at v6.8 63 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_SCHED_H 3#define _LINUX_SCHED_H 4 5/* 6 * Define 'struct task_struct' and provide the main scheduler 7 * APIs (schedule(), wakeup variants, etc.) 8 */ 9 10#include <uapi/linux/sched.h> 11 12#include <asm/current.h> 13#include <asm/processor.h> 14#include <linux/thread_info.h> 15#include <linux/preempt.h> 16#include <linux/cpumask.h> 17 18#include <linux/cache.h> 19#include <linux/irqflags_types.h> 20#include <linux/smp_types.h> 21#include <linux/pid_types.h> 22#include <linux/sem_types.h> 23#include <linux/shm.h> 24#include <linux/kmsan_types.h> 25#include <linux/mutex_types.h> 26#include <linux/plist_types.h> 27#include <linux/hrtimer_types.h> 28#include <linux/timer_types.h> 29#include <linux/seccomp_types.h> 30#include <linux/nodemask_types.h> 31#include <linux/refcount_types.h> 32#include <linux/resource.h> 33#include <linux/latencytop.h> 34#include <linux/sched/prio.h> 35#include <linux/sched/types.h> 36#include <linux/signal_types.h> 37#include <linux/syscall_user_dispatch_types.h> 38#include <linux/mm_types_task.h> 39#include <linux/task_io_accounting.h> 40#include <linux/posix-timers_types.h> 41#include <linux/restart_block.h> 42#include <uapi/linux/rseq.h> 43#include <linux/seqlock_types.h> 44#include <linux/kcsan.h> 45#include <linux/rv.h> 46#include <linux/livepatch_sched.h> 47#include <linux/uidgid_types.h> 48#include <asm/kmap_size.h> 49 50/* task_struct member predeclarations (sorted alphabetically): */ 51struct audit_context; 52struct bio_list; 53struct blk_plug; 54struct bpf_local_storage; 55struct bpf_run_ctx; 56struct capture_control; 57struct cfs_rq; 58struct fs_struct; 59struct futex_pi_state; 60struct io_context; 61struct io_uring_task; 62struct mempolicy; 63struct nameidata; 64struct nsproxy; 65struct perf_event_context; 66struct pid_namespace; 67struct pipe_inode_info; 68struct rcu_node; 69struct reclaim_state; 70struct robust_list_head; 71struct root_domain; 72struct rq; 73struct sched_attr; 74struct sched_dl_entity; 75struct seq_file; 76struct sighand_struct; 77struct signal_struct; 78struct task_delay_info; 79struct task_group; 80struct task_struct; 81struct user_event_mm; 82 83/* 84 * Task state bitmask. NOTE! These bits are also 85 * encoded in fs/proc/array.c: get_task_state(). 86 * 87 * We have two separate sets of flags: task->__state 88 * is about runnability, while task->exit_state are 89 * about the task exiting. Confusing, but this way 90 * modifying one set can't modify the other one by 91 * mistake. 92 */ 93 94/* Used in tsk->__state: */ 95#define TASK_RUNNING 0x00000000 96#define TASK_INTERRUPTIBLE 0x00000001 97#define TASK_UNINTERRUPTIBLE 0x00000002 98#define __TASK_STOPPED 0x00000004 99#define __TASK_TRACED 0x00000008 100/* Used in tsk->exit_state: */ 101#define EXIT_DEAD 0x00000010 102#define EXIT_ZOMBIE 0x00000020 103#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) 104/* Used in tsk->__state again: */ 105#define TASK_PARKED 0x00000040 106#define TASK_DEAD 0x00000080 107#define TASK_WAKEKILL 0x00000100 108#define TASK_WAKING 0x00000200 109#define TASK_NOLOAD 0x00000400 110#define TASK_NEW 0x00000800 111#define TASK_RTLOCK_WAIT 0x00001000 112#define TASK_FREEZABLE 0x00002000 113#define __TASK_FREEZABLE_UNSAFE (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP)) 114#define TASK_FROZEN 0x00008000 115#define TASK_STATE_MAX 0x00010000 116 117#define TASK_ANY (TASK_STATE_MAX-1) 118 119/* 120 * DO NOT ADD ANY NEW USERS ! 121 */ 122#define TASK_FREEZABLE_UNSAFE (TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE) 123 124/* Convenience macros for the sake of set_current_state: */ 125#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 126#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 127#define TASK_TRACED __TASK_TRACED 128 129#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD) 130 131/* Convenience macros for the sake of wake_up(): */ 132#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 133 134/* get_task_state(): */ 135#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 136 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 137 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \ 138 TASK_PARKED) 139 140#define task_is_running(task) (READ_ONCE((task)->__state) == TASK_RUNNING) 141 142#define task_is_traced(task) ((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0) 143#define task_is_stopped(task) ((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0) 144#define task_is_stopped_or_traced(task) ((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0) 145 146/* 147 * Special states are those that do not use the normal wait-loop pattern. See 148 * the comment with set_special_state(). 149 */ 150#define is_special_task_state(state) \ 151 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD)) 152 153#ifdef CONFIG_DEBUG_ATOMIC_SLEEP 154# define debug_normal_state_change(state_value) \ 155 do { \ 156 WARN_ON_ONCE(is_special_task_state(state_value)); \ 157 current->task_state_change = _THIS_IP_; \ 158 } while (0) 159 160# define debug_special_state_change(state_value) \ 161 do { \ 162 WARN_ON_ONCE(!is_special_task_state(state_value)); \ 163 current->task_state_change = _THIS_IP_; \ 164 } while (0) 165 166# define debug_rtlock_wait_set_state() \ 167 do { \ 168 current->saved_state_change = current->task_state_change;\ 169 current->task_state_change = _THIS_IP_; \ 170 } while (0) 171 172# define debug_rtlock_wait_restore_state() \ 173 do { \ 174 current->task_state_change = current->saved_state_change;\ 175 } while (0) 176 177#else 178# define debug_normal_state_change(cond) do { } while (0) 179# define debug_special_state_change(cond) do { } while (0) 180# define debug_rtlock_wait_set_state() do { } while (0) 181# define debug_rtlock_wait_restore_state() do { } while (0) 182#endif 183 184/* 185 * set_current_state() includes a barrier so that the write of current->__state 186 * is correctly serialised wrt the caller's subsequent test of whether to 187 * actually sleep: 188 * 189 * for (;;) { 190 * set_current_state(TASK_UNINTERRUPTIBLE); 191 * if (CONDITION) 192 * break; 193 * 194 * schedule(); 195 * } 196 * __set_current_state(TASK_RUNNING); 197 * 198 * If the caller does not need such serialisation (because, for instance, the 199 * CONDITION test and condition change and wakeup are under the same lock) then 200 * use __set_current_state(). 201 * 202 * The above is typically ordered against the wakeup, which does: 203 * 204 * CONDITION = 1; 205 * wake_up_state(p, TASK_UNINTERRUPTIBLE); 206 * 207 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before 208 * accessing p->__state. 209 * 210 * Wakeup will do: if (@state & p->__state) p->__state = TASK_RUNNING, that is, 211 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a 212 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING). 213 * 214 * However, with slightly different timing the wakeup TASK_RUNNING store can 215 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not 216 * a problem either because that will result in one extra go around the loop 217 * and our @cond test will save the day. 218 * 219 * Also see the comments of try_to_wake_up(). 220 */ 221#define __set_current_state(state_value) \ 222 do { \ 223 debug_normal_state_change((state_value)); \ 224 WRITE_ONCE(current->__state, (state_value)); \ 225 } while (0) 226 227#define set_current_state(state_value) \ 228 do { \ 229 debug_normal_state_change((state_value)); \ 230 smp_store_mb(current->__state, (state_value)); \ 231 } while (0) 232 233/* 234 * set_special_state() should be used for those states when the blocking task 235 * can not use the regular condition based wait-loop. In that case we must 236 * serialize against wakeups such that any possible in-flight TASK_RUNNING 237 * stores will not collide with our state change. 238 */ 239#define set_special_state(state_value) \ 240 do { \ 241 unsigned long flags; /* may shadow */ \ 242 \ 243 raw_spin_lock_irqsave(&current->pi_lock, flags); \ 244 debug_special_state_change((state_value)); \ 245 WRITE_ONCE(current->__state, (state_value)); \ 246 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \ 247 } while (0) 248 249/* 250 * PREEMPT_RT specific variants for "sleeping" spin/rwlocks 251 * 252 * RT's spin/rwlock substitutions are state preserving. The state of the 253 * task when blocking on the lock is saved in task_struct::saved_state and 254 * restored after the lock has been acquired. These operations are 255 * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT 256 * lock related wakeups while the task is blocked on the lock are 257 * redirected to operate on task_struct::saved_state to ensure that these 258 * are not dropped. On restore task_struct::saved_state is set to 259 * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail. 260 * 261 * The lock operation looks like this: 262 * 263 * current_save_and_set_rtlock_wait_state(); 264 * for (;;) { 265 * if (try_lock()) 266 * break; 267 * raw_spin_unlock_irq(&lock->wait_lock); 268 * schedule_rtlock(); 269 * raw_spin_lock_irq(&lock->wait_lock); 270 * set_current_state(TASK_RTLOCK_WAIT); 271 * } 272 * current_restore_rtlock_saved_state(); 273 */ 274#define current_save_and_set_rtlock_wait_state() \ 275 do { \ 276 lockdep_assert_irqs_disabled(); \ 277 raw_spin_lock(&current->pi_lock); \ 278 current->saved_state = current->__state; \ 279 debug_rtlock_wait_set_state(); \ 280 WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT); \ 281 raw_spin_unlock(&current->pi_lock); \ 282 } while (0); 283 284#define current_restore_rtlock_saved_state() \ 285 do { \ 286 lockdep_assert_irqs_disabled(); \ 287 raw_spin_lock(&current->pi_lock); \ 288 debug_rtlock_wait_restore_state(); \ 289 WRITE_ONCE(current->__state, current->saved_state); \ 290 current->saved_state = TASK_RUNNING; \ 291 raw_spin_unlock(&current->pi_lock); \ 292 } while (0); 293 294#define get_current_state() READ_ONCE(current->__state) 295 296/* 297 * Define the task command name length as enum, then it can be visible to 298 * BPF programs. 299 */ 300enum { 301 TASK_COMM_LEN = 16, 302}; 303 304extern void scheduler_tick(void); 305 306#define MAX_SCHEDULE_TIMEOUT LONG_MAX 307 308extern long schedule_timeout(long timeout); 309extern long schedule_timeout_interruptible(long timeout); 310extern long schedule_timeout_killable(long timeout); 311extern long schedule_timeout_uninterruptible(long timeout); 312extern long schedule_timeout_idle(long timeout); 313asmlinkage void schedule(void); 314extern void schedule_preempt_disabled(void); 315asmlinkage void preempt_schedule_irq(void); 316#ifdef CONFIG_PREEMPT_RT 317 extern void schedule_rtlock(void); 318#endif 319 320extern int __must_check io_schedule_prepare(void); 321extern void io_schedule_finish(int token); 322extern long io_schedule_timeout(long timeout); 323extern void io_schedule(void); 324 325/** 326 * struct prev_cputime - snapshot of system and user cputime 327 * @utime: time spent in user mode 328 * @stime: time spent in system mode 329 * @lock: protects the above two fields 330 * 331 * Stores previous user/system time values such that we can guarantee 332 * monotonicity. 333 */ 334struct prev_cputime { 335#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 336 u64 utime; 337 u64 stime; 338 raw_spinlock_t lock; 339#endif 340}; 341 342enum vtime_state { 343 /* Task is sleeping or running in a CPU with VTIME inactive: */ 344 VTIME_INACTIVE = 0, 345 /* Task is idle */ 346 VTIME_IDLE, 347 /* Task runs in kernelspace in a CPU with VTIME active: */ 348 VTIME_SYS, 349 /* Task runs in userspace in a CPU with VTIME active: */ 350 VTIME_USER, 351 /* Task runs as guests in a CPU with VTIME active: */ 352 VTIME_GUEST, 353}; 354 355struct vtime { 356 seqcount_t seqcount; 357 unsigned long long starttime; 358 enum vtime_state state; 359 unsigned int cpu; 360 u64 utime; 361 u64 stime; 362 u64 gtime; 363}; 364 365/* 366 * Utilization clamp constraints. 367 * @UCLAMP_MIN: Minimum utilization 368 * @UCLAMP_MAX: Maximum utilization 369 * @UCLAMP_CNT: Utilization clamp constraints count 370 */ 371enum uclamp_id { 372 UCLAMP_MIN = 0, 373 UCLAMP_MAX, 374 UCLAMP_CNT 375}; 376 377#ifdef CONFIG_SMP 378extern struct root_domain def_root_domain; 379extern struct mutex sched_domains_mutex; 380#endif 381 382struct sched_param { 383 int sched_priority; 384}; 385 386struct sched_info { 387#ifdef CONFIG_SCHED_INFO 388 /* Cumulative counters: */ 389 390 /* # of times we have run on this CPU: */ 391 unsigned long pcount; 392 393 /* Time spent waiting on a runqueue: */ 394 unsigned long long run_delay; 395 396 /* Timestamps: */ 397 398 /* When did we last run on a CPU? */ 399 unsigned long long last_arrival; 400 401 /* When were we last queued to run? */ 402 unsigned long long last_queued; 403 404#endif /* CONFIG_SCHED_INFO */ 405}; 406 407/* 408 * Integer metrics need fixed point arithmetic, e.g., sched/fair 409 * has a few: load, load_avg, util_avg, freq, and capacity. 410 * 411 * We define a basic fixed point arithmetic range, and then formalize 412 * all these metrics based on that basic range. 413 */ 414# define SCHED_FIXEDPOINT_SHIFT 10 415# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT) 416 417/* Increase resolution of cpu_capacity calculations */ 418# define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT 419# define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT) 420 421struct load_weight { 422 unsigned long weight; 423 u32 inv_weight; 424}; 425 426/* 427 * The load/runnable/util_avg accumulates an infinite geometric series 428 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c). 429 * 430 * [load_avg definition] 431 * 432 * load_avg = runnable% * scale_load_down(load) 433 * 434 * [runnable_avg definition] 435 * 436 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE 437 * 438 * [util_avg definition] 439 * 440 * util_avg = running% * SCHED_CAPACITY_SCALE 441 * 442 * where runnable% is the time ratio that a sched_entity is runnable and 443 * running% the time ratio that a sched_entity is running. 444 * 445 * For cfs_rq, they are the aggregated values of all runnable and blocked 446 * sched_entities. 447 * 448 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU 449 * capacity scaling. The scaling is done through the rq_clock_pelt that is used 450 * for computing those signals (see update_rq_clock_pelt()) 451 * 452 * N.B., the above ratios (runnable% and running%) themselves are in the 453 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them 454 * to as large a range as necessary. This is for example reflected by 455 * util_avg's SCHED_CAPACITY_SCALE. 456 * 457 * [Overflow issue] 458 * 459 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities 460 * with the highest load (=88761), always runnable on a single cfs_rq, 461 * and should not overflow as the number already hits PID_MAX_LIMIT. 462 * 463 * For all other cases (including 32-bit kernels), struct load_weight's 464 * weight will overflow first before we do, because: 465 * 466 * Max(load_avg) <= Max(load.weight) 467 * 468 * Then it is the load_weight's responsibility to consider overflow 469 * issues. 470 */ 471struct sched_avg { 472 u64 last_update_time; 473 u64 load_sum; 474 u64 runnable_sum; 475 u32 util_sum; 476 u32 period_contrib; 477 unsigned long load_avg; 478 unsigned long runnable_avg; 479 unsigned long util_avg; 480 unsigned int util_est; 481} ____cacheline_aligned; 482 483/* 484 * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg 485 * updates. When a task is dequeued, its util_est should not be updated if its 486 * util_avg has not been updated in the meantime. 487 * This information is mapped into the MSB bit of util_est at dequeue time. 488 * Since max value of util_est for a task is 1024 (PELT util_avg for a task) 489 * it is safe to use MSB. 490 */ 491#define UTIL_EST_WEIGHT_SHIFT 2 492#define UTIL_AVG_UNCHANGED 0x80000000 493 494struct sched_statistics { 495#ifdef CONFIG_SCHEDSTATS 496 u64 wait_start; 497 u64 wait_max; 498 u64 wait_count; 499 u64 wait_sum; 500 u64 iowait_count; 501 u64 iowait_sum; 502 503 u64 sleep_start; 504 u64 sleep_max; 505 s64 sum_sleep_runtime; 506 507 u64 block_start; 508 u64 block_max; 509 s64 sum_block_runtime; 510 511 s64 exec_max; 512 u64 slice_max; 513 514 u64 nr_migrations_cold; 515 u64 nr_failed_migrations_affine; 516 u64 nr_failed_migrations_running; 517 u64 nr_failed_migrations_hot; 518 u64 nr_forced_migrations; 519 520 u64 nr_wakeups; 521 u64 nr_wakeups_sync; 522 u64 nr_wakeups_migrate; 523 u64 nr_wakeups_local; 524 u64 nr_wakeups_remote; 525 u64 nr_wakeups_affine; 526 u64 nr_wakeups_affine_attempts; 527 u64 nr_wakeups_passive; 528 u64 nr_wakeups_idle; 529 530#ifdef CONFIG_SCHED_CORE 531 u64 core_forceidle_sum; 532#endif 533#endif /* CONFIG_SCHEDSTATS */ 534} ____cacheline_aligned; 535 536struct sched_entity { 537 /* For load-balancing: */ 538 struct load_weight load; 539 struct rb_node run_node; 540 u64 deadline; 541 u64 min_vruntime; 542 543 struct list_head group_node; 544 unsigned int on_rq; 545 546 u64 exec_start; 547 u64 sum_exec_runtime; 548 u64 prev_sum_exec_runtime; 549 u64 vruntime; 550 s64 vlag; 551 u64 slice; 552 553 u64 nr_migrations; 554 555#ifdef CONFIG_FAIR_GROUP_SCHED 556 int depth; 557 struct sched_entity *parent; 558 /* rq on which this entity is (to be) queued: */ 559 struct cfs_rq *cfs_rq; 560 /* rq "owned" by this entity/group: */ 561 struct cfs_rq *my_q; 562 /* cached value of my_q->h_nr_running */ 563 unsigned long runnable_weight; 564#endif 565 566#ifdef CONFIG_SMP 567 /* 568 * Per entity load average tracking. 569 * 570 * Put into separate cache line so it does not 571 * collide with read-mostly values above. 572 */ 573 struct sched_avg avg; 574#endif 575}; 576 577struct sched_rt_entity { 578 struct list_head run_list; 579 unsigned long timeout; 580 unsigned long watchdog_stamp; 581 unsigned int time_slice; 582 unsigned short on_rq; 583 unsigned short on_list; 584 585 struct sched_rt_entity *back; 586#ifdef CONFIG_RT_GROUP_SCHED 587 struct sched_rt_entity *parent; 588 /* rq on which this entity is (to be) queued: */ 589 struct rt_rq *rt_rq; 590 /* rq "owned" by this entity/group: */ 591 struct rt_rq *my_q; 592#endif 593} __randomize_layout; 594 595typedef bool (*dl_server_has_tasks_f)(struct sched_dl_entity *); 596typedef struct task_struct *(*dl_server_pick_f)(struct sched_dl_entity *); 597 598struct sched_dl_entity { 599 struct rb_node rb_node; 600 601 /* 602 * Original scheduling parameters. Copied here from sched_attr 603 * during sched_setattr(), they will remain the same until 604 * the next sched_setattr(). 605 */ 606 u64 dl_runtime; /* Maximum runtime for each instance */ 607 u64 dl_deadline; /* Relative deadline of each instance */ 608 u64 dl_period; /* Separation of two instances (period) */ 609 u64 dl_bw; /* dl_runtime / dl_period */ 610 u64 dl_density; /* dl_runtime / dl_deadline */ 611 612 /* 613 * Actual scheduling parameters. Initialized with the values above, 614 * they are continuously updated during task execution. Note that 615 * the remaining runtime could be < 0 in case we are in overrun. 616 */ 617 s64 runtime; /* Remaining runtime for this instance */ 618 u64 deadline; /* Absolute deadline for this instance */ 619 unsigned int flags; /* Specifying the scheduler behaviour */ 620 621 /* 622 * Some bool flags: 623 * 624 * @dl_throttled tells if we exhausted the runtime. If so, the 625 * task has to wait for a replenishment to be performed at the 626 * next firing of dl_timer. 627 * 628 * @dl_yielded tells if task gave up the CPU before consuming 629 * all its available runtime during the last job. 630 * 631 * @dl_non_contending tells if the task is inactive while still 632 * contributing to the active utilization. In other words, it 633 * indicates if the inactive timer has been armed and its handler 634 * has not been executed yet. This flag is useful to avoid race 635 * conditions between the inactive timer handler and the wakeup 636 * code. 637 * 638 * @dl_overrun tells if the task asked to be informed about runtime 639 * overruns. 640 */ 641 unsigned int dl_throttled : 1; 642 unsigned int dl_yielded : 1; 643 unsigned int dl_non_contending : 1; 644 unsigned int dl_overrun : 1; 645 unsigned int dl_server : 1; 646 647 /* 648 * Bandwidth enforcement timer. Each -deadline task has its 649 * own bandwidth to be enforced, thus we need one timer per task. 650 */ 651 struct hrtimer dl_timer; 652 653 /* 654 * Inactive timer, responsible for decreasing the active utilization 655 * at the "0-lag time". When a -deadline task blocks, it contributes 656 * to GRUB's active utilization until the "0-lag time", hence a 657 * timer is needed to decrease the active utilization at the correct 658 * time. 659 */ 660 struct hrtimer inactive_timer; 661 662 /* 663 * Bits for DL-server functionality. Also see the comment near 664 * dl_server_update(). 665 * 666 * @rq the runqueue this server is for 667 * 668 * @server_has_tasks() returns true if @server_pick return a 669 * runnable task. 670 */ 671 struct rq *rq; 672 dl_server_has_tasks_f server_has_tasks; 673 dl_server_pick_f server_pick; 674 675#ifdef CONFIG_RT_MUTEXES 676 /* 677 * Priority Inheritance. When a DEADLINE scheduling entity is boosted 678 * pi_se points to the donor, otherwise points to the dl_se it belongs 679 * to (the original one/itself). 680 */ 681 struct sched_dl_entity *pi_se; 682#endif 683}; 684 685#ifdef CONFIG_UCLAMP_TASK 686/* Number of utilization clamp buckets (shorter alias) */ 687#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT 688 689/* 690 * Utilization clamp for a scheduling entity 691 * @value: clamp value "assigned" to a se 692 * @bucket_id: bucket index corresponding to the "assigned" value 693 * @active: the se is currently refcounted in a rq's bucket 694 * @user_defined: the requested clamp value comes from user-space 695 * 696 * The bucket_id is the index of the clamp bucket matching the clamp value 697 * which is pre-computed and stored to avoid expensive integer divisions from 698 * the fast path. 699 * 700 * The active bit is set whenever a task has got an "effective" value assigned, 701 * which can be different from the clamp value "requested" from user-space. 702 * This allows to know a task is refcounted in the rq's bucket corresponding 703 * to the "effective" bucket_id. 704 * 705 * The user_defined bit is set whenever a task has got a task-specific clamp 706 * value requested from userspace, i.e. the system defaults apply to this task 707 * just as a restriction. This allows to relax default clamps when a less 708 * restrictive task-specific value has been requested, thus allowing to 709 * implement a "nice" semantic. For example, a task running with a 20% 710 * default boost can still drop its own boosting to 0%. 711 */ 712struct uclamp_se { 713 unsigned int value : bits_per(SCHED_CAPACITY_SCALE); 714 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS); 715 unsigned int active : 1; 716 unsigned int user_defined : 1; 717}; 718#endif /* CONFIG_UCLAMP_TASK */ 719 720union rcu_special { 721 struct { 722 u8 blocked; 723 u8 need_qs; 724 u8 exp_hint; /* Hint for performance. */ 725 u8 need_mb; /* Readers need smp_mb(). */ 726 } b; /* Bits. */ 727 u32 s; /* Set of bits. */ 728}; 729 730enum perf_event_task_context { 731 perf_invalid_context = -1, 732 perf_hw_context = 0, 733 perf_sw_context, 734 perf_nr_task_contexts, 735}; 736 737struct wake_q_node { 738 struct wake_q_node *next; 739}; 740 741struct kmap_ctrl { 742#ifdef CONFIG_KMAP_LOCAL 743 int idx; 744 pte_t pteval[KM_MAX_IDX]; 745#endif 746}; 747 748struct task_struct { 749#ifdef CONFIG_THREAD_INFO_IN_TASK 750 /* 751 * For reasons of header soup (see current_thread_info()), this 752 * must be the first element of task_struct. 753 */ 754 struct thread_info thread_info; 755#endif 756 unsigned int __state; 757 758 /* saved state for "spinlock sleepers" */ 759 unsigned int saved_state; 760 761 /* 762 * This begins the randomizable portion of task_struct. Only 763 * scheduling-critical items should be added above here. 764 */ 765 randomized_struct_fields_start 766 767 void *stack; 768 refcount_t usage; 769 /* Per task flags (PF_*), defined further below: */ 770 unsigned int flags; 771 unsigned int ptrace; 772 773#ifdef CONFIG_SMP 774 int on_cpu; 775 struct __call_single_node wake_entry; 776 unsigned int wakee_flips; 777 unsigned long wakee_flip_decay_ts; 778 struct task_struct *last_wakee; 779 780 /* 781 * recent_used_cpu is initially set as the last CPU used by a task 782 * that wakes affine another task. Waker/wakee relationships can 783 * push tasks around a CPU where each wakeup moves to the next one. 784 * Tracking a recently used CPU allows a quick search for a recently 785 * used CPU that may be idle. 786 */ 787 int recent_used_cpu; 788 int wake_cpu; 789#endif 790 int on_rq; 791 792 int prio; 793 int static_prio; 794 int normal_prio; 795 unsigned int rt_priority; 796 797 struct sched_entity se; 798 struct sched_rt_entity rt; 799 struct sched_dl_entity dl; 800 struct sched_dl_entity *dl_server; 801 const struct sched_class *sched_class; 802 803#ifdef CONFIG_SCHED_CORE 804 struct rb_node core_node; 805 unsigned long core_cookie; 806 unsigned int core_occupation; 807#endif 808 809#ifdef CONFIG_CGROUP_SCHED 810 struct task_group *sched_task_group; 811#endif 812 813#ifdef CONFIG_UCLAMP_TASK 814 /* 815 * Clamp values requested for a scheduling entity. 816 * Must be updated with task_rq_lock() held. 817 */ 818 struct uclamp_se uclamp_req[UCLAMP_CNT]; 819 /* 820 * Effective clamp values used for a scheduling entity. 821 * Must be updated with task_rq_lock() held. 822 */ 823 struct uclamp_se uclamp[UCLAMP_CNT]; 824#endif 825 826 struct sched_statistics stats; 827 828#ifdef CONFIG_PREEMPT_NOTIFIERS 829 /* List of struct preempt_notifier: */ 830 struct hlist_head preempt_notifiers; 831#endif 832 833#ifdef CONFIG_BLK_DEV_IO_TRACE 834 unsigned int btrace_seq; 835#endif 836 837 unsigned int policy; 838 int nr_cpus_allowed; 839 const cpumask_t *cpus_ptr; 840 cpumask_t *user_cpus_ptr; 841 cpumask_t cpus_mask; 842 void *migration_pending; 843#ifdef CONFIG_SMP 844 unsigned short migration_disabled; 845#endif 846 unsigned short migration_flags; 847 848#ifdef CONFIG_PREEMPT_RCU 849 int rcu_read_lock_nesting; 850 union rcu_special rcu_read_unlock_special; 851 struct list_head rcu_node_entry; 852 struct rcu_node *rcu_blocked_node; 853#endif /* #ifdef CONFIG_PREEMPT_RCU */ 854 855#ifdef CONFIG_TASKS_RCU 856 unsigned long rcu_tasks_nvcsw; 857 u8 rcu_tasks_holdout; 858 u8 rcu_tasks_idx; 859 int rcu_tasks_idle_cpu; 860 struct list_head rcu_tasks_holdout_list; 861#endif /* #ifdef CONFIG_TASKS_RCU */ 862 863#ifdef CONFIG_TASKS_TRACE_RCU 864 int trc_reader_nesting; 865 int trc_ipi_to_cpu; 866 union rcu_special trc_reader_special; 867 struct list_head trc_holdout_list; 868 struct list_head trc_blkd_node; 869 int trc_blkd_cpu; 870#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 871 872 struct sched_info sched_info; 873 874 struct list_head tasks; 875#ifdef CONFIG_SMP 876 struct plist_node pushable_tasks; 877 struct rb_node pushable_dl_tasks; 878#endif 879 880 struct mm_struct *mm; 881 struct mm_struct *active_mm; 882 struct address_space *faults_disabled_mapping; 883 884 int exit_state; 885 int exit_code; 886 int exit_signal; 887 /* The signal sent when the parent dies: */ 888 int pdeath_signal; 889 /* JOBCTL_*, siglock protected: */ 890 unsigned long jobctl; 891 892 /* Used for emulating ABI behavior of previous Linux versions: */ 893 unsigned int personality; 894 895 /* Scheduler bits, serialized by scheduler locks: */ 896 unsigned sched_reset_on_fork:1; 897 unsigned sched_contributes_to_load:1; 898 unsigned sched_migrated:1; 899 900 /* Force alignment to the next boundary: */ 901 unsigned :0; 902 903 /* Unserialized, strictly 'current' */ 904 905 /* 906 * This field must not be in the scheduler word above due to wakelist 907 * queueing no longer being serialized by p->on_cpu. However: 908 * 909 * p->XXX = X; ttwu() 910 * schedule() if (p->on_rq && ..) // false 911 * smp_mb__after_spinlock(); if (smp_load_acquire(&p->on_cpu) && //true 912 * deactivate_task() ttwu_queue_wakelist()) 913 * p->on_rq = 0; p->sched_remote_wakeup = Y; 914 * 915 * guarantees all stores of 'current' are visible before 916 * ->sched_remote_wakeup gets used, so it can be in this word. 917 */ 918 unsigned sched_remote_wakeup:1; 919#ifdef CONFIG_RT_MUTEXES 920 unsigned sched_rt_mutex:1; 921#endif 922 923 /* Bit to tell TOMOYO we're in execve(): */ 924 unsigned in_execve:1; 925 unsigned in_iowait:1; 926#ifndef TIF_RESTORE_SIGMASK 927 unsigned restore_sigmask:1; 928#endif 929#ifdef CONFIG_MEMCG 930 unsigned in_user_fault:1; 931#endif 932#ifdef CONFIG_LRU_GEN 933 /* whether the LRU algorithm may apply to this access */ 934 unsigned in_lru_fault:1; 935#endif 936#ifdef CONFIG_COMPAT_BRK 937 unsigned brk_randomized:1; 938#endif 939#ifdef CONFIG_CGROUPS 940 /* disallow userland-initiated cgroup migration */ 941 unsigned no_cgroup_migration:1; 942 /* task is frozen/stopped (used by the cgroup freezer) */ 943 unsigned frozen:1; 944#endif 945#ifdef CONFIG_BLK_CGROUP 946 unsigned use_memdelay:1; 947#endif 948#ifdef CONFIG_PSI 949 /* Stalled due to lack of memory */ 950 unsigned in_memstall:1; 951#endif 952#ifdef CONFIG_PAGE_OWNER 953 /* Used by page_owner=on to detect recursion in page tracking. */ 954 unsigned in_page_owner:1; 955#endif 956#ifdef CONFIG_EVENTFD 957 /* Recursion prevention for eventfd_signal() */ 958 unsigned in_eventfd:1; 959#endif 960#ifdef CONFIG_ARCH_HAS_CPU_PASID 961 unsigned pasid_activated:1; 962#endif 963#ifdef CONFIG_CPU_SUP_INTEL 964 unsigned reported_split_lock:1; 965#endif 966#ifdef CONFIG_TASK_DELAY_ACCT 967 /* delay due to memory thrashing */ 968 unsigned in_thrashing:1; 969#endif 970 971 unsigned long atomic_flags; /* Flags requiring atomic access. */ 972 973 struct restart_block restart_block; 974 975 pid_t pid; 976 pid_t tgid; 977 978#ifdef CONFIG_STACKPROTECTOR 979 /* Canary value for the -fstack-protector GCC feature: */ 980 unsigned long stack_canary; 981#endif 982 /* 983 * Pointers to the (original) parent process, youngest child, younger sibling, 984 * older sibling, respectively. (p->father can be replaced with 985 * p->real_parent->pid) 986 */ 987 988 /* Real parent process: */ 989 struct task_struct __rcu *real_parent; 990 991 /* Recipient of SIGCHLD, wait4() reports: */ 992 struct task_struct __rcu *parent; 993 994 /* 995 * Children/sibling form the list of natural children: 996 */ 997 struct list_head children; 998 struct list_head sibling; 999 struct task_struct *group_leader; 1000 1001 /* 1002 * 'ptraced' is the list of tasks this task is using ptrace() on. 1003 * 1004 * This includes both natural children and PTRACE_ATTACH targets. 1005 * 'ptrace_entry' is this task's link on the p->parent->ptraced list. 1006 */ 1007 struct list_head ptraced; 1008 struct list_head ptrace_entry; 1009 1010 /* PID/PID hash table linkage. */ 1011 struct pid *thread_pid; 1012 struct hlist_node pid_links[PIDTYPE_MAX]; 1013 struct list_head thread_node; 1014 1015 struct completion *vfork_done; 1016 1017 /* CLONE_CHILD_SETTID: */ 1018 int __user *set_child_tid; 1019 1020 /* CLONE_CHILD_CLEARTID: */ 1021 int __user *clear_child_tid; 1022 1023 /* PF_KTHREAD | PF_IO_WORKER */ 1024 void *worker_private; 1025 1026 u64 utime; 1027 u64 stime; 1028#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 1029 u64 utimescaled; 1030 u64 stimescaled; 1031#endif 1032 u64 gtime; 1033 struct prev_cputime prev_cputime; 1034#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1035 struct vtime vtime; 1036#endif 1037 1038#ifdef CONFIG_NO_HZ_FULL 1039 atomic_t tick_dep_mask; 1040#endif 1041 /* Context switch counts: */ 1042 unsigned long nvcsw; 1043 unsigned long nivcsw; 1044 1045 /* Monotonic time in nsecs: */ 1046 u64 start_time; 1047 1048 /* Boot based time in nsecs: */ 1049 u64 start_boottime; 1050 1051 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */ 1052 unsigned long min_flt; 1053 unsigned long maj_flt; 1054 1055 /* Empty if CONFIG_POSIX_CPUTIMERS=n */ 1056 struct posix_cputimers posix_cputimers; 1057 1058#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK 1059 struct posix_cputimers_work posix_cputimers_work; 1060#endif 1061 1062 /* Process credentials: */ 1063 1064 /* Tracer's credentials at attach: */ 1065 const struct cred __rcu *ptracer_cred; 1066 1067 /* Objective and real subjective task credentials (COW): */ 1068 const struct cred __rcu *real_cred; 1069 1070 /* Effective (overridable) subjective task credentials (COW): */ 1071 const struct cred __rcu *cred; 1072 1073#ifdef CONFIG_KEYS 1074 /* Cached requested key. */ 1075 struct key *cached_requested_key; 1076#endif 1077 1078 /* 1079 * executable name, excluding path. 1080 * 1081 * - normally initialized setup_new_exec() 1082 * - access it with [gs]et_task_comm() 1083 * - lock it with task_lock() 1084 */ 1085 char comm[TASK_COMM_LEN]; 1086 1087 struct nameidata *nameidata; 1088 1089#ifdef CONFIG_SYSVIPC 1090 struct sysv_sem sysvsem; 1091 struct sysv_shm sysvshm; 1092#endif 1093#ifdef CONFIG_DETECT_HUNG_TASK 1094 unsigned long last_switch_count; 1095 unsigned long last_switch_time; 1096#endif 1097 /* Filesystem information: */ 1098 struct fs_struct *fs; 1099 1100 /* Open file information: */ 1101 struct files_struct *files; 1102 1103#ifdef CONFIG_IO_URING 1104 struct io_uring_task *io_uring; 1105#endif 1106 1107 /* Namespaces: */ 1108 struct nsproxy *nsproxy; 1109 1110 /* Signal handlers: */ 1111 struct signal_struct *signal; 1112 struct sighand_struct __rcu *sighand; 1113 sigset_t blocked; 1114 sigset_t real_blocked; 1115 /* Restored if set_restore_sigmask() was used: */ 1116 sigset_t saved_sigmask; 1117 struct sigpending pending; 1118 unsigned long sas_ss_sp; 1119 size_t sas_ss_size; 1120 unsigned int sas_ss_flags; 1121 1122 struct callback_head *task_works; 1123 1124#ifdef CONFIG_AUDIT 1125#ifdef CONFIG_AUDITSYSCALL 1126 struct audit_context *audit_context; 1127#endif 1128 kuid_t loginuid; 1129 unsigned int sessionid; 1130#endif 1131 struct seccomp seccomp; 1132 struct syscall_user_dispatch syscall_dispatch; 1133 1134 /* Thread group tracking: */ 1135 u64 parent_exec_id; 1136 u64 self_exec_id; 1137 1138 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */ 1139 spinlock_t alloc_lock; 1140 1141 /* Protection of the PI data structures: */ 1142 raw_spinlock_t pi_lock; 1143 1144 struct wake_q_node wake_q; 1145 1146#ifdef CONFIG_RT_MUTEXES 1147 /* PI waiters blocked on a rt_mutex held by this task: */ 1148 struct rb_root_cached pi_waiters; 1149 /* Updated under owner's pi_lock and rq lock */ 1150 struct task_struct *pi_top_task; 1151 /* Deadlock detection and priority inheritance handling: */ 1152 struct rt_mutex_waiter *pi_blocked_on; 1153#endif 1154 1155#ifdef CONFIG_DEBUG_MUTEXES 1156 /* Mutex deadlock detection: */ 1157 struct mutex_waiter *blocked_on; 1158#endif 1159 1160#ifdef CONFIG_DEBUG_ATOMIC_SLEEP 1161 int non_block_count; 1162#endif 1163 1164#ifdef CONFIG_TRACE_IRQFLAGS 1165 struct irqtrace_events irqtrace; 1166 unsigned int hardirq_threaded; 1167 u64 hardirq_chain_key; 1168 int softirqs_enabled; 1169 int softirq_context; 1170 int irq_config; 1171#endif 1172#ifdef CONFIG_PREEMPT_RT 1173 int softirq_disable_cnt; 1174#endif 1175 1176#ifdef CONFIG_LOCKDEP 1177# define MAX_LOCK_DEPTH 48UL 1178 u64 curr_chain_key; 1179 int lockdep_depth; 1180 unsigned int lockdep_recursion; 1181 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1182#endif 1183 1184#if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP) 1185 unsigned int in_ubsan; 1186#endif 1187 1188 /* Journalling filesystem info: */ 1189 void *journal_info; 1190 1191 /* Stacked block device info: */ 1192 struct bio_list *bio_list; 1193 1194 /* Stack plugging: */ 1195 struct blk_plug *plug; 1196 1197 /* VM state: */ 1198 struct reclaim_state *reclaim_state; 1199 1200 struct io_context *io_context; 1201 1202#ifdef CONFIG_COMPACTION 1203 struct capture_control *capture_control; 1204#endif 1205 /* Ptrace state: */ 1206 unsigned long ptrace_message; 1207 kernel_siginfo_t *last_siginfo; 1208 1209 struct task_io_accounting ioac; 1210#ifdef CONFIG_PSI 1211 /* Pressure stall state */ 1212 unsigned int psi_flags; 1213#endif 1214#ifdef CONFIG_TASK_XACCT 1215 /* Accumulated RSS usage: */ 1216 u64 acct_rss_mem1; 1217 /* Accumulated virtual memory usage: */ 1218 u64 acct_vm_mem1; 1219 /* stime + utime since last update: */ 1220 u64 acct_timexpd; 1221#endif 1222#ifdef CONFIG_CPUSETS 1223 /* Protected by ->alloc_lock: */ 1224 nodemask_t mems_allowed; 1225 /* Sequence number to catch updates: */ 1226 seqcount_spinlock_t mems_allowed_seq; 1227 int cpuset_mem_spread_rotor; 1228 int cpuset_slab_spread_rotor; 1229#endif 1230#ifdef CONFIG_CGROUPS 1231 /* Control Group info protected by css_set_lock: */ 1232 struct css_set __rcu *cgroups; 1233 /* cg_list protected by css_set_lock and tsk->alloc_lock: */ 1234 struct list_head cg_list; 1235#endif 1236#ifdef CONFIG_X86_CPU_RESCTRL 1237 u32 closid; 1238 u32 rmid; 1239#endif 1240#ifdef CONFIG_FUTEX 1241 struct robust_list_head __user *robust_list; 1242#ifdef CONFIG_COMPAT 1243 struct compat_robust_list_head __user *compat_robust_list; 1244#endif 1245 struct list_head pi_state_list; 1246 struct futex_pi_state *pi_state_cache; 1247 struct mutex futex_exit_mutex; 1248 unsigned int futex_state; 1249#endif 1250#ifdef CONFIG_PERF_EVENTS 1251 struct perf_event_context *perf_event_ctxp; 1252 struct mutex perf_event_mutex; 1253 struct list_head perf_event_list; 1254#endif 1255#ifdef CONFIG_DEBUG_PREEMPT 1256 unsigned long preempt_disable_ip; 1257#endif 1258#ifdef CONFIG_NUMA 1259 /* Protected by alloc_lock: */ 1260 struct mempolicy *mempolicy; 1261 short il_prev; 1262 short pref_node_fork; 1263#endif 1264#ifdef CONFIG_NUMA_BALANCING 1265 int numa_scan_seq; 1266 unsigned int numa_scan_period; 1267 unsigned int numa_scan_period_max; 1268 int numa_preferred_nid; 1269 unsigned long numa_migrate_retry; 1270 /* Migration stamp: */ 1271 u64 node_stamp; 1272 u64 last_task_numa_placement; 1273 u64 last_sum_exec_runtime; 1274 struct callback_head numa_work; 1275 1276 /* 1277 * This pointer is only modified for current in syscall and 1278 * pagefault context (and for tasks being destroyed), so it can be read 1279 * from any of the following contexts: 1280 * - RCU read-side critical section 1281 * - current->numa_group from everywhere 1282 * - task's runqueue locked, task not running 1283 */ 1284 struct numa_group __rcu *numa_group; 1285 1286 /* 1287 * numa_faults is an array split into four regions: 1288 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer 1289 * in this precise order. 1290 * 1291 * faults_memory: Exponential decaying average of faults on a per-node 1292 * basis. Scheduling placement decisions are made based on these 1293 * counts. The values remain static for the duration of a PTE scan. 1294 * faults_cpu: Track the nodes the process was running on when a NUMA 1295 * hinting fault was incurred. 1296 * faults_memory_buffer and faults_cpu_buffer: Record faults per node 1297 * during the current scan window. When the scan completes, the counts 1298 * in faults_memory and faults_cpu decay and these values are copied. 1299 */ 1300 unsigned long *numa_faults; 1301 unsigned long total_numa_faults; 1302 1303 /* 1304 * numa_faults_locality tracks if faults recorded during the last 1305 * scan window were remote/local or failed to migrate. The task scan 1306 * period is adapted based on the locality of the faults with different 1307 * weights depending on whether they were shared or private faults 1308 */ 1309 unsigned long numa_faults_locality[3]; 1310 1311 unsigned long numa_pages_migrated; 1312#endif /* CONFIG_NUMA_BALANCING */ 1313 1314#ifdef CONFIG_RSEQ 1315 struct rseq __user *rseq; 1316 u32 rseq_len; 1317 u32 rseq_sig; 1318 /* 1319 * RmW on rseq_event_mask must be performed atomically 1320 * with respect to preemption. 1321 */ 1322 unsigned long rseq_event_mask; 1323#endif 1324 1325#ifdef CONFIG_SCHED_MM_CID 1326 int mm_cid; /* Current cid in mm */ 1327 int last_mm_cid; /* Most recent cid in mm */ 1328 int migrate_from_cpu; 1329 int mm_cid_active; /* Whether cid bitmap is active */ 1330 struct callback_head cid_work; 1331#endif 1332 1333 struct tlbflush_unmap_batch tlb_ubc; 1334 1335 /* Cache last used pipe for splice(): */ 1336 struct pipe_inode_info *splice_pipe; 1337 1338 struct page_frag task_frag; 1339 1340#ifdef CONFIG_TASK_DELAY_ACCT 1341 struct task_delay_info *delays; 1342#endif 1343 1344#ifdef CONFIG_FAULT_INJECTION 1345 int make_it_fail; 1346 unsigned int fail_nth; 1347#endif 1348 /* 1349 * When (nr_dirtied >= nr_dirtied_pause), it's time to call 1350 * balance_dirty_pages() for a dirty throttling pause: 1351 */ 1352 int nr_dirtied; 1353 int nr_dirtied_pause; 1354 /* Start of a write-and-pause period: */ 1355 unsigned long dirty_paused_when; 1356 1357#ifdef CONFIG_LATENCYTOP 1358 int latency_record_count; 1359 struct latency_record latency_record[LT_SAVECOUNT]; 1360#endif 1361 /* 1362 * Time slack values; these are used to round up poll() and 1363 * select() etc timeout values. These are in nanoseconds. 1364 */ 1365 u64 timer_slack_ns; 1366 u64 default_timer_slack_ns; 1367 1368#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) 1369 unsigned int kasan_depth; 1370#endif 1371 1372#ifdef CONFIG_KCSAN 1373 struct kcsan_ctx kcsan_ctx; 1374#ifdef CONFIG_TRACE_IRQFLAGS 1375 struct irqtrace_events kcsan_save_irqtrace; 1376#endif 1377#ifdef CONFIG_KCSAN_WEAK_MEMORY 1378 int kcsan_stack_depth; 1379#endif 1380#endif 1381 1382#ifdef CONFIG_KMSAN 1383 struct kmsan_ctx kmsan_ctx; 1384#endif 1385 1386#if IS_ENABLED(CONFIG_KUNIT) 1387 struct kunit *kunit_test; 1388#endif 1389 1390#ifdef CONFIG_FUNCTION_GRAPH_TRACER 1391 /* Index of current stored address in ret_stack: */ 1392 int curr_ret_stack; 1393 int curr_ret_depth; 1394 1395 /* Stack of return addresses for return function tracing: */ 1396 struct ftrace_ret_stack *ret_stack; 1397 1398 /* Timestamp for last schedule: */ 1399 unsigned long long ftrace_timestamp; 1400 1401 /* 1402 * Number of functions that haven't been traced 1403 * because of depth overrun: 1404 */ 1405 atomic_t trace_overrun; 1406 1407 /* Pause tracing: */ 1408 atomic_t tracing_graph_pause; 1409#endif 1410 1411#ifdef CONFIG_TRACING 1412 /* Bitmask and counter of trace recursion: */ 1413 unsigned long trace_recursion; 1414#endif /* CONFIG_TRACING */ 1415 1416#ifdef CONFIG_KCOV 1417 /* See kernel/kcov.c for more details. */ 1418 1419 /* Coverage collection mode enabled for this task (0 if disabled): */ 1420 unsigned int kcov_mode; 1421 1422 /* Size of the kcov_area: */ 1423 unsigned int kcov_size; 1424 1425 /* Buffer for coverage collection: */ 1426 void *kcov_area; 1427 1428 /* KCOV descriptor wired with this task or NULL: */ 1429 struct kcov *kcov; 1430 1431 /* KCOV common handle for remote coverage collection: */ 1432 u64 kcov_handle; 1433 1434 /* KCOV sequence number: */ 1435 int kcov_sequence; 1436 1437 /* Collect coverage from softirq context: */ 1438 unsigned int kcov_softirq; 1439#endif 1440 1441#ifdef CONFIG_MEMCG 1442 struct mem_cgroup *memcg_in_oom; 1443 gfp_t memcg_oom_gfp_mask; 1444 int memcg_oom_order; 1445 1446 /* Number of pages to reclaim on returning to userland: */ 1447 unsigned int memcg_nr_pages_over_high; 1448 1449 /* Used by memcontrol for targeted memcg charge: */ 1450 struct mem_cgroup *active_memcg; 1451#endif 1452 1453#ifdef CONFIG_MEMCG_KMEM 1454 struct obj_cgroup *objcg; 1455#endif 1456 1457#ifdef CONFIG_BLK_CGROUP 1458 struct gendisk *throttle_disk; 1459#endif 1460 1461#ifdef CONFIG_UPROBES 1462 struct uprobe_task *utask; 1463#endif 1464#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1465 unsigned int sequential_io; 1466 unsigned int sequential_io_avg; 1467#endif 1468 struct kmap_ctrl kmap_ctrl; 1469#ifdef CONFIG_DEBUG_ATOMIC_SLEEP 1470 unsigned long task_state_change; 1471# ifdef CONFIG_PREEMPT_RT 1472 unsigned long saved_state_change; 1473# endif 1474#endif 1475 struct rcu_head rcu; 1476 refcount_t rcu_users; 1477 int pagefault_disabled; 1478#ifdef CONFIG_MMU 1479 struct task_struct *oom_reaper_list; 1480 struct timer_list oom_reaper_timer; 1481#endif 1482#ifdef CONFIG_VMAP_STACK 1483 struct vm_struct *stack_vm_area; 1484#endif 1485#ifdef CONFIG_THREAD_INFO_IN_TASK 1486 /* A live task holds one reference: */ 1487 refcount_t stack_refcount; 1488#endif 1489#ifdef CONFIG_LIVEPATCH 1490 int patch_state; 1491#endif 1492#ifdef CONFIG_SECURITY 1493 /* Used by LSM modules for access restriction: */ 1494 void *security; 1495#endif 1496#ifdef CONFIG_BPF_SYSCALL 1497 /* Used by BPF task local storage */ 1498 struct bpf_local_storage __rcu *bpf_storage; 1499 /* Used for BPF run context */ 1500 struct bpf_run_ctx *bpf_ctx; 1501#endif 1502 1503#ifdef CONFIG_GCC_PLUGIN_STACKLEAK 1504 unsigned long lowest_stack; 1505 unsigned long prev_lowest_stack; 1506#endif 1507 1508#ifdef CONFIG_X86_MCE 1509 void __user *mce_vaddr; 1510 __u64 mce_kflags; 1511 u64 mce_addr; 1512 __u64 mce_ripv : 1, 1513 mce_whole_page : 1, 1514 __mce_reserved : 62; 1515 struct callback_head mce_kill_me; 1516 int mce_count; 1517#endif 1518 1519#ifdef CONFIG_KRETPROBES 1520 struct llist_head kretprobe_instances; 1521#endif 1522#ifdef CONFIG_RETHOOK 1523 struct llist_head rethooks; 1524#endif 1525 1526#ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH 1527 /* 1528 * If L1D flush is supported on mm context switch 1529 * then we use this callback head to queue kill work 1530 * to kill tasks that are not running on SMT disabled 1531 * cores 1532 */ 1533 struct callback_head l1d_flush_kill; 1534#endif 1535 1536#ifdef CONFIG_RV 1537 /* 1538 * Per-task RV monitor. Nowadays fixed in RV_PER_TASK_MONITORS. 1539 * If we find justification for more monitors, we can think 1540 * about adding more or developing a dynamic method. So far, 1541 * none of these are justified. 1542 */ 1543 union rv_task_monitor rv[RV_PER_TASK_MONITORS]; 1544#endif 1545 1546#ifdef CONFIG_USER_EVENTS 1547 struct user_event_mm *user_event_mm; 1548#endif 1549 1550 /* 1551 * New fields for task_struct should be added above here, so that 1552 * they are included in the randomized portion of task_struct. 1553 */ 1554 randomized_struct_fields_end 1555 1556 /* CPU-specific state of this task: */ 1557 struct thread_struct thread; 1558 1559 /* 1560 * WARNING: on x86, 'thread_struct' contains a variable-sized 1561 * structure. It *MUST* be at the end of 'task_struct'. 1562 * 1563 * Do not put anything below here! 1564 */ 1565}; 1566 1567#define TASK_REPORT_IDLE (TASK_REPORT + 1) 1568#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1) 1569 1570static inline unsigned int __task_state_index(unsigned int tsk_state, 1571 unsigned int tsk_exit_state) 1572{ 1573 unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT; 1574 1575 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX); 1576 1577 if ((tsk_state & TASK_IDLE) == TASK_IDLE) 1578 state = TASK_REPORT_IDLE; 1579 1580 /* 1581 * We're lying here, but rather than expose a completely new task state 1582 * to userspace, we can make this appear as if the task has gone through 1583 * a regular rt_mutex_lock() call. 1584 */ 1585 if (tsk_state & TASK_RTLOCK_WAIT) 1586 state = TASK_UNINTERRUPTIBLE; 1587 1588 return fls(state); 1589} 1590 1591static inline unsigned int task_state_index(struct task_struct *tsk) 1592{ 1593 return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state); 1594} 1595 1596static inline char task_index_to_char(unsigned int state) 1597{ 1598 static const char state_char[] = "RSDTtXZPI"; 1599 1600 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1); 1601 1602 return state_char[state]; 1603} 1604 1605static inline char task_state_to_char(struct task_struct *tsk) 1606{ 1607 return task_index_to_char(task_state_index(tsk)); 1608} 1609 1610extern struct pid *cad_pid; 1611 1612/* 1613 * Per process flags 1614 */ 1615#define PF_VCPU 0x00000001 /* I'm a virtual CPU */ 1616#define PF_IDLE 0x00000002 /* I am an IDLE thread */ 1617#define PF_EXITING 0x00000004 /* Getting shut down */ 1618#define PF_POSTCOREDUMP 0x00000008 /* Coredumps should ignore this task */ 1619#define PF_IO_WORKER 0x00000010 /* Task is an IO worker */ 1620#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1621#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */ 1622#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */ 1623#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */ 1624#define PF_DUMPCORE 0x00000200 /* Dumped core */ 1625#define PF_SIGNALED 0x00000400 /* Killed by a signal */ 1626#define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1627#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */ 1628#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */ 1629#define PF_USER_WORKER 0x00004000 /* Kernel thread cloned from userspace thread */ 1630#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */ 1631#define PF__HOLE__00010000 0x00010000 1632#define PF_KSWAPD 0x00020000 /* I am kswapd */ 1633#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */ 1634#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */ 1635#define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to, 1636 * I am cleaning dirty pages from some other bdi. */ 1637#define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1638#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */ 1639#define PF__HOLE__00800000 0x00800000 1640#define PF__HOLE__01000000 0x01000000 1641#define PF__HOLE__02000000 0x02000000 1642#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */ 1643#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1644#define PF_MEMALLOC_PIN 0x10000000 /* Allocation context constrained to zones which allow long term pinning. */ 1645#define PF__HOLE__20000000 0x20000000 1646#define PF__HOLE__40000000 0x40000000 1647#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */ 1648 1649/* 1650 * Only the _current_ task can read/write to tsk->flags, but other 1651 * tasks can access tsk->flags in readonly mode for example 1652 * with tsk_used_math (like during threaded core dumping). 1653 * There is however an exception to this rule during ptrace 1654 * or during fork: the ptracer task is allowed to write to the 1655 * child->flags of its traced child (same goes for fork, the parent 1656 * can write to the child->flags), because we're guaranteed the 1657 * child is not running and in turn not changing child->flags 1658 * at the same time the parent does it. 1659 */ 1660#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1661#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1662#define clear_used_math() clear_stopped_child_used_math(current) 1663#define set_used_math() set_stopped_child_used_math(current) 1664 1665#define conditional_stopped_child_used_math(condition, child) \ 1666 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1667 1668#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current) 1669 1670#define copy_to_stopped_child_used_math(child) \ 1671 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1672 1673/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1674#define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1675#define used_math() tsk_used_math(current) 1676 1677static __always_inline bool is_percpu_thread(void) 1678{ 1679#ifdef CONFIG_SMP 1680 return (current->flags & PF_NO_SETAFFINITY) && 1681 (current->nr_cpus_allowed == 1); 1682#else 1683 return true; 1684#endif 1685} 1686 1687/* Per-process atomic flags. */ 1688#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */ 1689#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */ 1690#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */ 1691#define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */ 1692#define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/ 1693#define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */ 1694#define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */ 1695#define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */ 1696 1697#define TASK_PFA_TEST(name, func) \ 1698 static inline bool task_##func(struct task_struct *p) \ 1699 { return test_bit(PFA_##name, &p->atomic_flags); } 1700 1701#define TASK_PFA_SET(name, func) \ 1702 static inline void task_set_##func(struct task_struct *p) \ 1703 { set_bit(PFA_##name, &p->atomic_flags); } 1704 1705#define TASK_PFA_CLEAR(name, func) \ 1706 static inline void task_clear_##func(struct task_struct *p) \ 1707 { clear_bit(PFA_##name, &p->atomic_flags); } 1708 1709TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) 1710TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) 1711 1712TASK_PFA_TEST(SPREAD_PAGE, spread_page) 1713TASK_PFA_SET(SPREAD_PAGE, spread_page) 1714TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) 1715 1716TASK_PFA_TEST(SPREAD_SLAB, spread_slab) 1717TASK_PFA_SET(SPREAD_SLAB, spread_slab) 1718TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) 1719 1720TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable) 1721TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable) 1722TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable) 1723 1724TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec) 1725TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec) 1726TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec) 1727 1728TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) 1729TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) 1730 1731TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable) 1732TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable) 1733TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable) 1734 1735TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable) 1736TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable) 1737 1738static inline void 1739current_restore_flags(unsigned long orig_flags, unsigned long flags) 1740{ 1741 current->flags &= ~flags; 1742 current->flags |= orig_flags & flags; 1743} 1744 1745extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); 1746extern int task_can_attach(struct task_struct *p); 1747extern int dl_bw_alloc(int cpu, u64 dl_bw); 1748extern void dl_bw_free(int cpu, u64 dl_bw); 1749#ifdef CONFIG_SMP 1750 1751/* do_set_cpus_allowed() - consider using set_cpus_allowed_ptr() instead */ 1752extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask); 1753 1754/** 1755 * set_cpus_allowed_ptr - set CPU affinity mask of a task 1756 * @p: the task 1757 * @new_mask: CPU affinity mask 1758 * 1759 * Return: zero if successful, or a negative error code 1760 */ 1761extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask); 1762extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node); 1763extern void release_user_cpus_ptr(struct task_struct *p); 1764extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask); 1765extern void force_compatible_cpus_allowed_ptr(struct task_struct *p); 1766extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p); 1767#else 1768static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1769{ 1770} 1771static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1772{ 1773 if (!cpumask_test_cpu(0, new_mask)) 1774 return -EINVAL; 1775 return 0; 1776} 1777static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node) 1778{ 1779 if (src->user_cpus_ptr) 1780 return -EINVAL; 1781 return 0; 1782} 1783static inline void release_user_cpus_ptr(struct task_struct *p) 1784{ 1785 WARN_ON(p->user_cpus_ptr); 1786} 1787 1788static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask) 1789{ 1790 return 0; 1791} 1792#endif 1793 1794extern int yield_to(struct task_struct *p, bool preempt); 1795extern void set_user_nice(struct task_struct *p, long nice); 1796extern int task_prio(const struct task_struct *p); 1797 1798/** 1799 * task_nice - return the nice value of a given task. 1800 * @p: the task in question. 1801 * 1802 * Return: The nice value [ -20 ... 0 ... 19 ]. 1803 */ 1804static inline int task_nice(const struct task_struct *p) 1805{ 1806 return PRIO_TO_NICE((p)->static_prio); 1807} 1808 1809extern int can_nice(const struct task_struct *p, const int nice); 1810extern int task_curr(const struct task_struct *p); 1811extern int idle_cpu(int cpu); 1812extern int available_idle_cpu(int cpu); 1813extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *); 1814extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *); 1815extern void sched_set_fifo(struct task_struct *p); 1816extern void sched_set_fifo_low(struct task_struct *p); 1817extern void sched_set_normal(struct task_struct *p, int nice); 1818extern int sched_setattr(struct task_struct *, const struct sched_attr *); 1819extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *); 1820extern struct task_struct *idle_task(int cpu); 1821 1822/** 1823 * is_idle_task - is the specified task an idle task? 1824 * @p: the task in question. 1825 * 1826 * Return: 1 if @p is an idle task. 0 otherwise. 1827 */ 1828static __always_inline bool is_idle_task(const struct task_struct *p) 1829{ 1830 return !!(p->flags & PF_IDLE); 1831} 1832 1833extern struct task_struct *curr_task(int cpu); 1834extern void ia64_set_curr_task(int cpu, struct task_struct *p); 1835 1836void yield(void); 1837 1838union thread_union { 1839 struct task_struct task; 1840#ifndef CONFIG_THREAD_INFO_IN_TASK 1841 struct thread_info thread_info; 1842#endif 1843 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1844}; 1845 1846#ifndef CONFIG_THREAD_INFO_IN_TASK 1847extern struct thread_info init_thread_info; 1848#endif 1849 1850extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)]; 1851 1852#ifdef CONFIG_THREAD_INFO_IN_TASK 1853# define task_thread_info(task) (&(task)->thread_info) 1854#elif !defined(__HAVE_THREAD_FUNCTIONS) 1855# define task_thread_info(task) ((struct thread_info *)(task)->stack) 1856#endif 1857 1858/* 1859 * find a task by one of its numerical ids 1860 * 1861 * find_task_by_pid_ns(): 1862 * finds a task by its pid in the specified namespace 1863 * find_task_by_vpid(): 1864 * finds a task by its virtual pid 1865 * 1866 * see also find_vpid() etc in include/linux/pid.h 1867 */ 1868 1869extern struct task_struct *find_task_by_vpid(pid_t nr); 1870extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns); 1871 1872/* 1873 * find a task by its virtual pid and get the task struct 1874 */ 1875extern struct task_struct *find_get_task_by_vpid(pid_t nr); 1876 1877extern int wake_up_state(struct task_struct *tsk, unsigned int state); 1878extern int wake_up_process(struct task_struct *tsk); 1879extern void wake_up_new_task(struct task_struct *tsk); 1880 1881#ifdef CONFIG_SMP 1882extern void kick_process(struct task_struct *tsk); 1883#else 1884static inline void kick_process(struct task_struct *tsk) { } 1885#endif 1886 1887extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec); 1888 1889static inline void set_task_comm(struct task_struct *tsk, const char *from) 1890{ 1891 __set_task_comm(tsk, from, false); 1892} 1893 1894extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk); 1895#define get_task_comm(buf, tsk) ({ \ 1896 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \ 1897 __get_task_comm(buf, sizeof(buf), tsk); \ 1898}) 1899 1900#ifdef CONFIG_SMP 1901static __always_inline void scheduler_ipi(void) 1902{ 1903 /* 1904 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1905 * TIF_NEED_RESCHED remotely (for the first time) will also send 1906 * this IPI. 1907 */ 1908 preempt_fold_need_resched(); 1909} 1910#else 1911static inline void scheduler_ipi(void) { } 1912#endif 1913 1914extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state); 1915 1916/* 1917 * Set thread flags in other task's structures. 1918 * See asm/thread_info.h for TIF_xxxx flags available: 1919 */ 1920static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 1921{ 1922 set_ti_thread_flag(task_thread_info(tsk), flag); 1923} 1924 1925static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1926{ 1927 clear_ti_thread_flag(task_thread_info(tsk), flag); 1928} 1929 1930static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag, 1931 bool value) 1932{ 1933 update_ti_thread_flag(task_thread_info(tsk), flag, value); 1934} 1935 1936static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 1937{ 1938 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 1939} 1940 1941static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1942{ 1943 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 1944} 1945 1946static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 1947{ 1948 return test_ti_thread_flag(task_thread_info(tsk), flag); 1949} 1950 1951static inline void set_tsk_need_resched(struct task_struct *tsk) 1952{ 1953 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1954} 1955 1956static inline void clear_tsk_need_resched(struct task_struct *tsk) 1957{ 1958 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1959} 1960 1961static inline int test_tsk_need_resched(struct task_struct *tsk) 1962{ 1963 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 1964} 1965 1966/* 1967 * cond_resched() and cond_resched_lock(): latency reduction via 1968 * explicit rescheduling in places that are safe. The return 1969 * value indicates whether a reschedule was done in fact. 1970 * cond_resched_lock() will drop the spinlock before scheduling, 1971 */ 1972#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) 1973extern int __cond_resched(void); 1974 1975#if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 1976 1977void sched_dynamic_klp_enable(void); 1978void sched_dynamic_klp_disable(void); 1979 1980DECLARE_STATIC_CALL(cond_resched, __cond_resched); 1981 1982static __always_inline int _cond_resched(void) 1983{ 1984 return static_call_mod(cond_resched)(); 1985} 1986 1987#elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 1988 1989extern int dynamic_cond_resched(void); 1990 1991static __always_inline int _cond_resched(void) 1992{ 1993 return dynamic_cond_resched(); 1994} 1995 1996#else /* !CONFIG_PREEMPTION */ 1997 1998static inline int _cond_resched(void) 1999{ 2000 klp_sched_try_switch(); 2001 return __cond_resched(); 2002} 2003 2004#endif /* PREEMPT_DYNAMIC && CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */ 2005 2006#else /* CONFIG_PREEMPTION && !CONFIG_PREEMPT_DYNAMIC */ 2007 2008static inline int _cond_resched(void) 2009{ 2010 klp_sched_try_switch(); 2011 return 0; 2012} 2013 2014#endif /* !CONFIG_PREEMPTION || CONFIG_PREEMPT_DYNAMIC */ 2015 2016#define cond_resched() ({ \ 2017 __might_resched(__FILE__, __LINE__, 0); \ 2018 _cond_resched(); \ 2019}) 2020 2021extern int __cond_resched_lock(spinlock_t *lock); 2022extern int __cond_resched_rwlock_read(rwlock_t *lock); 2023extern int __cond_resched_rwlock_write(rwlock_t *lock); 2024 2025#define MIGHT_RESCHED_RCU_SHIFT 8 2026#define MIGHT_RESCHED_PREEMPT_MASK ((1U << MIGHT_RESCHED_RCU_SHIFT) - 1) 2027 2028#ifndef CONFIG_PREEMPT_RT 2029/* 2030 * Non RT kernels have an elevated preempt count due to the held lock, 2031 * but are not allowed to be inside a RCU read side critical section 2032 */ 2033# define PREEMPT_LOCK_RESCHED_OFFSETS PREEMPT_LOCK_OFFSET 2034#else 2035/* 2036 * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in 2037 * cond_resched*lock() has to take that into account because it checks for 2038 * preempt_count() and rcu_preempt_depth(). 2039 */ 2040# define PREEMPT_LOCK_RESCHED_OFFSETS \ 2041 (PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT)) 2042#endif 2043 2044#define cond_resched_lock(lock) ({ \ 2045 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \ 2046 __cond_resched_lock(lock); \ 2047}) 2048 2049#define cond_resched_rwlock_read(lock) ({ \ 2050 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \ 2051 __cond_resched_rwlock_read(lock); \ 2052}) 2053 2054#define cond_resched_rwlock_write(lock) ({ \ 2055 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \ 2056 __cond_resched_rwlock_write(lock); \ 2057}) 2058 2059#ifdef CONFIG_PREEMPT_DYNAMIC 2060 2061extern bool preempt_model_none(void); 2062extern bool preempt_model_voluntary(void); 2063extern bool preempt_model_full(void); 2064 2065#else 2066 2067static inline bool preempt_model_none(void) 2068{ 2069 return IS_ENABLED(CONFIG_PREEMPT_NONE); 2070} 2071static inline bool preempt_model_voluntary(void) 2072{ 2073 return IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY); 2074} 2075static inline bool preempt_model_full(void) 2076{ 2077 return IS_ENABLED(CONFIG_PREEMPT); 2078} 2079 2080#endif 2081 2082static inline bool preempt_model_rt(void) 2083{ 2084 return IS_ENABLED(CONFIG_PREEMPT_RT); 2085} 2086 2087/* 2088 * Does the preemption model allow non-cooperative preemption? 2089 * 2090 * For !CONFIG_PREEMPT_DYNAMIC kernels this is an exact match with 2091 * CONFIG_PREEMPTION; for CONFIG_PREEMPT_DYNAMIC this doesn't work as the 2092 * kernel is *built* with CONFIG_PREEMPTION=y but may run with e.g. the 2093 * PREEMPT_NONE model. 2094 */ 2095static inline bool preempt_model_preemptible(void) 2096{ 2097 return preempt_model_full() || preempt_model_rt(); 2098} 2099 2100static __always_inline bool need_resched(void) 2101{ 2102 return unlikely(tif_need_resched()); 2103} 2104 2105/* 2106 * Wrappers for p->thread_info->cpu access. No-op on UP. 2107 */ 2108#ifdef CONFIG_SMP 2109 2110static inline unsigned int task_cpu(const struct task_struct *p) 2111{ 2112 return READ_ONCE(task_thread_info(p)->cpu); 2113} 2114 2115extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 2116 2117#else 2118 2119static inline unsigned int task_cpu(const struct task_struct *p) 2120{ 2121 return 0; 2122} 2123 2124static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2125{ 2126} 2127 2128#endif /* CONFIG_SMP */ 2129 2130extern bool sched_task_on_rq(struct task_struct *p); 2131extern unsigned long get_wchan(struct task_struct *p); 2132extern struct task_struct *cpu_curr_snapshot(int cpu); 2133 2134#include <linux/spinlock.h> 2135 2136/* 2137 * In order to reduce various lock holder preemption latencies provide an 2138 * interface to see if a vCPU is currently running or not. 2139 * 2140 * This allows us to terminate optimistic spin loops and block, analogous to 2141 * the native optimistic spin heuristic of testing if the lock owner task is 2142 * running or not. 2143 */ 2144#ifndef vcpu_is_preempted 2145static inline bool vcpu_is_preempted(int cpu) 2146{ 2147 return false; 2148} 2149#endif 2150 2151extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 2152extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 2153 2154#ifndef TASK_SIZE_OF 2155#define TASK_SIZE_OF(tsk) TASK_SIZE 2156#endif 2157 2158#ifdef CONFIG_SMP 2159static inline bool owner_on_cpu(struct task_struct *owner) 2160{ 2161 /* 2162 * As lock holder preemption issue, we both skip spinning if 2163 * task is not on cpu or its cpu is preempted 2164 */ 2165 return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner)); 2166} 2167 2168/* Returns effective CPU energy utilization, as seen by the scheduler */ 2169unsigned long sched_cpu_util(int cpu); 2170#endif /* CONFIG_SMP */ 2171 2172#ifdef CONFIG_SCHED_CORE 2173extern void sched_core_free(struct task_struct *tsk); 2174extern void sched_core_fork(struct task_struct *p); 2175extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type, 2176 unsigned long uaddr); 2177extern int sched_core_idle_cpu(int cpu); 2178#else 2179static inline void sched_core_free(struct task_struct *tsk) { } 2180static inline void sched_core_fork(struct task_struct *p) { } 2181static inline int sched_core_idle_cpu(int cpu) { return idle_cpu(cpu); } 2182#endif 2183 2184extern void sched_set_stop_task(int cpu, struct task_struct *stop); 2185 2186#endif