at v6.8 6904 lines 196 kB view raw
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18#include <linux/stddef.h> 19#include <linux/mm.h> 20#include <linux/highmem.h> 21#include <linux/interrupt.h> 22#include <linux/jiffies.h> 23#include <linux/compiler.h> 24#include <linux/kernel.h> 25#include <linux/kasan.h> 26#include <linux/kmsan.h> 27#include <linux/module.h> 28#include <linux/suspend.h> 29#include <linux/ratelimit.h> 30#include <linux/oom.h> 31#include <linux/topology.h> 32#include <linux/sysctl.h> 33#include <linux/cpu.h> 34#include <linux/cpuset.h> 35#include <linux/memory_hotplug.h> 36#include <linux/nodemask.h> 37#include <linux/vmstat.h> 38#include <linux/fault-inject.h> 39#include <linux/compaction.h> 40#include <trace/events/kmem.h> 41#include <trace/events/oom.h> 42#include <linux/prefetch.h> 43#include <linux/mm_inline.h> 44#include <linux/mmu_notifier.h> 45#include <linux/migrate.h> 46#include <linux/sched/mm.h> 47#include <linux/page_owner.h> 48#include <linux/page_table_check.h> 49#include <linux/memcontrol.h> 50#include <linux/ftrace.h> 51#include <linux/lockdep.h> 52#include <linux/psi.h> 53#include <linux/khugepaged.h> 54#include <linux/delayacct.h> 55#include <linux/cacheinfo.h> 56#include <asm/div64.h> 57#include "internal.h" 58#include "shuffle.h" 59#include "page_reporting.h" 60 61/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 62typedef int __bitwise fpi_t; 63 64/* No special request */ 65#define FPI_NONE ((__force fpi_t)0) 66 67/* 68 * Skip free page reporting notification for the (possibly merged) page. 69 * This does not hinder free page reporting from grabbing the page, 70 * reporting it and marking it "reported" - it only skips notifying 71 * the free page reporting infrastructure about a newly freed page. For 72 * example, used when temporarily pulling a page from a freelist and 73 * putting it back unmodified. 74 */ 75#define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 76 77/* 78 * Place the (possibly merged) page to the tail of the freelist. Will ignore 79 * page shuffling (relevant code - e.g., memory onlining - is expected to 80 * shuffle the whole zone). 81 * 82 * Note: No code should rely on this flag for correctness - it's purely 83 * to allow for optimizations when handing back either fresh pages 84 * (memory onlining) or untouched pages (page isolation, free page 85 * reporting). 86 */ 87#define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 88 89/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 90static DEFINE_MUTEX(pcp_batch_high_lock); 91#define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 92 93#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) 94/* 95 * On SMP, spin_trylock is sufficient protection. 96 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP. 97 */ 98#define pcp_trylock_prepare(flags) do { } while (0) 99#define pcp_trylock_finish(flag) do { } while (0) 100#else 101 102/* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */ 103#define pcp_trylock_prepare(flags) local_irq_save(flags) 104#define pcp_trylock_finish(flags) local_irq_restore(flags) 105#endif 106 107/* 108 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid 109 * a migration causing the wrong PCP to be locked and remote memory being 110 * potentially allocated, pin the task to the CPU for the lookup+lock. 111 * preempt_disable is used on !RT because it is faster than migrate_disable. 112 * migrate_disable is used on RT because otherwise RT spinlock usage is 113 * interfered with and a high priority task cannot preempt the allocator. 114 */ 115#ifndef CONFIG_PREEMPT_RT 116#define pcpu_task_pin() preempt_disable() 117#define pcpu_task_unpin() preempt_enable() 118#else 119#define pcpu_task_pin() migrate_disable() 120#define pcpu_task_unpin() migrate_enable() 121#endif 122 123/* 124 * Generic helper to lookup and a per-cpu variable with an embedded spinlock. 125 * Return value should be used with equivalent unlock helper. 126 */ 127#define pcpu_spin_lock(type, member, ptr) \ 128({ \ 129 type *_ret; \ 130 pcpu_task_pin(); \ 131 _ret = this_cpu_ptr(ptr); \ 132 spin_lock(&_ret->member); \ 133 _ret; \ 134}) 135 136#define pcpu_spin_trylock(type, member, ptr) \ 137({ \ 138 type *_ret; \ 139 pcpu_task_pin(); \ 140 _ret = this_cpu_ptr(ptr); \ 141 if (!spin_trylock(&_ret->member)) { \ 142 pcpu_task_unpin(); \ 143 _ret = NULL; \ 144 } \ 145 _ret; \ 146}) 147 148#define pcpu_spin_unlock(member, ptr) \ 149({ \ 150 spin_unlock(&ptr->member); \ 151 pcpu_task_unpin(); \ 152}) 153 154/* struct per_cpu_pages specific helpers. */ 155#define pcp_spin_lock(ptr) \ 156 pcpu_spin_lock(struct per_cpu_pages, lock, ptr) 157 158#define pcp_spin_trylock(ptr) \ 159 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr) 160 161#define pcp_spin_unlock(ptr) \ 162 pcpu_spin_unlock(lock, ptr) 163 164#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 165DEFINE_PER_CPU(int, numa_node); 166EXPORT_PER_CPU_SYMBOL(numa_node); 167#endif 168 169DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 170 171#ifdef CONFIG_HAVE_MEMORYLESS_NODES 172/* 173 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 174 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 175 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 176 * defined in <linux/topology.h>. 177 */ 178DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 179EXPORT_PER_CPU_SYMBOL(_numa_mem_); 180#endif 181 182static DEFINE_MUTEX(pcpu_drain_mutex); 183 184#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 185volatile unsigned long latent_entropy __latent_entropy; 186EXPORT_SYMBOL(latent_entropy); 187#endif 188 189/* 190 * Array of node states. 191 */ 192nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 193 [N_POSSIBLE] = NODE_MASK_ALL, 194 [N_ONLINE] = { { [0] = 1UL } }, 195#ifndef CONFIG_NUMA 196 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 197#ifdef CONFIG_HIGHMEM 198 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 199#endif 200 [N_MEMORY] = { { [0] = 1UL } }, 201 [N_CPU] = { { [0] = 1UL } }, 202#endif /* NUMA */ 203}; 204EXPORT_SYMBOL(node_states); 205 206gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 207 208/* 209 * A cached value of the page's pageblock's migratetype, used when the page is 210 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 211 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 212 * Also the migratetype set in the page does not necessarily match the pcplist 213 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 214 * other index - this ensures that it will be put on the correct CMA freelist. 215 */ 216static inline int get_pcppage_migratetype(struct page *page) 217{ 218 return page->index; 219} 220 221static inline void set_pcppage_migratetype(struct page *page, int migratetype) 222{ 223 page->index = migratetype; 224} 225 226#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 227unsigned int pageblock_order __read_mostly; 228#endif 229 230static void __free_pages_ok(struct page *page, unsigned int order, 231 fpi_t fpi_flags); 232 233/* 234 * results with 256, 32 in the lowmem_reserve sysctl: 235 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 236 * 1G machine -> (16M dma, 784M normal, 224M high) 237 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 238 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 239 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 240 * 241 * TBD: should special case ZONE_DMA32 machines here - in those we normally 242 * don't need any ZONE_NORMAL reservation 243 */ 244static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 245#ifdef CONFIG_ZONE_DMA 246 [ZONE_DMA] = 256, 247#endif 248#ifdef CONFIG_ZONE_DMA32 249 [ZONE_DMA32] = 256, 250#endif 251 [ZONE_NORMAL] = 32, 252#ifdef CONFIG_HIGHMEM 253 [ZONE_HIGHMEM] = 0, 254#endif 255 [ZONE_MOVABLE] = 0, 256}; 257 258char * const zone_names[MAX_NR_ZONES] = { 259#ifdef CONFIG_ZONE_DMA 260 "DMA", 261#endif 262#ifdef CONFIG_ZONE_DMA32 263 "DMA32", 264#endif 265 "Normal", 266#ifdef CONFIG_HIGHMEM 267 "HighMem", 268#endif 269 "Movable", 270#ifdef CONFIG_ZONE_DEVICE 271 "Device", 272#endif 273}; 274 275const char * const migratetype_names[MIGRATE_TYPES] = { 276 "Unmovable", 277 "Movable", 278 "Reclaimable", 279 "HighAtomic", 280#ifdef CONFIG_CMA 281 "CMA", 282#endif 283#ifdef CONFIG_MEMORY_ISOLATION 284 "Isolate", 285#endif 286}; 287 288int min_free_kbytes = 1024; 289int user_min_free_kbytes = -1; 290static int watermark_boost_factor __read_mostly = 15000; 291static int watermark_scale_factor = 10; 292 293/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 294int movable_zone; 295EXPORT_SYMBOL(movable_zone); 296 297#if MAX_NUMNODES > 1 298unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 299unsigned int nr_online_nodes __read_mostly = 1; 300EXPORT_SYMBOL(nr_node_ids); 301EXPORT_SYMBOL(nr_online_nodes); 302#endif 303 304static bool page_contains_unaccepted(struct page *page, unsigned int order); 305static void accept_page(struct page *page, unsigned int order); 306static bool try_to_accept_memory(struct zone *zone, unsigned int order); 307static inline bool has_unaccepted_memory(void); 308static bool __free_unaccepted(struct page *page); 309 310int page_group_by_mobility_disabled __read_mostly; 311 312#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 313/* 314 * During boot we initialize deferred pages on-demand, as needed, but once 315 * page_alloc_init_late() has finished, the deferred pages are all initialized, 316 * and we can permanently disable that path. 317 */ 318DEFINE_STATIC_KEY_TRUE(deferred_pages); 319 320static inline bool deferred_pages_enabled(void) 321{ 322 return static_branch_unlikely(&deferred_pages); 323} 324 325/* 326 * deferred_grow_zone() is __init, but it is called from 327 * get_page_from_freelist() during early boot until deferred_pages permanently 328 * disables this call. This is why we have refdata wrapper to avoid warning, 329 * and to ensure that the function body gets unloaded. 330 */ 331static bool __ref 332_deferred_grow_zone(struct zone *zone, unsigned int order) 333{ 334 return deferred_grow_zone(zone, order); 335} 336#else 337static inline bool deferred_pages_enabled(void) 338{ 339 return false; 340} 341#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 342 343/* Return a pointer to the bitmap storing bits affecting a block of pages */ 344static inline unsigned long *get_pageblock_bitmap(const struct page *page, 345 unsigned long pfn) 346{ 347#ifdef CONFIG_SPARSEMEM 348 return section_to_usemap(__pfn_to_section(pfn)); 349#else 350 return page_zone(page)->pageblock_flags; 351#endif /* CONFIG_SPARSEMEM */ 352} 353 354static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 355{ 356#ifdef CONFIG_SPARSEMEM 357 pfn &= (PAGES_PER_SECTION-1); 358#else 359 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn); 360#endif /* CONFIG_SPARSEMEM */ 361 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 362} 363 364/** 365 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 366 * @page: The page within the block of interest 367 * @pfn: The target page frame number 368 * @mask: mask of bits that the caller is interested in 369 * 370 * Return: pageblock_bits flags 371 */ 372unsigned long get_pfnblock_flags_mask(const struct page *page, 373 unsigned long pfn, unsigned long mask) 374{ 375 unsigned long *bitmap; 376 unsigned long bitidx, word_bitidx; 377 unsigned long word; 378 379 bitmap = get_pageblock_bitmap(page, pfn); 380 bitidx = pfn_to_bitidx(page, pfn); 381 word_bitidx = bitidx / BITS_PER_LONG; 382 bitidx &= (BITS_PER_LONG-1); 383 /* 384 * This races, without locks, with set_pfnblock_flags_mask(). Ensure 385 * a consistent read of the memory array, so that results, even though 386 * racy, are not corrupted. 387 */ 388 word = READ_ONCE(bitmap[word_bitidx]); 389 return (word >> bitidx) & mask; 390} 391 392static __always_inline int get_pfnblock_migratetype(const struct page *page, 393 unsigned long pfn) 394{ 395 return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 396} 397 398/** 399 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 400 * @page: The page within the block of interest 401 * @flags: The flags to set 402 * @pfn: The target page frame number 403 * @mask: mask of bits that the caller is interested in 404 */ 405void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 406 unsigned long pfn, 407 unsigned long mask) 408{ 409 unsigned long *bitmap; 410 unsigned long bitidx, word_bitidx; 411 unsigned long word; 412 413 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 414 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 415 416 bitmap = get_pageblock_bitmap(page, pfn); 417 bitidx = pfn_to_bitidx(page, pfn); 418 word_bitidx = bitidx / BITS_PER_LONG; 419 bitidx &= (BITS_PER_LONG-1); 420 421 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 422 423 mask <<= bitidx; 424 flags <<= bitidx; 425 426 word = READ_ONCE(bitmap[word_bitidx]); 427 do { 428 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags)); 429} 430 431void set_pageblock_migratetype(struct page *page, int migratetype) 432{ 433 if (unlikely(page_group_by_mobility_disabled && 434 migratetype < MIGRATE_PCPTYPES)) 435 migratetype = MIGRATE_UNMOVABLE; 436 437 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 438 page_to_pfn(page), MIGRATETYPE_MASK); 439} 440 441#ifdef CONFIG_DEBUG_VM 442static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 443{ 444 int ret; 445 unsigned seq; 446 unsigned long pfn = page_to_pfn(page); 447 unsigned long sp, start_pfn; 448 449 do { 450 seq = zone_span_seqbegin(zone); 451 start_pfn = zone->zone_start_pfn; 452 sp = zone->spanned_pages; 453 ret = !zone_spans_pfn(zone, pfn); 454 } while (zone_span_seqretry(zone, seq)); 455 456 if (ret) 457 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 458 pfn, zone_to_nid(zone), zone->name, 459 start_pfn, start_pfn + sp); 460 461 return ret; 462} 463 464/* 465 * Temporary debugging check for pages not lying within a given zone. 466 */ 467static int __maybe_unused bad_range(struct zone *zone, struct page *page) 468{ 469 if (page_outside_zone_boundaries(zone, page)) 470 return 1; 471 if (zone != page_zone(page)) 472 return 1; 473 474 return 0; 475} 476#else 477static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 478{ 479 return 0; 480} 481#endif 482 483static void bad_page(struct page *page, const char *reason) 484{ 485 static unsigned long resume; 486 static unsigned long nr_shown; 487 static unsigned long nr_unshown; 488 489 /* 490 * Allow a burst of 60 reports, then keep quiet for that minute; 491 * or allow a steady drip of one report per second. 492 */ 493 if (nr_shown == 60) { 494 if (time_before(jiffies, resume)) { 495 nr_unshown++; 496 goto out; 497 } 498 if (nr_unshown) { 499 pr_alert( 500 "BUG: Bad page state: %lu messages suppressed\n", 501 nr_unshown); 502 nr_unshown = 0; 503 } 504 nr_shown = 0; 505 } 506 if (nr_shown++ == 0) 507 resume = jiffies + 60 * HZ; 508 509 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 510 current->comm, page_to_pfn(page)); 511 dump_page(page, reason); 512 513 print_modules(); 514 dump_stack(); 515out: 516 /* Leave bad fields for debug, except PageBuddy could make trouble */ 517 page_mapcount_reset(page); /* remove PageBuddy */ 518 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 519} 520 521static inline unsigned int order_to_pindex(int migratetype, int order) 522{ 523#ifdef CONFIG_TRANSPARENT_HUGEPAGE 524 if (order > PAGE_ALLOC_COSTLY_ORDER) { 525 VM_BUG_ON(order != pageblock_order); 526 return NR_LOWORDER_PCP_LISTS; 527 } 528#else 529 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 530#endif 531 532 return (MIGRATE_PCPTYPES * order) + migratetype; 533} 534 535static inline int pindex_to_order(unsigned int pindex) 536{ 537 int order = pindex / MIGRATE_PCPTYPES; 538 539#ifdef CONFIG_TRANSPARENT_HUGEPAGE 540 if (pindex == NR_LOWORDER_PCP_LISTS) 541 order = pageblock_order; 542#else 543 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 544#endif 545 546 return order; 547} 548 549static inline bool pcp_allowed_order(unsigned int order) 550{ 551 if (order <= PAGE_ALLOC_COSTLY_ORDER) 552 return true; 553#ifdef CONFIG_TRANSPARENT_HUGEPAGE 554 if (order == pageblock_order) 555 return true; 556#endif 557 return false; 558} 559 560static inline void free_the_page(struct page *page, unsigned int order) 561{ 562 if (pcp_allowed_order(order)) /* Via pcp? */ 563 free_unref_page(page, order); 564 else 565 __free_pages_ok(page, order, FPI_NONE); 566} 567 568/* 569 * Higher-order pages are called "compound pages". They are structured thusly: 570 * 571 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 572 * 573 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 574 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 575 * 576 * The first tail page's ->compound_order holds the order of allocation. 577 * This usage means that zero-order pages may not be compound. 578 */ 579 580void prep_compound_page(struct page *page, unsigned int order) 581{ 582 int i; 583 int nr_pages = 1 << order; 584 585 __SetPageHead(page); 586 for (i = 1; i < nr_pages; i++) 587 prep_compound_tail(page, i); 588 589 prep_compound_head(page, order); 590} 591 592void destroy_large_folio(struct folio *folio) 593{ 594 if (folio_test_hugetlb(folio)) { 595 free_huge_folio(folio); 596 return; 597 } 598 599 if (folio_test_large_rmappable(folio)) 600 folio_undo_large_rmappable(folio); 601 602 mem_cgroup_uncharge(folio); 603 free_the_page(&folio->page, folio_order(folio)); 604} 605 606static inline void set_buddy_order(struct page *page, unsigned int order) 607{ 608 set_page_private(page, order); 609 __SetPageBuddy(page); 610} 611 612#ifdef CONFIG_COMPACTION 613static inline struct capture_control *task_capc(struct zone *zone) 614{ 615 struct capture_control *capc = current->capture_control; 616 617 return unlikely(capc) && 618 !(current->flags & PF_KTHREAD) && 619 !capc->page && 620 capc->cc->zone == zone ? capc : NULL; 621} 622 623static inline bool 624compaction_capture(struct capture_control *capc, struct page *page, 625 int order, int migratetype) 626{ 627 if (!capc || order != capc->cc->order) 628 return false; 629 630 /* Do not accidentally pollute CMA or isolated regions*/ 631 if (is_migrate_cma(migratetype) || 632 is_migrate_isolate(migratetype)) 633 return false; 634 635 /* 636 * Do not let lower order allocations pollute a movable pageblock. 637 * This might let an unmovable request use a reclaimable pageblock 638 * and vice-versa but no more than normal fallback logic which can 639 * have trouble finding a high-order free page. 640 */ 641 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 642 return false; 643 644 capc->page = page; 645 return true; 646} 647 648#else 649static inline struct capture_control *task_capc(struct zone *zone) 650{ 651 return NULL; 652} 653 654static inline bool 655compaction_capture(struct capture_control *capc, struct page *page, 656 int order, int migratetype) 657{ 658 return false; 659} 660#endif /* CONFIG_COMPACTION */ 661 662/* Used for pages not on another list */ 663static inline void add_to_free_list(struct page *page, struct zone *zone, 664 unsigned int order, int migratetype) 665{ 666 struct free_area *area = &zone->free_area[order]; 667 668 list_add(&page->buddy_list, &area->free_list[migratetype]); 669 area->nr_free++; 670} 671 672/* Used for pages not on another list */ 673static inline void add_to_free_list_tail(struct page *page, struct zone *zone, 674 unsigned int order, int migratetype) 675{ 676 struct free_area *area = &zone->free_area[order]; 677 678 list_add_tail(&page->buddy_list, &area->free_list[migratetype]); 679 area->nr_free++; 680} 681 682/* 683 * Used for pages which are on another list. Move the pages to the tail 684 * of the list - so the moved pages won't immediately be considered for 685 * allocation again (e.g., optimization for memory onlining). 686 */ 687static inline void move_to_free_list(struct page *page, struct zone *zone, 688 unsigned int order, int migratetype) 689{ 690 struct free_area *area = &zone->free_area[order]; 691 692 list_move_tail(&page->buddy_list, &area->free_list[migratetype]); 693} 694 695static inline void del_page_from_free_list(struct page *page, struct zone *zone, 696 unsigned int order) 697{ 698 /* clear reported state and update reported page count */ 699 if (page_reported(page)) 700 __ClearPageReported(page); 701 702 list_del(&page->buddy_list); 703 __ClearPageBuddy(page); 704 set_page_private(page, 0); 705 zone->free_area[order].nr_free--; 706} 707 708static inline struct page *get_page_from_free_area(struct free_area *area, 709 int migratetype) 710{ 711 return list_first_entry_or_null(&area->free_list[migratetype], 712 struct page, buddy_list); 713} 714 715/* 716 * If this is not the largest possible page, check if the buddy 717 * of the next-highest order is free. If it is, it's possible 718 * that pages are being freed that will coalesce soon. In case, 719 * that is happening, add the free page to the tail of the list 720 * so it's less likely to be used soon and more likely to be merged 721 * as a higher order page 722 */ 723static inline bool 724buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 725 struct page *page, unsigned int order) 726{ 727 unsigned long higher_page_pfn; 728 struct page *higher_page; 729 730 if (order >= MAX_PAGE_ORDER - 1) 731 return false; 732 733 higher_page_pfn = buddy_pfn & pfn; 734 higher_page = page + (higher_page_pfn - pfn); 735 736 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, 737 NULL) != NULL; 738} 739 740/* 741 * Freeing function for a buddy system allocator. 742 * 743 * The concept of a buddy system is to maintain direct-mapped table 744 * (containing bit values) for memory blocks of various "orders". 745 * The bottom level table contains the map for the smallest allocatable 746 * units of memory (here, pages), and each level above it describes 747 * pairs of units from the levels below, hence, "buddies". 748 * At a high level, all that happens here is marking the table entry 749 * at the bottom level available, and propagating the changes upward 750 * as necessary, plus some accounting needed to play nicely with other 751 * parts of the VM system. 752 * At each level, we keep a list of pages, which are heads of continuous 753 * free pages of length of (1 << order) and marked with PageBuddy. 754 * Page's order is recorded in page_private(page) field. 755 * So when we are allocating or freeing one, we can derive the state of the 756 * other. That is, if we allocate a small block, and both were 757 * free, the remainder of the region must be split into blocks. 758 * If a block is freed, and its buddy is also free, then this 759 * triggers coalescing into a block of larger size. 760 * 761 * -- nyc 762 */ 763 764static inline void __free_one_page(struct page *page, 765 unsigned long pfn, 766 struct zone *zone, unsigned int order, 767 int migratetype, fpi_t fpi_flags) 768{ 769 struct capture_control *capc = task_capc(zone); 770 unsigned long buddy_pfn = 0; 771 unsigned long combined_pfn; 772 struct page *buddy; 773 bool to_tail; 774 775 VM_BUG_ON(!zone_is_initialized(zone)); 776 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 777 778 VM_BUG_ON(migratetype == -1); 779 if (likely(!is_migrate_isolate(migratetype))) 780 __mod_zone_freepage_state(zone, 1 << order, migratetype); 781 782 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 783 VM_BUG_ON_PAGE(bad_range(zone, page), page); 784 785 while (order < MAX_PAGE_ORDER) { 786 if (compaction_capture(capc, page, order, migratetype)) { 787 __mod_zone_freepage_state(zone, -(1 << order), 788 migratetype); 789 return; 790 } 791 792 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); 793 if (!buddy) 794 goto done_merging; 795 796 if (unlikely(order >= pageblock_order)) { 797 /* 798 * We want to prevent merge between freepages on pageblock 799 * without fallbacks and normal pageblock. Without this, 800 * pageblock isolation could cause incorrect freepage or CMA 801 * accounting or HIGHATOMIC accounting. 802 */ 803 int buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn); 804 805 if (migratetype != buddy_mt 806 && (!migratetype_is_mergeable(migratetype) || 807 !migratetype_is_mergeable(buddy_mt))) 808 goto done_merging; 809 } 810 811 /* 812 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 813 * merge with it and move up one order. 814 */ 815 if (page_is_guard(buddy)) 816 clear_page_guard(zone, buddy, order, migratetype); 817 else 818 del_page_from_free_list(buddy, zone, order); 819 combined_pfn = buddy_pfn & pfn; 820 page = page + (combined_pfn - pfn); 821 pfn = combined_pfn; 822 order++; 823 } 824 825done_merging: 826 set_buddy_order(page, order); 827 828 if (fpi_flags & FPI_TO_TAIL) 829 to_tail = true; 830 else if (is_shuffle_order(order)) 831 to_tail = shuffle_pick_tail(); 832 else 833 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 834 835 if (to_tail) 836 add_to_free_list_tail(page, zone, order, migratetype); 837 else 838 add_to_free_list(page, zone, order, migratetype); 839 840 /* Notify page reporting subsystem of freed page */ 841 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 842 page_reporting_notify_free(order); 843} 844 845/** 846 * split_free_page() -- split a free page at split_pfn_offset 847 * @free_page: the original free page 848 * @order: the order of the page 849 * @split_pfn_offset: split offset within the page 850 * 851 * Return -ENOENT if the free page is changed, otherwise 0 852 * 853 * It is used when the free page crosses two pageblocks with different migratetypes 854 * at split_pfn_offset within the page. The split free page will be put into 855 * separate migratetype lists afterwards. Otherwise, the function achieves 856 * nothing. 857 */ 858int split_free_page(struct page *free_page, 859 unsigned int order, unsigned long split_pfn_offset) 860{ 861 struct zone *zone = page_zone(free_page); 862 unsigned long free_page_pfn = page_to_pfn(free_page); 863 unsigned long pfn; 864 unsigned long flags; 865 int free_page_order; 866 int mt; 867 int ret = 0; 868 869 if (split_pfn_offset == 0) 870 return ret; 871 872 spin_lock_irqsave(&zone->lock, flags); 873 874 if (!PageBuddy(free_page) || buddy_order(free_page) != order) { 875 ret = -ENOENT; 876 goto out; 877 } 878 879 mt = get_pfnblock_migratetype(free_page, free_page_pfn); 880 if (likely(!is_migrate_isolate(mt))) 881 __mod_zone_freepage_state(zone, -(1UL << order), mt); 882 883 del_page_from_free_list(free_page, zone, order); 884 for (pfn = free_page_pfn; 885 pfn < free_page_pfn + (1UL << order);) { 886 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn); 887 888 free_page_order = min_t(unsigned int, 889 pfn ? __ffs(pfn) : order, 890 __fls(split_pfn_offset)); 891 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order, 892 mt, FPI_NONE); 893 pfn += 1UL << free_page_order; 894 split_pfn_offset -= (1UL << free_page_order); 895 /* we have done the first part, now switch to second part */ 896 if (split_pfn_offset == 0) 897 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn); 898 } 899out: 900 spin_unlock_irqrestore(&zone->lock, flags); 901 return ret; 902} 903/* 904 * A bad page could be due to a number of fields. Instead of multiple branches, 905 * try and check multiple fields with one check. The caller must do a detailed 906 * check if necessary. 907 */ 908static inline bool page_expected_state(struct page *page, 909 unsigned long check_flags) 910{ 911 if (unlikely(atomic_read(&page->_mapcount) != -1)) 912 return false; 913 914 if (unlikely((unsigned long)page->mapping | 915 page_ref_count(page) | 916#ifdef CONFIG_MEMCG 917 page->memcg_data | 918#endif 919#ifdef CONFIG_PAGE_POOL 920 ((page->pp_magic & ~0x3UL) == PP_SIGNATURE) | 921#endif 922 (page->flags & check_flags))) 923 return false; 924 925 return true; 926} 927 928static const char *page_bad_reason(struct page *page, unsigned long flags) 929{ 930 const char *bad_reason = NULL; 931 932 if (unlikely(atomic_read(&page->_mapcount) != -1)) 933 bad_reason = "nonzero mapcount"; 934 if (unlikely(page->mapping != NULL)) 935 bad_reason = "non-NULL mapping"; 936 if (unlikely(page_ref_count(page) != 0)) 937 bad_reason = "nonzero _refcount"; 938 if (unlikely(page->flags & flags)) { 939 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 940 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 941 else 942 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 943 } 944#ifdef CONFIG_MEMCG 945 if (unlikely(page->memcg_data)) 946 bad_reason = "page still charged to cgroup"; 947#endif 948#ifdef CONFIG_PAGE_POOL 949 if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE)) 950 bad_reason = "page_pool leak"; 951#endif 952 return bad_reason; 953} 954 955static void free_page_is_bad_report(struct page *page) 956{ 957 bad_page(page, 958 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 959} 960 961static inline bool free_page_is_bad(struct page *page) 962{ 963 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 964 return false; 965 966 /* Something has gone sideways, find it */ 967 free_page_is_bad_report(page); 968 return true; 969} 970 971static inline bool is_check_pages_enabled(void) 972{ 973 return static_branch_unlikely(&check_pages_enabled); 974} 975 976static int free_tail_page_prepare(struct page *head_page, struct page *page) 977{ 978 struct folio *folio = (struct folio *)head_page; 979 int ret = 1; 980 981 /* 982 * We rely page->lru.next never has bit 0 set, unless the page 983 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 984 */ 985 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 986 987 if (!is_check_pages_enabled()) { 988 ret = 0; 989 goto out; 990 } 991 switch (page - head_page) { 992 case 1: 993 /* the first tail page: these may be in place of ->mapping */ 994 if (unlikely(folio_entire_mapcount(folio))) { 995 bad_page(page, "nonzero entire_mapcount"); 996 goto out; 997 } 998 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) { 999 bad_page(page, "nonzero nr_pages_mapped"); 1000 goto out; 1001 } 1002 if (unlikely(atomic_read(&folio->_pincount))) { 1003 bad_page(page, "nonzero pincount"); 1004 goto out; 1005 } 1006 break; 1007 case 2: 1008 /* 1009 * the second tail page: ->mapping is 1010 * deferred_list.next -- ignore value. 1011 */ 1012 break; 1013 default: 1014 if (page->mapping != TAIL_MAPPING) { 1015 bad_page(page, "corrupted mapping in tail page"); 1016 goto out; 1017 } 1018 break; 1019 } 1020 if (unlikely(!PageTail(page))) { 1021 bad_page(page, "PageTail not set"); 1022 goto out; 1023 } 1024 if (unlikely(compound_head(page) != head_page)) { 1025 bad_page(page, "compound_head not consistent"); 1026 goto out; 1027 } 1028 ret = 0; 1029out: 1030 page->mapping = NULL; 1031 clear_compound_head(page); 1032 return ret; 1033} 1034 1035/* 1036 * Skip KASAN memory poisoning when either: 1037 * 1038 * 1. For generic KASAN: deferred memory initialization has not yet completed. 1039 * Tag-based KASAN modes skip pages freed via deferred memory initialization 1040 * using page tags instead (see below). 1041 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating 1042 * that error detection is disabled for accesses via the page address. 1043 * 1044 * Pages will have match-all tags in the following circumstances: 1045 * 1046 * 1. Pages are being initialized for the first time, including during deferred 1047 * memory init; see the call to page_kasan_tag_reset in __init_single_page. 1048 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the 1049 * exception of pages unpoisoned by kasan_unpoison_vmalloc. 1050 * 3. The allocation was excluded from being checked due to sampling, 1051 * see the call to kasan_unpoison_pages. 1052 * 1053 * Poisoning pages during deferred memory init will greatly lengthen the 1054 * process and cause problem in large memory systems as the deferred pages 1055 * initialization is done with interrupt disabled. 1056 * 1057 * Assuming that there will be no reference to those newly initialized 1058 * pages before they are ever allocated, this should have no effect on 1059 * KASAN memory tracking as the poison will be properly inserted at page 1060 * allocation time. The only corner case is when pages are allocated by 1061 * on-demand allocation and then freed again before the deferred pages 1062 * initialization is done, but this is not likely to happen. 1063 */ 1064static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags) 1065{ 1066 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 1067 return deferred_pages_enabled(); 1068 1069 return page_kasan_tag(page) == KASAN_TAG_KERNEL; 1070} 1071 1072static void kernel_init_pages(struct page *page, int numpages) 1073{ 1074 int i; 1075 1076 /* s390's use of memset() could override KASAN redzones. */ 1077 kasan_disable_current(); 1078 for (i = 0; i < numpages; i++) 1079 clear_highpage_kasan_tagged(page + i); 1080 kasan_enable_current(); 1081} 1082 1083static __always_inline bool free_pages_prepare(struct page *page, 1084 unsigned int order, fpi_t fpi_flags) 1085{ 1086 int bad = 0; 1087 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags); 1088 bool init = want_init_on_free(); 1089 bool compound = PageCompound(page); 1090 1091 VM_BUG_ON_PAGE(PageTail(page), page); 1092 1093 trace_mm_page_free(page, order); 1094 kmsan_free_page(page, order); 1095 1096 if (memcg_kmem_online() && PageMemcgKmem(page)) 1097 __memcg_kmem_uncharge_page(page, order); 1098 1099 if (unlikely(PageHWPoison(page)) && !order) { 1100 /* Do not let hwpoison pages hit pcplists/buddy */ 1101 reset_page_owner(page, order); 1102 page_table_check_free(page, order); 1103 return false; 1104 } 1105 1106 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1107 1108 /* 1109 * Check tail pages before head page information is cleared to 1110 * avoid checking PageCompound for order-0 pages. 1111 */ 1112 if (unlikely(order)) { 1113 int i; 1114 1115 if (compound) 1116 page[1].flags &= ~PAGE_FLAGS_SECOND; 1117 for (i = 1; i < (1 << order); i++) { 1118 if (compound) 1119 bad += free_tail_page_prepare(page, page + i); 1120 if (is_check_pages_enabled()) { 1121 if (free_page_is_bad(page + i)) { 1122 bad++; 1123 continue; 1124 } 1125 } 1126 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1127 } 1128 } 1129 if (PageMappingFlags(page)) 1130 page->mapping = NULL; 1131 if (is_check_pages_enabled()) { 1132 if (free_page_is_bad(page)) 1133 bad++; 1134 if (bad) 1135 return false; 1136 } 1137 1138 page_cpupid_reset_last(page); 1139 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1140 reset_page_owner(page, order); 1141 page_table_check_free(page, order); 1142 1143 if (!PageHighMem(page)) { 1144 debug_check_no_locks_freed(page_address(page), 1145 PAGE_SIZE << order); 1146 debug_check_no_obj_freed(page_address(page), 1147 PAGE_SIZE << order); 1148 } 1149 1150 kernel_poison_pages(page, 1 << order); 1151 1152 /* 1153 * As memory initialization might be integrated into KASAN, 1154 * KASAN poisoning and memory initialization code must be 1155 * kept together to avoid discrepancies in behavior. 1156 * 1157 * With hardware tag-based KASAN, memory tags must be set before the 1158 * page becomes unavailable via debug_pagealloc or arch_free_page. 1159 */ 1160 if (!skip_kasan_poison) { 1161 kasan_poison_pages(page, order, init); 1162 1163 /* Memory is already initialized if KASAN did it internally. */ 1164 if (kasan_has_integrated_init()) 1165 init = false; 1166 } 1167 if (init) 1168 kernel_init_pages(page, 1 << order); 1169 1170 /* 1171 * arch_free_page() can make the page's contents inaccessible. s390 1172 * does this. So nothing which can access the page's contents should 1173 * happen after this. 1174 */ 1175 arch_free_page(page, order); 1176 1177 debug_pagealloc_unmap_pages(page, 1 << order); 1178 1179 return true; 1180} 1181 1182/* 1183 * Frees a number of pages from the PCP lists 1184 * Assumes all pages on list are in same zone. 1185 * count is the number of pages to free. 1186 */ 1187static void free_pcppages_bulk(struct zone *zone, int count, 1188 struct per_cpu_pages *pcp, 1189 int pindex) 1190{ 1191 unsigned long flags; 1192 unsigned int order; 1193 bool isolated_pageblocks; 1194 struct page *page; 1195 1196 /* 1197 * Ensure proper count is passed which otherwise would stuck in the 1198 * below while (list_empty(list)) loop. 1199 */ 1200 count = min(pcp->count, count); 1201 1202 /* Ensure requested pindex is drained first. */ 1203 pindex = pindex - 1; 1204 1205 spin_lock_irqsave(&zone->lock, flags); 1206 isolated_pageblocks = has_isolate_pageblock(zone); 1207 1208 while (count > 0) { 1209 struct list_head *list; 1210 int nr_pages; 1211 1212 /* Remove pages from lists in a round-robin fashion. */ 1213 do { 1214 if (++pindex > NR_PCP_LISTS - 1) 1215 pindex = 0; 1216 list = &pcp->lists[pindex]; 1217 } while (list_empty(list)); 1218 1219 order = pindex_to_order(pindex); 1220 nr_pages = 1 << order; 1221 do { 1222 int mt; 1223 1224 page = list_last_entry(list, struct page, pcp_list); 1225 mt = get_pcppage_migratetype(page); 1226 1227 /* must delete to avoid corrupting pcp list */ 1228 list_del(&page->pcp_list); 1229 count -= nr_pages; 1230 pcp->count -= nr_pages; 1231 1232 /* MIGRATE_ISOLATE page should not go to pcplists */ 1233 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1234 /* Pageblock could have been isolated meanwhile */ 1235 if (unlikely(isolated_pageblocks)) 1236 mt = get_pageblock_migratetype(page); 1237 1238 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE); 1239 trace_mm_page_pcpu_drain(page, order, mt); 1240 } while (count > 0 && !list_empty(list)); 1241 } 1242 1243 spin_unlock_irqrestore(&zone->lock, flags); 1244} 1245 1246static void free_one_page(struct zone *zone, 1247 struct page *page, unsigned long pfn, 1248 unsigned int order, 1249 int migratetype, fpi_t fpi_flags) 1250{ 1251 unsigned long flags; 1252 1253 spin_lock_irqsave(&zone->lock, flags); 1254 if (unlikely(has_isolate_pageblock(zone) || 1255 is_migrate_isolate(migratetype))) { 1256 migratetype = get_pfnblock_migratetype(page, pfn); 1257 } 1258 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1259 spin_unlock_irqrestore(&zone->lock, flags); 1260} 1261 1262static void __free_pages_ok(struct page *page, unsigned int order, 1263 fpi_t fpi_flags) 1264{ 1265 int migratetype; 1266 unsigned long pfn = page_to_pfn(page); 1267 struct zone *zone = page_zone(page); 1268 1269 if (!free_pages_prepare(page, order, fpi_flags)) 1270 return; 1271 1272 /* 1273 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here 1274 * is used to avoid calling get_pfnblock_migratetype() under the lock. 1275 * This will reduce the lock holding time. 1276 */ 1277 migratetype = get_pfnblock_migratetype(page, pfn); 1278 1279 free_one_page(zone, page, pfn, order, migratetype, fpi_flags); 1280 1281 __count_vm_events(PGFREE, 1 << order); 1282} 1283 1284void __free_pages_core(struct page *page, unsigned int order) 1285{ 1286 unsigned int nr_pages = 1 << order; 1287 struct page *p = page; 1288 unsigned int loop; 1289 1290 /* 1291 * When initializing the memmap, __init_single_page() sets the refcount 1292 * of all pages to 1 ("allocated"/"not free"). We have to set the 1293 * refcount of all involved pages to 0. 1294 */ 1295 prefetchw(p); 1296 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1297 prefetchw(p + 1); 1298 __ClearPageReserved(p); 1299 set_page_count(p, 0); 1300 } 1301 __ClearPageReserved(p); 1302 set_page_count(p, 0); 1303 1304 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1305 1306 if (page_contains_unaccepted(page, order)) { 1307 if (order == MAX_PAGE_ORDER && __free_unaccepted(page)) 1308 return; 1309 1310 accept_page(page, order); 1311 } 1312 1313 /* 1314 * Bypass PCP and place fresh pages right to the tail, primarily 1315 * relevant for memory onlining. 1316 */ 1317 __free_pages_ok(page, order, FPI_TO_TAIL); 1318} 1319 1320/* 1321 * Check that the whole (or subset of) a pageblock given by the interval of 1322 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1323 * with the migration of free compaction scanner. 1324 * 1325 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1326 * 1327 * It's possible on some configurations to have a setup like node0 node1 node0 1328 * i.e. it's possible that all pages within a zones range of pages do not 1329 * belong to a single zone. We assume that a border between node0 and node1 1330 * can occur within a single pageblock, but not a node0 node1 node0 1331 * interleaving within a single pageblock. It is therefore sufficient to check 1332 * the first and last page of a pageblock and avoid checking each individual 1333 * page in a pageblock. 1334 * 1335 * Note: the function may return non-NULL struct page even for a page block 1336 * which contains a memory hole (i.e. there is no physical memory for a subset 1337 * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which 1338 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole 1339 * even though the start pfn is online and valid. This should be safe most of 1340 * the time because struct pages are still initialized via init_unavailable_range() 1341 * and pfn walkers shouldn't touch any physical memory range for which they do 1342 * not recognize any specific metadata in struct pages. 1343 */ 1344struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1345 unsigned long end_pfn, struct zone *zone) 1346{ 1347 struct page *start_page; 1348 struct page *end_page; 1349 1350 /* end_pfn is one past the range we are checking */ 1351 end_pfn--; 1352 1353 if (!pfn_valid(end_pfn)) 1354 return NULL; 1355 1356 start_page = pfn_to_online_page(start_pfn); 1357 if (!start_page) 1358 return NULL; 1359 1360 if (page_zone(start_page) != zone) 1361 return NULL; 1362 1363 end_page = pfn_to_page(end_pfn); 1364 1365 /* This gives a shorter code than deriving page_zone(end_page) */ 1366 if (page_zone_id(start_page) != page_zone_id(end_page)) 1367 return NULL; 1368 1369 return start_page; 1370} 1371 1372/* 1373 * The order of subdivision here is critical for the IO subsystem. 1374 * Please do not alter this order without good reasons and regression 1375 * testing. Specifically, as large blocks of memory are subdivided, 1376 * the order in which smaller blocks are delivered depends on the order 1377 * they're subdivided in this function. This is the primary factor 1378 * influencing the order in which pages are delivered to the IO 1379 * subsystem according to empirical testing, and this is also justified 1380 * by considering the behavior of a buddy system containing a single 1381 * large block of memory acted on by a series of small allocations. 1382 * This behavior is a critical factor in sglist merging's success. 1383 * 1384 * -- nyc 1385 */ 1386static inline void expand(struct zone *zone, struct page *page, 1387 int low, int high, int migratetype) 1388{ 1389 unsigned long size = 1 << high; 1390 1391 while (high > low) { 1392 high--; 1393 size >>= 1; 1394 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1395 1396 /* 1397 * Mark as guard pages (or page), that will allow to 1398 * merge back to allocator when buddy will be freed. 1399 * Corresponding page table entries will not be touched, 1400 * pages will stay not present in virtual address space 1401 */ 1402 if (set_page_guard(zone, &page[size], high, migratetype)) 1403 continue; 1404 1405 add_to_free_list(&page[size], zone, high, migratetype); 1406 set_buddy_order(&page[size], high); 1407 } 1408} 1409 1410static void check_new_page_bad(struct page *page) 1411{ 1412 if (unlikely(page->flags & __PG_HWPOISON)) { 1413 /* Don't complain about hwpoisoned pages */ 1414 page_mapcount_reset(page); /* remove PageBuddy */ 1415 return; 1416 } 1417 1418 bad_page(page, 1419 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 1420} 1421 1422/* 1423 * This page is about to be returned from the page allocator 1424 */ 1425static int check_new_page(struct page *page) 1426{ 1427 if (likely(page_expected_state(page, 1428 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1429 return 0; 1430 1431 check_new_page_bad(page); 1432 return 1; 1433} 1434 1435static inline bool check_new_pages(struct page *page, unsigned int order) 1436{ 1437 if (is_check_pages_enabled()) { 1438 for (int i = 0; i < (1 << order); i++) { 1439 struct page *p = page + i; 1440 1441 if (check_new_page(p)) 1442 return true; 1443 } 1444 } 1445 1446 return false; 1447} 1448 1449static inline bool should_skip_kasan_unpoison(gfp_t flags) 1450{ 1451 /* Don't skip if a software KASAN mode is enabled. */ 1452 if (IS_ENABLED(CONFIG_KASAN_GENERIC) || 1453 IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 1454 return false; 1455 1456 /* Skip, if hardware tag-based KASAN is not enabled. */ 1457 if (!kasan_hw_tags_enabled()) 1458 return true; 1459 1460 /* 1461 * With hardware tag-based KASAN enabled, skip if this has been 1462 * requested via __GFP_SKIP_KASAN. 1463 */ 1464 return flags & __GFP_SKIP_KASAN; 1465} 1466 1467static inline bool should_skip_init(gfp_t flags) 1468{ 1469 /* Don't skip, if hardware tag-based KASAN is not enabled. */ 1470 if (!kasan_hw_tags_enabled()) 1471 return false; 1472 1473 /* For hardware tag-based KASAN, skip if requested. */ 1474 return (flags & __GFP_SKIP_ZERO); 1475} 1476 1477inline void post_alloc_hook(struct page *page, unsigned int order, 1478 gfp_t gfp_flags) 1479{ 1480 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && 1481 !should_skip_init(gfp_flags); 1482 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS); 1483 int i; 1484 1485 set_page_private(page, 0); 1486 set_page_refcounted(page); 1487 1488 arch_alloc_page(page, order); 1489 debug_pagealloc_map_pages(page, 1 << order); 1490 1491 /* 1492 * Page unpoisoning must happen before memory initialization. 1493 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 1494 * allocations and the page unpoisoning code will complain. 1495 */ 1496 kernel_unpoison_pages(page, 1 << order); 1497 1498 /* 1499 * As memory initialization might be integrated into KASAN, 1500 * KASAN unpoisoning and memory initializion code must be 1501 * kept together to avoid discrepancies in behavior. 1502 */ 1503 1504 /* 1505 * If memory tags should be zeroed 1506 * (which happens only when memory should be initialized as well). 1507 */ 1508 if (zero_tags) { 1509 /* Initialize both memory and memory tags. */ 1510 for (i = 0; i != 1 << order; ++i) 1511 tag_clear_highpage(page + i); 1512 1513 /* Take note that memory was initialized by the loop above. */ 1514 init = false; 1515 } 1516 if (!should_skip_kasan_unpoison(gfp_flags) && 1517 kasan_unpoison_pages(page, order, init)) { 1518 /* Take note that memory was initialized by KASAN. */ 1519 if (kasan_has_integrated_init()) 1520 init = false; 1521 } else { 1522 /* 1523 * If memory tags have not been set by KASAN, reset the page 1524 * tags to ensure page_address() dereferencing does not fault. 1525 */ 1526 for (i = 0; i != 1 << order; ++i) 1527 page_kasan_tag_reset(page + i); 1528 } 1529 /* If memory is still not initialized, initialize it now. */ 1530 if (init) 1531 kernel_init_pages(page, 1 << order); 1532 1533 set_page_owner(page, order, gfp_flags); 1534 page_table_check_alloc(page, order); 1535} 1536 1537static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1538 unsigned int alloc_flags) 1539{ 1540 post_alloc_hook(page, order, gfp_flags); 1541 1542 if (order && (gfp_flags & __GFP_COMP)) 1543 prep_compound_page(page, order); 1544 1545 /* 1546 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1547 * allocate the page. The expectation is that the caller is taking 1548 * steps that will free more memory. The caller should avoid the page 1549 * being used for !PFMEMALLOC purposes. 1550 */ 1551 if (alloc_flags & ALLOC_NO_WATERMARKS) 1552 set_page_pfmemalloc(page); 1553 else 1554 clear_page_pfmemalloc(page); 1555} 1556 1557/* 1558 * Go through the free lists for the given migratetype and remove 1559 * the smallest available page from the freelists 1560 */ 1561static __always_inline 1562struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1563 int migratetype) 1564{ 1565 unsigned int current_order; 1566 struct free_area *area; 1567 struct page *page; 1568 1569 /* Find a page of the appropriate size in the preferred list */ 1570 for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) { 1571 area = &(zone->free_area[current_order]); 1572 page = get_page_from_free_area(area, migratetype); 1573 if (!page) 1574 continue; 1575 del_page_from_free_list(page, zone, current_order); 1576 expand(zone, page, order, current_order, migratetype); 1577 set_pcppage_migratetype(page, migratetype); 1578 trace_mm_page_alloc_zone_locked(page, order, migratetype, 1579 pcp_allowed_order(order) && 1580 migratetype < MIGRATE_PCPTYPES); 1581 return page; 1582 } 1583 1584 return NULL; 1585} 1586 1587 1588/* 1589 * This array describes the order lists are fallen back to when 1590 * the free lists for the desirable migrate type are depleted 1591 * 1592 * The other migratetypes do not have fallbacks. 1593 */ 1594static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = { 1595 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE }, 1596 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE }, 1597 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE }, 1598}; 1599 1600#ifdef CONFIG_CMA 1601static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1602 unsigned int order) 1603{ 1604 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1605} 1606#else 1607static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1608 unsigned int order) { return NULL; } 1609#endif 1610 1611/* 1612 * Move the free pages in a range to the freelist tail of the requested type. 1613 * Note that start_page and end_pages are not aligned on a pageblock 1614 * boundary. If alignment is required, use move_freepages_block() 1615 */ 1616static int move_freepages(struct zone *zone, 1617 unsigned long start_pfn, unsigned long end_pfn, 1618 int migratetype, int *num_movable) 1619{ 1620 struct page *page; 1621 unsigned long pfn; 1622 unsigned int order; 1623 int pages_moved = 0; 1624 1625 for (pfn = start_pfn; pfn <= end_pfn;) { 1626 page = pfn_to_page(pfn); 1627 if (!PageBuddy(page)) { 1628 /* 1629 * We assume that pages that could be isolated for 1630 * migration are movable. But we don't actually try 1631 * isolating, as that would be expensive. 1632 */ 1633 if (num_movable && 1634 (PageLRU(page) || __PageMovable(page))) 1635 (*num_movable)++; 1636 pfn++; 1637 continue; 1638 } 1639 1640 /* Make sure we are not inadvertently changing nodes */ 1641 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1642 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 1643 1644 order = buddy_order(page); 1645 move_to_free_list(page, zone, order, migratetype); 1646 pfn += 1 << order; 1647 pages_moved += 1 << order; 1648 } 1649 1650 return pages_moved; 1651} 1652 1653int move_freepages_block(struct zone *zone, struct page *page, 1654 int migratetype, int *num_movable) 1655{ 1656 unsigned long start_pfn, end_pfn, pfn; 1657 1658 if (num_movable) 1659 *num_movable = 0; 1660 1661 pfn = page_to_pfn(page); 1662 start_pfn = pageblock_start_pfn(pfn); 1663 end_pfn = pageblock_end_pfn(pfn) - 1; 1664 1665 /* Do not cross zone boundaries */ 1666 if (!zone_spans_pfn(zone, start_pfn)) 1667 start_pfn = pfn; 1668 if (!zone_spans_pfn(zone, end_pfn)) 1669 return 0; 1670 1671 return move_freepages(zone, start_pfn, end_pfn, migratetype, 1672 num_movable); 1673} 1674 1675static void change_pageblock_range(struct page *pageblock_page, 1676 int start_order, int migratetype) 1677{ 1678 int nr_pageblocks = 1 << (start_order - pageblock_order); 1679 1680 while (nr_pageblocks--) { 1681 set_pageblock_migratetype(pageblock_page, migratetype); 1682 pageblock_page += pageblock_nr_pages; 1683 } 1684} 1685 1686/* 1687 * When we are falling back to another migratetype during allocation, try to 1688 * steal extra free pages from the same pageblocks to satisfy further 1689 * allocations, instead of polluting multiple pageblocks. 1690 * 1691 * If we are stealing a relatively large buddy page, it is likely there will 1692 * be more free pages in the pageblock, so try to steal them all. For 1693 * reclaimable and unmovable allocations, we steal regardless of page size, 1694 * as fragmentation caused by those allocations polluting movable pageblocks 1695 * is worse than movable allocations stealing from unmovable and reclaimable 1696 * pageblocks. 1697 */ 1698static bool can_steal_fallback(unsigned int order, int start_mt) 1699{ 1700 /* 1701 * Leaving this order check is intended, although there is 1702 * relaxed order check in next check. The reason is that 1703 * we can actually steal whole pageblock if this condition met, 1704 * but, below check doesn't guarantee it and that is just heuristic 1705 * so could be changed anytime. 1706 */ 1707 if (order >= pageblock_order) 1708 return true; 1709 1710 if (order >= pageblock_order / 2 || 1711 start_mt == MIGRATE_RECLAIMABLE || 1712 start_mt == MIGRATE_UNMOVABLE || 1713 page_group_by_mobility_disabled) 1714 return true; 1715 1716 return false; 1717} 1718 1719static inline bool boost_watermark(struct zone *zone) 1720{ 1721 unsigned long max_boost; 1722 1723 if (!watermark_boost_factor) 1724 return false; 1725 /* 1726 * Don't bother in zones that are unlikely to produce results. 1727 * On small machines, including kdump capture kernels running 1728 * in a small area, boosting the watermark can cause an out of 1729 * memory situation immediately. 1730 */ 1731 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 1732 return false; 1733 1734 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 1735 watermark_boost_factor, 10000); 1736 1737 /* 1738 * high watermark may be uninitialised if fragmentation occurs 1739 * very early in boot so do not boost. We do not fall 1740 * through and boost by pageblock_nr_pages as failing 1741 * allocations that early means that reclaim is not going 1742 * to help and it may even be impossible to reclaim the 1743 * boosted watermark resulting in a hang. 1744 */ 1745 if (!max_boost) 1746 return false; 1747 1748 max_boost = max(pageblock_nr_pages, max_boost); 1749 1750 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 1751 max_boost); 1752 1753 return true; 1754} 1755 1756/* 1757 * This function implements actual steal behaviour. If order is large enough, 1758 * we can steal whole pageblock. If not, we first move freepages in this 1759 * pageblock to our migratetype and determine how many already-allocated pages 1760 * are there in the pageblock with a compatible migratetype. If at least half 1761 * of pages are free or compatible, we can change migratetype of the pageblock 1762 * itself, so pages freed in the future will be put on the correct free list. 1763 */ 1764static void steal_suitable_fallback(struct zone *zone, struct page *page, 1765 unsigned int alloc_flags, int start_type, bool whole_block) 1766{ 1767 unsigned int current_order = buddy_order(page); 1768 int free_pages, movable_pages, alike_pages; 1769 int old_block_type; 1770 1771 old_block_type = get_pageblock_migratetype(page); 1772 1773 /* 1774 * This can happen due to races and we want to prevent broken 1775 * highatomic accounting. 1776 */ 1777 if (is_migrate_highatomic(old_block_type)) 1778 goto single_page; 1779 1780 /* Take ownership for orders >= pageblock_order */ 1781 if (current_order >= pageblock_order) { 1782 change_pageblock_range(page, current_order, start_type); 1783 goto single_page; 1784 } 1785 1786 /* 1787 * Boost watermarks to increase reclaim pressure to reduce the 1788 * likelihood of future fallbacks. Wake kswapd now as the node 1789 * may be balanced overall and kswapd will not wake naturally. 1790 */ 1791 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 1792 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 1793 1794 /* We are not allowed to try stealing from the whole block */ 1795 if (!whole_block) 1796 goto single_page; 1797 1798 free_pages = move_freepages_block(zone, page, start_type, 1799 &movable_pages); 1800 /* moving whole block can fail due to zone boundary conditions */ 1801 if (!free_pages) 1802 goto single_page; 1803 1804 /* 1805 * Determine how many pages are compatible with our allocation. 1806 * For movable allocation, it's the number of movable pages which 1807 * we just obtained. For other types it's a bit more tricky. 1808 */ 1809 if (start_type == MIGRATE_MOVABLE) { 1810 alike_pages = movable_pages; 1811 } else { 1812 /* 1813 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 1814 * to MOVABLE pageblock, consider all non-movable pages as 1815 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 1816 * vice versa, be conservative since we can't distinguish the 1817 * exact migratetype of non-movable pages. 1818 */ 1819 if (old_block_type == MIGRATE_MOVABLE) 1820 alike_pages = pageblock_nr_pages 1821 - (free_pages + movable_pages); 1822 else 1823 alike_pages = 0; 1824 } 1825 /* 1826 * If a sufficient number of pages in the block are either free or of 1827 * compatible migratability as our allocation, claim the whole block. 1828 */ 1829 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 1830 page_group_by_mobility_disabled) 1831 set_pageblock_migratetype(page, start_type); 1832 1833 return; 1834 1835single_page: 1836 move_to_free_list(page, zone, current_order, start_type); 1837} 1838 1839/* 1840 * Check whether there is a suitable fallback freepage with requested order. 1841 * If only_stealable is true, this function returns fallback_mt only if 1842 * we can steal other freepages all together. This would help to reduce 1843 * fragmentation due to mixed migratetype pages in one pageblock. 1844 */ 1845int find_suitable_fallback(struct free_area *area, unsigned int order, 1846 int migratetype, bool only_stealable, bool *can_steal) 1847{ 1848 int i; 1849 int fallback_mt; 1850 1851 if (area->nr_free == 0) 1852 return -1; 1853 1854 *can_steal = false; 1855 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) { 1856 fallback_mt = fallbacks[migratetype][i]; 1857 if (free_area_empty(area, fallback_mt)) 1858 continue; 1859 1860 if (can_steal_fallback(order, migratetype)) 1861 *can_steal = true; 1862 1863 if (!only_stealable) 1864 return fallback_mt; 1865 1866 if (*can_steal) 1867 return fallback_mt; 1868 } 1869 1870 return -1; 1871} 1872 1873/* 1874 * Reserve a pageblock for exclusive use of high-order atomic allocations if 1875 * there are no empty page blocks that contain a page with a suitable order 1876 */ 1877static void reserve_highatomic_pageblock(struct page *page, struct zone *zone) 1878{ 1879 int mt; 1880 unsigned long max_managed, flags; 1881 1882 /* 1883 * The number reserved as: minimum is 1 pageblock, maximum is 1884 * roughly 1% of a zone. But if 1% of a zone falls below a 1885 * pageblock size, then don't reserve any pageblocks. 1886 * Check is race-prone but harmless. 1887 */ 1888 if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages) 1889 return; 1890 max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages); 1891 if (zone->nr_reserved_highatomic >= max_managed) 1892 return; 1893 1894 spin_lock_irqsave(&zone->lock, flags); 1895 1896 /* Recheck the nr_reserved_highatomic limit under the lock */ 1897 if (zone->nr_reserved_highatomic >= max_managed) 1898 goto out_unlock; 1899 1900 /* Yoink! */ 1901 mt = get_pageblock_migratetype(page); 1902 /* Only reserve normal pageblocks (i.e., they can merge with others) */ 1903 if (migratetype_is_mergeable(mt)) { 1904 zone->nr_reserved_highatomic += pageblock_nr_pages; 1905 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 1906 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 1907 } 1908 1909out_unlock: 1910 spin_unlock_irqrestore(&zone->lock, flags); 1911} 1912 1913/* 1914 * Used when an allocation is about to fail under memory pressure. This 1915 * potentially hurts the reliability of high-order allocations when under 1916 * intense memory pressure but failed atomic allocations should be easier 1917 * to recover from than an OOM. 1918 * 1919 * If @force is true, try to unreserve a pageblock even though highatomic 1920 * pageblock is exhausted. 1921 */ 1922static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 1923 bool force) 1924{ 1925 struct zonelist *zonelist = ac->zonelist; 1926 unsigned long flags; 1927 struct zoneref *z; 1928 struct zone *zone; 1929 struct page *page; 1930 int order; 1931 bool ret; 1932 1933 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 1934 ac->nodemask) { 1935 /* 1936 * Preserve at least one pageblock unless memory pressure 1937 * is really high. 1938 */ 1939 if (!force && zone->nr_reserved_highatomic <= 1940 pageblock_nr_pages) 1941 continue; 1942 1943 spin_lock_irqsave(&zone->lock, flags); 1944 for (order = 0; order < NR_PAGE_ORDERS; order++) { 1945 struct free_area *area = &(zone->free_area[order]); 1946 1947 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 1948 if (!page) 1949 continue; 1950 1951 /* 1952 * In page freeing path, migratetype change is racy so 1953 * we can counter several free pages in a pageblock 1954 * in this loop although we changed the pageblock type 1955 * from highatomic to ac->migratetype. So we should 1956 * adjust the count once. 1957 */ 1958 if (is_migrate_highatomic_page(page)) { 1959 /* 1960 * It should never happen but changes to 1961 * locking could inadvertently allow a per-cpu 1962 * drain to add pages to MIGRATE_HIGHATOMIC 1963 * while unreserving so be safe and watch for 1964 * underflows. 1965 */ 1966 zone->nr_reserved_highatomic -= min( 1967 pageblock_nr_pages, 1968 zone->nr_reserved_highatomic); 1969 } 1970 1971 /* 1972 * Convert to ac->migratetype and avoid the normal 1973 * pageblock stealing heuristics. Minimally, the caller 1974 * is doing the work and needs the pages. More 1975 * importantly, if the block was always converted to 1976 * MIGRATE_UNMOVABLE or another type then the number 1977 * of pageblocks that cannot be completely freed 1978 * may increase. 1979 */ 1980 set_pageblock_migratetype(page, ac->migratetype); 1981 ret = move_freepages_block(zone, page, ac->migratetype, 1982 NULL); 1983 if (ret) { 1984 spin_unlock_irqrestore(&zone->lock, flags); 1985 return ret; 1986 } 1987 } 1988 spin_unlock_irqrestore(&zone->lock, flags); 1989 } 1990 1991 return false; 1992} 1993 1994/* 1995 * Try finding a free buddy page on the fallback list and put it on the free 1996 * list of requested migratetype, possibly along with other pages from the same 1997 * block, depending on fragmentation avoidance heuristics. Returns true if 1998 * fallback was found so that __rmqueue_smallest() can grab it. 1999 * 2000 * The use of signed ints for order and current_order is a deliberate 2001 * deviation from the rest of this file, to make the for loop 2002 * condition simpler. 2003 */ 2004static __always_inline bool 2005__rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2006 unsigned int alloc_flags) 2007{ 2008 struct free_area *area; 2009 int current_order; 2010 int min_order = order; 2011 struct page *page; 2012 int fallback_mt; 2013 bool can_steal; 2014 2015 /* 2016 * Do not steal pages from freelists belonging to other pageblocks 2017 * i.e. orders < pageblock_order. If there are no local zones free, 2018 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2019 */ 2020 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT) 2021 min_order = pageblock_order; 2022 2023 /* 2024 * Find the largest available free page in the other list. This roughly 2025 * approximates finding the pageblock with the most free pages, which 2026 * would be too costly to do exactly. 2027 */ 2028 for (current_order = MAX_PAGE_ORDER; current_order >= min_order; 2029 --current_order) { 2030 area = &(zone->free_area[current_order]); 2031 fallback_mt = find_suitable_fallback(area, current_order, 2032 start_migratetype, false, &can_steal); 2033 if (fallback_mt == -1) 2034 continue; 2035 2036 /* 2037 * We cannot steal all free pages from the pageblock and the 2038 * requested migratetype is movable. In that case it's better to 2039 * steal and split the smallest available page instead of the 2040 * largest available page, because even if the next movable 2041 * allocation falls back into a different pageblock than this 2042 * one, it won't cause permanent fragmentation. 2043 */ 2044 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2045 && current_order > order) 2046 goto find_smallest; 2047 2048 goto do_steal; 2049 } 2050 2051 return false; 2052 2053find_smallest: 2054 for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) { 2055 area = &(zone->free_area[current_order]); 2056 fallback_mt = find_suitable_fallback(area, current_order, 2057 start_migratetype, false, &can_steal); 2058 if (fallback_mt != -1) 2059 break; 2060 } 2061 2062 /* 2063 * This should not happen - we already found a suitable fallback 2064 * when looking for the largest page. 2065 */ 2066 VM_BUG_ON(current_order > MAX_PAGE_ORDER); 2067 2068do_steal: 2069 page = get_page_from_free_area(area, fallback_mt); 2070 2071 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2072 can_steal); 2073 2074 trace_mm_page_alloc_extfrag(page, order, current_order, 2075 start_migratetype, fallback_mt); 2076 2077 return true; 2078 2079} 2080 2081/* 2082 * Do the hard work of removing an element from the buddy allocator. 2083 * Call me with the zone->lock already held. 2084 */ 2085static __always_inline struct page * 2086__rmqueue(struct zone *zone, unsigned int order, int migratetype, 2087 unsigned int alloc_flags) 2088{ 2089 struct page *page; 2090 2091 if (IS_ENABLED(CONFIG_CMA)) { 2092 /* 2093 * Balance movable allocations between regular and CMA areas by 2094 * allocating from CMA when over half of the zone's free memory 2095 * is in the CMA area. 2096 */ 2097 if (alloc_flags & ALLOC_CMA && 2098 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2099 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2100 page = __rmqueue_cma_fallback(zone, order); 2101 if (page) 2102 return page; 2103 } 2104 } 2105retry: 2106 page = __rmqueue_smallest(zone, order, migratetype); 2107 if (unlikely(!page)) { 2108 if (alloc_flags & ALLOC_CMA) 2109 page = __rmqueue_cma_fallback(zone, order); 2110 2111 if (!page && __rmqueue_fallback(zone, order, migratetype, 2112 alloc_flags)) 2113 goto retry; 2114 } 2115 return page; 2116} 2117 2118/* 2119 * Obtain a specified number of elements from the buddy allocator, all under 2120 * a single hold of the lock, for efficiency. Add them to the supplied list. 2121 * Returns the number of new pages which were placed at *list. 2122 */ 2123static int rmqueue_bulk(struct zone *zone, unsigned int order, 2124 unsigned long count, struct list_head *list, 2125 int migratetype, unsigned int alloc_flags) 2126{ 2127 unsigned long flags; 2128 int i; 2129 2130 spin_lock_irqsave(&zone->lock, flags); 2131 for (i = 0; i < count; ++i) { 2132 struct page *page = __rmqueue(zone, order, migratetype, 2133 alloc_flags); 2134 if (unlikely(page == NULL)) 2135 break; 2136 2137 /* 2138 * Split buddy pages returned by expand() are received here in 2139 * physical page order. The page is added to the tail of 2140 * caller's list. From the callers perspective, the linked list 2141 * is ordered by page number under some conditions. This is 2142 * useful for IO devices that can forward direction from the 2143 * head, thus also in the physical page order. This is useful 2144 * for IO devices that can merge IO requests if the physical 2145 * pages are ordered properly. 2146 */ 2147 list_add_tail(&page->pcp_list, list); 2148 if (is_migrate_cma(get_pcppage_migratetype(page))) 2149 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2150 -(1 << order)); 2151 } 2152 2153 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2154 spin_unlock_irqrestore(&zone->lock, flags); 2155 2156 return i; 2157} 2158 2159/* 2160 * Called from the vmstat counter updater to decay the PCP high. 2161 * Return whether there are addition works to do. 2162 */ 2163int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp) 2164{ 2165 int high_min, to_drain, batch; 2166 int todo = 0; 2167 2168 high_min = READ_ONCE(pcp->high_min); 2169 batch = READ_ONCE(pcp->batch); 2170 /* 2171 * Decrease pcp->high periodically to try to free possible 2172 * idle PCP pages. And, avoid to free too many pages to 2173 * control latency. This caps pcp->high decrement too. 2174 */ 2175 if (pcp->high > high_min) { 2176 pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2177 pcp->high - (pcp->high >> 3), high_min); 2178 if (pcp->high > high_min) 2179 todo++; 2180 } 2181 2182 to_drain = pcp->count - pcp->high; 2183 if (to_drain > 0) { 2184 spin_lock(&pcp->lock); 2185 free_pcppages_bulk(zone, to_drain, pcp, 0); 2186 spin_unlock(&pcp->lock); 2187 todo++; 2188 } 2189 2190 return todo; 2191} 2192 2193#ifdef CONFIG_NUMA 2194/* 2195 * Called from the vmstat counter updater to drain pagesets of this 2196 * currently executing processor on remote nodes after they have 2197 * expired. 2198 */ 2199void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2200{ 2201 int to_drain, batch; 2202 2203 batch = READ_ONCE(pcp->batch); 2204 to_drain = min(pcp->count, batch); 2205 if (to_drain > 0) { 2206 spin_lock(&pcp->lock); 2207 free_pcppages_bulk(zone, to_drain, pcp, 0); 2208 spin_unlock(&pcp->lock); 2209 } 2210} 2211#endif 2212 2213/* 2214 * Drain pcplists of the indicated processor and zone. 2215 */ 2216static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2217{ 2218 struct per_cpu_pages *pcp; 2219 2220 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2221 if (pcp->count) { 2222 spin_lock(&pcp->lock); 2223 free_pcppages_bulk(zone, pcp->count, pcp, 0); 2224 spin_unlock(&pcp->lock); 2225 } 2226} 2227 2228/* 2229 * Drain pcplists of all zones on the indicated processor. 2230 */ 2231static void drain_pages(unsigned int cpu) 2232{ 2233 struct zone *zone; 2234 2235 for_each_populated_zone(zone) { 2236 drain_pages_zone(cpu, zone); 2237 } 2238} 2239 2240/* 2241 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2242 */ 2243void drain_local_pages(struct zone *zone) 2244{ 2245 int cpu = smp_processor_id(); 2246 2247 if (zone) 2248 drain_pages_zone(cpu, zone); 2249 else 2250 drain_pages(cpu); 2251} 2252 2253/* 2254 * The implementation of drain_all_pages(), exposing an extra parameter to 2255 * drain on all cpus. 2256 * 2257 * drain_all_pages() is optimized to only execute on cpus where pcplists are 2258 * not empty. The check for non-emptiness can however race with a free to 2259 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 2260 * that need the guarantee that every CPU has drained can disable the 2261 * optimizing racy check. 2262 */ 2263static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 2264{ 2265 int cpu; 2266 2267 /* 2268 * Allocate in the BSS so we won't require allocation in 2269 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2270 */ 2271 static cpumask_t cpus_with_pcps; 2272 2273 /* 2274 * Do not drain if one is already in progress unless it's specific to 2275 * a zone. Such callers are primarily CMA and memory hotplug and need 2276 * the drain to be complete when the call returns. 2277 */ 2278 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2279 if (!zone) 2280 return; 2281 mutex_lock(&pcpu_drain_mutex); 2282 } 2283 2284 /* 2285 * We don't care about racing with CPU hotplug event 2286 * as offline notification will cause the notified 2287 * cpu to drain that CPU pcps and on_each_cpu_mask 2288 * disables preemption as part of its processing 2289 */ 2290 for_each_online_cpu(cpu) { 2291 struct per_cpu_pages *pcp; 2292 struct zone *z; 2293 bool has_pcps = false; 2294 2295 if (force_all_cpus) { 2296 /* 2297 * The pcp.count check is racy, some callers need a 2298 * guarantee that no cpu is missed. 2299 */ 2300 has_pcps = true; 2301 } else if (zone) { 2302 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2303 if (pcp->count) 2304 has_pcps = true; 2305 } else { 2306 for_each_populated_zone(z) { 2307 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 2308 if (pcp->count) { 2309 has_pcps = true; 2310 break; 2311 } 2312 } 2313 } 2314 2315 if (has_pcps) 2316 cpumask_set_cpu(cpu, &cpus_with_pcps); 2317 else 2318 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2319 } 2320 2321 for_each_cpu(cpu, &cpus_with_pcps) { 2322 if (zone) 2323 drain_pages_zone(cpu, zone); 2324 else 2325 drain_pages(cpu); 2326 } 2327 2328 mutex_unlock(&pcpu_drain_mutex); 2329} 2330 2331/* 2332 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2333 * 2334 * When zone parameter is non-NULL, spill just the single zone's pages. 2335 */ 2336void drain_all_pages(struct zone *zone) 2337{ 2338 __drain_all_pages(zone, false); 2339} 2340 2341static bool free_unref_page_prepare(struct page *page, unsigned long pfn, 2342 unsigned int order) 2343{ 2344 int migratetype; 2345 2346 if (!free_pages_prepare(page, order, FPI_NONE)) 2347 return false; 2348 2349 migratetype = get_pfnblock_migratetype(page, pfn); 2350 set_pcppage_migratetype(page, migratetype); 2351 return true; 2352} 2353 2354static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high) 2355{ 2356 int min_nr_free, max_nr_free; 2357 2358 /* Free as much as possible if batch freeing high-order pages. */ 2359 if (unlikely(free_high)) 2360 return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX); 2361 2362 /* Check for PCP disabled or boot pageset */ 2363 if (unlikely(high < batch)) 2364 return 1; 2365 2366 /* Leave at least pcp->batch pages on the list */ 2367 min_nr_free = batch; 2368 max_nr_free = high - batch; 2369 2370 /* 2371 * Increase the batch number to the number of the consecutive 2372 * freed pages to reduce zone lock contention. 2373 */ 2374 batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free); 2375 2376 return batch; 2377} 2378 2379static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, 2380 int batch, bool free_high) 2381{ 2382 int high, high_min, high_max; 2383 2384 high_min = READ_ONCE(pcp->high_min); 2385 high_max = READ_ONCE(pcp->high_max); 2386 high = pcp->high = clamp(pcp->high, high_min, high_max); 2387 2388 if (unlikely(!high)) 2389 return 0; 2390 2391 if (unlikely(free_high)) { 2392 pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2393 high_min); 2394 return 0; 2395 } 2396 2397 /* 2398 * If reclaim is active, limit the number of pages that can be 2399 * stored on pcp lists 2400 */ 2401 if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) { 2402 int free_count = max_t(int, pcp->free_count, batch); 2403 2404 pcp->high = max(high - free_count, high_min); 2405 return min(batch << 2, pcp->high); 2406 } 2407 2408 if (high_min == high_max) 2409 return high; 2410 2411 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) { 2412 int free_count = max_t(int, pcp->free_count, batch); 2413 2414 pcp->high = max(high - free_count, high_min); 2415 high = max(pcp->count, high_min); 2416 } else if (pcp->count >= high) { 2417 int need_high = pcp->free_count + batch; 2418 2419 /* pcp->high should be large enough to hold batch freed pages */ 2420 if (pcp->high < need_high) 2421 pcp->high = clamp(need_high, high_min, high_max); 2422 } 2423 2424 return high; 2425} 2426 2427static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp, 2428 struct page *page, int migratetype, 2429 unsigned int order) 2430{ 2431 int high, batch; 2432 int pindex; 2433 bool free_high = false; 2434 2435 /* 2436 * On freeing, reduce the number of pages that are batch allocated. 2437 * See nr_pcp_alloc() where alloc_factor is increased for subsequent 2438 * allocations. 2439 */ 2440 pcp->alloc_factor >>= 1; 2441 __count_vm_events(PGFREE, 1 << order); 2442 pindex = order_to_pindex(migratetype, order); 2443 list_add(&page->pcp_list, &pcp->lists[pindex]); 2444 pcp->count += 1 << order; 2445 2446 batch = READ_ONCE(pcp->batch); 2447 /* 2448 * As high-order pages other than THP's stored on PCP can contribute 2449 * to fragmentation, limit the number stored when PCP is heavily 2450 * freeing without allocation. The remainder after bulk freeing 2451 * stops will be drained from vmstat refresh context. 2452 */ 2453 if (order && order <= PAGE_ALLOC_COSTLY_ORDER) { 2454 free_high = (pcp->free_count >= batch && 2455 (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) && 2456 (!(pcp->flags & PCPF_FREE_HIGH_BATCH) || 2457 pcp->count >= READ_ONCE(batch))); 2458 pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER; 2459 } else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) { 2460 pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER; 2461 } 2462 if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX)) 2463 pcp->free_count += (1 << order); 2464 high = nr_pcp_high(pcp, zone, batch, free_high); 2465 if (pcp->count >= high) { 2466 free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high), 2467 pcp, pindex); 2468 if (test_bit(ZONE_BELOW_HIGH, &zone->flags) && 2469 zone_watermark_ok(zone, 0, high_wmark_pages(zone), 2470 ZONE_MOVABLE, 0)) 2471 clear_bit(ZONE_BELOW_HIGH, &zone->flags); 2472 } 2473} 2474 2475/* 2476 * Free a pcp page 2477 */ 2478void free_unref_page(struct page *page, unsigned int order) 2479{ 2480 unsigned long __maybe_unused UP_flags; 2481 struct per_cpu_pages *pcp; 2482 struct zone *zone; 2483 unsigned long pfn = page_to_pfn(page); 2484 int migratetype, pcpmigratetype; 2485 2486 if (!free_unref_page_prepare(page, pfn, order)) 2487 return; 2488 2489 /* 2490 * We only track unmovable, reclaimable and movable on pcp lists. 2491 * Place ISOLATE pages on the isolated list because they are being 2492 * offlined but treat HIGHATOMIC and CMA as movable pages so we can 2493 * get those areas back if necessary. Otherwise, we may have to free 2494 * excessively into the page allocator 2495 */ 2496 migratetype = pcpmigratetype = get_pcppage_migratetype(page); 2497 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 2498 if (unlikely(is_migrate_isolate(migratetype))) { 2499 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE); 2500 return; 2501 } 2502 pcpmigratetype = MIGRATE_MOVABLE; 2503 } 2504 2505 zone = page_zone(page); 2506 pcp_trylock_prepare(UP_flags); 2507 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2508 if (pcp) { 2509 free_unref_page_commit(zone, pcp, page, pcpmigratetype, order); 2510 pcp_spin_unlock(pcp); 2511 } else { 2512 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE); 2513 } 2514 pcp_trylock_finish(UP_flags); 2515} 2516 2517/* 2518 * Free a list of 0-order pages 2519 */ 2520void free_unref_page_list(struct list_head *list) 2521{ 2522 unsigned long __maybe_unused UP_flags; 2523 struct page *page, *next; 2524 struct per_cpu_pages *pcp = NULL; 2525 struct zone *locked_zone = NULL; 2526 int batch_count = 0; 2527 int migratetype; 2528 2529 /* Prepare pages for freeing */ 2530 list_for_each_entry_safe(page, next, list, lru) { 2531 unsigned long pfn = page_to_pfn(page); 2532 if (!free_unref_page_prepare(page, pfn, 0)) { 2533 list_del(&page->lru); 2534 continue; 2535 } 2536 2537 /* 2538 * Free isolated pages directly to the allocator, see 2539 * comment in free_unref_page. 2540 */ 2541 migratetype = get_pcppage_migratetype(page); 2542 if (unlikely(is_migrate_isolate(migratetype))) { 2543 list_del(&page->lru); 2544 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE); 2545 continue; 2546 } 2547 } 2548 2549 list_for_each_entry_safe(page, next, list, lru) { 2550 struct zone *zone = page_zone(page); 2551 2552 list_del(&page->lru); 2553 migratetype = get_pcppage_migratetype(page); 2554 2555 /* 2556 * Either different zone requiring a different pcp lock or 2557 * excessive lock hold times when freeing a large list of 2558 * pages. 2559 */ 2560 if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) { 2561 if (pcp) { 2562 pcp_spin_unlock(pcp); 2563 pcp_trylock_finish(UP_flags); 2564 } 2565 2566 batch_count = 0; 2567 2568 /* 2569 * trylock is necessary as pages may be getting freed 2570 * from IRQ or SoftIRQ context after an IO completion. 2571 */ 2572 pcp_trylock_prepare(UP_flags); 2573 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2574 if (unlikely(!pcp)) { 2575 pcp_trylock_finish(UP_flags); 2576 free_one_page(zone, page, page_to_pfn(page), 2577 0, migratetype, FPI_NONE); 2578 locked_zone = NULL; 2579 continue; 2580 } 2581 locked_zone = zone; 2582 } 2583 2584 /* 2585 * Non-isolated types over MIGRATE_PCPTYPES get added 2586 * to the MIGRATE_MOVABLE pcp list. 2587 */ 2588 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 2589 migratetype = MIGRATE_MOVABLE; 2590 2591 trace_mm_page_free_batched(page); 2592 free_unref_page_commit(zone, pcp, page, migratetype, 0); 2593 batch_count++; 2594 } 2595 2596 if (pcp) { 2597 pcp_spin_unlock(pcp); 2598 pcp_trylock_finish(UP_flags); 2599 } 2600} 2601 2602/* 2603 * split_page takes a non-compound higher-order page, and splits it into 2604 * n (1<<order) sub-pages: page[0..n] 2605 * Each sub-page must be freed individually. 2606 * 2607 * Note: this is probably too low level an operation for use in drivers. 2608 * Please consult with lkml before using this in your driver. 2609 */ 2610void split_page(struct page *page, unsigned int order) 2611{ 2612 int i; 2613 2614 VM_BUG_ON_PAGE(PageCompound(page), page); 2615 VM_BUG_ON_PAGE(!page_count(page), page); 2616 2617 for (i = 1; i < (1 << order); i++) 2618 set_page_refcounted(page + i); 2619 split_page_owner(page, 1 << order); 2620 split_page_memcg(page, 1 << order); 2621} 2622EXPORT_SYMBOL_GPL(split_page); 2623 2624int __isolate_free_page(struct page *page, unsigned int order) 2625{ 2626 struct zone *zone = page_zone(page); 2627 int mt = get_pageblock_migratetype(page); 2628 2629 if (!is_migrate_isolate(mt)) { 2630 unsigned long watermark; 2631 /* 2632 * Obey watermarks as if the page was being allocated. We can 2633 * emulate a high-order watermark check with a raised order-0 2634 * watermark, because we already know our high-order page 2635 * exists. 2636 */ 2637 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 2638 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 2639 return 0; 2640 2641 __mod_zone_freepage_state(zone, -(1UL << order), mt); 2642 } 2643 2644 del_page_from_free_list(page, zone, order); 2645 2646 /* 2647 * Set the pageblock if the isolated page is at least half of a 2648 * pageblock 2649 */ 2650 if (order >= pageblock_order - 1) { 2651 struct page *endpage = page + (1 << order) - 1; 2652 for (; page < endpage; page += pageblock_nr_pages) { 2653 int mt = get_pageblock_migratetype(page); 2654 /* 2655 * Only change normal pageblocks (i.e., they can merge 2656 * with others) 2657 */ 2658 if (migratetype_is_mergeable(mt)) 2659 set_pageblock_migratetype(page, 2660 MIGRATE_MOVABLE); 2661 } 2662 } 2663 2664 return 1UL << order; 2665} 2666 2667/** 2668 * __putback_isolated_page - Return a now-isolated page back where we got it 2669 * @page: Page that was isolated 2670 * @order: Order of the isolated page 2671 * @mt: The page's pageblock's migratetype 2672 * 2673 * This function is meant to return a page pulled from the free lists via 2674 * __isolate_free_page back to the free lists they were pulled from. 2675 */ 2676void __putback_isolated_page(struct page *page, unsigned int order, int mt) 2677{ 2678 struct zone *zone = page_zone(page); 2679 2680 /* zone lock should be held when this function is called */ 2681 lockdep_assert_held(&zone->lock); 2682 2683 /* Return isolated page to tail of freelist. */ 2684 __free_one_page(page, page_to_pfn(page), zone, order, mt, 2685 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 2686} 2687 2688/* 2689 * Update NUMA hit/miss statistics 2690 */ 2691static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 2692 long nr_account) 2693{ 2694#ifdef CONFIG_NUMA 2695 enum numa_stat_item local_stat = NUMA_LOCAL; 2696 2697 /* skip numa counters update if numa stats is disabled */ 2698 if (!static_branch_likely(&vm_numa_stat_key)) 2699 return; 2700 2701 if (zone_to_nid(z) != numa_node_id()) 2702 local_stat = NUMA_OTHER; 2703 2704 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 2705 __count_numa_events(z, NUMA_HIT, nr_account); 2706 else { 2707 __count_numa_events(z, NUMA_MISS, nr_account); 2708 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 2709 } 2710 __count_numa_events(z, local_stat, nr_account); 2711#endif 2712} 2713 2714static __always_inline 2715struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone, 2716 unsigned int order, unsigned int alloc_flags, 2717 int migratetype) 2718{ 2719 struct page *page; 2720 unsigned long flags; 2721 2722 do { 2723 page = NULL; 2724 spin_lock_irqsave(&zone->lock, flags); 2725 if (alloc_flags & ALLOC_HIGHATOMIC) 2726 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2727 if (!page) { 2728 page = __rmqueue(zone, order, migratetype, alloc_flags); 2729 2730 /* 2731 * If the allocation fails, allow OOM handling access 2732 * to HIGHATOMIC reserves as failing now is worse than 2733 * failing a high-order atomic allocation in the 2734 * future. 2735 */ 2736 if (!page && (alloc_flags & ALLOC_OOM)) 2737 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2738 2739 if (!page) { 2740 spin_unlock_irqrestore(&zone->lock, flags); 2741 return NULL; 2742 } 2743 } 2744 __mod_zone_freepage_state(zone, -(1 << order), 2745 get_pcppage_migratetype(page)); 2746 spin_unlock_irqrestore(&zone->lock, flags); 2747 } while (check_new_pages(page, order)); 2748 2749 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2750 zone_statistics(preferred_zone, zone, 1); 2751 2752 return page; 2753} 2754 2755static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order) 2756{ 2757 int high, base_batch, batch, max_nr_alloc; 2758 int high_max, high_min; 2759 2760 base_batch = READ_ONCE(pcp->batch); 2761 high_min = READ_ONCE(pcp->high_min); 2762 high_max = READ_ONCE(pcp->high_max); 2763 high = pcp->high = clamp(pcp->high, high_min, high_max); 2764 2765 /* Check for PCP disabled or boot pageset */ 2766 if (unlikely(high < base_batch)) 2767 return 1; 2768 2769 if (order) 2770 batch = base_batch; 2771 else 2772 batch = (base_batch << pcp->alloc_factor); 2773 2774 /* 2775 * If we had larger pcp->high, we could avoid to allocate from 2776 * zone. 2777 */ 2778 if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags)) 2779 high = pcp->high = min(high + batch, high_max); 2780 2781 if (!order) { 2782 max_nr_alloc = max(high - pcp->count - base_batch, base_batch); 2783 /* 2784 * Double the number of pages allocated each time there is 2785 * subsequent allocation of order-0 pages without any freeing. 2786 */ 2787 if (batch <= max_nr_alloc && 2788 pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX) 2789 pcp->alloc_factor++; 2790 batch = min(batch, max_nr_alloc); 2791 } 2792 2793 /* 2794 * Scale batch relative to order if batch implies free pages 2795 * can be stored on the PCP. Batch can be 1 for small zones or 2796 * for boot pagesets which should never store free pages as 2797 * the pages may belong to arbitrary zones. 2798 */ 2799 if (batch > 1) 2800 batch = max(batch >> order, 2); 2801 2802 return batch; 2803} 2804 2805/* Remove page from the per-cpu list, caller must protect the list */ 2806static inline 2807struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 2808 int migratetype, 2809 unsigned int alloc_flags, 2810 struct per_cpu_pages *pcp, 2811 struct list_head *list) 2812{ 2813 struct page *page; 2814 2815 do { 2816 if (list_empty(list)) { 2817 int batch = nr_pcp_alloc(pcp, zone, order); 2818 int alloced; 2819 2820 alloced = rmqueue_bulk(zone, order, 2821 batch, list, 2822 migratetype, alloc_flags); 2823 2824 pcp->count += alloced << order; 2825 if (unlikely(list_empty(list))) 2826 return NULL; 2827 } 2828 2829 page = list_first_entry(list, struct page, pcp_list); 2830 list_del(&page->pcp_list); 2831 pcp->count -= 1 << order; 2832 } while (check_new_pages(page, order)); 2833 2834 return page; 2835} 2836 2837/* Lock and remove page from the per-cpu list */ 2838static struct page *rmqueue_pcplist(struct zone *preferred_zone, 2839 struct zone *zone, unsigned int order, 2840 int migratetype, unsigned int alloc_flags) 2841{ 2842 struct per_cpu_pages *pcp; 2843 struct list_head *list; 2844 struct page *page; 2845 unsigned long __maybe_unused UP_flags; 2846 2847 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 2848 pcp_trylock_prepare(UP_flags); 2849 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2850 if (!pcp) { 2851 pcp_trylock_finish(UP_flags); 2852 return NULL; 2853 } 2854 2855 /* 2856 * On allocation, reduce the number of pages that are batch freed. 2857 * See nr_pcp_free() where free_factor is increased for subsequent 2858 * frees. 2859 */ 2860 pcp->free_count >>= 1; 2861 list = &pcp->lists[order_to_pindex(migratetype, order)]; 2862 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 2863 pcp_spin_unlock(pcp); 2864 pcp_trylock_finish(UP_flags); 2865 if (page) { 2866 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2867 zone_statistics(preferred_zone, zone, 1); 2868 } 2869 return page; 2870} 2871 2872/* 2873 * Allocate a page from the given zone. 2874 * Use pcplists for THP or "cheap" high-order allocations. 2875 */ 2876 2877/* 2878 * Do not instrument rmqueue() with KMSAN. This function may call 2879 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask(). 2880 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it 2881 * may call rmqueue() again, which will result in a deadlock. 2882 */ 2883__no_sanitize_memory 2884static inline 2885struct page *rmqueue(struct zone *preferred_zone, 2886 struct zone *zone, unsigned int order, 2887 gfp_t gfp_flags, unsigned int alloc_flags, 2888 int migratetype) 2889{ 2890 struct page *page; 2891 2892 /* 2893 * We most definitely don't want callers attempting to 2894 * allocate greater than order-1 page units with __GFP_NOFAIL. 2895 */ 2896 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 2897 2898 if (likely(pcp_allowed_order(order))) { 2899 page = rmqueue_pcplist(preferred_zone, zone, order, 2900 migratetype, alloc_flags); 2901 if (likely(page)) 2902 goto out; 2903 } 2904 2905 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags, 2906 migratetype); 2907 2908out: 2909 /* Separate test+clear to avoid unnecessary atomics */ 2910 if ((alloc_flags & ALLOC_KSWAPD) && 2911 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) { 2912 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2913 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 2914 } 2915 2916 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 2917 return page; 2918} 2919 2920noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 2921{ 2922 return __should_fail_alloc_page(gfp_mask, order); 2923} 2924ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 2925 2926static inline long __zone_watermark_unusable_free(struct zone *z, 2927 unsigned int order, unsigned int alloc_flags) 2928{ 2929 long unusable_free = (1 << order) - 1; 2930 2931 /* 2932 * If the caller does not have rights to reserves below the min 2933 * watermark then subtract the high-atomic reserves. This will 2934 * over-estimate the size of the atomic reserve but it avoids a search. 2935 */ 2936 if (likely(!(alloc_flags & ALLOC_RESERVES))) 2937 unusable_free += z->nr_reserved_highatomic; 2938 2939#ifdef CONFIG_CMA 2940 /* If allocation can't use CMA areas don't use free CMA pages */ 2941 if (!(alloc_flags & ALLOC_CMA)) 2942 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 2943#endif 2944#ifdef CONFIG_UNACCEPTED_MEMORY 2945 unusable_free += zone_page_state(z, NR_UNACCEPTED); 2946#endif 2947 2948 return unusable_free; 2949} 2950 2951/* 2952 * Return true if free base pages are above 'mark'. For high-order checks it 2953 * will return true of the order-0 watermark is reached and there is at least 2954 * one free page of a suitable size. Checking now avoids taking the zone lock 2955 * to check in the allocation paths if no pages are free. 2956 */ 2957bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 2958 int highest_zoneidx, unsigned int alloc_flags, 2959 long free_pages) 2960{ 2961 long min = mark; 2962 int o; 2963 2964 /* free_pages may go negative - that's OK */ 2965 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 2966 2967 if (unlikely(alloc_flags & ALLOC_RESERVES)) { 2968 /* 2969 * __GFP_HIGH allows access to 50% of the min reserve as well 2970 * as OOM. 2971 */ 2972 if (alloc_flags & ALLOC_MIN_RESERVE) { 2973 min -= min / 2; 2974 2975 /* 2976 * Non-blocking allocations (e.g. GFP_ATOMIC) can 2977 * access more reserves than just __GFP_HIGH. Other 2978 * non-blocking allocations requests such as GFP_NOWAIT 2979 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get 2980 * access to the min reserve. 2981 */ 2982 if (alloc_flags & ALLOC_NON_BLOCK) 2983 min -= min / 4; 2984 } 2985 2986 /* 2987 * OOM victims can try even harder than the normal reserve 2988 * users on the grounds that it's definitely going to be in 2989 * the exit path shortly and free memory. Any allocation it 2990 * makes during the free path will be small and short-lived. 2991 */ 2992 if (alloc_flags & ALLOC_OOM) 2993 min -= min / 2; 2994 } 2995 2996 /* 2997 * Check watermarks for an order-0 allocation request. If these 2998 * are not met, then a high-order request also cannot go ahead 2999 * even if a suitable page happened to be free. 3000 */ 3001 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3002 return false; 3003 3004 /* If this is an order-0 request then the watermark is fine */ 3005 if (!order) 3006 return true; 3007 3008 /* For a high-order request, check at least one suitable page is free */ 3009 for (o = order; o < NR_PAGE_ORDERS; o++) { 3010 struct free_area *area = &z->free_area[o]; 3011 int mt; 3012 3013 if (!area->nr_free) 3014 continue; 3015 3016 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3017 if (!free_area_empty(area, mt)) 3018 return true; 3019 } 3020 3021#ifdef CONFIG_CMA 3022 if ((alloc_flags & ALLOC_CMA) && 3023 !free_area_empty(area, MIGRATE_CMA)) { 3024 return true; 3025 } 3026#endif 3027 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) && 3028 !free_area_empty(area, MIGRATE_HIGHATOMIC)) { 3029 return true; 3030 } 3031 } 3032 return false; 3033} 3034 3035bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3036 int highest_zoneidx, unsigned int alloc_flags) 3037{ 3038 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3039 zone_page_state(z, NR_FREE_PAGES)); 3040} 3041 3042static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3043 unsigned long mark, int highest_zoneidx, 3044 unsigned int alloc_flags, gfp_t gfp_mask) 3045{ 3046 long free_pages; 3047 3048 free_pages = zone_page_state(z, NR_FREE_PAGES); 3049 3050 /* 3051 * Fast check for order-0 only. If this fails then the reserves 3052 * need to be calculated. 3053 */ 3054 if (!order) { 3055 long usable_free; 3056 long reserved; 3057 3058 usable_free = free_pages; 3059 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags); 3060 3061 /* reserved may over estimate high-atomic reserves. */ 3062 usable_free -= min(usable_free, reserved); 3063 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx]) 3064 return true; 3065 } 3066 3067 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3068 free_pages)) 3069 return true; 3070 3071 /* 3072 * Ignore watermark boosting for __GFP_HIGH order-0 allocations 3073 * when checking the min watermark. The min watermark is the 3074 * point where boosting is ignored so that kswapd is woken up 3075 * when below the low watermark. 3076 */ 3077 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost 3078 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3079 mark = z->_watermark[WMARK_MIN]; 3080 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3081 alloc_flags, free_pages); 3082 } 3083 3084 return false; 3085} 3086 3087bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3088 unsigned long mark, int highest_zoneidx) 3089{ 3090 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3091 3092 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3093 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3094 3095 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 3096 free_pages); 3097} 3098 3099#ifdef CONFIG_NUMA 3100int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 3101 3102static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3103{ 3104 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3105 node_reclaim_distance; 3106} 3107#else /* CONFIG_NUMA */ 3108static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3109{ 3110 return true; 3111} 3112#endif /* CONFIG_NUMA */ 3113 3114/* 3115 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3116 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3117 * premature use of a lower zone may cause lowmem pressure problems that 3118 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3119 * probably too small. It only makes sense to spread allocations to avoid 3120 * fragmentation between the Normal and DMA32 zones. 3121 */ 3122static inline unsigned int 3123alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3124{ 3125 unsigned int alloc_flags; 3126 3127 /* 3128 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3129 * to save a branch. 3130 */ 3131 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3132 3133#ifdef CONFIG_ZONE_DMA32 3134 if (!zone) 3135 return alloc_flags; 3136 3137 if (zone_idx(zone) != ZONE_NORMAL) 3138 return alloc_flags; 3139 3140 /* 3141 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3142 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3143 * on UMA that if Normal is populated then so is DMA32. 3144 */ 3145 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3146 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3147 return alloc_flags; 3148 3149 alloc_flags |= ALLOC_NOFRAGMENT; 3150#endif /* CONFIG_ZONE_DMA32 */ 3151 return alloc_flags; 3152} 3153 3154/* Must be called after current_gfp_context() which can change gfp_mask */ 3155static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 3156 unsigned int alloc_flags) 3157{ 3158#ifdef CONFIG_CMA 3159 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3160 alloc_flags |= ALLOC_CMA; 3161#endif 3162 return alloc_flags; 3163} 3164 3165/* 3166 * get_page_from_freelist goes through the zonelist trying to allocate 3167 * a page. 3168 */ 3169static struct page * 3170get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3171 const struct alloc_context *ac) 3172{ 3173 struct zoneref *z; 3174 struct zone *zone; 3175 struct pglist_data *last_pgdat = NULL; 3176 bool last_pgdat_dirty_ok = false; 3177 bool no_fallback; 3178 3179retry: 3180 /* 3181 * Scan zonelist, looking for a zone with enough free. 3182 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c. 3183 */ 3184 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3185 z = ac->preferred_zoneref; 3186 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 3187 ac->nodemask) { 3188 struct page *page; 3189 unsigned long mark; 3190 3191 if (cpusets_enabled() && 3192 (alloc_flags & ALLOC_CPUSET) && 3193 !__cpuset_zone_allowed(zone, gfp_mask)) 3194 continue; 3195 /* 3196 * When allocating a page cache page for writing, we 3197 * want to get it from a node that is within its dirty 3198 * limit, such that no single node holds more than its 3199 * proportional share of globally allowed dirty pages. 3200 * The dirty limits take into account the node's 3201 * lowmem reserves and high watermark so that kswapd 3202 * should be able to balance it without having to 3203 * write pages from its LRU list. 3204 * 3205 * XXX: For now, allow allocations to potentially 3206 * exceed the per-node dirty limit in the slowpath 3207 * (spread_dirty_pages unset) before going into reclaim, 3208 * which is important when on a NUMA setup the allowed 3209 * nodes are together not big enough to reach the 3210 * global limit. The proper fix for these situations 3211 * will require awareness of nodes in the 3212 * dirty-throttling and the flusher threads. 3213 */ 3214 if (ac->spread_dirty_pages) { 3215 if (last_pgdat != zone->zone_pgdat) { 3216 last_pgdat = zone->zone_pgdat; 3217 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); 3218 } 3219 3220 if (!last_pgdat_dirty_ok) 3221 continue; 3222 } 3223 3224 if (no_fallback && nr_online_nodes > 1 && 3225 zone != ac->preferred_zoneref->zone) { 3226 int local_nid; 3227 3228 /* 3229 * If moving to a remote node, retry but allow 3230 * fragmenting fallbacks. Locality is more important 3231 * than fragmentation avoidance. 3232 */ 3233 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 3234 if (zone_to_nid(zone) != local_nid) { 3235 alloc_flags &= ~ALLOC_NOFRAGMENT; 3236 goto retry; 3237 } 3238 } 3239 3240 /* 3241 * Detect whether the number of free pages is below high 3242 * watermark. If so, we will decrease pcp->high and free 3243 * PCP pages in free path to reduce the possibility of 3244 * premature page reclaiming. Detection is done here to 3245 * avoid to do that in hotter free path. 3246 */ 3247 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) 3248 goto check_alloc_wmark; 3249 3250 mark = high_wmark_pages(zone); 3251 if (zone_watermark_fast(zone, order, mark, 3252 ac->highest_zoneidx, alloc_flags, 3253 gfp_mask)) 3254 goto try_this_zone; 3255 else 3256 set_bit(ZONE_BELOW_HIGH, &zone->flags); 3257 3258check_alloc_wmark: 3259 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3260 if (!zone_watermark_fast(zone, order, mark, 3261 ac->highest_zoneidx, alloc_flags, 3262 gfp_mask)) { 3263 int ret; 3264 3265 if (has_unaccepted_memory()) { 3266 if (try_to_accept_memory(zone, order)) 3267 goto try_this_zone; 3268 } 3269 3270#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3271 /* 3272 * Watermark failed for this zone, but see if we can 3273 * grow this zone if it contains deferred pages. 3274 */ 3275 if (deferred_pages_enabled()) { 3276 if (_deferred_grow_zone(zone, order)) 3277 goto try_this_zone; 3278 } 3279#endif 3280 /* Checked here to keep the fast path fast */ 3281 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3282 if (alloc_flags & ALLOC_NO_WATERMARKS) 3283 goto try_this_zone; 3284 3285 if (!node_reclaim_enabled() || 3286 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3287 continue; 3288 3289 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3290 switch (ret) { 3291 case NODE_RECLAIM_NOSCAN: 3292 /* did not scan */ 3293 continue; 3294 case NODE_RECLAIM_FULL: 3295 /* scanned but unreclaimable */ 3296 continue; 3297 default: 3298 /* did we reclaim enough */ 3299 if (zone_watermark_ok(zone, order, mark, 3300 ac->highest_zoneidx, alloc_flags)) 3301 goto try_this_zone; 3302 3303 continue; 3304 } 3305 } 3306 3307try_this_zone: 3308 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3309 gfp_mask, alloc_flags, ac->migratetype); 3310 if (page) { 3311 prep_new_page(page, order, gfp_mask, alloc_flags); 3312 3313 /* 3314 * If this is a high-order atomic allocation then check 3315 * if the pageblock should be reserved for the future 3316 */ 3317 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC)) 3318 reserve_highatomic_pageblock(page, zone); 3319 3320 return page; 3321 } else { 3322 if (has_unaccepted_memory()) { 3323 if (try_to_accept_memory(zone, order)) 3324 goto try_this_zone; 3325 } 3326 3327#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3328 /* Try again if zone has deferred pages */ 3329 if (deferred_pages_enabled()) { 3330 if (_deferred_grow_zone(zone, order)) 3331 goto try_this_zone; 3332 } 3333#endif 3334 } 3335 } 3336 3337 /* 3338 * It's possible on a UMA machine to get through all zones that are 3339 * fragmented. If avoiding fragmentation, reset and try again. 3340 */ 3341 if (no_fallback) { 3342 alloc_flags &= ~ALLOC_NOFRAGMENT; 3343 goto retry; 3344 } 3345 3346 return NULL; 3347} 3348 3349static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3350{ 3351 unsigned int filter = SHOW_MEM_FILTER_NODES; 3352 3353 /* 3354 * This documents exceptions given to allocations in certain 3355 * contexts that are allowed to allocate outside current's set 3356 * of allowed nodes. 3357 */ 3358 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3359 if (tsk_is_oom_victim(current) || 3360 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3361 filter &= ~SHOW_MEM_FILTER_NODES; 3362 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3363 filter &= ~SHOW_MEM_FILTER_NODES; 3364 3365 __show_mem(filter, nodemask, gfp_zone(gfp_mask)); 3366} 3367 3368void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3369{ 3370 struct va_format vaf; 3371 va_list args; 3372 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 3373 3374 if ((gfp_mask & __GFP_NOWARN) || 3375 !__ratelimit(&nopage_rs) || 3376 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 3377 return; 3378 3379 va_start(args, fmt); 3380 vaf.fmt = fmt; 3381 vaf.va = &args; 3382 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3383 current->comm, &vaf, gfp_mask, &gfp_mask, 3384 nodemask_pr_args(nodemask)); 3385 va_end(args); 3386 3387 cpuset_print_current_mems_allowed(); 3388 pr_cont("\n"); 3389 dump_stack(); 3390 warn_alloc_show_mem(gfp_mask, nodemask); 3391} 3392 3393static inline struct page * 3394__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3395 unsigned int alloc_flags, 3396 const struct alloc_context *ac) 3397{ 3398 struct page *page; 3399 3400 page = get_page_from_freelist(gfp_mask, order, 3401 alloc_flags|ALLOC_CPUSET, ac); 3402 /* 3403 * fallback to ignore cpuset restriction if our nodes 3404 * are depleted 3405 */ 3406 if (!page) 3407 page = get_page_from_freelist(gfp_mask, order, 3408 alloc_flags, ac); 3409 3410 return page; 3411} 3412 3413static inline struct page * 3414__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3415 const struct alloc_context *ac, unsigned long *did_some_progress) 3416{ 3417 struct oom_control oc = { 3418 .zonelist = ac->zonelist, 3419 .nodemask = ac->nodemask, 3420 .memcg = NULL, 3421 .gfp_mask = gfp_mask, 3422 .order = order, 3423 }; 3424 struct page *page; 3425 3426 *did_some_progress = 0; 3427 3428 /* 3429 * Acquire the oom lock. If that fails, somebody else is 3430 * making progress for us. 3431 */ 3432 if (!mutex_trylock(&oom_lock)) { 3433 *did_some_progress = 1; 3434 schedule_timeout_uninterruptible(1); 3435 return NULL; 3436 } 3437 3438 /* 3439 * Go through the zonelist yet one more time, keep very high watermark 3440 * here, this is only to catch a parallel oom killing, we must fail if 3441 * we're still under heavy pressure. But make sure that this reclaim 3442 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3443 * allocation which will never fail due to oom_lock already held. 3444 */ 3445 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3446 ~__GFP_DIRECT_RECLAIM, order, 3447 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3448 if (page) 3449 goto out; 3450 3451 /* Coredumps can quickly deplete all memory reserves */ 3452 if (current->flags & PF_DUMPCORE) 3453 goto out; 3454 /* The OOM killer will not help higher order allocs */ 3455 if (order > PAGE_ALLOC_COSTLY_ORDER) 3456 goto out; 3457 /* 3458 * We have already exhausted all our reclaim opportunities without any 3459 * success so it is time to admit defeat. We will skip the OOM killer 3460 * because it is very likely that the caller has a more reasonable 3461 * fallback than shooting a random task. 3462 * 3463 * The OOM killer may not free memory on a specific node. 3464 */ 3465 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 3466 goto out; 3467 /* The OOM killer does not needlessly kill tasks for lowmem */ 3468 if (ac->highest_zoneidx < ZONE_NORMAL) 3469 goto out; 3470 if (pm_suspended_storage()) 3471 goto out; 3472 /* 3473 * XXX: GFP_NOFS allocations should rather fail than rely on 3474 * other request to make a forward progress. 3475 * We are in an unfortunate situation where out_of_memory cannot 3476 * do much for this context but let's try it to at least get 3477 * access to memory reserved if the current task is killed (see 3478 * out_of_memory). Once filesystems are ready to handle allocation 3479 * failures more gracefully we should just bail out here. 3480 */ 3481 3482 /* Exhausted what can be done so it's blame time */ 3483 if (out_of_memory(&oc) || 3484 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { 3485 *did_some_progress = 1; 3486 3487 /* 3488 * Help non-failing allocations by giving them access to memory 3489 * reserves 3490 */ 3491 if (gfp_mask & __GFP_NOFAIL) 3492 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3493 ALLOC_NO_WATERMARKS, ac); 3494 } 3495out: 3496 mutex_unlock(&oom_lock); 3497 return page; 3498} 3499 3500/* 3501 * Maximum number of compaction retries with a progress before OOM 3502 * killer is consider as the only way to move forward. 3503 */ 3504#define MAX_COMPACT_RETRIES 16 3505 3506#ifdef CONFIG_COMPACTION 3507/* Try memory compaction for high-order allocations before reclaim */ 3508static struct page * 3509__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3510 unsigned int alloc_flags, const struct alloc_context *ac, 3511 enum compact_priority prio, enum compact_result *compact_result) 3512{ 3513 struct page *page = NULL; 3514 unsigned long pflags; 3515 unsigned int noreclaim_flag; 3516 3517 if (!order) 3518 return NULL; 3519 3520 psi_memstall_enter(&pflags); 3521 delayacct_compact_start(); 3522 noreclaim_flag = memalloc_noreclaim_save(); 3523 3524 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3525 prio, &page); 3526 3527 memalloc_noreclaim_restore(noreclaim_flag); 3528 psi_memstall_leave(&pflags); 3529 delayacct_compact_end(); 3530 3531 if (*compact_result == COMPACT_SKIPPED) 3532 return NULL; 3533 /* 3534 * At least in one zone compaction wasn't deferred or skipped, so let's 3535 * count a compaction stall 3536 */ 3537 count_vm_event(COMPACTSTALL); 3538 3539 /* Prep a captured page if available */ 3540 if (page) 3541 prep_new_page(page, order, gfp_mask, alloc_flags); 3542 3543 /* Try get a page from the freelist if available */ 3544 if (!page) 3545 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3546 3547 if (page) { 3548 struct zone *zone = page_zone(page); 3549 3550 zone->compact_blockskip_flush = false; 3551 compaction_defer_reset(zone, order, true); 3552 count_vm_event(COMPACTSUCCESS); 3553 return page; 3554 } 3555 3556 /* 3557 * It's bad if compaction run occurs and fails. The most likely reason 3558 * is that pages exist, but not enough to satisfy watermarks. 3559 */ 3560 count_vm_event(COMPACTFAIL); 3561 3562 cond_resched(); 3563 3564 return NULL; 3565} 3566 3567static inline bool 3568should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3569 enum compact_result compact_result, 3570 enum compact_priority *compact_priority, 3571 int *compaction_retries) 3572{ 3573 int max_retries = MAX_COMPACT_RETRIES; 3574 int min_priority; 3575 bool ret = false; 3576 int retries = *compaction_retries; 3577 enum compact_priority priority = *compact_priority; 3578 3579 if (!order) 3580 return false; 3581 3582 if (fatal_signal_pending(current)) 3583 return false; 3584 3585 /* 3586 * Compaction was skipped due to a lack of free order-0 3587 * migration targets. Continue if reclaim can help. 3588 */ 3589 if (compact_result == COMPACT_SKIPPED) { 3590 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3591 goto out; 3592 } 3593 3594 /* 3595 * Compaction managed to coalesce some page blocks, but the 3596 * allocation failed presumably due to a race. Retry some. 3597 */ 3598 if (compact_result == COMPACT_SUCCESS) { 3599 /* 3600 * !costly requests are much more important than 3601 * __GFP_RETRY_MAYFAIL costly ones because they are de 3602 * facto nofail and invoke OOM killer to move on while 3603 * costly can fail and users are ready to cope with 3604 * that. 1/4 retries is rather arbitrary but we would 3605 * need much more detailed feedback from compaction to 3606 * make a better decision. 3607 */ 3608 if (order > PAGE_ALLOC_COSTLY_ORDER) 3609 max_retries /= 4; 3610 3611 if (++(*compaction_retries) <= max_retries) { 3612 ret = true; 3613 goto out; 3614 } 3615 } 3616 3617 /* 3618 * Compaction failed. Retry with increasing priority. 3619 */ 3620 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3621 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3622 3623 if (*compact_priority > min_priority) { 3624 (*compact_priority)--; 3625 *compaction_retries = 0; 3626 ret = true; 3627 } 3628out: 3629 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 3630 return ret; 3631} 3632#else 3633static inline struct page * 3634__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3635 unsigned int alloc_flags, const struct alloc_context *ac, 3636 enum compact_priority prio, enum compact_result *compact_result) 3637{ 3638 *compact_result = COMPACT_SKIPPED; 3639 return NULL; 3640} 3641 3642static inline bool 3643should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 3644 enum compact_result compact_result, 3645 enum compact_priority *compact_priority, 3646 int *compaction_retries) 3647{ 3648 struct zone *zone; 3649 struct zoneref *z; 3650 3651 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 3652 return false; 3653 3654 /* 3655 * There are setups with compaction disabled which would prefer to loop 3656 * inside the allocator rather than hit the oom killer prematurely. 3657 * Let's give them a good hope and keep retrying while the order-0 3658 * watermarks are OK. 3659 */ 3660 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 3661 ac->highest_zoneidx, ac->nodemask) { 3662 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 3663 ac->highest_zoneidx, alloc_flags)) 3664 return true; 3665 } 3666 return false; 3667} 3668#endif /* CONFIG_COMPACTION */ 3669 3670#ifdef CONFIG_LOCKDEP 3671static struct lockdep_map __fs_reclaim_map = 3672 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 3673 3674static bool __need_reclaim(gfp_t gfp_mask) 3675{ 3676 /* no reclaim without waiting on it */ 3677 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 3678 return false; 3679 3680 /* this guy won't enter reclaim */ 3681 if (current->flags & PF_MEMALLOC) 3682 return false; 3683 3684 if (gfp_mask & __GFP_NOLOCKDEP) 3685 return false; 3686 3687 return true; 3688} 3689 3690void __fs_reclaim_acquire(unsigned long ip) 3691{ 3692 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 3693} 3694 3695void __fs_reclaim_release(unsigned long ip) 3696{ 3697 lock_release(&__fs_reclaim_map, ip); 3698} 3699 3700void fs_reclaim_acquire(gfp_t gfp_mask) 3701{ 3702 gfp_mask = current_gfp_context(gfp_mask); 3703 3704 if (__need_reclaim(gfp_mask)) { 3705 if (gfp_mask & __GFP_FS) 3706 __fs_reclaim_acquire(_RET_IP_); 3707 3708#ifdef CONFIG_MMU_NOTIFIER 3709 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 3710 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 3711#endif 3712 3713 } 3714} 3715EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 3716 3717void fs_reclaim_release(gfp_t gfp_mask) 3718{ 3719 gfp_mask = current_gfp_context(gfp_mask); 3720 3721 if (__need_reclaim(gfp_mask)) { 3722 if (gfp_mask & __GFP_FS) 3723 __fs_reclaim_release(_RET_IP_); 3724 } 3725} 3726EXPORT_SYMBOL_GPL(fs_reclaim_release); 3727#endif 3728 3729/* 3730 * Zonelists may change due to hotplug during allocation. Detect when zonelists 3731 * have been rebuilt so allocation retries. Reader side does not lock and 3732 * retries the allocation if zonelist changes. Writer side is protected by the 3733 * embedded spin_lock. 3734 */ 3735static DEFINE_SEQLOCK(zonelist_update_seq); 3736 3737static unsigned int zonelist_iter_begin(void) 3738{ 3739 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 3740 return read_seqbegin(&zonelist_update_seq); 3741 3742 return 0; 3743} 3744 3745static unsigned int check_retry_zonelist(unsigned int seq) 3746{ 3747 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 3748 return read_seqretry(&zonelist_update_seq, seq); 3749 3750 return seq; 3751} 3752 3753/* Perform direct synchronous page reclaim */ 3754static unsigned long 3755__perform_reclaim(gfp_t gfp_mask, unsigned int order, 3756 const struct alloc_context *ac) 3757{ 3758 unsigned int noreclaim_flag; 3759 unsigned long progress; 3760 3761 cond_resched(); 3762 3763 /* We now go into synchronous reclaim */ 3764 cpuset_memory_pressure_bump(); 3765 fs_reclaim_acquire(gfp_mask); 3766 noreclaim_flag = memalloc_noreclaim_save(); 3767 3768 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 3769 ac->nodemask); 3770 3771 memalloc_noreclaim_restore(noreclaim_flag); 3772 fs_reclaim_release(gfp_mask); 3773 3774 cond_resched(); 3775 3776 return progress; 3777} 3778 3779/* The really slow allocator path where we enter direct reclaim */ 3780static inline struct page * 3781__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 3782 unsigned int alloc_flags, const struct alloc_context *ac, 3783 unsigned long *did_some_progress) 3784{ 3785 struct page *page = NULL; 3786 unsigned long pflags; 3787 bool drained = false; 3788 3789 psi_memstall_enter(&pflags); 3790 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 3791 if (unlikely(!(*did_some_progress))) 3792 goto out; 3793 3794retry: 3795 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3796 3797 /* 3798 * If an allocation failed after direct reclaim, it could be because 3799 * pages are pinned on the per-cpu lists or in high alloc reserves. 3800 * Shrink them and try again 3801 */ 3802 if (!page && !drained) { 3803 unreserve_highatomic_pageblock(ac, false); 3804 drain_all_pages(NULL); 3805 drained = true; 3806 goto retry; 3807 } 3808out: 3809 psi_memstall_leave(&pflags); 3810 3811 return page; 3812} 3813 3814static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 3815 const struct alloc_context *ac) 3816{ 3817 struct zoneref *z; 3818 struct zone *zone; 3819 pg_data_t *last_pgdat = NULL; 3820 enum zone_type highest_zoneidx = ac->highest_zoneidx; 3821 3822 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 3823 ac->nodemask) { 3824 if (!managed_zone(zone)) 3825 continue; 3826 if (last_pgdat != zone->zone_pgdat) { 3827 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 3828 last_pgdat = zone->zone_pgdat; 3829 } 3830 } 3831} 3832 3833static inline unsigned int 3834gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order) 3835{ 3836 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 3837 3838 /* 3839 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE 3840 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3841 * to save two branches. 3842 */ 3843 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE); 3844 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 3845 3846 /* 3847 * The caller may dip into page reserves a bit more if the caller 3848 * cannot run direct reclaim, or if the caller has realtime scheduling 3849 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 3850 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH). 3851 */ 3852 alloc_flags |= (__force int) 3853 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 3854 3855 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) { 3856 /* 3857 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 3858 * if it can't schedule. 3859 */ 3860 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 3861 alloc_flags |= ALLOC_NON_BLOCK; 3862 3863 if (order > 0) 3864 alloc_flags |= ALLOC_HIGHATOMIC; 3865 } 3866 3867 /* 3868 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably 3869 * GFP_ATOMIC) rather than fail, see the comment for 3870 * cpuset_node_allowed(). 3871 */ 3872 if (alloc_flags & ALLOC_MIN_RESERVE) 3873 alloc_flags &= ~ALLOC_CPUSET; 3874 } else if (unlikely(rt_task(current)) && in_task()) 3875 alloc_flags |= ALLOC_MIN_RESERVE; 3876 3877 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 3878 3879 return alloc_flags; 3880} 3881 3882static bool oom_reserves_allowed(struct task_struct *tsk) 3883{ 3884 if (!tsk_is_oom_victim(tsk)) 3885 return false; 3886 3887 /* 3888 * !MMU doesn't have oom reaper so give access to memory reserves 3889 * only to the thread with TIF_MEMDIE set 3890 */ 3891 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 3892 return false; 3893 3894 return true; 3895} 3896 3897/* 3898 * Distinguish requests which really need access to full memory 3899 * reserves from oom victims which can live with a portion of it 3900 */ 3901static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 3902{ 3903 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 3904 return 0; 3905 if (gfp_mask & __GFP_MEMALLOC) 3906 return ALLOC_NO_WATERMARKS; 3907 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 3908 return ALLOC_NO_WATERMARKS; 3909 if (!in_interrupt()) { 3910 if (current->flags & PF_MEMALLOC) 3911 return ALLOC_NO_WATERMARKS; 3912 else if (oom_reserves_allowed(current)) 3913 return ALLOC_OOM; 3914 } 3915 3916 return 0; 3917} 3918 3919bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 3920{ 3921 return !!__gfp_pfmemalloc_flags(gfp_mask); 3922} 3923 3924/* 3925 * Checks whether it makes sense to retry the reclaim to make a forward progress 3926 * for the given allocation request. 3927 * 3928 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 3929 * without success, or when we couldn't even meet the watermark if we 3930 * reclaimed all remaining pages on the LRU lists. 3931 * 3932 * Returns true if a retry is viable or false to enter the oom path. 3933 */ 3934static inline bool 3935should_reclaim_retry(gfp_t gfp_mask, unsigned order, 3936 struct alloc_context *ac, int alloc_flags, 3937 bool did_some_progress, int *no_progress_loops) 3938{ 3939 struct zone *zone; 3940 struct zoneref *z; 3941 bool ret = false; 3942 3943 /* 3944 * Costly allocations might have made a progress but this doesn't mean 3945 * their order will become available due to high fragmentation so 3946 * always increment the no progress counter for them 3947 */ 3948 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 3949 *no_progress_loops = 0; 3950 else 3951 (*no_progress_loops)++; 3952 3953 if (*no_progress_loops > MAX_RECLAIM_RETRIES) 3954 goto out; 3955 3956 3957 /* 3958 * Keep reclaiming pages while there is a chance this will lead 3959 * somewhere. If none of the target zones can satisfy our allocation 3960 * request even if all reclaimable pages are considered then we are 3961 * screwed and have to go OOM. 3962 */ 3963 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 3964 ac->highest_zoneidx, ac->nodemask) { 3965 unsigned long available; 3966 unsigned long reclaimable; 3967 unsigned long min_wmark = min_wmark_pages(zone); 3968 bool wmark; 3969 3970 available = reclaimable = zone_reclaimable_pages(zone); 3971 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 3972 3973 /* 3974 * Would the allocation succeed if we reclaimed all 3975 * reclaimable pages? 3976 */ 3977 wmark = __zone_watermark_ok(zone, order, min_wmark, 3978 ac->highest_zoneidx, alloc_flags, available); 3979 trace_reclaim_retry_zone(z, order, reclaimable, 3980 available, min_wmark, *no_progress_loops, wmark); 3981 if (wmark) { 3982 ret = true; 3983 break; 3984 } 3985 } 3986 3987 /* 3988 * Memory allocation/reclaim might be called from a WQ context and the 3989 * current implementation of the WQ concurrency control doesn't 3990 * recognize that a particular WQ is congested if the worker thread is 3991 * looping without ever sleeping. Therefore we have to do a short sleep 3992 * here rather than calling cond_resched(). 3993 */ 3994 if (current->flags & PF_WQ_WORKER) 3995 schedule_timeout_uninterruptible(1); 3996 else 3997 cond_resched(); 3998out: 3999 /* Before OOM, exhaust highatomic_reserve */ 4000 if (!ret) 4001 return unreserve_highatomic_pageblock(ac, true); 4002 4003 return ret; 4004} 4005 4006static inline bool 4007check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4008{ 4009 /* 4010 * It's possible that cpuset's mems_allowed and the nodemask from 4011 * mempolicy don't intersect. This should be normally dealt with by 4012 * policy_nodemask(), but it's possible to race with cpuset update in 4013 * such a way the check therein was true, and then it became false 4014 * before we got our cpuset_mems_cookie here. 4015 * This assumes that for all allocations, ac->nodemask can come only 4016 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4017 * when it does not intersect with the cpuset restrictions) or the 4018 * caller can deal with a violated nodemask. 4019 */ 4020 if (cpusets_enabled() && ac->nodemask && 4021 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4022 ac->nodemask = NULL; 4023 return true; 4024 } 4025 4026 /* 4027 * When updating a task's mems_allowed or mempolicy nodemask, it is 4028 * possible to race with parallel threads in such a way that our 4029 * allocation can fail while the mask is being updated. If we are about 4030 * to fail, check if the cpuset changed during allocation and if so, 4031 * retry. 4032 */ 4033 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4034 return true; 4035 4036 return false; 4037} 4038 4039static inline struct page * 4040__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4041 struct alloc_context *ac) 4042{ 4043 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4044 bool can_compact = gfp_compaction_allowed(gfp_mask); 4045 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4046 struct page *page = NULL; 4047 unsigned int alloc_flags; 4048 unsigned long did_some_progress; 4049 enum compact_priority compact_priority; 4050 enum compact_result compact_result; 4051 int compaction_retries; 4052 int no_progress_loops; 4053 unsigned int cpuset_mems_cookie; 4054 unsigned int zonelist_iter_cookie; 4055 int reserve_flags; 4056 4057restart: 4058 compaction_retries = 0; 4059 no_progress_loops = 0; 4060 compact_priority = DEF_COMPACT_PRIORITY; 4061 cpuset_mems_cookie = read_mems_allowed_begin(); 4062 zonelist_iter_cookie = zonelist_iter_begin(); 4063 4064 /* 4065 * The fast path uses conservative alloc_flags to succeed only until 4066 * kswapd needs to be woken up, and to avoid the cost of setting up 4067 * alloc_flags precisely. So we do that now. 4068 */ 4069 alloc_flags = gfp_to_alloc_flags(gfp_mask, order); 4070 4071 /* 4072 * We need to recalculate the starting point for the zonelist iterator 4073 * because we might have used different nodemask in the fast path, or 4074 * there was a cpuset modification and we are retrying - otherwise we 4075 * could end up iterating over non-eligible zones endlessly. 4076 */ 4077 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4078 ac->highest_zoneidx, ac->nodemask); 4079 if (!ac->preferred_zoneref->zone) 4080 goto nopage; 4081 4082 /* 4083 * Check for insane configurations where the cpuset doesn't contain 4084 * any suitable zone to satisfy the request - e.g. non-movable 4085 * GFP_HIGHUSER allocations from MOVABLE nodes only. 4086 */ 4087 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 4088 struct zoneref *z = first_zones_zonelist(ac->zonelist, 4089 ac->highest_zoneidx, 4090 &cpuset_current_mems_allowed); 4091 if (!z->zone) 4092 goto nopage; 4093 } 4094 4095 if (alloc_flags & ALLOC_KSWAPD) 4096 wake_all_kswapds(order, gfp_mask, ac); 4097 4098 /* 4099 * The adjusted alloc_flags might result in immediate success, so try 4100 * that first 4101 */ 4102 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4103 if (page) 4104 goto got_pg; 4105 4106 /* 4107 * For costly allocations, try direct compaction first, as it's likely 4108 * that we have enough base pages and don't need to reclaim. For non- 4109 * movable high-order allocations, do that as well, as compaction will 4110 * try prevent permanent fragmentation by migrating from blocks of the 4111 * same migratetype. 4112 * Don't try this for allocations that are allowed to ignore 4113 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4114 */ 4115 if (can_direct_reclaim && can_compact && 4116 (costly_order || 4117 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4118 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4119 page = __alloc_pages_direct_compact(gfp_mask, order, 4120 alloc_flags, ac, 4121 INIT_COMPACT_PRIORITY, 4122 &compact_result); 4123 if (page) 4124 goto got_pg; 4125 4126 /* 4127 * Checks for costly allocations with __GFP_NORETRY, which 4128 * includes some THP page fault allocations 4129 */ 4130 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4131 /* 4132 * If allocating entire pageblock(s) and compaction 4133 * failed because all zones are below low watermarks 4134 * or is prohibited because it recently failed at this 4135 * order, fail immediately unless the allocator has 4136 * requested compaction and reclaim retry. 4137 * 4138 * Reclaim is 4139 * - potentially very expensive because zones are far 4140 * below their low watermarks or this is part of very 4141 * bursty high order allocations, 4142 * - not guaranteed to help because isolate_freepages() 4143 * may not iterate over freed pages as part of its 4144 * linear scan, and 4145 * - unlikely to make entire pageblocks free on its 4146 * own. 4147 */ 4148 if (compact_result == COMPACT_SKIPPED || 4149 compact_result == COMPACT_DEFERRED) 4150 goto nopage; 4151 4152 /* 4153 * Looks like reclaim/compaction is worth trying, but 4154 * sync compaction could be very expensive, so keep 4155 * using async compaction. 4156 */ 4157 compact_priority = INIT_COMPACT_PRIORITY; 4158 } 4159 } 4160 4161retry: 4162 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4163 if (alloc_flags & ALLOC_KSWAPD) 4164 wake_all_kswapds(order, gfp_mask, ac); 4165 4166 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4167 if (reserve_flags) 4168 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) | 4169 (alloc_flags & ALLOC_KSWAPD); 4170 4171 /* 4172 * Reset the nodemask and zonelist iterators if memory policies can be 4173 * ignored. These allocations are high priority and system rather than 4174 * user oriented. 4175 */ 4176 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4177 ac->nodemask = NULL; 4178 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4179 ac->highest_zoneidx, ac->nodemask); 4180 } 4181 4182 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4183 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4184 if (page) 4185 goto got_pg; 4186 4187 /* Caller is not willing to reclaim, we can't balance anything */ 4188 if (!can_direct_reclaim) 4189 goto nopage; 4190 4191 /* Avoid recursion of direct reclaim */ 4192 if (current->flags & PF_MEMALLOC) 4193 goto nopage; 4194 4195 /* Try direct reclaim and then allocating */ 4196 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4197 &did_some_progress); 4198 if (page) 4199 goto got_pg; 4200 4201 /* Try direct compaction and then allocating */ 4202 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4203 compact_priority, &compact_result); 4204 if (page) 4205 goto got_pg; 4206 4207 /* Do not loop if specifically requested */ 4208 if (gfp_mask & __GFP_NORETRY) 4209 goto nopage; 4210 4211 /* 4212 * Do not retry costly high order allocations unless they are 4213 * __GFP_RETRY_MAYFAIL and we can compact 4214 */ 4215 if (costly_order && (!can_compact || 4216 !(gfp_mask & __GFP_RETRY_MAYFAIL))) 4217 goto nopage; 4218 4219 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4220 did_some_progress > 0, &no_progress_loops)) 4221 goto retry; 4222 4223 /* 4224 * It doesn't make any sense to retry for the compaction if the order-0 4225 * reclaim is not able to make any progress because the current 4226 * implementation of the compaction depends on the sufficient amount 4227 * of free memory (see __compaction_suitable) 4228 */ 4229 if (did_some_progress > 0 && can_compact && 4230 should_compact_retry(ac, order, alloc_flags, 4231 compact_result, &compact_priority, 4232 &compaction_retries)) 4233 goto retry; 4234 4235 4236 /* 4237 * Deal with possible cpuset update races or zonelist updates to avoid 4238 * a unnecessary OOM kill. 4239 */ 4240 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4241 check_retry_zonelist(zonelist_iter_cookie)) 4242 goto restart; 4243 4244 /* Reclaim has failed us, start killing things */ 4245 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4246 if (page) 4247 goto got_pg; 4248 4249 /* Avoid allocations with no watermarks from looping endlessly */ 4250 if (tsk_is_oom_victim(current) && 4251 (alloc_flags & ALLOC_OOM || 4252 (gfp_mask & __GFP_NOMEMALLOC))) 4253 goto nopage; 4254 4255 /* Retry as long as the OOM killer is making progress */ 4256 if (did_some_progress) { 4257 no_progress_loops = 0; 4258 goto retry; 4259 } 4260 4261nopage: 4262 /* 4263 * Deal with possible cpuset update races or zonelist updates to avoid 4264 * a unnecessary OOM kill. 4265 */ 4266 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4267 check_retry_zonelist(zonelist_iter_cookie)) 4268 goto restart; 4269 4270 /* 4271 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4272 * we always retry 4273 */ 4274 if (gfp_mask & __GFP_NOFAIL) { 4275 /* 4276 * All existing users of the __GFP_NOFAIL are blockable, so warn 4277 * of any new users that actually require GFP_NOWAIT 4278 */ 4279 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask)) 4280 goto fail; 4281 4282 /* 4283 * PF_MEMALLOC request from this context is rather bizarre 4284 * because we cannot reclaim anything and only can loop waiting 4285 * for somebody to do a work for us 4286 */ 4287 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask); 4288 4289 /* 4290 * non failing costly orders are a hard requirement which we 4291 * are not prepared for much so let's warn about these users 4292 * so that we can identify them and convert them to something 4293 * else. 4294 */ 4295 WARN_ON_ONCE_GFP(costly_order, gfp_mask); 4296 4297 /* 4298 * Help non-failing allocations by giving some access to memory 4299 * reserves normally used for high priority non-blocking 4300 * allocations but do not use ALLOC_NO_WATERMARKS because this 4301 * could deplete whole memory reserves which would just make 4302 * the situation worse. 4303 */ 4304 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac); 4305 if (page) 4306 goto got_pg; 4307 4308 cond_resched(); 4309 goto retry; 4310 } 4311fail: 4312 warn_alloc(gfp_mask, ac->nodemask, 4313 "page allocation failure: order:%u", order); 4314got_pg: 4315 return page; 4316} 4317 4318static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4319 int preferred_nid, nodemask_t *nodemask, 4320 struct alloc_context *ac, gfp_t *alloc_gfp, 4321 unsigned int *alloc_flags) 4322{ 4323 ac->highest_zoneidx = gfp_zone(gfp_mask); 4324 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4325 ac->nodemask = nodemask; 4326 ac->migratetype = gfp_migratetype(gfp_mask); 4327 4328 if (cpusets_enabled()) { 4329 *alloc_gfp |= __GFP_HARDWALL; 4330 /* 4331 * When we are in the interrupt context, it is irrelevant 4332 * to the current task context. It means that any node ok. 4333 */ 4334 if (in_task() && !ac->nodemask) 4335 ac->nodemask = &cpuset_current_mems_allowed; 4336 else 4337 *alloc_flags |= ALLOC_CPUSET; 4338 } 4339 4340 might_alloc(gfp_mask); 4341 4342 if (should_fail_alloc_page(gfp_mask, order)) 4343 return false; 4344 4345 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 4346 4347 /* Dirty zone balancing only done in the fast path */ 4348 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4349 4350 /* 4351 * The preferred zone is used for statistics but crucially it is 4352 * also used as the starting point for the zonelist iterator. It 4353 * may get reset for allocations that ignore memory policies. 4354 */ 4355 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4356 ac->highest_zoneidx, ac->nodemask); 4357 4358 return true; 4359} 4360 4361/* 4362 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array 4363 * @gfp: GFP flags for the allocation 4364 * @preferred_nid: The preferred NUMA node ID to allocate from 4365 * @nodemask: Set of nodes to allocate from, may be NULL 4366 * @nr_pages: The number of pages desired on the list or array 4367 * @page_list: Optional list to store the allocated pages 4368 * @page_array: Optional array to store the pages 4369 * 4370 * This is a batched version of the page allocator that attempts to 4371 * allocate nr_pages quickly. Pages are added to page_list if page_list 4372 * is not NULL, otherwise it is assumed that the page_array is valid. 4373 * 4374 * For lists, nr_pages is the number of pages that should be allocated. 4375 * 4376 * For arrays, only NULL elements are populated with pages and nr_pages 4377 * is the maximum number of pages that will be stored in the array. 4378 * 4379 * Returns the number of pages on the list or array. 4380 */ 4381unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid, 4382 nodemask_t *nodemask, int nr_pages, 4383 struct list_head *page_list, 4384 struct page **page_array) 4385{ 4386 struct page *page; 4387 unsigned long __maybe_unused UP_flags; 4388 struct zone *zone; 4389 struct zoneref *z; 4390 struct per_cpu_pages *pcp; 4391 struct list_head *pcp_list; 4392 struct alloc_context ac; 4393 gfp_t alloc_gfp; 4394 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4395 int nr_populated = 0, nr_account = 0; 4396 4397 /* 4398 * Skip populated array elements to determine if any pages need 4399 * to be allocated before disabling IRQs. 4400 */ 4401 while (page_array && nr_populated < nr_pages && page_array[nr_populated]) 4402 nr_populated++; 4403 4404 /* No pages requested? */ 4405 if (unlikely(nr_pages <= 0)) 4406 goto out; 4407 4408 /* Already populated array? */ 4409 if (unlikely(page_array && nr_pages - nr_populated == 0)) 4410 goto out; 4411 4412 /* Bulk allocator does not support memcg accounting. */ 4413 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT)) 4414 goto failed; 4415 4416 /* Use the single page allocator for one page. */ 4417 if (nr_pages - nr_populated == 1) 4418 goto failed; 4419 4420#ifdef CONFIG_PAGE_OWNER 4421 /* 4422 * PAGE_OWNER may recurse into the allocator to allocate space to 4423 * save the stack with pagesets.lock held. Releasing/reacquiring 4424 * removes much of the performance benefit of bulk allocation so 4425 * force the caller to allocate one page at a time as it'll have 4426 * similar performance to added complexity to the bulk allocator. 4427 */ 4428 if (static_branch_unlikely(&page_owner_inited)) 4429 goto failed; 4430#endif 4431 4432 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 4433 gfp &= gfp_allowed_mask; 4434 alloc_gfp = gfp; 4435 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 4436 goto out; 4437 gfp = alloc_gfp; 4438 4439 /* Find an allowed local zone that meets the low watermark. */ 4440 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) { 4441 unsigned long mark; 4442 4443 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 4444 !__cpuset_zone_allowed(zone, gfp)) { 4445 continue; 4446 } 4447 4448 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone && 4449 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) { 4450 goto failed; 4451 } 4452 4453 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 4454 if (zone_watermark_fast(zone, 0, mark, 4455 zonelist_zone_idx(ac.preferred_zoneref), 4456 alloc_flags, gfp)) { 4457 break; 4458 } 4459 } 4460 4461 /* 4462 * If there are no allowed local zones that meets the watermarks then 4463 * try to allocate a single page and reclaim if necessary. 4464 */ 4465 if (unlikely(!zone)) 4466 goto failed; 4467 4468 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 4469 pcp_trylock_prepare(UP_flags); 4470 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 4471 if (!pcp) 4472 goto failed_irq; 4473 4474 /* Attempt the batch allocation */ 4475 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 4476 while (nr_populated < nr_pages) { 4477 4478 /* Skip existing pages */ 4479 if (page_array && page_array[nr_populated]) { 4480 nr_populated++; 4481 continue; 4482 } 4483 4484 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 4485 pcp, pcp_list); 4486 if (unlikely(!page)) { 4487 /* Try and allocate at least one page */ 4488 if (!nr_account) { 4489 pcp_spin_unlock(pcp); 4490 goto failed_irq; 4491 } 4492 break; 4493 } 4494 nr_account++; 4495 4496 prep_new_page(page, 0, gfp, 0); 4497 if (page_list) 4498 list_add(&page->lru, page_list); 4499 else 4500 page_array[nr_populated] = page; 4501 nr_populated++; 4502 } 4503 4504 pcp_spin_unlock(pcp); 4505 pcp_trylock_finish(UP_flags); 4506 4507 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 4508 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account); 4509 4510out: 4511 return nr_populated; 4512 4513failed_irq: 4514 pcp_trylock_finish(UP_flags); 4515 4516failed: 4517 page = __alloc_pages(gfp, 0, preferred_nid, nodemask); 4518 if (page) { 4519 if (page_list) 4520 list_add(&page->lru, page_list); 4521 else 4522 page_array[nr_populated] = page; 4523 nr_populated++; 4524 } 4525 4526 goto out; 4527} 4528EXPORT_SYMBOL_GPL(__alloc_pages_bulk); 4529 4530/* 4531 * This is the 'heart' of the zoned buddy allocator. 4532 */ 4533struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid, 4534 nodemask_t *nodemask) 4535{ 4536 struct page *page; 4537 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4538 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 4539 struct alloc_context ac = { }; 4540 4541 /* 4542 * There are several places where we assume that the order value is sane 4543 * so bail out early if the request is out of bound. 4544 */ 4545 if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp)) 4546 return NULL; 4547 4548 gfp &= gfp_allowed_mask; 4549 /* 4550 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4551 * resp. GFP_NOIO which has to be inherited for all allocation requests 4552 * from a particular context which has been marked by 4553 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 4554 * movable zones are not used during allocation. 4555 */ 4556 gfp = current_gfp_context(gfp); 4557 alloc_gfp = gfp; 4558 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 4559 &alloc_gfp, &alloc_flags)) 4560 return NULL; 4561 4562 /* 4563 * Forbid the first pass from falling back to types that fragment 4564 * memory until all local zones are considered. 4565 */ 4566 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp); 4567 4568 /* First allocation attempt */ 4569 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 4570 if (likely(page)) 4571 goto out; 4572 4573 alloc_gfp = gfp; 4574 ac.spread_dirty_pages = false; 4575 4576 /* 4577 * Restore the original nodemask if it was potentially replaced with 4578 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4579 */ 4580 ac.nodemask = nodemask; 4581 4582 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 4583 4584out: 4585 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page && 4586 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 4587 __free_pages(page, order); 4588 page = NULL; 4589 } 4590 4591 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 4592 kmsan_alloc_page(page, order, alloc_gfp); 4593 4594 return page; 4595} 4596EXPORT_SYMBOL(__alloc_pages); 4597 4598struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid, 4599 nodemask_t *nodemask) 4600{ 4601 struct page *page = __alloc_pages(gfp | __GFP_COMP, order, 4602 preferred_nid, nodemask); 4603 return page_rmappable_folio(page); 4604} 4605EXPORT_SYMBOL(__folio_alloc); 4606 4607/* 4608 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 4609 * address cannot represent highmem pages. Use alloc_pages and then kmap if 4610 * you need to access high mem. 4611 */ 4612unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 4613{ 4614 struct page *page; 4615 4616 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 4617 if (!page) 4618 return 0; 4619 return (unsigned long) page_address(page); 4620} 4621EXPORT_SYMBOL(__get_free_pages); 4622 4623unsigned long get_zeroed_page(gfp_t gfp_mask) 4624{ 4625 return __get_free_page(gfp_mask | __GFP_ZERO); 4626} 4627EXPORT_SYMBOL(get_zeroed_page); 4628 4629/** 4630 * __free_pages - Free pages allocated with alloc_pages(). 4631 * @page: The page pointer returned from alloc_pages(). 4632 * @order: The order of the allocation. 4633 * 4634 * This function can free multi-page allocations that are not compound 4635 * pages. It does not check that the @order passed in matches that of 4636 * the allocation, so it is easy to leak memory. Freeing more memory 4637 * than was allocated will probably emit a warning. 4638 * 4639 * If the last reference to this page is speculative, it will be released 4640 * by put_page() which only frees the first page of a non-compound 4641 * allocation. To prevent the remaining pages from being leaked, we free 4642 * the subsequent pages here. If you want to use the page's reference 4643 * count to decide when to free the allocation, you should allocate a 4644 * compound page, and use put_page() instead of __free_pages(). 4645 * 4646 * Context: May be called in interrupt context or while holding a normal 4647 * spinlock, but not in NMI context or while holding a raw spinlock. 4648 */ 4649void __free_pages(struct page *page, unsigned int order) 4650{ 4651 /* get PageHead before we drop reference */ 4652 int head = PageHead(page); 4653 4654 if (put_page_testzero(page)) 4655 free_the_page(page, order); 4656 else if (!head) 4657 while (order-- > 0) 4658 free_the_page(page + (1 << order), order); 4659} 4660EXPORT_SYMBOL(__free_pages); 4661 4662void free_pages(unsigned long addr, unsigned int order) 4663{ 4664 if (addr != 0) { 4665 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4666 __free_pages(virt_to_page((void *)addr), order); 4667 } 4668} 4669 4670EXPORT_SYMBOL(free_pages); 4671 4672/* 4673 * Page Fragment: 4674 * An arbitrary-length arbitrary-offset area of memory which resides 4675 * within a 0 or higher order page. Multiple fragments within that page 4676 * are individually refcounted, in the page's reference counter. 4677 * 4678 * The page_frag functions below provide a simple allocation framework for 4679 * page fragments. This is used by the network stack and network device 4680 * drivers to provide a backing region of memory for use as either an 4681 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4682 */ 4683static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4684 gfp_t gfp_mask) 4685{ 4686 struct page *page = NULL; 4687 gfp_t gfp = gfp_mask; 4688 4689#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4690 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 4691 __GFP_NOMEMALLOC; 4692 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4693 PAGE_FRAG_CACHE_MAX_ORDER); 4694 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4695#endif 4696 if (unlikely(!page)) 4697 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4698 4699 nc->va = page ? page_address(page) : NULL; 4700 4701 return page; 4702} 4703 4704void __page_frag_cache_drain(struct page *page, unsigned int count) 4705{ 4706 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4707 4708 if (page_ref_sub_and_test(page, count)) 4709 free_the_page(page, compound_order(page)); 4710} 4711EXPORT_SYMBOL(__page_frag_cache_drain); 4712 4713void *page_frag_alloc_align(struct page_frag_cache *nc, 4714 unsigned int fragsz, gfp_t gfp_mask, 4715 unsigned int align_mask) 4716{ 4717 unsigned int size = PAGE_SIZE; 4718 struct page *page; 4719 int offset; 4720 4721 if (unlikely(!nc->va)) { 4722refill: 4723 page = __page_frag_cache_refill(nc, gfp_mask); 4724 if (!page) 4725 return NULL; 4726 4727#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4728 /* if size can vary use size else just use PAGE_SIZE */ 4729 size = nc->size; 4730#endif 4731 /* Even if we own the page, we do not use atomic_set(). 4732 * This would break get_page_unless_zero() users. 4733 */ 4734 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 4735 4736 /* reset page count bias and offset to start of new frag */ 4737 nc->pfmemalloc = page_is_pfmemalloc(page); 4738 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4739 nc->offset = size; 4740 } 4741 4742 offset = nc->offset - fragsz; 4743 if (unlikely(offset < 0)) { 4744 page = virt_to_page(nc->va); 4745 4746 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4747 goto refill; 4748 4749 if (unlikely(nc->pfmemalloc)) { 4750 free_the_page(page, compound_order(page)); 4751 goto refill; 4752 } 4753 4754#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4755 /* if size can vary use size else just use PAGE_SIZE */ 4756 size = nc->size; 4757#endif 4758 /* OK, page count is 0, we can safely set it */ 4759 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 4760 4761 /* reset page count bias and offset to start of new frag */ 4762 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4763 offset = size - fragsz; 4764 if (unlikely(offset < 0)) { 4765 /* 4766 * The caller is trying to allocate a fragment 4767 * with fragsz > PAGE_SIZE but the cache isn't big 4768 * enough to satisfy the request, this may 4769 * happen in low memory conditions. 4770 * We don't release the cache page because 4771 * it could make memory pressure worse 4772 * so we simply return NULL here. 4773 */ 4774 return NULL; 4775 } 4776 } 4777 4778 nc->pagecnt_bias--; 4779 offset &= align_mask; 4780 nc->offset = offset; 4781 4782 return nc->va + offset; 4783} 4784EXPORT_SYMBOL(page_frag_alloc_align); 4785 4786/* 4787 * Frees a page fragment allocated out of either a compound or order 0 page. 4788 */ 4789void page_frag_free(void *addr) 4790{ 4791 struct page *page = virt_to_head_page(addr); 4792 4793 if (unlikely(put_page_testzero(page))) 4794 free_the_page(page, compound_order(page)); 4795} 4796EXPORT_SYMBOL(page_frag_free); 4797 4798static void *make_alloc_exact(unsigned long addr, unsigned int order, 4799 size_t size) 4800{ 4801 if (addr) { 4802 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE); 4803 struct page *page = virt_to_page((void *)addr); 4804 struct page *last = page + nr; 4805 4806 split_page_owner(page, 1 << order); 4807 split_page_memcg(page, 1 << order); 4808 while (page < --last) 4809 set_page_refcounted(last); 4810 4811 last = page + (1UL << order); 4812 for (page += nr; page < last; page++) 4813 __free_pages_ok(page, 0, FPI_TO_TAIL); 4814 } 4815 return (void *)addr; 4816} 4817 4818/** 4819 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 4820 * @size: the number of bytes to allocate 4821 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4822 * 4823 * This function is similar to alloc_pages(), except that it allocates the 4824 * minimum number of pages to satisfy the request. alloc_pages() can only 4825 * allocate memory in power-of-two pages. 4826 * 4827 * This function is also limited by MAX_PAGE_ORDER. 4828 * 4829 * Memory allocated by this function must be released by free_pages_exact(). 4830 * 4831 * Return: pointer to the allocated area or %NULL in case of error. 4832 */ 4833void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 4834{ 4835 unsigned int order = get_order(size); 4836 unsigned long addr; 4837 4838 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 4839 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 4840 4841 addr = __get_free_pages(gfp_mask, order); 4842 return make_alloc_exact(addr, order, size); 4843} 4844EXPORT_SYMBOL(alloc_pages_exact); 4845 4846/** 4847 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 4848 * pages on a node. 4849 * @nid: the preferred node ID where memory should be allocated 4850 * @size: the number of bytes to allocate 4851 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4852 * 4853 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 4854 * back. 4855 * 4856 * Return: pointer to the allocated area or %NULL in case of error. 4857 */ 4858void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 4859{ 4860 unsigned int order = get_order(size); 4861 struct page *p; 4862 4863 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 4864 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 4865 4866 p = alloc_pages_node(nid, gfp_mask, order); 4867 if (!p) 4868 return NULL; 4869 return make_alloc_exact((unsigned long)page_address(p), order, size); 4870} 4871 4872/** 4873 * free_pages_exact - release memory allocated via alloc_pages_exact() 4874 * @virt: the value returned by alloc_pages_exact. 4875 * @size: size of allocation, same value as passed to alloc_pages_exact(). 4876 * 4877 * Release the memory allocated by a previous call to alloc_pages_exact. 4878 */ 4879void free_pages_exact(void *virt, size_t size) 4880{ 4881 unsigned long addr = (unsigned long)virt; 4882 unsigned long end = addr + PAGE_ALIGN(size); 4883 4884 while (addr < end) { 4885 free_page(addr); 4886 addr += PAGE_SIZE; 4887 } 4888} 4889EXPORT_SYMBOL(free_pages_exact); 4890 4891/** 4892 * nr_free_zone_pages - count number of pages beyond high watermark 4893 * @offset: The zone index of the highest zone 4894 * 4895 * nr_free_zone_pages() counts the number of pages which are beyond the 4896 * high watermark within all zones at or below a given zone index. For each 4897 * zone, the number of pages is calculated as: 4898 * 4899 * nr_free_zone_pages = managed_pages - high_pages 4900 * 4901 * Return: number of pages beyond high watermark. 4902 */ 4903static unsigned long nr_free_zone_pages(int offset) 4904{ 4905 struct zoneref *z; 4906 struct zone *zone; 4907 4908 /* Just pick one node, since fallback list is circular */ 4909 unsigned long sum = 0; 4910 4911 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 4912 4913 for_each_zone_zonelist(zone, z, zonelist, offset) { 4914 unsigned long size = zone_managed_pages(zone); 4915 unsigned long high = high_wmark_pages(zone); 4916 if (size > high) 4917 sum += size - high; 4918 } 4919 4920 return sum; 4921} 4922 4923/** 4924 * nr_free_buffer_pages - count number of pages beyond high watermark 4925 * 4926 * nr_free_buffer_pages() counts the number of pages which are beyond the high 4927 * watermark within ZONE_DMA and ZONE_NORMAL. 4928 * 4929 * Return: number of pages beyond high watermark within ZONE_DMA and 4930 * ZONE_NORMAL. 4931 */ 4932unsigned long nr_free_buffer_pages(void) 4933{ 4934 return nr_free_zone_pages(gfp_zone(GFP_USER)); 4935} 4936EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 4937 4938static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 4939{ 4940 zoneref->zone = zone; 4941 zoneref->zone_idx = zone_idx(zone); 4942} 4943 4944/* 4945 * Builds allocation fallback zone lists. 4946 * 4947 * Add all populated zones of a node to the zonelist. 4948 */ 4949static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 4950{ 4951 struct zone *zone; 4952 enum zone_type zone_type = MAX_NR_ZONES; 4953 int nr_zones = 0; 4954 4955 do { 4956 zone_type--; 4957 zone = pgdat->node_zones + zone_type; 4958 if (populated_zone(zone)) { 4959 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 4960 check_highest_zone(zone_type); 4961 } 4962 } while (zone_type); 4963 4964 return nr_zones; 4965} 4966 4967#ifdef CONFIG_NUMA 4968 4969static int __parse_numa_zonelist_order(char *s) 4970{ 4971 /* 4972 * We used to support different zonelists modes but they turned 4973 * out to be just not useful. Let's keep the warning in place 4974 * if somebody still use the cmd line parameter so that we do 4975 * not fail it silently 4976 */ 4977 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 4978 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 4979 return -EINVAL; 4980 } 4981 return 0; 4982} 4983 4984static char numa_zonelist_order[] = "Node"; 4985#define NUMA_ZONELIST_ORDER_LEN 16 4986/* 4987 * sysctl handler for numa_zonelist_order 4988 */ 4989static int numa_zonelist_order_handler(struct ctl_table *table, int write, 4990 void *buffer, size_t *length, loff_t *ppos) 4991{ 4992 if (write) 4993 return __parse_numa_zonelist_order(buffer); 4994 return proc_dostring(table, write, buffer, length, ppos); 4995} 4996 4997static int node_load[MAX_NUMNODES]; 4998 4999/** 5000 * find_next_best_node - find the next node that should appear in a given node's fallback list 5001 * @node: node whose fallback list we're appending 5002 * @used_node_mask: nodemask_t of already used nodes 5003 * 5004 * We use a number of factors to determine which is the next node that should 5005 * appear on a given node's fallback list. The node should not have appeared 5006 * already in @node's fallback list, and it should be the next closest node 5007 * according to the distance array (which contains arbitrary distance values 5008 * from each node to each node in the system), and should also prefer nodes 5009 * with no CPUs, since presumably they'll have very little allocation pressure 5010 * on them otherwise. 5011 * 5012 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5013 */ 5014int find_next_best_node(int node, nodemask_t *used_node_mask) 5015{ 5016 int n, val; 5017 int min_val = INT_MAX; 5018 int best_node = NUMA_NO_NODE; 5019 5020 /* 5021 * Use the local node if we haven't already, but for memoryless local 5022 * node, we should skip it and fall back to other nodes. 5023 */ 5024 if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) { 5025 node_set(node, *used_node_mask); 5026 return node; 5027 } 5028 5029 for_each_node_state(n, N_MEMORY) { 5030 5031 /* Don't want a node to appear more than once */ 5032 if (node_isset(n, *used_node_mask)) 5033 continue; 5034 5035 /* Use the distance array to find the distance */ 5036 val = node_distance(node, n); 5037 5038 /* Penalize nodes under us ("prefer the next node") */ 5039 val += (n < node); 5040 5041 /* Give preference to headless and unused nodes */ 5042 if (!cpumask_empty(cpumask_of_node(n))) 5043 val += PENALTY_FOR_NODE_WITH_CPUS; 5044 5045 /* Slight preference for less loaded node */ 5046 val *= MAX_NUMNODES; 5047 val += node_load[n]; 5048 5049 if (val < min_val) { 5050 min_val = val; 5051 best_node = n; 5052 } 5053 } 5054 5055 if (best_node >= 0) 5056 node_set(best_node, *used_node_mask); 5057 5058 return best_node; 5059} 5060 5061 5062/* 5063 * Build zonelists ordered by node and zones within node. 5064 * This results in maximum locality--normal zone overflows into local 5065 * DMA zone, if any--but risks exhausting DMA zone. 5066 */ 5067static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5068 unsigned nr_nodes) 5069{ 5070 struct zoneref *zonerefs; 5071 int i; 5072 5073 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5074 5075 for (i = 0; i < nr_nodes; i++) { 5076 int nr_zones; 5077 5078 pg_data_t *node = NODE_DATA(node_order[i]); 5079 5080 nr_zones = build_zonerefs_node(node, zonerefs); 5081 zonerefs += nr_zones; 5082 } 5083 zonerefs->zone = NULL; 5084 zonerefs->zone_idx = 0; 5085} 5086 5087/* 5088 * Build gfp_thisnode zonelists 5089 */ 5090static void build_thisnode_zonelists(pg_data_t *pgdat) 5091{ 5092 struct zoneref *zonerefs; 5093 int nr_zones; 5094 5095 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5096 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5097 zonerefs += nr_zones; 5098 zonerefs->zone = NULL; 5099 zonerefs->zone_idx = 0; 5100} 5101 5102/* 5103 * Build zonelists ordered by zone and nodes within zones. 5104 * This results in conserving DMA zone[s] until all Normal memory is 5105 * exhausted, but results in overflowing to remote node while memory 5106 * may still exist in local DMA zone. 5107 */ 5108 5109static void build_zonelists(pg_data_t *pgdat) 5110{ 5111 static int node_order[MAX_NUMNODES]; 5112 int node, nr_nodes = 0; 5113 nodemask_t used_mask = NODE_MASK_NONE; 5114 int local_node, prev_node; 5115 5116 /* NUMA-aware ordering of nodes */ 5117 local_node = pgdat->node_id; 5118 prev_node = local_node; 5119 5120 memset(node_order, 0, sizeof(node_order)); 5121 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5122 /* 5123 * We don't want to pressure a particular node. 5124 * So adding penalty to the first node in same 5125 * distance group to make it round-robin. 5126 */ 5127 if (node_distance(local_node, node) != 5128 node_distance(local_node, prev_node)) 5129 node_load[node] += 1; 5130 5131 node_order[nr_nodes++] = node; 5132 prev_node = node; 5133 } 5134 5135 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5136 build_thisnode_zonelists(pgdat); 5137 pr_info("Fallback order for Node %d: ", local_node); 5138 for (node = 0; node < nr_nodes; node++) 5139 pr_cont("%d ", node_order[node]); 5140 pr_cont("\n"); 5141} 5142 5143#ifdef CONFIG_HAVE_MEMORYLESS_NODES 5144/* 5145 * Return node id of node used for "local" allocations. 5146 * I.e., first node id of first zone in arg node's generic zonelist. 5147 * Used for initializing percpu 'numa_mem', which is used primarily 5148 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5149 */ 5150int local_memory_node(int node) 5151{ 5152 struct zoneref *z; 5153 5154 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5155 gfp_zone(GFP_KERNEL), 5156 NULL); 5157 return zone_to_nid(z->zone); 5158} 5159#endif 5160 5161static void setup_min_unmapped_ratio(void); 5162static void setup_min_slab_ratio(void); 5163#else /* CONFIG_NUMA */ 5164 5165static void build_zonelists(pg_data_t *pgdat) 5166{ 5167 int node, local_node; 5168 struct zoneref *zonerefs; 5169 int nr_zones; 5170 5171 local_node = pgdat->node_id; 5172 5173 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5174 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5175 zonerefs += nr_zones; 5176 5177 /* 5178 * Now we build the zonelist so that it contains the zones 5179 * of all the other nodes. 5180 * We don't want to pressure a particular node, so when 5181 * building the zones for node N, we make sure that the 5182 * zones coming right after the local ones are those from 5183 * node N+1 (modulo N) 5184 */ 5185 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5186 if (!node_online(node)) 5187 continue; 5188 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5189 zonerefs += nr_zones; 5190 } 5191 for (node = 0; node < local_node; node++) { 5192 if (!node_online(node)) 5193 continue; 5194 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5195 zonerefs += nr_zones; 5196 } 5197 5198 zonerefs->zone = NULL; 5199 zonerefs->zone_idx = 0; 5200} 5201 5202#endif /* CONFIG_NUMA */ 5203 5204/* 5205 * Boot pageset table. One per cpu which is going to be used for all 5206 * zones and all nodes. The parameters will be set in such a way 5207 * that an item put on a list will immediately be handed over to 5208 * the buddy list. This is safe since pageset manipulation is done 5209 * with interrupts disabled. 5210 * 5211 * The boot_pagesets must be kept even after bootup is complete for 5212 * unused processors and/or zones. They do play a role for bootstrapping 5213 * hotplugged processors. 5214 * 5215 * zoneinfo_show() and maybe other functions do 5216 * not check if the processor is online before following the pageset pointer. 5217 * Other parts of the kernel may not check if the zone is available. 5218 */ 5219static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 5220/* These effectively disable the pcplists in the boot pageset completely */ 5221#define BOOT_PAGESET_HIGH 0 5222#define BOOT_PAGESET_BATCH 1 5223static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 5224static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 5225 5226static void __build_all_zonelists(void *data) 5227{ 5228 int nid; 5229 int __maybe_unused cpu; 5230 pg_data_t *self = data; 5231 unsigned long flags; 5232 5233 /* 5234 * The zonelist_update_seq must be acquired with irqsave because the 5235 * reader can be invoked from IRQ with GFP_ATOMIC. 5236 */ 5237 write_seqlock_irqsave(&zonelist_update_seq, flags); 5238 /* 5239 * Also disable synchronous printk() to prevent any printk() from 5240 * trying to hold port->lock, for 5241 * tty_insert_flip_string_and_push_buffer() on other CPU might be 5242 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held. 5243 */ 5244 printk_deferred_enter(); 5245 5246#ifdef CONFIG_NUMA 5247 memset(node_load, 0, sizeof(node_load)); 5248#endif 5249 5250 /* 5251 * This node is hotadded and no memory is yet present. So just 5252 * building zonelists is fine - no need to touch other nodes. 5253 */ 5254 if (self && !node_online(self->node_id)) { 5255 build_zonelists(self); 5256 } else { 5257 /* 5258 * All possible nodes have pgdat preallocated 5259 * in free_area_init 5260 */ 5261 for_each_node(nid) { 5262 pg_data_t *pgdat = NODE_DATA(nid); 5263 5264 build_zonelists(pgdat); 5265 } 5266 5267#ifdef CONFIG_HAVE_MEMORYLESS_NODES 5268 /* 5269 * We now know the "local memory node" for each node-- 5270 * i.e., the node of the first zone in the generic zonelist. 5271 * Set up numa_mem percpu variable for on-line cpus. During 5272 * boot, only the boot cpu should be on-line; we'll init the 5273 * secondary cpus' numa_mem as they come on-line. During 5274 * node/memory hotplug, we'll fixup all on-line cpus. 5275 */ 5276 for_each_online_cpu(cpu) 5277 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5278#endif 5279 } 5280 5281 printk_deferred_exit(); 5282 write_sequnlock_irqrestore(&zonelist_update_seq, flags); 5283} 5284 5285static noinline void __init 5286build_all_zonelists_init(void) 5287{ 5288 int cpu; 5289 5290 __build_all_zonelists(NULL); 5291 5292 /* 5293 * Initialize the boot_pagesets that are going to be used 5294 * for bootstrapping processors. The real pagesets for 5295 * each zone will be allocated later when the per cpu 5296 * allocator is available. 5297 * 5298 * boot_pagesets are used also for bootstrapping offline 5299 * cpus if the system is already booted because the pagesets 5300 * are needed to initialize allocators on a specific cpu too. 5301 * F.e. the percpu allocator needs the page allocator which 5302 * needs the percpu allocator in order to allocate its pagesets 5303 * (a chicken-egg dilemma). 5304 */ 5305 for_each_possible_cpu(cpu) 5306 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 5307 5308 mminit_verify_zonelist(); 5309 cpuset_init_current_mems_allowed(); 5310} 5311 5312/* 5313 * unless system_state == SYSTEM_BOOTING. 5314 * 5315 * __ref due to call of __init annotated helper build_all_zonelists_init 5316 * [protected by SYSTEM_BOOTING]. 5317 */ 5318void __ref build_all_zonelists(pg_data_t *pgdat) 5319{ 5320 unsigned long vm_total_pages; 5321 5322 if (system_state == SYSTEM_BOOTING) { 5323 build_all_zonelists_init(); 5324 } else { 5325 __build_all_zonelists(pgdat); 5326 /* cpuset refresh routine should be here */ 5327 } 5328 /* Get the number of free pages beyond high watermark in all zones. */ 5329 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 5330 /* 5331 * Disable grouping by mobility if the number of pages in the 5332 * system is too low to allow the mechanism to work. It would be 5333 * more accurate, but expensive to check per-zone. This check is 5334 * made on memory-hotadd so a system can start with mobility 5335 * disabled and enable it later 5336 */ 5337 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5338 page_group_by_mobility_disabled = 1; 5339 else 5340 page_group_by_mobility_disabled = 0; 5341 5342 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 5343 nr_online_nodes, 5344 page_group_by_mobility_disabled ? "off" : "on", 5345 vm_total_pages); 5346#ifdef CONFIG_NUMA 5347 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5348#endif 5349} 5350 5351static int zone_batchsize(struct zone *zone) 5352{ 5353#ifdef CONFIG_MMU 5354 int batch; 5355 5356 /* 5357 * The number of pages to batch allocate is either ~0.1% 5358 * of the zone or 1MB, whichever is smaller. The batch 5359 * size is striking a balance between allocation latency 5360 * and zone lock contention. 5361 */ 5362 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE); 5363 batch /= 4; /* We effectively *= 4 below */ 5364 if (batch < 1) 5365 batch = 1; 5366 5367 /* 5368 * Clamp the batch to a 2^n - 1 value. Having a power 5369 * of 2 value was found to be more likely to have 5370 * suboptimal cache aliasing properties in some cases. 5371 * 5372 * For example if 2 tasks are alternately allocating 5373 * batches of pages, one task can end up with a lot 5374 * of pages of one half of the possible page colors 5375 * and the other with pages of the other colors. 5376 */ 5377 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5378 5379 return batch; 5380 5381#else 5382 /* The deferral and batching of frees should be suppressed under NOMMU 5383 * conditions. 5384 * 5385 * The problem is that NOMMU needs to be able to allocate large chunks 5386 * of contiguous memory as there's no hardware page translation to 5387 * assemble apparent contiguous memory from discontiguous pages. 5388 * 5389 * Queueing large contiguous runs of pages for batching, however, 5390 * causes the pages to actually be freed in smaller chunks. As there 5391 * can be a significant delay between the individual batches being 5392 * recycled, this leads to the once large chunks of space being 5393 * fragmented and becoming unavailable for high-order allocations. 5394 */ 5395 return 0; 5396#endif 5397} 5398 5399static int percpu_pagelist_high_fraction; 5400static int zone_highsize(struct zone *zone, int batch, int cpu_online, 5401 int high_fraction) 5402{ 5403#ifdef CONFIG_MMU 5404 int high; 5405 int nr_split_cpus; 5406 unsigned long total_pages; 5407 5408 if (!high_fraction) { 5409 /* 5410 * By default, the high value of the pcp is based on the zone 5411 * low watermark so that if they are full then background 5412 * reclaim will not be started prematurely. 5413 */ 5414 total_pages = low_wmark_pages(zone); 5415 } else { 5416 /* 5417 * If percpu_pagelist_high_fraction is configured, the high 5418 * value is based on a fraction of the managed pages in the 5419 * zone. 5420 */ 5421 total_pages = zone_managed_pages(zone) / high_fraction; 5422 } 5423 5424 /* 5425 * Split the high value across all online CPUs local to the zone. Note 5426 * that early in boot that CPUs may not be online yet and that during 5427 * CPU hotplug that the cpumask is not yet updated when a CPU is being 5428 * onlined. For memory nodes that have no CPUs, split the high value 5429 * across all online CPUs to mitigate the risk that reclaim is triggered 5430 * prematurely due to pages stored on pcp lists. 5431 */ 5432 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 5433 if (!nr_split_cpus) 5434 nr_split_cpus = num_online_cpus(); 5435 high = total_pages / nr_split_cpus; 5436 5437 /* 5438 * Ensure high is at least batch*4. The multiple is based on the 5439 * historical relationship between high and batch. 5440 */ 5441 high = max(high, batch << 2); 5442 5443 return high; 5444#else 5445 return 0; 5446#endif 5447} 5448 5449/* 5450 * pcp->high and pcp->batch values are related and generally batch is lower 5451 * than high. They are also related to pcp->count such that count is lower 5452 * than high, and as soon as it reaches high, the pcplist is flushed. 5453 * 5454 * However, guaranteeing these relations at all times would require e.g. write 5455 * barriers here but also careful usage of read barriers at the read side, and 5456 * thus be prone to error and bad for performance. Thus the update only prevents 5457 * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max 5458 * should ensure they can cope with those fields changing asynchronously, and 5459 * fully trust only the pcp->count field on the local CPU with interrupts 5460 * disabled. 5461 * 5462 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5463 * outside of boot time (or some other assurance that no concurrent updaters 5464 * exist). 5465 */ 5466static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min, 5467 unsigned long high_max, unsigned long batch) 5468{ 5469 WRITE_ONCE(pcp->batch, batch); 5470 WRITE_ONCE(pcp->high_min, high_min); 5471 WRITE_ONCE(pcp->high_max, high_max); 5472} 5473 5474static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 5475{ 5476 int pindex; 5477 5478 memset(pcp, 0, sizeof(*pcp)); 5479 memset(pzstats, 0, sizeof(*pzstats)); 5480 5481 spin_lock_init(&pcp->lock); 5482 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 5483 INIT_LIST_HEAD(&pcp->lists[pindex]); 5484 5485 /* 5486 * Set batch and high values safe for a boot pageset. A true percpu 5487 * pageset's initialization will update them subsequently. Here we don't 5488 * need to be as careful as pageset_update() as nobody can access the 5489 * pageset yet. 5490 */ 5491 pcp->high_min = BOOT_PAGESET_HIGH; 5492 pcp->high_max = BOOT_PAGESET_HIGH; 5493 pcp->batch = BOOT_PAGESET_BATCH; 5494 pcp->free_count = 0; 5495} 5496 5497static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min, 5498 unsigned long high_max, unsigned long batch) 5499{ 5500 struct per_cpu_pages *pcp; 5501 int cpu; 5502 5503 for_each_possible_cpu(cpu) { 5504 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5505 pageset_update(pcp, high_min, high_max, batch); 5506 } 5507} 5508 5509/* 5510 * Calculate and set new high and batch values for all per-cpu pagesets of a 5511 * zone based on the zone's size. 5512 */ 5513static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 5514{ 5515 int new_high_min, new_high_max, new_batch; 5516 5517 new_batch = max(1, zone_batchsize(zone)); 5518 if (percpu_pagelist_high_fraction) { 5519 new_high_min = zone_highsize(zone, new_batch, cpu_online, 5520 percpu_pagelist_high_fraction); 5521 /* 5522 * PCP high is tuned manually, disable auto-tuning via 5523 * setting high_min and high_max to the manual value. 5524 */ 5525 new_high_max = new_high_min; 5526 } else { 5527 new_high_min = zone_highsize(zone, new_batch, cpu_online, 0); 5528 new_high_max = zone_highsize(zone, new_batch, cpu_online, 5529 MIN_PERCPU_PAGELIST_HIGH_FRACTION); 5530 } 5531 5532 if (zone->pageset_high_min == new_high_min && 5533 zone->pageset_high_max == new_high_max && 5534 zone->pageset_batch == new_batch) 5535 return; 5536 5537 zone->pageset_high_min = new_high_min; 5538 zone->pageset_high_max = new_high_max; 5539 zone->pageset_batch = new_batch; 5540 5541 __zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max, 5542 new_batch); 5543} 5544 5545void __meminit setup_zone_pageset(struct zone *zone) 5546{ 5547 int cpu; 5548 5549 /* Size may be 0 on !SMP && !NUMA */ 5550 if (sizeof(struct per_cpu_zonestat) > 0) 5551 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 5552 5553 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 5554 for_each_possible_cpu(cpu) { 5555 struct per_cpu_pages *pcp; 5556 struct per_cpu_zonestat *pzstats; 5557 5558 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5559 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 5560 per_cpu_pages_init(pcp, pzstats); 5561 } 5562 5563 zone_set_pageset_high_and_batch(zone, 0); 5564} 5565 5566/* 5567 * The zone indicated has a new number of managed_pages; batch sizes and percpu 5568 * page high values need to be recalculated. 5569 */ 5570static void zone_pcp_update(struct zone *zone, int cpu_online) 5571{ 5572 mutex_lock(&pcp_batch_high_lock); 5573 zone_set_pageset_high_and_batch(zone, cpu_online); 5574 mutex_unlock(&pcp_batch_high_lock); 5575} 5576 5577static void zone_pcp_update_cacheinfo(struct zone *zone) 5578{ 5579 int cpu; 5580 struct per_cpu_pages *pcp; 5581 struct cpu_cacheinfo *cci; 5582 5583 for_each_online_cpu(cpu) { 5584 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5585 cci = get_cpu_cacheinfo(cpu); 5586 /* 5587 * If data cache slice of CPU is large enough, "pcp->batch" 5588 * pages can be preserved in PCP before draining PCP for 5589 * consecutive high-order pages freeing without allocation. 5590 * This can reduce zone lock contention without hurting 5591 * cache-hot pages sharing. 5592 */ 5593 spin_lock(&pcp->lock); 5594 if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch) 5595 pcp->flags |= PCPF_FREE_HIGH_BATCH; 5596 else 5597 pcp->flags &= ~PCPF_FREE_HIGH_BATCH; 5598 spin_unlock(&pcp->lock); 5599 } 5600} 5601 5602void setup_pcp_cacheinfo(void) 5603{ 5604 struct zone *zone; 5605 5606 for_each_populated_zone(zone) 5607 zone_pcp_update_cacheinfo(zone); 5608} 5609 5610/* 5611 * Allocate per cpu pagesets and initialize them. 5612 * Before this call only boot pagesets were available. 5613 */ 5614void __init setup_per_cpu_pageset(void) 5615{ 5616 struct pglist_data *pgdat; 5617 struct zone *zone; 5618 int __maybe_unused cpu; 5619 5620 for_each_populated_zone(zone) 5621 setup_zone_pageset(zone); 5622 5623#ifdef CONFIG_NUMA 5624 /* 5625 * Unpopulated zones continue using the boot pagesets. 5626 * The numa stats for these pagesets need to be reset. 5627 * Otherwise, they will end up skewing the stats of 5628 * the nodes these zones are associated with. 5629 */ 5630 for_each_possible_cpu(cpu) { 5631 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 5632 memset(pzstats->vm_numa_event, 0, 5633 sizeof(pzstats->vm_numa_event)); 5634 } 5635#endif 5636 5637 for_each_online_pgdat(pgdat) 5638 pgdat->per_cpu_nodestats = 5639 alloc_percpu(struct per_cpu_nodestat); 5640} 5641 5642__meminit void zone_pcp_init(struct zone *zone) 5643{ 5644 /* 5645 * per cpu subsystem is not up at this point. The following code 5646 * relies on the ability of the linker to provide the 5647 * offset of a (static) per cpu variable into the per cpu area. 5648 */ 5649 zone->per_cpu_pageset = &boot_pageset; 5650 zone->per_cpu_zonestats = &boot_zonestats; 5651 zone->pageset_high_min = BOOT_PAGESET_HIGH; 5652 zone->pageset_high_max = BOOT_PAGESET_HIGH; 5653 zone->pageset_batch = BOOT_PAGESET_BATCH; 5654 5655 if (populated_zone(zone)) 5656 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 5657 zone->present_pages, zone_batchsize(zone)); 5658} 5659 5660void adjust_managed_page_count(struct page *page, long count) 5661{ 5662 atomic_long_add(count, &page_zone(page)->managed_pages); 5663 totalram_pages_add(count); 5664#ifdef CONFIG_HIGHMEM 5665 if (PageHighMem(page)) 5666 totalhigh_pages_add(count); 5667#endif 5668} 5669EXPORT_SYMBOL(adjust_managed_page_count); 5670 5671unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 5672{ 5673 void *pos; 5674 unsigned long pages = 0; 5675 5676 start = (void *)PAGE_ALIGN((unsigned long)start); 5677 end = (void *)((unsigned long)end & PAGE_MASK); 5678 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 5679 struct page *page = virt_to_page(pos); 5680 void *direct_map_addr; 5681 5682 /* 5683 * 'direct_map_addr' might be different from 'pos' 5684 * because some architectures' virt_to_page() 5685 * work with aliases. Getting the direct map 5686 * address ensures that we get a _writeable_ 5687 * alias for the memset(). 5688 */ 5689 direct_map_addr = page_address(page); 5690 /* 5691 * Perform a kasan-unchecked memset() since this memory 5692 * has not been initialized. 5693 */ 5694 direct_map_addr = kasan_reset_tag(direct_map_addr); 5695 if ((unsigned int)poison <= 0xFF) 5696 memset(direct_map_addr, poison, PAGE_SIZE); 5697 5698 free_reserved_page(page); 5699 } 5700 5701 if (pages && s) 5702 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 5703 5704 return pages; 5705} 5706 5707static int page_alloc_cpu_dead(unsigned int cpu) 5708{ 5709 struct zone *zone; 5710 5711 lru_add_drain_cpu(cpu); 5712 mlock_drain_remote(cpu); 5713 drain_pages(cpu); 5714 5715 /* 5716 * Spill the event counters of the dead processor 5717 * into the current processors event counters. 5718 * This artificially elevates the count of the current 5719 * processor. 5720 */ 5721 vm_events_fold_cpu(cpu); 5722 5723 /* 5724 * Zero the differential counters of the dead processor 5725 * so that the vm statistics are consistent. 5726 * 5727 * This is only okay since the processor is dead and cannot 5728 * race with what we are doing. 5729 */ 5730 cpu_vm_stats_fold(cpu); 5731 5732 for_each_populated_zone(zone) 5733 zone_pcp_update(zone, 0); 5734 5735 return 0; 5736} 5737 5738static int page_alloc_cpu_online(unsigned int cpu) 5739{ 5740 struct zone *zone; 5741 5742 for_each_populated_zone(zone) 5743 zone_pcp_update(zone, 1); 5744 return 0; 5745} 5746 5747void __init page_alloc_init_cpuhp(void) 5748{ 5749 int ret; 5750 5751 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 5752 "mm/page_alloc:pcp", 5753 page_alloc_cpu_online, 5754 page_alloc_cpu_dead); 5755 WARN_ON(ret < 0); 5756} 5757 5758/* 5759 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 5760 * or min_free_kbytes changes. 5761 */ 5762static void calculate_totalreserve_pages(void) 5763{ 5764 struct pglist_data *pgdat; 5765 unsigned long reserve_pages = 0; 5766 enum zone_type i, j; 5767 5768 for_each_online_pgdat(pgdat) { 5769 5770 pgdat->totalreserve_pages = 0; 5771 5772 for (i = 0; i < MAX_NR_ZONES; i++) { 5773 struct zone *zone = pgdat->node_zones + i; 5774 long max = 0; 5775 unsigned long managed_pages = zone_managed_pages(zone); 5776 5777 /* Find valid and maximum lowmem_reserve in the zone */ 5778 for (j = i; j < MAX_NR_ZONES; j++) { 5779 if (zone->lowmem_reserve[j] > max) 5780 max = zone->lowmem_reserve[j]; 5781 } 5782 5783 /* we treat the high watermark as reserved pages. */ 5784 max += high_wmark_pages(zone); 5785 5786 if (max > managed_pages) 5787 max = managed_pages; 5788 5789 pgdat->totalreserve_pages += max; 5790 5791 reserve_pages += max; 5792 } 5793 } 5794 totalreserve_pages = reserve_pages; 5795} 5796 5797/* 5798 * setup_per_zone_lowmem_reserve - called whenever 5799 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 5800 * has a correct pages reserved value, so an adequate number of 5801 * pages are left in the zone after a successful __alloc_pages(). 5802 */ 5803static void setup_per_zone_lowmem_reserve(void) 5804{ 5805 struct pglist_data *pgdat; 5806 enum zone_type i, j; 5807 5808 for_each_online_pgdat(pgdat) { 5809 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 5810 struct zone *zone = &pgdat->node_zones[i]; 5811 int ratio = sysctl_lowmem_reserve_ratio[i]; 5812 bool clear = !ratio || !zone_managed_pages(zone); 5813 unsigned long managed_pages = 0; 5814 5815 for (j = i + 1; j < MAX_NR_ZONES; j++) { 5816 struct zone *upper_zone = &pgdat->node_zones[j]; 5817 5818 managed_pages += zone_managed_pages(upper_zone); 5819 5820 if (clear) 5821 zone->lowmem_reserve[j] = 0; 5822 else 5823 zone->lowmem_reserve[j] = managed_pages / ratio; 5824 } 5825 } 5826 } 5827 5828 /* update totalreserve_pages */ 5829 calculate_totalreserve_pages(); 5830} 5831 5832static void __setup_per_zone_wmarks(void) 5833{ 5834 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5835 unsigned long lowmem_pages = 0; 5836 struct zone *zone; 5837 unsigned long flags; 5838 5839 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */ 5840 for_each_zone(zone) { 5841 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE) 5842 lowmem_pages += zone_managed_pages(zone); 5843 } 5844 5845 for_each_zone(zone) { 5846 u64 tmp; 5847 5848 spin_lock_irqsave(&zone->lock, flags); 5849 tmp = (u64)pages_min * zone_managed_pages(zone); 5850 do_div(tmp, lowmem_pages); 5851 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) { 5852 /* 5853 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5854 * need highmem and movable zones pages, so cap pages_min 5855 * to a small value here. 5856 * 5857 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5858 * deltas control async page reclaim, and so should 5859 * not be capped for highmem and movable zones. 5860 */ 5861 unsigned long min_pages; 5862 5863 min_pages = zone_managed_pages(zone) / 1024; 5864 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 5865 zone->_watermark[WMARK_MIN] = min_pages; 5866 } else { 5867 /* 5868 * If it's a lowmem zone, reserve a number of pages 5869 * proportionate to the zone's size. 5870 */ 5871 zone->_watermark[WMARK_MIN] = tmp; 5872 } 5873 5874 /* 5875 * Set the kswapd watermarks distance according to the 5876 * scale factor in proportion to available memory, but 5877 * ensure a minimum size on small systems. 5878 */ 5879 tmp = max_t(u64, tmp >> 2, 5880 mult_frac(zone_managed_pages(zone), 5881 watermark_scale_factor, 10000)); 5882 5883 zone->watermark_boost = 0; 5884 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 5885 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; 5886 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; 5887 5888 spin_unlock_irqrestore(&zone->lock, flags); 5889 } 5890 5891 /* update totalreserve_pages */ 5892 calculate_totalreserve_pages(); 5893} 5894 5895/** 5896 * setup_per_zone_wmarks - called when min_free_kbytes changes 5897 * or when memory is hot-{added|removed} 5898 * 5899 * Ensures that the watermark[min,low,high] values for each zone are set 5900 * correctly with respect to min_free_kbytes. 5901 */ 5902void setup_per_zone_wmarks(void) 5903{ 5904 struct zone *zone; 5905 static DEFINE_SPINLOCK(lock); 5906 5907 spin_lock(&lock); 5908 __setup_per_zone_wmarks(); 5909 spin_unlock(&lock); 5910 5911 /* 5912 * The watermark size have changed so update the pcpu batch 5913 * and high limits or the limits may be inappropriate. 5914 */ 5915 for_each_zone(zone) 5916 zone_pcp_update(zone, 0); 5917} 5918 5919/* 5920 * Initialise min_free_kbytes. 5921 * 5922 * For small machines we want it small (128k min). For large machines 5923 * we want it large (256MB max). But it is not linear, because network 5924 * bandwidth does not increase linearly with machine size. We use 5925 * 5926 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 5927 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 5928 * 5929 * which yields 5930 * 5931 * 16MB: 512k 5932 * 32MB: 724k 5933 * 64MB: 1024k 5934 * 128MB: 1448k 5935 * 256MB: 2048k 5936 * 512MB: 2896k 5937 * 1024MB: 4096k 5938 * 2048MB: 5792k 5939 * 4096MB: 8192k 5940 * 8192MB: 11584k 5941 * 16384MB: 16384k 5942 */ 5943void calculate_min_free_kbytes(void) 5944{ 5945 unsigned long lowmem_kbytes; 5946 int new_min_free_kbytes; 5947 5948 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5949 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5950 5951 if (new_min_free_kbytes > user_min_free_kbytes) 5952 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 5953 else 5954 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 5955 new_min_free_kbytes, user_min_free_kbytes); 5956 5957} 5958 5959int __meminit init_per_zone_wmark_min(void) 5960{ 5961 calculate_min_free_kbytes(); 5962 setup_per_zone_wmarks(); 5963 refresh_zone_stat_thresholds(); 5964 setup_per_zone_lowmem_reserve(); 5965 5966#ifdef CONFIG_NUMA 5967 setup_min_unmapped_ratio(); 5968 setup_min_slab_ratio(); 5969#endif 5970 5971 khugepaged_min_free_kbytes_update(); 5972 5973 return 0; 5974} 5975postcore_initcall(init_per_zone_wmark_min) 5976 5977/* 5978 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 5979 * that we can call two helper functions whenever min_free_kbytes 5980 * changes. 5981 */ 5982static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 5983 void *buffer, size_t *length, loff_t *ppos) 5984{ 5985 int rc; 5986 5987 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5988 if (rc) 5989 return rc; 5990 5991 if (write) { 5992 user_min_free_kbytes = min_free_kbytes; 5993 setup_per_zone_wmarks(); 5994 } 5995 return 0; 5996} 5997 5998static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 5999 void *buffer, size_t *length, loff_t *ppos) 6000{ 6001 int rc; 6002 6003 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6004 if (rc) 6005 return rc; 6006 6007 if (write) 6008 setup_per_zone_wmarks(); 6009 6010 return 0; 6011} 6012 6013#ifdef CONFIG_NUMA 6014static void setup_min_unmapped_ratio(void) 6015{ 6016 pg_data_t *pgdat; 6017 struct zone *zone; 6018 6019 for_each_online_pgdat(pgdat) 6020 pgdat->min_unmapped_pages = 0; 6021 6022 for_each_zone(zone) 6023 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 6024 sysctl_min_unmapped_ratio) / 100; 6025} 6026 6027 6028static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 6029 void *buffer, size_t *length, loff_t *ppos) 6030{ 6031 int rc; 6032 6033 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6034 if (rc) 6035 return rc; 6036 6037 setup_min_unmapped_ratio(); 6038 6039 return 0; 6040} 6041 6042static void setup_min_slab_ratio(void) 6043{ 6044 pg_data_t *pgdat; 6045 struct zone *zone; 6046 6047 for_each_online_pgdat(pgdat) 6048 pgdat->min_slab_pages = 0; 6049 6050 for_each_zone(zone) 6051 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 6052 sysctl_min_slab_ratio) / 100; 6053} 6054 6055static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 6056 void *buffer, size_t *length, loff_t *ppos) 6057{ 6058 int rc; 6059 6060 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6061 if (rc) 6062 return rc; 6063 6064 setup_min_slab_ratio(); 6065 6066 return 0; 6067} 6068#endif 6069 6070/* 6071 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 6072 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 6073 * whenever sysctl_lowmem_reserve_ratio changes. 6074 * 6075 * The reserve ratio obviously has absolutely no relation with the 6076 * minimum watermarks. The lowmem reserve ratio can only make sense 6077 * if in function of the boot time zone sizes. 6078 */ 6079static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, 6080 int write, void *buffer, size_t *length, loff_t *ppos) 6081{ 6082 int i; 6083 6084 proc_dointvec_minmax(table, write, buffer, length, ppos); 6085 6086 for (i = 0; i < MAX_NR_ZONES; i++) { 6087 if (sysctl_lowmem_reserve_ratio[i] < 1) 6088 sysctl_lowmem_reserve_ratio[i] = 0; 6089 } 6090 6091 setup_per_zone_lowmem_reserve(); 6092 return 0; 6093} 6094 6095/* 6096 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 6097 * cpu. It is the fraction of total pages in each zone that a hot per cpu 6098 * pagelist can have before it gets flushed back to buddy allocator. 6099 */ 6100static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table, 6101 int write, void *buffer, size_t *length, loff_t *ppos) 6102{ 6103 struct zone *zone; 6104 int old_percpu_pagelist_high_fraction; 6105 int ret; 6106 6107 mutex_lock(&pcp_batch_high_lock); 6108 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 6109 6110 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 6111 if (!write || ret < 0) 6112 goto out; 6113 6114 /* Sanity checking to avoid pcp imbalance */ 6115 if (percpu_pagelist_high_fraction && 6116 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 6117 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 6118 ret = -EINVAL; 6119 goto out; 6120 } 6121 6122 /* No change? */ 6123 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 6124 goto out; 6125 6126 for_each_populated_zone(zone) 6127 zone_set_pageset_high_and_batch(zone, 0); 6128out: 6129 mutex_unlock(&pcp_batch_high_lock); 6130 return ret; 6131} 6132 6133static struct ctl_table page_alloc_sysctl_table[] = { 6134 { 6135 .procname = "min_free_kbytes", 6136 .data = &min_free_kbytes, 6137 .maxlen = sizeof(min_free_kbytes), 6138 .mode = 0644, 6139 .proc_handler = min_free_kbytes_sysctl_handler, 6140 .extra1 = SYSCTL_ZERO, 6141 }, 6142 { 6143 .procname = "watermark_boost_factor", 6144 .data = &watermark_boost_factor, 6145 .maxlen = sizeof(watermark_boost_factor), 6146 .mode = 0644, 6147 .proc_handler = proc_dointvec_minmax, 6148 .extra1 = SYSCTL_ZERO, 6149 }, 6150 { 6151 .procname = "watermark_scale_factor", 6152 .data = &watermark_scale_factor, 6153 .maxlen = sizeof(watermark_scale_factor), 6154 .mode = 0644, 6155 .proc_handler = watermark_scale_factor_sysctl_handler, 6156 .extra1 = SYSCTL_ONE, 6157 .extra2 = SYSCTL_THREE_THOUSAND, 6158 }, 6159 { 6160 .procname = "percpu_pagelist_high_fraction", 6161 .data = &percpu_pagelist_high_fraction, 6162 .maxlen = sizeof(percpu_pagelist_high_fraction), 6163 .mode = 0644, 6164 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler, 6165 .extra1 = SYSCTL_ZERO, 6166 }, 6167 { 6168 .procname = "lowmem_reserve_ratio", 6169 .data = &sysctl_lowmem_reserve_ratio, 6170 .maxlen = sizeof(sysctl_lowmem_reserve_ratio), 6171 .mode = 0644, 6172 .proc_handler = lowmem_reserve_ratio_sysctl_handler, 6173 }, 6174#ifdef CONFIG_NUMA 6175 { 6176 .procname = "numa_zonelist_order", 6177 .data = &numa_zonelist_order, 6178 .maxlen = NUMA_ZONELIST_ORDER_LEN, 6179 .mode = 0644, 6180 .proc_handler = numa_zonelist_order_handler, 6181 }, 6182 { 6183 .procname = "min_unmapped_ratio", 6184 .data = &sysctl_min_unmapped_ratio, 6185 .maxlen = sizeof(sysctl_min_unmapped_ratio), 6186 .mode = 0644, 6187 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler, 6188 .extra1 = SYSCTL_ZERO, 6189 .extra2 = SYSCTL_ONE_HUNDRED, 6190 }, 6191 { 6192 .procname = "min_slab_ratio", 6193 .data = &sysctl_min_slab_ratio, 6194 .maxlen = sizeof(sysctl_min_slab_ratio), 6195 .mode = 0644, 6196 .proc_handler = sysctl_min_slab_ratio_sysctl_handler, 6197 .extra1 = SYSCTL_ZERO, 6198 .extra2 = SYSCTL_ONE_HUNDRED, 6199 }, 6200#endif 6201 {} 6202}; 6203 6204void __init page_alloc_sysctl_init(void) 6205{ 6206 register_sysctl_init("vm", page_alloc_sysctl_table); 6207} 6208 6209#ifdef CONFIG_CONTIG_ALLOC 6210/* Usage: See admin-guide/dynamic-debug-howto.rst */ 6211static void alloc_contig_dump_pages(struct list_head *page_list) 6212{ 6213 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 6214 6215 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 6216 struct page *page; 6217 6218 dump_stack(); 6219 list_for_each_entry(page, page_list, lru) 6220 dump_page(page, "migration failure"); 6221 } 6222} 6223 6224/* [start, end) must belong to a single zone. */ 6225int __alloc_contig_migrate_range(struct compact_control *cc, 6226 unsigned long start, unsigned long end) 6227{ 6228 /* This function is based on compact_zone() from compaction.c. */ 6229 unsigned int nr_reclaimed; 6230 unsigned long pfn = start; 6231 unsigned int tries = 0; 6232 int ret = 0; 6233 struct migration_target_control mtc = { 6234 .nid = zone_to_nid(cc->zone), 6235 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 6236 }; 6237 6238 lru_cache_disable(); 6239 6240 while (pfn < end || !list_empty(&cc->migratepages)) { 6241 if (fatal_signal_pending(current)) { 6242 ret = -EINTR; 6243 break; 6244 } 6245 6246 if (list_empty(&cc->migratepages)) { 6247 cc->nr_migratepages = 0; 6248 ret = isolate_migratepages_range(cc, pfn, end); 6249 if (ret && ret != -EAGAIN) 6250 break; 6251 pfn = cc->migrate_pfn; 6252 tries = 0; 6253 } else if (++tries == 5) { 6254 ret = -EBUSY; 6255 break; 6256 } 6257 6258 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6259 &cc->migratepages); 6260 cc->nr_migratepages -= nr_reclaimed; 6261 6262 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 6263 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 6264 6265 /* 6266 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 6267 * to retry again over this error, so do the same here. 6268 */ 6269 if (ret == -ENOMEM) 6270 break; 6271 } 6272 6273 lru_cache_enable(); 6274 if (ret < 0) { 6275 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) 6276 alloc_contig_dump_pages(&cc->migratepages); 6277 putback_movable_pages(&cc->migratepages); 6278 return ret; 6279 } 6280 return 0; 6281} 6282 6283/** 6284 * alloc_contig_range() -- tries to allocate given range of pages 6285 * @start: start PFN to allocate 6286 * @end: one-past-the-last PFN to allocate 6287 * @migratetype: migratetype of the underlying pageblocks (either 6288 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 6289 * in range must have the same migratetype and it must 6290 * be either of the two. 6291 * @gfp_mask: GFP mask to use during compaction 6292 * 6293 * The PFN range does not have to be pageblock aligned. The PFN range must 6294 * belong to a single zone. 6295 * 6296 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 6297 * pageblocks in the range. Once isolated, the pageblocks should not 6298 * be modified by others. 6299 * 6300 * Return: zero on success or negative error code. On success all 6301 * pages which PFN is in [start, end) are allocated for the caller and 6302 * need to be freed with free_contig_range(). 6303 */ 6304int alloc_contig_range(unsigned long start, unsigned long end, 6305 unsigned migratetype, gfp_t gfp_mask) 6306{ 6307 unsigned long outer_start, outer_end; 6308 int order; 6309 int ret = 0; 6310 6311 struct compact_control cc = { 6312 .nr_migratepages = 0, 6313 .order = -1, 6314 .zone = page_zone(pfn_to_page(start)), 6315 .mode = MIGRATE_SYNC, 6316 .ignore_skip_hint = true, 6317 .no_set_skip_hint = true, 6318 .gfp_mask = current_gfp_context(gfp_mask), 6319 .alloc_contig = true, 6320 }; 6321 INIT_LIST_HEAD(&cc.migratepages); 6322 6323 /* 6324 * What we do here is we mark all pageblocks in range as 6325 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6326 * have different sizes, and due to the way page allocator 6327 * work, start_isolate_page_range() has special handlings for this. 6328 * 6329 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6330 * migrate the pages from an unaligned range (ie. pages that 6331 * we are interested in). This will put all the pages in 6332 * range back to page allocator as MIGRATE_ISOLATE. 6333 * 6334 * When this is done, we take the pages in range from page 6335 * allocator removing them from the buddy system. This way 6336 * page allocator will never consider using them. 6337 * 6338 * This lets us mark the pageblocks back as 6339 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6340 * aligned range but not in the unaligned, original range are 6341 * put back to page allocator so that buddy can use them. 6342 */ 6343 6344 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask); 6345 if (ret) 6346 goto done; 6347 6348 drain_all_pages(cc.zone); 6349 6350 /* 6351 * In case of -EBUSY, we'd like to know which page causes problem. 6352 * So, just fall through. test_pages_isolated() has a tracepoint 6353 * which will report the busy page. 6354 * 6355 * It is possible that busy pages could become available before 6356 * the call to test_pages_isolated, and the range will actually be 6357 * allocated. So, if we fall through be sure to clear ret so that 6358 * -EBUSY is not accidentally used or returned to caller. 6359 */ 6360 ret = __alloc_contig_migrate_range(&cc, start, end); 6361 if (ret && ret != -EBUSY) 6362 goto done; 6363 ret = 0; 6364 6365 /* 6366 * Pages from [start, end) are within a pageblock_nr_pages 6367 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6368 * more, all pages in [start, end) are free in page allocator. 6369 * What we are going to do is to allocate all pages from 6370 * [start, end) (that is remove them from page allocator). 6371 * 6372 * The only problem is that pages at the beginning and at the 6373 * end of interesting range may be not aligned with pages that 6374 * page allocator holds, ie. they can be part of higher order 6375 * pages. Because of this, we reserve the bigger range and 6376 * once this is done free the pages we are not interested in. 6377 * 6378 * We don't have to hold zone->lock here because the pages are 6379 * isolated thus they won't get removed from buddy. 6380 */ 6381 6382 order = 0; 6383 outer_start = start; 6384 while (!PageBuddy(pfn_to_page(outer_start))) { 6385 if (++order > MAX_PAGE_ORDER) { 6386 outer_start = start; 6387 break; 6388 } 6389 outer_start &= ~0UL << order; 6390 } 6391 6392 if (outer_start != start) { 6393 order = buddy_order(pfn_to_page(outer_start)); 6394 6395 /* 6396 * outer_start page could be small order buddy page and 6397 * it doesn't include start page. Adjust outer_start 6398 * in this case to report failed page properly 6399 * on tracepoint in test_pages_isolated() 6400 */ 6401 if (outer_start + (1UL << order) <= start) 6402 outer_start = start; 6403 } 6404 6405 /* Make sure the range is really isolated. */ 6406 if (test_pages_isolated(outer_start, end, 0)) { 6407 ret = -EBUSY; 6408 goto done; 6409 } 6410 6411 /* Grab isolated pages from freelists. */ 6412 outer_end = isolate_freepages_range(&cc, outer_start, end); 6413 if (!outer_end) { 6414 ret = -EBUSY; 6415 goto done; 6416 } 6417 6418 /* Free head and tail (if any) */ 6419 if (start != outer_start) 6420 free_contig_range(outer_start, start - outer_start); 6421 if (end != outer_end) 6422 free_contig_range(end, outer_end - end); 6423 6424done: 6425 undo_isolate_page_range(start, end, migratetype); 6426 return ret; 6427} 6428EXPORT_SYMBOL(alloc_contig_range); 6429 6430static int __alloc_contig_pages(unsigned long start_pfn, 6431 unsigned long nr_pages, gfp_t gfp_mask) 6432{ 6433 unsigned long end_pfn = start_pfn + nr_pages; 6434 6435 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 6436 gfp_mask); 6437} 6438 6439static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 6440 unsigned long nr_pages) 6441{ 6442 unsigned long i, end_pfn = start_pfn + nr_pages; 6443 struct page *page; 6444 6445 for (i = start_pfn; i < end_pfn; i++) { 6446 page = pfn_to_online_page(i); 6447 if (!page) 6448 return false; 6449 6450 if (page_zone(page) != z) 6451 return false; 6452 6453 if (PageReserved(page)) 6454 return false; 6455 6456 if (PageHuge(page)) 6457 return false; 6458 } 6459 return true; 6460} 6461 6462static bool zone_spans_last_pfn(const struct zone *zone, 6463 unsigned long start_pfn, unsigned long nr_pages) 6464{ 6465 unsigned long last_pfn = start_pfn + nr_pages - 1; 6466 6467 return zone_spans_pfn(zone, last_pfn); 6468} 6469 6470/** 6471 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 6472 * @nr_pages: Number of contiguous pages to allocate 6473 * @gfp_mask: GFP mask to limit search and used during compaction 6474 * @nid: Target node 6475 * @nodemask: Mask for other possible nodes 6476 * 6477 * This routine is a wrapper around alloc_contig_range(). It scans over zones 6478 * on an applicable zonelist to find a contiguous pfn range which can then be 6479 * tried for allocation with alloc_contig_range(). This routine is intended 6480 * for allocation requests which can not be fulfilled with the buddy allocator. 6481 * 6482 * The allocated memory is always aligned to a page boundary. If nr_pages is a 6483 * power of two, then allocated range is also guaranteed to be aligned to same 6484 * nr_pages (e.g. 1GB request would be aligned to 1GB). 6485 * 6486 * Allocated pages can be freed with free_contig_range() or by manually calling 6487 * __free_page() on each allocated page. 6488 * 6489 * Return: pointer to contiguous pages on success, or NULL if not successful. 6490 */ 6491struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 6492 int nid, nodemask_t *nodemask) 6493{ 6494 unsigned long ret, pfn, flags; 6495 struct zonelist *zonelist; 6496 struct zone *zone; 6497 struct zoneref *z; 6498 6499 zonelist = node_zonelist(nid, gfp_mask); 6500 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6501 gfp_zone(gfp_mask), nodemask) { 6502 spin_lock_irqsave(&zone->lock, flags); 6503 6504 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 6505 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 6506 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 6507 /* 6508 * We release the zone lock here because 6509 * alloc_contig_range() will also lock the zone 6510 * at some point. If there's an allocation 6511 * spinning on this lock, it may win the race 6512 * and cause alloc_contig_range() to fail... 6513 */ 6514 spin_unlock_irqrestore(&zone->lock, flags); 6515 ret = __alloc_contig_pages(pfn, nr_pages, 6516 gfp_mask); 6517 if (!ret) 6518 return pfn_to_page(pfn); 6519 spin_lock_irqsave(&zone->lock, flags); 6520 } 6521 pfn += nr_pages; 6522 } 6523 spin_unlock_irqrestore(&zone->lock, flags); 6524 } 6525 return NULL; 6526} 6527#endif /* CONFIG_CONTIG_ALLOC */ 6528 6529void free_contig_range(unsigned long pfn, unsigned long nr_pages) 6530{ 6531 unsigned long count = 0; 6532 6533 for (; nr_pages--; pfn++) { 6534 struct page *page = pfn_to_page(pfn); 6535 6536 count += page_count(page) != 1; 6537 __free_page(page); 6538 } 6539 WARN(count != 0, "%lu pages are still in use!\n", count); 6540} 6541EXPORT_SYMBOL(free_contig_range); 6542 6543/* 6544 * Effectively disable pcplists for the zone by setting the high limit to 0 6545 * and draining all cpus. A concurrent page freeing on another CPU that's about 6546 * to put the page on pcplist will either finish before the drain and the page 6547 * will be drained, or observe the new high limit and skip the pcplist. 6548 * 6549 * Must be paired with a call to zone_pcp_enable(). 6550 */ 6551void zone_pcp_disable(struct zone *zone) 6552{ 6553 mutex_lock(&pcp_batch_high_lock); 6554 __zone_set_pageset_high_and_batch(zone, 0, 0, 1); 6555 __drain_all_pages(zone, true); 6556} 6557 6558void zone_pcp_enable(struct zone *zone) 6559{ 6560 __zone_set_pageset_high_and_batch(zone, zone->pageset_high_min, 6561 zone->pageset_high_max, zone->pageset_batch); 6562 mutex_unlock(&pcp_batch_high_lock); 6563} 6564 6565void zone_pcp_reset(struct zone *zone) 6566{ 6567 int cpu; 6568 struct per_cpu_zonestat *pzstats; 6569 6570 if (zone->per_cpu_pageset != &boot_pageset) { 6571 for_each_online_cpu(cpu) { 6572 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 6573 drain_zonestat(zone, pzstats); 6574 } 6575 free_percpu(zone->per_cpu_pageset); 6576 zone->per_cpu_pageset = &boot_pageset; 6577 if (zone->per_cpu_zonestats != &boot_zonestats) { 6578 free_percpu(zone->per_cpu_zonestats); 6579 zone->per_cpu_zonestats = &boot_zonestats; 6580 } 6581 } 6582} 6583 6584#ifdef CONFIG_MEMORY_HOTREMOVE 6585/* 6586 * All pages in the range must be in a single zone, must not contain holes, 6587 * must span full sections, and must be isolated before calling this function. 6588 */ 6589void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 6590{ 6591 unsigned long pfn = start_pfn; 6592 struct page *page; 6593 struct zone *zone; 6594 unsigned int order; 6595 unsigned long flags; 6596 6597 offline_mem_sections(pfn, end_pfn); 6598 zone = page_zone(pfn_to_page(pfn)); 6599 spin_lock_irqsave(&zone->lock, flags); 6600 while (pfn < end_pfn) { 6601 page = pfn_to_page(pfn); 6602 /* 6603 * The HWPoisoned page may be not in buddy system, and 6604 * page_count() is not 0. 6605 */ 6606 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 6607 pfn++; 6608 continue; 6609 } 6610 /* 6611 * At this point all remaining PageOffline() pages have a 6612 * reference count of 0 and can simply be skipped. 6613 */ 6614 if (PageOffline(page)) { 6615 BUG_ON(page_count(page)); 6616 BUG_ON(PageBuddy(page)); 6617 pfn++; 6618 continue; 6619 } 6620 6621 BUG_ON(page_count(page)); 6622 BUG_ON(!PageBuddy(page)); 6623 order = buddy_order(page); 6624 del_page_from_free_list(page, zone, order); 6625 pfn += (1 << order); 6626 } 6627 spin_unlock_irqrestore(&zone->lock, flags); 6628} 6629#endif 6630 6631/* 6632 * This function returns a stable result only if called under zone lock. 6633 */ 6634bool is_free_buddy_page(struct page *page) 6635{ 6636 unsigned long pfn = page_to_pfn(page); 6637 unsigned int order; 6638 6639 for (order = 0; order < NR_PAGE_ORDERS; order++) { 6640 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6641 6642 if (PageBuddy(page_head) && 6643 buddy_order_unsafe(page_head) >= order) 6644 break; 6645 } 6646 6647 return order <= MAX_PAGE_ORDER; 6648} 6649EXPORT_SYMBOL(is_free_buddy_page); 6650 6651#ifdef CONFIG_MEMORY_FAILURE 6652/* 6653 * Break down a higher-order page in sub-pages, and keep our target out of 6654 * buddy allocator. 6655 */ 6656static void break_down_buddy_pages(struct zone *zone, struct page *page, 6657 struct page *target, int low, int high, 6658 int migratetype) 6659{ 6660 unsigned long size = 1 << high; 6661 struct page *current_buddy; 6662 6663 while (high > low) { 6664 high--; 6665 size >>= 1; 6666 6667 if (target >= &page[size]) { 6668 current_buddy = page; 6669 page = page + size; 6670 } else { 6671 current_buddy = page + size; 6672 } 6673 6674 if (set_page_guard(zone, current_buddy, high, migratetype)) 6675 continue; 6676 6677 add_to_free_list(current_buddy, zone, high, migratetype); 6678 set_buddy_order(current_buddy, high); 6679 } 6680} 6681 6682/* 6683 * Take a page that will be marked as poisoned off the buddy allocator. 6684 */ 6685bool take_page_off_buddy(struct page *page) 6686{ 6687 struct zone *zone = page_zone(page); 6688 unsigned long pfn = page_to_pfn(page); 6689 unsigned long flags; 6690 unsigned int order; 6691 bool ret = false; 6692 6693 spin_lock_irqsave(&zone->lock, flags); 6694 for (order = 0; order < NR_PAGE_ORDERS; order++) { 6695 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6696 int page_order = buddy_order(page_head); 6697 6698 if (PageBuddy(page_head) && page_order >= order) { 6699 unsigned long pfn_head = page_to_pfn(page_head); 6700 int migratetype = get_pfnblock_migratetype(page_head, 6701 pfn_head); 6702 6703 del_page_from_free_list(page_head, zone, page_order); 6704 break_down_buddy_pages(zone, page_head, page, 0, 6705 page_order, migratetype); 6706 SetPageHWPoisonTakenOff(page); 6707 if (!is_migrate_isolate(migratetype)) 6708 __mod_zone_freepage_state(zone, -1, migratetype); 6709 ret = true; 6710 break; 6711 } 6712 if (page_count(page_head) > 0) 6713 break; 6714 } 6715 spin_unlock_irqrestore(&zone->lock, flags); 6716 return ret; 6717} 6718 6719/* 6720 * Cancel takeoff done by take_page_off_buddy(). 6721 */ 6722bool put_page_back_buddy(struct page *page) 6723{ 6724 struct zone *zone = page_zone(page); 6725 unsigned long pfn = page_to_pfn(page); 6726 unsigned long flags; 6727 int migratetype = get_pfnblock_migratetype(page, pfn); 6728 bool ret = false; 6729 6730 spin_lock_irqsave(&zone->lock, flags); 6731 if (put_page_testzero(page)) { 6732 ClearPageHWPoisonTakenOff(page); 6733 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); 6734 if (TestClearPageHWPoison(page)) { 6735 ret = true; 6736 } 6737 } 6738 spin_unlock_irqrestore(&zone->lock, flags); 6739 6740 return ret; 6741} 6742#endif 6743 6744#ifdef CONFIG_ZONE_DMA 6745bool has_managed_dma(void) 6746{ 6747 struct pglist_data *pgdat; 6748 6749 for_each_online_pgdat(pgdat) { 6750 struct zone *zone = &pgdat->node_zones[ZONE_DMA]; 6751 6752 if (managed_zone(zone)) 6753 return true; 6754 } 6755 return false; 6756} 6757#endif /* CONFIG_ZONE_DMA */ 6758 6759#ifdef CONFIG_UNACCEPTED_MEMORY 6760 6761/* Counts number of zones with unaccepted pages. */ 6762static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages); 6763 6764static bool lazy_accept = true; 6765 6766static int __init accept_memory_parse(char *p) 6767{ 6768 if (!strcmp(p, "lazy")) { 6769 lazy_accept = true; 6770 return 0; 6771 } else if (!strcmp(p, "eager")) { 6772 lazy_accept = false; 6773 return 0; 6774 } else { 6775 return -EINVAL; 6776 } 6777} 6778early_param("accept_memory", accept_memory_parse); 6779 6780static bool page_contains_unaccepted(struct page *page, unsigned int order) 6781{ 6782 phys_addr_t start = page_to_phys(page); 6783 phys_addr_t end = start + (PAGE_SIZE << order); 6784 6785 return range_contains_unaccepted_memory(start, end); 6786} 6787 6788static void accept_page(struct page *page, unsigned int order) 6789{ 6790 phys_addr_t start = page_to_phys(page); 6791 6792 accept_memory(start, start + (PAGE_SIZE << order)); 6793} 6794 6795static bool try_to_accept_memory_one(struct zone *zone) 6796{ 6797 unsigned long flags; 6798 struct page *page; 6799 bool last; 6800 6801 if (list_empty(&zone->unaccepted_pages)) 6802 return false; 6803 6804 spin_lock_irqsave(&zone->lock, flags); 6805 page = list_first_entry_or_null(&zone->unaccepted_pages, 6806 struct page, lru); 6807 if (!page) { 6808 spin_unlock_irqrestore(&zone->lock, flags); 6809 return false; 6810 } 6811 6812 list_del(&page->lru); 6813 last = list_empty(&zone->unaccepted_pages); 6814 6815 __mod_zone_freepage_state(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 6816 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES); 6817 spin_unlock_irqrestore(&zone->lock, flags); 6818 6819 accept_page(page, MAX_PAGE_ORDER); 6820 6821 __free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL); 6822 6823 if (last) 6824 static_branch_dec(&zones_with_unaccepted_pages); 6825 6826 return true; 6827} 6828 6829static bool try_to_accept_memory(struct zone *zone, unsigned int order) 6830{ 6831 long to_accept; 6832 int ret = false; 6833 6834 /* How much to accept to get to high watermark? */ 6835 to_accept = high_wmark_pages(zone) - 6836 (zone_page_state(zone, NR_FREE_PAGES) - 6837 __zone_watermark_unusable_free(zone, order, 0)); 6838 6839 /* Accept at least one page */ 6840 do { 6841 if (!try_to_accept_memory_one(zone)) 6842 break; 6843 ret = true; 6844 to_accept -= MAX_ORDER_NR_PAGES; 6845 } while (to_accept > 0); 6846 6847 return ret; 6848} 6849 6850static inline bool has_unaccepted_memory(void) 6851{ 6852 return static_branch_unlikely(&zones_with_unaccepted_pages); 6853} 6854 6855static bool __free_unaccepted(struct page *page) 6856{ 6857 struct zone *zone = page_zone(page); 6858 unsigned long flags; 6859 bool first = false; 6860 6861 if (!lazy_accept) 6862 return false; 6863 6864 spin_lock_irqsave(&zone->lock, flags); 6865 first = list_empty(&zone->unaccepted_pages); 6866 list_add_tail(&page->lru, &zone->unaccepted_pages); 6867 __mod_zone_freepage_state(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 6868 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES); 6869 spin_unlock_irqrestore(&zone->lock, flags); 6870 6871 if (first) 6872 static_branch_inc(&zones_with_unaccepted_pages); 6873 6874 return true; 6875} 6876 6877#else 6878 6879static bool page_contains_unaccepted(struct page *page, unsigned int order) 6880{ 6881 return false; 6882} 6883 6884static void accept_page(struct page *page, unsigned int order) 6885{ 6886} 6887 6888static bool try_to_accept_memory(struct zone *zone, unsigned int order) 6889{ 6890 return false; 6891} 6892 6893static inline bool has_unaccepted_memory(void) 6894{ 6895 return false; 6896} 6897 6898static bool __free_unaccepted(struct page *page) 6899{ 6900 BUILD_BUG(); 6901 return false; 6902} 6903 6904#endif /* CONFIG_UNACCEPTED_MEMORY */