at v6.8 16 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef __LINUX_PWM_H 3#define __LINUX_PWM_H 4 5#include <linux/err.h> 6#include <linux/mutex.h> 7#include <linux/of.h> 8 9struct pwm_chip; 10 11/** 12 * enum pwm_polarity - polarity of a PWM signal 13 * @PWM_POLARITY_NORMAL: a high signal for the duration of the duty- 14 * cycle, followed by a low signal for the remainder of the pulse 15 * period 16 * @PWM_POLARITY_INVERSED: a low signal for the duration of the duty- 17 * cycle, followed by a high signal for the remainder of the pulse 18 * period 19 */ 20enum pwm_polarity { 21 PWM_POLARITY_NORMAL, 22 PWM_POLARITY_INVERSED, 23}; 24 25/** 26 * struct pwm_args - board-dependent PWM arguments 27 * @period: reference period 28 * @polarity: reference polarity 29 * 30 * This structure describes board-dependent arguments attached to a PWM 31 * device. These arguments are usually retrieved from the PWM lookup table or 32 * device tree. 33 * 34 * Do not confuse this with the PWM state: PWM arguments represent the initial 35 * configuration that users want to use on this PWM device rather than the 36 * current PWM hardware state. 37 */ 38struct pwm_args { 39 u64 period; 40 enum pwm_polarity polarity; 41}; 42 43enum { 44 PWMF_REQUESTED = 0, 45 PWMF_EXPORTED = 1, 46}; 47 48/* 49 * struct pwm_state - state of a PWM channel 50 * @period: PWM period (in nanoseconds) 51 * @duty_cycle: PWM duty cycle (in nanoseconds) 52 * @polarity: PWM polarity 53 * @enabled: PWM enabled status 54 * @usage_power: If set, the PWM driver is only required to maintain the power 55 * output but has more freedom regarding signal form. 56 * If supported, the signal can be optimized, for example to 57 * improve EMI by phase shifting individual channels. 58 */ 59struct pwm_state { 60 u64 period; 61 u64 duty_cycle; 62 enum pwm_polarity polarity; 63 bool enabled; 64 bool usage_power; 65}; 66 67/** 68 * struct pwm_device - PWM channel object 69 * @label: name of the PWM device 70 * @flags: flags associated with the PWM device 71 * @hwpwm: per-chip relative index of the PWM device 72 * @chip: PWM chip providing this PWM device 73 * @args: PWM arguments 74 * @state: last applied state 75 * @last: last implemented state (for PWM_DEBUG) 76 */ 77struct pwm_device { 78 const char *label; 79 unsigned long flags; 80 unsigned int hwpwm; 81 struct pwm_chip *chip; 82 83 struct pwm_args args; 84 struct pwm_state state; 85 struct pwm_state last; 86}; 87 88/** 89 * pwm_get_state() - retrieve the current PWM state 90 * @pwm: PWM device 91 * @state: state to fill with the current PWM state 92 * 93 * The returned PWM state represents the state that was applied by a previous call to 94 * pwm_apply_might_sleep(). Drivers may have to slightly tweak that state before programming it to 95 * hardware. If pwm_apply_might_sleep() was never called, this returns either the current hardware 96 * state (if supported) or the default settings. 97 */ 98static inline void pwm_get_state(const struct pwm_device *pwm, 99 struct pwm_state *state) 100{ 101 *state = pwm->state; 102} 103 104static inline bool pwm_is_enabled(const struct pwm_device *pwm) 105{ 106 struct pwm_state state; 107 108 pwm_get_state(pwm, &state); 109 110 return state.enabled; 111} 112 113static inline u64 pwm_get_period(const struct pwm_device *pwm) 114{ 115 struct pwm_state state; 116 117 pwm_get_state(pwm, &state); 118 119 return state.period; 120} 121 122static inline u64 pwm_get_duty_cycle(const struct pwm_device *pwm) 123{ 124 struct pwm_state state; 125 126 pwm_get_state(pwm, &state); 127 128 return state.duty_cycle; 129} 130 131static inline enum pwm_polarity pwm_get_polarity(const struct pwm_device *pwm) 132{ 133 struct pwm_state state; 134 135 pwm_get_state(pwm, &state); 136 137 return state.polarity; 138} 139 140static inline void pwm_get_args(const struct pwm_device *pwm, 141 struct pwm_args *args) 142{ 143 *args = pwm->args; 144} 145 146/** 147 * pwm_init_state() - prepare a new state to be applied with pwm_apply_might_sleep() 148 * @pwm: PWM device 149 * @state: state to fill with the prepared PWM state 150 * 151 * This functions prepares a state that can later be tweaked and applied 152 * to the PWM device with pwm_apply_might_sleep(). This is a convenient function 153 * that first retrieves the current PWM state and the replaces the period 154 * and polarity fields with the reference values defined in pwm->args. 155 * Once the function returns, you can adjust the ->enabled and ->duty_cycle 156 * fields according to your needs before calling pwm_apply_might_sleep(). 157 * 158 * ->duty_cycle is initially set to zero to avoid cases where the current 159 * ->duty_cycle value exceed the pwm_args->period one, which would trigger 160 * an error if the user calls pwm_apply_might_sleep() without adjusting ->duty_cycle 161 * first. 162 */ 163static inline void pwm_init_state(const struct pwm_device *pwm, 164 struct pwm_state *state) 165{ 166 struct pwm_args args; 167 168 /* First get the current state. */ 169 pwm_get_state(pwm, state); 170 171 /* Then fill it with the reference config */ 172 pwm_get_args(pwm, &args); 173 174 state->period = args.period; 175 state->polarity = args.polarity; 176 state->duty_cycle = 0; 177 state->usage_power = false; 178} 179 180/** 181 * pwm_get_relative_duty_cycle() - Get a relative duty cycle value 182 * @state: PWM state to extract the duty cycle from 183 * @scale: target scale of the relative duty cycle 184 * 185 * This functions converts the absolute duty cycle stored in @state (expressed 186 * in nanosecond) into a value relative to the period. 187 * 188 * For example if you want to get the duty_cycle expressed in percent, call: 189 * 190 * pwm_get_state(pwm, &state); 191 * duty = pwm_get_relative_duty_cycle(&state, 100); 192 */ 193static inline unsigned int 194pwm_get_relative_duty_cycle(const struct pwm_state *state, unsigned int scale) 195{ 196 if (!state->period) 197 return 0; 198 199 return DIV_ROUND_CLOSEST_ULL((u64)state->duty_cycle * scale, 200 state->period); 201} 202 203/** 204 * pwm_set_relative_duty_cycle() - Set a relative duty cycle value 205 * @state: PWM state to fill 206 * @duty_cycle: relative duty cycle value 207 * @scale: scale in which @duty_cycle is expressed 208 * 209 * This functions converts a relative into an absolute duty cycle (expressed 210 * in nanoseconds), and puts the result in state->duty_cycle. 211 * 212 * For example if you want to configure a 50% duty cycle, call: 213 * 214 * pwm_init_state(pwm, &state); 215 * pwm_set_relative_duty_cycle(&state, 50, 100); 216 * pwm_apply_might_sleep(pwm, &state); 217 * 218 * This functions returns -EINVAL if @duty_cycle and/or @scale are 219 * inconsistent (@scale == 0 or @duty_cycle > @scale). 220 */ 221static inline int 222pwm_set_relative_duty_cycle(struct pwm_state *state, unsigned int duty_cycle, 223 unsigned int scale) 224{ 225 if (!scale || duty_cycle > scale) 226 return -EINVAL; 227 228 state->duty_cycle = DIV_ROUND_CLOSEST_ULL((u64)duty_cycle * 229 state->period, 230 scale); 231 232 return 0; 233} 234 235/** 236 * struct pwm_capture - PWM capture data 237 * @period: period of the PWM signal (in nanoseconds) 238 * @duty_cycle: duty cycle of the PWM signal (in nanoseconds) 239 */ 240struct pwm_capture { 241 unsigned int period; 242 unsigned int duty_cycle; 243}; 244 245/** 246 * struct pwm_ops - PWM controller operations 247 * @request: optional hook for requesting a PWM 248 * @free: optional hook for freeing a PWM 249 * @capture: capture and report PWM signal 250 * @apply: atomically apply a new PWM config 251 * @get_state: get the current PWM state. This function is only 252 * called once per PWM device when the PWM chip is 253 * registered. 254 */ 255struct pwm_ops { 256 int (*request)(struct pwm_chip *chip, struct pwm_device *pwm); 257 void (*free)(struct pwm_chip *chip, struct pwm_device *pwm); 258 int (*capture)(struct pwm_chip *chip, struct pwm_device *pwm, 259 struct pwm_capture *result, unsigned long timeout); 260 int (*apply)(struct pwm_chip *chip, struct pwm_device *pwm, 261 const struct pwm_state *state); 262 int (*get_state)(struct pwm_chip *chip, struct pwm_device *pwm, 263 struct pwm_state *state); 264}; 265 266/** 267 * struct pwm_chip - abstract a PWM controller 268 * @dev: device providing the PWMs 269 * @ops: callbacks for this PWM controller 270 * @owner: module providing this chip 271 * @id: unique number of this PWM chip 272 * @npwm: number of PWMs controlled by this chip 273 * @of_xlate: request a PWM device given a device tree PWM specifier 274 * @of_pwm_n_cells: number of cells expected in the device tree PWM specifier 275 * @atomic: can the driver's ->apply() be called in atomic context 276 * @pwms: array of PWM devices allocated by the framework 277 */ 278struct pwm_chip { 279 struct device *dev; 280 const struct pwm_ops *ops; 281 struct module *owner; 282 unsigned int id; 283 unsigned int npwm; 284 285 struct pwm_device * (*of_xlate)(struct pwm_chip *chip, 286 const struct of_phandle_args *args); 287 unsigned int of_pwm_n_cells; 288 bool atomic; 289 290 /* only used internally by the PWM framework */ 291 struct pwm_device *pwms; 292}; 293 294#if IS_ENABLED(CONFIG_PWM) 295/* PWM user APIs */ 296int pwm_apply_might_sleep(struct pwm_device *pwm, const struct pwm_state *state); 297int pwm_apply_atomic(struct pwm_device *pwm, const struct pwm_state *state); 298int pwm_adjust_config(struct pwm_device *pwm); 299 300/** 301 * pwm_config() - change a PWM device configuration 302 * @pwm: PWM device 303 * @duty_ns: "on" time (in nanoseconds) 304 * @period_ns: duration (in nanoseconds) of one cycle 305 * 306 * Returns: 0 on success or a negative error code on failure. 307 */ 308static inline int pwm_config(struct pwm_device *pwm, int duty_ns, 309 int period_ns) 310{ 311 struct pwm_state state; 312 313 if (!pwm) 314 return -EINVAL; 315 316 if (duty_ns < 0 || period_ns < 0) 317 return -EINVAL; 318 319 pwm_get_state(pwm, &state); 320 if (state.duty_cycle == duty_ns && state.period == period_ns) 321 return 0; 322 323 state.duty_cycle = duty_ns; 324 state.period = period_ns; 325 return pwm_apply_might_sleep(pwm, &state); 326} 327 328/** 329 * pwm_enable() - start a PWM output toggling 330 * @pwm: PWM device 331 * 332 * Returns: 0 on success or a negative error code on failure. 333 */ 334static inline int pwm_enable(struct pwm_device *pwm) 335{ 336 struct pwm_state state; 337 338 if (!pwm) 339 return -EINVAL; 340 341 pwm_get_state(pwm, &state); 342 if (state.enabled) 343 return 0; 344 345 state.enabled = true; 346 return pwm_apply_might_sleep(pwm, &state); 347} 348 349/** 350 * pwm_disable() - stop a PWM output toggling 351 * @pwm: PWM device 352 */ 353static inline void pwm_disable(struct pwm_device *pwm) 354{ 355 struct pwm_state state; 356 357 if (!pwm) 358 return; 359 360 pwm_get_state(pwm, &state); 361 if (!state.enabled) 362 return; 363 364 state.enabled = false; 365 pwm_apply_might_sleep(pwm, &state); 366} 367 368/** 369 * pwm_might_sleep() - is pwm_apply_atomic() supported? 370 * @pwm: PWM device 371 * 372 * Returns: false if pwm_apply_atomic() can be called from atomic context. 373 */ 374static inline bool pwm_might_sleep(struct pwm_device *pwm) 375{ 376 return !pwm->chip->atomic; 377} 378 379/* PWM provider APIs */ 380int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result, 381 unsigned long timeout); 382 383int __pwmchip_add(struct pwm_chip *chip, struct module *owner); 384#define pwmchip_add(chip) __pwmchip_add(chip, THIS_MODULE) 385void pwmchip_remove(struct pwm_chip *chip); 386 387int __devm_pwmchip_add(struct device *dev, struct pwm_chip *chip, struct module *owner); 388#define devm_pwmchip_add(dev, chip) __devm_pwmchip_add(dev, chip, THIS_MODULE) 389 390struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip, 391 unsigned int index, 392 const char *label); 393 394struct pwm_device *of_pwm_xlate_with_flags(struct pwm_chip *chip, 395 const struct of_phandle_args *args); 396struct pwm_device *of_pwm_single_xlate(struct pwm_chip *chip, 397 const struct of_phandle_args *args); 398 399struct pwm_device *pwm_get(struct device *dev, const char *con_id); 400void pwm_put(struct pwm_device *pwm); 401 402struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id); 403struct pwm_device *devm_fwnode_pwm_get(struct device *dev, 404 struct fwnode_handle *fwnode, 405 const char *con_id); 406#else 407static inline bool pwm_might_sleep(struct pwm_device *pwm) 408{ 409 return true; 410} 411 412static inline int pwm_apply_might_sleep(struct pwm_device *pwm, 413 const struct pwm_state *state) 414{ 415 might_sleep(); 416 return -EOPNOTSUPP; 417} 418 419static inline int pwm_apply_atomic(struct pwm_device *pwm, 420 const struct pwm_state *state) 421{ 422 return -EOPNOTSUPP; 423} 424 425static inline int pwm_adjust_config(struct pwm_device *pwm) 426{ 427 return -EOPNOTSUPP; 428} 429 430static inline int pwm_config(struct pwm_device *pwm, int duty_ns, 431 int period_ns) 432{ 433 might_sleep(); 434 return -EINVAL; 435} 436 437static inline int pwm_enable(struct pwm_device *pwm) 438{ 439 might_sleep(); 440 return -EINVAL; 441} 442 443static inline void pwm_disable(struct pwm_device *pwm) 444{ 445 might_sleep(); 446} 447 448static inline int pwm_capture(struct pwm_device *pwm, 449 struct pwm_capture *result, 450 unsigned long timeout) 451{ 452 return -EINVAL; 453} 454 455static inline int pwmchip_add(struct pwm_chip *chip) 456{ 457 return -EINVAL; 458} 459 460static inline int pwmchip_remove(struct pwm_chip *chip) 461{ 462 return -EINVAL; 463} 464 465static inline int devm_pwmchip_add(struct device *dev, struct pwm_chip *chip) 466{ 467 return -EINVAL; 468} 469 470static inline struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip, 471 unsigned int index, 472 const char *label) 473{ 474 might_sleep(); 475 return ERR_PTR(-ENODEV); 476} 477 478static inline struct pwm_device *pwm_get(struct device *dev, 479 const char *consumer) 480{ 481 might_sleep(); 482 return ERR_PTR(-ENODEV); 483} 484 485static inline void pwm_put(struct pwm_device *pwm) 486{ 487 might_sleep(); 488} 489 490static inline struct pwm_device *devm_pwm_get(struct device *dev, 491 const char *consumer) 492{ 493 might_sleep(); 494 return ERR_PTR(-ENODEV); 495} 496 497static inline struct pwm_device * 498devm_fwnode_pwm_get(struct device *dev, struct fwnode_handle *fwnode, 499 const char *con_id) 500{ 501 might_sleep(); 502 return ERR_PTR(-ENODEV); 503} 504#endif 505 506static inline void pwm_apply_args(struct pwm_device *pwm) 507{ 508 struct pwm_state state = { }; 509 510 /* 511 * PWM users calling pwm_apply_args() expect to have a fresh config 512 * where the polarity and period are set according to pwm_args info. 513 * The problem is, polarity can only be changed when the PWM is 514 * disabled. 515 * 516 * PWM drivers supporting hardware readout may declare the PWM device 517 * as enabled, and prevent polarity setting, which changes from the 518 * existing behavior, where all PWM devices are declared as disabled 519 * at startup (even if they are actually enabled), thus authorizing 520 * polarity setting. 521 * 522 * To fulfill this requirement, we apply a new state which disables 523 * the PWM device and set the reference period and polarity config. 524 * 525 * Note that PWM users requiring a smooth handover between the 526 * bootloader and the kernel (like critical regulators controlled by 527 * PWM devices) will have to switch to the atomic API and avoid calling 528 * pwm_apply_args(). 529 */ 530 531 state.enabled = false; 532 state.polarity = pwm->args.polarity; 533 state.period = pwm->args.period; 534 state.usage_power = false; 535 536 pwm_apply_might_sleep(pwm, &state); 537} 538 539/* only for backwards-compatibility, new code should not use this */ 540static inline int pwm_apply_state(struct pwm_device *pwm, 541 const struct pwm_state *state) 542{ 543 return pwm_apply_might_sleep(pwm, state); 544} 545 546struct pwm_lookup { 547 struct list_head list; 548 const char *provider; 549 unsigned int index; 550 const char *dev_id; 551 const char *con_id; 552 unsigned int period; 553 enum pwm_polarity polarity; 554 const char *module; /* optional, may be NULL */ 555}; 556 557#define PWM_LOOKUP_WITH_MODULE(_provider, _index, _dev_id, _con_id, \ 558 _period, _polarity, _module) \ 559 { \ 560 .provider = _provider, \ 561 .index = _index, \ 562 .dev_id = _dev_id, \ 563 .con_id = _con_id, \ 564 .period = _period, \ 565 .polarity = _polarity, \ 566 .module = _module, \ 567 } 568 569#define PWM_LOOKUP(_provider, _index, _dev_id, _con_id, _period, _polarity) \ 570 PWM_LOOKUP_WITH_MODULE(_provider, _index, _dev_id, _con_id, _period, \ 571 _polarity, NULL) 572 573#if IS_ENABLED(CONFIG_PWM) 574void pwm_add_table(struct pwm_lookup *table, size_t num); 575void pwm_remove_table(struct pwm_lookup *table, size_t num); 576#else 577static inline void pwm_add_table(struct pwm_lookup *table, size_t num) 578{ 579} 580 581static inline void pwm_remove_table(struct pwm_lookup *table, size_t num) 582{ 583} 584#endif 585 586#ifdef CONFIG_PWM_SYSFS 587void pwmchip_sysfs_export(struct pwm_chip *chip); 588void pwmchip_sysfs_unexport(struct pwm_chip *chip); 589#else 590static inline void pwmchip_sysfs_export(struct pwm_chip *chip) 591{ 592} 593 594static inline void pwmchip_sysfs_unexport(struct pwm_chip *chip) 595{ 596} 597#endif /* CONFIG_PWM_SYSFS */ 598 599#endif /* __LINUX_PWM_H */