4136}
4137
4138/**
4139 * device_find_any_child - device iterator for locating a child device, if any.
4140 * @parent: parent struct device
4141 *
4142 * This is similar to the device_find_child() function above, but it
4143 * returns a reference to a child device, if any.
4144 *
4145 * NOTE: you will need to drop the reference with put_device() after use.
4146 */
4147struct device *device_find_any_child(struct device *parent)
4148{
4149 return device_find_child(parent, NULL, match_any);
4150}
4151EXPORT_SYMBOL_GPL(device_find_any_child);
4152
4153int __init devices_init(void)
4154{
4155 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
4156 if (!devices_kset)
4157 return -ENOMEM;
4158 dev_kobj = kobject_create_and_add("dev", NULL);
4159 if (!dev_kobj)
4160 goto dev_kobj_err;
4161 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
4162 if (!sysfs_dev_block_kobj)
4163 goto block_kobj_err;
4164 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
4165 if (!sysfs_dev_char_kobj)
4166 goto char_kobj_err;
4167
4168 return 0;
4169
4170 char_kobj_err:
4171 kobject_put(sysfs_dev_block_kobj);
4172 block_kobj_err:
4173 kobject_put(dev_kobj);
4174 dev_kobj_err:
4175 kset_unregister(devices_kset);
4176 return -ENOMEM;
4177}
4178
4179static int device_check_offline(struct device *dev, void *not_used)
4180{
4181 int ret;
4182
4183 ret = device_for_each_child(dev, NULL, device_check_offline);
4184 if (ret)
4185 return ret;
4186
4187 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
4188}
4189
4190/**
4191 * device_offline - Prepare the device for hot-removal.
4192 * @dev: Device to be put offline.
4193 *
4194 * Execute the device bus type's .offline() callback, if present, to prepare
4195 * the device for a subsequent hot-removal. If that succeeds, the device must
4196 * not be used until either it is removed or its bus type's .online() callback
4197 * is executed.
4198 *
4199 * Call under device_hotplug_lock.
4200 */
4201int device_offline(struct device *dev)
4202{
4203 int ret;
4204
4205 if (dev->offline_disabled)
4206 return -EPERM;
4207
4208 ret = device_for_each_child(dev, NULL, device_check_offline);
4209 if (ret)
4210 return ret;
4211
4212 device_lock(dev);
4213 if (device_supports_offline(dev)) {
4214 if (dev->offline) {
4215 ret = 1;
4216 } else {
4217 ret = dev->bus->offline(dev);
4218 if (!ret) {
4219 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
4220 dev->offline = true;
4221 }
4222 }
4223 }
4224 device_unlock(dev);
4225
4226 return ret;
4227}
4228
4229/**
4230 * device_online - Put the device back online after successful device_offline().
4231 * @dev: Device to be put back online.
4232 *
4233 * If device_offline() has been successfully executed for @dev, but the device
4234 * has not been removed subsequently, execute its bus type's .online() callback
4235 * to indicate that the device can be used again.
4236 *
4237 * Call under device_hotplug_lock.
4238 */
4239int device_online(struct device *dev)
4240{
4241 int ret = 0;
4242
4243 device_lock(dev);
4244 if (device_supports_offline(dev)) {
4245 if (dev->offline) {
4246 ret = dev->bus->online(dev);
4247 if (!ret) {
4248 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
4249 dev->offline = false;
4250 }
4251 } else {
4252 ret = 1;
4253 }
4254 }
4255 device_unlock(dev);
4256
4257 return ret;
4258}
4259
4260struct root_device {
4261 struct device dev;
4262 struct module *owner;
4263};
4264
4265static inline struct root_device *to_root_device(struct device *d)
4266{
4267 return container_of(d, struct root_device, dev);
4268}
4269
4270static void root_device_release(struct device *dev)
4271{
4272 kfree(to_root_device(dev));
4273}
4274
4275/**
4276 * __root_device_register - allocate and register a root device
4277 * @name: root device name
4278 * @owner: owner module of the root device, usually THIS_MODULE
4279 *
4280 * This function allocates a root device and registers it
4281 * using device_register(). In order to free the returned
4282 * device, use root_device_unregister().
4283 *
4284 * Root devices are dummy devices which allow other devices
4285 * to be grouped under /sys/devices. Use this function to
4286 * allocate a root device and then use it as the parent of
4287 * any device which should appear under /sys/devices/{name}
4288 *
4289 * The /sys/devices/{name} directory will also contain a
4290 * 'module' symlink which points to the @owner directory
4291 * in sysfs.
4292 *
4293 * Returns &struct device pointer on success, or ERR_PTR() on error.
4294 *
4295 * Note: You probably want to use root_device_register().
4296 */
4297struct device *__root_device_register(const char *name, struct module *owner)
4298{
4299 struct root_device *root;
4300 int err = -ENOMEM;
4301
4302 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
4303 if (!root)
4304 return ERR_PTR(err);
4305
4306 err = dev_set_name(&root->dev, "%s", name);
4307 if (err) {
4308 kfree(root);
4309 return ERR_PTR(err);
4310 }
4311
4312 root->dev.release = root_device_release;
4313
4314 err = device_register(&root->dev);
4315 if (err) {
4316 put_device(&root->dev);
4317 return ERR_PTR(err);
4318 }
4319
4320#ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
4321 if (owner) {
4322 struct module_kobject *mk = &owner->mkobj;
4323
4324 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
4325 if (err) {
4326 device_unregister(&root->dev);
4327 return ERR_PTR(err);
4328 }
4329 root->owner = owner;
4330 }
4331#endif
4332
4333 return &root->dev;
4334}
4335EXPORT_SYMBOL_GPL(__root_device_register);
4336
4337/**
4338 * root_device_unregister - unregister and free a root device
4339 * @dev: device going away
4340 *
4341 * This function unregisters and cleans up a device that was created by
4342 * root_device_register().
4343 */
4344void root_device_unregister(struct device *dev)
4345{
4346 struct root_device *root = to_root_device(dev);
4347
4348 if (root->owner)
4349 sysfs_remove_link(&root->dev.kobj, "module");
4350
4351 device_unregister(dev);
4352}
4353EXPORT_SYMBOL_GPL(root_device_unregister);
4354
4355
4356static void device_create_release(struct device *dev)
4357{
4358 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4359 kfree(dev);
4360}
4361
4362static __printf(6, 0) struct device *
4363device_create_groups_vargs(const struct class *class, struct device *parent,
4364 dev_t devt, void *drvdata,
4365 const struct attribute_group **groups,
4366 const char *fmt, va_list args)
4367{
4368 struct device *dev = NULL;
4369 int retval = -ENODEV;
4370
4371 if (IS_ERR_OR_NULL(class))
4372 goto error;
4373
4374 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4375 if (!dev) {
4376 retval = -ENOMEM;
4377 goto error;
4378 }
4379
4380 device_initialize(dev);
4381 dev->devt = devt;
4382 dev->class = class;
4383 dev->parent = parent;
4384 dev->groups = groups;
4385 dev->release = device_create_release;
4386 dev_set_drvdata(dev, drvdata);
4387
4388 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4389 if (retval)
4390 goto error;
4391
4392 retval = device_add(dev);
4393 if (retval)
4394 goto error;
4395
4396 return dev;
4397
4398error:
4399 put_device(dev);
4400 return ERR_PTR(retval);
4401}
4402
4403/**
4404 * device_create - creates a device and registers it with sysfs
4405 * @class: pointer to the struct class that this device should be registered to
4406 * @parent: pointer to the parent struct device of this new device, if any
4407 * @devt: the dev_t for the char device to be added
4408 * @drvdata: the data to be added to the device for callbacks
4409 * @fmt: string for the device's name
4410 *
4411 * This function can be used by char device classes. A struct device
4412 * will be created in sysfs, registered to the specified class.
4413 *
4414 * A "dev" file will be created, showing the dev_t for the device, if
4415 * the dev_t is not 0,0.
4416 * If a pointer to a parent struct device is passed in, the newly created
4417 * struct device will be a child of that device in sysfs.
4418 * The pointer to the struct device will be returned from the call.
4419 * Any further sysfs files that might be required can be created using this
4420 * pointer.
4421 *
4422 * Returns &struct device pointer on success, or ERR_PTR() on error.
4423 */
4424struct device *device_create(const struct class *class, struct device *parent,
4425 dev_t devt, void *drvdata, const char *fmt, ...)
4426{
4427 va_list vargs;
4428 struct device *dev;
4429
4430 va_start(vargs, fmt);
4431 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4432 fmt, vargs);
4433 va_end(vargs);
4434 return dev;
4435}
4436EXPORT_SYMBOL_GPL(device_create);
4437
4438/**
4439 * device_create_with_groups - creates a device and registers it with sysfs
4440 * @class: pointer to the struct class that this device should be registered to
4441 * @parent: pointer to the parent struct device of this new device, if any
4442 * @devt: the dev_t for the char device to be added
4443 * @drvdata: the data to be added to the device for callbacks
4444 * @groups: NULL-terminated list of attribute groups to be created
4445 * @fmt: string for the device's name
4446 *
4447 * This function can be used by char device classes. A struct device
4448 * will be created in sysfs, registered to the specified class.
4449 * Additional attributes specified in the groups parameter will also
4450 * be created automatically.
4451 *
4452 * A "dev" file will be created, showing the dev_t for the device, if
4453 * the dev_t is not 0,0.
4454 * If a pointer to a parent struct device is passed in, the newly created
4455 * struct device will be a child of that device in sysfs.
4456 * The pointer to the struct device will be returned from the call.
4457 * Any further sysfs files that might be required can be created using this
4458 * pointer.
4459 *
4460 * Returns &struct device pointer on success, or ERR_PTR() on error.
4461 */
4462struct device *device_create_with_groups(const struct class *class,
4463 struct device *parent, dev_t devt,
4464 void *drvdata,
4465 const struct attribute_group **groups,
4466 const char *fmt, ...)
4467{
4468 va_list vargs;
4469 struct device *dev;
4470
4471 va_start(vargs, fmt);
4472 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4473 fmt, vargs);
4474 va_end(vargs);
4475 return dev;
4476}
4477EXPORT_SYMBOL_GPL(device_create_with_groups);
4478
4479/**
4480 * device_destroy - removes a device that was created with device_create()
4481 * @class: pointer to the struct class that this device was registered with
4482 * @devt: the dev_t of the device that was previously registered
4483 *
4484 * This call unregisters and cleans up a device that was created with a
4485 * call to device_create().
4486 */
4487void device_destroy(const struct class *class, dev_t devt)
4488{
4489 struct device *dev;
4490
4491 dev = class_find_device_by_devt(class, devt);
4492 if (dev) {
4493 put_device(dev);
4494 device_unregister(dev);
4495 }
4496}
4497EXPORT_SYMBOL_GPL(device_destroy);
4498
4499/**
4500 * device_rename - renames a device
4501 * @dev: the pointer to the struct device to be renamed
4502 * @new_name: the new name of the device
4503 *
4504 * It is the responsibility of the caller to provide mutual
4505 * exclusion between two different calls of device_rename
4506 * on the same device to ensure that new_name is valid and
4507 * won't conflict with other devices.
4508 *
4509 * Note: given that some subsystems (networking and infiniband) use this
4510 * function, with no immediate plans for this to change, we cannot assume or
4511 * require that this function not be called at all.
4512 *
4513 * However, if you're writing new code, do not call this function. The following
4514 * text from Kay Sievers offers some insight:
4515 *
4516 * Renaming devices is racy at many levels, symlinks and other stuff are not
4517 * replaced atomically, and you get a "move" uevent, but it's not easy to
4518 * connect the event to the old and new device. Device nodes are not renamed at
4519 * all, there isn't even support for that in the kernel now.
4520 *
4521 * In the meantime, during renaming, your target name might be taken by another
4522 * driver, creating conflicts. Or the old name is taken directly after you
4523 * renamed it -- then you get events for the same DEVPATH, before you even see
4524 * the "move" event. It's just a mess, and nothing new should ever rely on
4525 * kernel device renaming. Besides that, it's not even implemented now for
4526 * other things than (driver-core wise very simple) network devices.
4527 *
4528 * Make up a "real" name in the driver before you register anything, or add
4529 * some other attributes for userspace to find the device, or use udev to add
4530 * symlinks -- but never rename kernel devices later, it's a complete mess. We
4531 * don't even want to get into that and try to implement the missing pieces in
4532 * the core. We really have other pieces to fix in the driver core mess. :)
4533 */
4534int device_rename(struct device *dev, const char *new_name)
4535{
4536 struct kobject *kobj = &dev->kobj;
4537 char *old_device_name = NULL;
4538 int error;
4539
4540 dev = get_device(dev);
4541 if (!dev)
4542 return -EINVAL;
4543
4544 dev_dbg(dev, "renaming to %s\n", new_name);
4545
4546 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4547 if (!old_device_name) {
4548 error = -ENOMEM;
4549 goto out;
4550 }
4551
4552 if (dev->class) {
4553 struct subsys_private *sp = class_to_subsys(dev->class);
4554
4555 if (!sp) {
4556 error = -EINVAL;
4557 goto out;
4558 }
4559
4560 error = sysfs_rename_link_ns(&sp->subsys.kobj, kobj, old_device_name,
4561 new_name, kobject_namespace(kobj));
4562 subsys_put(sp);
4563 if (error)
4564 goto out;
4565 }
4566
4567 error = kobject_rename(kobj, new_name);
4568 if (error)
4569 goto out;
4570
4571out:
4572 put_device(dev);
4573
4574 kfree(old_device_name);
4575
4576 return error;
4577}
4578EXPORT_SYMBOL_GPL(device_rename);
4579
4580static int device_move_class_links(struct device *dev,
4581 struct device *old_parent,
4582 struct device *new_parent)
4583{
4584 int error = 0;
4585
4586 if (old_parent)
4587 sysfs_remove_link(&dev->kobj, "device");
4588 if (new_parent)
4589 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4590 "device");
4591 return error;
4592}
4593
4594/**
4595 * device_move - moves a device to a new parent
4596 * @dev: the pointer to the struct device to be moved
4597 * @new_parent: the new parent of the device (can be NULL)
4598 * @dpm_order: how to reorder the dpm_list
4599 */
4600int device_move(struct device *dev, struct device *new_parent,
4601 enum dpm_order dpm_order)
4602{
4603 int error;
4604 struct device *old_parent;
4605 struct kobject *new_parent_kobj;
4606
4607 dev = get_device(dev);
4608 if (!dev)
4609 return -EINVAL;
4610
4611 device_pm_lock();
4612 new_parent = get_device(new_parent);
4613 new_parent_kobj = get_device_parent(dev, new_parent);
4614 if (IS_ERR(new_parent_kobj)) {
4615 error = PTR_ERR(new_parent_kobj);
4616 put_device(new_parent);
4617 goto out;
4618 }
4619
4620 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4621 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4622 error = kobject_move(&dev->kobj, new_parent_kobj);
4623 if (error) {
4624 cleanup_glue_dir(dev, new_parent_kobj);
4625 put_device(new_parent);
4626 goto out;
4627 }
4628 old_parent = dev->parent;
4629 dev->parent = new_parent;
4630 if (old_parent)
4631 klist_remove(&dev->p->knode_parent);
4632 if (new_parent) {
4633 klist_add_tail(&dev->p->knode_parent,
4634 &new_parent->p->klist_children);
4635 set_dev_node(dev, dev_to_node(new_parent));
4636 }
4637
4638 if (dev->class) {
4639 error = device_move_class_links(dev, old_parent, new_parent);
4640 if (error) {
4641 /* We ignore errors on cleanup since we're hosed anyway... */
4642 device_move_class_links(dev, new_parent, old_parent);
4643 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4644 if (new_parent)
4645 klist_remove(&dev->p->knode_parent);
4646 dev->parent = old_parent;
4647 if (old_parent) {
4648 klist_add_tail(&dev->p->knode_parent,
4649 &old_parent->p->klist_children);
4650 set_dev_node(dev, dev_to_node(old_parent));
4651 }
4652 }
4653 cleanup_glue_dir(dev, new_parent_kobj);
4654 put_device(new_parent);
4655 goto out;
4656 }
4657 }
4658 switch (dpm_order) {
4659 case DPM_ORDER_NONE:
4660 break;
4661 case DPM_ORDER_DEV_AFTER_PARENT:
4662 device_pm_move_after(dev, new_parent);
4663 devices_kset_move_after(dev, new_parent);
4664 break;
4665 case DPM_ORDER_PARENT_BEFORE_DEV:
4666 device_pm_move_before(new_parent, dev);
4667 devices_kset_move_before(new_parent, dev);
4668 break;
4669 case DPM_ORDER_DEV_LAST:
4670 device_pm_move_last(dev);
4671 devices_kset_move_last(dev);
4672 break;
4673 }
4674
4675 put_device(old_parent);
4676out:
4677 device_pm_unlock();
4678 put_device(dev);
4679 return error;
4680}
4681EXPORT_SYMBOL_GPL(device_move);
4682
4683static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4684 kgid_t kgid)
4685{
4686 struct kobject *kobj = &dev->kobj;
4687 const struct class *class = dev->class;
4688 const struct device_type *type = dev->type;
4689 int error;
4690
4691 if (class) {
4692 /*
4693 * Change the device groups of the device class for @dev to
4694 * @kuid/@kgid.
4695 */
4696 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4697 kgid);
4698 if (error)
4699 return error;
4700 }
4701
4702 if (type) {
4703 /*
4704 * Change the device groups of the device type for @dev to
4705 * @kuid/@kgid.
4706 */
4707 error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4708 kgid);
4709 if (error)
4710 return error;
4711 }
4712
4713 /* Change the device groups of @dev to @kuid/@kgid. */
4714 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4715 if (error)
4716 return error;
4717
4718 if (device_supports_offline(dev) && !dev->offline_disabled) {
4719 /* Change online device attributes of @dev to @kuid/@kgid. */
4720 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4721 kuid, kgid);
4722 if (error)
4723 return error;
4724 }
4725
4726 return 0;
4727}
4728
4729/**
4730 * device_change_owner - change the owner of an existing device.
4731 * @dev: device.
4732 * @kuid: new owner's kuid
4733 * @kgid: new owner's kgid
4734 *
4735 * This changes the owner of @dev and its corresponding sysfs entries to
4736 * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4737 * core.
4738 *
4739 * Returns 0 on success or error code on failure.
4740 */
4741int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4742{
4743 int error;
4744 struct kobject *kobj = &dev->kobj;
4745 struct subsys_private *sp;
4746
4747 dev = get_device(dev);
4748 if (!dev)
4749 return -EINVAL;
4750
4751 /*
4752 * Change the kobject and the default attributes and groups of the
4753 * ktype associated with it to @kuid/@kgid.
4754 */
4755 error = sysfs_change_owner(kobj, kuid, kgid);
4756 if (error)
4757 goto out;
4758
4759 /*
4760 * Change the uevent file for @dev to the new owner. The uevent file
4761 * was created in a separate step when @dev got added and we mirror
4762 * that step here.
4763 */
4764 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4765 kgid);
4766 if (error)
4767 goto out;
4768
4769 /*
4770 * Change the device groups, the device groups associated with the
4771 * device class, and the groups associated with the device type of @dev
4772 * to @kuid/@kgid.
4773 */
4774 error = device_attrs_change_owner(dev, kuid, kgid);
4775 if (error)
4776 goto out;
4777
4778 error = dpm_sysfs_change_owner(dev, kuid, kgid);
4779 if (error)
4780 goto out;
4781
4782 /*
4783 * Change the owner of the symlink located in the class directory of
4784 * the device class associated with @dev which points to the actual
4785 * directory entry for @dev to @kuid/@kgid. This ensures that the
4786 * symlink shows the same permissions as its target.
4787 */
4788 sp = class_to_subsys(dev->class);
4789 if (!sp) {
4790 error = -EINVAL;
4791 goto out;
4792 }
4793 error = sysfs_link_change_owner(&sp->subsys.kobj, &dev->kobj, dev_name(dev), kuid, kgid);
4794 subsys_put(sp);
4795
4796out:
4797 put_device(dev);
4798 return error;
4799}
4800EXPORT_SYMBOL_GPL(device_change_owner);
4801
4802/**
4803 * device_shutdown - call ->shutdown() on each device to shutdown.
4804 */
4805void device_shutdown(void)
4806{
4807 struct device *dev, *parent;
4808
4809 wait_for_device_probe();
4810 device_block_probing();
4811
4812 cpufreq_suspend();
4813
4814 spin_lock(&devices_kset->list_lock);
4815 /*
4816 * Walk the devices list backward, shutting down each in turn.
4817 * Beware that device unplug events may also start pulling
4818 * devices offline, even as the system is shutting down.
4819 */
4820 while (!list_empty(&devices_kset->list)) {
4821 dev = list_entry(devices_kset->list.prev, struct device,
4822 kobj.entry);
4823
4824 /*
4825 * hold reference count of device's parent to
4826 * prevent it from being freed because parent's
4827 * lock is to be held
4828 */
4829 parent = get_device(dev->parent);
4830 get_device(dev);
4831 /*
4832 * Make sure the device is off the kset list, in the
4833 * event that dev->*->shutdown() doesn't remove it.
4834 */
4835 list_del_init(&dev->kobj.entry);
4836 spin_unlock(&devices_kset->list_lock);
4837
4838 /* hold lock to avoid race with probe/release */
4839 if (parent)
4840 device_lock(parent);
4841 device_lock(dev);
4842
4843 /* Don't allow any more runtime suspends */
4844 pm_runtime_get_noresume(dev);
4845 pm_runtime_barrier(dev);
4846
4847 if (dev->class && dev->class->shutdown_pre) {
4848 if (initcall_debug)
4849 dev_info(dev, "shutdown_pre\n");
4850 dev->class->shutdown_pre(dev);
4851 }
4852 if (dev->bus && dev->bus->shutdown) {
4853 if (initcall_debug)
4854 dev_info(dev, "shutdown\n");
4855 dev->bus->shutdown(dev);
4856 } else if (dev->driver && dev->driver->shutdown) {
4857 if (initcall_debug)
4858 dev_info(dev, "shutdown\n");
4859 dev->driver->shutdown(dev);
4860 }
4861
4862 device_unlock(dev);
4863 if (parent)
4864 device_unlock(parent);
4865
4866 put_device(dev);
4867 put_device(parent);
4868
4869 spin_lock(&devices_kset->list_lock);
4870 }
4871 spin_unlock(&devices_kset->list_lock);
4872}
4873
4874/*
4875 * Device logging functions
4876 */
4877
4878#ifdef CONFIG_PRINTK
4879static void
4880set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4881{
4882 const char *subsys;
4883
4884 memset(dev_info, 0, sizeof(*dev_info));
4885
4886 if (dev->class)
4887 subsys = dev->class->name;
4888 else if (dev->bus)
4889 subsys = dev->bus->name;
4890 else
4891 return;
4892
4893 strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4894
4895 /*
4896 * Add device identifier DEVICE=:
4897 * b12:8 block dev_t
4898 * c127:3 char dev_t
4899 * n8 netdev ifindex
4900 * +sound:card0 subsystem:devname
4901 */
4902 if (MAJOR(dev->devt)) {
4903 char c;
4904
4905 if (strcmp(subsys, "block") == 0)
4906 c = 'b';
4907 else
4908 c = 'c';
4909
4910 snprintf(dev_info->device, sizeof(dev_info->device),
4911 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4912 } else if (strcmp(subsys, "net") == 0) {
4913 struct net_device *net = to_net_dev(dev);
4914
4915 snprintf(dev_info->device, sizeof(dev_info->device),
4916 "n%u", net->ifindex);
4917 } else {
4918 snprintf(dev_info->device, sizeof(dev_info->device),
4919 "+%s:%s", subsys, dev_name(dev));
4920 }
4921}
4922
4923int dev_vprintk_emit(int level, const struct device *dev,
4924 const char *fmt, va_list args)
4925{
4926 struct dev_printk_info dev_info;
4927
4928 set_dev_info(dev, &dev_info);
4929
4930 return vprintk_emit(0, level, &dev_info, fmt, args);
4931}
4932EXPORT_SYMBOL(dev_vprintk_emit);
4933
4934int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4935{
4936 va_list args;
4937 int r;
4938
4939 va_start(args, fmt);
4940
4941 r = dev_vprintk_emit(level, dev, fmt, args);
4942
4943 va_end(args);
4944
4945 return r;
4946}
4947EXPORT_SYMBOL(dev_printk_emit);
4948
4949static void __dev_printk(const char *level, const struct device *dev,
4950 struct va_format *vaf)
4951{
4952 if (dev)
4953 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4954 dev_driver_string(dev), dev_name(dev), vaf);
4955 else
4956 printk("%s(NULL device *): %pV", level, vaf);
4957}
4958
4959void _dev_printk(const char *level, const struct device *dev,
4960 const char *fmt, ...)
4961{
4962 struct va_format vaf;
4963 va_list args;
4964
4965 va_start(args, fmt);
4966
4967 vaf.fmt = fmt;
4968 vaf.va = &args;
4969
4970 __dev_printk(level, dev, &vaf);
4971
4972 va_end(args);
4973}
4974EXPORT_SYMBOL(_dev_printk);
4975
4976#define define_dev_printk_level(func, kern_level) \
4977void func(const struct device *dev, const char *fmt, ...) \
4978{ \
4979 struct va_format vaf; \
4980 va_list args; \
4981 \
4982 va_start(args, fmt); \
4983 \
4984 vaf.fmt = fmt; \
4985 vaf.va = &args; \
4986 \
4987 __dev_printk(kern_level, dev, &vaf); \
4988 \
4989 va_end(args); \
4990} \
4991EXPORT_SYMBOL(func);
4992
4993define_dev_printk_level(_dev_emerg, KERN_EMERG);
4994define_dev_printk_level(_dev_alert, KERN_ALERT);
4995define_dev_printk_level(_dev_crit, KERN_CRIT);
4996define_dev_printk_level(_dev_err, KERN_ERR);
4997define_dev_printk_level(_dev_warn, KERN_WARNING);
4998define_dev_printk_level(_dev_notice, KERN_NOTICE);
4999define_dev_printk_level(_dev_info, KERN_INFO);
5000
5001#endif
5002
5003/**
5004 * dev_err_probe - probe error check and log helper
5005 * @dev: the pointer to the struct device
5006 * @err: error value to test
5007 * @fmt: printf-style format string
5008 * @...: arguments as specified in the format string
5009 *
5010 * This helper implements common pattern present in probe functions for error
5011 * checking: print debug or error message depending if the error value is
5012 * -EPROBE_DEFER and propagate error upwards.
5013 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
5014 * checked later by reading devices_deferred debugfs attribute.
5015 * It replaces code sequence::
5016 *
5017 * if (err != -EPROBE_DEFER)
5018 * dev_err(dev, ...);
5019 * else
5020 * dev_dbg(dev, ...);
5021 * return err;
5022 *
5023 * with::
5024 *
5025 * return dev_err_probe(dev, err, ...);
5026 *
5027 * Using this helper in your probe function is totally fine even if @err is
5028 * known to never be -EPROBE_DEFER.
5029 * The benefit compared to a normal dev_err() is the standardized format
5030 * of the error code, it being emitted symbolically (i.e. you get "EAGAIN"
5031 * instead of "-35") and the fact that the error code is returned which allows
5032 * more compact error paths.
5033 *
5034 * Returns @err.
5035 */
5036int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
5037{
5038 struct va_format vaf;
5039 va_list args;
5040
5041 va_start(args, fmt);
5042 vaf.fmt = fmt;
5043 vaf.va = &args;
5044
5045 if (err != -EPROBE_DEFER) {
5046 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5047 } else {
5048 device_set_deferred_probe_reason(dev, &vaf);
5049 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5050 }
5051
5052 va_end(args);
5053
5054 return err;
5055}
5056EXPORT_SYMBOL_GPL(dev_err_probe);
5057
5058static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
5059{
5060 return fwnode && !IS_ERR(fwnode->secondary);
5061}
5062
5063/**
5064 * set_primary_fwnode - Change the primary firmware node of a given device.
5065 * @dev: Device to handle.
5066 * @fwnode: New primary firmware node of the device.
5067 *
5068 * Set the device's firmware node pointer to @fwnode, but if a secondary
5069 * firmware node of the device is present, preserve it.
5070 *
5071 * Valid fwnode cases are:
5072 * - primary --> secondary --> -ENODEV
5073 * - primary --> NULL
5074 * - secondary --> -ENODEV
5075 * - NULL
5076 */
5077void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5078{
5079 struct device *parent = dev->parent;
5080 struct fwnode_handle *fn = dev->fwnode;
5081
5082 if (fwnode) {
5083 if (fwnode_is_primary(fn))
5084 fn = fn->secondary;
5085
5086 if (fn) {
5087 WARN_ON(fwnode->secondary);
5088 fwnode->secondary = fn;
5089 }
5090 dev->fwnode = fwnode;
5091 } else {
5092 if (fwnode_is_primary(fn)) {
5093 dev->fwnode = fn->secondary;
5094
5095 /* Skip nullifying fn->secondary if the primary is shared */
5096 if (parent && fn == parent->fwnode)
5097 return;
5098
5099 /* Set fn->secondary = NULL, so fn remains the primary fwnode */
5100 fn->secondary = NULL;
5101 } else {
5102 dev->fwnode = NULL;
5103 }
5104 }
5105}
5106EXPORT_SYMBOL_GPL(set_primary_fwnode);
5107
5108/**
5109 * set_secondary_fwnode - Change the secondary firmware node of a given device.
5110 * @dev: Device to handle.
5111 * @fwnode: New secondary firmware node of the device.
5112 *
5113 * If a primary firmware node of the device is present, set its secondary
5114 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to
5115 * @fwnode.
5116 */
5117void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5118{
5119 if (fwnode)
5120 fwnode->secondary = ERR_PTR(-ENODEV);
5121
5122 if (fwnode_is_primary(dev->fwnode))
5123 dev->fwnode->secondary = fwnode;
5124 else
5125 dev->fwnode = fwnode;
5126}
5127EXPORT_SYMBOL_GPL(set_secondary_fwnode);
5128
5129/**
5130 * device_set_of_node_from_dev - reuse device-tree node of another device
5131 * @dev: device whose device-tree node is being set
5132 * @dev2: device whose device-tree node is being reused
5133 *
5134 * Takes another reference to the new device-tree node after first dropping
5135 * any reference held to the old node.
5136 */
5137void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
5138{
5139 of_node_put(dev->of_node);
5140 dev->of_node = of_node_get(dev2->of_node);
5141 dev->of_node_reused = true;
5142}
5143EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
5144
5145void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
5146{
5147 dev->fwnode = fwnode;
5148 dev->of_node = to_of_node(fwnode);
5149}
5150EXPORT_SYMBOL_GPL(device_set_node);
5151
5152int device_match_name(struct device *dev, const void *name)
5153{
5154 return sysfs_streq(dev_name(dev), name);
5155}
5156EXPORT_SYMBOL_GPL(device_match_name);
5157
5158int device_match_of_node(struct device *dev, const void *np)
5159{
5160 return dev->of_node == np;
5161}
5162EXPORT_SYMBOL_GPL(device_match_of_node);
5163
5164int device_match_fwnode(struct device *dev, const void *fwnode)
5165{
5166 return dev_fwnode(dev) == fwnode;
5167}
5168EXPORT_SYMBOL_GPL(device_match_fwnode);
5169
5170int device_match_devt(struct device *dev, const void *pdevt)
5171{
5172 return dev->devt == *(dev_t *)pdevt;
5173}
5174EXPORT_SYMBOL_GPL(device_match_devt);
5175
5176int device_match_acpi_dev(struct device *dev, const void *adev)
5177{
5178 return ACPI_COMPANION(dev) == adev;
5179}
5180EXPORT_SYMBOL(device_match_acpi_dev);
5181
5182int device_match_acpi_handle(struct device *dev, const void *handle)
5183{
5184 return ACPI_HANDLE(dev) == handle;
5185}
5186EXPORT_SYMBOL(device_match_acpi_handle);
5187
5188int device_match_any(struct device *dev, const void *unused)
5189{
5190 return 1;
5191}
5192EXPORT_SYMBOL_GPL(device_match_any);