at v6.8 25 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk). 4 * 5 * (C) SGI 2006, Christoph Lameter 6 * Cleaned up and restructured to ease the addition of alternative 7 * implementations of SLAB allocators. 8 * (C) Linux Foundation 2008-2013 9 * Unified interface for all slab allocators 10 */ 11 12#ifndef _LINUX_SLAB_H 13#define _LINUX_SLAB_H 14 15#include <linux/cache.h> 16#include <linux/gfp.h> 17#include <linux/overflow.h> 18#include <linux/types.h> 19#include <linux/workqueue.h> 20#include <linux/percpu-refcount.h> 21#include <linux/cleanup.h> 22#include <linux/hash.h> 23 24 25/* 26 * Flags to pass to kmem_cache_create(). 27 * The ones marked DEBUG need CONFIG_SLUB_DEBUG enabled, otherwise are no-op 28 */ 29/* DEBUG: Perform (expensive) checks on alloc/free */ 30#define SLAB_CONSISTENCY_CHECKS ((slab_flags_t __force)0x00000100U) 31/* DEBUG: Red zone objs in a cache */ 32#define SLAB_RED_ZONE ((slab_flags_t __force)0x00000400U) 33/* DEBUG: Poison objects */ 34#define SLAB_POISON ((slab_flags_t __force)0x00000800U) 35/* Indicate a kmalloc slab */ 36#define SLAB_KMALLOC ((slab_flags_t __force)0x00001000U) 37/* Align objs on cache lines */ 38#define SLAB_HWCACHE_ALIGN ((slab_flags_t __force)0x00002000U) 39/* Use GFP_DMA memory */ 40#define SLAB_CACHE_DMA ((slab_flags_t __force)0x00004000U) 41/* Use GFP_DMA32 memory */ 42#define SLAB_CACHE_DMA32 ((slab_flags_t __force)0x00008000U) 43/* DEBUG: Store the last owner for bug hunting */ 44#define SLAB_STORE_USER ((slab_flags_t __force)0x00010000U) 45/* Panic if kmem_cache_create() fails */ 46#define SLAB_PANIC ((slab_flags_t __force)0x00040000U) 47/* 48 * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS! 49 * 50 * This delays freeing the SLAB page by a grace period, it does _NOT_ 51 * delay object freeing. This means that if you do kmem_cache_free() 52 * that memory location is free to be reused at any time. Thus it may 53 * be possible to see another object there in the same RCU grace period. 54 * 55 * This feature only ensures the memory location backing the object 56 * stays valid, the trick to using this is relying on an independent 57 * object validation pass. Something like: 58 * 59 * begin: 60 * rcu_read_lock(); 61 * obj = lockless_lookup(key); 62 * if (obj) { 63 * if (!try_get_ref(obj)) // might fail for free objects 64 * rcu_read_unlock(); 65 * goto begin; 66 * 67 * if (obj->key != key) { // not the object we expected 68 * put_ref(obj); 69 * rcu_read_unlock(); 70 * goto begin; 71 * } 72 * } 73 * rcu_read_unlock(); 74 * 75 * This is useful if we need to approach a kernel structure obliquely, 76 * from its address obtained without the usual locking. We can lock 77 * the structure to stabilize it and check it's still at the given address, 78 * only if we can be sure that the memory has not been meanwhile reused 79 * for some other kind of object (which our subsystem's lock might corrupt). 80 * 81 * rcu_read_lock before reading the address, then rcu_read_unlock after 82 * taking the spinlock within the structure expected at that address. 83 * 84 * Note that it is not possible to acquire a lock within a structure 85 * allocated with SLAB_TYPESAFE_BY_RCU without first acquiring a reference 86 * as described above. The reason is that SLAB_TYPESAFE_BY_RCU pages 87 * are not zeroed before being given to the slab, which means that any 88 * locks must be initialized after each and every kmem_struct_alloc(). 89 * Alternatively, make the ctor passed to kmem_cache_create() initialize 90 * the locks at page-allocation time, as is done in __i915_request_ctor(), 91 * sighand_ctor(), and anon_vma_ctor(). Such a ctor permits readers 92 * to safely acquire those ctor-initialized locks under rcu_read_lock() 93 * protection. 94 * 95 * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU. 96 */ 97/* Defer freeing slabs to RCU */ 98#define SLAB_TYPESAFE_BY_RCU ((slab_flags_t __force)0x00080000U) 99/* Spread some memory over cpuset */ 100#define SLAB_MEM_SPREAD ((slab_flags_t __force)0x00100000U) 101/* Trace allocations and frees */ 102#define SLAB_TRACE ((slab_flags_t __force)0x00200000U) 103 104/* Flag to prevent checks on free */ 105#ifdef CONFIG_DEBUG_OBJECTS 106# define SLAB_DEBUG_OBJECTS ((slab_flags_t __force)0x00400000U) 107#else 108# define SLAB_DEBUG_OBJECTS 0 109#endif 110 111/* Avoid kmemleak tracing */ 112#define SLAB_NOLEAKTRACE ((slab_flags_t __force)0x00800000U) 113 114/* 115 * Prevent merging with compatible kmem caches. This flag should be used 116 * cautiously. Valid use cases: 117 * 118 * - caches created for self-tests (e.g. kunit) 119 * - general caches created and used by a subsystem, only when a 120 * (subsystem-specific) debug option is enabled 121 * - performance critical caches, should be very rare and consulted with slab 122 * maintainers, and not used together with CONFIG_SLUB_TINY 123 */ 124#define SLAB_NO_MERGE ((slab_flags_t __force)0x01000000U) 125 126/* Fault injection mark */ 127#ifdef CONFIG_FAILSLAB 128# define SLAB_FAILSLAB ((slab_flags_t __force)0x02000000U) 129#else 130# define SLAB_FAILSLAB 0 131#endif 132/* Account to memcg */ 133#ifdef CONFIG_MEMCG_KMEM 134# define SLAB_ACCOUNT ((slab_flags_t __force)0x04000000U) 135#else 136# define SLAB_ACCOUNT 0 137#endif 138 139#ifdef CONFIG_KASAN_GENERIC 140#define SLAB_KASAN ((slab_flags_t __force)0x08000000U) 141#else 142#define SLAB_KASAN 0 143#endif 144 145/* 146 * Ignore user specified debugging flags. 147 * Intended for caches created for self-tests so they have only flags 148 * specified in the code and other flags are ignored. 149 */ 150#define SLAB_NO_USER_FLAGS ((slab_flags_t __force)0x10000000U) 151 152#ifdef CONFIG_KFENCE 153#define SLAB_SKIP_KFENCE ((slab_flags_t __force)0x20000000U) 154#else 155#define SLAB_SKIP_KFENCE 0 156#endif 157 158/* The following flags affect the page allocator grouping pages by mobility */ 159/* Objects are reclaimable */ 160#ifndef CONFIG_SLUB_TINY 161#define SLAB_RECLAIM_ACCOUNT ((slab_flags_t __force)0x00020000U) 162#else 163#define SLAB_RECLAIM_ACCOUNT ((slab_flags_t __force)0) 164#endif 165#define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */ 166 167/* 168 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests. 169 * 170 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault. 171 * 172 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can. 173 * Both make kfree a no-op. 174 */ 175#define ZERO_SIZE_PTR ((void *)16) 176 177#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \ 178 (unsigned long)ZERO_SIZE_PTR) 179 180#include <linux/kasan.h> 181 182struct list_lru; 183struct mem_cgroup; 184/* 185 * struct kmem_cache related prototypes 186 */ 187bool slab_is_available(void); 188 189struct kmem_cache *kmem_cache_create(const char *name, unsigned int size, 190 unsigned int align, slab_flags_t flags, 191 void (*ctor)(void *)); 192struct kmem_cache *kmem_cache_create_usercopy(const char *name, 193 unsigned int size, unsigned int align, 194 slab_flags_t flags, 195 unsigned int useroffset, unsigned int usersize, 196 void (*ctor)(void *)); 197void kmem_cache_destroy(struct kmem_cache *s); 198int kmem_cache_shrink(struct kmem_cache *s); 199 200/* 201 * Please use this macro to create slab caches. Simply specify the 202 * name of the structure and maybe some flags that are listed above. 203 * 204 * The alignment of the struct determines object alignment. If you 205 * f.e. add ____cacheline_aligned_in_smp to the struct declaration 206 * then the objects will be properly aligned in SMP configurations. 207 */ 208#define KMEM_CACHE(__struct, __flags) \ 209 kmem_cache_create(#__struct, sizeof(struct __struct), \ 210 __alignof__(struct __struct), (__flags), NULL) 211 212/* 213 * To whitelist a single field for copying to/from usercopy, use this 214 * macro instead for KMEM_CACHE() above. 215 */ 216#define KMEM_CACHE_USERCOPY(__struct, __flags, __field) \ 217 kmem_cache_create_usercopy(#__struct, \ 218 sizeof(struct __struct), \ 219 __alignof__(struct __struct), (__flags), \ 220 offsetof(struct __struct, __field), \ 221 sizeof_field(struct __struct, __field), NULL) 222 223/* 224 * Common kmalloc functions provided by all allocators 225 */ 226void * __must_check krealloc(const void *objp, size_t new_size, gfp_t flags) __realloc_size(2); 227void kfree(const void *objp); 228void kfree_sensitive(const void *objp); 229size_t __ksize(const void *objp); 230 231DEFINE_FREE(kfree, void *, if (_T) kfree(_T)) 232 233/** 234 * ksize - Report actual allocation size of associated object 235 * 236 * @objp: Pointer returned from a prior kmalloc()-family allocation. 237 * 238 * This should not be used for writing beyond the originally requested 239 * allocation size. Either use krealloc() or round up the allocation size 240 * with kmalloc_size_roundup() prior to allocation. If this is used to 241 * access beyond the originally requested allocation size, UBSAN_BOUNDS 242 * and/or FORTIFY_SOURCE may trip, since they only know about the 243 * originally allocated size via the __alloc_size attribute. 244 */ 245size_t ksize(const void *objp); 246 247#ifdef CONFIG_PRINTK 248bool kmem_dump_obj(void *object); 249#else 250static inline bool kmem_dump_obj(void *object) { return false; } 251#endif 252 253/* 254 * Some archs want to perform DMA into kmalloc caches and need a guaranteed 255 * alignment larger than the alignment of a 64-bit integer. 256 * Setting ARCH_DMA_MINALIGN in arch headers allows that. 257 */ 258#ifdef ARCH_HAS_DMA_MINALIGN 259#if ARCH_DMA_MINALIGN > 8 && !defined(ARCH_KMALLOC_MINALIGN) 260#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN 261#endif 262#endif 263 264#ifndef ARCH_KMALLOC_MINALIGN 265#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) 266#elif ARCH_KMALLOC_MINALIGN > 8 267#define KMALLOC_MIN_SIZE ARCH_KMALLOC_MINALIGN 268#define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE) 269#endif 270 271/* 272 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment. 273 * Intended for arches that get misalignment faults even for 64 bit integer 274 * aligned buffers. 275 */ 276#ifndef ARCH_SLAB_MINALIGN 277#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) 278#endif 279 280/* 281 * Arches can define this function if they want to decide the minimum slab 282 * alignment at runtime. The value returned by the function must be a power 283 * of two and >= ARCH_SLAB_MINALIGN. 284 */ 285#ifndef arch_slab_minalign 286static inline unsigned int arch_slab_minalign(void) 287{ 288 return ARCH_SLAB_MINALIGN; 289} 290#endif 291 292/* 293 * kmem_cache_alloc and friends return pointers aligned to ARCH_SLAB_MINALIGN. 294 * kmalloc and friends return pointers aligned to both ARCH_KMALLOC_MINALIGN 295 * and ARCH_SLAB_MINALIGN, but here we only assume the former alignment. 296 */ 297#define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN) 298#define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN) 299#define __assume_page_alignment __assume_aligned(PAGE_SIZE) 300 301/* 302 * Kmalloc array related definitions 303 */ 304 305/* 306 * SLUB directly allocates requests fitting in to an order-1 page 307 * (PAGE_SIZE*2). Larger requests are passed to the page allocator. 308 */ 309#define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1) 310#define KMALLOC_SHIFT_MAX (MAX_PAGE_ORDER + PAGE_SHIFT) 311#ifndef KMALLOC_SHIFT_LOW 312#define KMALLOC_SHIFT_LOW 3 313#endif 314 315/* Maximum allocatable size */ 316#define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX) 317/* Maximum size for which we actually use a slab cache */ 318#define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH) 319/* Maximum order allocatable via the slab allocator */ 320#define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT) 321 322/* 323 * Kmalloc subsystem. 324 */ 325#ifndef KMALLOC_MIN_SIZE 326#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW) 327#endif 328 329/* 330 * This restriction comes from byte sized index implementation. 331 * Page size is normally 2^12 bytes and, in this case, if we want to use 332 * byte sized index which can represent 2^8 entries, the size of the object 333 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16. 334 * If minimum size of kmalloc is less than 16, we use it as minimum object 335 * size and give up to use byte sized index. 336 */ 337#define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \ 338 (KMALLOC_MIN_SIZE) : 16) 339 340#ifdef CONFIG_RANDOM_KMALLOC_CACHES 341#define RANDOM_KMALLOC_CACHES_NR 15 // # of cache copies 342#else 343#define RANDOM_KMALLOC_CACHES_NR 0 344#endif 345 346/* 347 * Whenever changing this, take care of that kmalloc_type() and 348 * create_kmalloc_caches() still work as intended. 349 * 350 * KMALLOC_NORMAL can contain only unaccounted objects whereas KMALLOC_CGROUP 351 * is for accounted but unreclaimable and non-dma objects. All the other 352 * kmem caches can have both accounted and unaccounted objects. 353 */ 354enum kmalloc_cache_type { 355 KMALLOC_NORMAL = 0, 356#ifndef CONFIG_ZONE_DMA 357 KMALLOC_DMA = KMALLOC_NORMAL, 358#endif 359#ifndef CONFIG_MEMCG_KMEM 360 KMALLOC_CGROUP = KMALLOC_NORMAL, 361#endif 362 KMALLOC_RANDOM_START = KMALLOC_NORMAL, 363 KMALLOC_RANDOM_END = KMALLOC_RANDOM_START + RANDOM_KMALLOC_CACHES_NR, 364#ifdef CONFIG_SLUB_TINY 365 KMALLOC_RECLAIM = KMALLOC_NORMAL, 366#else 367 KMALLOC_RECLAIM, 368#endif 369#ifdef CONFIG_ZONE_DMA 370 KMALLOC_DMA, 371#endif 372#ifdef CONFIG_MEMCG_KMEM 373 KMALLOC_CGROUP, 374#endif 375 NR_KMALLOC_TYPES 376}; 377 378extern struct kmem_cache * 379kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1]; 380 381/* 382 * Define gfp bits that should not be set for KMALLOC_NORMAL. 383 */ 384#define KMALLOC_NOT_NORMAL_BITS \ 385 (__GFP_RECLAIMABLE | \ 386 (IS_ENABLED(CONFIG_ZONE_DMA) ? __GFP_DMA : 0) | \ 387 (IS_ENABLED(CONFIG_MEMCG_KMEM) ? __GFP_ACCOUNT : 0)) 388 389extern unsigned long random_kmalloc_seed; 390 391static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags, unsigned long caller) 392{ 393 /* 394 * The most common case is KMALLOC_NORMAL, so test for it 395 * with a single branch for all the relevant flags. 396 */ 397 if (likely((flags & KMALLOC_NOT_NORMAL_BITS) == 0)) 398#ifdef CONFIG_RANDOM_KMALLOC_CACHES 399 /* RANDOM_KMALLOC_CACHES_NR (=15) copies + the KMALLOC_NORMAL */ 400 return KMALLOC_RANDOM_START + hash_64(caller ^ random_kmalloc_seed, 401 ilog2(RANDOM_KMALLOC_CACHES_NR + 1)); 402#else 403 return KMALLOC_NORMAL; 404#endif 405 406 /* 407 * At least one of the flags has to be set. Their priorities in 408 * decreasing order are: 409 * 1) __GFP_DMA 410 * 2) __GFP_RECLAIMABLE 411 * 3) __GFP_ACCOUNT 412 */ 413 if (IS_ENABLED(CONFIG_ZONE_DMA) && (flags & __GFP_DMA)) 414 return KMALLOC_DMA; 415 if (!IS_ENABLED(CONFIG_MEMCG_KMEM) || (flags & __GFP_RECLAIMABLE)) 416 return KMALLOC_RECLAIM; 417 else 418 return KMALLOC_CGROUP; 419} 420 421/* 422 * Figure out which kmalloc slab an allocation of a certain size 423 * belongs to. 424 * 0 = zero alloc 425 * 1 = 65 .. 96 bytes 426 * 2 = 129 .. 192 bytes 427 * n = 2^(n-1)+1 .. 2^n 428 * 429 * Note: __kmalloc_index() is compile-time optimized, and not runtime optimized; 430 * typical usage is via kmalloc_index() and therefore evaluated at compile-time. 431 * Callers where !size_is_constant should only be test modules, where runtime 432 * overheads of __kmalloc_index() can be tolerated. Also see kmalloc_slab(). 433 */ 434static __always_inline unsigned int __kmalloc_index(size_t size, 435 bool size_is_constant) 436{ 437 if (!size) 438 return 0; 439 440 if (size <= KMALLOC_MIN_SIZE) 441 return KMALLOC_SHIFT_LOW; 442 443 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96) 444 return 1; 445 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192) 446 return 2; 447 if (size <= 8) return 3; 448 if (size <= 16) return 4; 449 if (size <= 32) return 5; 450 if (size <= 64) return 6; 451 if (size <= 128) return 7; 452 if (size <= 256) return 8; 453 if (size <= 512) return 9; 454 if (size <= 1024) return 10; 455 if (size <= 2 * 1024) return 11; 456 if (size <= 4 * 1024) return 12; 457 if (size <= 8 * 1024) return 13; 458 if (size <= 16 * 1024) return 14; 459 if (size <= 32 * 1024) return 15; 460 if (size <= 64 * 1024) return 16; 461 if (size <= 128 * 1024) return 17; 462 if (size <= 256 * 1024) return 18; 463 if (size <= 512 * 1024) return 19; 464 if (size <= 1024 * 1024) return 20; 465 if (size <= 2 * 1024 * 1024) return 21; 466 467 if (!IS_ENABLED(CONFIG_PROFILE_ALL_BRANCHES) && size_is_constant) 468 BUILD_BUG_ON_MSG(1, "unexpected size in kmalloc_index()"); 469 else 470 BUG(); 471 472 /* Will never be reached. Needed because the compiler may complain */ 473 return -1; 474} 475static_assert(PAGE_SHIFT <= 20); 476#define kmalloc_index(s) __kmalloc_index(s, true) 477 478void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __alloc_size(1); 479 480/** 481 * kmem_cache_alloc - Allocate an object 482 * @cachep: The cache to allocate from. 483 * @flags: See kmalloc(). 484 * 485 * Allocate an object from this cache. 486 * See kmem_cache_zalloc() for a shortcut of adding __GFP_ZERO to flags. 487 * 488 * Return: pointer to the new object or %NULL in case of error 489 */ 490void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) __assume_slab_alignment __malloc; 491void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru, 492 gfp_t gfpflags) __assume_slab_alignment __malloc; 493void kmem_cache_free(struct kmem_cache *s, void *objp); 494 495/* 496 * Bulk allocation and freeing operations. These are accelerated in an 497 * allocator specific way to avoid taking locks repeatedly or building 498 * metadata structures unnecessarily. 499 * 500 * Note that interrupts must be enabled when calling these functions. 501 */ 502void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p); 503int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, void **p); 504 505static __always_inline void kfree_bulk(size_t size, void **p) 506{ 507 kmem_cache_free_bulk(NULL, size, p); 508} 509 510void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment 511 __alloc_size(1); 512void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node) __assume_slab_alignment 513 __malloc; 514 515void *kmalloc_trace(struct kmem_cache *s, gfp_t flags, size_t size) 516 __assume_kmalloc_alignment __alloc_size(3); 517 518void *kmalloc_node_trace(struct kmem_cache *s, gfp_t gfpflags, 519 int node, size_t size) __assume_kmalloc_alignment 520 __alloc_size(4); 521void *kmalloc_large(size_t size, gfp_t flags) __assume_page_alignment 522 __alloc_size(1); 523 524void *kmalloc_large_node(size_t size, gfp_t flags, int node) __assume_page_alignment 525 __alloc_size(1); 526 527/** 528 * kmalloc - allocate kernel memory 529 * @size: how many bytes of memory are required. 530 * @flags: describe the allocation context 531 * 532 * kmalloc is the normal method of allocating memory 533 * for objects smaller than page size in the kernel. 534 * 535 * The allocated object address is aligned to at least ARCH_KMALLOC_MINALIGN 536 * bytes. For @size of power of two bytes, the alignment is also guaranteed 537 * to be at least to the size. 538 * 539 * The @flags argument may be one of the GFP flags defined at 540 * include/linux/gfp_types.h and described at 541 * :ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>` 542 * 543 * The recommended usage of the @flags is described at 544 * :ref:`Documentation/core-api/memory-allocation.rst <memory_allocation>` 545 * 546 * Below is a brief outline of the most useful GFP flags 547 * 548 * %GFP_KERNEL 549 * Allocate normal kernel ram. May sleep. 550 * 551 * %GFP_NOWAIT 552 * Allocation will not sleep. 553 * 554 * %GFP_ATOMIC 555 * Allocation will not sleep. May use emergency pools. 556 * 557 * Also it is possible to set different flags by OR'ing 558 * in one or more of the following additional @flags: 559 * 560 * %__GFP_ZERO 561 * Zero the allocated memory before returning. Also see kzalloc(). 562 * 563 * %__GFP_HIGH 564 * This allocation has high priority and may use emergency pools. 565 * 566 * %__GFP_NOFAIL 567 * Indicate that this allocation is in no way allowed to fail 568 * (think twice before using). 569 * 570 * %__GFP_NORETRY 571 * If memory is not immediately available, 572 * then give up at once. 573 * 574 * %__GFP_NOWARN 575 * If allocation fails, don't issue any warnings. 576 * 577 * %__GFP_RETRY_MAYFAIL 578 * Try really hard to succeed the allocation but fail 579 * eventually. 580 */ 581static __always_inline __alloc_size(1) void *kmalloc(size_t size, gfp_t flags) 582{ 583 if (__builtin_constant_p(size) && size) { 584 unsigned int index; 585 586 if (size > KMALLOC_MAX_CACHE_SIZE) 587 return kmalloc_large(size, flags); 588 589 index = kmalloc_index(size); 590 return kmalloc_trace( 591 kmalloc_caches[kmalloc_type(flags, _RET_IP_)][index], 592 flags, size); 593 } 594 return __kmalloc(size, flags); 595} 596 597static __always_inline __alloc_size(1) void *kmalloc_node(size_t size, gfp_t flags, int node) 598{ 599 if (__builtin_constant_p(size) && size) { 600 unsigned int index; 601 602 if (size > KMALLOC_MAX_CACHE_SIZE) 603 return kmalloc_large_node(size, flags, node); 604 605 index = kmalloc_index(size); 606 return kmalloc_node_trace( 607 kmalloc_caches[kmalloc_type(flags, _RET_IP_)][index], 608 flags, node, size); 609 } 610 return __kmalloc_node(size, flags, node); 611} 612 613/** 614 * kmalloc_array - allocate memory for an array. 615 * @n: number of elements. 616 * @size: element size. 617 * @flags: the type of memory to allocate (see kmalloc). 618 */ 619static inline __alloc_size(1, 2) void *kmalloc_array(size_t n, size_t size, gfp_t flags) 620{ 621 size_t bytes; 622 623 if (unlikely(check_mul_overflow(n, size, &bytes))) 624 return NULL; 625 if (__builtin_constant_p(n) && __builtin_constant_p(size)) 626 return kmalloc(bytes, flags); 627 return __kmalloc(bytes, flags); 628} 629 630/** 631 * krealloc_array - reallocate memory for an array. 632 * @p: pointer to the memory chunk to reallocate 633 * @new_n: new number of elements to alloc 634 * @new_size: new size of a single member of the array 635 * @flags: the type of memory to allocate (see kmalloc) 636 */ 637static inline __realloc_size(2, 3) void * __must_check krealloc_array(void *p, 638 size_t new_n, 639 size_t new_size, 640 gfp_t flags) 641{ 642 size_t bytes; 643 644 if (unlikely(check_mul_overflow(new_n, new_size, &bytes))) 645 return NULL; 646 647 return krealloc(p, bytes, flags); 648} 649 650/** 651 * kcalloc - allocate memory for an array. The memory is set to zero. 652 * @n: number of elements. 653 * @size: element size. 654 * @flags: the type of memory to allocate (see kmalloc). 655 */ 656static inline __alloc_size(1, 2) void *kcalloc(size_t n, size_t size, gfp_t flags) 657{ 658 return kmalloc_array(n, size, flags | __GFP_ZERO); 659} 660 661void *__kmalloc_node_track_caller(size_t size, gfp_t flags, int node, 662 unsigned long caller) __alloc_size(1); 663#define kmalloc_node_track_caller(size, flags, node) \ 664 __kmalloc_node_track_caller(size, flags, node, \ 665 _RET_IP_) 666 667/* 668 * kmalloc_track_caller is a special version of kmalloc that records the 669 * calling function of the routine calling it for slab leak tracking instead 670 * of just the calling function (confusing, eh?). 671 * It's useful when the call to kmalloc comes from a widely-used standard 672 * allocator where we care about the real place the memory allocation 673 * request comes from. 674 */ 675#define kmalloc_track_caller(size, flags) \ 676 __kmalloc_node_track_caller(size, flags, \ 677 NUMA_NO_NODE, _RET_IP_) 678 679static inline __alloc_size(1, 2) void *kmalloc_array_node(size_t n, size_t size, gfp_t flags, 680 int node) 681{ 682 size_t bytes; 683 684 if (unlikely(check_mul_overflow(n, size, &bytes))) 685 return NULL; 686 if (__builtin_constant_p(n) && __builtin_constant_p(size)) 687 return kmalloc_node(bytes, flags, node); 688 return __kmalloc_node(bytes, flags, node); 689} 690 691static inline __alloc_size(1, 2) void *kcalloc_node(size_t n, size_t size, gfp_t flags, int node) 692{ 693 return kmalloc_array_node(n, size, flags | __GFP_ZERO, node); 694} 695 696/* 697 * Shortcuts 698 */ 699static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags) 700{ 701 return kmem_cache_alloc(k, flags | __GFP_ZERO); 702} 703 704/** 705 * kzalloc - allocate memory. The memory is set to zero. 706 * @size: how many bytes of memory are required. 707 * @flags: the type of memory to allocate (see kmalloc). 708 */ 709static inline __alloc_size(1) void *kzalloc(size_t size, gfp_t flags) 710{ 711 return kmalloc(size, flags | __GFP_ZERO); 712} 713 714/** 715 * kzalloc_node - allocate zeroed memory from a particular memory node. 716 * @size: how many bytes of memory are required. 717 * @flags: the type of memory to allocate (see kmalloc). 718 * @node: memory node from which to allocate 719 */ 720static inline __alloc_size(1) void *kzalloc_node(size_t size, gfp_t flags, int node) 721{ 722 return kmalloc_node(size, flags | __GFP_ZERO, node); 723} 724 725extern void *kvmalloc_node(size_t size, gfp_t flags, int node) __alloc_size(1); 726static inline __alloc_size(1) void *kvmalloc(size_t size, gfp_t flags) 727{ 728 return kvmalloc_node(size, flags, NUMA_NO_NODE); 729} 730static inline __alloc_size(1) void *kvzalloc_node(size_t size, gfp_t flags, int node) 731{ 732 return kvmalloc_node(size, flags | __GFP_ZERO, node); 733} 734static inline __alloc_size(1) void *kvzalloc(size_t size, gfp_t flags) 735{ 736 return kvmalloc(size, flags | __GFP_ZERO); 737} 738 739static inline __alloc_size(1, 2) void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 740{ 741 size_t bytes; 742 743 if (unlikely(check_mul_overflow(n, size, &bytes))) 744 return NULL; 745 746 return kvmalloc(bytes, flags); 747} 748 749static inline __alloc_size(1, 2) void *kvcalloc(size_t n, size_t size, gfp_t flags) 750{ 751 return kvmalloc_array(n, size, flags | __GFP_ZERO); 752} 753 754extern void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags) 755 __realloc_size(3); 756extern void kvfree(const void *addr); 757DEFINE_FREE(kvfree, void *, if (_T) kvfree(_T)) 758 759extern void kvfree_sensitive(const void *addr, size_t len); 760 761unsigned int kmem_cache_size(struct kmem_cache *s); 762 763/** 764 * kmalloc_size_roundup - Report allocation bucket size for the given size 765 * 766 * @size: Number of bytes to round up from. 767 * 768 * This returns the number of bytes that would be available in a kmalloc() 769 * allocation of @size bytes. For example, a 126 byte request would be 770 * rounded up to the next sized kmalloc bucket, 128 bytes. (This is strictly 771 * for the general-purpose kmalloc()-based allocations, and is not for the 772 * pre-sized kmem_cache_alloc()-based allocations.) 773 * 774 * Use this to kmalloc() the full bucket size ahead of time instead of using 775 * ksize() to query the size after an allocation. 776 */ 777size_t kmalloc_size_roundup(size_t size); 778 779void __init kmem_cache_init_late(void); 780 781#endif /* _LINUX_SLAB_H */