Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71#include <linux/uaccess.h>
72#include <linux/bitmap.h>
73#include <linux/capability.h>
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
77#include <linux/hash.h>
78#include <linux/slab.h>
79#include <linux/sched.h>
80#include <linux/sched/mm.h>
81#include <linux/mutex.h>
82#include <linux/rwsem.h>
83#include <linux/string.h>
84#include <linux/mm.h>
85#include <linux/socket.h>
86#include <linux/sockios.h>
87#include <linux/errno.h>
88#include <linux/interrupt.h>
89#include <linux/if_ether.h>
90#include <linux/netdevice.h>
91#include <linux/etherdevice.h>
92#include <linux/ethtool.h>
93#include <linux/skbuff.h>
94#include <linux/kthread.h>
95#include <linux/bpf.h>
96#include <linux/bpf_trace.h>
97#include <net/net_namespace.h>
98#include <net/sock.h>
99#include <net/busy_poll.h>
100#include <linux/rtnetlink.h>
101#include <linux/stat.h>
102#include <net/dsa.h>
103#include <net/dst.h>
104#include <net/dst_metadata.h>
105#include <net/gro.h>
106#include <net/pkt_sched.h>
107#include <net/pkt_cls.h>
108#include <net/checksum.h>
109#include <net/xfrm.h>
110#include <net/tcx.h>
111#include <linux/highmem.h>
112#include <linux/init.h>
113#include <linux/module.h>
114#include <linux/netpoll.h>
115#include <linux/rcupdate.h>
116#include <linux/delay.h>
117#include <net/iw_handler.h>
118#include <asm/current.h>
119#include <linux/audit.h>
120#include <linux/dmaengine.h>
121#include <linux/err.h>
122#include <linux/ctype.h>
123#include <linux/if_arp.h>
124#include <linux/if_vlan.h>
125#include <linux/ip.h>
126#include <net/ip.h>
127#include <net/mpls.h>
128#include <linux/ipv6.h>
129#include <linux/in.h>
130#include <linux/jhash.h>
131#include <linux/random.h>
132#include <trace/events/napi.h>
133#include <trace/events/net.h>
134#include <trace/events/skb.h>
135#include <trace/events/qdisc.h>
136#include <trace/events/xdp.h>
137#include <linux/inetdevice.h>
138#include <linux/cpu_rmap.h>
139#include <linux/static_key.h>
140#include <linux/hashtable.h>
141#include <linux/vmalloc.h>
142#include <linux/if_macvlan.h>
143#include <linux/errqueue.h>
144#include <linux/hrtimer.h>
145#include <linux/netfilter_netdev.h>
146#include <linux/crash_dump.h>
147#include <linux/sctp.h>
148#include <net/udp_tunnel.h>
149#include <linux/net_namespace.h>
150#include <linux/indirect_call_wrapper.h>
151#include <net/devlink.h>
152#include <linux/pm_runtime.h>
153#include <linux/prandom.h>
154#include <linux/once_lite.h>
155#include <net/netdev_rx_queue.h>
156
157#include "dev.h"
158#include "net-sysfs.h"
159
160static DEFINE_SPINLOCK(ptype_lock);
161struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162struct list_head ptype_all __read_mostly; /* Taps */
163
164static int netif_rx_internal(struct sk_buff *skb);
165static int call_netdevice_notifiers_extack(unsigned long val,
166 struct net_device *dev,
167 struct netlink_ext_ack *extack);
168
169/*
170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171 * semaphore.
172 *
173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174 *
175 * Writers must hold the rtnl semaphore while they loop through the
176 * dev_base_head list, and hold dev_base_lock for writing when they do the
177 * actual updates. This allows pure readers to access the list even
178 * while a writer is preparing to update it.
179 *
180 * To put it another way, dev_base_lock is held for writing only to
181 * protect against pure readers; the rtnl semaphore provides the
182 * protection against other writers.
183 *
184 * See, for example usages, register_netdevice() and
185 * unregister_netdevice(), which must be called with the rtnl
186 * semaphore held.
187 */
188DEFINE_RWLOCK(dev_base_lock);
189EXPORT_SYMBOL(dev_base_lock);
190
191static DEFINE_MUTEX(ifalias_mutex);
192
193/* protects napi_hash addition/deletion and napi_gen_id */
194static DEFINE_SPINLOCK(napi_hash_lock);
195
196static unsigned int napi_gen_id = NR_CPUS;
197static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198
199static DECLARE_RWSEM(devnet_rename_sem);
200
201static inline void dev_base_seq_inc(struct net *net)
202{
203 while (++net->dev_base_seq == 0)
204 ;
205}
206
207static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208{
209 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210
211 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212}
213
214static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215{
216 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217}
218
219static inline void rps_lock_irqsave(struct softnet_data *sd,
220 unsigned long *flags)
221{
222 if (IS_ENABLED(CONFIG_RPS))
223 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
224 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
225 local_irq_save(*flags);
226}
227
228static inline void rps_lock_irq_disable(struct softnet_data *sd)
229{
230 if (IS_ENABLED(CONFIG_RPS))
231 spin_lock_irq(&sd->input_pkt_queue.lock);
232 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
233 local_irq_disable();
234}
235
236static inline void rps_unlock_irq_restore(struct softnet_data *sd,
237 unsigned long *flags)
238{
239 if (IS_ENABLED(CONFIG_RPS))
240 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
241 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
242 local_irq_restore(*flags);
243}
244
245static inline void rps_unlock_irq_enable(struct softnet_data *sd)
246{
247 if (IS_ENABLED(CONFIG_RPS))
248 spin_unlock_irq(&sd->input_pkt_queue.lock);
249 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
250 local_irq_enable();
251}
252
253static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
254 const char *name)
255{
256 struct netdev_name_node *name_node;
257
258 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
259 if (!name_node)
260 return NULL;
261 INIT_HLIST_NODE(&name_node->hlist);
262 name_node->dev = dev;
263 name_node->name = name;
264 return name_node;
265}
266
267static struct netdev_name_node *
268netdev_name_node_head_alloc(struct net_device *dev)
269{
270 struct netdev_name_node *name_node;
271
272 name_node = netdev_name_node_alloc(dev, dev->name);
273 if (!name_node)
274 return NULL;
275 INIT_LIST_HEAD(&name_node->list);
276 return name_node;
277}
278
279static void netdev_name_node_free(struct netdev_name_node *name_node)
280{
281 kfree(name_node);
282}
283
284static void netdev_name_node_add(struct net *net,
285 struct netdev_name_node *name_node)
286{
287 hlist_add_head_rcu(&name_node->hlist,
288 dev_name_hash(net, name_node->name));
289}
290
291static void netdev_name_node_del(struct netdev_name_node *name_node)
292{
293 hlist_del_rcu(&name_node->hlist);
294}
295
296static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
297 const char *name)
298{
299 struct hlist_head *head = dev_name_hash(net, name);
300 struct netdev_name_node *name_node;
301
302 hlist_for_each_entry(name_node, head, hlist)
303 if (!strcmp(name_node->name, name))
304 return name_node;
305 return NULL;
306}
307
308static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
309 const char *name)
310{
311 struct hlist_head *head = dev_name_hash(net, name);
312 struct netdev_name_node *name_node;
313
314 hlist_for_each_entry_rcu(name_node, head, hlist)
315 if (!strcmp(name_node->name, name))
316 return name_node;
317 return NULL;
318}
319
320bool netdev_name_in_use(struct net *net, const char *name)
321{
322 return netdev_name_node_lookup(net, name);
323}
324EXPORT_SYMBOL(netdev_name_in_use);
325
326int netdev_name_node_alt_create(struct net_device *dev, const char *name)
327{
328 struct netdev_name_node *name_node;
329 struct net *net = dev_net(dev);
330
331 name_node = netdev_name_node_lookup(net, name);
332 if (name_node)
333 return -EEXIST;
334 name_node = netdev_name_node_alloc(dev, name);
335 if (!name_node)
336 return -ENOMEM;
337 netdev_name_node_add(net, name_node);
338 /* The node that holds dev->name acts as a head of per-device list. */
339 list_add_tail_rcu(&name_node->list, &dev->name_node->list);
340
341 return 0;
342}
343
344static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
345{
346 list_del(&name_node->list);
347 kfree(name_node->name);
348 netdev_name_node_free(name_node);
349}
350
351int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
352{
353 struct netdev_name_node *name_node;
354 struct net *net = dev_net(dev);
355
356 name_node = netdev_name_node_lookup(net, name);
357 if (!name_node)
358 return -ENOENT;
359 /* lookup might have found our primary name or a name belonging
360 * to another device.
361 */
362 if (name_node == dev->name_node || name_node->dev != dev)
363 return -EINVAL;
364
365 netdev_name_node_del(name_node);
366 synchronize_rcu();
367 __netdev_name_node_alt_destroy(name_node);
368
369 return 0;
370}
371
372static void netdev_name_node_alt_flush(struct net_device *dev)
373{
374 struct netdev_name_node *name_node, *tmp;
375
376 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
377 __netdev_name_node_alt_destroy(name_node);
378}
379
380/* Device list insertion */
381static void list_netdevice(struct net_device *dev)
382{
383 struct netdev_name_node *name_node;
384 struct net *net = dev_net(dev);
385
386 ASSERT_RTNL();
387
388 write_lock(&dev_base_lock);
389 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
390 netdev_name_node_add(net, dev->name_node);
391 hlist_add_head_rcu(&dev->index_hlist,
392 dev_index_hash(net, dev->ifindex));
393 write_unlock(&dev_base_lock);
394
395 netdev_for_each_altname(dev, name_node)
396 netdev_name_node_add(net, name_node);
397
398 /* We reserved the ifindex, this can't fail */
399 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
400
401 dev_base_seq_inc(net);
402}
403
404/* Device list removal
405 * caller must respect a RCU grace period before freeing/reusing dev
406 */
407static void unlist_netdevice(struct net_device *dev, bool lock)
408{
409 struct netdev_name_node *name_node;
410 struct net *net = dev_net(dev);
411
412 ASSERT_RTNL();
413
414 xa_erase(&net->dev_by_index, dev->ifindex);
415
416 netdev_for_each_altname(dev, name_node)
417 netdev_name_node_del(name_node);
418
419 /* Unlink dev from the device chain */
420 if (lock)
421 write_lock(&dev_base_lock);
422 list_del_rcu(&dev->dev_list);
423 netdev_name_node_del(dev->name_node);
424 hlist_del_rcu(&dev->index_hlist);
425 if (lock)
426 write_unlock(&dev_base_lock);
427
428 dev_base_seq_inc(dev_net(dev));
429}
430
431/*
432 * Our notifier list
433 */
434
435static RAW_NOTIFIER_HEAD(netdev_chain);
436
437/*
438 * Device drivers call our routines to queue packets here. We empty the
439 * queue in the local softnet handler.
440 */
441
442DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
443EXPORT_PER_CPU_SYMBOL(softnet_data);
444
445#ifdef CONFIG_LOCKDEP
446/*
447 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
448 * according to dev->type
449 */
450static const unsigned short netdev_lock_type[] = {
451 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
452 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
453 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
454 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
455 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
456 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
457 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
458 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
459 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
460 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
461 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
462 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
463 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
464 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
465 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
466
467static const char *const netdev_lock_name[] = {
468 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
469 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
470 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
471 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
472 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
473 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
474 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
475 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
476 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
477 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
478 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
479 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
480 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
481 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
482 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
483
484static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
485static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
486
487static inline unsigned short netdev_lock_pos(unsigned short dev_type)
488{
489 int i;
490
491 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
492 if (netdev_lock_type[i] == dev_type)
493 return i;
494 /* the last key is used by default */
495 return ARRAY_SIZE(netdev_lock_type) - 1;
496}
497
498static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
499 unsigned short dev_type)
500{
501 int i;
502
503 i = netdev_lock_pos(dev_type);
504 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
505 netdev_lock_name[i]);
506}
507
508static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
509{
510 int i;
511
512 i = netdev_lock_pos(dev->type);
513 lockdep_set_class_and_name(&dev->addr_list_lock,
514 &netdev_addr_lock_key[i],
515 netdev_lock_name[i]);
516}
517#else
518static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
519 unsigned short dev_type)
520{
521}
522
523static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
524{
525}
526#endif
527
528/*******************************************************************************
529 *
530 * Protocol management and registration routines
531 *
532 *******************************************************************************/
533
534
535/*
536 * Add a protocol ID to the list. Now that the input handler is
537 * smarter we can dispense with all the messy stuff that used to be
538 * here.
539 *
540 * BEWARE!!! Protocol handlers, mangling input packets,
541 * MUST BE last in hash buckets and checking protocol handlers
542 * MUST start from promiscuous ptype_all chain in net_bh.
543 * It is true now, do not change it.
544 * Explanation follows: if protocol handler, mangling packet, will
545 * be the first on list, it is not able to sense, that packet
546 * is cloned and should be copied-on-write, so that it will
547 * change it and subsequent readers will get broken packet.
548 * --ANK (980803)
549 */
550
551static inline struct list_head *ptype_head(const struct packet_type *pt)
552{
553 if (pt->type == htons(ETH_P_ALL))
554 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
555 else
556 return pt->dev ? &pt->dev->ptype_specific :
557 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
558}
559
560/**
561 * dev_add_pack - add packet handler
562 * @pt: packet type declaration
563 *
564 * Add a protocol handler to the networking stack. The passed &packet_type
565 * is linked into kernel lists and may not be freed until it has been
566 * removed from the kernel lists.
567 *
568 * This call does not sleep therefore it can not
569 * guarantee all CPU's that are in middle of receiving packets
570 * will see the new packet type (until the next received packet).
571 */
572
573void dev_add_pack(struct packet_type *pt)
574{
575 struct list_head *head = ptype_head(pt);
576
577 spin_lock(&ptype_lock);
578 list_add_rcu(&pt->list, head);
579 spin_unlock(&ptype_lock);
580}
581EXPORT_SYMBOL(dev_add_pack);
582
583/**
584 * __dev_remove_pack - remove packet handler
585 * @pt: packet type declaration
586 *
587 * Remove a protocol handler that was previously added to the kernel
588 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
589 * from the kernel lists and can be freed or reused once this function
590 * returns.
591 *
592 * The packet type might still be in use by receivers
593 * and must not be freed until after all the CPU's have gone
594 * through a quiescent state.
595 */
596void __dev_remove_pack(struct packet_type *pt)
597{
598 struct list_head *head = ptype_head(pt);
599 struct packet_type *pt1;
600
601 spin_lock(&ptype_lock);
602
603 list_for_each_entry(pt1, head, list) {
604 if (pt == pt1) {
605 list_del_rcu(&pt->list);
606 goto out;
607 }
608 }
609
610 pr_warn("dev_remove_pack: %p not found\n", pt);
611out:
612 spin_unlock(&ptype_lock);
613}
614EXPORT_SYMBOL(__dev_remove_pack);
615
616/**
617 * dev_remove_pack - remove packet handler
618 * @pt: packet type declaration
619 *
620 * Remove a protocol handler that was previously added to the kernel
621 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
622 * from the kernel lists and can be freed or reused once this function
623 * returns.
624 *
625 * This call sleeps to guarantee that no CPU is looking at the packet
626 * type after return.
627 */
628void dev_remove_pack(struct packet_type *pt)
629{
630 __dev_remove_pack(pt);
631
632 synchronize_net();
633}
634EXPORT_SYMBOL(dev_remove_pack);
635
636
637/*******************************************************************************
638 *
639 * Device Interface Subroutines
640 *
641 *******************************************************************************/
642
643/**
644 * dev_get_iflink - get 'iflink' value of a interface
645 * @dev: targeted interface
646 *
647 * Indicates the ifindex the interface is linked to.
648 * Physical interfaces have the same 'ifindex' and 'iflink' values.
649 */
650
651int dev_get_iflink(const struct net_device *dev)
652{
653 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
654 return dev->netdev_ops->ndo_get_iflink(dev);
655
656 return dev->ifindex;
657}
658EXPORT_SYMBOL(dev_get_iflink);
659
660/**
661 * dev_fill_metadata_dst - Retrieve tunnel egress information.
662 * @dev: targeted interface
663 * @skb: The packet.
664 *
665 * For better visibility of tunnel traffic OVS needs to retrieve
666 * egress tunnel information for a packet. Following API allows
667 * user to get this info.
668 */
669int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
670{
671 struct ip_tunnel_info *info;
672
673 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
674 return -EINVAL;
675
676 info = skb_tunnel_info_unclone(skb);
677 if (!info)
678 return -ENOMEM;
679 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
680 return -EINVAL;
681
682 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
683}
684EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
685
686static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
687{
688 int k = stack->num_paths++;
689
690 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
691 return NULL;
692
693 return &stack->path[k];
694}
695
696int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
697 struct net_device_path_stack *stack)
698{
699 const struct net_device *last_dev;
700 struct net_device_path_ctx ctx = {
701 .dev = dev,
702 };
703 struct net_device_path *path;
704 int ret = 0;
705
706 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
707 stack->num_paths = 0;
708 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
709 last_dev = ctx.dev;
710 path = dev_fwd_path(stack);
711 if (!path)
712 return -1;
713
714 memset(path, 0, sizeof(struct net_device_path));
715 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
716 if (ret < 0)
717 return -1;
718
719 if (WARN_ON_ONCE(last_dev == ctx.dev))
720 return -1;
721 }
722
723 if (!ctx.dev)
724 return ret;
725
726 path = dev_fwd_path(stack);
727 if (!path)
728 return -1;
729 path->type = DEV_PATH_ETHERNET;
730 path->dev = ctx.dev;
731
732 return ret;
733}
734EXPORT_SYMBOL_GPL(dev_fill_forward_path);
735
736/**
737 * __dev_get_by_name - find a device by its name
738 * @net: the applicable net namespace
739 * @name: name to find
740 *
741 * Find an interface by name. Must be called under RTNL semaphore
742 * or @dev_base_lock. If the name is found a pointer to the device
743 * is returned. If the name is not found then %NULL is returned. The
744 * reference counters are not incremented so the caller must be
745 * careful with locks.
746 */
747
748struct net_device *__dev_get_by_name(struct net *net, const char *name)
749{
750 struct netdev_name_node *node_name;
751
752 node_name = netdev_name_node_lookup(net, name);
753 return node_name ? node_name->dev : NULL;
754}
755EXPORT_SYMBOL(__dev_get_by_name);
756
757/**
758 * dev_get_by_name_rcu - find a device by its name
759 * @net: the applicable net namespace
760 * @name: name to find
761 *
762 * Find an interface by name.
763 * If the name is found a pointer to the device is returned.
764 * If the name is not found then %NULL is returned.
765 * The reference counters are not incremented so the caller must be
766 * careful with locks. The caller must hold RCU lock.
767 */
768
769struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
770{
771 struct netdev_name_node *node_name;
772
773 node_name = netdev_name_node_lookup_rcu(net, name);
774 return node_name ? node_name->dev : NULL;
775}
776EXPORT_SYMBOL(dev_get_by_name_rcu);
777
778/* Deprecated for new users, call netdev_get_by_name() instead */
779struct net_device *dev_get_by_name(struct net *net, const char *name)
780{
781 struct net_device *dev;
782
783 rcu_read_lock();
784 dev = dev_get_by_name_rcu(net, name);
785 dev_hold(dev);
786 rcu_read_unlock();
787 return dev;
788}
789EXPORT_SYMBOL(dev_get_by_name);
790
791/**
792 * netdev_get_by_name() - find a device by its name
793 * @net: the applicable net namespace
794 * @name: name to find
795 * @tracker: tracking object for the acquired reference
796 * @gfp: allocation flags for the tracker
797 *
798 * Find an interface by name. This can be called from any
799 * context and does its own locking. The returned handle has
800 * the usage count incremented and the caller must use netdev_put() to
801 * release it when it is no longer needed. %NULL is returned if no
802 * matching device is found.
803 */
804struct net_device *netdev_get_by_name(struct net *net, const char *name,
805 netdevice_tracker *tracker, gfp_t gfp)
806{
807 struct net_device *dev;
808
809 dev = dev_get_by_name(net, name);
810 if (dev)
811 netdev_tracker_alloc(dev, tracker, gfp);
812 return dev;
813}
814EXPORT_SYMBOL(netdev_get_by_name);
815
816/**
817 * __dev_get_by_index - find a device by its ifindex
818 * @net: the applicable net namespace
819 * @ifindex: index of device
820 *
821 * Search for an interface by index. Returns %NULL if the device
822 * is not found or a pointer to the device. The device has not
823 * had its reference counter increased so the caller must be careful
824 * about locking. The caller must hold either the RTNL semaphore
825 * or @dev_base_lock.
826 */
827
828struct net_device *__dev_get_by_index(struct net *net, int ifindex)
829{
830 struct net_device *dev;
831 struct hlist_head *head = dev_index_hash(net, ifindex);
832
833 hlist_for_each_entry(dev, head, index_hlist)
834 if (dev->ifindex == ifindex)
835 return dev;
836
837 return NULL;
838}
839EXPORT_SYMBOL(__dev_get_by_index);
840
841/**
842 * dev_get_by_index_rcu - find a device by its ifindex
843 * @net: the applicable net namespace
844 * @ifindex: index of device
845 *
846 * Search for an interface by index. Returns %NULL if the device
847 * is not found or a pointer to the device. The device has not
848 * had its reference counter increased so the caller must be careful
849 * about locking. The caller must hold RCU lock.
850 */
851
852struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
853{
854 struct net_device *dev;
855 struct hlist_head *head = dev_index_hash(net, ifindex);
856
857 hlist_for_each_entry_rcu(dev, head, index_hlist)
858 if (dev->ifindex == ifindex)
859 return dev;
860
861 return NULL;
862}
863EXPORT_SYMBOL(dev_get_by_index_rcu);
864
865/* Deprecated for new users, call netdev_get_by_index() instead */
866struct net_device *dev_get_by_index(struct net *net, int ifindex)
867{
868 struct net_device *dev;
869
870 rcu_read_lock();
871 dev = dev_get_by_index_rcu(net, ifindex);
872 dev_hold(dev);
873 rcu_read_unlock();
874 return dev;
875}
876EXPORT_SYMBOL(dev_get_by_index);
877
878/**
879 * netdev_get_by_index() - find a device by its ifindex
880 * @net: the applicable net namespace
881 * @ifindex: index of device
882 * @tracker: tracking object for the acquired reference
883 * @gfp: allocation flags for the tracker
884 *
885 * Search for an interface by index. Returns NULL if the device
886 * is not found or a pointer to the device. The device returned has
887 * had a reference added and the pointer is safe until the user calls
888 * netdev_put() to indicate they have finished with it.
889 */
890struct net_device *netdev_get_by_index(struct net *net, int ifindex,
891 netdevice_tracker *tracker, gfp_t gfp)
892{
893 struct net_device *dev;
894
895 dev = dev_get_by_index(net, ifindex);
896 if (dev)
897 netdev_tracker_alloc(dev, tracker, gfp);
898 return dev;
899}
900EXPORT_SYMBOL(netdev_get_by_index);
901
902/**
903 * dev_get_by_napi_id - find a device by napi_id
904 * @napi_id: ID of the NAPI struct
905 *
906 * Search for an interface by NAPI ID. Returns %NULL if the device
907 * is not found or a pointer to the device. The device has not had
908 * its reference counter increased so the caller must be careful
909 * about locking. The caller must hold RCU lock.
910 */
911
912struct net_device *dev_get_by_napi_id(unsigned int napi_id)
913{
914 struct napi_struct *napi;
915
916 WARN_ON_ONCE(!rcu_read_lock_held());
917
918 if (napi_id < MIN_NAPI_ID)
919 return NULL;
920
921 napi = napi_by_id(napi_id);
922
923 return napi ? napi->dev : NULL;
924}
925EXPORT_SYMBOL(dev_get_by_napi_id);
926
927/**
928 * netdev_get_name - get a netdevice name, knowing its ifindex.
929 * @net: network namespace
930 * @name: a pointer to the buffer where the name will be stored.
931 * @ifindex: the ifindex of the interface to get the name from.
932 */
933int netdev_get_name(struct net *net, char *name, int ifindex)
934{
935 struct net_device *dev;
936 int ret;
937
938 down_read(&devnet_rename_sem);
939 rcu_read_lock();
940
941 dev = dev_get_by_index_rcu(net, ifindex);
942 if (!dev) {
943 ret = -ENODEV;
944 goto out;
945 }
946
947 strcpy(name, dev->name);
948
949 ret = 0;
950out:
951 rcu_read_unlock();
952 up_read(&devnet_rename_sem);
953 return ret;
954}
955
956/**
957 * dev_getbyhwaddr_rcu - find a device by its hardware address
958 * @net: the applicable net namespace
959 * @type: media type of device
960 * @ha: hardware address
961 *
962 * Search for an interface by MAC address. Returns NULL if the device
963 * is not found or a pointer to the device.
964 * The caller must hold RCU or RTNL.
965 * The returned device has not had its ref count increased
966 * and the caller must therefore be careful about locking
967 *
968 */
969
970struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
971 const char *ha)
972{
973 struct net_device *dev;
974
975 for_each_netdev_rcu(net, dev)
976 if (dev->type == type &&
977 !memcmp(dev->dev_addr, ha, dev->addr_len))
978 return dev;
979
980 return NULL;
981}
982EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
983
984struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
985{
986 struct net_device *dev, *ret = NULL;
987
988 rcu_read_lock();
989 for_each_netdev_rcu(net, dev)
990 if (dev->type == type) {
991 dev_hold(dev);
992 ret = dev;
993 break;
994 }
995 rcu_read_unlock();
996 return ret;
997}
998EXPORT_SYMBOL(dev_getfirstbyhwtype);
999
1000/**
1001 * __dev_get_by_flags - find any device with given flags
1002 * @net: the applicable net namespace
1003 * @if_flags: IFF_* values
1004 * @mask: bitmask of bits in if_flags to check
1005 *
1006 * Search for any interface with the given flags. Returns NULL if a device
1007 * is not found or a pointer to the device. Must be called inside
1008 * rtnl_lock(), and result refcount is unchanged.
1009 */
1010
1011struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1012 unsigned short mask)
1013{
1014 struct net_device *dev, *ret;
1015
1016 ASSERT_RTNL();
1017
1018 ret = NULL;
1019 for_each_netdev(net, dev) {
1020 if (((dev->flags ^ if_flags) & mask) == 0) {
1021 ret = dev;
1022 break;
1023 }
1024 }
1025 return ret;
1026}
1027EXPORT_SYMBOL(__dev_get_by_flags);
1028
1029/**
1030 * dev_valid_name - check if name is okay for network device
1031 * @name: name string
1032 *
1033 * Network device names need to be valid file names to
1034 * allow sysfs to work. We also disallow any kind of
1035 * whitespace.
1036 */
1037bool dev_valid_name(const char *name)
1038{
1039 if (*name == '\0')
1040 return false;
1041 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1042 return false;
1043 if (!strcmp(name, ".") || !strcmp(name, ".."))
1044 return false;
1045
1046 while (*name) {
1047 if (*name == '/' || *name == ':' || isspace(*name))
1048 return false;
1049 name++;
1050 }
1051 return true;
1052}
1053EXPORT_SYMBOL(dev_valid_name);
1054
1055/**
1056 * __dev_alloc_name - allocate a name for a device
1057 * @net: network namespace to allocate the device name in
1058 * @name: name format string
1059 * @res: result name string
1060 *
1061 * Passed a format string - eg "lt%d" it will try and find a suitable
1062 * id. It scans list of devices to build up a free map, then chooses
1063 * the first empty slot. The caller must hold the dev_base or rtnl lock
1064 * while allocating the name and adding the device in order to avoid
1065 * duplicates.
1066 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1067 * Returns the number of the unit assigned or a negative errno code.
1068 */
1069
1070static int __dev_alloc_name(struct net *net, const char *name, char *res)
1071{
1072 int i = 0;
1073 const char *p;
1074 const int max_netdevices = 8*PAGE_SIZE;
1075 unsigned long *inuse;
1076 struct net_device *d;
1077 char buf[IFNAMSIZ];
1078
1079 /* Verify the string as this thing may have come from the user.
1080 * There must be one "%d" and no other "%" characters.
1081 */
1082 p = strchr(name, '%');
1083 if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1084 return -EINVAL;
1085
1086 /* Use one page as a bit array of possible slots */
1087 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1088 if (!inuse)
1089 return -ENOMEM;
1090
1091 for_each_netdev(net, d) {
1092 struct netdev_name_node *name_node;
1093
1094 netdev_for_each_altname(d, name_node) {
1095 if (!sscanf(name_node->name, name, &i))
1096 continue;
1097 if (i < 0 || i >= max_netdevices)
1098 continue;
1099
1100 /* avoid cases where sscanf is not exact inverse of printf */
1101 snprintf(buf, IFNAMSIZ, name, i);
1102 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1103 __set_bit(i, inuse);
1104 }
1105 if (!sscanf(d->name, name, &i))
1106 continue;
1107 if (i < 0 || i >= max_netdevices)
1108 continue;
1109
1110 /* avoid cases where sscanf is not exact inverse of printf */
1111 snprintf(buf, IFNAMSIZ, name, i);
1112 if (!strncmp(buf, d->name, IFNAMSIZ))
1113 __set_bit(i, inuse);
1114 }
1115
1116 i = find_first_zero_bit(inuse, max_netdevices);
1117 bitmap_free(inuse);
1118 if (i == max_netdevices)
1119 return -ENFILE;
1120
1121 /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1122 strscpy(buf, name, IFNAMSIZ);
1123 snprintf(res, IFNAMSIZ, buf, i);
1124 return i;
1125}
1126
1127/* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1128static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1129 const char *want_name, char *out_name,
1130 int dup_errno)
1131{
1132 if (!dev_valid_name(want_name))
1133 return -EINVAL;
1134
1135 if (strchr(want_name, '%'))
1136 return __dev_alloc_name(net, want_name, out_name);
1137
1138 if (netdev_name_in_use(net, want_name))
1139 return -dup_errno;
1140 if (out_name != want_name)
1141 strscpy(out_name, want_name, IFNAMSIZ);
1142 return 0;
1143}
1144
1145/**
1146 * dev_alloc_name - allocate a name for a device
1147 * @dev: device
1148 * @name: name format string
1149 *
1150 * Passed a format string - eg "lt%d" it will try and find a suitable
1151 * id. It scans list of devices to build up a free map, then chooses
1152 * the first empty slot. The caller must hold the dev_base or rtnl lock
1153 * while allocating the name and adding the device in order to avoid
1154 * duplicates.
1155 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1156 * Returns the number of the unit assigned or a negative errno code.
1157 */
1158
1159int dev_alloc_name(struct net_device *dev, const char *name)
1160{
1161 return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1162}
1163EXPORT_SYMBOL(dev_alloc_name);
1164
1165static int dev_get_valid_name(struct net *net, struct net_device *dev,
1166 const char *name)
1167{
1168 int ret;
1169
1170 ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1171 return ret < 0 ? ret : 0;
1172}
1173
1174/**
1175 * dev_change_name - change name of a device
1176 * @dev: device
1177 * @newname: name (or format string) must be at least IFNAMSIZ
1178 *
1179 * Change name of a device, can pass format strings "eth%d".
1180 * for wildcarding.
1181 */
1182int dev_change_name(struct net_device *dev, const char *newname)
1183{
1184 unsigned char old_assign_type;
1185 char oldname[IFNAMSIZ];
1186 int err = 0;
1187 int ret;
1188 struct net *net;
1189
1190 ASSERT_RTNL();
1191 BUG_ON(!dev_net(dev));
1192
1193 net = dev_net(dev);
1194
1195 down_write(&devnet_rename_sem);
1196
1197 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1198 up_write(&devnet_rename_sem);
1199 return 0;
1200 }
1201
1202 memcpy(oldname, dev->name, IFNAMSIZ);
1203
1204 err = dev_get_valid_name(net, dev, newname);
1205 if (err < 0) {
1206 up_write(&devnet_rename_sem);
1207 return err;
1208 }
1209
1210 if (oldname[0] && !strchr(oldname, '%'))
1211 netdev_info(dev, "renamed from %s%s\n", oldname,
1212 dev->flags & IFF_UP ? " (while UP)" : "");
1213
1214 old_assign_type = dev->name_assign_type;
1215 dev->name_assign_type = NET_NAME_RENAMED;
1216
1217rollback:
1218 ret = device_rename(&dev->dev, dev->name);
1219 if (ret) {
1220 memcpy(dev->name, oldname, IFNAMSIZ);
1221 dev->name_assign_type = old_assign_type;
1222 up_write(&devnet_rename_sem);
1223 return ret;
1224 }
1225
1226 up_write(&devnet_rename_sem);
1227
1228 netdev_adjacent_rename_links(dev, oldname);
1229
1230 write_lock(&dev_base_lock);
1231 netdev_name_node_del(dev->name_node);
1232 write_unlock(&dev_base_lock);
1233
1234 synchronize_rcu();
1235
1236 write_lock(&dev_base_lock);
1237 netdev_name_node_add(net, dev->name_node);
1238 write_unlock(&dev_base_lock);
1239
1240 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1241 ret = notifier_to_errno(ret);
1242
1243 if (ret) {
1244 /* err >= 0 after dev_alloc_name() or stores the first errno */
1245 if (err >= 0) {
1246 err = ret;
1247 down_write(&devnet_rename_sem);
1248 memcpy(dev->name, oldname, IFNAMSIZ);
1249 memcpy(oldname, newname, IFNAMSIZ);
1250 dev->name_assign_type = old_assign_type;
1251 old_assign_type = NET_NAME_RENAMED;
1252 goto rollback;
1253 } else {
1254 netdev_err(dev, "name change rollback failed: %d\n",
1255 ret);
1256 }
1257 }
1258
1259 return err;
1260}
1261
1262/**
1263 * dev_set_alias - change ifalias of a device
1264 * @dev: device
1265 * @alias: name up to IFALIASZ
1266 * @len: limit of bytes to copy from info
1267 *
1268 * Set ifalias for a device,
1269 */
1270int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1271{
1272 struct dev_ifalias *new_alias = NULL;
1273
1274 if (len >= IFALIASZ)
1275 return -EINVAL;
1276
1277 if (len) {
1278 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1279 if (!new_alias)
1280 return -ENOMEM;
1281
1282 memcpy(new_alias->ifalias, alias, len);
1283 new_alias->ifalias[len] = 0;
1284 }
1285
1286 mutex_lock(&ifalias_mutex);
1287 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1288 mutex_is_locked(&ifalias_mutex));
1289 mutex_unlock(&ifalias_mutex);
1290
1291 if (new_alias)
1292 kfree_rcu(new_alias, rcuhead);
1293
1294 return len;
1295}
1296EXPORT_SYMBOL(dev_set_alias);
1297
1298/**
1299 * dev_get_alias - get ifalias of a device
1300 * @dev: device
1301 * @name: buffer to store name of ifalias
1302 * @len: size of buffer
1303 *
1304 * get ifalias for a device. Caller must make sure dev cannot go
1305 * away, e.g. rcu read lock or own a reference count to device.
1306 */
1307int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1308{
1309 const struct dev_ifalias *alias;
1310 int ret = 0;
1311
1312 rcu_read_lock();
1313 alias = rcu_dereference(dev->ifalias);
1314 if (alias)
1315 ret = snprintf(name, len, "%s", alias->ifalias);
1316 rcu_read_unlock();
1317
1318 return ret;
1319}
1320
1321/**
1322 * netdev_features_change - device changes features
1323 * @dev: device to cause notification
1324 *
1325 * Called to indicate a device has changed features.
1326 */
1327void netdev_features_change(struct net_device *dev)
1328{
1329 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1330}
1331EXPORT_SYMBOL(netdev_features_change);
1332
1333/**
1334 * netdev_state_change - device changes state
1335 * @dev: device to cause notification
1336 *
1337 * Called to indicate a device has changed state. This function calls
1338 * the notifier chains for netdev_chain and sends a NEWLINK message
1339 * to the routing socket.
1340 */
1341void netdev_state_change(struct net_device *dev)
1342{
1343 if (dev->flags & IFF_UP) {
1344 struct netdev_notifier_change_info change_info = {
1345 .info.dev = dev,
1346 };
1347
1348 call_netdevice_notifiers_info(NETDEV_CHANGE,
1349 &change_info.info);
1350 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1351 }
1352}
1353EXPORT_SYMBOL(netdev_state_change);
1354
1355/**
1356 * __netdev_notify_peers - notify network peers about existence of @dev,
1357 * to be called when rtnl lock is already held.
1358 * @dev: network device
1359 *
1360 * Generate traffic such that interested network peers are aware of
1361 * @dev, such as by generating a gratuitous ARP. This may be used when
1362 * a device wants to inform the rest of the network about some sort of
1363 * reconfiguration such as a failover event or virtual machine
1364 * migration.
1365 */
1366void __netdev_notify_peers(struct net_device *dev)
1367{
1368 ASSERT_RTNL();
1369 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1370 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1371}
1372EXPORT_SYMBOL(__netdev_notify_peers);
1373
1374/**
1375 * netdev_notify_peers - notify network peers about existence of @dev
1376 * @dev: network device
1377 *
1378 * Generate traffic such that interested network peers are aware of
1379 * @dev, such as by generating a gratuitous ARP. This may be used when
1380 * a device wants to inform the rest of the network about some sort of
1381 * reconfiguration such as a failover event or virtual machine
1382 * migration.
1383 */
1384void netdev_notify_peers(struct net_device *dev)
1385{
1386 rtnl_lock();
1387 __netdev_notify_peers(dev);
1388 rtnl_unlock();
1389}
1390EXPORT_SYMBOL(netdev_notify_peers);
1391
1392static int napi_threaded_poll(void *data);
1393
1394static int napi_kthread_create(struct napi_struct *n)
1395{
1396 int err = 0;
1397
1398 /* Create and wake up the kthread once to put it in
1399 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1400 * warning and work with loadavg.
1401 */
1402 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1403 n->dev->name, n->napi_id);
1404 if (IS_ERR(n->thread)) {
1405 err = PTR_ERR(n->thread);
1406 pr_err("kthread_run failed with err %d\n", err);
1407 n->thread = NULL;
1408 }
1409
1410 return err;
1411}
1412
1413static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1414{
1415 const struct net_device_ops *ops = dev->netdev_ops;
1416 int ret;
1417
1418 ASSERT_RTNL();
1419 dev_addr_check(dev);
1420
1421 if (!netif_device_present(dev)) {
1422 /* may be detached because parent is runtime-suspended */
1423 if (dev->dev.parent)
1424 pm_runtime_resume(dev->dev.parent);
1425 if (!netif_device_present(dev))
1426 return -ENODEV;
1427 }
1428
1429 /* Block netpoll from trying to do any rx path servicing.
1430 * If we don't do this there is a chance ndo_poll_controller
1431 * or ndo_poll may be running while we open the device
1432 */
1433 netpoll_poll_disable(dev);
1434
1435 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1436 ret = notifier_to_errno(ret);
1437 if (ret)
1438 return ret;
1439
1440 set_bit(__LINK_STATE_START, &dev->state);
1441
1442 if (ops->ndo_validate_addr)
1443 ret = ops->ndo_validate_addr(dev);
1444
1445 if (!ret && ops->ndo_open)
1446 ret = ops->ndo_open(dev);
1447
1448 netpoll_poll_enable(dev);
1449
1450 if (ret)
1451 clear_bit(__LINK_STATE_START, &dev->state);
1452 else {
1453 dev->flags |= IFF_UP;
1454 dev_set_rx_mode(dev);
1455 dev_activate(dev);
1456 add_device_randomness(dev->dev_addr, dev->addr_len);
1457 }
1458
1459 return ret;
1460}
1461
1462/**
1463 * dev_open - prepare an interface for use.
1464 * @dev: device to open
1465 * @extack: netlink extended ack
1466 *
1467 * Takes a device from down to up state. The device's private open
1468 * function is invoked and then the multicast lists are loaded. Finally
1469 * the device is moved into the up state and a %NETDEV_UP message is
1470 * sent to the netdev notifier chain.
1471 *
1472 * Calling this function on an active interface is a nop. On a failure
1473 * a negative errno code is returned.
1474 */
1475int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1476{
1477 int ret;
1478
1479 if (dev->flags & IFF_UP)
1480 return 0;
1481
1482 ret = __dev_open(dev, extack);
1483 if (ret < 0)
1484 return ret;
1485
1486 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1487 call_netdevice_notifiers(NETDEV_UP, dev);
1488
1489 return ret;
1490}
1491EXPORT_SYMBOL(dev_open);
1492
1493static void __dev_close_many(struct list_head *head)
1494{
1495 struct net_device *dev;
1496
1497 ASSERT_RTNL();
1498 might_sleep();
1499
1500 list_for_each_entry(dev, head, close_list) {
1501 /* Temporarily disable netpoll until the interface is down */
1502 netpoll_poll_disable(dev);
1503
1504 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1505
1506 clear_bit(__LINK_STATE_START, &dev->state);
1507
1508 /* Synchronize to scheduled poll. We cannot touch poll list, it
1509 * can be even on different cpu. So just clear netif_running().
1510 *
1511 * dev->stop() will invoke napi_disable() on all of it's
1512 * napi_struct instances on this device.
1513 */
1514 smp_mb__after_atomic(); /* Commit netif_running(). */
1515 }
1516
1517 dev_deactivate_many(head);
1518
1519 list_for_each_entry(dev, head, close_list) {
1520 const struct net_device_ops *ops = dev->netdev_ops;
1521
1522 /*
1523 * Call the device specific close. This cannot fail.
1524 * Only if device is UP
1525 *
1526 * We allow it to be called even after a DETACH hot-plug
1527 * event.
1528 */
1529 if (ops->ndo_stop)
1530 ops->ndo_stop(dev);
1531
1532 dev->flags &= ~IFF_UP;
1533 netpoll_poll_enable(dev);
1534 }
1535}
1536
1537static void __dev_close(struct net_device *dev)
1538{
1539 LIST_HEAD(single);
1540
1541 list_add(&dev->close_list, &single);
1542 __dev_close_many(&single);
1543 list_del(&single);
1544}
1545
1546void dev_close_many(struct list_head *head, bool unlink)
1547{
1548 struct net_device *dev, *tmp;
1549
1550 /* Remove the devices that don't need to be closed */
1551 list_for_each_entry_safe(dev, tmp, head, close_list)
1552 if (!(dev->flags & IFF_UP))
1553 list_del_init(&dev->close_list);
1554
1555 __dev_close_many(head);
1556
1557 list_for_each_entry_safe(dev, tmp, head, close_list) {
1558 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1559 call_netdevice_notifiers(NETDEV_DOWN, dev);
1560 if (unlink)
1561 list_del_init(&dev->close_list);
1562 }
1563}
1564EXPORT_SYMBOL(dev_close_many);
1565
1566/**
1567 * dev_close - shutdown an interface.
1568 * @dev: device to shutdown
1569 *
1570 * This function moves an active device into down state. A
1571 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1572 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1573 * chain.
1574 */
1575void dev_close(struct net_device *dev)
1576{
1577 if (dev->flags & IFF_UP) {
1578 LIST_HEAD(single);
1579
1580 list_add(&dev->close_list, &single);
1581 dev_close_many(&single, true);
1582 list_del(&single);
1583 }
1584}
1585EXPORT_SYMBOL(dev_close);
1586
1587
1588/**
1589 * dev_disable_lro - disable Large Receive Offload on a device
1590 * @dev: device
1591 *
1592 * Disable Large Receive Offload (LRO) on a net device. Must be
1593 * called under RTNL. This is needed if received packets may be
1594 * forwarded to another interface.
1595 */
1596void dev_disable_lro(struct net_device *dev)
1597{
1598 struct net_device *lower_dev;
1599 struct list_head *iter;
1600
1601 dev->wanted_features &= ~NETIF_F_LRO;
1602 netdev_update_features(dev);
1603
1604 if (unlikely(dev->features & NETIF_F_LRO))
1605 netdev_WARN(dev, "failed to disable LRO!\n");
1606
1607 netdev_for_each_lower_dev(dev, lower_dev, iter)
1608 dev_disable_lro(lower_dev);
1609}
1610EXPORT_SYMBOL(dev_disable_lro);
1611
1612/**
1613 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1614 * @dev: device
1615 *
1616 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1617 * called under RTNL. This is needed if Generic XDP is installed on
1618 * the device.
1619 */
1620static void dev_disable_gro_hw(struct net_device *dev)
1621{
1622 dev->wanted_features &= ~NETIF_F_GRO_HW;
1623 netdev_update_features(dev);
1624
1625 if (unlikely(dev->features & NETIF_F_GRO_HW))
1626 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1627}
1628
1629const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1630{
1631#define N(val) \
1632 case NETDEV_##val: \
1633 return "NETDEV_" __stringify(val);
1634 switch (cmd) {
1635 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1636 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1637 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1638 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1639 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1640 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1641 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1642 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1643 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1644 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1645 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1646 N(XDP_FEAT_CHANGE)
1647 }
1648#undef N
1649 return "UNKNOWN_NETDEV_EVENT";
1650}
1651EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1652
1653static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1654 struct net_device *dev)
1655{
1656 struct netdev_notifier_info info = {
1657 .dev = dev,
1658 };
1659
1660 return nb->notifier_call(nb, val, &info);
1661}
1662
1663static int call_netdevice_register_notifiers(struct notifier_block *nb,
1664 struct net_device *dev)
1665{
1666 int err;
1667
1668 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1669 err = notifier_to_errno(err);
1670 if (err)
1671 return err;
1672
1673 if (!(dev->flags & IFF_UP))
1674 return 0;
1675
1676 call_netdevice_notifier(nb, NETDEV_UP, dev);
1677 return 0;
1678}
1679
1680static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1681 struct net_device *dev)
1682{
1683 if (dev->flags & IFF_UP) {
1684 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1685 dev);
1686 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1687 }
1688 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1689}
1690
1691static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1692 struct net *net)
1693{
1694 struct net_device *dev;
1695 int err;
1696
1697 for_each_netdev(net, dev) {
1698 err = call_netdevice_register_notifiers(nb, dev);
1699 if (err)
1700 goto rollback;
1701 }
1702 return 0;
1703
1704rollback:
1705 for_each_netdev_continue_reverse(net, dev)
1706 call_netdevice_unregister_notifiers(nb, dev);
1707 return err;
1708}
1709
1710static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1711 struct net *net)
1712{
1713 struct net_device *dev;
1714
1715 for_each_netdev(net, dev)
1716 call_netdevice_unregister_notifiers(nb, dev);
1717}
1718
1719static int dev_boot_phase = 1;
1720
1721/**
1722 * register_netdevice_notifier - register a network notifier block
1723 * @nb: notifier
1724 *
1725 * Register a notifier to be called when network device events occur.
1726 * The notifier passed is linked into the kernel structures and must
1727 * not be reused until it has been unregistered. A negative errno code
1728 * is returned on a failure.
1729 *
1730 * When registered all registration and up events are replayed
1731 * to the new notifier to allow device to have a race free
1732 * view of the network device list.
1733 */
1734
1735int register_netdevice_notifier(struct notifier_block *nb)
1736{
1737 struct net *net;
1738 int err;
1739
1740 /* Close race with setup_net() and cleanup_net() */
1741 down_write(&pernet_ops_rwsem);
1742 rtnl_lock();
1743 err = raw_notifier_chain_register(&netdev_chain, nb);
1744 if (err)
1745 goto unlock;
1746 if (dev_boot_phase)
1747 goto unlock;
1748 for_each_net(net) {
1749 err = call_netdevice_register_net_notifiers(nb, net);
1750 if (err)
1751 goto rollback;
1752 }
1753
1754unlock:
1755 rtnl_unlock();
1756 up_write(&pernet_ops_rwsem);
1757 return err;
1758
1759rollback:
1760 for_each_net_continue_reverse(net)
1761 call_netdevice_unregister_net_notifiers(nb, net);
1762
1763 raw_notifier_chain_unregister(&netdev_chain, nb);
1764 goto unlock;
1765}
1766EXPORT_SYMBOL(register_netdevice_notifier);
1767
1768/**
1769 * unregister_netdevice_notifier - unregister a network notifier block
1770 * @nb: notifier
1771 *
1772 * Unregister a notifier previously registered by
1773 * register_netdevice_notifier(). The notifier is unlinked into the
1774 * kernel structures and may then be reused. A negative errno code
1775 * is returned on a failure.
1776 *
1777 * After unregistering unregister and down device events are synthesized
1778 * for all devices on the device list to the removed notifier to remove
1779 * the need for special case cleanup code.
1780 */
1781
1782int unregister_netdevice_notifier(struct notifier_block *nb)
1783{
1784 struct net *net;
1785 int err;
1786
1787 /* Close race with setup_net() and cleanup_net() */
1788 down_write(&pernet_ops_rwsem);
1789 rtnl_lock();
1790 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1791 if (err)
1792 goto unlock;
1793
1794 for_each_net(net)
1795 call_netdevice_unregister_net_notifiers(nb, net);
1796
1797unlock:
1798 rtnl_unlock();
1799 up_write(&pernet_ops_rwsem);
1800 return err;
1801}
1802EXPORT_SYMBOL(unregister_netdevice_notifier);
1803
1804static int __register_netdevice_notifier_net(struct net *net,
1805 struct notifier_block *nb,
1806 bool ignore_call_fail)
1807{
1808 int err;
1809
1810 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1811 if (err)
1812 return err;
1813 if (dev_boot_phase)
1814 return 0;
1815
1816 err = call_netdevice_register_net_notifiers(nb, net);
1817 if (err && !ignore_call_fail)
1818 goto chain_unregister;
1819
1820 return 0;
1821
1822chain_unregister:
1823 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1824 return err;
1825}
1826
1827static int __unregister_netdevice_notifier_net(struct net *net,
1828 struct notifier_block *nb)
1829{
1830 int err;
1831
1832 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1833 if (err)
1834 return err;
1835
1836 call_netdevice_unregister_net_notifiers(nb, net);
1837 return 0;
1838}
1839
1840/**
1841 * register_netdevice_notifier_net - register a per-netns network notifier block
1842 * @net: network namespace
1843 * @nb: notifier
1844 *
1845 * Register a notifier to be called when network device events occur.
1846 * The notifier passed is linked into the kernel structures and must
1847 * not be reused until it has been unregistered. A negative errno code
1848 * is returned on a failure.
1849 *
1850 * When registered all registration and up events are replayed
1851 * to the new notifier to allow device to have a race free
1852 * view of the network device list.
1853 */
1854
1855int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1856{
1857 int err;
1858
1859 rtnl_lock();
1860 err = __register_netdevice_notifier_net(net, nb, false);
1861 rtnl_unlock();
1862 return err;
1863}
1864EXPORT_SYMBOL(register_netdevice_notifier_net);
1865
1866/**
1867 * unregister_netdevice_notifier_net - unregister a per-netns
1868 * network notifier block
1869 * @net: network namespace
1870 * @nb: notifier
1871 *
1872 * Unregister a notifier previously registered by
1873 * register_netdevice_notifier_net(). The notifier is unlinked from the
1874 * kernel structures and may then be reused. A negative errno code
1875 * is returned on a failure.
1876 *
1877 * After unregistering unregister and down device events are synthesized
1878 * for all devices on the device list to the removed notifier to remove
1879 * the need for special case cleanup code.
1880 */
1881
1882int unregister_netdevice_notifier_net(struct net *net,
1883 struct notifier_block *nb)
1884{
1885 int err;
1886
1887 rtnl_lock();
1888 err = __unregister_netdevice_notifier_net(net, nb);
1889 rtnl_unlock();
1890 return err;
1891}
1892EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1893
1894static void __move_netdevice_notifier_net(struct net *src_net,
1895 struct net *dst_net,
1896 struct notifier_block *nb)
1897{
1898 __unregister_netdevice_notifier_net(src_net, nb);
1899 __register_netdevice_notifier_net(dst_net, nb, true);
1900}
1901
1902int register_netdevice_notifier_dev_net(struct net_device *dev,
1903 struct notifier_block *nb,
1904 struct netdev_net_notifier *nn)
1905{
1906 int err;
1907
1908 rtnl_lock();
1909 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1910 if (!err) {
1911 nn->nb = nb;
1912 list_add(&nn->list, &dev->net_notifier_list);
1913 }
1914 rtnl_unlock();
1915 return err;
1916}
1917EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1918
1919int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1920 struct notifier_block *nb,
1921 struct netdev_net_notifier *nn)
1922{
1923 int err;
1924
1925 rtnl_lock();
1926 list_del(&nn->list);
1927 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1928 rtnl_unlock();
1929 return err;
1930}
1931EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1932
1933static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1934 struct net *net)
1935{
1936 struct netdev_net_notifier *nn;
1937
1938 list_for_each_entry(nn, &dev->net_notifier_list, list)
1939 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1940}
1941
1942/**
1943 * call_netdevice_notifiers_info - call all network notifier blocks
1944 * @val: value passed unmodified to notifier function
1945 * @info: notifier information data
1946 *
1947 * Call all network notifier blocks. Parameters and return value
1948 * are as for raw_notifier_call_chain().
1949 */
1950
1951int call_netdevice_notifiers_info(unsigned long val,
1952 struct netdev_notifier_info *info)
1953{
1954 struct net *net = dev_net(info->dev);
1955 int ret;
1956
1957 ASSERT_RTNL();
1958
1959 /* Run per-netns notifier block chain first, then run the global one.
1960 * Hopefully, one day, the global one is going to be removed after
1961 * all notifier block registrators get converted to be per-netns.
1962 */
1963 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1964 if (ret & NOTIFY_STOP_MASK)
1965 return ret;
1966 return raw_notifier_call_chain(&netdev_chain, val, info);
1967}
1968
1969/**
1970 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1971 * for and rollback on error
1972 * @val_up: value passed unmodified to notifier function
1973 * @val_down: value passed unmodified to the notifier function when
1974 * recovering from an error on @val_up
1975 * @info: notifier information data
1976 *
1977 * Call all per-netns network notifier blocks, but not notifier blocks on
1978 * the global notifier chain. Parameters and return value are as for
1979 * raw_notifier_call_chain_robust().
1980 */
1981
1982static int
1983call_netdevice_notifiers_info_robust(unsigned long val_up,
1984 unsigned long val_down,
1985 struct netdev_notifier_info *info)
1986{
1987 struct net *net = dev_net(info->dev);
1988
1989 ASSERT_RTNL();
1990
1991 return raw_notifier_call_chain_robust(&net->netdev_chain,
1992 val_up, val_down, info);
1993}
1994
1995static int call_netdevice_notifiers_extack(unsigned long val,
1996 struct net_device *dev,
1997 struct netlink_ext_ack *extack)
1998{
1999 struct netdev_notifier_info info = {
2000 .dev = dev,
2001 .extack = extack,
2002 };
2003
2004 return call_netdevice_notifiers_info(val, &info);
2005}
2006
2007/**
2008 * call_netdevice_notifiers - call all network notifier blocks
2009 * @val: value passed unmodified to notifier function
2010 * @dev: net_device pointer passed unmodified to notifier function
2011 *
2012 * Call all network notifier blocks. Parameters and return value
2013 * are as for raw_notifier_call_chain().
2014 */
2015
2016int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2017{
2018 return call_netdevice_notifiers_extack(val, dev, NULL);
2019}
2020EXPORT_SYMBOL(call_netdevice_notifiers);
2021
2022/**
2023 * call_netdevice_notifiers_mtu - call all network notifier blocks
2024 * @val: value passed unmodified to notifier function
2025 * @dev: net_device pointer passed unmodified to notifier function
2026 * @arg: additional u32 argument passed to the notifier function
2027 *
2028 * Call all network notifier blocks. Parameters and return value
2029 * are as for raw_notifier_call_chain().
2030 */
2031static int call_netdevice_notifiers_mtu(unsigned long val,
2032 struct net_device *dev, u32 arg)
2033{
2034 struct netdev_notifier_info_ext info = {
2035 .info.dev = dev,
2036 .ext.mtu = arg,
2037 };
2038
2039 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2040
2041 return call_netdevice_notifiers_info(val, &info.info);
2042}
2043
2044#ifdef CONFIG_NET_INGRESS
2045static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2046
2047void net_inc_ingress_queue(void)
2048{
2049 static_branch_inc(&ingress_needed_key);
2050}
2051EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2052
2053void net_dec_ingress_queue(void)
2054{
2055 static_branch_dec(&ingress_needed_key);
2056}
2057EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2058#endif
2059
2060#ifdef CONFIG_NET_EGRESS
2061static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2062
2063void net_inc_egress_queue(void)
2064{
2065 static_branch_inc(&egress_needed_key);
2066}
2067EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2068
2069void net_dec_egress_queue(void)
2070{
2071 static_branch_dec(&egress_needed_key);
2072}
2073EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2074#endif
2075
2076DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2077EXPORT_SYMBOL(netstamp_needed_key);
2078#ifdef CONFIG_JUMP_LABEL
2079static atomic_t netstamp_needed_deferred;
2080static atomic_t netstamp_wanted;
2081static void netstamp_clear(struct work_struct *work)
2082{
2083 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2084 int wanted;
2085
2086 wanted = atomic_add_return(deferred, &netstamp_wanted);
2087 if (wanted > 0)
2088 static_branch_enable(&netstamp_needed_key);
2089 else
2090 static_branch_disable(&netstamp_needed_key);
2091}
2092static DECLARE_WORK(netstamp_work, netstamp_clear);
2093#endif
2094
2095void net_enable_timestamp(void)
2096{
2097#ifdef CONFIG_JUMP_LABEL
2098 int wanted = atomic_read(&netstamp_wanted);
2099
2100 while (wanted > 0) {
2101 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2102 return;
2103 }
2104 atomic_inc(&netstamp_needed_deferred);
2105 schedule_work(&netstamp_work);
2106#else
2107 static_branch_inc(&netstamp_needed_key);
2108#endif
2109}
2110EXPORT_SYMBOL(net_enable_timestamp);
2111
2112void net_disable_timestamp(void)
2113{
2114#ifdef CONFIG_JUMP_LABEL
2115 int wanted = atomic_read(&netstamp_wanted);
2116
2117 while (wanted > 1) {
2118 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2119 return;
2120 }
2121 atomic_dec(&netstamp_needed_deferred);
2122 schedule_work(&netstamp_work);
2123#else
2124 static_branch_dec(&netstamp_needed_key);
2125#endif
2126}
2127EXPORT_SYMBOL(net_disable_timestamp);
2128
2129static inline void net_timestamp_set(struct sk_buff *skb)
2130{
2131 skb->tstamp = 0;
2132 skb->mono_delivery_time = 0;
2133 if (static_branch_unlikely(&netstamp_needed_key))
2134 skb->tstamp = ktime_get_real();
2135}
2136
2137#define net_timestamp_check(COND, SKB) \
2138 if (static_branch_unlikely(&netstamp_needed_key)) { \
2139 if ((COND) && !(SKB)->tstamp) \
2140 (SKB)->tstamp = ktime_get_real(); \
2141 } \
2142
2143bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2144{
2145 return __is_skb_forwardable(dev, skb, true);
2146}
2147EXPORT_SYMBOL_GPL(is_skb_forwardable);
2148
2149static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2150 bool check_mtu)
2151{
2152 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2153
2154 if (likely(!ret)) {
2155 skb->protocol = eth_type_trans(skb, dev);
2156 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2157 }
2158
2159 return ret;
2160}
2161
2162int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2163{
2164 return __dev_forward_skb2(dev, skb, true);
2165}
2166EXPORT_SYMBOL_GPL(__dev_forward_skb);
2167
2168/**
2169 * dev_forward_skb - loopback an skb to another netif
2170 *
2171 * @dev: destination network device
2172 * @skb: buffer to forward
2173 *
2174 * return values:
2175 * NET_RX_SUCCESS (no congestion)
2176 * NET_RX_DROP (packet was dropped, but freed)
2177 *
2178 * dev_forward_skb can be used for injecting an skb from the
2179 * start_xmit function of one device into the receive queue
2180 * of another device.
2181 *
2182 * The receiving device may be in another namespace, so
2183 * we have to clear all information in the skb that could
2184 * impact namespace isolation.
2185 */
2186int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2187{
2188 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2189}
2190EXPORT_SYMBOL_GPL(dev_forward_skb);
2191
2192int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2193{
2194 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2195}
2196
2197static inline int deliver_skb(struct sk_buff *skb,
2198 struct packet_type *pt_prev,
2199 struct net_device *orig_dev)
2200{
2201 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2202 return -ENOMEM;
2203 refcount_inc(&skb->users);
2204 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2205}
2206
2207static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2208 struct packet_type **pt,
2209 struct net_device *orig_dev,
2210 __be16 type,
2211 struct list_head *ptype_list)
2212{
2213 struct packet_type *ptype, *pt_prev = *pt;
2214
2215 list_for_each_entry_rcu(ptype, ptype_list, list) {
2216 if (ptype->type != type)
2217 continue;
2218 if (pt_prev)
2219 deliver_skb(skb, pt_prev, orig_dev);
2220 pt_prev = ptype;
2221 }
2222 *pt = pt_prev;
2223}
2224
2225static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2226{
2227 if (!ptype->af_packet_priv || !skb->sk)
2228 return false;
2229
2230 if (ptype->id_match)
2231 return ptype->id_match(ptype, skb->sk);
2232 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2233 return true;
2234
2235 return false;
2236}
2237
2238/**
2239 * dev_nit_active - return true if any network interface taps are in use
2240 *
2241 * @dev: network device to check for the presence of taps
2242 */
2243bool dev_nit_active(struct net_device *dev)
2244{
2245 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2246}
2247EXPORT_SYMBOL_GPL(dev_nit_active);
2248
2249/*
2250 * Support routine. Sends outgoing frames to any network
2251 * taps currently in use.
2252 */
2253
2254void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2255{
2256 struct packet_type *ptype;
2257 struct sk_buff *skb2 = NULL;
2258 struct packet_type *pt_prev = NULL;
2259 struct list_head *ptype_list = &ptype_all;
2260
2261 rcu_read_lock();
2262again:
2263 list_for_each_entry_rcu(ptype, ptype_list, list) {
2264 if (ptype->ignore_outgoing)
2265 continue;
2266
2267 /* Never send packets back to the socket
2268 * they originated from - MvS (miquels@drinkel.ow.org)
2269 */
2270 if (skb_loop_sk(ptype, skb))
2271 continue;
2272
2273 if (pt_prev) {
2274 deliver_skb(skb2, pt_prev, skb->dev);
2275 pt_prev = ptype;
2276 continue;
2277 }
2278
2279 /* need to clone skb, done only once */
2280 skb2 = skb_clone(skb, GFP_ATOMIC);
2281 if (!skb2)
2282 goto out_unlock;
2283
2284 net_timestamp_set(skb2);
2285
2286 /* skb->nh should be correctly
2287 * set by sender, so that the second statement is
2288 * just protection against buggy protocols.
2289 */
2290 skb_reset_mac_header(skb2);
2291
2292 if (skb_network_header(skb2) < skb2->data ||
2293 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2294 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2295 ntohs(skb2->protocol),
2296 dev->name);
2297 skb_reset_network_header(skb2);
2298 }
2299
2300 skb2->transport_header = skb2->network_header;
2301 skb2->pkt_type = PACKET_OUTGOING;
2302 pt_prev = ptype;
2303 }
2304
2305 if (ptype_list == &ptype_all) {
2306 ptype_list = &dev->ptype_all;
2307 goto again;
2308 }
2309out_unlock:
2310 if (pt_prev) {
2311 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2312 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2313 else
2314 kfree_skb(skb2);
2315 }
2316 rcu_read_unlock();
2317}
2318EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2319
2320/**
2321 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2322 * @dev: Network device
2323 * @txq: number of queues available
2324 *
2325 * If real_num_tx_queues is changed the tc mappings may no longer be
2326 * valid. To resolve this verify the tc mapping remains valid and if
2327 * not NULL the mapping. With no priorities mapping to this
2328 * offset/count pair it will no longer be used. In the worst case TC0
2329 * is invalid nothing can be done so disable priority mappings. If is
2330 * expected that drivers will fix this mapping if they can before
2331 * calling netif_set_real_num_tx_queues.
2332 */
2333static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2334{
2335 int i;
2336 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2337
2338 /* If TC0 is invalidated disable TC mapping */
2339 if (tc->offset + tc->count > txq) {
2340 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2341 dev->num_tc = 0;
2342 return;
2343 }
2344
2345 /* Invalidated prio to tc mappings set to TC0 */
2346 for (i = 1; i < TC_BITMASK + 1; i++) {
2347 int q = netdev_get_prio_tc_map(dev, i);
2348
2349 tc = &dev->tc_to_txq[q];
2350 if (tc->offset + tc->count > txq) {
2351 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2352 i, q);
2353 netdev_set_prio_tc_map(dev, i, 0);
2354 }
2355 }
2356}
2357
2358int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2359{
2360 if (dev->num_tc) {
2361 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2362 int i;
2363
2364 /* walk through the TCs and see if it falls into any of them */
2365 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2366 if ((txq - tc->offset) < tc->count)
2367 return i;
2368 }
2369
2370 /* didn't find it, just return -1 to indicate no match */
2371 return -1;
2372 }
2373
2374 return 0;
2375}
2376EXPORT_SYMBOL(netdev_txq_to_tc);
2377
2378#ifdef CONFIG_XPS
2379static struct static_key xps_needed __read_mostly;
2380static struct static_key xps_rxqs_needed __read_mostly;
2381static DEFINE_MUTEX(xps_map_mutex);
2382#define xmap_dereference(P) \
2383 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2384
2385static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2386 struct xps_dev_maps *old_maps, int tci, u16 index)
2387{
2388 struct xps_map *map = NULL;
2389 int pos;
2390
2391 map = xmap_dereference(dev_maps->attr_map[tci]);
2392 if (!map)
2393 return false;
2394
2395 for (pos = map->len; pos--;) {
2396 if (map->queues[pos] != index)
2397 continue;
2398
2399 if (map->len > 1) {
2400 map->queues[pos] = map->queues[--map->len];
2401 break;
2402 }
2403
2404 if (old_maps)
2405 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2406 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2407 kfree_rcu(map, rcu);
2408 return false;
2409 }
2410
2411 return true;
2412}
2413
2414static bool remove_xps_queue_cpu(struct net_device *dev,
2415 struct xps_dev_maps *dev_maps,
2416 int cpu, u16 offset, u16 count)
2417{
2418 int num_tc = dev_maps->num_tc;
2419 bool active = false;
2420 int tci;
2421
2422 for (tci = cpu * num_tc; num_tc--; tci++) {
2423 int i, j;
2424
2425 for (i = count, j = offset; i--; j++) {
2426 if (!remove_xps_queue(dev_maps, NULL, tci, j))
2427 break;
2428 }
2429
2430 active |= i < 0;
2431 }
2432
2433 return active;
2434}
2435
2436static void reset_xps_maps(struct net_device *dev,
2437 struct xps_dev_maps *dev_maps,
2438 enum xps_map_type type)
2439{
2440 static_key_slow_dec_cpuslocked(&xps_needed);
2441 if (type == XPS_RXQS)
2442 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2443
2444 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2445
2446 kfree_rcu(dev_maps, rcu);
2447}
2448
2449static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2450 u16 offset, u16 count)
2451{
2452 struct xps_dev_maps *dev_maps;
2453 bool active = false;
2454 int i, j;
2455
2456 dev_maps = xmap_dereference(dev->xps_maps[type]);
2457 if (!dev_maps)
2458 return;
2459
2460 for (j = 0; j < dev_maps->nr_ids; j++)
2461 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2462 if (!active)
2463 reset_xps_maps(dev, dev_maps, type);
2464
2465 if (type == XPS_CPUS) {
2466 for (i = offset + (count - 1); count--; i--)
2467 netdev_queue_numa_node_write(
2468 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2469 }
2470}
2471
2472static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2473 u16 count)
2474{
2475 if (!static_key_false(&xps_needed))
2476 return;
2477
2478 cpus_read_lock();
2479 mutex_lock(&xps_map_mutex);
2480
2481 if (static_key_false(&xps_rxqs_needed))
2482 clean_xps_maps(dev, XPS_RXQS, offset, count);
2483
2484 clean_xps_maps(dev, XPS_CPUS, offset, count);
2485
2486 mutex_unlock(&xps_map_mutex);
2487 cpus_read_unlock();
2488}
2489
2490static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2491{
2492 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2493}
2494
2495static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2496 u16 index, bool is_rxqs_map)
2497{
2498 struct xps_map *new_map;
2499 int alloc_len = XPS_MIN_MAP_ALLOC;
2500 int i, pos;
2501
2502 for (pos = 0; map && pos < map->len; pos++) {
2503 if (map->queues[pos] != index)
2504 continue;
2505 return map;
2506 }
2507
2508 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2509 if (map) {
2510 if (pos < map->alloc_len)
2511 return map;
2512
2513 alloc_len = map->alloc_len * 2;
2514 }
2515
2516 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2517 * map
2518 */
2519 if (is_rxqs_map)
2520 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2521 else
2522 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2523 cpu_to_node(attr_index));
2524 if (!new_map)
2525 return NULL;
2526
2527 for (i = 0; i < pos; i++)
2528 new_map->queues[i] = map->queues[i];
2529 new_map->alloc_len = alloc_len;
2530 new_map->len = pos;
2531
2532 return new_map;
2533}
2534
2535/* Copy xps maps at a given index */
2536static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2537 struct xps_dev_maps *new_dev_maps, int index,
2538 int tc, bool skip_tc)
2539{
2540 int i, tci = index * dev_maps->num_tc;
2541 struct xps_map *map;
2542
2543 /* copy maps belonging to foreign traffic classes */
2544 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2545 if (i == tc && skip_tc)
2546 continue;
2547
2548 /* fill in the new device map from the old device map */
2549 map = xmap_dereference(dev_maps->attr_map[tci]);
2550 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2551 }
2552}
2553
2554/* Must be called under cpus_read_lock */
2555int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2556 u16 index, enum xps_map_type type)
2557{
2558 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2559 const unsigned long *online_mask = NULL;
2560 bool active = false, copy = false;
2561 int i, j, tci, numa_node_id = -2;
2562 int maps_sz, num_tc = 1, tc = 0;
2563 struct xps_map *map, *new_map;
2564 unsigned int nr_ids;
2565
2566 WARN_ON_ONCE(index >= dev->num_tx_queues);
2567
2568 if (dev->num_tc) {
2569 /* Do not allow XPS on subordinate device directly */
2570 num_tc = dev->num_tc;
2571 if (num_tc < 0)
2572 return -EINVAL;
2573
2574 /* If queue belongs to subordinate dev use its map */
2575 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2576
2577 tc = netdev_txq_to_tc(dev, index);
2578 if (tc < 0)
2579 return -EINVAL;
2580 }
2581
2582 mutex_lock(&xps_map_mutex);
2583
2584 dev_maps = xmap_dereference(dev->xps_maps[type]);
2585 if (type == XPS_RXQS) {
2586 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2587 nr_ids = dev->num_rx_queues;
2588 } else {
2589 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2590 if (num_possible_cpus() > 1)
2591 online_mask = cpumask_bits(cpu_online_mask);
2592 nr_ids = nr_cpu_ids;
2593 }
2594
2595 if (maps_sz < L1_CACHE_BYTES)
2596 maps_sz = L1_CACHE_BYTES;
2597
2598 /* The old dev_maps could be larger or smaller than the one we're
2599 * setting up now, as dev->num_tc or nr_ids could have been updated in
2600 * between. We could try to be smart, but let's be safe instead and only
2601 * copy foreign traffic classes if the two map sizes match.
2602 */
2603 if (dev_maps &&
2604 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2605 copy = true;
2606
2607 /* allocate memory for queue storage */
2608 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2609 j < nr_ids;) {
2610 if (!new_dev_maps) {
2611 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2612 if (!new_dev_maps) {
2613 mutex_unlock(&xps_map_mutex);
2614 return -ENOMEM;
2615 }
2616
2617 new_dev_maps->nr_ids = nr_ids;
2618 new_dev_maps->num_tc = num_tc;
2619 }
2620
2621 tci = j * num_tc + tc;
2622 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2623
2624 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2625 if (!map)
2626 goto error;
2627
2628 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2629 }
2630
2631 if (!new_dev_maps)
2632 goto out_no_new_maps;
2633
2634 if (!dev_maps) {
2635 /* Increment static keys at most once per type */
2636 static_key_slow_inc_cpuslocked(&xps_needed);
2637 if (type == XPS_RXQS)
2638 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2639 }
2640
2641 for (j = 0; j < nr_ids; j++) {
2642 bool skip_tc = false;
2643
2644 tci = j * num_tc + tc;
2645 if (netif_attr_test_mask(j, mask, nr_ids) &&
2646 netif_attr_test_online(j, online_mask, nr_ids)) {
2647 /* add tx-queue to CPU/rx-queue maps */
2648 int pos = 0;
2649
2650 skip_tc = true;
2651
2652 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2653 while ((pos < map->len) && (map->queues[pos] != index))
2654 pos++;
2655
2656 if (pos == map->len)
2657 map->queues[map->len++] = index;
2658#ifdef CONFIG_NUMA
2659 if (type == XPS_CPUS) {
2660 if (numa_node_id == -2)
2661 numa_node_id = cpu_to_node(j);
2662 else if (numa_node_id != cpu_to_node(j))
2663 numa_node_id = -1;
2664 }
2665#endif
2666 }
2667
2668 if (copy)
2669 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2670 skip_tc);
2671 }
2672
2673 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2674
2675 /* Cleanup old maps */
2676 if (!dev_maps)
2677 goto out_no_old_maps;
2678
2679 for (j = 0; j < dev_maps->nr_ids; j++) {
2680 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2681 map = xmap_dereference(dev_maps->attr_map[tci]);
2682 if (!map)
2683 continue;
2684
2685 if (copy) {
2686 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2687 if (map == new_map)
2688 continue;
2689 }
2690
2691 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2692 kfree_rcu(map, rcu);
2693 }
2694 }
2695
2696 old_dev_maps = dev_maps;
2697
2698out_no_old_maps:
2699 dev_maps = new_dev_maps;
2700 active = true;
2701
2702out_no_new_maps:
2703 if (type == XPS_CPUS)
2704 /* update Tx queue numa node */
2705 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2706 (numa_node_id >= 0) ?
2707 numa_node_id : NUMA_NO_NODE);
2708
2709 if (!dev_maps)
2710 goto out_no_maps;
2711
2712 /* removes tx-queue from unused CPUs/rx-queues */
2713 for (j = 0; j < dev_maps->nr_ids; j++) {
2714 tci = j * dev_maps->num_tc;
2715
2716 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2717 if (i == tc &&
2718 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2719 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2720 continue;
2721
2722 active |= remove_xps_queue(dev_maps,
2723 copy ? old_dev_maps : NULL,
2724 tci, index);
2725 }
2726 }
2727
2728 if (old_dev_maps)
2729 kfree_rcu(old_dev_maps, rcu);
2730
2731 /* free map if not active */
2732 if (!active)
2733 reset_xps_maps(dev, dev_maps, type);
2734
2735out_no_maps:
2736 mutex_unlock(&xps_map_mutex);
2737
2738 return 0;
2739error:
2740 /* remove any maps that we added */
2741 for (j = 0; j < nr_ids; j++) {
2742 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2743 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2744 map = copy ?
2745 xmap_dereference(dev_maps->attr_map[tci]) :
2746 NULL;
2747 if (new_map && new_map != map)
2748 kfree(new_map);
2749 }
2750 }
2751
2752 mutex_unlock(&xps_map_mutex);
2753
2754 kfree(new_dev_maps);
2755 return -ENOMEM;
2756}
2757EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2758
2759int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2760 u16 index)
2761{
2762 int ret;
2763
2764 cpus_read_lock();
2765 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2766 cpus_read_unlock();
2767
2768 return ret;
2769}
2770EXPORT_SYMBOL(netif_set_xps_queue);
2771
2772#endif
2773static void netdev_unbind_all_sb_channels(struct net_device *dev)
2774{
2775 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2776
2777 /* Unbind any subordinate channels */
2778 while (txq-- != &dev->_tx[0]) {
2779 if (txq->sb_dev)
2780 netdev_unbind_sb_channel(dev, txq->sb_dev);
2781 }
2782}
2783
2784void netdev_reset_tc(struct net_device *dev)
2785{
2786#ifdef CONFIG_XPS
2787 netif_reset_xps_queues_gt(dev, 0);
2788#endif
2789 netdev_unbind_all_sb_channels(dev);
2790
2791 /* Reset TC configuration of device */
2792 dev->num_tc = 0;
2793 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2794 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2795}
2796EXPORT_SYMBOL(netdev_reset_tc);
2797
2798int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2799{
2800 if (tc >= dev->num_tc)
2801 return -EINVAL;
2802
2803#ifdef CONFIG_XPS
2804 netif_reset_xps_queues(dev, offset, count);
2805#endif
2806 dev->tc_to_txq[tc].count = count;
2807 dev->tc_to_txq[tc].offset = offset;
2808 return 0;
2809}
2810EXPORT_SYMBOL(netdev_set_tc_queue);
2811
2812int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2813{
2814 if (num_tc > TC_MAX_QUEUE)
2815 return -EINVAL;
2816
2817#ifdef CONFIG_XPS
2818 netif_reset_xps_queues_gt(dev, 0);
2819#endif
2820 netdev_unbind_all_sb_channels(dev);
2821
2822 dev->num_tc = num_tc;
2823 return 0;
2824}
2825EXPORT_SYMBOL(netdev_set_num_tc);
2826
2827void netdev_unbind_sb_channel(struct net_device *dev,
2828 struct net_device *sb_dev)
2829{
2830 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2831
2832#ifdef CONFIG_XPS
2833 netif_reset_xps_queues_gt(sb_dev, 0);
2834#endif
2835 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2836 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2837
2838 while (txq-- != &dev->_tx[0]) {
2839 if (txq->sb_dev == sb_dev)
2840 txq->sb_dev = NULL;
2841 }
2842}
2843EXPORT_SYMBOL(netdev_unbind_sb_channel);
2844
2845int netdev_bind_sb_channel_queue(struct net_device *dev,
2846 struct net_device *sb_dev,
2847 u8 tc, u16 count, u16 offset)
2848{
2849 /* Make certain the sb_dev and dev are already configured */
2850 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2851 return -EINVAL;
2852
2853 /* We cannot hand out queues we don't have */
2854 if ((offset + count) > dev->real_num_tx_queues)
2855 return -EINVAL;
2856
2857 /* Record the mapping */
2858 sb_dev->tc_to_txq[tc].count = count;
2859 sb_dev->tc_to_txq[tc].offset = offset;
2860
2861 /* Provide a way for Tx queue to find the tc_to_txq map or
2862 * XPS map for itself.
2863 */
2864 while (count--)
2865 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2866
2867 return 0;
2868}
2869EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2870
2871int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2872{
2873 /* Do not use a multiqueue device to represent a subordinate channel */
2874 if (netif_is_multiqueue(dev))
2875 return -ENODEV;
2876
2877 /* We allow channels 1 - 32767 to be used for subordinate channels.
2878 * Channel 0 is meant to be "native" mode and used only to represent
2879 * the main root device. We allow writing 0 to reset the device back
2880 * to normal mode after being used as a subordinate channel.
2881 */
2882 if (channel > S16_MAX)
2883 return -EINVAL;
2884
2885 dev->num_tc = -channel;
2886
2887 return 0;
2888}
2889EXPORT_SYMBOL(netdev_set_sb_channel);
2890
2891/*
2892 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2893 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2894 */
2895int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2896{
2897 bool disabling;
2898 int rc;
2899
2900 disabling = txq < dev->real_num_tx_queues;
2901
2902 if (txq < 1 || txq > dev->num_tx_queues)
2903 return -EINVAL;
2904
2905 if (dev->reg_state == NETREG_REGISTERED ||
2906 dev->reg_state == NETREG_UNREGISTERING) {
2907 ASSERT_RTNL();
2908
2909 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2910 txq);
2911 if (rc)
2912 return rc;
2913
2914 if (dev->num_tc)
2915 netif_setup_tc(dev, txq);
2916
2917 dev_qdisc_change_real_num_tx(dev, txq);
2918
2919 dev->real_num_tx_queues = txq;
2920
2921 if (disabling) {
2922 synchronize_net();
2923 qdisc_reset_all_tx_gt(dev, txq);
2924#ifdef CONFIG_XPS
2925 netif_reset_xps_queues_gt(dev, txq);
2926#endif
2927 }
2928 } else {
2929 dev->real_num_tx_queues = txq;
2930 }
2931
2932 return 0;
2933}
2934EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2935
2936#ifdef CONFIG_SYSFS
2937/**
2938 * netif_set_real_num_rx_queues - set actual number of RX queues used
2939 * @dev: Network device
2940 * @rxq: Actual number of RX queues
2941 *
2942 * This must be called either with the rtnl_lock held or before
2943 * registration of the net device. Returns 0 on success, or a
2944 * negative error code. If called before registration, it always
2945 * succeeds.
2946 */
2947int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2948{
2949 int rc;
2950
2951 if (rxq < 1 || rxq > dev->num_rx_queues)
2952 return -EINVAL;
2953
2954 if (dev->reg_state == NETREG_REGISTERED) {
2955 ASSERT_RTNL();
2956
2957 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2958 rxq);
2959 if (rc)
2960 return rc;
2961 }
2962
2963 dev->real_num_rx_queues = rxq;
2964 return 0;
2965}
2966EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2967#endif
2968
2969/**
2970 * netif_set_real_num_queues - set actual number of RX and TX queues used
2971 * @dev: Network device
2972 * @txq: Actual number of TX queues
2973 * @rxq: Actual number of RX queues
2974 *
2975 * Set the real number of both TX and RX queues.
2976 * Does nothing if the number of queues is already correct.
2977 */
2978int netif_set_real_num_queues(struct net_device *dev,
2979 unsigned int txq, unsigned int rxq)
2980{
2981 unsigned int old_rxq = dev->real_num_rx_queues;
2982 int err;
2983
2984 if (txq < 1 || txq > dev->num_tx_queues ||
2985 rxq < 1 || rxq > dev->num_rx_queues)
2986 return -EINVAL;
2987
2988 /* Start from increases, so the error path only does decreases -
2989 * decreases can't fail.
2990 */
2991 if (rxq > dev->real_num_rx_queues) {
2992 err = netif_set_real_num_rx_queues(dev, rxq);
2993 if (err)
2994 return err;
2995 }
2996 if (txq > dev->real_num_tx_queues) {
2997 err = netif_set_real_num_tx_queues(dev, txq);
2998 if (err)
2999 goto undo_rx;
3000 }
3001 if (rxq < dev->real_num_rx_queues)
3002 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3003 if (txq < dev->real_num_tx_queues)
3004 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3005
3006 return 0;
3007undo_rx:
3008 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3009 return err;
3010}
3011EXPORT_SYMBOL(netif_set_real_num_queues);
3012
3013/**
3014 * netif_set_tso_max_size() - set the max size of TSO frames supported
3015 * @dev: netdev to update
3016 * @size: max skb->len of a TSO frame
3017 *
3018 * Set the limit on the size of TSO super-frames the device can handle.
3019 * Unless explicitly set the stack will assume the value of
3020 * %GSO_LEGACY_MAX_SIZE.
3021 */
3022void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3023{
3024 dev->tso_max_size = min(GSO_MAX_SIZE, size);
3025 if (size < READ_ONCE(dev->gso_max_size))
3026 netif_set_gso_max_size(dev, size);
3027 if (size < READ_ONCE(dev->gso_ipv4_max_size))
3028 netif_set_gso_ipv4_max_size(dev, size);
3029}
3030EXPORT_SYMBOL(netif_set_tso_max_size);
3031
3032/**
3033 * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3034 * @dev: netdev to update
3035 * @segs: max number of TCP segments
3036 *
3037 * Set the limit on the number of TCP segments the device can generate from
3038 * a single TSO super-frame.
3039 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3040 */
3041void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3042{
3043 dev->tso_max_segs = segs;
3044 if (segs < READ_ONCE(dev->gso_max_segs))
3045 netif_set_gso_max_segs(dev, segs);
3046}
3047EXPORT_SYMBOL(netif_set_tso_max_segs);
3048
3049/**
3050 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3051 * @to: netdev to update
3052 * @from: netdev from which to copy the limits
3053 */
3054void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3055{
3056 netif_set_tso_max_size(to, from->tso_max_size);
3057 netif_set_tso_max_segs(to, from->tso_max_segs);
3058}
3059EXPORT_SYMBOL(netif_inherit_tso_max);
3060
3061/**
3062 * netif_get_num_default_rss_queues - default number of RSS queues
3063 *
3064 * Default value is the number of physical cores if there are only 1 or 2, or
3065 * divided by 2 if there are more.
3066 */
3067int netif_get_num_default_rss_queues(void)
3068{
3069 cpumask_var_t cpus;
3070 int cpu, count = 0;
3071
3072 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3073 return 1;
3074
3075 cpumask_copy(cpus, cpu_online_mask);
3076 for_each_cpu(cpu, cpus) {
3077 ++count;
3078 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3079 }
3080 free_cpumask_var(cpus);
3081
3082 return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3083}
3084EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3085
3086static void __netif_reschedule(struct Qdisc *q)
3087{
3088 struct softnet_data *sd;
3089 unsigned long flags;
3090
3091 local_irq_save(flags);
3092 sd = this_cpu_ptr(&softnet_data);
3093 q->next_sched = NULL;
3094 *sd->output_queue_tailp = q;
3095 sd->output_queue_tailp = &q->next_sched;
3096 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3097 local_irq_restore(flags);
3098}
3099
3100void __netif_schedule(struct Qdisc *q)
3101{
3102 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3103 __netif_reschedule(q);
3104}
3105EXPORT_SYMBOL(__netif_schedule);
3106
3107struct dev_kfree_skb_cb {
3108 enum skb_drop_reason reason;
3109};
3110
3111static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3112{
3113 return (struct dev_kfree_skb_cb *)skb->cb;
3114}
3115
3116void netif_schedule_queue(struct netdev_queue *txq)
3117{
3118 rcu_read_lock();
3119 if (!netif_xmit_stopped(txq)) {
3120 struct Qdisc *q = rcu_dereference(txq->qdisc);
3121
3122 __netif_schedule(q);
3123 }
3124 rcu_read_unlock();
3125}
3126EXPORT_SYMBOL(netif_schedule_queue);
3127
3128void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3129{
3130 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3131 struct Qdisc *q;
3132
3133 rcu_read_lock();
3134 q = rcu_dereference(dev_queue->qdisc);
3135 __netif_schedule(q);
3136 rcu_read_unlock();
3137 }
3138}
3139EXPORT_SYMBOL(netif_tx_wake_queue);
3140
3141void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3142{
3143 unsigned long flags;
3144
3145 if (unlikely(!skb))
3146 return;
3147
3148 if (likely(refcount_read(&skb->users) == 1)) {
3149 smp_rmb();
3150 refcount_set(&skb->users, 0);
3151 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3152 return;
3153 }
3154 get_kfree_skb_cb(skb)->reason = reason;
3155 local_irq_save(flags);
3156 skb->next = __this_cpu_read(softnet_data.completion_queue);
3157 __this_cpu_write(softnet_data.completion_queue, skb);
3158 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3159 local_irq_restore(flags);
3160}
3161EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3162
3163void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3164{
3165 if (in_hardirq() || irqs_disabled())
3166 dev_kfree_skb_irq_reason(skb, reason);
3167 else
3168 kfree_skb_reason(skb, reason);
3169}
3170EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3171
3172
3173/**
3174 * netif_device_detach - mark device as removed
3175 * @dev: network device
3176 *
3177 * Mark device as removed from system and therefore no longer available.
3178 */
3179void netif_device_detach(struct net_device *dev)
3180{
3181 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3182 netif_running(dev)) {
3183 netif_tx_stop_all_queues(dev);
3184 }
3185}
3186EXPORT_SYMBOL(netif_device_detach);
3187
3188/**
3189 * netif_device_attach - mark device as attached
3190 * @dev: network device
3191 *
3192 * Mark device as attached from system and restart if needed.
3193 */
3194void netif_device_attach(struct net_device *dev)
3195{
3196 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3197 netif_running(dev)) {
3198 netif_tx_wake_all_queues(dev);
3199 __netdev_watchdog_up(dev);
3200 }
3201}
3202EXPORT_SYMBOL(netif_device_attach);
3203
3204/*
3205 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3206 * to be used as a distribution range.
3207 */
3208static u16 skb_tx_hash(const struct net_device *dev,
3209 const struct net_device *sb_dev,
3210 struct sk_buff *skb)
3211{
3212 u32 hash;
3213 u16 qoffset = 0;
3214 u16 qcount = dev->real_num_tx_queues;
3215
3216 if (dev->num_tc) {
3217 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3218
3219 qoffset = sb_dev->tc_to_txq[tc].offset;
3220 qcount = sb_dev->tc_to_txq[tc].count;
3221 if (unlikely(!qcount)) {
3222 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3223 sb_dev->name, qoffset, tc);
3224 qoffset = 0;
3225 qcount = dev->real_num_tx_queues;
3226 }
3227 }
3228
3229 if (skb_rx_queue_recorded(skb)) {
3230 DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3231 hash = skb_get_rx_queue(skb);
3232 if (hash >= qoffset)
3233 hash -= qoffset;
3234 while (unlikely(hash >= qcount))
3235 hash -= qcount;
3236 return hash + qoffset;
3237 }
3238
3239 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3240}
3241
3242void skb_warn_bad_offload(const struct sk_buff *skb)
3243{
3244 static const netdev_features_t null_features;
3245 struct net_device *dev = skb->dev;
3246 const char *name = "";
3247
3248 if (!net_ratelimit())
3249 return;
3250
3251 if (dev) {
3252 if (dev->dev.parent)
3253 name = dev_driver_string(dev->dev.parent);
3254 else
3255 name = netdev_name(dev);
3256 }
3257 skb_dump(KERN_WARNING, skb, false);
3258 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3259 name, dev ? &dev->features : &null_features,
3260 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3261}
3262
3263/*
3264 * Invalidate hardware checksum when packet is to be mangled, and
3265 * complete checksum manually on outgoing path.
3266 */
3267int skb_checksum_help(struct sk_buff *skb)
3268{
3269 __wsum csum;
3270 int ret = 0, offset;
3271
3272 if (skb->ip_summed == CHECKSUM_COMPLETE)
3273 goto out_set_summed;
3274
3275 if (unlikely(skb_is_gso(skb))) {
3276 skb_warn_bad_offload(skb);
3277 return -EINVAL;
3278 }
3279
3280 /* Before computing a checksum, we should make sure no frag could
3281 * be modified by an external entity : checksum could be wrong.
3282 */
3283 if (skb_has_shared_frag(skb)) {
3284 ret = __skb_linearize(skb);
3285 if (ret)
3286 goto out;
3287 }
3288
3289 offset = skb_checksum_start_offset(skb);
3290 ret = -EINVAL;
3291 if (unlikely(offset >= skb_headlen(skb))) {
3292 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3293 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3294 offset, skb_headlen(skb));
3295 goto out;
3296 }
3297 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3298
3299 offset += skb->csum_offset;
3300 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3301 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3302 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3303 offset + sizeof(__sum16), skb_headlen(skb));
3304 goto out;
3305 }
3306 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3307 if (ret)
3308 goto out;
3309
3310 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3311out_set_summed:
3312 skb->ip_summed = CHECKSUM_NONE;
3313out:
3314 return ret;
3315}
3316EXPORT_SYMBOL(skb_checksum_help);
3317
3318int skb_crc32c_csum_help(struct sk_buff *skb)
3319{
3320 __le32 crc32c_csum;
3321 int ret = 0, offset, start;
3322
3323 if (skb->ip_summed != CHECKSUM_PARTIAL)
3324 goto out;
3325
3326 if (unlikely(skb_is_gso(skb)))
3327 goto out;
3328
3329 /* Before computing a checksum, we should make sure no frag could
3330 * be modified by an external entity : checksum could be wrong.
3331 */
3332 if (unlikely(skb_has_shared_frag(skb))) {
3333 ret = __skb_linearize(skb);
3334 if (ret)
3335 goto out;
3336 }
3337 start = skb_checksum_start_offset(skb);
3338 offset = start + offsetof(struct sctphdr, checksum);
3339 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3340 ret = -EINVAL;
3341 goto out;
3342 }
3343
3344 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3345 if (ret)
3346 goto out;
3347
3348 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3349 skb->len - start, ~(__u32)0,
3350 crc32c_csum_stub));
3351 *(__le32 *)(skb->data + offset) = crc32c_csum;
3352 skb_reset_csum_not_inet(skb);
3353out:
3354 return ret;
3355}
3356
3357__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3358{
3359 __be16 type = skb->protocol;
3360
3361 /* Tunnel gso handlers can set protocol to ethernet. */
3362 if (type == htons(ETH_P_TEB)) {
3363 struct ethhdr *eth;
3364
3365 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3366 return 0;
3367
3368 eth = (struct ethhdr *)skb->data;
3369 type = eth->h_proto;
3370 }
3371
3372 return vlan_get_protocol_and_depth(skb, type, depth);
3373}
3374
3375
3376/* Take action when hardware reception checksum errors are detected. */
3377#ifdef CONFIG_BUG
3378static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3379{
3380 netdev_err(dev, "hw csum failure\n");
3381 skb_dump(KERN_ERR, skb, true);
3382 dump_stack();
3383}
3384
3385void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3386{
3387 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3388}
3389EXPORT_SYMBOL(netdev_rx_csum_fault);
3390#endif
3391
3392/* XXX: check that highmem exists at all on the given machine. */
3393static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3394{
3395#ifdef CONFIG_HIGHMEM
3396 int i;
3397
3398 if (!(dev->features & NETIF_F_HIGHDMA)) {
3399 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3400 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3401
3402 if (PageHighMem(skb_frag_page(frag)))
3403 return 1;
3404 }
3405 }
3406#endif
3407 return 0;
3408}
3409
3410/* If MPLS offload request, verify we are testing hardware MPLS features
3411 * instead of standard features for the netdev.
3412 */
3413#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3414static netdev_features_t net_mpls_features(struct sk_buff *skb,
3415 netdev_features_t features,
3416 __be16 type)
3417{
3418 if (eth_p_mpls(type))
3419 features &= skb->dev->mpls_features;
3420
3421 return features;
3422}
3423#else
3424static netdev_features_t net_mpls_features(struct sk_buff *skb,
3425 netdev_features_t features,
3426 __be16 type)
3427{
3428 return features;
3429}
3430#endif
3431
3432static netdev_features_t harmonize_features(struct sk_buff *skb,
3433 netdev_features_t features)
3434{
3435 __be16 type;
3436
3437 type = skb_network_protocol(skb, NULL);
3438 features = net_mpls_features(skb, features, type);
3439
3440 if (skb->ip_summed != CHECKSUM_NONE &&
3441 !can_checksum_protocol(features, type)) {
3442 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3443 }
3444 if (illegal_highdma(skb->dev, skb))
3445 features &= ~NETIF_F_SG;
3446
3447 return features;
3448}
3449
3450netdev_features_t passthru_features_check(struct sk_buff *skb,
3451 struct net_device *dev,
3452 netdev_features_t features)
3453{
3454 return features;
3455}
3456EXPORT_SYMBOL(passthru_features_check);
3457
3458static netdev_features_t dflt_features_check(struct sk_buff *skb,
3459 struct net_device *dev,
3460 netdev_features_t features)
3461{
3462 return vlan_features_check(skb, features);
3463}
3464
3465static netdev_features_t gso_features_check(const struct sk_buff *skb,
3466 struct net_device *dev,
3467 netdev_features_t features)
3468{
3469 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3470
3471 if (gso_segs > READ_ONCE(dev->gso_max_segs))
3472 return features & ~NETIF_F_GSO_MASK;
3473
3474 if (unlikely(skb->len >= READ_ONCE(dev->gso_max_size)))
3475 return features & ~NETIF_F_GSO_MASK;
3476
3477 if (!skb_shinfo(skb)->gso_type) {
3478 skb_warn_bad_offload(skb);
3479 return features & ~NETIF_F_GSO_MASK;
3480 }
3481
3482 /* Support for GSO partial features requires software
3483 * intervention before we can actually process the packets
3484 * so we need to strip support for any partial features now
3485 * and we can pull them back in after we have partially
3486 * segmented the frame.
3487 */
3488 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3489 features &= ~dev->gso_partial_features;
3490
3491 /* Make sure to clear the IPv4 ID mangling feature if the
3492 * IPv4 header has the potential to be fragmented.
3493 */
3494 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3495 struct iphdr *iph = skb->encapsulation ?
3496 inner_ip_hdr(skb) : ip_hdr(skb);
3497
3498 if (!(iph->frag_off & htons(IP_DF)))
3499 features &= ~NETIF_F_TSO_MANGLEID;
3500 }
3501
3502 return features;
3503}
3504
3505netdev_features_t netif_skb_features(struct sk_buff *skb)
3506{
3507 struct net_device *dev = skb->dev;
3508 netdev_features_t features = dev->features;
3509
3510 if (skb_is_gso(skb))
3511 features = gso_features_check(skb, dev, features);
3512
3513 /* If encapsulation offload request, verify we are testing
3514 * hardware encapsulation features instead of standard
3515 * features for the netdev
3516 */
3517 if (skb->encapsulation)
3518 features &= dev->hw_enc_features;
3519
3520 if (skb_vlan_tagged(skb))
3521 features = netdev_intersect_features(features,
3522 dev->vlan_features |
3523 NETIF_F_HW_VLAN_CTAG_TX |
3524 NETIF_F_HW_VLAN_STAG_TX);
3525
3526 if (dev->netdev_ops->ndo_features_check)
3527 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3528 features);
3529 else
3530 features &= dflt_features_check(skb, dev, features);
3531
3532 return harmonize_features(skb, features);
3533}
3534EXPORT_SYMBOL(netif_skb_features);
3535
3536static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3537 struct netdev_queue *txq, bool more)
3538{
3539 unsigned int len;
3540 int rc;
3541
3542 if (dev_nit_active(dev))
3543 dev_queue_xmit_nit(skb, dev);
3544
3545 len = skb->len;
3546 trace_net_dev_start_xmit(skb, dev);
3547 rc = netdev_start_xmit(skb, dev, txq, more);
3548 trace_net_dev_xmit(skb, rc, dev, len);
3549
3550 return rc;
3551}
3552
3553struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3554 struct netdev_queue *txq, int *ret)
3555{
3556 struct sk_buff *skb = first;
3557 int rc = NETDEV_TX_OK;
3558
3559 while (skb) {
3560 struct sk_buff *next = skb->next;
3561
3562 skb_mark_not_on_list(skb);
3563 rc = xmit_one(skb, dev, txq, next != NULL);
3564 if (unlikely(!dev_xmit_complete(rc))) {
3565 skb->next = next;
3566 goto out;
3567 }
3568
3569 skb = next;
3570 if (netif_tx_queue_stopped(txq) && skb) {
3571 rc = NETDEV_TX_BUSY;
3572 break;
3573 }
3574 }
3575
3576out:
3577 *ret = rc;
3578 return skb;
3579}
3580
3581static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3582 netdev_features_t features)
3583{
3584 if (skb_vlan_tag_present(skb) &&
3585 !vlan_hw_offload_capable(features, skb->vlan_proto))
3586 skb = __vlan_hwaccel_push_inside(skb);
3587 return skb;
3588}
3589
3590int skb_csum_hwoffload_help(struct sk_buff *skb,
3591 const netdev_features_t features)
3592{
3593 if (unlikely(skb_csum_is_sctp(skb)))
3594 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3595 skb_crc32c_csum_help(skb);
3596
3597 if (features & NETIF_F_HW_CSUM)
3598 return 0;
3599
3600 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3601 switch (skb->csum_offset) {
3602 case offsetof(struct tcphdr, check):
3603 case offsetof(struct udphdr, check):
3604 return 0;
3605 }
3606 }
3607
3608 return skb_checksum_help(skb);
3609}
3610EXPORT_SYMBOL(skb_csum_hwoffload_help);
3611
3612static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3613{
3614 netdev_features_t features;
3615
3616 features = netif_skb_features(skb);
3617 skb = validate_xmit_vlan(skb, features);
3618 if (unlikely(!skb))
3619 goto out_null;
3620
3621 skb = sk_validate_xmit_skb(skb, dev);
3622 if (unlikely(!skb))
3623 goto out_null;
3624
3625 if (netif_needs_gso(skb, features)) {
3626 struct sk_buff *segs;
3627
3628 segs = skb_gso_segment(skb, features);
3629 if (IS_ERR(segs)) {
3630 goto out_kfree_skb;
3631 } else if (segs) {
3632 consume_skb(skb);
3633 skb = segs;
3634 }
3635 } else {
3636 if (skb_needs_linearize(skb, features) &&
3637 __skb_linearize(skb))
3638 goto out_kfree_skb;
3639
3640 /* If packet is not checksummed and device does not
3641 * support checksumming for this protocol, complete
3642 * checksumming here.
3643 */
3644 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3645 if (skb->encapsulation)
3646 skb_set_inner_transport_header(skb,
3647 skb_checksum_start_offset(skb));
3648 else
3649 skb_set_transport_header(skb,
3650 skb_checksum_start_offset(skb));
3651 if (skb_csum_hwoffload_help(skb, features))
3652 goto out_kfree_skb;
3653 }
3654 }
3655
3656 skb = validate_xmit_xfrm(skb, features, again);
3657
3658 return skb;
3659
3660out_kfree_skb:
3661 kfree_skb(skb);
3662out_null:
3663 dev_core_stats_tx_dropped_inc(dev);
3664 return NULL;
3665}
3666
3667struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3668{
3669 struct sk_buff *next, *head = NULL, *tail;
3670
3671 for (; skb != NULL; skb = next) {
3672 next = skb->next;
3673 skb_mark_not_on_list(skb);
3674
3675 /* in case skb wont be segmented, point to itself */
3676 skb->prev = skb;
3677
3678 skb = validate_xmit_skb(skb, dev, again);
3679 if (!skb)
3680 continue;
3681
3682 if (!head)
3683 head = skb;
3684 else
3685 tail->next = skb;
3686 /* If skb was segmented, skb->prev points to
3687 * the last segment. If not, it still contains skb.
3688 */
3689 tail = skb->prev;
3690 }
3691 return head;
3692}
3693EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3694
3695static void qdisc_pkt_len_init(struct sk_buff *skb)
3696{
3697 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3698
3699 qdisc_skb_cb(skb)->pkt_len = skb->len;
3700
3701 /* To get more precise estimation of bytes sent on wire,
3702 * we add to pkt_len the headers size of all segments
3703 */
3704 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3705 u16 gso_segs = shinfo->gso_segs;
3706 unsigned int hdr_len;
3707
3708 /* mac layer + network layer */
3709 hdr_len = skb_transport_offset(skb);
3710
3711 /* + transport layer */
3712 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3713 const struct tcphdr *th;
3714 struct tcphdr _tcphdr;
3715
3716 th = skb_header_pointer(skb, hdr_len,
3717 sizeof(_tcphdr), &_tcphdr);
3718 if (likely(th))
3719 hdr_len += __tcp_hdrlen(th);
3720 } else {
3721 struct udphdr _udphdr;
3722
3723 if (skb_header_pointer(skb, hdr_len,
3724 sizeof(_udphdr), &_udphdr))
3725 hdr_len += sizeof(struct udphdr);
3726 }
3727
3728 if (shinfo->gso_type & SKB_GSO_DODGY)
3729 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3730 shinfo->gso_size);
3731
3732 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3733 }
3734}
3735
3736static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3737 struct sk_buff **to_free,
3738 struct netdev_queue *txq)
3739{
3740 int rc;
3741
3742 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3743 if (rc == NET_XMIT_SUCCESS)
3744 trace_qdisc_enqueue(q, txq, skb);
3745 return rc;
3746}
3747
3748static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3749 struct net_device *dev,
3750 struct netdev_queue *txq)
3751{
3752 spinlock_t *root_lock = qdisc_lock(q);
3753 struct sk_buff *to_free = NULL;
3754 bool contended;
3755 int rc;
3756
3757 qdisc_calculate_pkt_len(skb, q);
3758
3759 tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
3760
3761 if (q->flags & TCQ_F_NOLOCK) {
3762 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3763 qdisc_run_begin(q)) {
3764 /* Retest nolock_qdisc_is_empty() within the protection
3765 * of q->seqlock to protect from racing with requeuing.
3766 */
3767 if (unlikely(!nolock_qdisc_is_empty(q))) {
3768 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3769 __qdisc_run(q);
3770 qdisc_run_end(q);
3771
3772 goto no_lock_out;
3773 }
3774
3775 qdisc_bstats_cpu_update(q, skb);
3776 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3777 !nolock_qdisc_is_empty(q))
3778 __qdisc_run(q);
3779
3780 qdisc_run_end(q);
3781 return NET_XMIT_SUCCESS;
3782 }
3783
3784 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3785 qdisc_run(q);
3786
3787no_lock_out:
3788 if (unlikely(to_free))
3789 kfree_skb_list_reason(to_free,
3790 tcf_get_drop_reason(to_free));
3791 return rc;
3792 }
3793
3794 /*
3795 * Heuristic to force contended enqueues to serialize on a
3796 * separate lock before trying to get qdisc main lock.
3797 * This permits qdisc->running owner to get the lock more
3798 * often and dequeue packets faster.
3799 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3800 * and then other tasks will only enqueue packets. The packets will be
3801 * sent after the qdisc owner is scheduled again. To prevent this
3802 * scenario the task always serialize on the lock.
3803 */
3804 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3805 if (unlikely(contended))
3806 spin_lock(&q->busylock);
3807
3808 spin_lock(root_lock);
3809 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3810 __qdisc_drop(skb, &to_free);
3811 rc = NET_XMIT_DROP;
3812 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3813 qdisc_run_begin(q)) {
3814 /*
3815 * This is a work-conserving queue; there are no old skbs
3816 * waiting to be sent out; and the qdisc is not running -
3817 * xmit the skb directly.
3818 */
3819
3820 qdisc_bstats_update(q, skb);
3821
3822 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3823 if (unlikely(contended)) {
3824 spin_unlock(&q->busylock);
3825 contended = false;
3826 }
3827 __qdisc_run(q);
3828 }
3829
3830 qdisc_run_end(q);
3831 rc = NET_XMIT_SUCCESS;
3832 } else {
3833 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3834 if (qdisc_run_begin(q)) {
3835 if (unlikely(contended)) {
3836 spin_unlock(&q->busylock);
3837 contended = false;
3838 }
3839 __qdisc_run(q);
3840 qdisc_run_end(q);
3841 }
3842 }
3843 spin_unlock(root_lock);
3844 if (unlikely(to_free))
3845 kfree_skb_list_reason(to_free,
3846 tcf_get_drop_reason(to_free));
3847 if (unlikely(contended))
3848 spin_unlock(&q->busylock);
3849 return rc;
3850}
3851
3852#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3853static void skb_update_prio(struct sk_buff *skb)
3854{
3855 const struct netprio_map *map;
3856 const struct sock *sk;
3857 unsigned int prioidx;
3858
3859 if (skb->priority)
3860 return;
3861 map = rcu_dereference_bh(skb->dev->priomap);
3862 if (!map)
3863 return;
3864 sk = skb_to_full_sk(skb);
3865 if (!sk)
3866 return;
3867
3868 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3869
3870 if (prioidx < map->priomap_len)
3871 skb->priority = map->priomap[prioidx];
3872}
3873#else
3874#define skb_update_prio(skb)
3875#endif
3876
3877/**
3878 * dev_loopback_xmit - loop back @skb
3879 * @net: network namespace this loopback is happening in
3880 * @sk: sk needed to be a netfilter okfn
3881 * @skb: buffer to transmit
3882 */
3883int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3884{
3885 skb_reset_mac_header(skb);
3886 __skb_pull(skb, skb_network_offset(skb));
3887 skb->pkt_type = PACKET_LOOPBACK;
3888 if (skb->ip_summed == CHECKSUM_NONE)
3889 skb->ip_summed = CHECKSUM_UNNECESSARY;
3890 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3891 skb_dst_force(skb);
3892 netif_rx(skb);
3893 return 0;
3894}
3895EXPORT_SYMBOL(dev_loopback_xmit);
3896
3897#ifdef CONFIG_NET_EGRESS
3898static struct netdev_queue *
3899netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3900{
3901 int qm = skb_get_queue_mapping(skb);
3902
3903 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3904}
3905
3906static bool netdev_xmit_txqueue_skipped(void)
3907{
3908 return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3909}
3910
3911void netdev_xmit_skip_txqueue(bool skip)
3912{
3913 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3914}
3915EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3916#endif /* CONFIG_NET_EGRESS */
3917
3918#ifdef CONFIG_NET_XGRESS
3919static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
3920 enum skb_drop_reason *drop_reason)
3921{
3922 int ret = TC_ACT_UNSPEC;
3923#ifdef CONFIG_NET_CLS_ACT
3924 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3925 struct tcf_result res;
3926
3927 if (!miniq)
3928 return ret;
3929
3930 tc_skb_cb(skb)->mru = 0;
3931 tc_skb_cb(skb)->post_ct = false;
3932 tcf_set_drop_reason(skb, *drop_reason);
3933
3934 mini_qdisc_bstats_cpu_update(miniq, skb);
3935 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
3936 /* Only tcf related quirks below. */
3937 switch (ret) {
3938 case TC_ACT_SHOT:
3939 *drop_reason = tcf_get_drop_reason(skb);
3940 mini_qdisc_qstats_cpu_drop(miniq);
3941 break;
3942 case TC_ACT_OK:
3943 case TC_ACT_RECLASSIFY:
3944 skb->tc_index = TC_H_MIN(res.classid);
3945 break;
3946 }
3947#endif /* CONFIG_NET_CLS_ACT */
3948 return ret;
3949}
3950
3951static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
3952
3953void tcx_inc(void)
3954{
3955 static_branch_inc(&tcx_needed_key);
3956}
3957
3958void tcx_dec(void)
3959{
3960 static_branch_dec(&tcx_needed_key);
3961}
3962
3963static __always_inline enum tcx_action_base
3964tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
3965 const bool needs_mac)
3966{
3967 const struct bpf_mprog_fp *fp;
3968 const struct bpf_prog *prog;
3969 int ret = TCX_NEXT;
3970
3971 if (needs_mac)
3972 __skb_push(skb, skb->mac_len);
3973 bpf_mprog_foreach_prog(entry, fp, prog) {
3974 bpf_compute_data_pointers(skb);
3975 ret = bpf_prog_run(prog, skb);
3976 if (ret != TCX_NEXT)
3977 break;
3978 }
3979 if (needs_mac)
3980 __skb_pull(skb, skb->mac_len);
3981 return tcx_action_code(skb, ret);
3982}
3983
3984static __always_inline struct sk_buff *
3985sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3986 struct net_device *orig_dev, bool *another)
3987{
3988 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
3989 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
3990 int sch_ret;
3991
3992 if (!entry)
3993 return skb;
3994 if (*pt_prev) {
3995 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3996 *pt_prev = NULL;
3997 }
3998
3999 qdisc_skb_cb(skb)->pkt_len = skb->len;
4000 tcx_set_ingress(skb, true);
4001
4002 if (static_branch_unlikely(&tcx_needed_key)) {
4003 sch_ret = tcx_run(entry, skb, true);
4004 if (sch_ret != TC_ACT_UNSPEC)
4005 goto ingress_verdict;
4006 }
4007 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4008ingress_verdict:
4009 switch (sch_ret) {
4010 case TC_ACT_REDIRECT:
4011 /* skb_mac_header check was done by BPF, so we can safely
4012 * push the L2 header back before redirecting to another
4013 * netdev.
4014 */
4015 __skb_push(skb, skb->mac_len);
4016 if (skb_do_redirect(skb) == -EAGAIN) {
4017 __skb_pull(skb, skb->mac_len);
4018 *another = true;
4019 break;
4020 }
4021 *ret = NET_RX_SUCCESS;
4022 return NULL;
4023 case TC_ACT_SHOT:
4024 kfree_skb_reason(skb, drop_reason);
4025 *ret = NET_RX_DROP;
4026 return NULL;
4027 /* used by tc_run */
4028 case TC_ACT_STOLEN:
4029 case TC_ACT_QUEUED:
4030 case TC_ACT_TRAP:
4031 consume_skb(skb);
4032 fallthrough;
4033 case TC_ACT_CONSUMED:
4034 *ret = NET_RX_SUCCESS;
4035 return NULL;
4036 }
4037
4038 return skb;
4039}
4040
4041static __always_inline struct sk_buff *
4042sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4043{
4044 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4045 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4046 int sch_ret;
4047
4048 if (!entry)
4049 return skb;
4050
4051 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4052 * already set by the caller.
4053 */
4054 if (static_branch_unlikely(&tcx_needed_key)) {
4055 sch_ret = tcx_run(entry, skb, false);
4056 if (sch_ret != TC_ACT_UNSPEC)
4057 goto egress_verdict;
4058 }
4059 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4060egress_verdict:
4061 switch (sch_ret) {
4062 case TC_ACT_REDIRECT:
4063 /* No need to push/pop skb's mac_header here on egress! */
4064 skb_do_redirect(skb);
4065 *ret = NET_XMIT_SUCCESS;
4066 return NULL;
4067 case TC_ACT_SHOT:
4068 kfree_skb_reason(skb, drop_reason);
4069 *ret = NET_XMIT_DROP;
4070 return NULL;
4071 /* used by tc_run */
4072 case TC_ACT_STOLEN:
4073 case TC_ACT_QUEUED:
4074 case TC_ACT_TRAP:
4075 consume_skb(skb);
4076 fallthrough;
4077 case TC_ACT_CONSUMED:
4078 *ret = NET_XMIT_SUCCESS;
4079 return NULL;
4080 }
4081
4082 return skb;
4083}
4084#else
4085static __always_inline struct sk_buff *
4086sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4087 struct net_device *orig_dev, bool *another)
4088{
4089 return skb;
4090}
4091
4092static __always_inline struct sk_buff *
4093sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4094{
4095 return skb;
4096}
4097#endif /* CONFIG_NET_XGRESS */
4098
4099#ifdef CONFIG_XPS
4100static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4101 struct xps_dev_maps *dev_maps, unsigned int tci)
4102{
4103 int tc = netdev_get_prio_tc_map(dev, skb->priority);
4104 struct xps_map *map;
4105 int queue_index = -1;
4106
4107 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4108 return queue_index;
4109
4110 tci *= dev_maps->num_tc;
4111 tci += tc;
4112
4113 map = rcu_dereference(dev_maps->attr_map[tci]);
4114 if (map) {
4115 if (map->len == 1)
4116 queue_index = map->queues[0];
4117 else
4118 queue_index = map->queues[reciprocal_scale(
4119 skb_get_hash(skb), map->len)];
4120 if (unlikely(queue_index >= dev->real_num_tx_queues))
4121 queue_index = -1;
4122 }
4123 return queue_index;
4124}
4125#endif
4126
4127static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4128 struct sk_buff *skb)
4129{
4130#ifdef CONFIG_XPS
4131 struct xps_dev_maps *dev_maps;
4132 struct sock *sk = skb->sk;
4133 int queue_index = -1;
4134
4135 if (!static_key_false(&xps_needed))
4136 return -1;
4137
4138 rcu_read_lock();
4139 if (!static_key_false(&xps_rxqs_needed))
4140 goto get_cpus_map;
4141
4142 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4143 if (dev_maps) {
4144 int tci = sk_rx_queue_get(sk);
4145
4146 if (tci >= 0)
4147 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4148 tci);
4149 }
4150
4151get_cpus_map:
4152 if (queue_index < 0) {
4153 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4154 if (dev_maps) {
4155 unsigned int tci = skb->sender_cpu - 1;
4156
4157 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4158 tci);
4159 }
4160 }
4161 rcu_read_unlock();
4162
4163 return queue_index;
4164#else
4165 return -1;
4166#endif
4167}
4168
4169u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4170 struct net_device *sb_dev)
4171{
4172 return 0;
4173}
4174EXPORT_SYMBOL(dev_pick_tx_zero);
4175
4176u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4177 struct net_device *sb_dev)
4178{
4179 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4180}
4181EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4182
4183u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4184 struct net_device *sb_dev)
4185{
4186 struct sock *sk = skb->sk;
4187 int queue_index = sk_tx_queue_get(sk);
4188
4189 sb_dev = sb_dev ? : dev;
4190
4191 if (queue_index < 0 || skb->ooo_okay ||
4192 queue_index >= dev->real_num_tx_queues) {
4193 int new_index = get_xps_queue(dev, sb_dev, skb);
4194
4195 if (new_index < 0)
4196 new_index = skb_tx_hash(dev, sb_dev, skb);
4197
4198 if (queue_index != new_index && sk &&
4199 sk_fullsock(sk) &&
4200 rcu_access_pointer(sk->sk_dst_cache))
4201 sk_tx_queue_set(sk, new_index);
4202
4203 queue_index = new_index;
4204 }
4205
4206 return queue_index;
4207}
4208EXPORT_SYMBOL(netdev_pick_tx);
4209
4210struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4211 struct sk_buff *skb,
4212 struct net_device *sb_dev)
4213{
4214 int queue_index = 0;
4215
4216#ifdef CONFIG_XPS
4217 u32 sender_cpu = skb->sender_cpu - 1;
4218
4219 if (sender_cpu >= (u32)NR_CPUS)
4220 skb->sender_cpu = raw_smp_processor_id() + 1;
4221#endif
4222
4223 if (dev->real_num_tx_queues != 1) {
4224 const struct net_device_ops *ops = dev->netdev_ops;
4225
4226 if (ops->ndo_select_queue)
4227 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4228 else
4229 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4230
4231 queue_index = netdev_cap_txqueue(dev, queue_index);
4232 }
4233
4234 skb_set_queue_mapping(skb, queue_index);
4235 return netdev_get_tx_queue(dev, queue_index);
4236}
4237
4238/**
4239 * __dev_queue_xmit() - transmit a buffer
4240 * @skb: buffer to transmit
4241 * @sb_dev: suboordinate device used for L2 forwarding offload
4242 *
4243 * Queue a buffer for transmission to a network device. The caller must
4244 * have set the device and priority and built the buffer before calling
4245 * this function. The function can be called from an interrupt.
4246 *
4247 * When calling this method, interrupts MUST be enabled. This is because
4248 * the BH enable code must have IRQs enabled so that it will not deadlock.
4249 *
4250 * Regardless of the return value, the skb is consumed, so it is currently
4251 * difficult to retry a send to this method. (You can bump the ref count
4252 * before sending to hold a reference for retry if you are careful.)
4253 *
4254 * Return:
4255 * * 0 - buffer successfully transmitted
4256 * * positive qdisc return code - NET_XMIT_DROP etc.
4257 * * negative errno - other errors
4258 */
4259int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4260{
4261 struct net_device *dev = skb->dev;
4262 struct netdev_queue *txq = NULL;
4263 struct Qdisc *q;
4264 int rc = -ENOMEM;
4265 bool again = false;
4266
4267 skb_reset_mac_header(skb);
4268 skb_assert_len(skb);
4269
4270 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4271 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4272
4273 /* Disable soft irqs for various locks below. Also
4274 * stops preemption for RCU.
4275 */
4276 rcu_read_lock_bh();
4277
4278 skb_update_prio(skb);
4279
4280 qdisc_pkt_len_init(skb);
4281 tcx_set_ingress(skb, false);
4282#ifdef CONFIG_NET_EGRESS
4283 if (static_branch_unlikely(&egress_needed_key)) {
4284 if (nf_hook_egress_active()) {
4285 skb = nf_hook_egress(skb, &rc, dev);
4286 if (!skb)
4287 goto out;
4288 }
4289
4290 netdev_xmit_skip_txqueue(false);
4291
4292 nf_skip_egress(skb, true);
4293 skb = sch_handle_egress(skb, &rc, dev);
4294 if (!skb)
4295 goto out;
4296 nf_skip_egress(skb, false);
4297
4298 if (netdev_xmit_txqueue_skipped())
4299 txq = netdev_tx_queue_mapping(dev, skb);
4300 }
4301#endif
4302 /* If device/qdisc don't need skb->dst, release it right now while
4303 * its hot in this cpu cache.
4304 */
4305 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4306 skb_dst_drop(skb);
4307 else
4308 skb_dst_force(skb);
4309
4310 if (!txq)
4311 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4312
4313 q = rcu_dereference_bh(txq->qdisc);
4314
4315 trace_net_dev_queue(skb);
4316 if (q->enqueue) {
4317 rc = __dev_xmit_skb(skb, q, dev, txq);
4318 goto out;
4319 }
4320
4321 /* The device has no queue. Common case for software devices:
4322 * loopback, all the sorts of tunnels...
4323
4324 * Really, it is unlikely that netif_tx_lock protection is necessary
4325 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4326 * counters.)
4327 * However, it is possible, that they rely on protection
4328 * made by us here.
4329
4330 * Check this and shot the lock. It is not prone from deadlocks.
4331 *Either shot noqueue qdisc, it is even simpler 8)
4332 */
4333 if (dev->flags & IFF_UP) {
4334 int cpu = smp_processor_id(); /* ok because BHs are off */
4335
4336 /* Other cpus might concurrently change txq->xmit_lock_owner
4337 * to -1 or to their cpu id, but not to our id.
4338 */
4339 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4340 if (dev_xmit_recursion())
4341 goto recursion_alert;
4342
4343 skb = validate_xmit_skb(skb, dev, &again);
4344 if (!skb)
4345 goto out;
4346
4347 HARD_TX_LOCK(dev, txq, cpu);
4348
4349 if (!netif_xmit_stopped(txq)) {
4350 dev_xmit_recursion_inc();
4351 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4352 dev_xmit_recursion_dec();
4353 if (dev_xmit_complete(rc)) {
4354 HARD_TX_UNLOCK(dev, txq);
4355 goto out;
4356 }
4357 }
4358 HARD_TX_UNLOCK(dev, txq);
4359 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4360 dev->name);
4361 } else {
4362 /* Recursion is detected! It is possible,
4363 * unfortunately
4364 */
4365recursion_alert:
4366 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4367 dev->name);
4368 }
4369 }
4370
4371 rc = -ENETDOWN;
4372 rcu_read_unlock_bh();
4373
4374 dev_core_stats_tx_dropped_inc(dev);
4375 kfree_skb_list(skb);
4376 return rc;
4377out:
4378 rcu_read_unlock_bh();
4379 return rc;
4380}
4381EXPORT_SYMBOL(__dev_queue_xmit);
4382
4383int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4384{
4385 struct net_device *dev = skb->dev;
4386 struct sk_buff *orig_skb = skb;
4387 struct netdev_queue *txq;
4388 int ret = NETDEV_TX_BUSY;
4389 bool again = false;
4390
4391 if (unlikely(!netif_running(dev) ||
4392 !netif_carrier_ok(dev)))
4393 goto drop;
4394
4395 skb = validate_xmit_skb_list(skb, dev, &again);
4396 if (skb != orig_skb)
4397 goto drop;
4398
4399 skb_set_queue_mapping(skb, queue_id);
4400 txq = skb_get_tx_queue(dev, skb);
4401
4402 local_bh_disable();
4403
4404 dev_xmit_recursion_inc();
4405 HARD_TX_LOCK(dev, txq, smp_processor_id());
4406 if (!netif_xmit_frozen_or_drv_stopped(txq))
4407 ret = netdev_start_xmit(skb, dev, txq, false);
4408 HARD_TX_UNLOCK(dev, txq);
4409 dev_xmit_recursion_dec();
4410
4411 local_bh_enable();
4412 return ret;
4413drop:
4414 dev_core_stats_tx_dropped_inc(dev);
4415 kfree_skb_list(skb);
4416 return NET_XMIT_DROP;
4417}
4418EXPORT_SYMBOL(__dev_direct_xmit);
4419
4420/*************************************************************************
4421 * Receiver routines
4422 *************************************************************************/
4423
4424int netdev_max_backlog __read_mostly = 1000;
4425EXPORT_SYMBOL(netdev_max_backlog);
4426
4427int netdev_tstamp_prequeue __read_mostly = 1;
4428unsigned int sysctl_skb_defer_max __read_mostly = 64;
4429int netdev_budget __read_mostly = 300;
4430/* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4431unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4432int weight_p __read_mostly = 64; /* old backlog weight */
4433int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4434int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4435int dev_rx_weight __read_mostly = 64;
4436int dev_tx_weight __read_mostly = 64;
4437
4438/* Called with irq disabled */
4439static inline void ____napi_schedule(struct softnet_data *sd,
4440 struct napi_struct *napi)
4441{
4442 struct task_struct *thread;
4443
4444 lockdep_assert_irqs_disabled();
4445
4446 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4447 /* Paired with smp_mb__before_atomic() in
4448 * napi_enable()/dev_set_threaded().
4449 * Use READ_ONCE() to guarantee a complete
4450 * read on napi->thread. Only call
4451 * wake_up_process() when it's not NULL.
4452 */
4453 thread = READ_ONCE(napi->thread);
4454 if (thread) {
4455 /* Avoid doing set_bit() if the thread is in
4456 * INTERRUPTIBLE state, cause napi_thread_wait()
4457 * makes sure to proceed with napi polling
4458 * if the thread is explicitly woken from here.
4459 */
4460 if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4461 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4462 wake_up_process(thread);
4463 return;
4464 }
4465 }
4466
4467 list_add_tail(&napi->poll_list, &sd->poll_list);
4468 WRITE_ONCE(napi->list_owner, smp_processor_id());
4469 /* If not called from net_rx_action()
4470 * we have to raise NET_RX_SOFTIRQ.
4471 */
4472 if (!sd->in_net_rx_action)
4473 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4474}
4475
4476#ifdef CONFIG_RPS
4477
4478/* One global table that all flow-based protocols share. */
4479struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4480EXPORT_SYMBOL(rps_sock_flow_table);
4481u32 rps_cpu_mask __read_mostly;
4482EXPORT_SYMBOL(rps_cpu_mask);
4483
4484struct static_key_false rps_needed __read_mostly;
4485EXPORT_SYMBOL(rps_needed);
4486struct static_key_false rfs_needed __read_mostly;
4487EXPORT_SYMBOL(rfs_needed);
4488
4489static struct rps_dev_flow *
4490set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4491 struct rps_dev_flow *rflow, u16 next_cpu)
4492{
4493 if (next_cpu < nr_cpu_ids) {
4494#ifdef CONFIG_RFS_ACCEL
4495 struct netdev_rx_queue *rxqueue;
4496 struct rps_dev_flow_table *flow_table;
4497 struct rps_dev_flow *old_rflow;
4498 u32 flow_id;
4499 u16 rxq_index;
4500 int rc;
4501
4502 /* Should we steer this flow to a different hardware queue? */
4503 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4504 !(dev->features & NETIF_F_NTUPLE))
4505 goto out;
4506 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4507 if (rxq_index == skb_get_rx_queue(skb))
4508 goto out;
4509
4510 rxqueue = dev->_rx + rxq_index;
4511 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4512 if (!flow_table)
4513 goto out;
4514 flow_id = skb_get_hash(skb) & flow_table->mask;
4515 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4516 rxq_index, flow_id);
4517 if (rc < 0)
4518 goto out;
4519 old_rflow = rflow;
4520 rflow = &flow_table->flows[flow_id];
4521 rflow->filter = rc;
4522 if (old_rflow->filter == rflow->filter)
4523 old_rflow->filter = RPS_NO_FILTER;
4524 out:
4525#endif
4526 rflow->last_qtail =
4527 per_cpu(softnet_data, next_cpu).input_queue_head;
4528 }
4529
4530 rflow->cpu = next_cpu;
4531 return rflow;
4532}
4533
4534/*
4535 * get_rps_cpu is called from netif_receive_skb and returns the target
4536 * CPU from the RPS map of the receiving queue for a given skb.
4537 * rcu_read_lock must be held on entry.
4538 */
4539static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4540 struct rps_dev_flow **rflowp)
4541{
4542 const struct rps_sock_flow_table *sock_flow_table;
4543 struct netdev_rx_queue *rxqueue = dev->_rx;
4544 struct rps_dev_flow_table *flow_table;
4545 struct rps_map *map;
4546 int cpu = -1;
4547 u32 tcpu;
4548 u32 hash;
4549
4550 if (skb_rx_queue_recorded(skb)) {
4551 u16 index = skb_get_rx_queue(skb);
4552
4553 if (unlikely(index >= dev->real_num_rx_queues)) {
4554 WARN_ONCE(dev->real_num_rx_queues > 1,
4555 "%s received packet on queue %u, but number "
4556 "of RX queues is %u\n",
4557 dev->name, index, dev->real_num_rx_queues);
4558 goto done;
4559 }
4560 rxqueue += index;
4561 }
4562
4563 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4564
4565 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4566 map = rcu_dereference(rxqueue->rps_map);
4567 if (!flow_table && !map)
4568 goto done;
4569
4570 skb_reset_network_header(skb);
4571 hash = skb_get_hash(skb);
4572 if (!hash)
4573 goto done;
4574
4575 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4576 if (flow_table && sock_flow_table) {
4577 struct rps_dev_flow *rflow;
4578 u32 next_cpu;
4579 u32 ident;
4580
4581 /* First check into global flow table if there is a match.
4582 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4583 */
4584 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4585 if ((ident ^ hash) & ~rps_cpu_mask)
4586 goto try_rps;
4587
4588 next_cpu = ident & rps_cpu_mask;
4589
4590 /* OK, now we know there is a match,
4591 * we can look at the local (per receive queue) flow table
4592 */
4593 rflow = &flow_table->flows[hash & flow_table->mask];
4594 tcpu = rflow->cpu;
4595
4596 /*
4597 * If the desired CPU (where last recvmsg was done) is
4598 * different from current CPU (one in the rx-queue flow
4599 * table entry), switch if one of the following holds:
4600 * - Current CPU is unset (>= nr_cpu_ids).
4601 * - Current CPU is offline.
4602 * - The current CPU's queue tail has advanced beyond the
4603 * last packet that was enqueued using this table entry.
4604 * This guarantees that all previous packets for the flow
4605 * have been dequeued, thus preserving in order delivery.
4606 */
4607 if (unlikely(tcpu != next_cpu) &&
4608 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4609 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4610 rflow->last_qtail)) >= 0)) {
4611 tcpu = next_cpu;
4612 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4613 }
4614
4615 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4616 *rflowp = rflow;
4617 cpu = tcpu;
4618 goto done;
4619 }
4620 }
4621
4622try_rps:
4623
4624 if (map) {
4625 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4626 if (cpu_online(tcpu)) {
4627 cpu = tcpu;
4628 goto done;
4629 }
4630 }
4631
4632done:
4633 return cpu;
4634}
4635
4636#ifdef CONFIG_RFS_ACCEL
4637
4638/**
4639 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4640 * @dev: Device on which the filter was set
4641 * @rxq_index: RX queue index
4642 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4643 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4644 *
4645 * Drivers that implement ndo_rx_flow_steer() should periodically call
4646 * this function for each installed filter and remove the filters for
4647 * which it returns %true.
4648 */
4649bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4650 u32 flow_id, u16 filter_id)
4651{
4652 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4653 struct rps_dev_flow_table *flow_table;
4654 struct rps_dev_flow *rflow;
4655 bool expire = true;
4656 unsigned int cpu;
4657
4658 rcu_read_lock();
4659 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4660 if (flow_table && flow_id <= flow_table->mask) {
4661 rflow = &flow_table->flows[flow_id];
4662 cpu = READ_ONCE(rflow->cpu);
4663 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4664 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4665 rflow->last_qtail) <
4666 (int)(10 * flow_table->mask)))
4667 expire = false;
4668 }
4669 rcu_read_unlock();
4670 return expire;
4671}
4672EXPORT_SYMBOL(rps_may_expire_flow);
4673
4674#endif /* CONFIG_RFS_ACCEL */
4675
4676/* Called from hardirq (IPI) context */
4677static void rps_trigger_softirq(void *data)
4678{
4679 struct softnet_data *sd = data;
4680
4681 ____napi_schedule(sd, &sd->backlog);
4682 sd->received_rps++;
4683}
4684
4685#endif /* CONFIG_RPS */
4686
4687/* Called from hardirq (IPI) context */
4688static void trigger_rx_softirq(void *data)
4689{
4690 struct softnet_data *sd = data;
4691
4692 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4693 smp_store_release(&sd->defer_ipi_scheduled, 0);
4694}
4695
4696/*
4697 * After we queued a packet into sd->input_pkt_queue,
4698 * we need to make sure this queue is serviced soon.
4699 *
4700 * - If this is another cpu queue, link it to our rps_ipi_list,
4701 * and make sure we will process rps_ipi_list from net_rx_action().
4702 *
4703 * - If this is our own queue, NAPI schedule our backlog.
4704 * Note that this also raises NET_RX_SOFTIRQ.
4705 */
4706static void napi_schedule_rps(struct softnet_data *sd)
4707{
4708 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4709
4710#ifdef CONFIG_RPS
4711 if (sd != mysd) {
4712 sd->rps_ipi_next = mysd->rps_ipi_list;
4713 mysd->rps_ipi_list = sd;
4714
4715 /* If not called from net_rx_action() or napi_threaded_poll()
4716 * we have to raise NET_RX_SOFTIRQ.
4717 */
4718 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4719 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4720 return;
4721 }
4722#endif /* CONFIG_RPS */
4723 __napi_schedule_irqoff(&mysd->backlog);
4724}
4725
4726#ifdef CONFIG_NET_FLOW_LIMIT
4727int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4728#endif
4729
4730static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4731{
4732#ifdef CONFIG_NET_FLOW_LIMIT
4733 struct sd_flow_limit *fl;
4734 struct softnet_data *sd;
4735 unsigned int old_flow, new_flow;
4736
4737 if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4738 return false;
4739
4740 sd = this_cpu_ptr(&softnet_data);
4741
4742 rcu_read_lock();
4743 fl = rcu_dereference(sd->flow_limit);
4744 if (fl) {
4745 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4746 old_flow = fl->history[fl->history_head];
4747 fl->history[fl->history_head] = new_flow;
4748
4749 fl->history_head++;
4750 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4751
4752 if (likely(fl->buckets[old_flow]))
4753 fl->buckets[old_flow]--;
4754
4755 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4756 fl->count++;
4757 rcu_read_unlock();
4758 return true;
4759 }
4760 }
4761 rcu_read_unlock();
4762#endif
4763 return false;
4764}
4765
4766/*
4767 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4768 * queue (may be a remote CPU queue).
4769 */
4770static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4771 unsigned int *qtail)
4772{
4773 enum skb_drop_reason reason;
4774 struct softnet_data *sd;
4775 unsigned long flags;
4776 unsigned int qlen;
4777
4778 reason = SKB_DROP_REASON_NOT_SPECIFIED;
4779 sd = &per_cpu(softnet_data, cpu);
4780
4781 rps_lock_irqsave(sd, &flags);
4782 if (!netif_running(skb->dev))
4783 goto drop;
4784 qlen = skb_queue_len(&sd->input_pkt_queue);
4785 if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4786 if (qlen) {
4787enqueue:
4788 __skb_queue_tail(&sd->input_pkt_queue, skb);
4789 input_queue_tail_incr_save(sd, qtail);
4790 rps_unlock_irq_restore(sd, &flags);
4791 return NET_RX_SUCCESS;
4792 }
4793
4794 /* Schedule NAPI for backlog device
4795 * We can use non atomic operation since we own the queue lock
4796 */
4797 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4798 napi_schedule_rps(sd);
4799 goto enqueue;
4800 }
4801 reason = SKB_DROP_REASON_CPU_BACKLOG;
4802
4803drop:
4804 sd->dropped++;
4805 rps_unlock_irq_restore(sd, &flags);
4806
4807 dev_core_stats_rx_dropped_inc(skb->dev);
4808 kfree_skb_reason(skb, reason);
4809 return NET_RX_DROP;
4810}
4811
4812static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4813{
4814 struct net_device *dev = skb->dev;
4815 struct netdev_rx_queue *rxqueue;
4816
4817 rxqueue = dev->_rx;
4818
4819 if (skb_rx_queue_recorded(skb)) {
4820 u16 index = skb_get_rx_queue(skb);
4821
4822 if (unlikely(index >= dev->real_num_rx_queues)) {
4823 WARN_ONCE(dev->real_num_rx_queues > 1,
4824 "%s received packet on queue %u, but number "
4825 "of RX queues is %u\n",
4826 dev->name, index, dev->real_num_rx_queues);
4827
4828 return rxqueue; /* Return first rxqueue */
4829 }
4830 rxqueue += index;
4831 }
4832 return rxqueue;
4833}
4834
4835u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4836 struct bpf_prog *xdp_prog)
4837{
4838 void *orig_data, *orig_data_end, *hard_start;
4839 struct netdev_rx_queue *rxqueue;
4840 bool orig_bcast, orig_host;
4841 u32 mac_len, frame_sz;
4842 __be16 orig_eth_type;
4843 struct ethhdr *eth;
4844 u32 metalen, act;
4845 int off;
4846
4847 /* The XDP program wants to see the packet starting at the MAC
4848 * header.
4849 */
4850 mac_len = skb->data - skb_mac_header(skb);
4851 hard_start = skb->data - skb_headroom(skb);
4852
4853 /* SKB "head" area always have tailroom for skb_shared_info */
4854 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4855 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4856
4857 rxqueue = netif_get_rxqueue(skb);
4858 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4859 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4860 skb_headlen(skb) + mac_len, true);
4861
4862 orig_data_end = xdp->data_end;
4863 orig_data = xdp->data;
4864 eth = (struct ethhdr *)xdp->data;
4865 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4866 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4867 orig_eth_type = eth->h_proto;
4868
4869 act = bpf_prog_run_xdp(xdp_prog, xdp);
4870
4871 /* check if bpf_xdp_adjust_head was used */
4872 off = xdp->data - orig_data;
4873 if (off) {
4874 if (off > 0)
4875 __skb_pull(skb, off);
4876 else if (off < 0)
4877 __skb_push(skb, -off);
4878
4879 skb->mac_header += off;
4880 skb_reset_network_header(skb);
4881 }
4882
4883 /* check if bpf_xdp_adjust_tail was used */
4884 off = xdp->data_end - orig_data_end;
4885 if (off != 0) {
4886 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4887 skb->len += off; /* positive on grow, negative on shrink */
4888 }
4889
4890 /* check if XDP changed eth hdr such SKB needs update */
4891 eth = (struct ethhdr *)xdp->data;
4892 if ((orig_eth_type != eth->h_proto) ||
4893 (orig_host != ether_addr_equal_64bits(eth->h_dest,
4894 skb->dev->dev_addr)) ||
4895 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4896 __skb_push(skb, ETH_HLEN);
4897 skb->pkt_type = PACKET_HOST;
4898 skb->protocol = eth_type_trans(skb, skb->dev);
4899 }
4900
4901 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4902 * before calling us again on redirect path. We do not call do_redirect
4903 * as we leave that up to the caller.
4904 *
4905 * Caller is responsible for managing lifetime of skb (i.e. calling
4906 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4907 */
4908 switch (act) {
4909 case XDP_REDIRECT:
4910 case XDP_TX:
4911 __skb_push(skb, mac_len);
4912 break;
4913 case XDP_PASS:
4914 metalen = xdp->data - xdp->data_meta;
4915 if (metalen)
4916 skb_metadata_set(skb, metalen);
4917 break;
4918 }
4919
4920 return act;
4921}
4922
4923static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4924 struct xdp_buff *xdp,
4925 struct bpf_prog *xdp_prog)
4926{
4927 u32 act = XDP_DROP;
4928
4929 /* Reinjected packets coming from act_mirred or similar should
4930 * not get XDP generic processing.
4931 */
4932 if (skb_is_redirected(skb))
4933 return XDP_PASS;
4934
4935 /* XDP packets must be linear and must have sufficient headroom
4936 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4937 * native XDP provides, thus we need to do it here as well.
4938 */
4939 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4940 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4941 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4942 int troom = skb->tail + skb->data_len - skb->end;
4943
4944 /* In case we have to go down the path and also linearize,
4945 * then lets do the pskb_expand_head() work just once here.
4946 */
4947 if (pskb_expand_head(skb,
4948 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4949 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4950 goto do_drop;
4951 if (skb_linearize(skb))
4952 goto do_drop;
4953 }
4954
4955 act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4956 switch (act) {
4957 case XDP_REDIRECT:
4958 case XDP_TX:
4959 case XDP_PASS:
4960 break;
4961 default:
4962 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4963 fallthrough;
4964 case XDP_ABORTED:
4965 trace_xdp_exception(skb->dev, xdp_prog, act);
4966 fallthrough;
4967 case XDP_DROP:
4968 do_drop:
4969 kfree_skb(skb);
4970 break;
4971 }
4972
4973 return act;
4974}
4975
4976/* When doing generic XDP we have to bypass the qdisc layer and the
4977 * network taps in order to match in-driver-XDP behavior. This also means
4978 * that XDP packets are able to starve other packets going through a qdisc,
4979 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4980 * queues, so they do not have this starvation issue.
4981 */
4982void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4983{
4984 struct net_device *dev = skb->dev;
4985 struct netdev_queue *txq;
4986 bool free_skb = true;
4987 int cpu, rc;
4988
4989 txq = netdev_core_pick_tx(dev, skb, NULL);
4990 cpu = smp_processor_id();
4991 HARD_TX_LOCK(dev, txq, cpu);
4992 if (!netif_xmit_frozen_or_drv_stopped(txq)) {
4993 rc = netdev_start_xmit(skb, dev, txq, 0);
4994 if (dev_xmit_complete(rc))
4995 free_skb = false;
4996 }
4997 HARD_TX_UNLOCK(dev, txq);
4998 if (free_skb) {
4999 trace_xdp_exception(dev, xdp_prog, XDP_TX);
5000 dev_core_stats_tx_dropped_inc(dev);
5001 kfree_skb(skb);
5002 }
5003}
5004
5005static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5006
5007int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
5008{
5009 if (xdp_prog) {
5010 struct xdp_buff xdp;
5011 u32 act;
5012 int err;
5013
5014 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
5015 if (act != XDP_PASS) {
5016 switch (act) {
5017 case XDP_REDIRECT:
5018 err = xdp_do_generic_redirect(skb->dev, skb,
5019 &xdp, xdp_prog);
5020 if (err)
5021 goto out_redir;
5022 break;
5023 case XDP_TX:
5024 generic_xdp_tx(skb, xdp_prog);
5025 break;
5026 }
5027 return XDP_DROP;
5028 }
5029 }
5030 return XDP_PASS;
5031out_redir:
5032 kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
5033 return XDP_DROP;
5034}
5035EXPORT_SYMBOL_GPL(do_xdp_generic);
5036
5037static int netif_rx_internal(struct sk_buff *skb)
5038{
5039 int ret;
5040
5041 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5042
5043 trace_netif_rx(skb);
5044
5045#ifdef CONFIG_RPS
5046 if (static_branch_unlikely(&rps_needed)) {
5047 struct rps_dev_flow voidflow, *rflow = &voidflow;
5048 int cpu;
5049
5050 rcu_read_lock();
5051
5052 cpu = get_rps_cpu(skb->dev, skb, &rflow);
5053 if (cpu < 0)
5054 cpu = smp_processor_id();
5055
5056 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5057
5058 rcu_read_unlock();
5059 } else
5060#endif
5061 {
5062 unsigned int qtail;
5063
5064 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5065 }
5066 return ret;
5067}
5068
5069/**
5070 * __netif_rx - Slightly optimized version of netif_rx
5071 * @skb: buffer to post
5072 *
5073 * This behaves as netif_rx except that it does not disable bottom halves.
5074 * As a result this function may only be invoked from the interrupt context
5075 * (either hard or soft interrupt).
5076 */
5077int __netif_rx(struct sk_buff *skb)
5078{
5079 int ret;
5080
5081 lockdep_assert_once(hardirq_count() | softirq_count());
5082
5083 trace_netif_rx_entry(skb);
5084 ret = netif_rx_internal(skb);
5085 trace_netif_rx_exit(ret);
5086 return ret;
5087}
5088EXPORT_SYMBOL(__netif_rx);
5089
5090/**
5091 * netif_rx - post buffer to the network code
5092 * @skb: buffer to post
5093 *
5094 * This function receives a packet from a device driver and queues it for
5095 * the upper (protocol) levels to process via the backlog NAPI device. It
5096 * always succeeds. The buffer may be dropped during processing for
5097 * congestion control or by the protocol layers.
5098 * The network buffer is passed via the backlog NAPI device. Modern NIC
5099 * driver should use NAPI and GRO.
5100 * This function can used from interrupt and from process context. The
5101 * caller from process context must not disable interrupts before invoking
5102 * this function.
5103 *
5104 * return values:
5105 * NET_RX_SUCCESS (no congestion)
5106 * NET_RX_DROP (packet was dropped)
5107 *
5108 */
5109int netif_rx(struct sk_buff *skb)
5110{
5111 bool need_bh_off = !(hardirq_count() | softirq_count());
5112 int ret;
5113
5114 if (need_bh_off)
5115 local_bh_disable();
5116 trace_netif_rx_entry(skb);
5117 ret = netif_rx_internal(skb);
5118 trace_netif_rx_exit(ret);
5119 if (need_bh_off)
5120 local_bh_enable();
5121 return ret;
5122}
5123EXPORT_SYMBOL(netif_rx);
5124
5125static __latent_entropy void net_tx_action(struct softirq_action *h)
5126{
5127 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5128
5129 if (sd->completion_queue) {
5130 struct sk_buff *clist;
5131
5132 local_irq_disable();
5133 clist = sd->completion_queue;
5134 sd->completion_queue = NULL;
5135 local_irq_enable();
5136
5137 while (clist) {
5138 struct sk_buff *skb = clist;
5139
5140 clist = clist->next;
5141
5142 WARN_ON(refcount_read(&skb->users));
5143 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5144 trace_consume_skb(skb, net_tx_action);
5145 else
5146 trace_kfree_skb(skb, net_tx_action,
5147 get_kfree_skb_cb(skb)->reason);
5148
5149 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5150 __kfree_skb(skb);
5151 else
5152 __napi_kfree_skb(skb,
5153 get_kfree_skb_cb(skb)->reason);
5154 }
5155 }
5156
5157 if (sd->output_queue) {
5158 struct Qdisc *head;
5159
5160 local_irq_disable();
5161 head = sd->output_queue;
5162 sd->output_queue = NULL;
5163 sd->output_queue_tailp = &sd->output_queue;
5164 local_irq_enable();
5165
5166 rcu_read_lock();
5167
5168 while (head) {
5169 struct Qdisc *q = head;
5170 spinlock_t *root_lock = NULL;
5171
5172 head = head->next_sched;
5173
5174 /* We need to make sure head->next_sched is read
5175 * before clearing __QDISC_STATE_SCHED
5176 */
5177 smp_mb__before_atomic();
5178
5179 if (!(q->flags & TCQ_F_NOLOCK)) {
5180 root_lock = qdisc_lock(q);
5181 spin_lock(root_lock);
5182 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5183 &q->state))) {
5184 /* There is a synchronize_net() between
5185 * STATE_DEACTIVATED flag being set and
5186 * qdisc_reset()/some_qdisc_is_busy() in
5187 * dev_deactivate(), so we can safely bail out
5188 * early here to avoid data race between
5189 * qdisc_deactivate() and some_qdisc_is_busy()
5190 * for lockless qdisc.
5191 */
5192 clear_bit(__QDISC_STATE_SCHED, &q->state);
5193 continue;
5194 }
5195
5196 clear_bit(__QDISC_STATE_SCHED, &q->state);
5197 qdisc_run(q);
5198 if (root_lock)
5199 spin_unlock(root_lock);
5200 }
5201
5202 rcu_read_unlock();
5203 }
5204
5205 xfrm_dev_backlog(sd);
5206}
5207
5208#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5209/* This hook is defined here for ATM LANE */
5210int (*br_fdb_test_addr_hook)(struct net_device *dev,
5211 unsigned char *addr) __read_mostly;
5212EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5213#endif
5214
5215/**
5216 * netdev_is_rx_handler_busy - check if receive handler is registered
5217 * @dev: device to check
5218 *
5219 * Check if a receive handler is already registered for a given device.
5220 * Return true if there one.
5221 *
5222 * The caller must hold the rtnl_mutex.
5223 */
5224bool netdev_is_rx_handler_busy(struct net_device *dev)
5225{
5226 ASSERT_RTNL();
5227 return dev && rtnl_dereference(dev->rx_handler);
5228}
5229EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5230
5231/**
5232 * netdev_rx_handler_register - register receive handler
5233 * @dev: device to register a handler for
5234 * @rx_handler: receive handler to register
5235 * @rx_handler_data: data pointer that is used by rx handler
5236 *
5237 * Register a receive handler for a device. This handler will then be
5238 * called from __netif_receive_skb. A negative errno code is returned
5239 * on a failure.
5240 *
5241 * The caller must hold the rtnl_mutex.
5242 *
5243 * For a general description of rx_handler, see enum rx_handler_result.
5244 */
5245int netdev_rx_handler_register(struct net_device *dev,
5246 rx_handler_func_t *rx_handler,
5247 void *rx_handler_data)
5248{
5249 if (netdev_is_rx_handler_busy(dev))
5250 return -EBUSY;
5251
5252 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5253 return -EINVAL;
5254
5255 /* Note: rx_handler_data must be set before rx_handler */
5256 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5257 rcu_assign_pointer(dev->rx_handler, rx_handler);
5258
5259 return 0;
5260}
5261EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5262
5263/**
5264 * netdev_rx_handler_unregister - unregister receive handler
5265 * @dev: device to unregister a handler from
5266 *
5267 * Unregister a receive handler from a device.
5268 *
5269 * The caller must hold the rtnl_mutex.
5270 */
5271void netdev_rx_handler_unregister(struct net_device *dev)
5272{
5273
5274 ASSERT_RTNL();
5275 RCU_INIT_POINTER(dev->rx_handler, NULL);
5276 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5277 * section has a guarantee to see a non NULL rx_handler_data
5278 * as well.
5279 */
5280 synchronize_net();
5281 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5282}
5283EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5284
5285/*
5286 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5287 * the special handling of PFMEMALLOC skbs.
5288 */
5289static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5290{
5291 switch (skb->protocol) {
5292 case htons(ETH_P_ARP):
5293 case htons(ETH_P_IP):
5294 case htons(ETH_P_IPV6):
5295 case htons(ETH_P_8021Q):
5296 case htons(ETH_P_8021AD):
5297 return true;
5298 default:
5299 return false;
5300 }
5301}
5302
5303static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5304 int *ret, struct net_device *orig_dev)
5305{
5306 if (nf_hook_ingress_active(skb)) {
5307 int ingress_retval;
5308
5309 if (*pt_prev) {
5310 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5311 *pt_prev = NULL;
5312 }
5313
5314 rcu_read_lock();
5315 ingress_retval = nf_hook_ingress(skb);
5316 rcu_read_unlock();
5317 return ingress_retval;
5318 }
5319 return 0;
5320}
5321
5322static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5323 struct packet_type **ppt_prev)
5324{
5325 struct packet_type *ptype, *pt_prev;
5326 rx_handler_func_t *rx_handler;
5327 struct sk_buff *skb = *pskb;
5328 struct net_device *orig_dev;
5329 bool deliver_exact = false;
5330 int ret = NET_RX_DROP;
5331 __be16 type;
5332
5333 net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5334
5335 trace_netif_receive_skb(skb);
5336
5337 orig_dev = skb->dev;
5338
5339 skb_reset_network_header(skb);
5340 if (!skb_transport_header_was_set(skb))
5341 skb_reset_transport_header(skb);
5342 skb_reset_mac_len(skb);
5343
5344 pt_prev = NULL;
5345
5346another_round:
5347 skb->skb_iif = skb->dev->ifindex;
5348
5349 __this_cpu_inc(softnet_data.processed);
5350
5351 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5352 int ret2;
5353
5354 migrate_disable();
5355 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5356 migrate_enable();
5357
5358 if (ret2 != XDP_PASS) {
5359 ret = NET_RX_DROP;
5360 goto out;
5361 }
5362 }
5363
5364 if (eth_type_vlan(skb->protocol)) {
5365 skb = skb_vlan_untag(skb);
5366 if (unlikely(!skb))
5367 goto out;
5368 }
5369
5370 if (skb_skip_tc_classify(skb))
5371 goto skip_classify;
5372
5373 if (pfmemalloc)
5374 goto skip_taps;
5375
5376 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5377 if (pt_prev)
5378 ret = deliver_skb(skb, pt_prev, orig_dev);
5379 pt_prev = ptype;
5380 }
5381
5382 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5383 if (pt_prev)
5384 ret = deliver_skb(skb, pt_prev, orig_dev);
5385 pt_prev = ptype;
5386 }
5387
5388skip_taps:
5389#ifdef CONFIG_NET_INGRESS
5390 if (static_branch_unlikely(&ingress_needed_key)) {
5391 bool another = false;
5392
5393 nf_skip_egress(skb, true);
5394 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5395 &another);
5396 if (another)
5397 goto another_round;
5398 if (!skb)
5399 goto out;
5400
5401 nf_skip_egress(skb, false);
5402 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5403 goto out;
5404 }
5405#endif
5406 skb_reset_redirect(skb);
5407skip_classify:
5408 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5409 goto drop;
5410
5411 if (skb_vlan_tag_present(skb)) {
5412 if (pt_prev) {
5413 ret = deliver_skb(skb, pt_prev, orig_dev);
5414 pt_prev = NULL;
5415 }
5416 if (vlan_do_receive(&skb))
5417 goto another_round;
5418 else if (unlikely(!skb))
5419 goto out;
5420 }
5421
5422 rx_handler = rcu_dereference(skb->dev->rx_handler);
5423 if (rx_handler) {
5424 if (pt_prev) {
5425 ret = deliver_skb(skb, pt_prev, orig_dev);
5426 pt_prev = NULL;
5427 }
5428 switch (rx_handler(&skb)) {
5429 case RX_HANDLER_CONSUMED:
5430 ret = NET_RX_SUCCESS;
5431 goto out;
5432 case RX_HANDLER_ANOTHER:
5433 goto another_round;
5434 case RX_HANDLER_EXACT:
5435 deliver_exact = true;
5436 break;
5437 case RX_HANDLER_PASS:
5438 break;
5439 default:
5440 BUG();
5441 }
5442 }
5443
5444 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5445check_vlan_id:
5446 if (skb_vlan_tag_get_id(skb)) {
5447 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5448 * find vlan device.
5449 */
5450 skb->pkt_type = PACKET_OTHERHOST;
5451 } else if (eth_type_vlan(skb->protocol)) {
5452 /* Outer header is 802.1P with vlan 0, inner header is
5453 * 802.1Q or 802.1AD and vlan_do_receive() above could
5454 * not find vlan dev for vlan id 0.
5455 */
5456 __vlan_hwaccel_clear_tag(skb);
5457 skb = skb_vlan_untag(skb);
5458 if (unlikely(!skb))
5459 goto out;
5460 if (vlan_do_receive(&skb))
5461 /* After stripping off 802.1P header with vlan 0
5462 * vlan dev is found for inner header.
5463 */
5464 goto another_round;
5465 else if (unlikely(!skb))
5466 goto out;
5467 else
5468 /* We have stripped outer 802.1P vlan 0 header.
5469 * But could not find vlan dev.
5470 * check again for vlan id to set OTHERHOST.
5471 */
5472 goto check_vlan_id;
5473 }
5474 /* Note: we might in the future use prio bits
5475 * and set skb->priority like in vlan_do_receive()
5476 * For the time being, just ignore Priority Code Point
5477 */
5478 __vlan_hwaccel_clear_tag(skb);
5479 }
5480
5481 type = skb->protocol;
5482
5483 /* deliver only exact match when indicated */
5484 if (likely(!deliver_exact)) {
5485 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5486 &ptype_base[ntohs(type) &
5487 PTYPE_HASH_MASK]);
5488 }
5489
5490 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5491 &orig_dev->ptype_specific);
5492
5493 if (unlikely(skb->dev != orig_dev)) {
5494 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5495 &skb->dev->ptype_specific);
5496 }
5497
5498 if (pt_prev) {
5499 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5500 goto drop;
5501 *ppt_prev = pt_prev;
5502 } else {
5503drop:
5504 if (!deliver_exact)
5505 dev_core_stats_rx_dropped_inc(skb->dev);
5506 else
5507 dev_core_stats_rx_nohandler_inc(skb->dev);
5508 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5509 /* Jamal, now you will not able to escape explaining
5510 * me how you were going to use this. :-)
5511 */
5512 ret = NET_RX_DROP;
5513 }
5514
5515out:
5516 /* The invariant here is that if *ppt_prev is not NULL
5517 * then skb should also be non-NULL.
5518 *
5519 * Apparently *ppt_prev assignment above holds this invariant due to
5520 * skb dereferencing near it.
5521 */
5522 *pskb = skb;
5523 return ret;
5524}
5525
5526static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5527{
5528 struct net_device *orig_dev = skb->dev;
5529 struct packet_type *pt_prev = NULL;
5530 int ret;
5531
5532 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5533 if (pt_prev)
5534 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5535 skb->dev, pt_prev, orig_dev);
5536 return ret;
5537}
5538
5539/**
5540 * netif_receive_skb_core - special purpose version of netif_receive_skb
5541 * @skb: buffer to process
5542 *
5543 * More direct receive version of netif_receive_skb(). It should
5544 * only be used by callers that have a need to skip RPS and Generic XDP.
5545 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5546 *
5547 * This function may only be called from softirq context and interrupts
5548 * should be enabled.
5549 *
5550 * Return values (usually ignored):
5551 * NET_RX_SUCCESS: no congestion
5552 * NET_RX_DROP: packet was dropped
5553 */
5554int netif_receive_skb_core(struct sk_buff *skb)
5555{
5556 int ret;
5557
5558 rcu_read_lock();
5559 ret = __netif_receive_skb_one_core(skb, false);
5560 rcu_read_unlock();
5561
5562 return ret;
5563}
5564EXPORT_SYMBOL(netif_receive_skb_core);
5565
5566static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5567 struct packet_type *pt_prev,
5568 struct net_device *orig_dev)
5569{
5570 struct sk_buff *skb, *next;
5571
5572 if (!pt_prev)
5573 return;
5574 if (list_empty(head))
5575 return;
5576 if (pt_prev->list_func != NULL)
5577 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5578 ip_list_rcv, head, pt_prev, orig_dev);
5579 else
5580 list_for_each_entry_safe(skb, next, head, list) {
5581 skb_list_del_init(skb);
5582 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5583 }
5584}
5585
5586static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5587{
5588 /* Fast-path assumptions:
5589 * - There is no RX handler.
5590 * - Only one packet_type matches.
5591 * If either of these fails, we will end up doing some per-packet
5592 * processing in-line, then handling the 'last ptype' for the whole
5593 * sublist. This can't cause out-of-order delivery to any single ptype,
5594 * because the 'last ptype' must be constant across the sublist, and all
5595 * other ptypes are handled per-packet.
5596 */
5597 /* Current (common) ptype of sublist */
5598 struct packet_type *pt_curr = NULL;
5599 /* Current (common) orig_dev of sublist */
5600 struct net_device *od_curr = NULL;
5601 struct list_head sublist;
5602 struct sk_buff *skb, *next;
5603
5604 INIT_LIST_HEAD(&sublist);
5605 list_for_each_entry_safe(skb, next, head, list) {
5606 struct net_device *orig_dev = skb->dev;
5607 struct packet_type *pt_prev = NULL;
5608
5609 skb_list_del_init(skb);
5610 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5611 if (!pt_prev)
5612 continue;
5613 if (pt_curr != pt_prev || od_curr != orig_dev) {
5614 /* dispatch old sublist */
5615 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5616 /* start new sublist */
5617 INIT_LIST_HEAD(&sublist);
5618 pt_curr = pt_prev;
5619 od_curr = orig_dev;
5620 }
5621 list_add_tail(&skb->list, &sublist);
5622 }
5623
5624 /* dispatch final sublist */
5625 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5626}
5627
5628static int __netif_receive_skb(struct sk_buff *skb)
5629{
5630 int ret;
5631
5632 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5633 unsigned int noreclaim_flag;
5634
5635 /*
5636 * PFMEMALLOC skbs are special, they should
5637 * - be delivered to SOCK_MEMALLOC sockets only
5638 * - stay away from userspace
5639 * - have bounded memory usage
5640 *
5641 * Use PF_MEMALLOC as this saves us from propagating the allocation
5642 * context down to all allocation sites.
5643 */
5644 noreclaim_flag = memalloc_noreclaim_save();
5645 ret = __netif_receive_skb_one_core(skb, true);
5646 memalloc_noreclaim_restore(noreclaim_flag);
5647 } else
5648 ret = __netif_receive_skb_one_core(skb, false);
5649
5650 return ret;
5651}
5652
5653static void __netif_receive_skb_list(struct list_head *head)
5654{
5655 unsigned long noreclaim_flag = 0;
5656 struct sk_buff *skb, *next;
5657 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5658
5659 list_for_each_entry_safe(skb, next, head, list) {
5660 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5661 struct list_head sublist;
5662
5663 /* Handle the previous sublist */
5664 list_cut_before(&sublist, head, &skb->list);
5665 if (!list_empty(&sublist))
5666 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5667 pfmemalloc = !pfmemalloc;
5668 /* See comments in __netif_receive_skb */
5669 if (pfmemalloc)
5670 noreclaim_flag = memalloc_noreclaim_save();
5671 else
5672 memalloc_noreclaim_restore(noreclaim_flag);
5673 }
5674 }
5675 /* Handle the remaining sublist */
5676 if (!list_empty(head))
5677 __netif_receive_skb_list_core(head, pfmemalloc);
5678 /* Restore pflags */
5679 if (pfmemalloc)
5680 memalloc_noreclaim_restore(noreclaim_flag);
5681}
5682
5683static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5684{
5685 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5686 struct bpf_prog *new = xdp->prog;
5687 int ret = 0;
5688
5689 switch (xdp->command) {
5690 case XDP_SETUP_PROG:
5691 rcu_assign_pointer(dev->xdp_prog, new);
5692 if (old)
5693 bpf_prog_put(old);
5694
5695 if (old && !new) {
5696 static_branch_dec(&generic_xdp_needed_key);
5697 } else if (new && !old) {
5698 static_branch_inc(&generic_xdp_needed_key);
5699 dev_disable_lro(dev);
5700 dev_disable_gro_hw(dev);
5701 }
5702 break;
5703
5704 default:
5705 ret = -EINVAL;
5706 break;
5707 }
5708
5709 return ret;
5710}
5711
5712static int netif_receive_skb_internal(struct sk_buff *skb)
5713{
5714 int ret;
5715
5716 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5717
5718 if (skb_defer_rx_timestamp(skb))
5719 return NET_RX_SUCCESS;
5720
5721 rcu_read_lock();
5722#ifdef CONFIG_RPS
5723 if (static_branch_unlikely(&rps_needed)) {
5724 struct rps_dev_flow voidflow, *rflow = &voidflow;
5725 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5726
5727 if (cpu >= 0) {
5728 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5729 rcu_read_unlock();
5730 return ret;
5731 }
5732 }
5733#endif
5734 ret = __netif_receive_skb(skb);
5735 rcu_read_unlock();
5736 return ret;
5737}
5738
5739void netif_receive_skb_list_internal(struct list_head *head)
5740{
5741 struct sk_buff *skb, *next;
5742 struct list_head sublist;
5743
5744 INIT_LIST_HEAD(&sublist);
5745 list_for_each_entry_safe(skb, next, head, list) {
5746 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5747 skb_list_del_init(skb);
5748 if (!skb_defer_rx_timestamp(skb))
5749 list_add_tail(&skb->list, &sublist);
5750 }
5751 list_splice_init(&sublist, head);
5752
5753 rcu_read_lock();
5754#ifdef CONFIG_RPS
5755 if (static_branch_unlikely(&rps_needed)) {
5756 list_for_each_entry_safe(skb, next, head, list) {
5757 struct rps_dev_flow voidflow, *rflow = &voidflow;
5758 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5759
5760 if (cpu >= 0) {
5761 /* Will be handled, remove from list */
5762 skb_list_del_init(skb);
5763 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5764 }
5765 }
5766 }
5767#endif
5768 __netif_receive_skb_list(head);
5769 rcu_read_unlock();
5770}
5771
5772/**
5773 * netif_receive_skb - process receive buffer from network
5774 * @skb: buffer to process
5775 *
5776 * netif_receive_skb() is the main receive data processing function.
5777 * It always succeeds. The buffer may be dropped during processing
5778 * for congestion control or by the protocol layers.
5779 *
5780 * This function may only be called from softirq context and interrupts
5781 * should be enabled.
5782 *
5783 * Return values (usually ignored):
5784 * NET_RX_SUCCESS: no congestion
5785 * NET_RX_DROP: packet was dropped
5786 */
5787int netif_receive_skb(struct sk_buff *skb)
5788{
5789 int ret;
5790
5791 trace_netif_receive_skb_entry(skb);
5792
5793 ret = netif_receive_skb_internal(skb);
5794 trace_netif_receive_skb_exit(ret);
5795
5796 return ret;
5797}
5798EXPORT_SYMBOL(netif_receive_skb);
5799
5800/**
5801 * netif_receive_skb_list - process many receive buffers from network
5802 * @head: list of skbs to process.
5803 *
5804 * Since return value of netif_receive_skb() is normally ignored, and
5805 * wouldn't be meaningful for a list, this function returns void.
5806 *
5807 * This function may only be called from softirq context and interrupts
5808 * should be enabled.
5809 */
5810void netif_receive_skb_list(struct list_head *head)
5811{
5812 struct sk_buff *skb;
5813
5814 if (list_empty(head))
5815 return;
5816 if (trace_netif_receive_skb_list_entry_enabled()) {
5817 list_for_each_entry(skb, head, list)
5818 trace_netif_receive_skb_list_entry(skb);
5819 }
5820 netif_receive_skb_list_internal(head);
5821 trace_netif_receive_skb_list_exit(0);
5822}
5823EXPORT_SYMBOL(netif_receive_skb_list);
5824
5825static DEFINE_PER_CPU(struct work_struct, flush_works);
5826
5827/* Network device is going away, flush any packets still pending */
5828static void flush_backlog(struct work_struct *work)
5829{
5830 struct sk_buff *skb, *tmp;
5831 struct softnet_data *sd;
5832
5833 local_bh_disable();
5834 sd = this_cpu_ptr(&softnet_data);
5835
5836 rps_lock_irq_disable(sd);
5837 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5838 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5839 __skb_unlink(skb, &sd->input_pkt_queue);
5840 dev_kfree_skb_irq(skb);
5841 input_queue_head_incr(sd);
5842 }
5843 }
5844 rps_unlock_irq_enable(sd);
5845
5846 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5847 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5848 __skb_unlink(skb, &sd->process_queue);
5849 kfree_skb(skb);
5850 input_queue_head_incr(sd);
5851 }
5852 }
5853 local_bh_enable();
5854}
5855
5856static bool flush_required(int cpu)
5857{
5858#if IS_ENABLED(CONFIG_RPS)
5859 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5860 bool do_flush;
5861
5862 rps_lock_irq_disable(sd);
5863
5864 /* as insertion into process_queue happens with the rps lock held,
5865 * process_queue access may race only with dequeue
5866 */
5867 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5868 !skb_queue_empty_lockless(&sd->process_queue);
5869 rps_unlock_irq_enable(sd);
5870
5871 return do_flush;
5872#endif
5873 /* without RPS we can't safely check input_pkt_queue: during a
5874 * concurrent remote skb_queue_splice() we can detect as empty both
5875 * input_pkt_queue and process_queue even if the latter could end-up
5876 * containing a lot of packets.
5877 */
5878 return true;
5879}
5880
5881static void flush_all_backlogs(void)
5882{
5883 static cpumask_t flush_cpus;
5884 unsigned int cpu;
5885
5886 /* since we are under rtnl lock protection we can use static data
5887 * for the cpumask and avoid allocating on stack the possibly
5888 * large mask
5889 */
5890 ASSERT_RTNL();
5891
5892 cpus_read_lock();
5893
5894 cpumask_clear(&flush_cpus);
5895 for_each_online_cpu(cpu) {
5896 if (flush_required(cpu)) {
5897 queue_work_on(cpu, system_highpri_wq,
5898 per_cpu_ptr(&flush_works, cpu));
5899 cpumask_set_cpu(cpu, &flush_cpus);
5900 }
5901 }
5902
5903 /* we can have in flight packet[s] on the cpus we are not flushing,
5904 * synchronize_net() in unregister_netdevice_many() will take care of
5905 * them
5906 */
5907 for_each_cpu(cpu, &flush_cpus)
5908 flush_work(per_cpu_ptr(&flush_works, cpu));
5909
5910 cpus_read_unlock();
5911}
5912
5913static void net_rps_send_ipi(struct softnet_data *remsd)
5914{
5915#ifdef CONFIG_RPS
5916 while (remsd) {
5917 struct softnet_data *next = remsd->rps_ipi_next;
5918
5919 if (cpu_online(remsd->cpu))
5920 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5921 remsd = next;
5922 }
5923#endif
5924}
5925
5926/*
5927 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5928 * Note: called with local irq disabled, but exits with local irq enabled.
5929 */
5930static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5931{
5932#ifdef CONFIG_RPS
5933 struct softnet_data *remsd = sd->rps_ipi_list;
5934
5935 if (remsd) {
5936 sd->rps_ipi_list = NULL;
5937
5938 local_irq_enable();
5939
5940 /* Send pending IPI's to kick RPS processing on remote cpus. */
5941 net_rps_send_ipi(remsd);
5942 } else
5943#endif
5944 local_irq_enable();
5945}
5946
5947static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5948{
5949#ifdef CONFIG_RPS
5950 return sd->rps_ipi_list != NULL;
5951#else
5952 return false;
5953#endif
5954}
5955
5956static int process_backlog(struct napi_struct *napi, int quota)
5957{
5958 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5959 bool again = true;
5960 int work = 0;
5961
5962 /* Check if we have pending ipi, its better to send them now,
5963 * not waiting net_rx_action() end.
5964 */
5965 if (sd_has_rps_ipi_waiting(sd)) {
5966 local_irq_disable();
5967 net_rps_action_and_irq_enable(sd);
5968 }
5969
5970 napi->weight = READ_ONCE(dev_rx_weight);
5971 while (again) {
5972 struct sk_buff *skb;
5973
5974 while ((skb = __skb_dequeue(&sd->process_queue))) {
5975 rcu_read_lock();
5976 __netif_receive_skb(skb);
5977 rcu_read_unlock();
5978 input_queue_head_incr(sd);
5979 if (++work >= quota)
5980 return work;
5981
5982 }
5983
5984 rps_lock_irq_disable(sd);
5985 if (skb_queue_empty(&sd->input_pkt_queue)) {
5986 /*
5987 * Inline a custom version of __napi_complete().
5988 * only current cpu owns and manipulates this napi,
5989 * and NAPI_STATE_SCHED is the only possible flag set
5990 * on backlog.
5991 * We can use a plain write instead of clear_bit(),
5992 * and we dont need an smp_mb() memory barrier.
5993 */
5994 napi->state = 0;
5995 again = false;
5996 } else {
5997 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5998 &sd->process_queue);
5999 }
6000 rps_unlock_irq_enable(sd);
6001 }
6002
6003 return work;
6004}
6005
6006/**
6007 * __napi_schedule - schedule for receive
6008 * @n: entry to schedule
6009 *
6010 * The entry's receive function will be scheduled to run.
6011 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6012 */
6013void __napi_schedule(struct napi_struct *n)
6014{
6015 unsigned long flags;
6016
6017 local_irq_save(flags);
6018 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6019 local_irq_restore(flags);
6020}
6021EXPORT_SYMBOL(__napi_schedule);
6022
6023/**
6024 * napi_schedule_prep - check if napi can be scheduled
6025 * @n: napi context
6026 *
6027 * Test if NAPI routine is already running, and if not mark
6028 * it as running. This is used as a condition variable to
6029 * insure only one NAPI poll instance runs. We also make
6030 * sure there is no pending NAPI disable.
6031 */
6032bool napi_schedule_prep(struct napi_struct *n)
6033{
6034 unsigned long new, val = READ_ONCE(n->state);
6035
6036 do {
6037 if (unlikely(val & NAPIF_STATE_DISABLE))
6038 return false;
6039 new = val | NAPIF_STATE_SCHED;
6040
6041 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6042 * This was suggested by Alexander Duyck, as compiler
6043 * emits better code than :
6044 * if (val & NAPIF_STATE_SCHED)
6045 * new |= NAPIF_STATE_MISSED;
6046 */
6047 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6048 NAPIF_STATE_MISSED;
6049 } while (!try_cmpxchg(&n->state, &val, new));
6050
6051 return !(val & NAPIF_STATE_SCHED);
6052}
6053EXPORT_SYMBOL(napi_schedule_prep);
6054
6055/**
6056 * __napi_schedule_irqoff - schedule for receive
6057 * @n: entry to schedule
6058 *
6059 * Variant of __napi_schedule() assuming hard irqs are masked.
6060 *
6061 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6062 * because the interrupt disabled assumption might not be true
6063 * due to force-threaded interrupts and spinlock substitution.
6064 */
6065void __napi_schedule_irqoff(struct napi_struct *n)
6066{
6067 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6068 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6069 else
6070 __napi_schedule(n);
6071}
6072EXPORT_SYMBOL(__napi_schedule_irqoff);
6073
6074bool napi_complete_done(struct napi_struct *n, int work_done)
6075{
6076 unsigned long flags, val, new, timeout = 0;
6077 bool ret = true;
6078
6079 /*
6080 * 1) Don't let napi dequeue from the cpu poll list
6081 * just in case its running on a different cpu.
6082 * 2) If we are busy polling, do nothing here, we have
6083 * the guarantee we will be called later.
6084 */
6085 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6086 NAPIF_STATE_IN_BUSY_POLL)))
6087 return false;
6088
6089 if (work_done) {
6090 if (n->gro_bitmask)
6091 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6092 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6093 }
6094 if (n->defer_hard_irqs_count > 0) {
6095 n->defer_hard_irqs_count--;
6096 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6097 if (timeout)
6098 ret = false;
6099 }
6100 if (n->gro_bitmask) {
6101 /* When the NAPI instance uses a timeout and keeps postponing
6102 * it, we need to bound somehow the time packets are kept in
6103 * the GRO layer
6104 */
6105 napi_gro_flush(n, !!timeout);
6106 }
6107
6108 gro_normal_list(n);
6109
6110 if (unlikely(!list_empty(&n->poll_list))) {
6111 /* If n->poll_list is not empty, we need to mask irqs */
6112 local_irq_save(flags);
6113 list_del_init(&n->poll_list);
6114 local_irq_restore(flags);
6115 }
6116 WRITE_ONCE(n->list_owner, -1);
6117
6118 val = READ_ONCE(n->state);
6119 do {
6120 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6121
6122 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6123 NAPIF_STATE_SCHED_THREADED |
6124 NAPIF_STATE_PREFER_BUSY_POLL);
6125
6126 /* If STATE_MISSED was set, leave STATE_SCHED set,
6127 * because we will call napi->poll() one more time.
6128 * This C code was suggested by Alexander Duyck to help gcc.
6129 */
6130 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6131 NAPIF_STATE_SCHED;
6132 } while (!try_cmpxchg(&n->state, &val, new));
6133
6134 if (unlikely(val & NAPIF_STATE_MISSED)) {
6135 __napi_schedule(n);
6136 return false;
6137 }
6138
6139 if (timeout)
6140 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6141 HRTIMER_MODE_REL_PINNED);
6142 return ret;
6143}
6144EXPORT_SYMBOL(napi_complete_done);
6145
6146/* must be called under rcu_read_lock(), as we dont take a reference */
6147struct napi_struct *napi_by_id(unsigned int napi_id)
6148{
6149 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6150 struct napi_struct *napi;
6151
6152 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6153 if (napi->napi_id == napi_id)
6154 return napi;
6155
6156 return NULL;
6157}
6158
6159#if defined(CONFIG_NET_RX_BUSY_POLL)
6160
6161static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6162{
6163 if (!skip_schedule) {
6164 gro_normal_list(napi);
6165 __napi_schedule(napi);
6166 return;
6167 }
6168
6169 if (napi->gro_bitmask) {
6170 /* flush too old packets
6171 * If HZ < 1000, flush all packets.
6172 */
6173 napi_gro_flush(napi, HZ >= 1000);
6174 }
6175
6176 gro_normal_list(napi);
6177 clear_bit(NAPI_STATE_SCHED, &napi->state);
6178}
6179
6180static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6181 u16 budget)
6182{
6183 bool skip_schedule = false;
6184 unsigned long timeout;
6185 int rc;
6186
6187 /* Busy polling means there is a high chance device driver hard irq
6188 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6189 * set in napi_schedule_prep().
6190 * Since we are about to call napi->poll() once more, we can safely
6191 * clear NAPI_STATE_MISSED.
6192 *
6193 * Note: x86 could use a single "lock and ..." instruction
6194 * to perform these two clear_bit()
6195 */
6196 clear_bit(NAPI_STATE_MISSED, &napi->state);
6197 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6198
6199 local_bh_disable();
6200
6201 if (prefer_busy_poll) {
6202 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6203 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6204 if (napi->defer_hard_irqs_count && timeout) {
6205 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6206 skip_schedule = true;
6207 }
6208 }
6209
6210 /* All we really want here is to re-enable device interrupts.
6211 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6212 */
6213 rc = napi->poll(napi, budget);
6214 /* We can't gro_normal_list() here, because napi->poll() might have
6215 * rearmed the napi (napi_complete_done()) in which case it could
6216 * already be running on another CPU.
6217 */
6218 trace_napi_poll(napi, rc, budget);
6219 netpoll_poll_unlock(have_poll_lock);
6220 if (rc == budget)
6221 __busy_poll_stop(napi, skip_schedule);
6222 local_bh_enable();
6223}
6224
6225void napi_busy_loop(unsigned int napi_id,
6226 bool (*loop_end)(void *, unsigned long),
6227 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6228{
6229 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6230 int (*napi_poll)(struct napi_struct *napi, int budget);
6231 void *have_poll_lock = NULL;
6232 struct napi_struct *napi;
6233
6234restart:
6235 napi_poll = NULL;
6236
6237 rcu_read_lock();
6238
6239 napi = napi_by_id(napi_id);
6240 if (!napi)
6241 goto out;
6242
6243 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6244 preempt_disable();
6245 for (;;) {
6246 int work = 0;
6247
6248 local_bh_disable();
6249 if (!napi_poll) {
6250 unsigned long val = READ_ONCE(napi->state);
6251
6252 /* If multiple threads are competing for this napi,
6253 * we avoid dirtying napi->state as much as we can.
6254 */
6255 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6256 NAPIF_STATE_IN_BUSY_POLL)) {
6257 if (prefer_busy_poll)
6258 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6259 goto count;
6260 }
6261 if (cmpxchg(&napi->state, val,
6262 val | NAPIF_STATE_IN_BUSY_POLL |
6263 NAPIF_STATE_SCHED) != val) {
6264 if (prefer_busy_poll)
6265 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6266 goto count;
6267 }
6268 have_poll_lock = netpoll_poll_lock(napi);
6269 napi_poll = napi->poll;
6270 }
6271 work = napi_poll(napi, budget);
6272 trace_napi_poll(napi, work, budget);
6273 gro_normal_list(napi);
6274count:
6275 if (work > 0)
6276 __NET_ADD_STATS(dev_net(napi->dev),
6277 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6278 local_bh_enable();
6279
6280 if (!loop_end || loop_end(loop_end_arg, start_time))
6281 break;
6282
6283 if (unlikely(need_resched())) {
6284 if (napi_poll)
6285 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6286 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6287 preempt_enable();
6288 rcu_read_unlock();
6289 cond_resched();
6290 if (loop_end(loop_end_arg, start_time))
6291 return;
6292 goto restart;
6293 }
6294 cpu_relax();
6295 }
6296 if (napi_poll)
6297 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6298 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6299 preempt_enable();
6300out:
6301 rcu_read_unlock();
6302}
6303EXPORT_SYMBOL(napi_busy_loop);
6304
6305#endif /* CONFIG_NET_RX_BUSY_POLL */
6306
6307static void napi_hash_add(struct napi_struct *napi)
6308{
6309 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6310 return;
6311
6312 spin_lock(&napi_hash_lock);
6313
6314 /* 0..NR_CPUS range is reserved for sender_cpu use */
6315 do {
6316 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6317 napi_gen_id = MIN_NAPI_ID;
6318 } while (napi_by_id(napi_gen_id));
6319 napi->napi_id = napi_gen_id;
6320
6321 hlist_add_head_rcu(&napi->napi_hash_node,
6322 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6323
6324 spin_unlock(&napi_hash_lock);
6325}
6326
6327/* Warning : caller is responsible to make sure rcu grace period
6328 * is respected before freeing memory containing @napi
6329 */
6330static void napi_hash_del(struct napi_struct *napi)
6331{
6332 spin_lock(&napi_hash_lock);
6333
6334 hlist_del_init_rcu(&napi->napi_hash_node);
6335
6336 spin_unlock(&napi_hash_lock);
6337}
6338
6339static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6340{
6341 struct napi_struct *napi;
6342
6343 napi = container_of(timer, struct napi_struct, timer);
6344
6345 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6346 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6347 */
6348 if (!napi_disable_pending(napi) &&
6349 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6350 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6351 __napi_schedule_irqoff(napi);
6352 }
6353
6354 return HRTIMER_NORESTART;
6355}
6356
6357static void init_gro_hash(struct napi_struct *napi)
6358{
6359 int i;
6360
6361 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6362 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6363 napi->gro_hash[i].count = 0;
6364 }
6365 napi->gro_bitmask = 0;
6366}
6367
6368int dev_set_threaded(struct net_device *dev, bool threaded)
6369{
6370 struct napi_struct *napi;
6371 int err = 0;
6372
6373 if (dev->threaded == threaded)
6374 return 0;
6375
6376 if (threaded) {
6377 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6378 if (!napi->thread) {
6379 err = napi_kthread_create(napi);
6380 if (err) {
6381 threaded = false;
6382 break;
6383 }
6384 }
6385 }
6386 }
6387
6388 dev->threaded = threaded;
6389
6390 /* Make sure kthread is created before THREADED bit
6391 * is set.
6392 */
6393 smp_mb__before_atomic();
6394
6395 /* Setting/unsetting threaded mode on a napi might not immediately
6396 * take effect, if the current napi instance is actively being
6397 * polled. In this case, the switch between threaded mode and
6398 * softirq mode will happen in the next round of napi_schedule().
6399 * This should not cause hiccups/stalls to the live traffic.
6400 */
6401 list_for_each_entry(napi, &dev->napi_list, dev_list)
6402 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6403
6404 return err;
6405}
6406EXPORT_SYMBOL(dev_set_threaded);
6407
6408/**
6409 * netif_queue_set_napi - Associate queue with the napi
6410 * @dev: device to which NAPI and queue belong
6411 * @queue_index: Index of queue
6412 * @type: queue type as RX or TX
6413 * @napi: NAPI context, pass NULL to clear previously set NAPI
6414 *
6415 * Set queue with its corresponding napi context. This should be done after
6416 * registering the NAPI handler for the queue-vector and the queues have been
6417 * mapped to the corresponding interrupt vector.
6418 */
6419void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6420 enum netdev_queue_type type, struct napi_struct *napi)
6421{
6422 struct netdev_rx_queue *rxq;
6423 struct netdev_queue *txq;
6424
6425 if (WARN_ON_ONCE(napi && !napi->dev))
6426 return;
6427 if (dev->reg_state >= NETREG_REGISTERED)
6428 ASSERT_RTNL();
6429
6430 switch (type) {
6431 case NETDEV_QUEUE_TYPE_RX:
6432 rxq = __netif_get_rx_queue(dev, queue_index);
6433 rxq->napi = napi;
6434 return;
6435 case NETDEV_QUEUE_TYPE_TX:
6436 txq = netdev_get_tx_queue(dev, queue_index);
6437 txq->napi = napi;
6438 return;
6439 default:
6440 return;
6441 }
6442}
6443EXPORT_SYMBOL(netif_queue_set_napi);
6444
6445void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6446 int (*poll)(struct napi_struct *, int), int weight)
6447{
6448 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6449 return;
6450
6451 INIT_LIST_HEAD(&napi->poll_list);
6452 INIT_HLIST_NODE(&napi->napi_hash_node);
6453 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6454 napi->timer.function = napi_watchdog;
6455 init_gro_hash(napi);
6456 napi->skb = NULL;
6457 INIT_LIST_HEAD(&napi->rx_list);
6458 napi->rx_count = 0;
6459 napi->poll = poll;
6460 if (weight > NAPI_POLL_WEIGHT)
6461 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6462 weight);
6463 napi->weight = weight;
6464 napi->dev = dev;
6465#ifdef CONFIG_NETPOLL
6466 napi->poll_owner = -1;
6467#endif
6468 napi->list_owner = -1;
6469 set_bit(NAPI_STATE_SCHED, &napi->state);
6470 set_bit(NAPI_STATE_NPSVC, &napi->state);
6471 list_add_rcu(&napi->dev_list, &dev->napi_list);
6472 napi_hash_add(napi);
6473 napi_get_frags_check(napi);
6474 /* Create kthread for this napi if dev->threaded is set.
6475 * Clear dev->threaded if kthread creation failed so that
6476 * threaded mode will not be enabled in napi_enable().
6477 */
6478 if (dev->threaded && napi_kthread_create(napi))
6479 dev->threaded = 0;
6480 netif_napi_set_irq(napi, -1);
6481}
6482EXPORT_SYMBOL(netif_napi_add_weight);
6483
6484void napi_disable(struct napi_struct *n)
6485{
6486 unsigned long val, new;
6487
6488 might_sleep();
6489 set_bit(NAPI_STATE_DISABLE, &n->state);
6490
6491 val = READ_ONCE(n->state);
6492 do {
6493 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6494 usleep_range(20, 200);
6495 val = READ_ONCE(n->state);
6496 }
6497
6498 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6499 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6500 } while (!try_cmpxchg(&n->state, &val, new));
6501
6502 hrtimer_cancel(&n->timer);
6503
6504 clear_bit(NAPI_STATE_DISABLE, &n->state);
6505}
6506EXPORT_SYMBOL(napi_disable);
6507
6508/**
6509 * napi_enable - enable NAPI scheduling
6510 * @n: NAPI context
6511 *
6512 * Resume NAPI from being scheduled on this context.
6513 * Must be paired with napi_disable.
6514 */
6515void napi_enable(struct napi_struct *n)
6516{
6517 unsigned long new, val = READ_ONCE(n->state);
6518
6519 do {
6520 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6521
6522 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6523 if (n->dev->threaded && n->thread)
6524 new |= NAPIF_STATE_THREADED;
6525 } while (!try_cmpxchg(&n->state, &val, new));
6526}
6527EXPORT_SYMBOL(napi_enable);
6528
6529static void flush_gro_hash(struct napi_struct *napi)
6530{
6531 int i;
6532
6533 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6534 struct sk_buff *skb, *n;
6535
6536 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6537 kfree_skb(skb);
6538 napi->gro_hash[i].count = 0;
6539 }
6540}
6541
6542/* Must be called in process context */
6543void __netif_napi_del(struct napi_struct *napi)
6544{
6545 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6546 return;
6547
6548 napi_hash_del(napi);
6549 list_del_rcu(&napi->dev_list);
6550 napi_free_frags(napi);
6551
6552 flush_gro_hash(napi);
6553 napi->gro_bitmask = 0;
6554
6555 if (napi->thread) {
6556 kthread_stop(napi->thread);
6557 napi->thread = NULL;
6558 }
6559}
6560EXPORT_SYMBOL(__netif_napi_del);
6561
6562static int __napi_poll(struct napi_struct *n, bool *repoll)
6563{
6564 int work, weight;
6565
6566 weight = n->weight;
6567
6568 /* This NAPI_STATE_SCHED test is for avoiding a race
6569 * with netpoll's poll_napi(). Only the entity which
6570 * obtains the lock and sees NAPI_STATE_SCHED set will
6571 * actually make the ->poll() call. Therefore we avoid
6572 * accidentally calling ->poll() when NAPI is not scheduled.
6573 */
6574 work = 0;
6575 if (napi_is_scheduled(n)) {
6576 work = n->poll(n, weight);
6577 trace_napi_poll(n, work, weight);
6578
6579 xdp_do_check_flushed(n);
6580 }
6581
6582 if (unlikely(work > weight))
6583 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6584 n->poll, work, weight);
6585
6586 if (likely(work < weight))
6587 return work;
6588
6589 /* Drivers must not modify the NAPI state if they
6590 * consume the entire weight. In such cases this code
6591 * still "owns" the NAPI instance and therefore can
6592 * move the instance around on the list at-will.
6593 */
6594 if (unlikely(napi_disable_pending(n))) {
6595 napi_complete(n);
6596 return work;
6597 }
6598
6599 /* The NAPI context has more processing work, but busy-polling
6600 * is preferred. Exit early.
6601 */
6602 if (napi_prefer_busy_poll(n)) {
6603 if (napi_complete_done(n, work)) {
6604 /* If timeout is not set, we need to make sure
6605 * that the NAPI is re-scheduled.
6606 */
6607 napi_schedule(n);
6608 }
6609 return work;
6610 }
6611
6612 if (n->gro_bitmask) {
6613 /* flush too old packets
6614 * If HZ < 1000, flush all packets.
6615 */
6616 napi_gro_flush(n, HZ >= 1000);
6617 }
6618
6619 gro_normal_list(n);
6620
6621 /* Some drivers may have called napi_schedule
6622 * prior to exhausting their budget.
6623 */
6624 if (unlikely(!list_empty(&n->poll_list))) {
6625 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6626 n->dev ? n->dev->name : "backlog");
6627 return work;
6628 }
6629
6630 *repoll = true;
6631
6632 return work;
6633}
6634
6635static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6636{
6637 bool do_repoll = false;
6638 void *have;
6639 int work;
6640
6641 list_del_init(&n->poll_list);
6642
6643 have = netpoll_poll_lock(n);
6644
6645 work = __napi_poll(n, &do_repoll);
6646
6647 if (do_repoll)
6648 list_add_tail(&n->poll_list, repoll);
6649
6650 netpoll_poll_unlock(have);
6651
6652 return work;
6653}
6654
6655static int napi_thread_wait(struct napi_struct *napi)
6656{
6657 bool woken = false;
6658
6659 set_current_state(TASK_INTERRUPTIBLE);
6660
6661 while (!kthread_should_stop()) {
6662 /* Testing SCHED_THREADED bit here to make sure the current
6663 * kthread owns this napi and could poll on this napi.
6664 * Testing SCHED bit is not enough because SCHED bit might be
6665 * set by some other busy poll thread or by napi_disable().
6666 */
6667 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6668 WARN_ON(!list_empty(&napi->poll_list));
6669 __set_current_state(TASK_RUNNING);
6670 return 0;
6671 }
6672
6673 schedule();
6674 /* woken being true indicates this thread owns this napi. */
6675 woken = true;
6676 set_current_state(TASK_INTERRUPTIBLE);
6677 }
6678 __set_current_state(TASK_RUNNING);
6679
6680 return -1;
6681}
6682
6683static void skb_defer_free_flush(struct softnet_data *sd)
6684{
6685 struct sk_buff *skb, *next;
6686
6687 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6688 if (!READ_ONCE(sd->defer_list))
6689 return;
6690
6691 spin_lock(&sd->defer_lock);
6692 skb = sd->defer_list;
6693 sd->defer_list = NULL;
6694 sd->defer_count = 0;
6695 spin_unlock(&sd->defer_lock);
6696
6697 while (skb != NULL) {
6698 next = skb->next;
6699 napi_consume_skb(skb, 1);
6700 skb = next;
6701 }
6702}
6703
6704static int napi_threaded_poll(void *data)
6705{
6706 struct napi_struct *napi = data;
6707 struct softnet_data *sd;
6708 void *have;
6709
6710 while (!napi_thread_wait(napi)) {
6711 for (;;) {
6712 bool repoll = false;
6713
6714 local_bh_disable();
6715 sd = this_cpu_ptr(&softnet_data);
6716 sd->in_napi_threaded_poll = true;
6717
6718 have = netpoll_poll_lock(napi);
6719 __napi_poll(napi, &repoll);
6720 netpoll_poll_unlock(have);
6721
6722 sd->in_napi_threaded_poll = false;
6723 barrier();
6724
6725 if (sd_has_rps_ipi_waiting(sd)) {
6726 local_irq_disable();
6727 net_rps_action_and_irq_enable(sd);
6728 }
6729 skb_defer_free_flush(sd);
6730 local_bh_enable();
6731
6732 if (!repoll)
6733 break;
6734
6735 cond_resched();
6736 }
6737 }
6738 return 0;
6739}
6740
6741static __latent_entropy void net_rx_action(struct softirq_action *h)
6742{
6743 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6744 unsigned long time_limit = jiffies +
6745 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6746 int budget = READ_ONCE(netdev_budget);
6747 LIST_HEAD(list);
6748 LIST_HEAD(repoll);
6749
6750start:
6751 sd->in_net_rx_action = true;
6752 local_irq_disable();
6753 list_splice_init(&sd->poll_list, &list);
6754 local_irq_enable();
6755
6756 for (;;) {
6757 struct napi_struct *n;
6758
6759 skb_defer_free_flush(sd);
6760
6761 if (list_empty(&list)) {
6762 if (list_empty(&repoll)) {
6763 sd->in_net_rx_action = false;
6764 barrier();
6765 /* We need to check if ____napi_schedule()
6766 * had refilled poll_list while
6767 * sd->in_net_rx_action was true.
6768 */
6769 if (!list_empty(&sd->poll_list))
6770 goto start;
6771 if (!sd_has_rps_ipi_waiting(sd))
6772 goto end;
6773 }
6774 break;
6775 }
6776
6777 n = list_first_entry(&list, struct napi_struct, poll_list);
6778 budget -= napi_poll(n, &repoll);
6779
6780 /* If softirq window is exhausted then punt.
6781 * Allow this to run for 2 jiffies since which will allow
6782 * an average latency of 1.5/HZ.
6783 */
6784 if (unlikely(budget <= 0 ||
6785 time_after_eq(jiffies, time_limit))) {
6786 sd->time_squeeze++;
6787 break;
6788 }
6789 }
6790
6791 local_irq_disable();
6792
6793 list_splice_tail_init(&sd->poll_list, &list);
6794 list_splice_tail(&repoll, &list);
6795 list_splice(&list, &sd->poll_list);
6796 if (!list_empty(&sd->poll_list))
6797 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6798 else
6799 sd->in_net_rx_action = false;
6800
6801 net_rps_action_and_irq_enable(sd);
6802end:;
6803}
6804
6805struct netdev_adjacent {
6806 struct net_device *dev;
6807 netdevice_tracker dev_tracker;
6808
6809 /* upper master flag, there can only be one master device per list */
6810 bool master;
6811
6812 /* lookup ignore flag */
6813 bool ignore;
6814
6815 /* counter for the number of times this device was added to us */
6816 u16 ref_nr;
6817
6818 /* private field for the users */
6819 void *private;
6820
6821 struct list_head list;
6822 struct rcu_head rcu;
6823};
6824
6825static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6826 struct list_head *adj_list)
6827{
6828 struct netdev_adjacent *adj;
6829
6830 list_for_each_entry(adj, adj_list, list) {
6831 if (adj->dev == adj_dev)
6832 return adj;
6833 }
6834 return NULL;
6835}
6836
6837static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6838 struct netdev_nested_priv *priv)
6839{
6840 struct net_device *dev = (struct net_device *)priv->data;
6841
6842 return upper_dev == dev;
6843}
6844
6845/**
6846 * netdev_has_upper_dev - Check if device is linked to an upper device
6847 * @dev: device
6848 * @upper_dev: upper device to check
6849 *
6850 * Find out if a device is linked to specified upper device and return true
6851 * in case it is. Note that this checks only immediate upper device,
6852 * not through a complete stack of devices. The caller must hold the RTNL lock.
6853 */
6854bool netdev_has_upper_dev(struct net_device *dev,
6855 struct net_device *upper_dev)
6856{
6857 struct netdev_nested_priv priv = {
6858 .data = (void *)upper_dev,
6859 };
6860
6861 ASSERT_RTNL();
6862
6863 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6864 &priv);
6865}
6866EXPORT_SYMBOL(netdev_has_upper_dev);
6867
6868/**
6869 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6870 * @dev: device
6871 * @upper_dev: upper device to check
6872 *
6873 * Find out if a device is linked to specified upper device and return true
6874 * in case it is. Note that this checks the entire upper device chain.
6875 * The caller must hold rcu lock.
6876 */
6877
6878bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6879 struct net_device *upper_dev)
6880{
6881 struct netdev_nested_priv priv = {
6882 .data = (void *)upper_dev,
6883 };
6884
6885 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6886 &priv);
6887}
6888EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6889
6890/**
6891 * netdev_has_any_upper_dev - Check if device is linked to some device
6892 * @dev: device
6893 *
6894 * Find out if a device is linked to an upper device and return true in case
6895 * it is. The caller must hold the RTNL lock.
6896 */
6897bool netdev_has_any_upper_dev(struct net_device *dev)
6898{
6899 ASSERT_RTNL();
6900
6901 return !list_empty(&dev->adj_list.upper);
6902}
6903EXPORT_SYMBOL(netdev_has_any_upper_dev);
6904
6905/**
6906 * netdev_master_upper_dev_get - Get master upper device
6907 * @dev: device
6908 *
6909 * Find a master upper device and return pointer to it or NULL in case
6910 * it's not there. The caller must hold the RTNL lock.
6911 */
6912struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6913{
6914 struct netdev_adjacent *upper;
6915
6916 ASSERT_RTNL();
6917
6918 if (list_empty(&dev->adj_list.upper))
6919 return NULL;
6920
6921 upper = list_first_entry(&dev->adj_list.upper,
6922 struct netdev_adjacent, list);
6923 if (likely(upper->master))
6924 return upper->dev;
6925 return NULL;
6926}
6927EXPORT_SYMBOL(netdev_master_upper_dev_get);
6928
6929static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6930{
6931 struct netdev_adjacent *upper;
6932
6933 ASSERT_RTNL();
6934
6935 if (list_empty(&dev->adj_list.upper))
6936 return NULL;
6937
6938 upper = list_first_entry(&dev->adj_list.upper,
6939 struct netdev_adjacent, list);
6940 if (likely(upper->master) && !upper->ignore)
6941 return upper->dev;
6942 return NULL;
6943}
6944
6945/**
6946 * netdev_has_any_lower_dev - Check if device is linked to some device
6947 * @dev: device
6948 *
6949 * Find out if a device is linked to a lower device and return true in case
6950 * it is. The caller must hold the RTNL lock.
6951 */
6952static bool netdev_has_any_lower_dev(struct net_device *dev)
6953{
6954 ASSERT_RTNL();
6955
6956 return !list_empty(&dev->adj_list.lower);
6957}
6958
6959void *netdev_adjacent_get_private(struct list_head *adj_list)
6960{
6961 struct netdev_adjacent *adj;
6962
6963 adj = list_entry(adj_list, struct netdev_adjacent, list);
6964
6965 return adj->private;
6966}
6967EXPORT_SYMBOL(netdev_adjacent_get_private);
6968
6969/**
6970 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6971 * @dev: device
6972 * @iter: list_head ** of the current position
6973 *
6974 * Gets the next device from the dev's upper list, starting from iter
6975 * position. The caller must hold RCU read lock.
6976 */
6977struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6978 struct list_head **iter)
6979{
6980 struct netdev_adjacent *upper;
6981
6982 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6983
6984 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6985
6986 if (&upper->list == &dev->adj_list.upper)
6987 return NULL;
6988
6989 *iter = &upper->list;
6990
6991 return upper->dev;
6992}
6993EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6994
6995static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6996 struct list_head **iter,
6997 bool *ignore)
6998{
6999 struct netdev_adjacent *upper;
7000
7001 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7002
7003 if (&upper->list == &dev->adj_list.upper)
7004 return NULL;
7005
7006 *iter = &upper->list;
7007 *ignore = upper->ignore;
7008
7009 return upper->dev;
7010}
7011
7012static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7013 struct list_head **iter)
7014{
7015 struct netdev_adjacent *upper;
7016
7017 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7018
7019 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7020
7021 if (&upper->list == &dev->adj_list.upper)
7022 return NULL;
7023
7024 *iter = &upper->list;
7025
7026 return upper->dev;
7027}
7028
7029static int __netdev_walk_all_upper_dev(struct net_device *dev,
7030 int (*fn)(struct net_device *dev,
7031 struct netdev_nested_priv *priv),
7032 struct netdev_nested_priv *priv)
7033{
7034 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7035 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7036 int ret, cur = 0;
7037 bool ignore;
7038
7039 now = dev;
7040 iter = &dev->adj_list.upper;
7041
7042 while (1) {
7043 if (now != dev) {
7044 ret = fn(now, priv);
7045 if (ret)
7046 return ret;
7047 }
7048
7049 next = NULL;
7050 while (1) {
7051 udev = __netdev_next_upper_dev(now, &iter, &ignore);
7052 if (!udev)
7053 break;
7054 if (ignore)
7055 continue;
7056
7057 next = udev;
7058 niter = &udev->adj_list.upper;
7059 dev_stack[cur] = now;
7060 iter_stack[cur++] = iter;
7061 break;
7062 }
7063
7064 if (!next) {
7065 if (!cur)
7066 return 0;
7067 next = dev_stack[--cur];
7068 niter = iter_stack[cur];
7069 }
7070
7071 now = next;
7072 iter = niter;
7073 }
7074
7075 return 0;
7076}
7077
7078int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7079 int (*fn)(struct net_device *dev,
7080 struct netdev_nested_priv *priv),
7081 struct netdev_nested_priv *priv)
7082{
7083 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7084 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7085 int ret, cur = 0;
7086
7087 now = dev;
7088 iter = &dev->adj_list.upper;
7089
7090 while (1) {
7091 if (now != dev) {
7092 ret = fn(now, priv);
7093 if (ret)
7094 return ret;
7095 }
7096
7097 next = NULL;
7098 while (1) {
7099 udev = netdev_next_upper_dev_rcu(now, &iter);
7100 if (!udev)
7101 break;
7102
7103 next = udev;
7104 niter = &udev->adj_list.upper;
7105 dev_stack[cur] = now;
7106 iter_stack[cur++] = iter;
7107 break;
7108 }
7109
7110 if (!next) {
7111 if (!cur)
7112 return 0;
7113 next = dev_stack[--cur];
7114 niter = iter_stack[cur];
7115 }
7116
7117 now = next;
7118 iter = niter;
7119 }
7120
7121 return 0;
7122}
7123EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7124
7125static bool __netdev_has_upper_dev(struct net_device *dev,
7126 struct net_device *upper_dev)
7127{
7128 struct netdev_nested_priv priv = {
7129 .flags = 0,
7130 .data = (void *)upper_dev,
7131 };
7132
7133 ASSERT_RTNL();
7134
7135 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7136 &priv);
7137}
7138
7139/**
7140 * netdev_lower_get_next_private - Get the next ->private from the
7141 * lower neighbour list
7142 * @dev: device
7143 * @iter: list_head ** of the current position
7144 *
7145 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7146 * list, starting from iter position. The caller must hold either hold the
7147 * RTNL lock or its own locking that guarantees that the neighbour lower
7148 * list will remain unchanged.
7149 */
7150void *netdev_lower_get_next_private(struct net_device *dev,
7151 struct list_head **iter)
7152{
7153 struct netdev_adjacent *lower;
7154
7155 lower = list_entry(*iter, struct netdev_adjacent, list);
7156
7157 if (&lower->list == &dev->adj_list.lower)
7158 return NULL;
7159
7160 *iter = lower->list.next;
7161
7162 return lower->private;
7163}
7164EXPORT_SYMBOL(netdev_lower_get_next_private);
7165
7166/**
7167 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7168 * lower neighbour list, RCU
7169 * variant
7170 * @dev: device
7171 * @iter: list_head ** of the current position
7172 *
7173 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7174 * list, starting from iter position. The caller must hold RCU read lock.
7175 */
7176void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7177 struct list_head **iter)
7178{
7179 struct netdev_adjacent *lower;
7180
7181 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7182
7183 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7184
7185 if (&lower->list == &dev->adj_list.lower)
7186 return NULL;
7187
7188 *iter = &lower->list;
7189
7190 return lower->private;
7191}
7192EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7193
7194/**
7195 * netdev_lower_get_next - Get the next device from the lower neighbour
7196 * list
7197 * @dev: device
7198 * @iter: list_head ** of the current position
7199 *
7200 * Gets the next netdev_adjacent from the dev's lower neighbour
7201 * list, starting from iter position. The caller must hold RTNL lock or
7202 * its own locking that guarantees that the neighbour lower
7203 * list will remain unchanged.
7204 */
7205void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7206{
7207 struct netdev_adjacent *lower;
7208
7209 lower = list_entry(*iter, struct netdev_adjacent, list);
7210
7211 if (&lower->list == &dev->adj_list.lower)
7212 return NULL;
7213
7214 *iter = lower->list.next;
7215
7216 return lower->dev;
7217}
7218EXPORT_SYMBOL(netdev_lower_get_next);
7219
7220static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7221 struct list_head **iter)
7222{
7223 struct netdev_adjacent *lower;
7224
7225 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7226
7227 if (&lower->list == &dev->adj_list.lower)
7228 return NULL;
7229
7230 *iter = &lower->list;
7231
7232 return lower->dev;
7233}
7234
7235static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7236 struct list_head **iter,
7237 bool *ignore)
7238{
7239 struct netdev_adjacent *lower;
7240
7241 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7242
7243 if (&lower->list == &dev->adj_list.lower)
7244 return NULL;
7245
7246 *iter = &lower->list;
7247 *ignore = lower->ignore;
7248
7249 return lower->dev;
7250}
7251
7252int netdev_walk_all_lower_dev(struct net_device *dev,
7253 int (*fn)(struct net_device *dev,
7254 struct netdev_nested_priv *priv),
7255 struct netdev_nested_priv *priv)
7256{
7257 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7258 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7259 int ret, cur = 0;
7260
7261 now = dev;
7262 iter = &dev->adj_list.lower;
7263
7264 while (1) {
7265 if (now != dev) {
7266 ret = fn(now, priv);
7267 if (ret)
7268 return ret;
7269 }
7270
7271 next = NULL;
7272 while (1) {
7273 ldev = netdev_next_lower_dev(now, &iter);
7274 if (!ldev)
7275 break;
7276
7277 next = ldev;
7278 niter = &ldev->adj_list.lower;
7279 dev_stack[cur] = now;
7280 iter_stack[cur++] = iter;
7281 break;
7282 }
7283
7284 if (!next) {
7285 if (!cur)
7286 return 0;
7287 next = dev_stack[--cur];
7288 niter = iter_stack[cur];
7289 }
7290
7291 now = next;
7292 iter = niter;
7293 }
7294
7295 return 0;
7296}
7297EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7298
7299static int __netdev_walk_all_lower_dev(struct net_device *dev,
7300 int (*fn)(struct net_device *dev,
7301 struct netdev_nested_priv *priv),
7302 struct netdev_nested_priv *priv)
7303{
7304 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7305 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7306 int ret, cur = 0;
7307 bool ignore;
7308
7309 now = dev;
7310 iter = &dev->adj_list.lower;
7311
7312 while (1) {
7313 if (now != dev) {
7314 ret = fn(now, priv);
7315 if (ret)
7316 return ret;
7317 }
7318
7319 next = NULL;
7320 while (1) {
7321 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7322 if (!ldev)
7323 break;
7324 if (ignore)
7325 continue;
7326
7327 next = ldev;
7328 niter = &ldev->adj_list.lower;
7329 dev_stack[cur] = now;
7330 iter_stack[cur++] = iter;
7331 break;
7332 }
7333
7334 if (!next) {
7335 if (!cur)
7336 return 0;
7337 next = dev_stack[--cur];
7338 niter = iter_stack[cur];
7339 }
7340
7341 now = next;
7342 iter = niter;
7343 }
7344
7345 return 0;
7346}
7347
7348struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7349 struct list_head **iter)
7350{
7351 struct netdev_adjacent *lower;
7352
7353 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7354 if (&lower->list == &dev->adj_list.lower)
7355 return NULL;
7356
7357 *iter = &lower->list;
7358
7359 return lower->dev;
7360}
7361EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7362
7363static u8 __netdev_upper_depth(struct net_device *dev)
7364{
7365 struct net_device *udev;
7366 struct list_head *iter;
7367 u8 max_depth = 0;
7368 bool ignore;
7369
7370 for (iter = &dev->adj_list.upper,
7371 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7372 udev;
7373 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7374 if (ignore)
7375 continue;
7376 if (max_depth < udev->upper_level)
7377 max_depth = udev->upper_level;
7378 }
7379
7380 return max_depth;
7381}
7382
7383static u8 __netdev_lower_depth(struct net_device *dev)
7384{
7385 struct net_device *ldev;
7386 struct list_head *iter;
7387 u8 max_depth = 0;
7388 bool ignore;
7389
7390 for (iter = &dev->adj_list.lower,
7391 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7392 ldev;
7393 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7394 if (ignore)
7395 continue;
7396 if (max_depth < ldev->lower_level)
7397 max_depth = ldev->lower_level;
7398 }
7399
7400 return max_depth;
7401}
7402
7403static int __netdev_update_upper_level(struct net_device *dev,
7404 struct netdev_nested_priv *__unused)
7405{
7406 dev->upper_level = __netdev_upper_depth(dev) + 1;
7407 return 0;
7408}
7409
7410#ifdef CONFIG_LOCKDEP
7411static LIST_HEAD(net_unlink_list);
7412
7413static void net_unlink_todo(struct net_device *dev)
7414{
7415 if (list_empty(&dev->unlink_list))
7416 list_add_tail(&dev->unlink_list, &net_unlink_list);
7417}
7418#endif
7419
7420static int __netdev_update_lower_level(struct net_device *dev,
7421 struct netdev_nested_priv *priv)
7422{
7423 dev->lower_level = __netdev_lower_depth(dev) + 1;
7424
7425#ifdef CONFIG_LOCKDEP
7426 if (!priv)
7427 return 0;
7428
7429 if (priv->flags & NESTED_SYNC_IMM)
7430 dev->nested_level = dev->lower_level - 1;
7431 if (priv->flags & NESTED_SYNC_TODO)
7432 net_unlink_todo(dev);
7433#endif
7434 return 0;
7435}
7436
7437int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7438 int (*fn)(struct net_device *dev,
7439 struct netdev_nested_priv *priv),
7440 struct netdev_nested_priv *priv)
7441{
7442 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7443 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7444 int ret, cur = 0;
7445
7446 now = dev;
7447 iter = &dev->adj_list.lower;
7448
7449 while (1) {
7450 if (now != dev) {
7451 ret = fn(now, priv);
7452 if (ret)
7453 return ret;
7454 }
7455
7456 next = NULL;
7457 while (1) {
7458 ldev = netdev_next_lower_dev_rcu(now, &iter);
7459 if (!ldev)
7460 break;
7461
7462 next = ldev;
7463 niter = &ldev->adj_list.lower;
7464 dev_stack[cur] = now;
7465 iter_stack[cur++] = iter;
7466 break;
7467 }
7468
7469 if (!next) {
7470 if (!cur)
7471 return 0;
7472 next = dev_stack[--cur];
7473 niter = iter_stack[cur];
7474 }
7475
7476 now = next;
7477 iter = niter;
7478 }
7479
7480 return 0;
7481}
7482EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7483
7484/**
7485 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7486 * lower neighbour list, RCU
7487 * variant
7488 * @dev: device
7489 *
7490 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7491 * list. The caller must hold RCU read lock.
7492 */
7493void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7494{
7495 struct netdev_adjacent *lower;
7496
7497 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7498 struct netdev_adjacent, list);
7499 if (lower)
7500 return lower->private;
7501 return NULL;
7502}
7503EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7504
7505/**
7506 * netdev_master_upper_dev_get_rcu - Get master upper device
7507 * @dev: device
7508 *
7509 * Find a master upper device and return pointer to it or NULL in case
7510 * it's not there. The caller must hold the RCU read lock.
7511 */
7512struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7513{
7514 struct netdev_adjacent *upper;
7515
7516 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7517 struct netdev_adjacent, list);
7518 if (upper && likely(upper->master))
7519 return upper->dev;
7520 return NULL;
7521}
7522EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7523
7524static int netdev_adjacent_sysfs_add(struct net_device *dev,
7525 struct net_device *adj_dev,
7526 struct list_head *dev_list)
7527{
7528 char linkname[IFNAMSIZ+7];
7529
7530 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7531 "upper_%s" : "lower_%s", adj_dev->name);
7532 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7533 linkname);
7534}
7535static void netdev_adjacent_sysfs_del(struct net_device *dev,
7536 char *name,
7537 struct list_head *dev_list)
7538{
7539 char linkname[IFNAMSIZ+7];
7540
7541 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7542 "upper_%s" : "lower_%s", name);
7543 sysfs_remove_link(&(dev->dev.kobj), linkname);
7544}
7545
7546static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7547 struct net_device *adj_dev,
7548 struct list_head *dev_list)
7549{
7550 return (dev_list == &dev->adj_list.upper ||
7551 dev_list == &dev->adj_list.lower) &&
7552 net_eq(dev_net(dev), dev_net(adj_dev));
7553}
7554
7555static int __netdev_adjacent_dev_insert(struct net_device *dev,
7556 struct net_device *adj_dev,
7557 struct list_head *dev_list,
7558 void *private, bool master)
7559{
7560 struct netdev_adjacent *adj;
7561 int ret;
7562
7563 adj = __netdev_find_adj(adj_dev, dev_list);
7564
7565 if (adj) {
7566 adj->ref_nr += 1;
7567 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7568 dev->name, adj_dev->name, adj->ref_nr);
7569
7570 return 0;
7571 }
7572
7573 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7574 if (!adj)
7575 return -ENOMEM;
7576
7577 adj->dev = adj_dev;
7578 adj->master = master;
7579 adj->ref_nr = 1;
7580 adj->private = private;
7581 adj->ignore = false;
7582 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7583
7584 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7585 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7586
7587 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7588 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7589 if (ret)
7590 goto free_adj;
7591 }
7592
7593 /* Ensure that master link is always the first item in list. */
7594 if (master) {
7595 ret = sysfs_create_link(&(dev->dev.kobj),
7596 &(adj_dev->dev.kobj), "master");
7597 if (ret)
7598 goto remove_symlinks;
7599
7600 list_add_rcu(&adj->list, dev_list);
7601 } else {
7602 list_add_tail_rcu(&adj->list, dev_list);
7603 }
7604
7605 return 0;
7606
7607remove_symlinks:
7608 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7609 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7610free_adj:
7611 netdev_put(adj_dev, &adj->dev_tracker);
7612 kfree(adj);
7613
7614 return ret;
7615}
7616
7617static void __netdev_adjacent_dev_remove(struct net_device *dev,
7618 struct net_device *adj_dev,
7619 u16 ref_nr,
7620 struct list_head *dev_list)
7621{
7622 struct netdev_adjacent *adj;
7623
7624 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7625 dev->name, adj_dev->name, ref_nr);
7626
7627 adj = __netdev_find_adj(adj_dev, dev_list);
7628
7629 if (!adj) {
7630 pr_err("Adjacency does not exist for device %s from %s\n",
7631 dev->name, adj_dev->name);
7632 WARN_ON(1);
7633 return;
7634 }
7635
7636 if (adj->ref_nr > ref_nr) {
7637 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7638 dev->name, adj_dev->name, ref_nr,
7639 adj->ref_nr - ref_nr);
7640 adj->ref_nr -= ref_nr;
7641 return;
7642 }
7643
7644 if (adj->master)
7645 sysfs_remove_link(&(dev->dev.kobj), "master");
7646
7647 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7648 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7649
7650 list_del_rcu(&adj->list);
7651 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7652 adj_dev->name, dev->name, adj_dev->name);
7653 netdev_put(adj_dev, &adj->dev_tracker);
7654 kfree_rcu(adj, rcu);
7655}
7656
7657static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7658 struct net_device *upper_dev,
7659 struct list_head *up_list,
7660 struct list_head *down_list,
7661 void *private, bool master)
7662{
7663 int ret;
7664
7665 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7666 private, master);
7667 if (ret)
7668 return ret;
7669
7670 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7671 private, false);
7672 if (ret) {
7673 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7674 return ret;
7675 }
7676
7677 return 0;
7678}
7679
7680static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7681 struct net_device *upper_dev,
7682 u16 ref_nr,
7683 struct list_head *up_list,
7684 struct list_head *down_list)
7685{
7686 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7687 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7688}
7689
7690static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7691 struct net_device *upper_dev,
7692 void *private, bool master)
7693{
7694 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7695 &dev->adj_list.upper,
7696 &upper_dev->adj_list.lower,
7697 private, master);
7698}
7699
7700static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7701 struct net_device *upper_dev)
7702{
7703 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7704 &dev->adj_list.upper,
7705 &upper_dev->adj_list.lower);
7706}
7707
7708static int __netdev_upper_dev_link(struct net_device *dev,
7709 struct net_device *upper_dev, bool master,
7710 void *upper_priv, void *upper_info,
7711 struct netdev_nested_priv *priv,
7712 struct netlink_ext_ack *extack)
7713{
7714 struct netdev_notifier_changeupper_info changeupper_info = {
7715 .info = {
7716 .dev = dev,
7717 .extack = extack,
7718 },
7719 .upper_dev = upper_dev,
7720 .master = master,
7721 .linking = true,
7722 .upper_info = upper_info,
7723 };
7724 struct net_device *master_dev;
7725 int ret = 0;
7726
7727 ASSERT_RTNL();
7728
7729 if (dev == upper_dev)
7730 return -EBUSY;
7731
7732 /* To prevent loops, check if dev is not upper device to upper_dev. */
7733 if (__netdev_has_upper_dev(upper_dev, dev))
7734 return -EBUSY;
7735
7736 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7737 return -EMLINK;
7738
7739 if (!master) {
7740 if (__netdev_has_upper_dev(dev, upper_dev))
7741 return -EEXIST;
7742 } else {
7743 master_dev = __netdev_master_upper_dev_get(dev);
7744 if (master_dev)
7745 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7746 }
7747
7748 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7749 &changeupper_info.info);
7750 ret = notifier_to_errno(ret);
7751 if (ret)
7752 return ret;
7753
7754 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7755 master);
7756 if (ret)
7757 return ret;
7758
7759 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7760 &changeupper_info.info);
7761 ret = notifier_to_errno(ret);
7762 if (ret)
7763 goto rollback;
7764
7765 __netdev_update_upper_level(dev, NULL);
7766 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7767
7768 __netdev_update_lower_level(upper_dev, priv);
7769 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7770 priv);
7771
7772 return 0;
7773
7774rollback:
7775 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7776
7777 return ret;
7778}
7779
7780/**
7781 * netdev_upper_dev_link - Add a link to the upper device
7782 * @dev: device
7783 * @upper_dev: new upper device
7784 * @extack: netlink extended ack
7785 *
7786 * Adds a link to device which is upper to this one. The caller must hold
7787 * the RTNL lock. On a failure a negative errno code is returned.
7788 * On success the reference counts are adjusted and the function
7789 * returns zero.
7790 */
7791int netdev_upper_dev_link(struct net_device *dev,
7792 struct net_device *upper_dev,
7793 struct netlink_ext_ack *extack)
7794{
7795 struct netdev_nested_priv priv = {
7796 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7797 .data = NULL,
7798 };
7799
7800 return __netdev_upper_dev_link(dev, upper_dev, false,
7801 NULL, NULL, &priv, extack);
7802}
7803EXPORT_SYMBOL(netdev_upper_dev_link);
7804
7805/**
7806 * netdev_master_upper_dev_link - Add a master link to the upper device
7807 * @dev: device
7808 * @upper_dev: new upper device
7809 * @upper_priv: upper device private
7810 * @upper_info: upper info to be passed down via notifier
7811 * @extack: netlink extended ack
7812 *
7813 * Adds a link to device which is upper to this one. In this case, only
7814 * one master upper device can be linked, although other non-master devices
7815 * might be linked as well. The caller must hold the RTNL lock.
7816 * On a failure a negative errno code is returned. On success the reference
7817 * counts are adjusted and the function returns zero.
7818 */
7819int netdev_master_upper_dev_link(struct net_device *dev,
7820 struct net_device *upper_dev,
7821 void *upper_priv, void *upper_info,
7822 struct netlink_ext_ack *extack)
7823{
7824 struct netdev_nested_priv priv = {
7825 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7826 .data = NULL,
7827 };
7828
7829 return __netdev_upper_dev_link(dev, upper_dev, true,
7830 upper_priv, upper_info, &priv, extack);
7831}
7832EXPORT_SYMBOL(netdev_master_upper_dev_link);
7833
7834static void __netdev_upper_dev_unlink(struct net_device *dev,
7835 struct net_device *upper_dev,
7836 struct netdev_nested_priv *priv)
7837{
7838 struct netdev_notifier_changeupper_info changeupper_info = {
7839 .info = {
7840 .dev = dev,
7841 },
7842 .upper_dev = upper_dev,
7843 .linking = false,
7844 };
7845
7846 ASSERT_RTNL();
7847
7848 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7849
7850 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7851 &changeupper_info.info);
7852
7853 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7854
7855 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7856 &changeupper_info.info);
7857
7858 __netdev_update_upper_level(dev, NULL);
7859 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7860
7861 __netdev_update_lower_level(upper_dev, priv);
7862 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7863 priv);
7864}
7865
7866/**
7867 * netdev_upper_dev_unlink - Removes a link to upper device
7868 * @dev: device
7869 * @upper_dev: new upper device
7870 *
7871 * Removes a link to device which is upper to this one. The caller must hold
7872 * the RTNL lock.
7873 */
7874void netdev_upper_dev_unlink(struct net_device *dev,
7875 struct net_device *upper_dev)
7876{
7877 struct netdev_nested_priv priv = {
7878 .flags = NESTED_SYNC_TODO,
7879 .data = NULL,
7880 };
7881
7882 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7883}
7884EXPORT_SYMBOL(netdev_upper_dev_unlink);
7885
7886static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7887 struct net_device *lower_dev,
7888 bool val)
7889{
7890 struct netdev_adjacent *adj;
7891
7892 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7893 if (adj)
7894 adj->ignore = val;
7895
7896 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7897 if (adj)
7898 adj->ignore = val;
7899}
7900
7901static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7902 struct net_device *lower_dev)
7903{
7904 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7905}
7906
7907static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7908 struct net_device *lower_dev)
7909{
7910 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7911}
7912
7913int netdev_adjacent_change_prepare(struct net_device *old_dev,
7914 struct net_device *new_dev,
7915 struct net_device *dev,
7916 struct netlink_ext_ack *extack)
7917{
7918 struct netdev_nested_priv priv = {
7919 .flags = 0,
7920 .data = NULL,
7921 };
7922 int err;
7923
7924 if (!new_dev)
7925 return 0;
7926
7927 if (old_dev && new_dev != old_dev)
7928 netdev_adjacent_dev_disable(dev, old_dev);
7929 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7930 extack);
7931 if (err) {
7932 if (old_dev && new_dev != old_dev)
7933 netdev_adjacent_dev_enable(dev, old_dev);
7934 return err;
7935 }
7936
7937 return 0;
7938}
7939EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7940
7941void netdev_adjacent_change_commit(struct net_device *old_dev,
7942 struct net_device *new_dev,
7943 struct net_device *dev)
7944{
7945 struct netdev_nested_priv priv = {
7946 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7947 .data = NULL,
7948 };
7949
7950 if (!new_dev || !old_dev)
7951 return;
7952
7953 if (new_dev == old_dev)
7954 return;
7955
7956 netdev_adjacent_dev_enable(dev, old_dev);
7957 __netdev_upper_dev_unlink(old_dev, dev, &priv);
7958}
7959EXPORT_SYMBOL(netdev_adjacent_change_commit);
7960
7961void netdev_adjacent_change_abort(struct net_device *old_dev,
7962 struct net_device *new_dev,
7963 struct net_device *dev)
7964{
7965 struct netdev_nested_priv priv = {
7966 .flags = 0,
7967 .data = NULL,
7968 };
7969
7970 if (!new_dev)
7971 return;
7972
7973 if (old_dev && new_dev != old_dev)
7974 netdev_adjacent_dev_enable(dev, old_dev);
7975
7976 __netdev_upper_dev_unlink(new_dev, dev, &priv);
7977}
7978EXPORT_SYMBOL(netdev_adjacent_change_abort);
7979
7980/**
7981 * netdev_bonding_info_change - Dispatch event about slave change
7982 * @dev: device
7983 * @bonding_info: info to dispatch
7984 *
7985 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7986 * The caller must hold the RTNL lock.
7987 */
7988void netdev_bonding_info_change(struct net_device *dev,
7989 struct netdev_bonding_info *bonding_info)
7990{
7991 struct netdev_notifier_bonding_info info = {
7992 .info.dev = dev,
7993 };
7994
7995 memcpy(&info.bonding_info, bonding_info,
7996 sizeof(struct netdev_bonding_info));
7997 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7998 &info.info);
7999}
8000EXPORT_SYMBOL(netdev_bonding_info_change);
8001
8002static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8003 struct netlink_ext_ack *extack)
8004{
8005 struct netdev_notifier_offload_xstats_info info = {
8006 .info.dev = dev,
8007 .info.extack = extack,
8008 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8009 };
8010 int err;
8011 int rc;
8012
8013 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8014 GFP_KERNEL);
8015 if (!dev->offload_xstats_l3)
8016 return -ENOMEM;
8017
8018 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8019 NETDEV_OFFLOAD_XSTATS_DISABLE,
8020 &info.info);
8021 err = notifier_to_errno(rc);
8022 if (err)
8023 goto free_stats;
8024
8025 return 0;
8026
8027free_stats:
8028 kfree(dev->offload_xstats_l3);
8029 dev->offload_xstats_l3 = NULL;
8030 return err;
8031}
8032
8033int netdev_offload_xstats_enable(struct net_device *dev,
8034 enum netdev_offload_xstats_type type,
8035 struct netlink_ext_ack *extack)
8036{
8037 ASSERT_RTNL();
8038
8039 if (netdev_offload_xstats_enabled(dev, type))
8040 return -EALREADY;
8041
8042 switch (type) {
8043 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8044 return netdev_offload_xstats_enable_l3(dev, extack);
8045 }
8046
8047 WARN_ON(1);
8048 return -EINVAL;
8049}
8050EXPORT_SYMBOL(netdev_offload_xstats_enable);
8051
8052static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8053{
8054 struct netdev_notifier_offload_xstats_info info = {
8055 .info.dev = dev,
8056 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8057 };
8058
8059 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8060 &info.info);
8061 kfree(dev->offload_xstats_l3);
8062 dev->offload_xstats_l3 = NULL;
8063}
8064
8065int netdev_offload_xstats_disable(struct net_device *dev,
8066 enum netdev_offload_xstats_type type)
8067{
8068 ASSERT_RTNL();
8069
8070 if (!netdev_offload_xstats_enabled(dev, type))
8071 return -EALREADY;
8072
8073 switch (type) {
8074 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8075 netdev_offload_xstats_disable_l3(dev);
8076 return 0;
8077 }
8078
8079 WARN_ON(1);
8080 return -EINVAL;
8081}
8082EXPORT_SYMBOL(netdev_offload_xstats_disable);
8083
8084static void netdev_offload_xstats_disable_all(struct net_device *dev)
8085{
8086 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8087}
8088
8089static struct rtnl_hw_stats64 *
8090netdev_offload_xstats_get_ptr(const struct net_device *dev,
8091 enum netdev_offload_xstats_type type)
8092{
8093 switch (type) {
8094 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8095 return dev->offload_xstats_l3;
8096 }
8097
8098 WARN_ON(1);
8099 return NULL;
8100}
8101
8102bool netdev_offload_xstats_enabled(const struct net_device *dev,
8103 enum netdev_offload_xstats_type type)
8104{
8105 ASSERT_RTNL();
8106
8107 return netdev_offload_xstats_get_ptr(dev, type);
8108}
8109EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8110
8111struct netdev_notifier_offload_xstats_ru {
8112 bool used;
8113};
8114
8115struct netdev_notifier_offload_xstats_rd {
8116 struct rtnl_hw_stats64 stats;
8117 bool used;
8118};
8119
8120static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8121 const struct rtnl_hw_stats64 *src)
8122{
8123 dest->rx_packets += src->rx_packets;
8124 dest->tx_packets += src->tx_packets;
8125 dest->rx_bytes += src->rx_bytes;
8126 dest->tx_bytes += src->tx_bytes;
8127 dest->rx_errors += src->rx_errors;
8128 dest->tx_errors += src->tx_errors;
8129 dest->rx_dropped += src->rx_dropped;
8130 dest->tx_dropped += src->tx_dropped;
8131 dest->multicast += src->multicast;
8132}
8133
8134static int netdev_offload_xstats_get_used(struct net_device *dev,
8135 enum netdev_offload_xstats_type type,
8136 bool *p_used,
8137 struct netlink_ext_ack *extack)
8138{
8139 struct netdev_notifier_offload_xstats_ru report_used = {};
8140 struct netdev_notifier_offload_xstats_info info = {
8141 .info.dev = dev,
8142 .info.extack = extack,
8143 .type = type,
8144 .report_used = &report_used,
8145 };
8146 int rc;
8147
8148 WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8149 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8150 &info.info);
8151 *p_used = report_used.used;
8152 return notifier_to_errno(rc);
8153}
8154
8155static int netdev_offload_xstats_get_stats(struct net_device *dev,
8156 enum netdev_offload_xstats_type type,
8157 struct rtnl_hw_stats64 *p_stats,
8158 bool *p_used,
8159 struct netlink_ext_ack *extack)
8160{
8161 struct netdev_notifier_offload_xstats_rd report_delta = {};
8162 struct netdev_notifier_offload_xstats_info info = {
8163 .info.dev = dev,
8164 .info.extack = extack,
8165 .type = type,
8166 .report_delta = &report_delta,
8167 };
8168 struct rtnl_hw_stats64 *stats;
8169 int rc;
8170
8171 stats = netdev_offload_xstats_get_ptr(dev, type);
8172 if (WARN_ON(!stats))
8173 return -EINVAL;
8174
8175 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8176 &info.info);
8177
8178 /* Cache whatever we got, even if there was an error, otherwise the
8179 * successful stats retrievals would get lost.
8180 */
8181 netdev_hw_stats64_add(stats, &report_delta.stats);
8182
8183 if (p_stats)
8184 *p_stats = *stats;
8185 *p_used = report_delta.used;
8186
8187 return notifier_to_errno(rc);
8188}
8189
8190int netdev_offload_xstats_get(struct net_device *dev,
8191 enum netdev_offload_xstats_type type,
8192 struct rtnl_hw_stats64 *p_stats, bool *p_used,
8193 struct netlink_ext_ack *extack)
8194{
8195 ASSERT_RTNL();
8196
8197 if (p_stats)
8198 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8199 p_used, extack);
8200 else
8201 return netdev_offload_xstats_get_used(dev, type, p_used,
8202 extack);
8203}
8204EXPORT_SYMBOL(netdev_offload_xstats_get);
8205
8206void
8207netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8208 const struct rtnl_hw_stats64 *stats)
8209{
8210 report_delta->used = true;
8211 netdev_hw_stats64_add(&report_delta->stats, stats);
8212}
8213EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8214
8215void
8216netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8217{
8218 report_used->used = true;
8219}
8220EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8221
8222void netdev_offload_xstats_push_delta(struct net_device *dev,
8223 enum netdev_offload_xstats_type type,
8224 const struct rtnl_hw_stats64 *p_stats)
8225{
8226 struct rtnl_hw_stats64 *stats;
8227
8228 ASSERT_RTNL();
8229
8230 stats = netdev_offload_xstats_get_ptr(dev, type);
8231 if (WARN_ON(!stats))
8232 return;
8233
8234 netdev_hw_stats64_add(stats, p_stats);
8235}
8236EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8237
8238/**
8239 * netdev_get_xmit_slave - Get the xmit slave of master device
8240 * @dev: device
8241 * @skb: The packet
8242 * @all_slaves: assume all the slaves are active
8243 *
8244 * The reference counters are not incremented so the caller must be
8245 * careful with locks. The caller must hold RCU lock.
8246 * %NULL is returned if no slave is found.
8247 */
8248
8249struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8250 struct sk_buff *skb,
8251 bool all_slaves)
8252{
8253 const struct net_device_ops *ops = dev->netdev_ops;
8254
8255 if (!ops->ndo_get_xmit_slave)
8256 return NULL;
8257 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8258}
8259EXPORT_SYMBOL(netdev_get_xmit_slave);
8260
8261static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8262 struct sock *sk)
8263{
8264 const struct net_device_ops *ops = dev->netdev_ops;
8265
8266 if (!ops->ndo_sk_get_lower_dev)
8267 return NULL;
8268 return ops->ndo_sk_get_lower_dev(dev, sk);
8269}
8270
8271/**
8272 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8273 * @dev: device
8274 * @sk: the socket
8275 *
8276 * %NULL is returned if no lower device is found.
8277 */
8278
8279struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8280 struct sock *sk)
8281{
8282 struct net_device *lower;
8283
8284 lower = netdev_sk_get_lower_dev(dev, sk);
8285 while (lower) {
8286 dev = lower;
8287 lower = netdev_sk_get_lower_dev(dev, sk);
8288 }
8289
8290 return dev;
8291}
8292EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8293
8294static void netdev_adjacent_add_links(struct net_device *dev)
8295{
8296 struct netdev_adjacent *iter;
8297
8298 struct net *net = dev_net(dev);
8299
8300 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8301 if (!net_eq(net, dev_net(iter->dev)))
8302 continue;
8303 netdev_adjacent_sysfs_add(iter->dev, dev,
8304 &iter->dev->adj_list.lower);
8305 netdev_adjacent_sysfs_add(dev, iter->dev,
8306 &dev->adj_list.upper);
8307 }
8308
8309 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8310 if (!net_eq(net, dev_net(iter->dev)))
8311 continue;
8312 netdev_adjacent_sysfs_add(iter->dev, dev,
8313 &iter->dev->adj_list.upper);
8314 netdev_adjacent_sysfs_add(dev, iter->dev,
8315 &dev->adj_list.lower);
8316 }
8317}
8318
8319static void netdev_adjacent_del_links(struct net_device *dev)
8320{
8321 struct netdev_adjacent *iter;
8322
8323 struct net *net = dev_net(dev);
8324
8325 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8326 if (!net_eq(net, dev_net(iter->dev)))
8327 continue;
8328 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8329 &iter->dev->adj_list.lower);
8330 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8331 &dev->adj_list.upper);
8332 }
8333
8334 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8335 if (!net_eq(net, dev_net(iter->dev)))
8336 continue;
8337 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8338 &iter->dev->adj_list.upper);
8339 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8340 &dev->adj_list.lower);
8341 }
8342}
8343
8344void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8345{
8346 struct netdev_adjacent *iter;
8347
8348 struct net *net = dev_net(dev);
8349
8350 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8351 if (!net_eq(net, dev_net(iter->dev)))
8352 continue;
8353 netdev_adjacent_sysfs_del(iter->dev, oldname,
8354 &iter->dev->adj_list.lower);
8355 netdev_adjacent_sysfs_add(iter->dev, dev,
8356 &iter->dev->adj_list.lower);
8357 }
8358
8359 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8360 if (!net_eq(net, dev_net(iter->dev)))
8361 continue;
8362 netdev_adjacent_sysfs_del(iter->dev, oldname,
8363 &iter->dev->adj_list.upper);
8364 netdev_adjacent_sysfs_add(iter->dev, dev,
8365 &iter->dev->adj_list.upper);
8366 }
8367}
8368
8369void *netdev_lower_dev_get_private(struct net_device *dev,
8370 struct net_device *lower_dev)
8371{
8372 struct netdev_adjacent *lower;
8373
8374 if (!lower_dev)
8375 return NULL;
8376 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8377 if (!lower)
8378 return NULL;
8379
8380 return lower->private;
8381}
8382EXPORT_SYMBOL(netdev_lower_dev_get_private);
8383
8384
8385/**
8386 * netdev_lower_state_changed - Dispatch event about lower device state change
8387 * @lower_dev: device
8388 * @lower_state_info: state to dispatch
8389 *
8390 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8391 * The caller must hold the RTNL lock.
8392 */
8393void netdev_lower_state_changed(struct net_device *lower_dev,
8394 void *lower_state_info)
8395{
8396 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8397 .info.dev = lower_dev,
8398 };
8399
8400 ASSERT_RTNL();
8401 changelowerstate_info.lower_state_info = lower_state_info;
8402 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8403 &changelowerstate_info.info);
8404}
8405EXPORT_SYMBOL(netdev_lower_state_changed);
8406
8407static void dev_change_rx_flags(struct net_device *dev, int flags)
8408{
8409 const struct net_device_ops *ops = dev->netdev_ops;
8410
8411 if (ops->ndo_change_rx_flags)
8412 ops->ndo_change_rx_flags(dev, flags);
8413}
8414
8415static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8416{
8417 unsigned int old_flags = dev->flags;
8418 kuid_t uid;
8419 kgid_t gid;
8420
8421 ASSERT_RTNL();
8422
8423 dev->flags |= IFF_PROMISC;
8424 dev->promiscuity += inc;
8425 if (dev->promiscuity == 0) {
8426 /*
8427 * Avoid overflow.
8428 * If inc causes overflow, untouch promisc and return error.
8429 */
8430 if (inc < 0)
8431 dev->flags &= ~IFF_PROMISC;
8432 else {
8433 dev->promiscuity -= inc;
8434 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8435 return -EOVERFLOW;
8436 }
8437 }
8438 if (dev->flags != old_flags) {
8439 netdev_info(dev, "%s promiscuous mode\n",
8440 dev->flags & IFF_PROMISC ? "entered" : "left");
8441 if (audit_enabled) {
8442 current_uid_gid(&uid, &gid);
8443 audit_log(audit_context(), GFP_ATOMIC,
8444 AUDIT_ANOM_PROMISCUOUS,
8445 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8446 dev->name, (dev->flags & IFF_PROMISC),
8447 (old_flags & IFF_PROMISC),
8448 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8449 from_kuid(&init_user_ns, uid),
8450 from_kgid(&init_user_ns, gid),
8451 audit_get_sessionid(current));
8452 }
8453
8454 dev_change_rx_flags(dev, IFF_PROMISC);
8455 }
8456 if (notify)
8457 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8458 return 0;
8459}
8460
8461/**
8462 * dev_set_promiscuity - update promiscuity count on a device
8463 * @dev: device
8464 * @inc: modifier
8465 *
8466 * Add or remove promiscuity from a device. While the count in the device
8467 * remains above zero the interface remains promiscuous. Once it hits zero
8468 * the device reverts back to normal filtering operation. A negative inc
8469 * value is used to drop promiscuity on the device.
8470 * Return 0 if successful or a negative errno code on error.
8471 */
8472int dev_set_promiscuity(struct net_device *dev, int inc)
8473{
8474 unsigned int old_flags = dev->flags;
8475 int err;
8476
8477 err = __dev_set_promiscuity(dev, inc, true);
8478 if (err < 0)
8479 return err;
8480 if (dev->flags != old_flags)
8481 dev_set_rx_mode(dev);
8482 return err;
8483}
8484EXPORT_SYMBOL(dev_set_promiscuity);
8485
8486static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8487{
8488 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8489
8490 ASSERT_RTNL();
8491
8492 dev->flags |= IFF_ALLMULTI;
8493 dev->allmulti += inc;
8494 if (dev->allmulti == 0) {
8495 /*
8496 * Avoid overflow.
8497 * If inc causes overflow, untouch allmulti and return error.
8498 */
8499 if (inc < 0)
8500 dev->flags &= ~IFF_ALLMULTI;
8501 else {
8502 dev->allmulti -= inc;
8503 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8504 return -EOVERFLOW;
8505 }
8506 }
8507 if (dev->flags ^ old_flags) {
8508 netdev_info(dev, "%s allmulticast mode\n",
8509 dev->flags & IFF_ALLMULTI ? "entered" : "left");
8510 dev_change_rx_flags(dev, IFF_ALLMULTI);
8511 dev_set_rx_mode(dev);
8512 if (notify)
8513 __dev_notify_flags(dev, old_flags,
8514 dev->gflags ^ old_gflags, 0, NULL);
8515 }
8516 return 0;
8517}
8518
8519/**
8520 * dev_set_allmulti - update allmulti count on a device
8521 * @dev: device
8522 * @inc: modifier
8523 *
8524 * Add or remove reception of all multicast frames to a device. While the
8525 * count in the device remains above zero the interface remains listening
8526 * to all interfaces. Once it hits zero the device reverts back to normal
8527 * filtering operation. A negative @inc value is used to drop the counter
8528 * when releasing a resource needing all multicasts.
8529 * Return 0 if successful or a negative errno code on error.
8530 */
8531
8532int dev_set_allmulti(struct net_device *dev, int inc)
8533{
8534 return __dev_set_allmulti(dev, inc, true);
8535}
8536EXPORT_SYMBOL(dev_set_allmulti);
8537
8538/*
8539 * Upload unicast and multicast address lists to device and
8540 * configure RX filtering. When the device doesn't support unicast
8541 * filtering it is put in promiscuous mode while unicast addresses
8542 * are present.
8543 */
8544void __dev_set_rx_mode(struct net_device *dev)
8545{
8546 const struct net_device_ops *ops = dev->netdev_ops;
8547
8548 /* dev_open will call this function so the list will stay sane. */
8549 if (!(dev->flags&IFF_UP))
8550 return;
8551
8552 if (!netif_device_present(dev))
8553 return;
8554
8555 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8556 /* Unicast addresses changes may only happen under the rtnl,
8557 * therefore calling __dev_set_promiscuity here is safe.
8558 */
8559 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8560 __dev_set_promiscuity(dev, 1, false);
8561 dev->uc_promisc = true;
8562 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8563 __dev_set_promiscuity(dev, -1, false);
8564 dev->uc_promisc = false;
8565 }
8566 }
8567
8568 if (ops->ndo_set_rx_mode)
8569 ops->ndo_set_rx_mode(dev);
8570}
8571
8572void dev_set_rx_mode(struct net_device *dev)
8573{
8574 netif_addr_lock_bh(dev);
8575 __dev_set_rx_mode(dev);
8576 netif_addr_unlock_bh(dev);
8577}
8578
8579/**
8580 * dev_get_flags - get flags reported to userspace
8581 * @dev: device
8582 *
8583 * Get the combination of flag bits exported through APIs to userspace.
8584 */
8585unsigned int dev_get_flags(const struct net_device *dev)
8586{
8587 unsigned int flags;
8588
8589 flags = (dev->flags & ~(IFF_PROMISC |
8590 IFF_ALLMULTI |
8591 IFF_RUNNING |
8592 IFF_LOWER_UP |
8593 IFF_DORMANT)) |
8594 (dev->gflags & (IFF_PROMISC |
8595 IFF_ALLMULTI));
8596
8597 if (netif_running(dev)) {
8598 if (netif_oper_up(dev))
8599 flags |= IFF_RUNNING;
8600 if (netif_carrier_ok(dev))
8601 flags |= IFF_LOWER_UP;
8602 if (netif_dormant(dev))
8603 flags |= IFF_DORMANT;
8604 }
8605
8606 return flags;
8607}
8608EXPORT_SYMBOL(dev_get_flags);
8609
8610int __dev_change_flags(struct net_device *dev, unsigned int flags,
8611 struct netlink_ext_ack *extack)
8612{
8613 unsigned int old_flags = dev->flags;
8614 int ret;
8615
8616 ASSERT_RTNL();
8617
8618 /*
8619 * Set the flags on our device.
8620 */
8621
8622 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8623 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8624 IFF_AUTOMEDIA)) |
8625 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8626 IFF_ALLMULTI));
8627
8628 /*
8629 * Load in the correct multicast list now the flags have changed.
8630 */
8631
8632 if ((old_flags ^ flags) & IFF_MULTICAST)
8633 dev_change_rx_flags(dev, IFF_MULTICAST);
8634
8635 dev_set_rx_mode(dev);
8636
8637 /*
8638 * Have we downed the interface. We handle IFF_UP ourselves
8639 * according to user attempts to set it, rather than blindly
8640 * setting it.
8641 */
8642
8643 ret = 0;
8644 if ((old_flags ^ flags) & IFF_UP) {
8645 if (old_flags & IFF_UP)
8646 __dev_close(dev);
8647 else
8648 ret = __dev_open(dev, extack);
8649 }
8650
8651 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8652 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8653 unsigned int old_flags = dev->flags;
8654
8655 dev->gflags ^= IFF_PROMISC;
8656
8657 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8658 if (dev->flags != old_flags)
8659 dev_set_rx_mode(dev);
8660 }
8661
8662 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8663 * is important. Some (broken) drivers set IFF_PROMISC, when
8664 * IFF_ALLMULTI is requested not asking us and not reporting.
8665 */
8666 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8667 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8668
8669 dev->gflags ^= IFF_ALLMULTI;
8670 __dev_set_allmulti(dev, inc, false);
8671 }
8672
8673 return ret;
8674}
8675
8676void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8677 unsigned int gchanges, u32 portid,
8678 const struct nlmsghdr *nlh)
8679{
8680 unsigned int changes = dev->flags ^ old_flags;
8681
8682 if (gchanges)
8683 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8684
8685 if (changes & IFF_UP) {
8686 if (dev->flags & IFF_UP)
8687 call_netdevice_notifiers(NETDEV_UP, dev);
8688 else
8689 call_netdevice_notifiers(NETDEV_DOWN, dev);
8690 }
8691
8692 if (dev->flags & IFF_UP &&
8693 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8694 struct netdev_notifier_change_info change_info = {
8695 .info = {
8696 .dev = dev,
8697 },
8698 .flags_changed = changes,
8699 };
8700
8701 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8702 }
8703}
8704
8705/**
8706 * dev_change_flags - change device settings
8707 * @dev: device
8708 * @flags: device state flags
8709 * @extack: netlink extended ack
8710 *
8711 * Change settings on device based state flags. The flags are
8712 * in the userspace exported format.
8713 */
8714int dev_change_flags(struct net_device *dev, unsigned int flags,
8715 struct netlink_ext_ack *extack)
8716{
8717 int ret;
8718 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8719
8720 ret = __dev_change_flags(dev, flags, extack);
8721 if (ret < 0)
8722 return ret;
8723
8724 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8725 __dev_notify_flags(dev, old_flags, changes, 0, NULL);
8726 return ret;
8727}
8728EXPORT_SYMBOL(dev_change_flags);
8729
8730int __dev_set_mtu(struct net_device *dev, int new_mtu)
8731{
8732 const struct net_device_ops *ops = dev->netdev_ops;
8733
8734 if (ops->ndo_change_mtu)
8735 return ops->ndo_change_mtu(dev, new_mtu);
8736
8737 /* Pairs with all the lockless reads of dev->mtu in the stack */
8738 WRITE_ONCE(dev->mtu, new_mtu);
8739 return 0;
8740}
8741EXPORT_SYMBOL(__dev_set_mtu);
8742
8743int dev_validate_mtu(struct net_device *dev, int new_mtu,
8744 struct netlink_ext_ack *extack)
8745{
8746 /* MTU must be positive, and in range */
8747 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8748 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8749 return -EINVAL;
8750 }
8751
8752 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8753 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8754 return -EINVAL;
8755 }
8756 return 0;
8757}
8758
8759/**
8760 * dev_set_mtu_ext - Change maximum transfer unit
8761 * @dev: device
8762 * @new_mtu: new transfer unit
8763 * @extack: netlink extended ack
8764 *
8765 * Change the maximum transfer size of the network device.
8766 */
8767int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8768 struct netlink_ext_ack *extack)
8769{
8770 int err, orig_mtu;
8771
8772 if (new_mtu == dev->mtu)
8773 return 0;
8774
8775 err = dev_validate_mtu(dev, new_mtu, extack);
8776 if (err)
8777 return err;
8778
8779 if (!netif_device_present(dev))
8780 return -ENODEV;
8781
8782 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8783 err = notifier_to_errno(err);
8784 if (err)
8785 return err;
8786
8787 orig_mtu = dev->mtu;
8788 err = __dev_set_mtu(dev, new_mtu);
8789
8790 if (!err) {
8791 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8792 orig_mtu);
8793 err = notifier_to_errno(err);
8794 if (err) {
8795 /* setting mtu back and notifying everyone again,
8796 * so that they have a chance to revert changes.
8797 */
8798 __dev_set_mtu(dev, orig_mtu);
8799 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8800 new_mtu);
8801 }
8802 }
8803 return err;
8804}
8805
8806int dev_set_mtu(struct net_device *dev, int new_mtu)
8807{
8808 struct netlink_ext_ack extack;
8809 int err;
8810
8811 memset(&extack, 0, sizeof(extack));
8812 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8813 if (err && extack._msg)
8814 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8815 return err;
8816}
8817EXPORT_SYMBOL(dev_set_mtu);
8818
8819/**
8820 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8821 * @dev: device
8822 * @new_len: new tx queue length
8823 */
8824int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8825{
8826 unsigned int orig_len = dev->tx_queue_len;
8827 int res;
8828
8829 if (new_len != (unsigned int)new_len)
8830 return -ERANGE;
8831
8832 if (new_len != orig_len) {
8833 dev->tx_queue_len = new_len;
8834 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8835 res = notifier_to_errno(res);
8836 if (res)
8837 goto err_rollback;
8838 res = dev_qdisc_change_tx_queue_len(dev);
8839 if (res)
8840 goto err_rollback;
8841 }
8842
8843 return 0;
8844
8845err_rollback:
8846 netdev_err(dev, "refused to change device tx_queue_len\n");
8847 dev->tx_queue_len = orig_len;
8848 return res;
8849}
8850
8851/**
8852 * dev_set_group - Change group this device belongs to
8853 * @dev: device
8854 * @new_group: group this device should belong to
8855 */
8856void dev_set_group(struct net_device *dev, int new_group)
8857{
8858 dev->group = new_group;
8859}
8860
8861/**
8862 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8863 * @dev: device
8864 * @addr: new address
8865 * @extack: netlink extended ack
8866 */
8867int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8868 struct netlink_ext_ack *extack)
8869{
8870 struct netdev_notifier_pre_changeaddr_info info = {
8871 .info.dev = dev,
8872 .info.extack = extack,
8873 .dev_addr = addr,
8874 };
8875 int rc;
8876
8877 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8878 return notifier_to_errno(rc);
8879}
8880EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8881
8882/**
8883 * dev_set_mac_address - Change Media Access Control Address
8884 * @dev: device
8885 * @sa: new address
8886 * @extack: netlink extended ack
8887 *
8888 * Change the hardware (MAC) address of the device
8889 */
8890int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8891 struct netlink_ext_ack *extack)
8892{
8893 const struct net_device_ops *ops = dev->netdev_ops;
8894 int err;
8895
8896 if (!ops->ndo_set_mac_address)
8897 return -EOPNOTSUPP;
8898 if (sa->sa_family != dev->type)
8899 return -EINVAL;
8900 if (!netif_device_present(dev))
8901 return -ENODEV;
8902 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8903 if (err)
8904 return err;
8905 if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
8906 err = ops->ndo_set_mac_address(dev, sa);
8907 if (err)
8908 return err;
8909 }
8910 dev->addr_assign_type = NET_ADDR_SET;
8911 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8912 add_device_randomness(dev->dev_addr, dev->addr_len);
8913 return 0;
8914}
8915EXPORT_SYMBOL(dev_set_mac_address);
8916
8917static DECLARE_RWSEM(dev_addr_sem);
8918
8919int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8920 struct netlink_ext_ack *extack)
8921{
8922 int ret;
8923
8924 down_write(&dev_addr_sem);
8925 ret = dev_set_mac_address(dev, sa, extack);
8926 up_write(&dev_addr_sem);
8927 return ret;
8928}
8929EXPORT_SYMBOL(dev_set_mac_address_user);
8930
8931int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8932{
8933 size_t size = sizeof(sa->sa_data_min);
8934 struct net_device *dev;
8935 int ret = 0;
8936
8937 down_read(&dev_addr_sem);
8938 rcu_read_lock();
8939
8940 dev = dev_get_by_name_rcu(net, dev_name);
8941 if (!dev) {
8942 ret = -ENODEV;
8943 goto unlock;
8944 }
8945 if (!dev->addr_len)
8946 memset(sa->sa_data, 0, size);
8947 else
8948 memcpy(sa->sa_data, dev->dev_addr,
8949 min_t(size_t, size, dev->addr_len));
8950 sa->sa_family = dev->type;
8951
8952unlock:
8953 rcu_read_unlock();
8954 up_read(&dev_addr_sem);
8955 return ret;
8956}
8957EXPORT_SYMBOL(dev_get_mac_address);
8958
8959/**
8960 * dev_change_carrier - Change device carrier
8961 * @dev: device
8962 * @new_carrier: new value
8963 *
8964 * Change device carrier
8965 */
8966int dev_change_carrier(struct net_device *dev, bool new_carrier)
8967{
8968 const struct net_device_ops *ops = dev->netdev_ops;
8969
8970 if (!ops->ndo_change_carrier)
8971 return -EOPNOTSUPP;
8972 if (!netif_device_present(dev))
8973 return -ENODEV;
8974 return ops->ndo_change_carrier(dev, new_carrier);
8975}
8976
8977/**
8978 * dev_get_phys_port_id - Get device physical port ID
8979 * @dev: device
8980 * @ppid: port ID
8981 *
8982 * Get device physical port ID
8983 */
8984int dev_get_phys_port_id(struct net_device *dev,
8985 struct netdev_phys_item_id *ppid)
8986{
8987 const struct net_device_ops *ops = dev->netdev_ops;
8988
8989 if (!ops->ndo_get_phys_port_id)
8990 return -EOPNOTSUPP;
8991 return ops->ndo_get_phys_port_id(dev, ppid);
8992}
8993
8994/**
8995 * dev_get_phys_port_name - Get device physical port name
8996 * @dev: device
8997 * @name: port name
8998 * @len: limit of bytes to copy to name
8999 *
9000 * Get device physical port name
9001 */
9002int dev_get_phys_port_name(struct net_device *dev,
9003 char *name, size_t len)
9004{
9005 const struct net_device_ops *ops = dev->netdev_ops;
9006 int err;
9007
9008 if (ops->ndo_get_phys_port_name) {
9009 err = ops->ndo_get_phys_port_name(dev, name, len);
9010 if (err != -EOPNOTSUPP)
9011 return err;
9012 }
9013 return devlink_compat_phys_port_name_get(dev, name, len);
9014}
9015
9016/**
9017 * dev_get_port_parent_id - Get the device's port parent identifier
9018 * @dev: network device
9019 * @ppid: pointer to a storage for the port's parent identifier
9020 * @recurse: allow/disallow recursion to lower devices
9021 *
9022 * Get the devices's port parent identifier
9023 */
9024int dev_get_port_parent_id(struct net_device *dev,
9025 struct netdev_phys_item_id *ppid,
9026 bool recurse)
9027{
9028 const struct net_device_ops *ops = dev->netdev_ops;
9029 struct netdev_phys_item_id first = { };
9030 struct net_device *lower_dev;
9031 struct list_head *iter;
9032 int err;
9033
9034 if (ops->ndo_get_port_parent_id) {
9035 err = ops->ndo_get_port_parent_id(dev, ppid);
9036 if (err != -EOPNOTSUPP)
9037 return err;
9038 }
9039
9040 err = devlink_compat_switch_id_get(dev, ppid);
9041 if (!recurse || err != -EOPNOTSUPP)
9042 return err;
9043
9044 netdev_for_each_lower_dev(dev, lower_dev, iter) {
9045 err = dev_get_port_parent_id(lower_dev, ppid, true);
9046 if (err)
9047 break;
9048 if (!first.id_len)
9049 first = *ppid;
9050 else if (memcmp(&first, ppid, sizeof(*ppid)))
9051 return -EOPNOTSUPP;
9052 }
9053
9054 return err;
9055}
9056EXPORT_SYMBOL(dev_get_port_parent_id);
9057
9058/**
9059 * netdev_port_same_parent_id - Indicate if two network devices have
9060 * the same port parent identifier
9061 * @a: first network device
9062 * @b: second network device
9063 */
9064bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9065{
9066 struct netdev_phys_item_id a_id = { };
9067 struct netdev_phys_item_id b_id = { };
9068
9069 if (dev_get_port_parent_id(a, &a_id, true) ||
9070 dev_get_port_parent_id(b, &b_id, true))
9071 return false;
9072
9073 return netdev_phys_item_id_same(&a_id, &b_id);
9074}
9075EXPORT_SYMBOL(netdev_port_same_parent_id);
9076
9077/**
9078 * dev_change_proto_down - set carrier according to proto_down.
9079 *
9080 * @dev: device
9081 * @proto_down: new value
9082 */
9083int dev_change_proto_down(struct net_device *dev, bool proto_down)
9084{
9085 if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
9086 return -EOPNOTSUPP;
9087 if (!netif_device_present(dev))
9088 return -ENODEV;
9089 if (proto_down)
9090 netif_carrier_off(dev);
9091 else
9092 netif_carrier_on(dev);
9093 dev->proto_down = proto_down;
9094 return 0;
9095}
9096
9097/**
9098 * dev_change_proto_down_reason - proto down reason
9099 *
9100 * @dev: device
9101 * @mask: proto down mask
9102 * @value: proto down value
9103 */
9104void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9105 u32 value)
9106{
9107 int b;
9108
9109 if (!mask) {
9110 dev->proto_down_reason = value;
9111 } else {
9112 for_each_set_bit(b, &mask, 32) {
9113 if (value & (1 << b))
9114 dev->proto_down_reason |= BIT(b);
9115 else
9116 dev->proto_down_reason &= ~BIT(b);
9117 }
9118 }
9119}
9120
9121struct bpf_xdp_link {
9122 struct bpf_link link;
9123 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9124 int flags;
9125};
9126
9127static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9128{
9129 if (flags & XDP_FLAGS_HW_MODE)
9130 return XDP_MODE_HW;
9131 if (flags & XDP_FLAGS_DRV_MODE)
9132 return XDP_MODE_DRV;
9133 if (flags & XDP_FLAGS_SKB_MODE)
9134 return XDP_MODE_SKB;
9135 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9136}
9137
9138static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9139{
9140 switch (mode) {
9141 case XDP_MODE_SKB:
9142 return generic_xdp_install;
9143 case XDP_MODE_DRV:
9144 case XDP_MODE_HW:
9145 return dev->netdev_ops->ndo_bpf;
9146 default:
9147 return NULL;
9148 }
9149}
9150
9151static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9152 enum bpf_xdp_mode mode)
9153{
9154 return dev->xdp_state[mode].link;
9155}
9156
9157static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9158 enum bpf_xdp_mode mode)
9159{
9160 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9161
9162 if (link)
9163 return link->link.prog;
9164 return dev->xdp_state[mode].prog;
9165}
9166
9167u8 dev_xdp_prog_count(struct net_device *dev)
9168{
9169 u8 count = 0;
9170 int i;
9171
9172 for (i = 0; i < __MAX_XDP_MODE; i++)
9173 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9174 count++;
9175 return count;
9176}
9177EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9178
9179u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9180{
9181 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9182
9183 return prog ? prog->aux->id : 0;
9184}
9185
9186static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9187 struct bpf_xdp_link *link)
9188{
9189 dev->xdp_state[mode].link = link;
9190 dev->xdp_state[mode].prog = NULL;
9191}
9192
9193static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9194 struct bpf_prog *prog)
9195{
9196 dev->xdp_state[mode].link = NULL;
9197 dev->xdp_state[mode].prog = prog;
9198}
9199
9200static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9201 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9202 u32 flags, struct bpf_prog *prog)
9203{
9204 struct netdev_bpf xdp;
9205 int err;
9206
9207 memset(&xdp, 0, sizeof(xdp));
9208 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9209 xdp.extack = extack;
9210 xdp.flags = flags;
9211 xdp.prog = prog;
9212
9213 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9214 * "moved" into driver), so they don't increment it on their own, but
9215 * they do decrement refcnt when program is detached or replaced.
9216 * Given net_device also owns link/prog, we need to bump refcnt here
9217 * to prevent drivers from underflowing it.
9218 */
9219 if (prog)
9220 bpf_prog_inc(prog);
9221 err = bpf_op(dev, &xdp);
9222 if (err) {
9223 if (prog)
9224 bpf_prog_put(prog);
9225 return err;
9226 }
9227
9228 if (mode != XDP_MODE_HW)
9229 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9230
9231 return 0;
9232}
9233
9234static void dev_xdp_uninstall(struct net_device *dev)
9235{
9236 struct bpf_xdp_link *link;
9237 struct bpf_prog *prog;
9238 enum bpf_xdp_mode mode;
9239 bpf_op_t bpf_op;
9240
9241 ASSERT_RTNL();
9242
9243 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9244 prog = dev_xdp_prog(dev, mode);
9245 if (!prog)
9246 continue;
9247
9248 bpf_op = dev_xdp_bpf_op(dev, mode);
9249 if (!bpf_op)
9250 continue;
9251
9252 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9253
9254 /* auto-detach link from net device */
9255 link = dev_xdp_link(dev, mode);
9256 if (link)
9257 link->dev = NULL;
9258 else
9259 bpf_prog_put(prog);
9260
9261 dev_xdp_set_link(dev, mode, NULL);
9262 }
9263}
9264
9265static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9266 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9267 struct bpf_prog *old_prog, u32 flags)
9268{
9269 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9270 struct bpf_prog *cur_prog;
9271 struct net_device *upper;
9272 struct list_head *iter;
9273 enum bpf_xdp_mode mode;
9274 bpf_op_t bpf_op;
9275 int err;
9276
9277 ASSERT_RTNL();
9278
9279 /* either link or prog attachment, never both */
9280 if (link && (new_prog || old_prog))
9281 return -EINVAL;
9282 /* link supports only XDP mode flags */
9283 if (link && (flags & ~XDP_FLAGS_MODES)) {
9284 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9285 return -EINVAL;
9286 }
9287 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9288 if (num_modes > 1) {
9289 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9290 return -EINVAL;
9291 }
9292 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9293 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9294 NL_SET_ERR_MSG(extack,
9295 "More than one program loaded, unset mode is ambiguous");
9296 return -EINVAL;
9297 }
9298 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9299 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9300 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9301 return -EINVAL;
9302 }
9303
9304 mode = dev_xdp_mode(dev, flags);
9305 /* can't replace attached link */
9306 if (dev_xdp_link(dev, mode)) {
9307 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9308 return -EBUSY;
9309 }
9310
9311 /* don't allow if an upper device already has a program */
9312 netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9313 if (dev_xdp_prog_count(upper) > 0) {
9314 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9315 return -EEXIST;
9316 }
9317 }
9318
9319 cur_prog = dev_xdp_prog(dev, mode);
9320 /* can't replace attached prog with link */
9321 if (link && cur_prog) {
9322 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9323 return -EBUSY;
9324 }
9325 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9326 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9327 return -EEXIST;
9328 }
9329
9330 /* put effective new program into new_prog */
9331 if (link)
9332 new_prog = link->link.prog;
9333
9334 if (new_prog) {
9335 bool offload = mode == XDP_MODE_HW;
9336 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9337 ? XDP_MODE_DRV : XDP_MODE_SKB;
9338
9339 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9340 NL_SET_ERR_MSG(extack, "XDP program already attached");
9341 return -EBUSY;
9342 }
9343 if (!offload && dev_xdp_prog(dev, other_mode)) {
9344 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9345 return -EEXIST;
9346 }
9347 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9348 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9349 return -EINVAL;
9350 }
9351 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9352 NL_SET_ERR_MSG(extack, "Program bound to different device");
9353 return -EINVAL;
9354 }
9355 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9356 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9357 return -EINVAL;
9358 }
9359 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9360 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9361 return -EINVAL;
9362 }
9363 }
9364
9365 /* don't call drivers if the effective program didn't change */
9366 if (new_prog != cur_prog) {
9367 bpf_op = dev_xdp_bpf_op(dev, mode);
9368 if (!bpf_op) {
9369 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9370 return -EOPNOTSUPP;
9371 }
9372
9373 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9374 if (err)
9375 return err;
9376 }
9377
9378 if (link)
9379 dev_xdp_set_link(dev, mode, link);
9380 else
9381 dev_xdp_set_prog(dev, mode, new_prog);
9382 if (cur_prog)
9383 bpf_prog_put(cur_prog);
9384
9385 return 0;
9386}
9387
9388static int dev_xdp_attach_link(struct net_device *dev,
9389 struct netlink_ext_ack *extack,
9390 struct bpf_xdp_link *link)
9391{
9392 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9393}
9394
9395static int dev_xdp_detach_link(struct net_device *dev,
9396 struct netlink_ext_ack *extack,
9397 struct bpf_xdp_link *link)
9398{
9399 enum bpf_xdp_mode mode;
9400 bpf_op_t bpf_op;
9401
9402 ASSERT_RTNL();
9403
9404 mode = dev_xdp_mode(dev, link->flags);
9405 if (dev_xdp_link(dev, mode) != link)
9406 return -EINVAL;
9407
9408 bpf_op = dev_xdp_bpf_op(dev, mode);
9409 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9410 dev_xdp_set_link(dev, mode, NULL);
9411 return 0;
9412}
9413
9414static void bpf_xdp_link_release(struct bpf_link *link)
9415{
9416 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9417
9418 rtnl_lock();
9419
9420 /* if racing with net_device's tear down, xdp_link->dev might be
9421 * already NULL, in which case link was already auto-detached
9422 */
9423 if (xdp_link->dev) {
9424 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9425 xdp_link->dev = NULL;
9426 }
9427
9428 rtnl_unlock();
9429}
9430
9431static int bpf_xdp_link_detach(struct bpf_link *link)
9432{
9433 bpf_xdp_link_release(link);
9434 return 0;
9435}
9436
9437static void bpf_xdp_link_dealloc(struct bpf_link *link)
9438{
9439 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9440
9441 kfree(xdp_link);
9442}
9443
9444static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9445 struct seq_file *seq)
9446{
9447 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9448 u32 ifindex = 0;
9449
9450 rtnl_lock();
9451 if (xdp_link->dev)
9452 ifindex = xdp_link->dev->ifindex;
9453 rtnl_unlock();
9454
9455 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9456}
9457
9458static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9459 struct bpf_link_info *info)
9460{
9461 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9462 u32 ifindex = 0;
9463
9464 rtnl_lock();
9465 if (xdp_link->dev)
9466 ifindex = xdp_link->dev->ifindex;
9467 rtnl_unlock();
9468
9469 info->xdp.ifindex = ifindex;
9470 return 0;
9471}
9472
9473static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9474 struct bpf_prog *old_prog)
9475{
9476 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9477 enum bpf_xdp_mode mode;
9478 bpf_op_t bpf_op;
9479 int err = 0;
9480
9481 rtnl_lock();
9482
9483 /* link might have been auto-released already, so fail */
9484 if (!xdp_link->dev) {
9485 err = -ENOLINK;
9486 goto out_unlock;
9487 }
9488
9489 if (old_prog && link->prog != old_prog) {
9490 err = -EPERM;
9491 goto out_unlock;
9492 }
9493 old_prog = link->prog;
9494 if (old_prog->type != new_prog->type ||
9495 old_prog->expected_attach_type != new_prog->expected_attach_type) {
9496 err = -EINVAL;
9497 goto out_unlock;
9498 }
9499
9500 if (old_prog == new_prog) {
9501 /* no-op, don't disturb drivers */
9502 bpf_prog_put(new_prog);
9503 goto out_unlock;
9504 }
9505
9506 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9507 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9508 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9509 xdp_link->flags, new_prog);
9510 if (err)
9511 goto out_unlock;
9512
9513 old_prog = xchg(&link->prog, new_prog);
9514 bpf_prog_put(old_prog);
9515
9516out_unlock:
9517 rtnl_unlock();
9518 return err;
9519}
9520
9521static const struct bpf_link_ops bpf_xdp_link_lops = {
9522 .release = bpf_xdp_link_release,
9523 .dealloc = bpf_xdp_link_dealloc,
9524 .detach = bpf_xdp_link_detach,
9525 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9526 .fill_link_info = bpf_xdp_link_fill_link_info,
9527 .update_prog = bpf_xdp_link_update,
9528};
9529
9530int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9531{
9532 struct net *net = current->nsproxy->net_ns;
9533 struct bpf_link_primer link_primer;
9534 struct netlink_ext_ack extack = {};
9535 struct bpf_xdp_link *link;
9536 struct net_device *dev;
9537 int err, fd;
9538
9539 rtnl_lock();
9540 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9541 if (!dev) {
9542 rtnl_unlock();
9543 return -EINVAL;
9544 }
9545
9546 link = kzalloc(sizeof(*link), GFP_USER);
9547 if (!link) {
9548 err = -ENOMEM;
9549 goto unlock;
9550 }
9551
9552 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9553 link->dev = dev;
9554 link->flags = attr->link_create.flags;
9555
9556 err = bpf_link_prime(&link->link, &link_primer);
9557 if (err) {
9558 kfree(link);
9559 goto unlock;
9560 }
9561
9562 err = dev_xdp_attach_link(dev, &extack, link);
9563 rtnl_unlock();
9564
9565 if (err) {
9566 link->dev = NULL;
9567 bpf_link_cleanup(&link_primer);
9568 trace_bpf_xdp_link_attach_failed(extack._msg);
9569 goto out_put_dev;
9570 }
9571
9572 fd = bpf_link_settle(&link_primer);
9573 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9574 dev_put(dev);
9575 return fd;
9576
9577unlock:
9578 rtnl_unlock();
9579
9580out_put_dev:
9581 dev_put(dev);
9582 return err;
9583}
9584
9585/**
9586 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9587 * @dev: device
9588 * @extack: netlink extended ack
9589 * @fd: new program fd or negative value to clear
9590 * @expected_fd: old program fd that userspace expects to replace or clear
9591 * @flags: xdp-related flags
9592 *
9593 * Set or clear a bpf program for a device
9594 */
9595int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9596 int fd, int expected_fd, u32 flags)
9597{
9598 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9599 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9600 int err;
9601
9602 ASSERT_RTNL();
9603
9604 if (fd >= 0) {
9605 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9606 mode != XDP_MODE_SKB);
9607 if (IS_ERR(new_prog))
9608 return PTR_ERR(new_prog);
9609 }
9610
9611 if (expected_fd >= 0) {
9612 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9613 mode != XDP_MODE_SKB);
9614 if (IS_ERR(old_prog)) {
9615 err = PTR_ERR(old_prog);
9616 old_prog = NULL;
9617 goto err_out;
9618 }
9619 }
9620
9621 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9622
9623err_out:
9624 if (err && new_prog)
9625 bpf_prog_put(new_prog);
9626 if (old_prog)
9627 bpf_prog_put(old_prog);
9628 return err;
9629}
9630
9631/**
9632 * dev_index_reserve() - allocate an ifindex in a namespace
9633 * @net: the applicable net namespace
9634 * @ifindex: requested ifindex, pass %0 to get one allocated
9635 *
9636 * Allocate a ifindex for a new device. Caller must either use the ifindex
9637 * to store the device (via list_netdevice()) or call dev_index_release()
9638 * to give the index up.
9639 *
9640 * Return: a suitable unique value for a new device interface number or -errno.
9641 */
9642static int dev_index_reserve(struct net *net, u32 ifindex)
9643{
9644 int err;
9645
9646 if (ifindex > INT_MAX) {
9647 DEBUG_NET_WARN_ON_ONCE(1);
9648 return -EINVAL;
9649 }
9650
9651 if (!ifindex)
9652 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9653 xa_limit_31b, &net->ifindex, GFP_KERNEL);
9654 else
9655 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9656 if (err < 0)
9657 return err;
9658
9659 return ifindex;
9660}
9661
9662static void dev_index_release(struct net *net, int ifindex)
9663{
9664 /* Expect only unused indexes, unlist_netdevice() removes the used */
9665 WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9666}
9667
9668/* Delayed registration/unregisteration */
9669LIST_HEAD(net_todo_list);
9670DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9671
9672static void net_set_todo(struct net_device *dev)
9673{
9674 list_add_tail(&dev->todo_list, &net_todo_list);
9675 atomic_inc(&dev_net(dev)->dev_unreg_count);
9676}
9677
9678static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9679 struct net_device *upper, netdev_features_t features)
9680{
9681 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9682 netdev_features_t feature;
9683 int feature_bit;
9684
9685 for_each_netdev_feature(upper_disables, feature_bit) {
9686 feature = __NETIF_F_BIT(feature_bit);
9687 if (!(upper->wanted_features & feature)
9688 && (features & feature)) {
9689 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9690 &feature, upper->name);
9691 features &= ~feature;
9692 }
9693 }
9694
9695 return features;
9696}
9697
9698static void netdev_sync_lower_features(struct net_device *upper,
9699 struct net_device *lower, netdev_features_t features)
9700{
9701 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9702 netdev_features_t feature;
9703 int feature_bit;
9704
9705 for_each_netdev_feature(upper_disables, feature_bit) {
9706 feature = __NETIF_F_BIT(feature_bit);
9707 if (!(features & feature) && (lower->features & feature)) {
9708 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9709 &feature, lower->name);
9710 lower->wanted_features &= ~feature;
9711 __netdev_update_features(lower);
9712
9713 if (unlikely(lower->features & feature))
9714 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9715 &feature, lower->name);
9716 else
9717 netdev_features_change(lower);
9718 }
9719 }
9720}
9721
9722static netdev_features_t netdev_fix_features(struct net_device *dev,
9723 netdev_features_t features)
9724{
9725 /* Fix illegal checksum combinations */
9726 if ((features & NETIF_F_HW_CSUM) &&
9727 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9728 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9729 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9730 }
9731
9732 /* TSO requires that SG is present as well. */
9733 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9734 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9735 features &= ~NETIF_F_ALL_TSO;
9736 }
9737
9738 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9739 !(features & NETIF_F_IP_CSUM)) {
9740 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9741 features &= ~NETIF_F_TSO;
9742 features &= ~NETIF_F_TSO_ECN;
9743 }
9744
9745 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9746 !(features & NETIF_F_IPV6_CSUM)) {
9747 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9748 features &= ~NETIF_F_TSO6;
9749 }
9750
9751 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9752 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9753 features &= ~NETIF_F_TSO_MANGLEID;
9754
9755 /* TSO ECN requires that TSO is present as well. */
9756 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9757 features &= ~NETIF_F_TSO_ECN;
9758
9759 /* Software GSO depends on SG. */
9760 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9761 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9762 features &= ~NETIF_F_GSO;
9763 }
9764
9765 /* GSO partial features require GSO partial be set */
9766 if ((features & dev->gso_partial_features) &&
9767 !(features & NETIF_F_GSO_PARTIAL)) {
9768 netdev_dbg(dev,
9769 "Dropping partially supported GSO features since no GSO partial.\n");
9770 features &= ~dev->gso_partial_features;
9771 }
9772
9773 if (!(features & NETIF_F_RXCSUM)) {
9774 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9775 * successfully merged by hardware must also have the
9776 * checksum verified by hardware. If the user does not
9777 * want to enable RXCSUM, logically, we should disable GRO_HW.
9778 */
9779 if (features & NETIF_F_GRO_HW) {
9780 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9781 features &= ~NETIF_F_GRO_HW;
9782 }
9783 }
9784
9785 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9786 if (features & NETIF_F_RXFCS) {
9787 if (features & NETIF_F_LRO) {
9788 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9789 features &= ~NETIF_F_LRO;
9790 }
9791
9792 if (features & NETIF_F_GRO_HW) {
9793 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9794 features &= ~NETIF_F_GRO_HW;
9795 }
9796 }
9797
9798 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9799 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9800 features &= ~NETIF_F_LRO;
9801 }
9802
9803 if (features & NETIF_F_HW_TLS_TX) {
9804 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9805 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9806 bool hw_csum = features & NETIF_F_HW_CSUM;
9807
9808 if (!ip_csum && !hw_csum) {
9809 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9810 features &= ~NETIF_F_HW_TLS_TX;
9811 }
9812 }
9813
9814 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9815 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9816 features &= ~NETIF_F_HW_TLS_RX;
9817 }
9818
9819 return features;
9820}
9821
9822int __netdev_update_features(struct net_device *dev)
9823{
9824 struct net_device *upper, *lower;
9825 netdev_features_t features;
9826 struct list_head *iter;
9827 int err = -1;
9828
9829 ASSERT_RTNL();
9830
9831 features = netdev_get_wanted_features(dev);
9832
9833 if (dev->netdev_ops->ndo_fix_features)
9834 features = dev->netdev_ops->ndo_fix_features(dev, features);
9835
9836 /* driver might be less strict about feature dependencies */
9837 features = netdev_fix_features(dev, features);
9838
9839 /* some features can't be enabled if they're off on an upper device */
9840 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9841 features = netdev_sync_upper_features(dev, upper, features);
9842
9843 if (dev->features == features)
9844 goto sync_lower;
9845
9846 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9847 &dev->features, &features);
9848
9849 if (dev->netdev_ops->ndo_set_features)
9850 err = dev->netdev_ops->ndo_set_features(dev, features);
9851 else
9852 err = 0;
9853
9854 if (unlikely(err < 0)) {
9855 netdev_err(dev,
9856 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9857 err, &features, &dev->features);
9858 /* return non-0 since some features might have changed and
9859 * it's better to fire a spurious notification than miss it
9860 */
9861 return -1;
9862 }
9863
9864sync_lower:
9865 /* some features must be disabled on lower devices when disabled
9866 * on an upper device (think: bonding master or bridge)
9867 */
9868 netdev_for_each_lower_dev(dev, lower, iter)
9869 netdev_sync_lower_features(dev, lower, features);
9870
9871 if (!err) {
9872 netdev_features_t diff = features ^ dev->features;
9873
9874 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9875 /* udp_tunnel_{get,drop}_rx_info both need
9876 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9877 * device, or they won't do anything.
9878 * Thus we need to update dev->features
9879 * *before* calling udp_tunnel_get_rx_info,
9880 * but *after* calling udp_tunnel_drop_rx_info.
9881 */
9882 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9883 dev->features = features;
9884 udp_tunnel_get_rx_info(dev);
9885 } else {
9886 udp_tunnel_drop_rx_info(dev);
9887 }
9888 }
9889
9890 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9891 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9892 dev->features = features;
9893 err |= vlan_get_rx_ctag_filter_info(dev);
9894 } else {
9895 vlan_drop_rx_ctag_filter_info(dev);
9896 }
9897 }
9898
9899 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9900 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9901 dev->features = features;
9902 err |= vlan_get_rx_stag_filter_info(dev);
9903 } else {
9904 vlan_drop_rx_stag_filter_info(dev);
9905 }
9906 }
9907
9908 dev->features = features;
9909 }
9910
9911 return err < 0 ? 0 : 1;
9912}
9913
9914/**
9915 * netdev_update_features - recalculate device features
9916 * @dev: the device to check
9917 *
9918 * Recalculate dev->features set and send notifications if it
9919 * has changed. Should be called after driver or hardware dependent
9920 * conditions might have changed that influence the features.
9921 */
9922void netdev_update_features(struct net_device *dev)
9923{
9924 if (__netdev_update_features(dev))
9925 netdev_features_change(dev);
9926}
9927EXPORT_SYMBOL(netdev_update_features);
9928
9929/**
9930 * netdev_change_features - recalculate device features
9931 * @dev: the device to check
9932 *
9933 * Recalculate dev->features set and send notifications even
9934 * if they have not changed. Should be called instead of
9935 * netdev_update_features() if also dev->vlan_features might
9936 * have changed to allow the changes to be propagated to stacked
9937 * VLAN devices.
9938 */
9939void netdev_change_features(struct net_device *dev)
9940{
9941 __netdev_update_features(dev);
9942 netdev_features_change(dev);
9943}
9944EXPORT_SYMBOL(netdev_change_features);
9945
9946/**
9947 * netif_stacked_transfer_operstate - transfer operstate
9948 * @rootdev: the root or lower level device to transfer state from
9949 * @dev: the device to transfer operstate to
9950 *
9951 * Transfer operational state from root to device. This is normally
9952 * called when a stacking relationship exists between the root
9953 * device and the device(a leaf device).
9954 */
9955void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9956 struct net_device *dev)
9957{
9958 if (rootdev->operstate == IF_OPER_DORMANT)
9959 netif_dormant_on(dev);
9960 else
9961 netif_dormant_off(dev);
9962
9963 if (rootdev->operstate == IF_OPER_TESTING)
9964 netif_testing_on(dev);
9965 else
9966 netif_testing_off(dev);
9967
9968 if (netif_carrier_ok(rootdev))
9969 netif_carrier_on(dev);
9970 else
9971 netif_carrier_off(dev);
9972}
9973EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9974
9975static int netif_alloc_rx_queues(struct net_device *dev)
9976{
9977 unsigned int i, count = dev->num_rx_queues;
9978 struct netdev_rx_queue *rx;
9979 size_t sz = count * sizeof(*rx);
9980 int err = 0;
9981
9982 BUG_ON(count < 1);
9983
9984 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9985 if (!rx)
9986 return -ENOMEM;
9987
9988 dev->_rx = rx;
9989
9990 for (i = 0; i < count; i++) {
9991 rx[i].dev = dev;
9992
9993 /* XDP RX-queue setup */
9994 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9995 if (err < 0)
9996 goto err_rxq_info;
9997 }
9998 return 0;
9999
10000err_rxq_info:
10001 /* Rollback successful reg's and free other resources */
10002 while (i--)
10003 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10004 kvfree(dev->_rx);
10005 dev->_rx = NULL;
10006 return err;
10007}
10008
10009static void netif_free_rx_queues(struct net_device *dev)
10010{
10011 unsigned int i, count = dev->num_rx_queues;
10012
10013 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10014 if (!dev->_rx)
10015 return;
10016
10017 for (i = 0; i < count; i++)
10018 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10019
10020 kvfree(dev->_rx);
10021}
10022
10023static void netdev_init_one_queue(struct net_device *dev,
10024 struct netdev_queue *queue, void *_unused)
10025{
10026 /* Initialize queue lock */
10027 spin_lock_init(&queue->_xmit_lock);
10028 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10029 queue->xmit_lock_owner = -1;
10030 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10031 queue->dev = dev;
10032#ifdef CONFIG_BQL
10033 dql_init(&queue->dql, HZ);
10034#endif
10035}
10036
10037static void netif_free_tx_queues(struct net_device *dev)
10038{
10039 kvfree(dev->_tx);
10040}
10041
10042static int netif_alloc_netdev_queues(struct net_device *dev)
10043{
10044 unsigned int count = dev->num_tx_queues;
10045 struct netdev_queue *tx;
10046 size_t sz = count * sizeof(*tx);
10047
10048 if (count < 1 || count > 0xffff)
10049 return -EINVAL;
10050
10051 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10052 if (!tx)
10053 return -ENOMEM;
10054
10055 dev->_tx = tx;
10056
10057 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10058 spin_lock_init(&dev->tx_global_lock);
10059
10060 return 0;
10061}
10062
10063void netif_tx_stop_all_queues(struct net_device *dev)
10064{
10065 unsigned int i;
10066
10067 for (i = 0; i < dev->num_tx_queues; i++) {
10068 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10069
10070 netif_tx_stop_queue(txq);
10071 }
10072}
10073EXPORT_SYMBOL(netif_tx_stop_all_queues);
10074
10075static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10076{
10077 void __percpu *v;
10078
10079 /* Drivers implementing ndo_get_peer_dev must support tstat
10080 * accounting, so that skb_do_redirect() can bump the dev's
10081 * RX stats upon network namespace switch.
10082 */
10083 if (dev->netdev_ops->ndo_get_peer_dev &&
10084 dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10085 return -EOPNOTSUPP;
10086
10087 switch (dev->pcpu_stat_type) {
10088 case NETDEV_PCPU_STAT_NONE:
10089 return 0;
10090 case NETDEV_PCPU_STAT_LSTATS:
10091 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10092 break;
10093 case NETDEV_PCPU_STAT_TSTATS:
10094 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10095 break;
10096 case NETDEV_PCPU_STAT_DSTATS:
10097 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10098 break;
10099 default:
10100 return -EINVAL;
10101 }
10102
10103 return v ? 0 : -ENOMEM;
10104}
10105
10106static void netdev_do_free_pcpu_stats(struct net_device *dev)
10107{
10108 switch (dev->pcpu_stat_type) {
10109 case NETDEV_PCPU_STAT_NONE:
10110 return;
10111 case NETDEV_PCPU_STAT_LSTATS:
10112 free_percpu(dev->lstats);
10113 break;
10114 case NETDEV_PCPU_STAT_TSTATS:
10115 free_percpu(dev->tstats);
10116 break;
10117 case NETDEV_PCPU_STAT_DSTATS:
10118 free_percpu(dev->dstats);
10119 break;
10120 }
10121}
10122
10123/**
10124 * register_netdevice() - register a network device
10125 * @dev: device to register
10126 *
10127 * Take a prepared network device structure and make it externally accessible.
10128 * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10129 * Callers must hold the rtnl lock - you may want register_netdev()
10130 * instead of this.
10131 */
10132int register_netdevice(struct net_device *dev)
10133{
10134 int ret;
10135 struct net *net = dev_net(dev);
10136
10137 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10138 NETDEV_FEATURE_COUNT);
10139 BUG_ON(dev_boot_phase);
10140 ASSERT_RTNL();
10141
10142 might_sleep();
10143
10144 /* When net_device's are persistent, this will be fatal. */
10145 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10146 BUG_ON(!net);
10147
10148 ret = ethtool_check_ops(dev->ethtool_ops);
10149 if (ret)
10150 return ret;
10151
10152 spin_lock_init(&dev->addr_list_lock);
10153 netdev_set_addr_lockdep_class(dev);
10154
10155 ret = dev_get_valid_name(net, dev, dev->name);
10156 if (ret < 0)
10157 goto out;
10158
10159 ret = -ENOMEM;
10160 dev->name_node = netdev_name_node_head_alloc(dev);
10161 if (!dev->name_node)
10162 goto out;
10163
10164 /* Init, if this function is available */
10165 if (dev->netdev_ops->ndo_init) {
10166 ret = dev->netdev_ops->ndo_init(dev);
10167 if (ret) {
10168 if (ret > 0)
10169 ret = -EIO;
10170 goto err_free_name;
10171 }
10172 }
10173
10174 if (((dev->hw_features | dev->features) &
10175 NETIF_F_HW_VLAN_CTAG_FILTER) &&
10176 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10177 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10178 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10179 ret = -EINVAL;
10180 goto err_uninit;
10181 }
10182
10183 ret = netdev_do_alloc_pcpu_stats(dev);
10184 if (ret)
10185 goto err_uninit;
10186
10187 ret = dev_index_reserve(net, dev->ifindex);
10188 if (ret < 0)
10189 goto err_free_pcpu;
10190 dev->ifindex = ret;
10191
10192 /* Transfer changeable features to wanted_features and enable
10193 * software offloads (GSO and GRO).
10194 */
10195 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10196 dev->features |= NETIF_F_SOFT_FEATURES;
10197
10198 if (dev->udp_tunnel_nic_info) {
10199 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10200 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10201 }
10202
10203 dev->wanted_features = dev->features & dev->hw_features;
10204
10205 if (!(dev->flags & IFF_LOOPBACK))
10206 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10207
10208 /* If IPv4 TCP segmentation offload is supported we should also
10209 * allow the device to enable segmenting the frame with the option
10210 * of ignoring a static IP ID value. This doesn't enable the
10211 * feature itself but allows the user to enable it later.
10212 */
10213 if (dev->hw_features & NETIF_F_TSO)
10214 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10215 if (dev->vlan_features & NETIF_F_TSO)
10216 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10217 if (dev->mpls_features & NETIF_F_TSO)
10218 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10219 if (dev->hw_enc_features & NETIF_F_TSO)
10220 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10221
10222 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10223 */
10224 dev->vlan_features |= NETIF_F_HIGHDMA;
10225
10226 /* Make NETIF_F_SG inheritable to tunnel devices.
10227 */
10228 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10229
10230 /* Make NETIF_F_SG inheritable to MPLS.
10231 */
10232 dev->mpls_features |= NETIF_F_SG;
10233
10234 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10235 ret = notifier_to_errno(ret);
10236 if (ret)
10237 goto err_ifindex_release;
10238
10239 ret = netdev_register_kobject(dev);
10240 write_lock(&dev_base_lock);
10241 dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10242 write_unlock(&dev_base_lock);
10243 if (ret)
10244 goto err_uninit_notify;
10245
10246 __netdev_update_features(dev);
10247
10248 /*
10249 * Default initial state at registry is that the
10250 * device is present.
10251 */
10252
10253 set_bit(__LINK_STATE_PRESENT, &dev->state);
10254
10255 linkwatch_init_dev(dev);
10256
10257 dev_init_scheduler(dev);
10258
10259 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10260 list_netdevice(dev);
10261
10262 add_device_randomness(dev->dev_addr, dev->addr_len);
10263
10264 /* If the device has permanent device address, driver should
10265 * set dev_addr and also addr_assign_type should be set to
10266 * NET_ADDR_PERM (default value).
10267 */
10268 if (dev->addr_assign_type == NET_ADDR_PERM)
10269 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10270
10271 /* Notify protocols, that a new device appeared. */
10272 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10273 ret = notifier_to_errno(ret);
10274 if (ret) {
10275 /* Expect explicit free_netdev() on failure */
10276 dev->needs_free_netdev = false;
10277 unregister_netdevice_queue(dev, NULL);
10278 goto out;
10279 }
10280 /*
10281 * Prevent userspace races by waiting until the network
10282 * device is fully setup before sending notifications.
10283 */
10284 if (!dev->rtnl_link_ops ||
10285 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10286 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10287
10288out:
10289 return ret;
10290
10291err_uninit_notify:
10292 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10293err_ifindex_release:
10294 dev_index_release(net, dev->ifindex);
10295err_free_pcpu:
10296 netdev_do_free_pcpu_stats(dev);
10297err_uninit:
10298 if (dev->netdev_ops->ndo_uninit)
10299 dev->netdev_ops->ndo_uninit(dev);
10300 if (dev->priv_destructor)
10301 dev->priv_destructor(dev);
10302err_free_name:
10303 netdev_name_node_free(dev->name_node);
10304 goto out;
10305}
10306EXPORT_SYMBOL(register_netdevice);
10307
10308/**
10309 * init_dummy_netdev - init a dummy network device for NAPI
10310 * @dev: device to init
10311 *
10312 * This takes a network device structure and initialize the minimum
10313 * amount of fields so it can be used to schedule NAPI polls without
10314 * registering a full blown interface. This is to be used by drivers
10315 * that need to tie several hardware interfaces to a single NAPI
10316 * poll scheduler due to HW limitations.
10317 */
10318int init_dummy_netdev(struct net_device *dev)
10319{
10320 /* Clear everything. Note we don't initialize spinlocks
10321 * are they aren't supposed to be taken by any of the
10322 * NAPI code and this dummy netdev is supposed to be
10323 * only ever used for NAPI polls
10324 */
10325 memset(dev, 0, sizeof(struct net_device));
10326
10327 /* make sure we BUG if trying to hit standard
10328 * register/unregister code path
10329 */
10330 dev->reg_state = NETREG_DUMMY;
10331
10332 /* NAPI wants this */
10333 INIT_LIST_HEAD(&dev->napi_list);
10334
10335 /* a dummy interface is started by default */
10336 set_bit(__LINK_STATE_PRESENT, &dev->state);
10337 set_bit(__LINK_STATE_START, &dev->state);
10338
10339 /* napi_busy_loop stats accounting wants this */
10340 dev_net_set(dev, &init_net);
10341
10342 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10343 * because users of this 'device' dont need to change
10344 * its refcount.
10345 */
10346
10347 return 0;
10348}
10349EXPORT_SYMBOL_GPL(init_dummy_netdev);
10350
10351
10352/**
10353 * register_netdev - register a network device
10354 * @dev: device to register
10355 *
10356 * Take a completed network device structure and add it to the kernel
10357 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10358 * chain. 0 is returned on success. A negative errno code is returned
10359 * on a failure to set up the device, or if the name is a duplicate.
10360 *
10361 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10362 * and expands the device name if you passed a format string to
10363 * alloc_netdev.
10364 */
10365int register_netdev(struct net_device *dev)
10366{
10367 int err;
10368
10369 if (rtnl_lock_killable())
10370 return -EINTR;
10371 err = register_netdevice(dev);
10372 rtnl_unlock();
10373 return err;
10374}
10375EXPORT_SYMBOL(register_netdev);
10376
10377int netdev_refcnt_read(const struct net_device *dev)
10378{
10379#ifdef CONFIG_PCPU_DEV_REFCNT
10380 int i, refcnt = 0;
10381
10382 for_each_possible_cpu(i)
10383 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10384 return refcnt;
10385#else
10386 return refcount_read(&dev->dev_refcnt);
10387#endif
10388}
10389EXPORT_SYMBOL(netdev_refcnt_read);
10390
10391int netdev_unregister_timeout_secs __read_mostly = 10;
10392
10393#define WAIT_REFS_MIN_MSECS 1
10394#define WAIT_REFS_MAX_MSECS 250
10395/**
10396 * netdev_wait_allrefs_any - wait until all references are gone.
10397 * @list: list of net_devices to wait on
10398 *
10399 * This is called when unregistering network devices.
10400 *
10401 * Any protocol or device that holds a reference should register
10402 * for netdevice notification, and cleanup and put back the
10403 * reference if they receive an UNREGISTER event.
10404 * We can get stuck here if buggy protocols don't correctly
10405 * call dev_put.
10406 */
10407static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10408{
10409 unsigned long rebroadcast_time, warning_time;
10410 struct net_device *dev;
10411 int wait = 0;
10412
10413 rebroadcast_time = warning_time = jiffies;
10414
10415 list_for_each_entry(dev, list, todo_list)
10416 if (netdev_refcnt_read(dev) == 1)
10417 return dev;
10418
10419 while (true) {
10420 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10421 rtnl_lock();
10422
10423 /* Rebroadcast unregister notification */
10424 list_for_each_entry(dev, list, todo_list)
10425 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10426
10427 __rtnl_unlock();
10428 rcu_barrier();
10429 rtnl_lock();
10430
10431 list_for_each_entry(dev, list, todo_list)
10432 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10433 &dev->state)) {
10434 /* We must not have linkwatch events
10435 * pending on unregister. If this
10436 * happens, we simply run the queue
10437 * unscheduled, resulting in a noop
10438 * for this device.
10439 */
10440 linkwatch_run_queue();
10441 break;
10442 }
10443
10444 __rtnl_unlock();
10445
10446 rebroadcast_time = jiffies;
10447 }
10448
10449 if (!wait) {
10450 rcu_barrier();
10451 wait = WAIT_REFS_MIN_MSECS;
10452 } else {
10453 msleep(wait);
10454 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10455 }
10456
10457 list_for_each_entry(dev, list, todo_list)
10458 if (netdev_refcnt_read(dev) == 1)
10459 return dev;
10460
10461 if (time_after(jiffies, warning_time +
10462 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10463 list_for_each_entry(dev, list, todo_list) {
10464 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10465 dev->name, netdev_refcnt_read(dev));
10466 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10467 }
10468
10469 warning_time = jiffies;
10470 }
10471 }
10472}
10473
10474/* The sequence is:
10475 *
10476 * rtnl_lock();
10477 * ...
10478 * register_netdevice(x1);
10479 * register_netdevice(x2);
10480 * ...
10481 * unregister_netdevice(y1);
10482 * unregister_netdevice(y2);
10483 * ...
10484 * rtnl_unlock();
10485 * free_netdev(y1);
10486 * free_netdev(y2);
10487 *
10488 * We are invoked by rtnl_unlock().
10489 * This allows us to deal with problems:
10490 * 1) We can delete sysfs objects which invoke hotplug
10491 * without deadlocking with linkwatch via keventd.
10492 * 2) Since we run with the RTNL semaphore not held, we can sleep
10493 * safely in order to wait for the netdev refcnt to drop to zero.
10494 *
10495 * We must not return until all unregister events added during
10496 * the interval the lock was held have been completed.
10497 */
10498void netdev_run_todo(void)
10499{
10500 struct net_device *dev, *tmp;
10501 struct list_head list;
10502#ifdef CONFIG_LOCKDEP
10503 struct list_head unlink_list;
10504
10505 list_replace_init(&net_unlink_list, &unlink_list);
10506
10507 while (!list_empty(&unlink_list)) {
10508 struct net_device *dev = list_first_entry(&unlink_list,
10509 struct net_device,
10510 unlink_list);
10511 list_del_init(&dev->unlink_list);
10512 dev->nested_level = dev->lower_level - 1;
10513 }
10514#endif
10515
10516 /* Snapshot list, allow later requests */
10517 list_replace_init(&net_todo_list, &list);
10518
10519 __rtnl_unlock();
10520
10521 /* Wait for rcu callbacks to finish before next phase */
10522 if (!list_empty(&list))
10523 rcu_barrier();
10524
10525 list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10526 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10527 netdev_WARN(dev, "run_todo but not unregistering\n");
10528 list_del(&dev->todo_list);
10529 continue;
10530 }
10531
10532 write_lock(&dev_base_lock);
10533 dev->reg_state = NETREG_UNREGISTERED;
10534 write_unlock(&dev_base_lock);
10535 linkwatch_sync_dev(dev);
10536 }
10537
10538 while (!list_empty(&list)) {
10539 dev = netdev_wait_allrefs_any(&list);
10540 list_del(&dev->todo_list);
10541
10542 /* paranoia */
10543 BUG_ON(netdev_refcnt_read(dev) != 1);
10544 BUG_ON(!list_empty(&dev->ptype_all));
10545 BUG_ON(!list_empty(&dev->ptype_specific));
10546 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10547 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10548
10549 netdev_do_free_pcpu_stats(dev);
10550 if (dev->priv_destructor)
10551 dev->priv_destructor(dev);
10552 if (dev->needs_free_netdev)
10553 free_netdev(dev);
10554
10555 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10556 wake_up(&netdev_unregistering_wq);
10557
10558 /* Free network device */
10559 kobject_put(&dev->dev.kobj);
10560 }
10561}
10562
10563/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10564 * all the same fields in the same order as net_device_stats, with only
10565 * the type differing, but rtnl_link_stats64 may have additional fields
10566 * at the end for newer counters.
10567 */
10568void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10569 const struct net_device_stats *netdev_stats)
10570{
10571 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10572 const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10573 u64 *dst = (u64 *)stats64;
10574
10575 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10576 for (i = 0; i < n; i++)
10577 dst[i] = (unsigned long)atomic_long_read(&src[i]);
10578 /* zero out counters that only exist in rtnl_link_stats64 */
10579 memset((char *)stats64 + n * sizeof(u64), 0,
10580 sizeof(*stats64) - n * sizeof(u64));
10581}
10582EXPORT_SYMBOL(netdev_stats_to_stats64);
10583
10584static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
10585 struct net_device *dev)
10586{
10587 struct net_device_core_stats __percpu *p;
10588
10589 p = alloc_percpu_gfp(struct net_device_core_stats,
10590 GFP_ATOMIC | __GFP_NOWARN);
10591
10592 if (p && cmpxchg(&dev->core_stats, NULL, p))
10593 free_percpu(p);
10594
10595 /* This READ_ONCE() pairs with the cmpxchg() above */
10596 return READ_ONCE(dev->core_stats);
10597}
10598
10599noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
10600{
10601 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10602 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
10603 unsigned long __percpu *field;
10604
10605 if (unlikely(!p)) {
10606 p = netdev_core_stats_alloc(dev);
10607 if (!p)
10608 return;
10609 }
10610
10611 field = (__force unsigned long __percpu *)((__force void *)p + offset);
10612 this_cpu_inc(*field);
10613}
10614EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
10615
10616/**
10617 * dev_get_stats - get network device statistics
10618 * @dev: device to get statistics from
10619 * @storage: place to store stats
10620 *
10621 * Get network statistics from device. Return @storage.
10622 * The device driver may provide its own method by setting
10623 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10624 * otherwise the internal statistics structure is used.
10625 */
10626struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10627 struct rtnl_link_stats64 *storage)
10628{
10629 const struct net_device_ops *ops = dev->netdev_ops;
10630 const struct net_device_core_stats __percpu *p;
10631
10632 if (ops->ndo_get_stats64) {
10633 memset(storage, 0, sizeof(*storage));
10634 ops->ndo_get_stats64(dev, storage);
10635 } else if (ops->ndo_get_stats) {
10636 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10637 } else {
10638 netdev_stats_to_stats64(storage, &dev->stats);
10639 }
10640
10641 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10642 p = READ_ONCE(dev->core_stats);
10643 if (p) {
10644 const struct net_device_core_stats *core_stats;
10645 int i;
10646
10647 for_each_possible_cpu(i) {
10648 core_stats = per_cpu_ptr(p, i);
10649 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10650 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10651 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10652 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10653 }
10654 }
10655 return storage;
10656}
10657EXPORT_SYMBOL(dev_get_stats);
10658
10659/**
10660 * dev_fetch_sw_netstats - get per-cpu network device statistics
10661 * @s: place to store stats
10662 * @netstats: per-cpu network stats to read from
10663 *
10664 * Read per-cpu network statistics and populate the related fields in @s.
10665 */
10666void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10667 const struct pcpu_sw_netstats __percpu *netstats)
10668{
10669 int cpu;
10670
10671 for_each_possible_cpu(cpu) {
10672 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10673 const struct pcpu_sw_netstats *stats;
10674 unsigned int start;
10675
10676 stats = per_cpu_ptr(netstats, cpu);
10677 do {
10678 start = u64_stats_fetch_begin(&stats->syncp);
10679 rx_packets = u64_stats_read(&stats->rx_packets);
10680 rx_bytes = u64_stats_read(&stats->rx_bytes);
10681 tx_packets = u64_stats_read(&stats->tx_packets);
10682 tx_bytes = u64_stats_read(&stats->tx_bytes);
10683 } while (u64_stats_fetch_retry(&stats->syncp, start));
10684
10685 s->rx_packets += rx_packets;
10686 s->rx_bytes += rx_bytes;
10687 s->tx_packets += tx_packets;
10688 s->tx_bytes += tx_bytes;
10689 }
10690}
10691EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10692
10693/**
10694 * dev_get_tstats64 - ndo_get_stats64 implementation
10695 * @dev: device to get statistics from
10696 * @s: place to store stats
10697 *
10698 * Populate @s from dev->stats and dev->tstats. Can be used as
10699 * ndo_get_stats64() callback.
10700 */
10701void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10702{
10703 netdev_stats_to_stats64(s, &dev->stats);
10704 dev_fetch_sw_netstats(s, dev->tstats);
10705}
10706EXPORT_SYMBOL_GPL(dev_get_tstats64);
10707
10708struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10709{
10710 struct netdev_queue *queue = dev_ingress_queue(dev);
10711
10712#ifdef CONFIG_NET_CLS_ACT
10713 if (queue)
10714 return queue;
10715 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10716 if (!queue)
10717 return NULL;
10718 netdev_init_one_queue(dev, queue, NULL);
10719 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10720 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10721 rcu_assign_pointer(dev->ingress_queue, queue);
10722#endif
10723 return queue;
10724}
10725
10726static const struct ethtool_ops default_ethtool_ops;
10727
10728void netdev_set_default_ethtool_ops(struct net_device *dev,
10729 const struct ethtool_ops *ops)
10730{
10731 if (dev->ethtool_ops == &default_ethtool_ops)
10732 dev->ethtool_ops = ops;
10733}
10734EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10735
10736/**
10737 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10738 * @dev: netdev to enable the IRQ coalescing on
10739 *
10740 * Sets a conservative default for SW IRQ coalescing. Users can use
10741 * sysfs attributes to override the default values.
10742 */
10743void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10744{
10745 WARN_ON(dev->reg_state == NETREG_REGISTERED);
10746
10747 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
10748 dev->gro_flush_timeout = 20000;
10749 dev->napi_defer_hard_irqs = 1;
10750 }
10751}
10752EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10753
10754void netdev_freemem(struct net_device *dev)
10755{
10756 char *addr = (char *)dev - dev->padded;
10757
10758 kvfree(addr);
10759}
10760
10761/**
10762 * alloc_netdev_mqs - allocate network device
10763 * @sizeof_priv: size of private data to allocate space for
10764 * @name: device name format string
10765 * @name_assign_type: origin of device name
10766 * @setup: callback to initialize device
10767 * @txqs: the number of TX subqueues to allocate
10768 * @rxqs: the number of RX subqueues to allocate
10769 *
10770 * Allocates a struct net_device with private data area for driver use
10771 * and performs basic initialization. Also allocates subqueue structs
10772 * for each queue on the device.
10773 */
10774struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10775 unsigned char name_assign_type,
10776 void (*setup)(struct net_device *),
10777 unsigned int txqs, unsigned int rxqs)
10778{
10779 struct net_device *dev;
10780 unsigned int alloc_size;
10781 struct net_device *p;
10782
10783 BUG_ON(strlen(name) >= sizeof(dev->name));
10784
10785 if (txqs < 1) {
10786 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10787 return NULL;
10788 }
10789
10790 if (rxqs < 1) {
10791 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10792 return NULL;
10793 }
10794
10795 alloc_size = sizeof(struct net_device);
10796 if (sizeof_priv) {
10797 /* ensure 32-byte alignment of private area */
10798 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10799 alloc_size += sizeof_priv;
10800 }
10801 /* ensure 32-byte alignment of whole construct */
10802 alloc_size += NETDEV_ALIGN - 1;
10803
10804 p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10805 if (!p)
10806 return NULL;
10807
10808 dev = PTR_ALIGN(p, NETDEV_ALIGN);
10809 dev->padded = (char *)dev - (char *)p;
10810
10811 ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
10812#ifdef CONFIG_PCPU_DEV_REFCNT
10813 dev->pcpu_refcnt = alloc_percpu(int);
10814 if (!dev->pcpu_refcnt)
10815 goto free_dev;
10816 __dev_hold(dev);
10817#else
10818 refcount_set(&dev->dev_refcnt, 1);
10819#endif
10820
10821 if (dev_addr_init(dev))
10822 goto free_pcpu;
10823
10824 dev_mc_init(dev);
10825 dev_uc_init(dev);
10826
10827 dev_net_set(dev, &init_net);
10828
10829 dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10830 dev->xdp_zc_max_segs = 1;
10831 dev->gso_max_segs = GSO_MAX_SEGS;
10832 dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10833 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10834 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10835 dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10836 dev->tso_max_segs = TSO_MAX_SEGS;
10837 dev->upper_level = 1;
10838 dev->lower_level = 1;
10839#ifdef CONFIG_LOCKDEP
10840 dev->nested_level = 0;
10841 INIT_LIST_HEAD(&dev->unlink_list);
10842#endif
10843
10844 INIT_LIST_HEAD(&dev->napi_list);
10845 INIT_LIST_HEAD(&dev->unreg_list);
10846 INIT_LIST_HEAD(&dev->close_list);
10847 INIT_LIST_HEAD(&dev->link_watch_list);
10848 INIT_LIST_HEAD(&dev->adj_list.upper);
10849 INIT_LIST_HEAD(&dev->adj_list.lower);
10850 INIT_LIST_HEAD(&dev->ptype_all);
10851 INIT_LIST_HEAD(&dev->ptype_specific);
10852 INIT_LIST_HEAD(&dev->net_notifier_list);
10853#ifdef CONFIG_NET_SCHED
10854 hash_init(dev->qdisc_hash);
10855#endif
10856 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10857 setup(dev);
10858
10859 if (!dev->tx_queue_len) {
10860 dev->priv_flags |= IFF_NO_QUEUE;
10861 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10862 }
10863
10864 dev->num_tx_queues = txqs;
10865 dev->real_num_tx_queues = txqs;
10866 if (netif_alloc_netdev_queues(dev))
10867 goto free_all;
10868
10869 dev->num_rx_queues = rxqs;
10870 dev->real_num_rx_queues = rxqs;
10871 if (netif_alloc_rx_queues(dev))
10872 goto free_all;
10873
10874 strcpy(dev->name, name);
10875 dev->name_assign_type = name_assign_type;
10876 dev->group = INIT_NETDEV_GROUP;
10877 if (!dev->ethtool_ops)
10878 dev->ethtool_ops = &default_ethtool_ops;
10879
10880 nf_hook_netdev_init(dev);
10881
10882 return dev;
10883
10884free_all:
10885 free_netdev(dev);
10886 return NULL;
10887
10888free_pcpu:
10889#ifdef CONFIG_PCPU_DEV_REFCNT
10890 free_percpu(dev->pcpu_refcnt);
10891free_dev:
10892#endif
10893 netdev_freemem(dev);
10894 return NULL;
10895}
10896EXPORT_SYMBOL(alloc_netdev_mqs);
10897
10898/**
10899 * free_netdev - free network device
10900 * @dev: device
10901 *
10902 * This function does the last stage of destroying an allocated device
10903 * interface. The reference to the device object is released. If this
10904 * is the last reference then it will be freed.Must be called in process
10905 * context.
10906 */
10907void free_netdev(struct net_device *dev)
10908{
10909 struct napi_struct *p, *n;
10910
10911 might_sleep();
10912
10913 /* When called immediately after register_netdevice() failed the unwind
10914 * handling may still be dismantling the device. Handle that case by
10915 * deferring the free.
10916 */
10917 if (dev->reg_state == NETREG_UNREGISTERING) {
10918 ASSERT_RTNL();
10919 dev->needs_free_netdev = true;
10920 return;
10921 }
10922
10923 netif_free_tx_queues(dev);
10924 netif_free_rx_queues(dev);
10925
10926 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10927
10928 /* Flush device addresses */
10929 dev_addr_flush(dev);
10930
10931 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10932 netif_napi_del(p);
10933
10934 ref_tracker_dir_exit(&dev->refcnt_tracker);
10935#ifdef CONFIG_PCPU_DEV_REFCNT
10936 free_percpu(dev->pcpu_refcnt);
10937 dev->pcpu_refcnt = NULL;
10938#endif
10939 free_percpu(dev->core_stats);
10940 dev->core_stats = NULL;
10941 free_percpu(dev->xdp_bulkq);
10942 dev->xdp_bulkq = NULL;
10943
10944 /* Compatibility with error handling in drivers */
10945 if (dev->reg_state == NETREG_UNINITIALIZED) {
10946 netdev_freemem(dev);
10947 return;
10948 }
10949
10950 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10951 dev->reg_state = NETREG_RELEASED;
10952
10953 /* will free via device release */
10954 put_device(&dev->dev);
10955}
10956EXPORT_SYMBOL(free_netdev);
10957
10958/**
10959 * synchronize_net - Synchronize with packet receive processing
10960 *
10961 * Wait for packets currently being received to be done.
10962 * Does not block later packets from starting.
10963 */
10964void synchronize_net(void)
10965{
10966 might_sleep();
10967 if (rtnl_is_locked())
10968 synchronize_rcu_expedited();
10969 else
10970 synchronize_rcu();
10971}
10972EXPORT_SYMBOL(synchronize_net);
10973
10974/**
10975 * unregister_netdevice_queue - remove device from the kernel
10976 * @dev: device
10977 * @head: list
10978 *
10979 * This function shuts down a device interface and removes it
10980 * from the kernel tables.
10981 * If head not NULL, device is queued to be unregistered later.
10982 *
10983 * Callers must hold the rtnl semaphore. You may want
10984 * unregister_netdev() instead of this.
10985 */
10986
10987void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10988{
10989 ASSERT_RTNL();
10990
10991 if (head) {
10992 list_move_tail(&dev->unreg_list, head);
10993 } else {
10994 LIST_HEAD(single);
10995
10996 list_add(&dev->unreg_list, &single);
10997 unregister_netdevice_many(&single);
10998 }
10999}
11000EXPORT_SYMBOL(unregister_netdevice_queue);
11001
11002void unregister_netdevice_many_notify(struct list_head *head,
11003 u32 portid, const struct nlmsghdr *nlh)
11004{
11005 struct net_device *dev, *tmp;
11006 LIST_HEAD(close_head);
11007
11008 BUG_ON(dev_boot_phase);
11009 ASSERT_RTNL();
11010
11011 if (list_empty(head))
11012 return;
11013
11014 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11015 /* Some devices call without registering
11016 * for initialization unwind. Remove those
11017 * devices and proceed with the remaining.
11018 */
11019 if (dev->reg_state == NETREG_UNINITIALIZED) {
11020 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11021 dev->name, dev);
11022
11023 WARN_ON(1);
11024 list_del(&dev->unreg_list);
11025 continue;
11026 }
11027 dev->dismantle = true;
11028 BUG_ON(dev->reg_state != NETREG_REGISTERED);
11029 }
11030
11031 /* If device is running, close it first. */
11032 list_for_each_entry(dev, head, unreg_list)
11033 list_add_tail(&dev->close_list, &close_head);
11034 dev_close_many(&close_head, true);
11035
11036 list_for_each_entry(dev, head, unreg_list) {
11037 /* And unlink it from device chain. */
11038 write_lock(&dev_base_lock);
11039 unlist_netdevice(dev, false);
11040 dev->reg_state = NETREG_UNREGISTERING;
11041 write_unlock(&dev_base_lock);
11042 }
11043 flush_all_backlogs();
11044
11045 synchronize_net();
11046
11047 list_for_each_entry(dev, head, unreg_list) {
11048 struct sk_buff *skb = NULL;
11049
11050 /* Shutdown queueing discipline. */
11051 dev_shutdown(dev);
11052 dev_tcx_uninstall(dev);
11053 dev_xdp_uninstall(dev);
11054 bpf_dev_bound_netdev_unregister(dev);
11055
11056 netdev_offload_xstats_disable_all(dev);
11057
11058 /* Notify protocols, that we are about to destroy
11059 * this device. They should clean all the things.
11060 */
11061 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11062
11063 if (!dev->rtnl_link_ops ||
11064 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11065 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11066 GFP_KERNEL, NULL, 0,
11067 portid, nlh);
11068
11069 /*
11070 * Flush the unicast and multicast chains
11071 */
11072 dev_uc_flush(dev);
11073 dev_mc_flush(dev);
11074
11075 netdev_name_node_alt_flush(dev);
11076 netdev_name_node_free(dev->name_node);
11077
11078 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11079
11080 if (dev->netdev_ops->ndo_uninit)
11081 dev->netdev_ops->ndo_uninit(dev);
11082
11083 if (skb)
11084 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11085
11086 /* Notifier chain MUST detach us all upper devices. */
11087 WARN_ON(netdev_has_any_upper_dev(dev));
11088 WARN_ON(netdev_has_any_lower_dev(dev));
11089
11090 /* Remove entries from kobject tree */
11091 netdev_unregister_kobject(dev);
11092#ifdef CONFIG_XPS
11093 /* Remove XPS queueing entries */
11094 netif_reset_xps_queues_gt(dev, 0);
11095#endif
11096 }
11097
11098 synchronize_net();
11099
11100 list_for_each_entry(dev, head, unreg_list) {
11101 netdev_put(dev, &dev->dev_registered_tracker);
11102 net_set_todo(dev);
11103 }
11104
11105 list_del(head);
11106}
11107
11108/**
11109 * unregister_netdevice_many - unregister many devices
11110 * @head: list of devices
11111 *
11112 * Note: As most callers use a stack allocated list_head,
11113 * we force a list_del() to make sure stack wont be corrupted later.
11114 */
11115void unregister_netdevice_many(struct list_head *head)
11116{
11117 unregister_netdevice_many_notify(head, 0, NULL);
11118}
11119EXPORT_SYMBOL(unregister_netdevice_many);
11120
11121/**
11122 * unregister_netdev - remove device from the kernel
11123 * @dev: device
11124 *
11125 * This function shuts down a device interface and removes it
11126 * from the kernel tables.
11127 *
11128 * This is just a wrapper for unregister_netdevice that takes
11129 * the rtnl semaphore. In general you want to use this and not
11130 * unregister_netdevice.
11131 */
11132void unregister_netdev(struct net_device *dev)
11133{
11134 rtnl_lock();
11135 unregister_netdevice(dev);
11136 rtnl_unlock();
11137}
11138EXPORT_SYMBOL(unregister_netdev);
11139
11140/**
11141 * __dev_change_net_namespace - move device to different nethost namespace
11142 * @dev: device
11143 * @net: network namespace
11144 * @pat: If not NULL name pattern to try if the current device name
11145 * is already taken in the destination network namespace.
11146 * @new_ifindex: If not zero, specifies device index in the target
11147 * namespace.
11148 *
11149 * This function shuts down a device interface and moves it
11150 * to a new network namespace. On success 0 is returned, on
11151 * a failure a netagive errno code is returned.
11152 *
11153 * Callers must hold the rtnl semaphore.
11154 */
11155
11156int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11157 const char *pat, int new_ifindex)
11158{
11159 struct netdev_name_node *name_node;
11160 struct net *net_old = dev_net(dev);
11161 char new_name[IFNAMSIZ] = {};
11162 int err, new_nsid;
11163
11164 ASSERT_RTNL();
11165
11166 /* Don't allow namespace local devices to be moved. */
11167 err = -EINVAL;
11168 if (dev->features & NETIF_F_NETNS_LOCAL)
11169 goto out;
11170
11171 /* Ensure the device has been registrered */
11172 if (dev->reg_state != NETREG_REGISTERED)
11173 goto out;
11174
11175 /* Get out if there is nothing todo */
11176 err = 0;
11177 if (net_eq(net_old, net))
11178 goto out;
11179
11180 /* Pick the destination device name, and ensure
11181 * we can use it in the destination network namespace.
11182 */
11183 err = -EEXIST;
11184 if (netdev_name_in_use(net, dev->name)) {
11185 /* We get here if we can't use the current device name */
11186 if (!pat)
11187 goto out;
11188 err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
11189 if (err < 0)
11190 goto out;
11191 }
11192 /* Check that none of the altnames conflicts. */
11193 err = -EEXIST;
11194 netdev_for_each_altname(dev, name_node)
11195 if (netdev_name_in_use(net, name_node->name))
11196 goto out;
11197
11198 /* Check that new_ifindex isn't used yet. */
11199 if (new_ifindex) {
11200 err = dev_index_reserve(net, new_ifindex);
11201 if (err < 0)
11202 goto out;
11203 } else {
11204 /* If there is an ifindex conflict assign a new one */
11205 err = dev_index_reserve(net, dev->ifindex);
11206 if (err == -EBUSY)
11207 err = dev_index_reserve(net, 0);
11208 if (err < 0)
11209 goto out;
11210 new_ifindex = err;
11211 }
11212
11213 /*
11214 * And now a mini version of register_netdevice unregister_netdevice.
11215 */
11216
11217 /* If device is running close it first. */
11218 dev_close(dev);
11219
11220 /* And unlink it from device chain */
11221 unlist_netdevice(dev, true);
11222
11223 synchronize_net();
11224
11225 /* Shutdown queueing discipline. */
11226 dev_shutdown(dev);
11227
11228 /* Notify protocols, that we are about to destroy
11229 * this device. They should clean all the things.
11230 *
11231 * Note that dev->reg_state stays at NETREG_REGISTERED.
11232 * This is wanted because this way 8021q and macvlan know
11233 * the device is just moving and can keep their slaves up.
11234 */
11235 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11236 rcu_barrier();
11237
11238 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11239
11240 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11241 new_ifindex);
11242
11243 /*
11244 * Flush the unicast and multicast chains
11245 */
11246 dev_uc_flush(dev);
11247 dev_mc_flush(dev);
11248
11249 /* Send a netdev-removed uevent to the old namespace */
11250 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11251 netdev_adjacent_del_links(dev);
11252
11253 /* Move per-net netdevice notifiers that are following the netdevice */
11254 move_netdevice_notifiers_dev_net(dev, net);
11255
11256 /* Actually switch the network namespace */
11257 dev_net_set(dev, net);
11258 dev->ifindex = new_ifindex;
11259
11260 if (new_name[0]) /* Rename the netdev to prepared name */
11261 strscpy(dev->name, new_name, IFNAMSIZ);
11262
11263 /* Fixup kobjects */
11264 dev_set_uevent_suppress(&dev->dev, 1);
11265 err = device_rename(&dev->dev, dev->name);
11266 dev_set_uevent_suppress(&dev->dev, 0);
11267 WARN_ON(err);
11268
11269 /* Send a netdev-add uevent to the new namespace */
11270 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11271 netdev_adjacent_add_links(dev);
11272
11273 /* Adapt owner in case owning user namespace of target network
11274 * namespace is different from the original one.
11275 */
11276 err = netdev_change_owner(dev, net_old, net);
11277 WARN_ON(err);
11278
11279 /* Add the device back in the hashes */
11280 list_netdevice(dev);
11281
11282 /* Notify protocols, that a new device appeared. */
11283 call_netdevice_notifiers(NETDEV_REGISTER, dev);
11284
11285 /*
11286 * Prevent userspace races by waiting until the network
11287 * device is fully setup before sending notifications.
11288 */
11289 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11290
11291 synchronize_net();
11292 err = 0;
11293out:
11294 return err;
11295}
11296EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11297
11298static int dev_cpu_dead(unsigned int oldcpu)
11299{
11300 struct sk_buff **list_skb;
11301 struct sk_buff *skb;
11302 unsigned int cpu;
11303 struct softnet_data *sd, *oldsd, *remsd = NULL;
11304
11305 local_irq_disable();
11306 cpu = smp_processor_id();
11307 sd = &per_cpu(softnet_data, cpu);
11308 oldsd = &per_cpu(softnet_data, oldcpu);
11309
11310 /* Find end of our completion_queue. */
11311 list_skb = &sd->completion_queue;
11312 while (*list_skb)
11313 list_skb = &(*list_skb)->next;
11314 /* Append completion queue from offline CPU. */
11315 *list_skb = oldsd->completion_queue;
11316 oldsd->completion_queue = NULL;
11317
11318 /* Append output queue from offline CPU. */
11319 if (oldsd->output_queue) {
11320 *sd->output_queue_tailp = oldsd->output_queue;
11321 sd->output_queue_tailp = oldsd->output_queue_tailp;
11322 oldsd->output_queue = NULL;
11323 oldsd->output_queue_tailp = &oldsd->output_queue;
11324 }
11325 /* Append NAPI poll list from offline CPU, with one exception :
11326 * process_backlog() must be called by cpu owning percpu backlog.
11327 * We properly handle process_queue & input_pkt_queue later.
11328 */
11329 while (!list_empty(&oldsd->poll_list)) {
11330 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11331 struct napi_struct,
11332 poll_list);
11333
11334 list_del_init(&napi->poll_list);
11335 if (napi->poll == process_backlog)
11336 napi->state = 0;
11337 else
11338 ____napi_schedule(sd, napi);
11339 }
11340
11341 raise_softirq_irqoff(NET_TX_SOFTIRQ);
11342 local_irq_enable();
11343
11344#ifdef CONFIG_RPS
11345 remsd = oldsd->rps_ipi_list;
11346 oldsd->rps_ipi_list = NULL;
11347#endif
11348 /* send out pending IPI's on offline CPU */
11349 net_rps_send_ipi(remsd);
11350
11351 /* Process offline CPU's input_pkt_queue */
11352 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11353 netif_rx(skb);
11354 input_queue_head_incr(oldsd);
11355 }
11356 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11357 netif_rx(skb);
11358 input_queue_head_incr(oldsd);
11359 }
11360
11361 return 0;
11362}
11363
11364/**
11365 * netdev_increment_features - increment feature set by one
11366 * @all: current feature set
11367 * @one: new feature set
11368 * @mask: mask feature set
11369 *
11370 * Computes a new feature set after adding a device with feature set
11371 * @one to the master device with current feature set @all. Will not
11372 * enable anything that is off in @mask. Returns the new feature set.
11373 */
11374netdev_features_t netdev_increment_features(netdev_features_t all,
11375 netdev_features_t one, netdev_features_t mask)
11376{
11377 if (mask & NETIF_F_HW_CSUM)
11378 mask |= NETIF_F_CSUM_MASK;
11379 mask |= NETIF_F_VLAN_CHALLENGED;
11380
11381 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11382 all &= one | ~NETIF_F_ALL_FOR_ALL;
11383
11384 /* If one device supports hw checksumming, set for all. */
11385 if (all & NETIF_F_HW_CSUM)
11386 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11387
11388 return all;
11389}
11390EXPORT_SYMBOL(netdev_increment_features);
11391
11392static struct hlist_head * __net_init netdev_create_hash(void)
11393{
11394 int i;
11395 struct hlist_head *hash;
11396
11397 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11398 if (hash != NULL)
11399 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11400 INIT_HLIST_HEAD(&hash[i]);
11401
11402 return hash;
11403}
11404
11405/* Initialize per network namespace state */
11406static int __net_init netdev_init(struct net *net)
11407{
11408 BUILD_BUG_ON(GRO_HASH_BUCKETS >
11409 8 * sizeof_field(struct napi_struct, gro_bitmask));
11410
11411 INIT_LIST_HEAD(&net->dev_base_head);
11412
11413 net->dev_name_head = netdev_create_hash();
11414 if (net->dev_name_head == NULL)
11415 goto err_name;
11416
11417 net->dev_index_head = netdev_create_hash();
11418 if (net->dev_index_head == NULL)
11419 goto err_idx;
11420
11421 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11422
11423 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11424
11425 return 0;
11426
11427err_idx:
11428 kfree(net->dev_name_head);
11429err_name:
11430 return -ENOMEM;
11431}
11432
11433/**
11434 * netdev_drivername - network driver for the device
11435 * @dev: network device
11436 *
11437 * Determine network driver for device.
11438 */
11439const char *netdev_drivername(const struct net_device *dev)
11440{
11441 const struct device_driver *driver;
11442 const struct device *parent;
11443 const char *empty = "";
11444
11445 parent = dev->dev.parent;
11446 if (!parent)
11447 return empty;
11448
11449 driver = parent->driver;
11450 if (driver && driver->name)
11451 return driver->name;
11452 return empty;
11453}
11454
11455static void __netdev_printk(const char *level, const struct net_device *dev,
11456 struct va_format *vaf)
11457{
11458 if (dev && dev->dev.parent) {
11459 dev_printk_emit(level[1] - '0',
11460 dev->dev.parent,
11461 "%s %s %s%s: %pV",
11462 dev_driver_string(dev->dev.parent),
11463 dev_name(dev->dev.parent),
11464 netdev_name(dev), netdev_reg_state(dev),
11465 vaf);
11466 } else if (dev) {
11467 printk("%s%s%s: %pV",
11468 level, netdev_name(dev), netdev_reg_state(dev), vaf);
11469 } else {
11470 printk("%s(NULL net_device): %pV", level, vaf);
11471 }
11472}
11473
11474void netdev_printk(const char *level, const struct net_device *dev,
11475 const char *format, ...)
11476{
11477 struct va_format vaf;
11478 va_list args;
11479
11480 va_start(args, format);
11481
11482 vaf.fmt = format;
11483 vaf.va = &args;
11484
11485 __netdev_printk(level, dev, &vaf);
11486
11487 va_end(args);
11488}
11489EXPORT_SYMBOL(netdev_printk);
11490
11491#define define_netdev_printk_level(func, level) \
11492void func(const struct net_device *dev, const char *fmt, ...) \
11493{ \
11494 struct va_format vaf; \
11495 va_list args; \
11496 \
11497 va_start(args, fmt); \
11498 \
11499 vaf.fmt = fmt; \
11500 vaf.va = &args; \
11501 \
11502 __netdev_printk(level, dev, &vaf); \
11503 \
11504 va_end(args); \
11505} \
11506EXPORT_SYMBOL(func);
11507
11508define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11509define_netdev_printk_level(netdev_alert, KERN_ALERT);
11510define_netdev_printk_level(netdev_crit, KERN_CRIT);
11511define_netdev_printk_level(netdev_err, KERN_ERR);
11512define_netdev_printk_level(netdev_warn, KERN_WARNING);
11513define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11514define_netdev_printk_level(netdev_info, KERN_INFO);
11515
11516static void __net_exit netdev_exit(struct net *net)
11517{
11518 kfree(net->dev_name_head);
11519 kfree(net->dev_index_head);
11520 xa_destroy(&net->dev_by_index);
11521 if (net != &init_net)
11522 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11523}
11524
11525static struct pernet_operations __net_initdata netdev_net_ops = {
11526 .init = netdev_init,
11527 .exit = netdev_exit,
11528};
11529
11530static void __net_exit default_device_exit_net(struct net *net)
11531{
11532 struct netdev_name_node *name_node, *tmp;
11533 struct net_device *dev, *aux;
11534 /*
11535 * Push all migratable network devices back to the
11536 * initial network namespace
11537 */
11538 ASSERT_RTNL();
11539 for_each_netdev_safe(net, dev, aux) {
11540 int err;
11541 char fb_name[IFNAMSIZ];
11542
11543 /* Ignore unmoveable devices (i.e. loopback) */
11544 if (dev->features & NETIF_F_NETNS_LOCAL)
11545 continue;
11546
11547 /* Leave virtual devices for the generic cleanup */
11548 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11549 continue;
11550
11551 /* Push remaining network devices to init_net */
11552 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11553 if (netdev_name_in_use(&init_net, fb_name))
11554 snprintf(fb_name, IFNAMSIZ, "dev%%d");
11555
11556 netdev_for_each_altname_safe(dev, name_node, tmp)
11557 if (netdev_name_in_use(&init_net, name_node->name)) {
11558 netdev_name_node_del(name_node);
11559 synchronize_rcu();
11560 __netdev_name_node_alt_destroy(name_node);
11561 }
11562
11563 err = dev_change_net_namespace(dev, &init_net, fb_name);
11564 if (err) {
11565 pr_emerg("%s: failed to move %s to init_net: %d\n",
11566 __func__, dev->name, err);
11567 BUG();
11568 }
11569 }
11570}
11571
11572static void __net_exit default_device_exit_batch(struct list_head *net_list)
11573{
11574 /* At exit all network devices most be removed from a network
11575 * namespace. Do this in the reverse order of registration.
11576 * Do this across as many network namespaces as possible to
11577 * improve batching efficiency.
11578 */
11579 struct net_device *dev;
11580 struct net *net;
11581 LIST_HEAD(dev_kill_list);
11582
11583 rtnl_lock();
11584 list_for_each_entry(net, net_list, exit_list) {
11585 default_device_exit_net(net);
11586 cond_resched();
11587 }
11588
11589 list_for_each_entry(net, net_list, exit_list) {
11590 for_each_netdev_reverse(net, dev) {
11591 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11592 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11593 else
11594 unregister_netdevice_queue(dev, &dev_kill_list);
11595 }
11596 }
11597 unregister_netdevice_many(&dev_kill_list);
11598 rtnl_unlock();
11599}
11600
11601static struct pernet_operations __net_initdata default_device_ops = {
11602 .exit_batch = default_device_exit_batch,
11603};
11604
11605static void __init net_dev_struct_check(void)
11606{
11607 /* TX read-mostly hotpath */
11608 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags);
11609 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
11610 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
11611 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
11612 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
11613 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
11614 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
11615 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
11616 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
11617 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
11618 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
11619 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
11620 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
11621#ifdef CONFIG_XPS
11622 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
11623#endif
11624#ifdef CONFIG_NETFILTER_EGRESS
11625 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
11626#endif
11627#ifdef CONFIG_NET_XGRESS
11628 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
11629#endif
11630 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
11631
11632 /* TXRX read-mostly hotpath */
11633 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
11634 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
11635 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
11636 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
11637 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
11638 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 38);
11639
11640 /* RX read-mostly hotpath */
11641 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
11642 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
11643 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
11644 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
11645 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_flush_timeout);
11646 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, napi_defer_hard_irqs);
11647 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
11648 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
11649 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
11650 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
11651 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
11652#ifdef CONFIG_NETPOLL
11653 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
11654#endif
11655#ifdef CONFIG_NET_XGRESS
11656 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
11657#endif
11658 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 104);
11659}
11660
11661/*
11662 * Initialize the DEV module. At boot time this walks the device list and
11663 * unhooks any devices that fail to initialise (normally hardware not
11664 * present) and leaves us with a valid list of present and active devices.
11665 *
11666 */
11667
11668/*
11669 * This is called single threaded during boot, so no need
11670 * to take the rtnl semaphore.
11671 */
11672static int __init net_dev_init(void)
11673{
11674 int i, rc = -ENOMEM;
11675
11676 BUG_ON(!dev_boot_phase);
11677
11678 net_dev_struct_check();
11679
11680 if (dev_proc_init())
11681 goto out;
11682
11683 if (netdev_kobject_init())
11684 goto out;
11685
11686 INIT_LIST_HEAD(&ptype_all);
11687 for (i = 0; i < PTYPE_HASH_SIZE; i++)
11688 INIT_LIST_HEAD(&ptype_base[i]);
11689
11690 if (register_pernet_subsys(&netdev_net_ops))
11691 goto out;
11692
11693 /*
11694 * Initialise the packet receive queues.
11695 */
11696
11697 for_each_possible_cpu(i) {
11698 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11699 struct softnet_data *sd = &per_cpu(softnet_data, i);
11700
11701 INIT_WORK(flush, flush_backlog);
11702
11703 skb_queue_head_init(&sd->input_pkt_queue);
11704 skb_queue_head_init(&sd->process_queue);
11705#ifdef CONFIG_XFRM_OFFLOAD
11706 skb_queue_head_init(&sd->xfrm_backlog);
11707#endif
11708 INIT_LIST_HEAD(&sd->poll_list);
11709 sd->output_queue_tailp = &sd->output_queue;
11710#ifdef CONFIG_RPS
11711 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11712 sd->cpu = i;
11713#endif
11714 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11715 spin_lock_init(&sd->defer_lock);
11716
11717 init_gro_hash(&sd->backlog);
11718 sd->backlog.poll = process_backlog;
11719 sd->backlog.weight = weight_p;
11720 }
11721
11722 dev_boot_phase = 0;
11723
11724 /* The loopback device is special if any other network devices
11725 * is present in a network namespace the loopback device must
11726 * be present. Since we now dynamically allocate and free the
11727 * loopback device ensure this invariant is maintained by
11728 * keeping the loopback device as the first device on the
11729 * list of network devices. Ensuring the loopback devices
11730 * is the first device that appears and the last network device
11731 * that disappears.
11732 */
11733 if (register_pernet_device(&loopback_net_ops))
11734 goto out;
11735
11736 if (register_pernet_device(&default_device_ops))
11737 goto out;
11738
11739 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11740 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11741
11742 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11743 NULL, dev_cpu_dead);
11744 WARN_ON(rc < 0);
11745 rc = 0;
11746out:
11747 return rc;
11748}
11749
11750subsys_initcall(net_dev_init);