at v6.8 170 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the Interfaces handler. 8 * 9 * Version: @(#)dev.h 1.0.10 08/12/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 15 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 16 * Bjorn Ekwall. <bj0rn@blox.se> 17 * Pekka Riikonen <priikone@poseidon.pspt.fi> 18 * 19 * Moved to /usr/include/linux for NET3 20 */ 21#ifndef _LINUX_NETDEVICE_H 22#define _LINUX_NETDEVICE_H 23 24#include <linux/timer.h> 25#include <linux/bug.h> 26#include <linux/delay.h> 27#include <linux/atomic.h> 28#include <linux/prefetch.h> 29#include <asm/cache.h> 30#include <asm/byteorder.h> 31#include <asm/local.h> 32 33#include <linux/percpu.h> 34#include <linux/rculist.h> 35#include <linux/workqueue.h> 36#include <linux/dynamic_queue_limits.h> 37 38#include <net/net_namespace.h> 39#ifdef CONFIG_DCB 40#include <net/dcbnl.h> 41#endif 42#include <net/netprio_cgroup.h> 43 44#include <linux/netdev_features.h> 45#include <linux/neighbour.h> 46#include <uapi/linux/netdevice.h> 47#include <uapi/linux/if_bonding.h> 48#include <uapi/linux/pkt_cls.h> 49#include <uapi/linux/netdev.h> 50#include <linux/hashtable.h> 51#include <linux/rbtree.h> 52#include <net/net_trackers.h> 53#include <net/net_debug.h> 54#include <net/dropreason-core.h> 55 56struct netpoll_info; 57struct device; 58struct ethtool_ops; 59struct kernel_hwtstamp_config; 60struct phy_device; 61struct dsa_port; 62struct ip_tunnel_parm; 63struct macsec_context; 64struct macsec_ops; 65struct netdev_name_node; 66struct sd_flow_limit; 67struct sfp_bus; 68/* 802.11 specific */ 69struct wireless_dev; 70/* 802.15.4 specific */ 71struct wpan_dev; 72struct mpls_dev; 73/* UDP Tunnel offloads */ 74struct udp_tunnel_info; 75struct udp_tunnel_nic_info; 76struct udp_tunnel_nic; 77struct bpf_prog; 78struct xdp_buff; 79struct xdp_frame; 80struct xdp_metadata_ops; 81struct xdp_md; 82 83typedef u32 xdp_features_t; 84 85void synchronize_net(void); 86void netdev_set_default_ethtool_ops(struct net_device *dev, 87 const struct ethtool_ops *ops); 88void netdev_sw_irq_coalesce_default_on(struct net_device *dev); 89 90/* Backlog congestion levels */ 91#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 92#define NET_RX_DROP 1 /* packet dropped */ 93 94#define MAX_NEST_DEV 8 95 96/* 97 * Transmit return codes: transmit return codes originate from three different 98 * namespaces: 99 * 100 * - qdisc return codes 101 * - driver transmit return codes 102 * - errno values 103 * 104 * Drivers are allowed to return any one of those in their hard_start_xmit() 105 * function. Real network devices commonly used with qdiscs should only return 106 * the driver transmit return codes though - when qdiscs are used, the actual 107 * transmission happens asynchronously, so the value is not propagated to 108 * higher layers. Virtual network devices transmit synchronously; in this case 109 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 110 * others are propagated to higher layers. 111 */ 112 113/* qdisc ->enqueue() return codes. */ 114#define NET_XMIT_SUCCESS 0x00 115#define NET_XMIT_DROP 0x01 /* skb dropped */ 116#define NET_XMIT_CN 0x02 /* congestion notification */ 117#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 118 119/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 120 * indicates that the device will soon be dropping packets, or already drops 121 * some packets of the same priority; prompting us to send less aggressively. */ 122#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 123#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 124 125/* Driver transmit return codes */ 126#define NETDEV_TX_MASK 0xf0 127 128enum netdev_tx { 129 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 130 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 131 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 132}; 133typedef enum netdev_tx netdev_tx_t; 134 135/* 136 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 137 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 138 */ 139static inline bool dev_xmit_complete(int rc) 140{ 141 /* 142 * Positive cases with an skb consumed by a driver: 143 * - successful transmission (rc == NETDEV_TX_OK) 144 * - error while transmitting (rc < 0) 145 * - error while queueing to a different device (rc & NET_XMIT_MASK) 146 */ 147 if (likely(rc < NET_XMIT_MASK)) 148 return true; 149 150 return false; 151} 152 153/* 154 * Compute the worst-case header length according to the protocols 155 * used. 156 */ 157 158#if defined(CONFIG_HYPERV_NET) 159# define LL_MAX_HEADER 128 160#elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 161# if defined(CONFIG_MAC80211_MESH) 162# define LL_MAX_HEADER 128 163# else 164# define LL_MAX_HEADER 96 165# endif 166#else 167# define LL_MAX_HEADER 32 168#endif 169 170#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 171 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 172#define MAX_HEADER LL_MAX_HEADER 173#else 174#define MAX_HEADER (LL_MAX_HEADER + 48) 175#endif 176 177/* 178 * Old network device statistics. Fields are native words 179 * (unsigned long) so they can be read and written atomically. 180 */ 181 182#define NET_DEV_STAT(FIELD) \ 183 union { \ 184 unsigned long FIELD; \ 185 atomic_long_t __##FIELD; \ 186 } 187 188struct net_device_stats { 189 NET_DEV_STAT(rx_packets); 190 NET_DEV_STAT(tx_packets); 191 NET_DEV_STAT(rx_bytes); 192 NET_DEV_STAT(tx_bytes); 193 NET_DEV_STAT(rx_errors); 194 NET_DEV_STAT(tx_errors); 195 NET_DEV_STAT(rx_dropped); 196 NET_DEV_STAT(tx_dropped); 197 NET_DEV_STAT(multicast); 198 NET_DEV_STAT(collisions); 199 NET_DEV_STAT(rx_length_errors); 200 NET_DEV_STAT(rx_over_errors); 201 NET_DEV_STAT(rx_crc_errors); 202 NET_DEV_STAT(rx_frame_errors); 203 NET_DEV_STAT(rx_fifo_errors); 204 NET_DEV_STAT(rx_missed_errors); 205 NET_DEV_STAT(tx_aborted_errors); 206 NET_DEV_STAT(tx_carrier_errors); 207 NET_DEV_STAT(tx_fifo_errors); 208 NET_DEV_STAT(tx_heartbeat_errors); 209 NET_DEV_STAT(tx_window_errors); 210 NET_DEV_STAT(rx_compressed); 211 NET_DEV_STAT(tx_compressed); 212}; 213#undef NET_DEV_STAT 214 215/* per-cpu stats, allocated on demand. 216 * Try to fit them in a single cache line, for dev_get_stats() sake. 217 */ 218struct net_device_core_stats { 219 unsigned long rx_dropped; 220 unsigned long tx_dropped; 221 unsigned long rx_nohandler; 222 unsigned long rx_otherhost_dropped; 223} __aligned(4 * sizeof(unsigned long)); 224 225#include <linux/cache.h> 226#include <linux/skbuff.h> 227 228#ifdef CONFIG_RPS 229#include <linux/static_key.h> 230extern struct static_key_false rps_needed; 231extern struct static_key_false rfs_needed; 232#endif 233 234struct neighbour; 235struct neigh_parms; 236struct sk_buff; 237 238struct netdev_hw_addr { 239 struct list_head list; 240 struct rb_node node; 241 unsigned char addr[MAX_ADDR_LEN]; 242 unsigned char type; 243#define NETDEV_HW_ADDR_T_LAN 1 244#define NETDEV_HW_ADDR_T_SAN 2 245#define NETDEV_HW_ADDR_T_UNICAST 3 246#define NETDEV_HW_ADDR_T_MULTICAST 4 247 bool global_use; 248 int sync_cnt; 249 int refcount; 250 int synced; 251 struct rcu_head rcu_head; 252}; 253 254struct netdev_hw_addr_list { 255 struct list_head list; 256 int count; 257 258 /* Auxiliary tree for faster lookup on addition and deletion */ 259 struct rb_root tree; 260}; 261 262#define netdev_hw_addr_list_count(l) ((l)->count) 263#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 264#define netdev_hw_addr_list_for_each(ha, l) \ 265 list_for_each_entry(ha, &(l)->list, list) 266 267#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 268#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 269#define netdev_for_each_uc_addr(ha, dev) \ 270 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 271#define netdev_for_each_synced_uc_addr(_ha, _dev) \ 272 netdev_for_each_uc_addr((_ha), (_dev)) \ 273 if ((_ha)->sync_cnt) 274 275#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 276#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 277#define netdev_for_each_mc_addr(ha, dev) \ 278 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 279#define netdev_for_each_synced_mc_addr(_ha, _dev) \ 280 netdev_for_each_mc_addr((_ha), (_dev)) \ 281 if ((_ha)->sync_cnt) 282 283struct hh_cache { 284 unsigned int hh_len; 285 seqlock_t hh_lock; 286 287 /* cached hardware header; allow for machine alignment needs. */ 288#define HH_DATA_MOD 16 289#define HH_DATA_OFF(__len) \ 290 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 291#define HH_DATA_ALIGN(__len) \ 292 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 293 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 294}; 295 296/* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 297 * Alternative is: 298 * dev->hard_header_len ? (dev->hard_header_len + 299 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 300 * 301 * We could use other alignment values, but we must maintain the 302 * relationship HH alignment <= LL alignment. 303 */ 304#define LL_RESERVED_SPACE(dev) \ 305 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \ 306 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 307#define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 308 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \ 309 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 310 311struct header_ops { 312 int (*create) (struct sk_buff *skb, struct net_device *dev, 313 unsigned short type, const void *daddr, 314 const void *saddr, unsigned int len); 315 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 316 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 317 void (*cache_update)(struct hh_cache *hh, 318 const struct net_device *dev, 319 const unsigned char *haddr); 320 bool (*validate)(const char *ll_header, unsigned int len); 321 __be16 (*parse_protocol)(const struct sk_buff *skb); 322}; 323 324/* These flag bits are private to the generic network queueing 325 * layer; they may not be explicitly referenced by any other 326 * code. 327 */ 328 329enum netdev_state_t { 330 __LINK_STATE_START, 331 __LINK_STATE_PRESENT, 332 __LINK_STATE_NOCARRIER, 333 __LINK_STATE_LINKWATCH_PENDING, 334 __LINK_STATE_DORMANT, 335 __LINK_STATE_TESTING, 336}; 337 338struct gro_list { 339 struct list_head list; 340 int count; 341}; 342 343/* 344 * size of gro hash buckets, must less than bit number of 345 * napi_struct::gro_bitmask 346 */ 347#define GRO_HASH_BUCKETS 8 348 349/* 350 * Structure for NAPI scheduling similar to tasklet but with weighting 351 */ 352struct napi_struct { 353 /* The poll_list must only be managed by the entity which 354 * changes the state of the NAPI_STATE_SCHED bit. This means 355 * whoever atomically sets that bit can add this napi_struct 356 * to the per-CPU poll_list, and whoever clears that bit 357 * can remove from the list right before clearing the bit. 358 */ 359 struct list_head poll_list; 360 361 unsigned long state; 362 int weight; 363 int defer_hard_irqs_count; 364 unsigned long gro_bitmask; 365 int (*poll)(struct napi_struct *, int); 366#ifdef CONFIG_NETPOLL 367 /* CPU actively polling if netpoll is configured */ 368 int poll_owner; 369#endif 370 /* CPU on which NAPI has been scheduled for processing */ 371 int list_owner; 372 struct net_device *dev; 373 struct gro_list gro_hash[GRO_HASH_BUCKETS]; 374 struct sk_buff *skb; 375 struct list_head rx_list; /* Pending GRO_NORMAL skbs */ 376 int rx_count; /* length of rx_list */ 377 unsigned int napi_id; 378 struct hrtimer timer; 379 struct task_struct *thread; 380 /* control-path-only fields follow */ 381 struct list_head dev_list; 382 struct hlist_node napi_hash_node; 383 int irq; 384}; 385 386enum { 387 NAPI_STATE_SCHED, /* Poll is scheduled */ 388 NAPI_STATE_MISSED, /* reschedule a napi */ 389 NAPI_STATE_DISABLE, /* Disable pending */ 390 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 391 NAPI_STATE_LISTED, /* NAPI added to system lists */ 392 NAPI_STATE_NO_BUSY_POLL, /* Do not add in napi_hash, no busy polling */ 393 NAPI_STATE_IN_BUSY_POLL, /* sk_busy_loop() owns this NAPI */ 394 NAPI_STATE_PREFER_BUSY_POLL, /* prefer busy-polling over softirq processing*/ 395 NAPI_STATE_THREADED, /* The poll is performed inside its own thread*/ 396 NAPI_STATE_SCHED_THREADED, /* Napi is currently scheduled in threaded mode */ 397}; 398 399enum { 400 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 401 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 402 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 403 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 404 NAPIF_STATE_LISTED = BIT(NAPI_STATE_LISTED), 405 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 406 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 407 NAPIF_STATE_PREFER_BUSY_POLL = BIT(NAPI_STATE_PREFER_BUSY_POLL), 408 NAPIF_STATE_THREADED = BIT(NAPI_STATE_THREADED), 409 NAPIF_STATE_SCHED_THREADED = BIT(NAPI_STATE_SCHED_THREADED), 410}; 411 412enum gro_result { 413 GRO_MERGED, 414 GRO_MERGED_FREE, 415 GRO_HELD, 416 GRO_NORMAL, 417 GRO_CONSUMED, 418}; 419typedef enum gro_result gro_result_t; 420 421/* 422 * enum rx_handler_result - Possible return values for rx_handlers. 423 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 424 * further. 425 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 426 * case skb->dev was changed by rx_handler. 427 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 428 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 429 * 430 * rx_handlers are functions called from inside __netif_receive_skb(), to do 431 * special processing of the skb, prior to delivery to protocol handlers. 432 * 433 * Currently, a net_device can only have a single rx_handler registered. Trying 434 * to register a second rx_handler will return -EBUSY. 435 * 436 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 437 * To unregister a rx_handler on a net_device, use 438 * netdev_rx_handler_unregister(). 439 * 440 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 441 * do with the skb. 442 * 443 * If the rx_handler consumed the skb in some way, it should return 444 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 445 * the skb to be delivered in some other way. 446 * 447 * If the rx_handler changed skb->dev, to divert the skb to another 448 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 449 * new device will be called if it exists. 450 * 451 * If the rx_handler decides the skb should be ignored, it should return 452 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 453 * are registered on exact device (ptype->dev == skb->dev). 454 * 455 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 456 * delivered, it should return RX_HANDLER_PASS. 457 * 458 * A device without a registered rx_handler will behave as if rx_handler 459 * returned RX_HANDLER_PASS. 460 */ 461 462enum rx_handler_result { 463 RX_HANDLER_CONSUMED, 464 RX_HANDLER_ANOTHER, 465 RX_HANDLER_EXACT, 466 RX_HANDLER_PASS, 467}; 468typedef enum rx_handler_result rx_handler_result_t; 469typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 470 471void __napi_schedule(struct napi_struct *n); 472void __napi_schedule_irqoff(struct napi_struct *n); 473 474static inline bool napi_disable_pending(struct napi_struct *n) 475{ 476 return test_bit(NAPI_STATE_DISABLE, &n->state); 477} 478 479static inline bool napi_prefer_busy_poll(struct napi_struct *n) 480{ 481 return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state); 482} 483 484/** 485 * napi_is_scheduled - test if NAPI is scheduled 486 * @n: NAPI context 487 * 488 * This check is "best-effort". With no locking implemented, 489 * a NAPI can be scheduled or terminate right after this check 490 * and produce not precise results. 491 * 492 * NAPI_STATE_SCHED is an internal state, napi_is_scheduled 493 * should not be used normally and napi_schedule should be 494 * used instead. 495 * 496 * Use only if the driver really needs to check if a NAPI 497 * is scheduled for example in the context of delayed timer 498 * that can be skipped if a NAPI is already scheduled. 499 * 500 * Return True if NAPI is scheduled, False otherwise. 501 */ 502static inline bool napi_is_scheduled(struct napi_struct *n) 503{ 504 return test_bit(NAPI_STATE_SCHED, &n->state); 505} 506 507bool napi_schedule_prep(struct napi_struct *n); 508 509/** 510 * napi_schedule - schedule NAPI poll 511 * @n: NAPI context 512 * 513 * Schedule NAPI poll routine to be called if it is not already 514 * running. 515 * Return true if we schedule a NAPI or false if not. 516 * Refer to napi_schedule_prep() for additional reason on why 517 * a NAPI might not be scheduled. 518 */ 519static inline bool napi_schedule(struct napi_struct *n) 520{ 521 if (napi_schedule_prep(n)) { 522 __napi_schedule(n); 523 return true; 524 } 525 526 return false; 527} 528 529/** 530 * napi_schedule_irqoff - schedule NAPI poll 531 * @n: NAPI context 532 * 533 * Variant of napi_schedule(), assuming hard irqs are masked. 534 */ 535static inline void napi_schedule_irqoff(struct napi_struct *n) 536{ 537 if (napi_schedule_prep(n)) 538 __napi_schedule_irqoff(n); 539} 540 541/** 542 * napi_complete_done - NAPI processing complete 543 * @n: NAPI context 544 * @work_done: number of packets processed 545 * 546 * Mark NAPI processing as complete. Should only be called if poll budget 547 * has not been completely consumed. 548 * Prefer over napi_complete(). 549 * Return false if device should avoid rearming interrupts. 550 */ 551bool napi_complete_done(struct napi_struct *n, int work_done); 552 553static inline bool napi_complete(struct napi_struct *n) 554{ 555 return napi_complete_done(n, 0); 556} 557 558int dev_set_threaded(struct net_device *dev, bool threaded); 559 560/** 561 * napi_disable - prevent NAPI from scheduling 562 * @n: NAPI context 563 * 564 * Stop NAPI from being scheduled on this context. 565 * Waits till any outstanding processing completes. 566 */ 567void napi_disable(struct napi_struct *n); 568 569void napi_enable(struct napi_struct *n); 570 571/** 572 * napi_synchronize - wait until NAPI is not running 573 * @n: NAPI context 574 * 575 * Wait until NAPI is done being scheduled on this context. 576 * Waits till any outstanding processing completes but 577 * does not disable future activations. 578 */ 579static inline void napi_synchronize(const struct napi_struct *n) 580{ 581 if (IS_ENABLED(CONFIG_SMP)) 582 while (test_bit(NAPI_STATE_SCHED, &n->state)) 583 msleep(1); 584 else 585 barrier(); 586} 587 588/** 589 * napi_if_scheduled_mark_missed - if napi is running, set the 590 * NAPIF_STATE_MISSED 591 * @n: NAPI context 592 * 593 * If napi is running, set the NAPIF_STATE_MISSED, and return true if 594 * NAPI is scheduled. 595 **/ 596static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) 597{ 598 unsigned long val, new; 599 600 val = READ_ONCE(n->state); 601 do { 602 if (val & NAPIF_STATE_DISABLE) 603 return true; 604 605 if (!(val & NAPIF_STATE_SCHED)) 606 return false; 607 608 new = val | NAPIF_STATE_MISSED; 609 } while (!try_cmpxchg(&n->state, &val, new)); 610 611 return true; 612} 613 614enum netdev_queue_state_t { 615 __QUEUE_STATE_DRV_XOFF, 616 __QUEUE_STATE_STACK_XOFF, 617 __QUEUE_STATE_FROZEN, 618}; 619 620#define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 621#define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 622#define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 623 624#define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 625#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 626 QUEUE_STATE_FROZEN) 627#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 628 QUEUE_STATE_FROZEN) 629 630/* 631 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 632 * netif_tx_* functions below are used to manipulate this flag. The 633 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 634 * queue independently. The netif_xmit_*stopped functions below are called 635 * to check if the queue has been stopped by the driver or stack (either 636 * of the XOFF bits are set in the state). Drivers should not need to call 637 * netif_xmit*stopped functions, they should only be using netif_tx_*. 638 */ 639 640struct netdev_queue { 641/* 642 * read-mostly part 643 */ 644 struct net_device *dev; 645 netdevice_tracker dev_tracker; 646 647 struct Qdisc __rcu *qdisc; 648 struct Qdisc __rcu *qdisc_sleeping; 649#ifdef CONFIG_SYSFS 650 struct kobject kobj; 651#endif 652#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 653 int numa_node; 654#endif 655 unsigned long tx_maxrate; 656 /* 657 * Number of TX timeouts for this queue 658 * (/sys/class/net/DEV/Q/trans_timeout) 659 */ 660 atomic_long_t trans_timeout; 661 662 /* Subordinate device that the queue has been assigned to */ 663 struct net_device *sb_dev; 664#ifdef CONFIG_XDP_SOCKETS 665 struct xsk_buff_pool *pool; 666#endif 667 /* NAPI instance for the queue 668 * Readers and writers must hold RTNL 669 */ 670 struct napi_struct *napi; 671/* 672 * write-mostly part 673 */ 674 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 675 int xmit_lock_owner; 676 /* 677 * Time (in jiffies) of last Tx 678 */ 679 unsigned long trans_start; 680 681 unsigned long state; 682 683#ifdef CONFIG_BQL 684 struct dql dql; 685#endif 686} ____cacheline_aligned_in_smp; 687 688extern int sysctl_fb_tunnels_only_for_init_net; 689extern int sysctl_devconf_inherit_init_net; 690 691/* 692 * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns 693 * == 1 : For initns only 694 * == 2 : For none. 695 */ 696static inline bool net_has_fallback_tunnels(const struct net *net) 697{ 698#if IS_ENABLED(CONFIG_SYSCTL) 699 int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net); 700 701 return !fb_tunnels_only_for_init_net || 702 (net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1); 703#else 704 return true; 705#endif 706} 707 708static inline int net_inherit_devconf(void) 709{ 710#if IS_ENABLED(CONFIG_SYSCTL) 711 return READ_ONCE(sysctl_devconf_inherit_init_net); 712#else 713 return 0; 714#endif 715} 716 717static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 718{ 719#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 720 return q->numa_node; 721#else 722 return NUMA_NO_NODE; 723#endif 724} 725 726static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 727{ 728#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 729 q->numa_node = node; 730#endif 731} 732 733#ifdef CONFIG_RPS 734/* 735 * This structure holds an RPS map which can be of variable length. The 736 * map is an array of CPUs. 737 */ 738struct rps_map { 739 unsigned int len; 740 struct rcu_head rcu; 741 u16 cpus[]; 742}; 743#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 744 745/* 746 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 747 * tail pointer for that CPU's input queue at the time of last enqueue, and 748 * a hardware filter index. 749 */ 750struct rps_dev_flow { 751 u16 cpu; 752 u16 filter; 753 unsigned int last_qtail; 754}; 755#define RPS_NO_FILTER 0xffff 756 757/* 758 * The rps_dev_flow_table structure contains a table of flow mappings. 759 */ 760struct rps_dev_flow_table { 761 unsigned int mask; 762 struct rcu_head rcu; 763 struct rps_dev_flow flows[]; 764}; 765#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 766 ((_num) * sizeof(struct rps_dev_flow))) 767 768/* 769 * The rps_sock_flow_table contains mappings of flows to the last CPU 770 * on which they were processed by the application (set in recvmsg). 771 * Each entry is a 32bit value. Upper part is the high-order bits 772 * of flow hash, lower part is CPU number. 773 * rps_cpu_mask is used to partition the space, depending on number of 774 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 775 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 776 * meaning we use 32-6=26 bits for the hash. 777 */ 778struct rps_sock_flow_table { 779 u32 mask; 780 781 u32 ents[] ____cacheline_aligned_in_smp; 782}; 783#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 784 785#define RPS_NO_CPU 0xffff 786 787extern u32 rps_cpu_mask; 788extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 789 790static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 791 u32 hash) 792{ 793 if (table && hash) { 794 unsigned int index = hash & table->mask; 795 u32 val = hash & ~rps_cpu_mask; 796 797 /* We only give a hint, preemption can change CPU under us */ 798 val |= raw_smp_processor_id(); 799 800 /* The following WRITE_ONCE() is paired with the READ_ONCE() 801 * here, and another one in get_rps_cpu(). 802 */ 803 if (READ_ONCE(table->ents[index]) != val) 804 WRITE_ONCE(table->ents[index], val); 805 } 806} 807 808#ifdef CONFIG_RFS_ACCEL 809bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 810 u16 filter_id); 811#endif 812#endif /* CONFIG_RPS */ 813 814/* XPS map type and offset of the xps map within net_device->xps_maps[]. */ 815enum xps_map_type { 816 XPS_CPUS = 0, 817 XPS_RXQS, 818 XPS_MAPS_MAX, 819}; 820 821#ifdef CONFIG_XPS 822/* 823 * This structure holds an XPS map which can be of variable length. The 824 * map is an array of queues. 825 */ 826struct xps_map { 827 unsigned int len; 828 unsigned int alloc_len; 829 struct rcu_head rcu; 830 u16 queues[]; 831}; 832#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 833#define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 834 - sizeof(struct xps_map)) / sizeof(u16)) 835 836/* 837 * This structure holds all XPS maps for device. Maps are indexed by CPU. 838 * 839 * We keep track of the number of cpus/rxqs used when the struct is allocated, 840 * in nr_ids. This will help not accessing out-of-bound memory. 841 * 842 * We keep track of the number of traffic classes used when the struct is 843 * allocated, in num_tc. This will be used to navigate the maps, to ensure we're 844 * not crossing its upper bound, as the original dev->num_tc can be updated in 845 * the meantime. 846 */ 847struct xps_dev_maps { 848 struct rcu_head rcu; 849 unsigned int nr_ids; 850 s16 num_tc; 851 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */ 852}; 853 854#define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 855 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 856 857#define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 858 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 859 860#endif /* CONFIG_XPS */ 861 862#define TC_MAX_QUEUE 16 863#define TC_BITMASK 15 864/* HW offloaded queuing disciplines txq count and offset maps */ 865struct netdev_tc_txq { 866 u16 count; 867 u16 offset; 868}; 869 870#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 871/* 872 * This structure is to hold information about the device 873 * configured to run FCoE protocol stack. 874 */ 875struct netdev_fcoe_hbainfo { 876 char manufacturer[64]; 877 char serial_number[64]; 878 char hardware_version[64]; 879 char driver_version[64]; 880 char optionrom_version[64]; 881 char firmware_version[64]; 882 char model[256]; 883 char model_description[256]; 884}; 885#endif 886 887#define MAX_PHYS_ITEM_ID_LEN 32 888 889/* This structure holds a unique identifier to identify some 890 * physical item (port for example) used by a netdevice. 891 */ 892struct netdev_phys_item_id { 893 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 894 unsigned char id_len; 895}; 896 897static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 898 struct netdev_phys_item_id *b) 899{ 900 return a->id_len == b->id_len && 901 memcmp(a->id, b->id, a->id_len) == 0; 902} 903 904typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 905 struct sk_buff *skb, 906 struct net_device *sb_dev); 907 908enum net_device_path_type { 909 DEV_PATH_ETHERNET = 0, 910 DEV_PATH_VLAN, 911 DEV_PATH_BRIDGE, 912 DEV_PATH_PPPOE, 913 DEV_PATH_DSA, 914 DEV_PATH_MTK_WDMA, 915}; 916 917struct net_device_path { 918 enum net_device_path_type type; 919 const struct net_device *dev; 920 union { 921 struct { 922 u16 id; 923 __be16 proto; 924 u8 h_dest[ETH_ALEN]; 925 } encap; 926 struct { 927 enum { 928 DEV_PATH_BR_VLAN_KEEP, 929 DEV_PATH_BR_VLAN_TAG, 930 DEV_PATH_BR_VLAN_UNTAG, 931 DEV_PATH_BR_VLAN_UNTAG_HW, 932 } vlan_mode; 933 u16 vlan_id; 934 __be16 vlan_proto; 935 } bridge; 936 struct { 937 int port; 938 u16 proto; 939 } dsa; 940 struct { 941 u8 wdma_idx; 942 u8 queue; 943 u16 wcid; 944 u8 bss; 945 u8 amsdu; 946 } mtk_wdma; 947 }; 948}; 949 950#define NET_DEVICE_PATH_STACK_MAX 5 951#define NET_DEVICE_PATH_VLAN_MAX 2 952 953struct net_device_path_stack { 954 int num_paths; 955 struct net_device_path path[NET_DEVICE_PATH_STACK_MAX]; 956}; 957 958struct net_device_path_ctx { 959 const struct net_device *dev; 960 u8 daddr[ETH_ALEN]; 961 962 int num_vlans; 963 struct { 964 u16 id; 965 __be16 proto; 966 } vlan[NET_DEVICE_PATH_VLAN_MAX]; 967}; 968 969enum tc_setup_type { 970 TC_QUERY_CAPS, 971 TC_SETUP_QDISC_MQPRIO, 972 TC_SETUP_CLSU32, 973 TC_SETUP_CLSFLOWER, 974 TC_SETUP_CLSMATCHALL, 975 TC_SETUP_CLSBPF, 976 TC_SETUP_BLOCK, 977 TC_SETUP_QDISC_CBS, 978 TC_SETUP_QDISC_RED, 979 TC_SETUP_QDISC_PRIO, 980 TC_SETUP_QDISC_MQ, 981 TC_SETUP_QDISC_ETF, 982 TC_SETUP_ROOT_QDISC, 983 TC_SETUP_QDISC_GRED, 984 TC_SETUP_QDISC_TAPRIO, 985 TC_SETUP_FT, 986 TC_SETUP_QDISC_ETS, 987 TC_SETUP_QDISC_TBF, 988 TC_SETUP_QDISC_FIFO, 989 TC_SETUP_QDISC_HTB, 990 TC_SETUP_ACT, 991}; 992 993/* These structures hold the attributes of bpf state that are being passed 994 * to the netdevice through the bpf op. 995 */ 996enum bpf_netdev_command { 997 /* Set or clear a bpf program used in the earliest stages of packet 998 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 999 * is responsible for calling bpf_prog_put on any old progs that are 1000 * stored. In case of error, the callee need not release the new prog 1001 * reference, but on success it takes ownership and must bpf_prog_put 1002 * when it is no longer used. 1003 */ 1004 XDP_SETUP_PROG, 1005 XDP_SETUP_PROG_HW, 1006 /* BPF program for offload callbacks, invoked at program load time. */ 1007 BPF_OFFLOAD_MAP_ALLOC, 1008 BPF_OFFLOAD_MAP_FREE, 1009 XDP_SETUP_XSK_POOL, 1010}; 1011 1012struct bpf_prog_offload_ops; 1013struct netlink_ext_ack; 1014struct xdp_umem; 1015struct xdp_dev_bulk_queue; 1016struct bpf_xdp_link; 1017 1018enum bpf_xdp_mode { 1019 XDP_MODE_SKB = 0, 1020 XDP_MODE_DRV = 1, 1021 XDP_MODE_HW = 2, 1022 __MAX_XDP_MODE 1023}; 1024 1025struct bpf_xdp_entity { 1026 struct bpf_prog *prog; 1027 struct bpf_xdp_link *link; 1028}; 1029 1030struct netdev_bpf { 1031 enum bpf_netdev_command command; 1032 union { 1033 /* XDP_SETUP_PROG */ 1034 struct { 1035 u32 flags; 1036 struct bpf_prog *prog; 1037 struct netlink_ext_ack *extack; 1038 }; 1039 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 1040 struct { 1041 struct bpf_offloaded_map *offmap; 1042 }; 1043 /* XDP_SETUP_XSK_POOL */ 1044 struct { 1045 struct xsk_buff_pool *pool; 1046 u16 queue_id; 1047 } xsk; 1048 }; 1049}; 1050 1051/* Flags for ndo_xsk_wakeup. */ 1052#define XDP_WAKEUP_RX (1 << 0) 1053#define XDP_WAKEUP_TX (1 << 1) 1054 1055#ifdef CONFIG_XFRM_OFFLOAD 1056struct xfrmdev_ops { 1057 int (*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack); 1058 void (*xdo_dev_state_delete) (struct xfrm_state *x); 1059 void (*xdo_dev_state_free) (struct xfrm_state *x); 1060 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 1061 struct xfrm_state *x); 1062 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 1063 void (*xdo_dev_state_update_curlft) (struct xfrm_state *x); 1064 int (*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack); 1065 void (*xdo_dev_policy_delete) (struct xfrm_policy *x); 1066 void (*xdo_dev_policy_free) (struct xfrm_policy *x); 1067}; 1068#endif 1069 1070struct dev_ifalias { 1071 struct rcu_head rcuhead; 1072 char ifalias[]; 1073}; 1074 1075struct devlink; 1076struct tlsdev_ops; 1077 1078struct netdev_net_notifier { 1079 struct list_head list; 1080 struct notifier_block *nb; 1081}; 1082 1083/* 1084 * This structure defines the management hooks for network devices. 1085 * The following hooks can be defined; unless noted otherwise, they are 1086 * optional and can be filled with a null pointer. 1087 * 1088 * int (*ndo_init)(struct net_device *dev); 1089 * This function is called once when a network device is registered. 1090 * The network device can use this for any late stage initialization 1091 * or semantic validation. It can fail with an error code which will 1092 * be propagated back to register_netdev. 1093 * 1094 * void (*ndo_uninit)(struct net_device *dev); 1095 * This function is called when device is unregistered or when registration 1096 * fails. It is not called if init fails. 1097 * 1098 * int (*ndo_open)(struct net_device *dev); 1099 * This function is called when a network device transitions to the up 1100 * state. 1101 * 1102 * int (*ndo_stop)(struct net_device *dev); 1103 * This function is called when a network device transitions to the down 1104 * state. 1105 * 1106 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1107 * struct net_device *dev); 1108 * Called when a packet needs to be transmitted. 1109 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 1110 * the queue before that can happen; it's for obsolete devices and weird 1111 * corner cases, but the stack really does a non-trivial amount 1112 * of useless work if you return NETDEV_TX_BUSY. 1113 * Required; cannot be NULL. 1114 * 1115 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1116 * struct net_device *dev 1117 * netdev_features_t features); 1118 * Called by core transmit path to determine if device is capable of 1119 * performing offload operations on a given packet. This is to give 1120 * the device an opportunity to implement any restrictions that cannot 1121 * be otherwise expressed by feature flags. The check is called with 1122 * the set of features that the stack has calculated and it returns 1123 * those the driver believes to be appropriate. 1124 * 1125 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 1126 * struct net_device *sb_dev); 1127 * Called to decide which queue to use when device supports multiple 1128 * transmit queues. 1129 * 1130 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 1131 * This function is called to allow device receiver to make 1132 * changes to configuration when multicast or promiscuous is enabled. 1133 * 1134 * void (*ndo_set_rx_mode)(struct net_device *dev); 1135 * This function is called device changes address list filtering. 1136 * If driver handles unicast address filtering, it should set 1137 * IFF_UNICAST_FLT in its priv_flags. 1138 * 1139 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 1140 * This function is called when the Media Access Control address 1141 * needs to be changed. If this interface is not defined, the 1142 * MAC address can not be changed. 1143 * 1144 * int (*ndo_validate_addr)(struct net_device *dev); 1145 * Test if Media Access Control address is valid for the device. 1146 * 1147 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1148 * Old-style ioctl entry point. This is used internally by the 1149 * appletalk and ieee802154 subsystems but is no longer called by 1150 * the device ioctl handler. 1151 * 1152 * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd); 1153 * Used by the bonding driver for its device specific ioctls: 1154 * SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE, 1155 * SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY 1156 * 1157 * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1158 * Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG, 1159 * SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP. 1160 * 1161 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 1162 * Used to set network devices bus interface parameters. This interface 1163 * is retained for legacy reasons; new devices should use the bus 1164 * interface (PCI) for low level management. 1165 * 1166 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 1167 * Called when a user wants to change the Maximum Transfer Unit 1168 * of a device. 1169 * 1170 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue); 1171 * Callback used when the transmitter has not made any progress 1172 * for dev->watchdog ticks. 1173 * 1174 * void (*ndo_get_stats64)(struct net_device *dev, 1175 * struct rtnl_link_stats64 *storage); 1176 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1177 * Called when a user wants to get the network device usage 1178 * statistics. Drivers must do one of the following: 1179 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1180 * rtnl_link_stats64 structure passed by the caller. 1181 * 2. Define @ndo_get_stats to update a net_device_stats structure 1182 * (which should normally be dev->stats) and return a pointer to 1183 * it. The structure may be changed asynchronously only if each 1184 * field is written atomically. 1185 * 3. Update dev->stats asynchronously and atomically, and define 1186 * neither operation. 1187 * 1188 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1189 * Return true if this device supports offload stats of this attr_id. 1190 * 1191 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1192 * void *attr_data) 1193 * Get statistics for offload operations by attr_id. Write it into the 1194 * attr_data pointer. 1195 * 1196 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1197 * If device supports VLAN filtering this function is called when a 1198 * VLAN id is registered. 1199 * 1200 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1201 * If device supports VLAN filtering this function is called when a 1202 * VLAN id is unregistered. 1203 * 1204 * void (*ndo_poll_controller)(struct net_device *dev); 1205 * 1206 * SR-IOV management functions. 1207 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1208 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1209 * u8 qos, __be16 proto); 1210 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1211 * int max_tx_rate); 1212 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1213 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1214 * int (*ndo_get_vf_config)(struct net_device *dev, 1215 * int vf, struct ifla_vf_info *ivf); 1216 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1217 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1218 * struct nlattr *port[]); 1219 * 1220 * Enable or disable the VF ability to query its RSS Redirection Table and 1221 * Hash Key. This is needed since on some devices VF share this information 1222 * with PF and querying it may introduce a theoretical security risk. 1223 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1224 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1225 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1226 * void *type_data); 1227 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1228 * This is always called from the stack with the rtnl lock held and netif 1229 * tx queues stopped. This allows the netdevice to perform queue 1230 * management safely. 1231 * 1232 * Fiber Channel over Ethernet (FCoE) offload functions. 1233 * int (*ndo_fcoe_enable)(struct net_device *dev); 1234 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1235 * so the underlying device can perform whatever needed configuration or 1236 * initialization to support acceleration of FCoE traffic. 1237 * 1238 * int (*ndo_fcoe_disable)(struct net_device *dev); 1239 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1240 * so the underlying device can perform whatever needed clean-ups to 1241 * stop supporting acceleration of FCoE traffic. 1242 * 1243 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1244 * struct scatterlist *sgl, unsigned int sgc); 1245 * Called when the FCoE Initiator wants to initialize an I/O that 1246 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1247 * perform necessary setup and returns 1 to indicate the device is set up 1248 * successfully to perform DDP on this I/O, otherwise this returns 0. 1249 * 1250 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1251 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1252 * indicated by the FC exchange id 'xid', so the underlying device can 1253 * clean up and reuse resources for later DDP requests. 1254 * 1255 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1256 * struct scatterlist *sgl, unsigned int sgc); 1257 * Called when the FCoE Target wants to initialize an I/O that 1258 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1259 * perform necessary setup and returns 1 to indicate the device is set up 1260 * successfully to perform DDP on this I/O, otherwise this returns 0. 1261 * 1262 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1263 * struct netdev_fcoe_hbainfo *hbainfo); 1264 * Called when the FCoE Protocol stack wants information on the underlying 1265 * device. This information is utilized by the FCoE protocol stack to 1266 * register attributes with Fiber Channel management service as per the 1267 * FC-GS Fabric Device Management Information(FDMI) specification. 1268 * 1269 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1270 * Called when the underlying device wants to override default World Wide 1271 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1272 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1273 * protocol stack to use. 1274 * 1275 * RFS acceleration. 1276 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1277 * u16 rxq_index, u32 flow_id); 1278 * Set hardware filter for RFS. rxq_index is the target queue index; 1279 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1280 * Return the filter ID on success, or a negative error code. 1281 * 1282 * Slave management functions (for bridge, bonding, etc). 1283 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1284 * Called to make another netdev an underling. 1285 * 1286 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1287 * Called to release previously enslaved netdev. 1288 * 1289 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev, 1290 * struct sk_buff *skb, 1291 * bool all_slaves); 1292 * Get the xmit slave of master device. If all_slaves is true, function 1293 * assume all the slaves can transmit. 1294 * 1295 * Feature/offload setting functions. 1296 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1297 * netdev_features_t features); 1298 * Adjusts the requested feature flags according to device-specific 1299 * constraints, and returns the resulting flags. Must not modify 1300 * the device state. 1301 * 1302 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1303 * Called to update device configuration to new features. Passed 1304 * feature set might be less than what was returned by ndo_fix_features()). 1305 * Must return >0 or -errno if it changed dev->features itself. 1306 * 1307 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1308 * struct net_device *dev, 1309 * const unsigned char *addr, u16 vid, u16 flags, 1310 * struct netlink_ext_ack *extack); 1311 * Adds an FDB entry to dev for addr. 1312 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1313 * struct net_device *dev, 1314 * const unsigned char *addr, u16 vid) 1315 * Deletes the FDB entry from dev coresponding to addr. 1316 * int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, struct net_device *dev, 1317 * struct netlink_ext_ack *extack); 1318 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1319 * struct net_device *dev, struct net_device *filter_dev, 1320 * int *idx) 1321 * Used to add FDB entries to dump requests. Implementers should add 1322 * entries to skb and update idx with the number of entries. 1323 * 1324 * int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[], 1325 * u16 nlmsg_flags, struct netlink_ext_ack *extack); 1326 * Adds an MDB entry to dev. 1327 * int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[], 1328 * struct netlink_ext_ack *extack); 1329 * Deletes the MDB entry from dev. 1330 * int (*ndo_mdb_del_bulk)(struct net_device *dev, struct nlattr *tb[], 1331 * struct netlink_ext_ack *extack); 1332 * Bulk deletes MDB entries from dev. 1333 * int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb, 1334 * struct netlink_callback *cb); 1335 * Dumps MDB entries from dev. The first argument (marker) in the netlink 1336 * callback is used by core rtnetlink code. 1337 * 1338 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1339 * u16 flags, struct netlink_ext_ack *extack) 1340 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1341 * struct net_device *dev, u32 filter_mask, 1342 * int nlflags) 1343 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1344 * u16 flags); 1345 * 1346 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1347 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1348 * which do not represent real hardware may define this to allow their 1349 * userspace components to manage their virtual carrier state. Devices 1350 * that determine carrier state from physical hardware properties (eg 1351 * network cables) or protocol-dependent mechanisms (eg 1352 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1353 * 1354 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1355 * struct netdev_phys_item_id *ppid); 1356 * Called to get ID of physical port of this device. If driver does 1357 * not implement this, it is assumed that the hw is not able to have 1358 * multiple net devices on single physical port. 1359 * 1360 * int (*ndo_get_port_parent_id)(struct net_device *dev, 1361 * struct netdev_phys_item_id *ppid) 1362 * Called to get the parent ID of the physical port of this device. 1363 * 1364 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1365 * struct net_device *dev) 1366 * Called by upper layer devices to accelerate switching or other 1367 * station functionality into hardware. 'pdev is the lowerdev 1368 * to use for the offload and 'dev' is the net device that will 1369 * back the offload. Returns a pointer to the private structure 1370 * the upper layer will maintain. 1371 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1372 * Called by upper layer device to delete the station created 1373 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1374 * the station and priv is the structure returned by the add 1375 * operation. 1376 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1377 * int queue_index, u32 maxrate); 1378 * Called when a user wants to set a max-rate limitation of specific 1379 * TX queue. 1380 * int (*ndo_get_iflink)(const struct net_device *dev); 1381 * Called to get the iflink value of this device. 1382 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1383 * This function is used to get egress tunnel information for given skb. 1384 * This is useful for retrieving outer tunnel header parameters while 1385 * sampling packet. 1386 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1387 * This function is used to specify the headroom that the skb must 1388 * consider when allocation skb during packet reception. Setting 1389 * appropriate rx headroom value allows avoiding skb head copy on 1390 * forward. Setting a negative value resets the rx headroom to the 1391 * default value. 1392 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1393 * This function is used to set or query state related to XDP on the 1394 * netdevice and manage BPF offload. See definition of 1395 * enum bpf_netdev_command for details. 1396 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1397 * u32 flags); 1398 * This function is used to submit @n XDP packets for transmit on a 1399 * netdevice. Returns number of frames successfully transmitted, frames 1400 * that got dropped are freed/returned via xdp_return_frame(). 1401 * Returns negative number, means general error invoking ndo, meaning 1402 * no frames were xmit'ed and core-caller will free all frames. 1403 * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1404 * struct xdp_buff *xdp); 1405 * Get the xmit slave of master device based on the xdp_buff. 1406 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags); 1407 * This function is used to wake up the softirq, ksoftirqd or kthread 1408 * responsible for sending and/or receiving packets on a specific 1409 * queue id bound to an AF_XDP socket. The flags field specifies if 1410 * only RX, only Tx, or both should be woken up using the flags 1411 * XDP_WAKEUP_RX and XDP_WAKEUP_TX. 1412 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p, 1413 * int cmd); 1414 * Add, change, delete or get information on an IPv4 tunnel. 1415 * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev); 1416 * If a device is paired with a peer device, return the peer instance. 1417 * The caller must be under RCU read context. 1418 * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path); 1419 * Get the forwarding path to reach the real device from the HW destination address 1420 * ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1421 * const struct skb_shared_hwtstamps *hwtstamps, 1422 * bool cycles); 1423 * Get hardware timestamp based on normal/adjustable time or free running 1424 * cycle counter. This function is required if physical clock supports a 1425 * free running cycle counter. 1426 * 1427 * int (*ndo_hwtstamp_get)(struct net_device *dev, 1428 * struct kernel_hwtstamp_config *kernel_config); 1429 * Get the currently configured hardware timestamping parameters for the 1430 * NIC device. 1431 * 1432 * int (*ndo_hwtstamp_set)(struct net_device *dev, 1433 * struct kernel_hwtstamp_config *kernel_config, 1434 * struct netlink_ext_ack *extack); 1435 * Change the hardware timestamping parameters for NIC device. 1436 */ 1437struct net_device_ops { 1438 int (*ndo_init)(struct net_device *dev); 1439 void (*ndo_uninit)(struct net_device *dev); 1440 int (*ndo_open)(struct net_device *dev); 1441 int (*ndo_stop)(struct net_device *dev); 1442 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1443 struct net_device *dev); 1444 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1445 struct net_device *dev, 1446 netdev_features_t features); 1447 u16 (*ndo_select_queue)(struct net_device *dev, 1448 struct sk_buff *skb, 1449 struct net_device *sb_dev); 1450 void (*ndo_change_rx_flags)(struct net_device *dev, 1451 int flags); 1452 void (*ndo_set_rx_mode)(struct net_device *dev); 1453 int (*ndo_set_mac_address)(struct net_device *dev, 1454 void *addr); 1455 int (*ndo_validate_addr)(struct net_device *dev); 1456 int (*ndo_do_ioctl)(struct net_device *dev, 1457 struct ifreq *ifr, int cmd); 1458 int (*ndo_eth_ioctl)(struct net_device *dev, 1459 struct ifreq *ifr, int cmd); 1460 int (*ndo_siocbond)(struct net_device *dev, 1461 struct ifreq *ifr, int cmd); 1462 int (*ndo_siocwandev)(struct net_device *dev, 1463 struct if_settings *ifs); 1464 int (*ndo_siocdevprivate)(struct net_device *dev, 1465 struct ifreq *ifr, 1466 void __user *data, int cmd); 1467 int (*ndo_set_config)(struct net_device *dev, 1468 struct ifmap *map); 1469 int (*ndo_change_mtu)(struct net_device *dev, 1470 int new_mtu); 1471 int (*ndo_neigh_setup)(struct net_device *dev, 1472 struct neigh_parms *); 1473 void (*ndo_tx_timeout) (struct net_device *dev, 1474 unsigned int txqueue); 1475 1476 void (*ndo_get_stats64)(struct net_device *dev, 1477 struct rtnl_link_stats64 *storage); 1478 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1479 int (*ndo_get_offload_stats)(int attr_id, 1480 const struct net_device *dev, 1481 void *attr_data); 1482 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1483 1484 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1485 __be16 proto, u16 vid); 1486 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1487 __be16 proto, u16 vid); 1488#ifdef CONFIG_NET_POLL_CONTROLLER 1489 void (*ndo_poll_controller)(struct net_device *dev); 1490 int (*ndo_netpoll_setup)(struct net_device *dev, 1491 struct netpoll_info *info); 1492 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1493#endif 1494 int (*ndo_set_vf_mac)(struct net_device *dev, 1495 int queue, u8 *mac); 1496 int (*ndo_set_vf_vlan)(struct net_device *dev, 1497 int queue, u16 vlan, 1498 u8 qos, __be16 proto); 1499 int (*ndo_set_vf_rate)(struct net_device *dev, 1500 int vf, int min_tx_rate, 1501 int max_tx_rate); 1502 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1503 int vf, bool setting); 1504 int (*ndo_set_vf_trust)(struct net_device *dev, 1505 int vf, bool setting); 1506 int (*ndo_get_vf_config)(struct net_device *dev, 1507 int vf, 1508 struct ifla_vf_info *ivf); 1509 int (*ndo_set_vf_link_state)(struct net_device *dev, 1510 int vf, int link_state); 1511 int (*ndo_get_vf_stats)(struct net_device *dev, 1512 int vf, 1513 struct ifla_vf_stats 1514 *vf_stats); 1515 int (*ndo_set_vf_port)(struct net_device *dev, 1516 int vf, 1517 struct nlattr *port[]); 1518 int (*ndo_get_vf_port)(struct net_device *dev, 1519 int vf, struct sk_buff *skb); 1520 int (*ndo_get_vf_guid)(struct net_device *dev, 1521 int vf, 1522 struct ifla_vf_guid *node_guid, 1523 struct ifla_vf_guid *port_guid); 1524 int (*ndo_set_vf_guid)(struct net_device *dev, 1525 int vf, u64 guid, 1526 int guid_type); 1527 int (*ndo_set_vf_rss_query_en)( 1528 struct net_device *dev, 1529 int vf, bool setting); 1530 int (*ndo_setup_tc)(struct net_device *dev, 1531 enum tc_setup_type type, 1532 void *type_data); 1533#if IS_ENABLED(CONFIG_FCOE) 1534 int (*ndo_fcoe_enable)(struct net_device *dev); 1535 int (*ndo_fcoe_disable)(struct net_device *dev); 1536 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1537 u16 xid, 1538 struct scatterlist *sgl, 1539 unsigned int sgc); 1540 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1541 u16 xid); 1542 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1543 u16 xid, 1544 struct scatterlist *sgl, 1545 unsigned int sgc); 1546 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1547 struct netdev_fcoe_hbainfo *hbainfo); 1548#endif 1549 1550#if IS_ENABLED(CONFIG_LIBFCOE) 1551#define NETDEV_FCOE_WWNN 0 1552#define NETDEV_FCOE_WWPN 1 1553 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1554 u64 *wwn, int type); 1555#endif 1556 1557#ifdef CONFIG_RFS_ACCEL 1558 int (*ndo_rx_flow_steer)(struct net_device *dev, 1559 const struct sk_buff *skb, 1560 u16 rxq_index, 1561 u32 flow_id); 1562#endif 1563 int (*ndo_add_slave)(struct net_device *dev, 1564 struct net_device *slave_dev, 1565 struct netlink_ext_ack *extack); 1566 int (*ndo_del_slave)(struct net_device *dev, 1567 struct net_device *slave_dev); 1568 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev, 1569 struct sk_buff *skb, 1570 bool all_slaves); 1571 struct net_device* (*ndo_sk_get_lower_dev)(struct net_device *dev, 1572 struct sock *sk); 1573 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1574 netdev_features_t features); 1575 int (*ndo_set_features)(struct net_device *dev, 1576 netdev_features_t features); 1577 int (*ndo_neigh_construct)(struct net_device *dev, 1578 struct neighbour *n); 1579 void (*ndo_neigh_destroy)(struct net_device *dev, 1580 struct neighbour *n); 1581 1582 int (*ndo_fdb_add)(struct ndmsg *ndm, 1583 struct nlattr *tb[], 1584 struct net_device *dev, 1585 const unsigned char *addr, 1586 u16 vid, 1587 u16 flags, 1588 struct netlink_ext_ack *extack); 1589 int (*ndo_fdb_del)(struct ndmsg *ndm, 1590 struct nlattr *tb[], 1591 struct net_device *dev, 1592 const unsigned char *addr, 1593 u16 vid, struct netlink_ext_ack *extack); 1594 int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, 1595 struct net_device *dev, 1596 struct netlink_ext_ack *extack); 1597 int (*ndo_fdb_dump)(struct sk_buff *skb, 1598 struct netlink_callback *cb, 1599 struct net_device *dev, 1600 struct net_device *filter_dev, 1601 int *idx); 1602 int (*ndo_fdb_get)(struct sk_buff *skb, 1603 struct nlattr *tb[], 1604 struct net_device *dev, 1605 const unsigned char *addr, 1606 u16 vid, u32 portid, u32 seq, 1607 struct netlink_ext_ack *extack); 1608 int (*ndo_mdb_add)(struct net_device *dev, 1609 struct nlattr *tb[], 1610 u16 nlmsg_flags, 1611 struct netlink_ext_ack *extack); 1612 int (*ndo_mdb_del)(struct net_device *dev, 1613 struct nlattr *tb[], 1614 struct netlink_ext_ack *extack); 1615 int (*ndo_mdb_del_bulk)(struct net_device *dev, 1616 struct nlattr *tb[], 1617 struct netlink_ext_ack *extack); 1618 int (*ndo_mdb_dump)(struct net_device *dev, 1619 struct sk_buff *skb, 1620 struct netlink_callback *cb); 1621 int (*ndo_mdb_get)(struct net_device *dev, 1622 struct nlattr *tb[], u32 portid, 1623 u32 seq, 1624 struct netlink_ext_ack *extack); 1625 int (*ndo_bridge_setlink)(struct net_device *dev, 1626 struct nlmsghdr *nlh, 1627 u16 flags, 1628 struct netlink_ext_ack *extack); 1629 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1630 u32 pid, u32 seq, 1631 struct net_device *dev, 1632 u32 filter_mask, 1633 int nlflags); 1634 int (*ndo_bridge_dellink)(struct net_device *dev, 1635 struct nlmsghdr *nlh, 1636 u16 flags); 1637 int (*ndo_change_carrier)(struct net_device *dev, 1638 bool new_carrier); 1639 int (*ndo_get_phys_port_id)(struct net_device *dev, 1640 struct netdev_phys_item_id *ppid); 1641 int (*ndo_get_port_parent_id)(struct net_device *dev, 1642 struct netdev_phys_item_id *ppid); 1643 int (*ndo_get_phys_port_name)(struct net_device *dev, 1644 char *name, size_t len); 1645 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1646 struct net_device *dev); 1647 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1648 void *priv); 1649 1650 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1651 int queue_index, 1652 u32 maxrate); 1653 int (*ndo_get_iflink)(const struct net_device *dev); 1654 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1655 struct sk_buff *skb); 1656 void (*ndo_set_rx_headroom)(struct net_device *dev, 1657 int needed_headroom); 1658 int (*ndo_bpf)(struct net_device *dev, 1659 struct netdev_bpf *bpf); 1660 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1661 struct xdp_frame **xdp, 1662 u32 flags); 1663 struct net_device * (*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1664 struct xdp_buff *xdp); 1665 int (*ndo_xsk_wakeup)(struct net_device *dev, 1666 u32 queue_id, u32 flags); 1667 int (*ndo_tunnel_ctl)(struct net_device *dev, 1668 struct ip_tunnel_parm *p, int cmd); 1669 struct net_device * (*ndo_get_peer_dev)(struct net_device *dev); 1670 int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, 1671 struct net_device_path *path); 1672 ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1673 const struct skb_shared_hwtstamps *hwtstamps, 1674 bool cycles); 1675 int (*ndo_hwtstamp_get)(struct net_device *dev, 1676 struct kernel_hwtstamp_config *kernel_config); 1677 int (*ndo_hwtstamp_set)(struct net_device *dev, 1678 struct kernel_hwtstamp_config *kernel_config, 1679 struct netlink_ext_ack *extack); 1680}; 1681 1682/** 1683 * enum netdev_priv_flags - &struct net_device priv_flags 1684 * 1685 * These are the &struct net_device, they are only set internally 1686 * by drivers and used in the kernel. These flags are invisible to 1687 * userspace; this means that the order of these flags can change 1688 * during any kernel release. 1689 * 1690 * You should have a pretty good reason to be extending these flags. 1691 * 1692 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1693 * @IFF_EBRIDGE: Ethernet bridging device 1694 * @IFF_BONDING: bonding master or slave 1695 * @IFF_ISATAP: ISATAP interface (RFC4214) 1696 * @IFF_WAN_HDLC: WAN HDLC device 1697 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1698 * release skb->dst 1699 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1700 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1701 * @IFF_MACVLAN_PORT: device used as macvlan port 1702 * @IFF_BRIDGE_PORT: device used as bridge port 1703 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1704 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1705 * @IFF_UNICAST_FLT: Supports unicast filtering 1706 * @IFF_TEAM_PORT: device used as team port 1707 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1708 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1709 * change when it's running 1710 * @IFF_MACVLAN: Macvlan device 1711 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1712 * underlying stacked devices 1713 * @IFF_L3MDEV_MASTER: device is an L3 master device 1714 * @IFF_NO_QUEUE: device can run without qdisc attached 1715 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1716 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1717 * @IFF_TEAM: device is a team device 1718 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1719 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1720 * entity (i.e. the master device for bridged veth) 1721 * @IFF_MACSEC: device is a MACsec device 1722 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1723 * @IFF_FAILOVER: device is a failover master device 1724 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1725 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device 1726 * @IFF_NO_ADDRCONF: prevent ipv6 addrconf 1727 * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with 1728 * skb_headlen(skb) == 0 (data starts from frag0) 1729 * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN 1730 * @IFF_SEE_ALL_HWTSTAMP_REQUESTS: device wants to see calls to 1731 * ndo_hwtstamp_set() for all timestamp requests regardless of source, 1732 * even if those aren't HWTSTAMP_SOURCE_NETDEV. 1733 */ 1734enum netdev_priv_flags { 1735 IFF_802_1Q_VLAN = 1<<0, 1736 IFF_EBRIDGE = 1<<1, 1737 IFF_BONDING = 1<<2, 1738 IFF_ISATAP = 1<<3, 1739 IFF_WAN_HDLC = 1<<4, 1740 IFF_XMIT_DST_RELEASE = 1<<5, 1741 IFF_DONT_BRIDGE = 1<<6, 1742 IFF_DISABLE_NETPOLL = 1<<7, 1743 IFF_MACVLAN_PORT = 1<<8, 1744 IFF_BRIDGE_PORT = 1<<9, 1745 IFF_OVS_DATAPATH = 1<<10, 1746 IFF_TX_SKB_SHARING = 1<<11, 1747 IFF_UNICAST_FLT = 1<<12, 1748 IFF_TEAM_PORT = 1<<13, 1749 IFF_SUPP_NOFCS = 1<<14, 1750 IFF_LIVE_ADDR_CHANGE = 1<<15, 1751 IFF_MACVLAN = 1<<16, 1752 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1753 IFF_L3MDEV_MASTER = 1<<18, 1754 IFF_NO_QUEUE = 1<<19, 1755 IFF_OPENVSWITCH = 1<<20, 1756 IFF_L3MDEV_SLAVE = 1<<21, 1757 IFF_TEAM = 1<<22, 1758 IFF_RXFH_CONFIGURED = 1<<23, 1759 IFF_PHONY_HEADROOM = 1<<24, 1760 IFF_MACSEC = 1<<25, 1761 IFF_NO_RX_HANDLER = 1<<26, 1762 IFF_FAILOVER = 1<<27, 1763 IFF_FAILOVER_SLAVE = 1<<28, 1764 IFF_L3MDEV_RX_HANDLER = 1<<29, 1765 IFF_NO_ADDRCONF = BIT_ULL(30), 1766 IFF_TX_SKB_NO_LINEAR = BIT_ULL(31), 1767 IFF_CHANGE_PROTO_DOWN = BIT_ULL(32), 1768 IFF_SEE_ALL_HWTSTAMP_REQUESTS = BIT_ULL(33), 1769}; 1770 1771#define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1772#define IFF_EBRIDGE IFF_EBRIDGE 1773#define IFF_BONDING IFF_BONDING 1774#define IFF_ISATAP IFF_ISATAP 1775#define IFF_WAN_HDLC IFF_WAN_HDLC 1776#define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1777#define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1778#define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1779#define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1780#define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1781#define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1782#define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1783#define IFF_UNICAST_FLT IFF_UNICAST_FLT 1784#define IFF_TEAM_PORT IFF_TEAM_PORT 1785#define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1786#define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1787#define IFF_MACVLAN IFF_MACVLAN 1788#define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1789#define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1790#define IFF_NO_QUEUE IFF_NO_QUEUE 1791#define IFF_OPENVSWITCH IFF_OPENVSWITCH 1792#define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1793#define IFF_TEAM IFF_TEAM 1794#define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1795#define IFF_PHONY_HEADROOM IFF_PHONY_HEADROOM 1796#define IFF_MACSEC IFF_MACSEC 1797#define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER 1798#define IFF_FAILOVER IFF_FAILOVER 1799#define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE 1800#define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER 1801#define IFF_TX_SKB_NO_LINEAR IFF_TX_SKB_NO_LINEAR 1802 1803/* Specifies the type of the struct net_device::ml_priv pointer */ 1804enum netdev_ml_priv_type { 1805 ML_PRIV_NONE, 1806 ML_PRIV_CAN, 1807}; 1808 1809enum netdev_stat_type { 1810 NETDEV_PCPU_STAT_NONE, 1811 NETDEV_PCPU_STAT_LSTATS, /* struct pcpu_lstats */ 1812 NETDEV_PCPU_STAT_TSTATS, /* struct pcpu_sw_netstats */ 1813 NETDEV_PCPU_STAT_DSTATS, /* struct pcpu_dstats */ 1814}; 1815 1816/** 1817 * struct net_device - The DEVICE structure. 1818 * 1819 * Actually, this whole structure is a big mistake. It mixes I/O 1820 * data with strictly "high-level" data, and it has to know about 1821 * almost every data structure used in the INET module. 1822 * 1823 * @name: This is the first field of the "visible" part of this structure 1824 * (i.e. as seen by users in the "Space.c" file). It is the name 1825 * of the interface. 1826 * 1827 * @name_node: Name hashlist node 1828 * @ifalias: SNMP alias 1829 * @mem_end: Shared memory end 1830 * @mem_start: Shared memory start 1831 * @base_addr: Device I/O address 1832 * @irq: Device IRQ number 1833 * 1834 * @state: Generic network queuing layer state, see netdev_state_t 1835 * @dev_list: The global list of network devices 1836 * @napi_list: List entry used for polling NAPI devices 1837 * @unreg_list: List entry when we are unregistering the 1838 * device; see the function unregister_netdev 1839 * @close_list: List entry used when we are closing the device 1840 * @ptype_all: Device-specific packet handlers for all protocols 1841 * @ptype_specific: Device-specific, protocol-specific packet handlers 1842 * 1843 * @adj_list: Directly linked devices, like slaves for bonding 1844 * @features: Currently active device features 1845 * @hw_features: User-changeable features 1846 * 1847 * @wanted_features: User-requested features 1848 * @vlan_features: Mask of features inheritable by VLAN devices 1849 * 1850 * @hw_enc_features: Mask of features inherited by encapsulating devices 1851 * This field indicates what encapsulation 1852 * offloads the hardware is capable of doing, 1853 * and drivers will need to set them appropriately. 1854 * 1855 * @mpls_features: Mask of features inheritable by MPLS 1856 * @gso_partial_features: value(s) from NETIF_F_GSO\* 1857 * 1858 * @ifindex: interface index 1859 * @group: The group the device belongs to 1860 * 1861 * @stats: Statistics struct, which was left as a legacy, use 1862 * rtnl_link_stats64 instead 1863 * 1864 * @core_stats: core networking counters, 1865 * do not use this in drivers 1866 * @carrier_up_count: Number of times the carrier has been up 1867 * @carrier_down_count: Number of times the carrier has been down 1868 * 1869 * @wireless_handlers: List of functions to handle Wireless Extensions, 1870 * instead of ioctl, 1871 * see <net/iw_handler.h> for details. 1872 * @wireless_data: Instance data managed by the core of wireless extensions 1873 * 1874 * @netdev_ops: Includes several pointers to callbacks, 1875 * if one wants to override the ndo_*() functions 1876 * @xdp_metadata_ops: Includes pointers to XDP metadata callbacks. 1877 * @xsk_tx_metadata_ops: Includes pointers to AF_XDP TX metadata callbacks. 1878 * @ethtool_ops: Management operations 1879 * @l3mdev_ops: Layer 3 master device operations 1880 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1881 * discovery handling. Necessary for e.g. 6LoWPAN. 1882 * @xfrmdev_ops: Transformation offload operations 1883 * @tlsdev_ops: Transport Layer Security offload operations 1884 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1885 * of Layer 2 headers. 1886 * 1887 * @flags: Interface flags (a la BSD) 1888 * @xdp_features: XDP capability supported by the device 1889 * @priv_flags: Like 'flags' but invisible to userspace, 1890 * see if.h for the definitions 1891 * @gflags: Global flags ( kept as legacy ) 1892 * @padded: How much padding added by alloc_netdev() 1893 * @operstate: RFC2863 operstate 1894 * @link_mode: Mapping policy to operstate 1895 * @if_port: Selectable AUI, TP, ... 1896 * @dma: DMA channel 1897 * @mtu: Interface MTU value 1898 * @min_mtu: Interface Minimum MTU value 1899 * @max_mtu: Interface Maximum MTU value 1900 * @type: Interface hardware type 1901 * @hard_header_len: Maximum hardware header length. 1902 * @min_header_len: Minimum hardware header length 1903 * 1904 * @needed_headroom: Extra headroom the hardware may need, but not in all 1905 * cases can this be guaranteed 1906 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1907 * cases can this be guaranteed. Some cases also use 1908 * LL_MAX_HEADER instead to allocate the skb 1909 * 1910 * interface address info: 1911 * 1912 * @perm_addr: Permanent hw address 1913 * @addr_assign_type: Hw address assignment type 1914 * @addr_len: Hardware address length 1915 * @upper_level: Maximum depth level of upper devices. 1916 * @lower_level: Maximum depth level of lower devices. 1917 * @neigh_priv_len: Used in neigh_alloc() 1918 * @dev_id: Used to differentiate devices that share 1919 * the same link layer address 1920 * @dev_port: Used to differentiate devices that share 1921 * the same function 1922 * @addr_list_lock: XXX: need comments on this one 1923 * @name_assign_type: network interface name assignment type 1924 * @uc_promisc: Counter that indicates promiscuous mode 1925 * has been enabled due to the need to listen to 1926 * additional unicast addresses in a device that 1927 * does not implement ndo_set_rx_mode() 1928 * @uc: unicast mac addresses 1929 * @mc: multicast mac addresses 1930 * @dev_addrs: list of device hw addresses 1931 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1932 * @promiscuity: Number of times the NIC is told to work in 1933 * promiscuous mode; if it becomes 0 the NIC will 1934 * exit promiscuous mode 1935 * @allmulti: Counter, enables or disables allmulticast mode 1936 * 1937 * @vlan_info: VLAN info 1938 * @dsa_ptr: dsa specific data 1939 * @tipc_ptr: TIPC specific data 1940 * @atalk_ptr: AppleTalk link 1941 * @ip_ptr: IPv4 specific data 1942 * @ip6_ptr: IPv6 specific data 1943 * @ax25_ptr: AX.25 specific data 1944 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1945 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network 1946 * device struct 1947 * @mpls_ptr: mpls_dev struct pointer 1948 * @mctp_ptr: MCTP specific data 1949 * 1950 * @dev_addr: Hw address (before bcast, 1951 * because most packets are unicast) 1952 * 1953 * @_rx: Array of RX queues 1954 * @num_rx_queues: Number of RX queues 1955 * allocated at register_netdev() time 1956 * @real_num_rx_queues: Number of RX queues currently active in device 1957 * @xdp_prog: XDP sockets filter program pointer 1958 * @gro_flush_timeout: timeout for GRO layer in NAPI 1959 * @napi_defer_hard_irqs: If not zero, provides a counter that would 1960 * allow to avoid NIC hard IRQ, on busy queues. 1961 * 1962 * @rx_handler: handler for received packets 1963 * @rx_handler_data: XXX: need comments on this one 1964 * @tcx_ingress: BPF & clsact qdisc specific data for ingress processing 1965 * @ingress_queue: XXX: need comments on this one 1966 * @nf_hooks_ingress: netfilter hooks executed for ingress packets 1967 * @broadcast: hw bcast address 1968 * 1969 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1970 * indexed by RX queue number. Assigned by driver. 1971 * This must only be set if the ndo_rx_flow_steer 1972 * operation is defined 1973 * @index_hlist: Device index hash chain 1974 * 1975 * @_tx: Array of TX queues 1976 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1977 * @real_num_tx_queues: Number of TX queues currently active in device 1978 * @qdisc: Root qdisc from userspace point of view 1979 * @tx_queue_len: Max frames per queue allowed 1980 * @tx_global_lock: XXX: need comments on this one 1981 * @xdp_bulkq: XDP device bulk queue 1982 * @xps_maps: all CPUs/RXQs maps for XPS device 1983 * 1984 * @xps_maps: XXX: need comments on this one 1985 * @tcx_egress: BPF & clsact qdisc specific data for egress processing 1986 * @nf_hooks_egress: netfilter hooks executed for egress packets 1987 * @qdisc_hash: qdisc hash table 1988 * @watchdog_timeo: Represents the timeout that is used by 1989 * the watchdog (see dev_watchdog()) 1990 * @watchdog_timer: List of timers 1991 * 1992 * @proto_down_reason: reason a netdev interface is held down 1993 * @pcpu_refcnt: Number of references to this device 1994 * @dev_refcnt: Number of references to this device 1995 * @refcnt_tracker: Tracker directory for tracked references to this device 1996 * @todo_list: Delayed register/unregister 1997 * @link_watch_list: XXX: need comments on this one 1998 * 1999 * @reg_state: Register/unregister state machine 2000 * @dismantle: Device is going to be freed 2001 * @rtnl_link_state: This enum represents the phases of creating 2002 * a new link 2003 * 2004 * @needs_free_netdev: Should unregister perform free_netdev? 2005 * @priv_destructor: Called from unregister 2006 * @npinfo: XXX: need comments on this one 2007 * @nd_net: Network namespace this network device is inside 2008 * 2009 * @ml_priv: Mid-layer private 2010 * @ml_priv_type: Mid-layer private type 2011 * 2012 * @pcpu_stat_type: Type of device statistics which the core should 2013 * allocate/free: none, lstats, tstats, dstats. none 2014 * means the driver is handling statistics allocation/ 2015 * freeing internally. 2016 * @lstats: Loopback statistics: packets, bytes 2017 * @tstats: Tunnel statistics: RX/TX packets, RX/TX bytes 2018 * @dstats: Dummy statistics: RX/TX/drop packets, RX/TX bytes 2019 * 2020 * @garp_port: GARP 2021 * @mrp_port: MRP 2022 * 2023 * @dm_private: Drop monitor private 2024 * 2025 * @dev: Class/net/name entry 2026 * @sysfs_groups: Space for optional device, statistics and wireless 2027 * sysfs groups 2028 * 2029 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 2030 * @rtnl_link_ops: Rtnl_link_ops 2031 * 2032 * @gso_max_size: Maximum size of generic segmentation offload 2033 * @tso_max_size: Device (as in HW) limit on the max TSO request size 2034 * @gso_max_segs: Maximum number of segments that can be passed to the 2035 * NIC for GSO 2036 * @tso_max_segs: Device (as in HW) limit on the max TSO segment count 2037 * @gso_ipv4_max_size: Maximum size of generic segmentation offload, 2038 * for IPv4. 2039 * 2040 * @dcbnl_ops: Data Center Bridging netlink ops 2041 * @num_tc: Number of traffic classes in the net device 2042 * @tc_to_txq: XXX: need comments on this one 2043 * @prio_tc_map: XXX: need comments on this one 2044 * 2045 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 2046 * 2047 * @priomap: XXX: need comments on this one 2048 * @phydev: Physical device may attach itself 2049 * for hardware timestamping 2050 * @sfp_bus: attached &struct sfp_bus structure. 2051 * 2052 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 2053 * 2054 * @proto_down: protocol port state information can be sent to the 2055 * switch driver and used to set the phys state of the 2056 * switch port. 2057 * 2058 * @wol_enabled: Wake-on-LAN is enabled 2059 * 2060 * @threaded: napi threaded mode is enabled 2061 * 2062 * @net_notifier_list: List of per-net netdev notifier block 2063 * that follow this device when it is moved 2064 * to another network namespace. 2065 * 2066 * @macsec_ops: MACsec offloading ops 2067 * 2068 * @udp_tunnel_nic_info: static structure describing the UDP tunnel 2069 * offload capabilities of the device 2070 * @udp_tunnel_nic: UDP tunnel offload state 2071 * @xdp_state: stores info on attached XDP BPF programs 2072 * 2073 * @nested_level: Used as a parameter of spin_lock_nested() of 2074 * dev->addr_list_lock. 2075 * @unlink_list: As netif_addr_lock() can be called recursively, 2076 * keep a list of interfaces to be deleted. 2077 * @gro_max_size: Maximum size of aggregated packet in generic 2078 * receive offload (GRO) 2079 * @gro_ipv4_max_size: Maximum size of aggregated packet in generic 2080 * receive offload (GRO), for IPv4. 2081 * @xdp_zc_max_segs: Maximum number of segments supported by AF_XDP 2082 * zero copy driver 2083 * 2084 * @dev_addr_shadow: Copy of @dev_addr to catch direct writes. 2085 * @linkwatch_dev_tracker: refcount tracker used by linkwatch. 2086 * @watchdog_dev_tracker: refcount tracker used by watchdog. 2087 * @dev_registered_tracker: tracker for reference held while 2088 * registered 2089 * @offload_xstats_l3: L3 HW stats for this netdevice. 2090 * 2091 * @devlink_port: Pointer to related devlink port structure. 2092 * Assigned by a driver before netdev registration using 2093 * SET_NETDEV_DEVLINK_PORT macro. This pointer is static 2094 * during the time netdevice is registered. 2095 * 2096 * @dpll_pin: Pointer to the SyncE source pin of a DPLL subsystem, 2097 * where the clock is recovered. 2098 * 2099 * FIXME: cleanup struct net_device such that network protocol info 2100 * moves out. 2101 */ 2102 2103struct net_device { 2104 /* Cacheline organization can be found documented in 2105 * Documentation/networking/net_cachelines/net_device.rst. 2106 * Please update the document when adding new fields. 2107 */ 2108 2109 /* TX read-mostly hotpath */ 2110 __cacheline_group_begin(net_device_read_tx); 2111 unsigned long long priv_flags; 2112 const struct net_device_ops *netdev_ops; 2113 const struct header_ops *header_ops; 2114 struct netdev_queue *_tx; 2115 netdev_features_t gso_partial_features; 2116 unsigned int real_num_tx_queues; 2117 unsigned int gso_max_size; 2118 unsigned int gso_ipv4_max_size; 2119 u16 gso_max_segs; 2120 s16 num_tc; 2121 /* Note : dev->mtu is often read without holding a lock. 2122 * Writers usually hold RTNL. 2123 * It is recommended to use READ_ONCE() to annotate the reads, 2124 * and to use WRITE_ONCE() to annotate the writes. 2125 */ 2126 unsigned int mtu; 2127 unsigned short needed_headroom; 2128 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2129#ifdef CONFIG_XPS 2130 struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX]; 2131#endif 2132#ifdef CONFIG_NETFILTER_EGRESS 2133 struct nf_hook_entries __rcu *nf_hooks_egress; 2134#endif 2135#ifdef CONFIG_NET_XGRESS 2136 struct bpf_mprog_entry __rcu *tcx_egress; 2137#endif 2138 __cacheline_group_end(net_device_read_tx); 2139 2140 /* TXRX read-mostly hotpath */ 2141 __cacheline_group_begin(net_device_read_txrx); 2142 union { 2143 struct pcpu_lstats __percpu *lstats; 2144 struct pcpu_sw_netstats __percpu *tstats; 2145 struct pcpu_dstats __percpu *dstats; 2146 }; 2147 unsigned int flags; 2148 unsigned short hard_header_len; 2149 netdev_features_t features; 2150 struct inet6_dev __rcu *ip6_ptr; 2151 __cacheline_group_end(net_device_read_txrx); 2152 2153 /* RX read-mostly hotpath */ 2154 __cacheline_group_begin(net_device_read_rx); 2155 struct bpf_prog __rcu *xdp_prog; 2156 struct list_head ptype_specific; 2157 int ifindex; 2158 unsigned int real_num_rx_queues; 2159 struct netdev_rx_queue *_rx; 2160 unsigned long gro_flush_timeout; 2161 int napi_defer_hard_irqs; 2162 unsigned int gro_max_size; 2163 unsigned int gro_ipv4_max_size; 2164 rx_handler_func_t __rcu *rx_handler; 2165 void __rcu *rx_handler_data; 2166 possible_net_t nd_net; 2167#ifdef CONFIG_NETPOLL 2168 struct netpoll_info __rcu *npinfo; 2169#endif 2170#ifdef CONFIG_NET_XGRESS 2171 struct bpf_mprog_entry __rcu *tcx_ingress; 2172#endif 2173 __cacheline_group_end(net_device_read_rx); 2174 2175 char name[IFNAMSIZ]; 2176 struct netdev_name_node *name_node; 2177 struct dev_ifalias __rcu *ifalias; 2178 /* 2179 * I/O specific fields 2180 * FIXME: Merge these and struct ifmap into one 2181 */ 2182 unsigned long mem_end; 2183 unsigned long mem_start; 2184 unsigned long base_addr; 2185 2186 /* 2187 * Some hardware also needs these fields (state,dev_list, 2188 * napi_list,unreg_list,close_list) but they are not 2189 * part of the usual set specified in Space.c. 2190 */ 2191 2192 unsigned long state; 2193 2194 struct list_head dev_list; 2195 struct list_head napi_list; 2196 struct list_head unreg_list; 2197 struct list_head close_list; 2198 struct list_head ptype_all; 2199 2200 struct { 2201 struct list_head upper; 2202 struct list_head lower; 2203 } adj_list; 2204 2205 /* Read-mostly cache-line for fast-path access */ 2206 xdp_features_t xdp_features; 2207 const struct xdp_metadata_ops *xdp_metadata_ops; 2208 const struct xsk_tx_metadata_ops *xsk_tx_metadata_ops; 2209 unsigned short gflags; 2210 2211 unsigned short needed_tailroom; 2212 2213 netdev_features_t hw_features; 2214 netdev_features_t wanted_features; 2215 netdev_features_t vlan_features; 2216 netdev_features_t hw_enc_features; 2217 netdev_features_t mpls_features; 2218 2219 unsigned int min_mtu; 2220 unsigned int max_mtu; 2221 unsigned short type; 2222 unsigned char min_header_len; 2223 unsigned char name_assign_type; 2224 2225 int group; 2226 2227 struct net_device_stats stats; /* not used by modern drivers */ 2228 2229 struct net_device_core_stats __percpu *core_stats; 2230 2231 /* Stats to monitor link on/off, flapping */ 2232 atomic_t carrier_up_count; 2233 atomic_t carrier_down_count; 2234 2235#ifdef CONFIG_WIRELESS_EXT 2236 const struct iw_handler_def *wireless_handlers; 2237 struct iw_public_data *wireless_data; 2238#endif 2239 const struct ethtool_ops *ethtool_ops; 2240#ifdef CONFIG_NET_L3_MASTER_DEV 2241 const struct l3mdev_ops *l3mdev_ops; 2242#endif 2243#if IS_ENABLED(CONFIG_IPV6) 2244 const struct ndisc_ops *ndisc_ops; 2245#endif 2246 2247#ifdef CONFIG_XFRM_OFFLOAD 2248 const struct xfrmdev_ops *xfrmdev_ops; 2249#endif 2250 2251#if IS_ENABLED(CONFIG_TLS_DEVICE) 2252 const struct tlsdev_ops *tlsdev_ops; 2253#endif 2254 2255 unsigned char operstate; 2256 unsigned char link_mode; 2257 2258 unsigned char if_port; 2259 unsigned char dma; 2260 2261 /* Interface address info. */ 2262 unsigned char perm_addr[MAX_ADDR_LEN]; 2263 unsigned char addr_assign_type; 2264 unsigned char addr_len; 2265 unsigned char upper_level; 2266 unsigned char lower_level; 2267 2268 unsigned short neigh_priv_len; 2269 unsigned short dev_id; 2270 unsigned short dev_port; 2271 unsigned short padded; 2272 2273 spinlock_t addr_list_lock; 2274 int irq; 2275 2276 struct netdev_hw_addr_list uc; 2277 struct netdev_hw_addr_list mc; 2278 struct netdev_hw_addr_list dev_addrs; 2279 2280#ifdef CONFIG_SYSFS 2281 struct kset *queues_kset; 2282#endif 2283#ifdef CONFIG_LOCKDEP 2284 struct list_head unlink_list; 2285#endif 2286 unsigned int promiscuity; 2287 unsigned int allmulti; 2288 bool uc_promisc; 2289#ifdef CONFIG_LOCKDEP 2290 unsigned char nested_level; 2291#endif 2292 2293 2294 /* Protocol-specific pointers */ 2295 struct in_device __rcu *ip_ptr; 2296#if IS_ENABLED(CONFIG_VLAN_8021Q) 2297 struct vlan_info __rcu *vlan_info; 2298#endif 2299#if IS_ENABLED(CONFIG_NET_DSA) 2300 struct dsa_port *dsa_ptr; 2301#endif 2302#if IS_ENABLED(CONFIG_TIPC) 2303 struct tipc_bearer __rcu *tipc_ptr; 2304#endif 2305#if IS_ENABLED(CONFIG_ATALK) 2306 void *atalk_ptr; 2307#endif 2308#if IS_ENABLED(CONFIG_AX25) 2309 void *ax25_ptr; 2310#endif 2311#if IS_ENABLED(CONFIG_CFG80211) 2312 struct wireless_dev *ieee80211_ptr; 2313#endif 2314#if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN) 2315 struct wpan_dev *ieee802154_ptr; 2316#endif 2317#if IS_ENABLED(CONFIG_MPLS_ROUTING) 2318 struct mpls_dev __rcu *mpls_ptr; 2319#endif 2320#if IS_ENABLED(CONFIG_MCTP) 2321 struct mctp_dev __rcu *mctp_ptr; 2322#endif 2323 2324/* 2325 * Cache lines mostly used on receive path (including eth_type_trans()) 2326 */ 2327 /* Interface address info used in eth_type_trans() */ 2328 const unsigned char *dev_addr; 2329 2330 unsigned int num_rx_queues; 2331#define GRO_LEGACY_MAX_SIZE 65536u 2332/* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2333 * and shinfo->gso_segs is a 16bit field. 2334 */ 2335#define GRO_MAX_SIZE (8 * 65535u) 2336 unsigned int xdp_zc_max_segs; 2337 struct netdev_queue __rcu *ingress_queue; 2338#ifdef CONFIG_NETFILTER_INGRESS 2339 struct nf_hook_entries __rcu *nf_hooks_ingress; 2340#endif 2341 2342 unsigned char broadcast[MAX_ADDR_LEN]; 2343#ifdef CONFIG_RFS_ACCEL 2344 struct cpu_rmap *rx_cpu_rmap; 2345#endif 2346 struct hlist_node index_hlist; 2347 2348/* 2349 * Cache lines mostly used on transmit path 2350 */ 2351 unsigned int num_tx_queues; 2352 struct Qdisc __rcu *qdisc; 2353 unsigned int tx_queue_len; 2354 spinlock_t tx_global_lock; 2355 2356 struct xdp_dev_bulk_queue __percpu *xdp_bulkq; 2357 2358#ifdef CONFIG_NET_SCHED 2359 DECLARE_HASHTABLE (qdisc_hash, 4); 2360#endif 2361 /* These may be needed for future network-power-down code. */ 2362 struct timer_list watchdog_timer; 2363 int watchdog_timeo; 2364 2365 u32 proto_down_reason; 2366 2367 struct list_head todo_list; 2368 2369#ifdef CONFIG_PCPU_DEV_REFCNT 2370 int __percpu *pcpu_refcnt; 2371#else 2372 refcount_t dev_refcnt; 2373#endif 2374 struct ref_tracker_dir refcnt_tracker; 2375 2376 struct list_head link_watch_list; 2377 2378 enum { NETREG_UNINITIALIZED=0, 2379 NETREG_REGISTERED, /* completed register_netdevice */ 2380 NETREG_UNREGISTERING, /* called unregister_netdevice */ 2381 NETREG_UNREGISTERED, /* completed unregister todo */ 2382 NETREG_RELEASED, /* called free_netdev */ 2383 NETREG_DUMMY, /* dummy device for NAPI poll */ 2384 } reg_state:8; 2385 2386 bool dismantle; 2387 2388 enum { 2389 RTNL_LINK_INITIALIZED, 2390 RTNL_LINK_INITIALIZING, 2391 } rtnl_link_state:16; 2392 2393 bool needs_free_netdev; 2394 void (*priv_destructor)(struct net_device *dev); 2395 2396 /* mid-layer private */ 2397 void *ml_priv; 2398 enum netdev_ml_priv_type ml_priv_type; 2399 2400 enum netdev_stat_type pcpu_stat_type:8; 2401 2402#if IS_ENABLED(CONFIG_GARP) 2403 struct garp_port __rcu *garp_port; 2404#endif 2405#if IS_ENABLED(CONFIG_MRP) 2406 struct mrp_port __rcu *mrp_port; 2407#endif 2408#if IS_ENABLED(CONFIG_NET_DROP_MONITOR) 2409 struct dm_hw_stat_delta __rcu *dm_private; 2410#endif 2411 struct device dev; 2412 const struct attribute_group *sysfs_groups[4]; 2413 const struct attribute_group *sysfs_rx_queue_group; 2414 2415 const struct rtnl_link_ops *rtnl_link_ops; 2416 2417 /* for setting kernel sock attribute on TCP connection setup */ 2418#define GSO_MAX_SEGS 65535u 2419#define GSO_LEGACY_MAX_SIZE 65536u 2420/* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2421 * and shinfo->gso_segs is a 16bit field. 2422 */ 2423#define GSO_MAX_SIZE (8 * GSO_MAX_SEGS) 2424 2425#define TSO_LEGACY_MAX_SIZE 65536 2426#define TSO_MAX_SIZE UINT_MAX 2427 unsigned int tso_max_size; 2428#define TSO_MAX_SEGS U16_MAX 2429 u16 tso_max_segs; 2430 2431#ifdef CONFIG_DCB 2432 const struct dcbnl_rtnl_ops *dcbnl_ops; 2433#endif 2434 u8 prio_tc_map[TC_BITMASK + 1]; 2435 2436#if IS_ENABLED(CONFIG_FCOE) 2437 unsigned int fcoe_ddp_xid; 2438#endif 2439#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2440 struct netprio_map __rcu *priomap; 2441#endif 2442 struct phy_device *phydev; 2443 struct sfp_bus *sfp_bus; 2444 struct lock_class_key *qdisc_tx_busylock; 2445 bool proto_down; 2446 unsigned wol_enabled:1; 2447 unsigned threaded:1; 2448 2449 struct list_head net_notifier_list; 2450 2451#if IS_ENABLED(CONFIG_MACSEC) 2452 /* MACsec management functions */ 2453 const struct macsec_ops *macsec_ops; 2454#endif 2455 const struct udp_tunnel_nic_info *udp_tunnel_nic_info; 2456 struct udp_tunnel_nic *udp_tunnel_nic; 2457 2458 /* protected by rtnl_lock */ 2459 struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE]; 2460 2461 u8 dev_addr_shadow[MAX_ADDR_LEN]; 2462 netdevice_tracker linkwatch_dev_tracker; 2463 netdevice_tracker watchdog_dev_tracker; 2464 netdevice_tracker dev_registered_tracker; 2465 struct rtnl_hw_stats64 *offload_xstats_l3; 2466 2467 struct devlink_port *devlink_port; 2468 2469#if IS_ENABLED(CONFIG_DPLL) 2470 struct dpll_pin __rcu *dpll_pin; 2471#endif 2472#if IS_ENABLED(CONFIG_PAGE_POOL) 2473 /** @page_pools: page pools created for this netdevice */ 2474 struct hlist_head page_pools; 2475#endif 2476}; 2477#define to_net_dev(d) container_of(d, struct net_device, dev) 2478 2479/* 2480 * Driver should use this to assign devlink port instance to a netdevice 2481 * before it registers the netdevice. Therefore devlink_port is static 2482 * during the netdev lifetime after it is registered. 2483 */ 2484#define SET_NETDEV_DEVLINK_PORT(dev, port) \ 2485({ \ 2486 WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED); \ 2487 ((dev)->devlink_port = (port)); \ 2488}) 2489 2490static inline bool netif_elide_gro(const struct net_device *dev) 2491{ 2492 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2493 return true; 2494 return false; 2495} 2496 2497#define NETDEV_ALIGN 32 2498 2499static inline 2500int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2501{ 2502 return dev->prio_tc_map[prio & TC_BITMASK]; 2503} 2504 2505static inline 2506int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2507{ 2508 if (tc >= dev->num_tc) 2509 return -EINVAL; 2510 2511 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2512 return 0; 2513} 2514 2515int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2516void netdev_reset_tc(struct net_device *dev); 2517int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2518int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2519 2520static inline 2521int netdev_get_num_tc(struct net_device *dev) 2522{ 2523 return dev->num_tc; 2524} 2525 2526static inline void net_prefetch(void *p) 2527{ 2528 prefetch(p); 2529#if L1_CACHE_BYTES < 128 2530 prefetch((u8 *)p + L1_CACHE_BYTES); 2531#endif 2532} 2533 2534static inline void net_prefetchw(void *p) 2535{ 2536 prefetchw(p); 2537#if L1_CACHE_BYTES < 128 2538 prefetchw((u8 *)p + L1_CACHE_BYTES); 2539#endif 2540} 2541 2542void netdev_unbind_sb_channel(struct net_device *dev, 2543 struct net_device *sb_dev); 2544int netdev_bind_sb_channel_queue(struct net_device *dev, 2545 struct net_device *sb_dev, 2546 u8 tc, u16 count, u16 offset); 2547int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2548static inline int netdev_get_sb_channel(struct net_device *dev) 2549{ 2550 return max_t(int, -dev->num_tc, 0); 2551} 2552 2553static inline 2554struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2555 unsigned int index) 2556{ 2557 DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues); 2558 return &dev->_tx[index]; 2559} 2560 2561static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2562 const struct sk_buff *skb) 2563{ 2564 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2565} 2566 2567static inline void netdev_for_each_tx_queue(struct net_device *dev, 2568 void (*f)(struct net_device *, 2569 struct netdev_queue *, 2570 void *), 2571 void *arg) 2572{ 2573 unsigned int i; 2574 2575 for (i = 0; i < dev->num_tx_queues; i++) 2576 f(dev, &dev->_tx[i], arg); 2577} 2578 2579#define netdev_lockdep_set_classes(dev) \ 2580{ \ 2581 static struct lock_class_key qdisc_tx_busylock_key; \ 2582 static struct lock_class_key qdisc_xmit_lock_key; \ 2583 static struct lock_class_key dev_addr_list_lock_key; \ 2584 unsigned int i; \ 2585 \ 2586 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 2587 lockdep_set_class(&(dev)->addr_list_lock, \ 2588 &dev_addr_list_lock_key); \ 2589 for (i = 0; i < (dev)->num_tx_queues; i++) \ 2590 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 2591 &qdisc_xmit_lock_key); \ 2592} 2593 2594u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 2595 struct net_device *sb_dev); 2596struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 2597 struct sk_buff *skb, 2598 struct net_device *sb_dev); 2599 2600/* returns the headroom that the master device needs to take in account 2601 * when forwarding to this dev 2602 */ 2603static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2604{ 2605 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2606} 2607 2608static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2609{ 2610 if (dev->netdev_ops->ndo_set_rx_headroom) 2611 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2612} 2613 2614/* set the device rx headroom to the dev's default */ 2615static inline void netdev_reset_rx_headroom(struct net_device *dev) 2616{ 2617 netdev_set_rx_headroom(dev, -1); 2618} 2619 2620static inline void *netdev_get_ml_priv(struct net_device *dev, 2621 enum netdev_ml_priv_type type) 2622{ 2623 if (dev->ml_priv_type != type) 2624 return NULL; 2625 2626 return dev->ml_priv; 2627} 2628 2629static inline void netdev_set_ml_priv(struct net_device *dev, 2630 void *ml_priv, 2631 enum netdev_ml_priv_type type) 2632{ 2633 WARN(dev->ml_priv_type && dev->ml_priv_type != type, 2634 "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n", 2635 dev->ml_priv_type, type); 2636 WARN(!dev->ml_priv_type && dev->ml_priv, 2637 "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n"); 2638 2639 dev->ml_priv = ml_priv; 2640 dev->ml_priv_type = type; 2641} 2642 2643/* 2644 * Net namespace inlines 2645 */ 2646static inline 2647struct net *dev_net(const struct net_device *dev) 2648{ 2649 return read_pnet(&dev->nd_net); 2650} 2651 2652static inline 2653void dev_net_set(struct net_device *dev, struct net *net) 2654{ 2655 write_pnet(&dev->nd_net, net); 2656} 2657 2658/** 2659 * netdev_priv - access network device private data 2660 * @dev: network device 2661 * 2662 * Get network device private data 2663 */ 2664static inline void *netdev_priv(const struct net_device *dev) 2665{ 2666 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2667} 2668 2669/* Set the sysfs physical device reference for the network logical device 2670 * if set prior to registration will cause a symlink during initialization. 2671 */ 2672#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2673 2674/* Set the sysfs device type for the network logical device to allow 2675 * fine-grained identification of different network device types. For 2676 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2677 */ 2678#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2679 2680void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index, 2681 enum netdev_queue_type type, 2682 struct napi_struct *napi); 2683 2684static inline void netif_napi_set_irq(struct napi_struct *napi, int irq) 2685{ 2686 napi->irq = irq; 2687} 2688 2689/* Default NAPI poll() weight 2690 * Device drivers are strongly advised to not use bigger value 2691 */ 2692#define NAPI_POLL_WEIGHT 64 2693 2694void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi, 2695 int (*poll)(struct napi_struct *, int), int weight); 2696 2697/** 2698 * netif_napi_add() - initialize a NAPI context 2699 * @dev: network device 2700 * @napi: NAPI context 2701 * @poll: polling function 2702 * 2703 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2704 * *any* of the other NAPI-related functions. 2705 */ 2706static inline void 2707netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2708 int (*poll)(struct napi_struct *, int)) 2709{ 2710 netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2711} 2712 2713static inline void 2714netif_napi_add_tx_weight(struct net_device *dev, 2715 struct napi_struct *napi, 2716 int (*poll)(struct napi_struct *, int), 2717 int weight) 2718{ 2719 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2720 netif_napi_add_weight(dev, napi, poll, weight); 2721} 2722 2723/** 2724 * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only 2725 * @dev: network device 2726 * @napi: NAPI context 2727 * @poll: polling function 2728 * 2729 * This variant of netif_napi_add() should be used from drivers using NAPI 2730 * to exclusively poll a TX queue. 2731 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2732 */ 2733static inline void netif_napi_add_tx(struct net_device *dev, 2734 struct napi_struct *napi, 2735 int (*poll)(struct napi_struct *, int)) 2736{ 2737 netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2738} 2739 2740/** 2741 * __netif_napi_del - remove a NAPI context 2742 * @napi: NAPI context 2743 * 2744 * Warning: caller must observe RCU grace period before freeing memory 2745 * containing @napi. Drivers might want to call this helper to combine 2746 * all the needed RCU grace periods into a single one. 2747 */ 2748void __netif_napi_del(struct napi_struct *napi); 2749 2750/** 2751 * netif_napi_del - remove a NAPI context 2752 * @napi: NAPI context 2753 * 2754 * netif_napi_del() removes a NAPI context from the network device NAPI list 2755 */ 2756static inline void netif_napi_del(struct napi_struct *napi) 2757{ 2758 __netif_napi_del(napi); 2759 synchronize_net(); 2760} 2761 2762struct packet_type { 2763 __be16 type; /* This is really htons(ether_type). */ 2764 bool ignore_outgoing; 2765 struct net_device *dev; /* NULL is wildcarded here */ 2766 netdevice_tracker dev_tracker; 2767 int (*func) (struct sk_buff *, 2768 struct net_device *, 2769 struct packet_type *, 2770 struct net_device *); 2771 void (*list_func) (struct list_head *, 2772 struct packet_type *, 2773 struct net_device *); 2774 bool (*id_match)(struct packet_type *ptype, 2775 struct sock *sk); 2776 struct net *af_packet_net; 2777 void *af_packet_priv; 2778 struct list_head list; 2779}; 2780 2781struct offload_callbacks { 2782 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2783 netdev_features_t features); 2784 struct sk_buff *(*gro_receive)(struct list_head *head, 2785 struct sk_buff *skb); 2786 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2787}; 2788 2789struct packet_offload { 2790 __be16 type; /* This is really htons(ether_type). */ 2791 u16 priority; 2792 struct offload_callbacks callbacks; 2793 struct list_head list; 2794}; 2795 2796/* often modified stats are per-CPU, other are shared (netdev->stats) */ 2797struct pcpu_sw_netstats { 2798 u64_stats_t rx_packets; 2799 u64_stats_t rx_bytes; 2800 u64_stats_t tx_packets; 2801 u64_stats_t tx_bytes; 2802 struct u64_stats_sync syncp; 2803} __aligned(4 * sizeof(u64)); 2804 2805struct pcpu_dstats { 2806 u64 rx_packets; 2807 u64 rx_bytes; 2808 u64 rx_drops; 2809 u64 tx_packets; 2810 u64 tx_bytes; 2811 u64 tx_drops; 2812 struct u64_stats_sync syncp; 2813} __aligned(8 * sizeof(u64)); 2814 2815struct pcpu_lstats { 2816 u64_stats_t packets; 2817 u64_stats_t bytes; 2818 struct u64_stats_sync syncp; 2819} __aligned(2 * sizeof(u64)); 2820 2821void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes); 2822 2823static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len) 2824{ 2825 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2826 2827 u64_stats_update_begin(&tstats->syncp); 2828 u64_stats_add(&tstats->rx_bytes, len); 2829 u64_stats_inc(&tstats->rx_packets); 2830 u64_stats_update_end(&tstats->syncp); 2831} 2832 2833static inline void dev_sw_netstats_tx_add(struct net_device *dev, 2834 unsigned int packets, 2835 unsigned int len) 2836{ 2837 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2838 2839 u64_stats_update_begin(&tstats->syncp); 2840 u64_stats_add(&tstats->tx_bytes, len); 2841 u64_stats_add(&tstats->tx_packets, packets); 2842 u64_stats_update_end(&tstats->syncp); 2843} 2844 2845static inline void dev_lstats_add(struct net_device *dev, unsigned int len) 2846{ 2847 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats); 2848 2849 u64_stats_update_begin(&lstats->syncp); 2850 u64_stats_add(&lstats->bytes, len); 2851 u64_stats_inc(&lstats->packets); 2852 u64_stats_update_end(&lstats->syncp); 2853} 2854 2855#define __netdev_alloc_pcpu_stats(type, gfp) \ 2856({ \ 2857 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2858 if (pcpu_stats) { \ 2859 int __cpu; \ 2860 for_each_possible_cpu(__cpu) { \ 2861 typeof(type) *stat; \ 2862 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2863 u64_stats_init(&stat->syncp); \ 2864 } \ 2865 } \ 2866 pcpu_stats; \ 2867}) 2868 2869#define netdev_alloc_pcpu_stats(type) \ 2870 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2871 2872#define devm_netdev_alloc_pcpu_stats(dev, type) \ 2873({ \ 2874 typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\ 2875 if (pcpu_stats) { \ 2876 int __cpu; \ 2877 for_each_possible_cpu(__cpu) { \ 2878 typeof(type) *stat; \ 2879 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2880 u64_stats_init(&stat->syncp); \ 2881 } \ 2882 } \ 2883 pcpu_stats; \ 2884}) 2885 2886enum netdev_lag_tx_type { 2887 NETDEV_LAG_TX_TYPE_UNKNOWN, 2888 NETDEV_LAG_TX_TYPE_RANDOM, 2889 NETDEV_LAG_TX_TYPE_BROADCAST, 2890 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2891 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2892 NETDEV_LAG_TX_TYPE_HASH, 2893}; 2894 2895enum netdev_lag_hash { 2896 NETDEV_LAG_HASH_NONE, 2897 NETDEV_LAG_HASH_L2, 2898 NETDEV_LAG_HASH_L34, 2899 NETDEV_LAG_HASH_L23, 2900 NETDEV_LAG_HASH_E23, 2901 NETDEV_LAG_HASH_E34, 2902 NETDEV_LAG_HASH_VLAN_SRCMAC, 2903 NETDEV_LAG_HASH_UNKNOWN, 2904}; 2905 2906struct netdev_lag_upper_info { 2907 enum netdev_lag_tx_type tx_type; 2908 enum netdev_lag_hash hash_type; 2909}; 2910 2911struct netdev_lag_lower_state_info { 2912 u8 link_up : 1, 2913 tx_enabled : 1; 2914}; 2915 2916#include <linux/notifier.h> 2917 2918/* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2919 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2920 * adding new types. 2921 */ 2922enum netdev_cmd { 2923 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2924 NETDEV_DOWN, 2925 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2926 detected a hardware crash and restarted 2927 - we can use this eg to kick tcp sessions 2928 once done */ 2929 NETDEV_CHANGE, /* Notify device state change */ 2930 NETDEV_REGISTER, 2931 NETDEV_UNREGISTER, 2932 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2933 NETDEV_CHANGEADDR, /* notify after the address change */ 2934 NETDEV_PRE_CHANGEADDR, /* notify before the address change */ 2935 NETDEV_GOING_DOWN, 2936 NETDEV_CHANGENAME, 2937 NETDEV_FEAT_CHANGE, 2938 NETDEV_BONDING_FAILOVER, 2939 NETDEV_PRE_UP, 2940 NETDEV_PRE_TYPE_CHANGE, 2941 NETDEV_POST_TYPE_CHANGE, 2942 NETDEV_POST_INIT, 2943 NETDEV_PRE_UNINIT, 2944 NETDEV_RELEASE, 2945 NETDEV_NOTIFY_PEERS, 2946 NETDEV_JOIN, 2947 NETDEV_CHANGEUPPER, 2948 NETDEV_RESEND_IGMP, 2949 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2950 NETDEV_CHANGEINFODATA, 2951 NETDEV_BONDING_INFO, 2952 NETDEV_PRECHANGEUPPER, 2953 NETDEV_CHANGELOWERSTATE, 2954 NETDEV_UDP_TUNNEL_PUSH_INFO, 2955 NETDEV_UDP_TUNNEL_DROP_INFO, 2956 NETDEV_CHANGE_TX_QUEUE_LEN, 2957 NETDEV_CVLAN_FILTER_PUSH_INFO, 2958 NETDEV_CVLAN_FILTER_DROP_INFO, 2959 NETDEV_SVLAN_FILTER_PUSH_INFO, 2960 NETDEV_SVLAN_FILTER_DROP_INFO, 2961 NETDEV_OFFLOAD_XSTATS_ENABLE, 2962 NETDEV_OFFLOAD_XSTATS_DISABLE, 2963 NETDEV_OFFLOAD_XSTATS_REPORT_USED, 2964 NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 2965 NETDEV_XDP_FEAT_CHANGE, 2966}; 2967const char *netdev_cmd_to_name(enum netdev_cmd cmd); 2968 2969int register_netdevice_notifier(struct notifier_block *nb); 2970int unregister_netdevice_notifier(struct notifier_block *nb); 2971int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb); 2972int unregister_netdevice_notifier_net(struct net *net, 2973 struct notifier_block *nb); 2974int register_netdevice_notifier_dev_net(struct net_device *dev, 2975 struct notifier_block *nb, 2976 struct netdev_net_notifier *nn); 2977int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2978 struct notifier_block *nb, 2979 struct netdev_net_notifier *nn); 2980 2981struct netdev_notifier_info { 2982 struct net_device *dev; 2983 struct netlink_ext_ack *extack; 2984}; 2985 2986struct netdev_notifier_info_ext { 2987 struct netdev_notifier_info info; /* must be first */ 2988 union { 2989 u32 mtu; 2990 } ext; 2991}; 2992 2993struct netdev_notifier_change_info { 2994 struct netdev_notifier_info info; /* must be first */ 2995 unsigned int flags_changed; 2996}; 2997 2998struct netdev_notifier_changeupper_info { 2999 struct netdev_notifier_info info; /* must be first */ 3000 struct net_device *upper_dev; /* new upper dev */ 3001 bool master; /* is upper dev master */ 3002 bool linking; /* is the notification for link or unlink */ 3003 void *upper_info; /* upper dev info */ 3004}; 3005 3006struct netdev_notifier_changelowerstate_info { 3007 struct netdev_notifier_info info; /* must be first */ 3008 void *lower_state_info; /* is lower dev state */ 3009}; 3010 3011struct netdev_notifier_pre_changeaddr_info { 3012 struct netdev_notifier_info info; /* must be first */ 3013 const unsigned char *dev_addr; 3014}; 3015 3016enum netdev_offload_xstats_type { 3017 NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1, 3018}; 3019 3020struct netdev_notifier_offload_xstats_info { 3021 struct netdev_notifier_info info; /* must be first */ 3022 enum netdev_offload_xstats_type type; 3023 3024 union { 3025 /* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */ 3026 struct netdev_notifier_offload_xstats_rd *report_delta; 3027 /* NETDEV_OFFLOAD_XSTATS_REPORT_USED */ 3028 struct netdev_notifier_offload_xstats_ru *report_used; 3029 }; 3030}; 3031 3032int netdev_offload_xstats_enable(struct net_device *dev, 3033 enum netdev_offload_xstats_type type, 3034 struct netlink_ext_ack *extack); 3035int netdev_offload_xstats_disable(struct net_device *dev, 3036 enum netdev_offload_xstats_type type); 3037bool netdev_offload_xstats_enabled(const struct net_device *dev, 3038 enum netdev_offload_xstats_type type); 3039int netdev_offload_xstats_get(struct net_device *dev, 3040 enum netdev_offload_xstats_type type, 3041 struct rtnl_hw_stats64 *stats, bool *used, 3042 struct netlink_ext_ack *extack); 3043void 3044netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd, 3045 const struct rtnl_hw_stats64 *stats); 3046void 3047netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru); 3048void netdev_offload_xstats_push_delta(struct net_device *dev, 3049 enum netdev_offload_xstats_type type, 3050 const struct rtnl_hw_stats64 *stats); 3051 3052static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 3053 struct net_device *dev) 3054{ 3055 info->dev = dev; 3056 info->extack = NULL; 3057} 3058 3059static inline struct net_device * 3060netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 3061{ 3062 return info->dev; 3063} 3064 3065static inline struct netlink_ext_ack * 3066netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 3067{ 3068 return info->extack; 3069} 3070 3071int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 3072int call_netdevice_notifiers_info(unsigned long val, 3073 struct netdev_notifier_info *info); 3074 3075extern rwlock_t dev_base_lock; /* Device list lock */ 3076 3077#define for_each_netdev(net, d) \ 3078 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 3079#define for_each_netdev_reverse(net, d) \ 3080 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 3081#define for_each_netdev_rcu(net, d) \ 3082 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 3083#define for_each_netdev_safe(net, d, n) \ 3084 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 3085#define for_each_netdev_continue(net, d) \ 3086 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 3087#define for_each_netdev_continue_reverse(net, d) \ 3088 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \ 3089 dev_list) 3090#define for_each_netdev_continue_rcu(net, d) \ 3091 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 3092#define for_each_netdev_in_bond_rcu(bond, slave) \ 3093 for_each_netdev_rcu(&init_net, slave) \ 3094 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 3095#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 3096 3097#define for_each_netdev_dump(net, d, ifindex) \ 3098 xa_for_each_start(&(net)->dev_by_index, (ifindex), (d), (ifindex)) 3099 3100static inline struct net_device *next_net_device(struct net_device *dev) 3101{ 3102 struct list_head *lh; 3103 struct net *net; 3104 3105 net = dev_net(dev); 3106 lh = dev->dev_list.next; 3107 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3108} 3109 3110static inline struct net_device *next_net_device_rcu(struct net_device *dev) 3111{ 3112 struct list_head *lh; 3113 struct net *net; 3114 3115 net = dev_net(dev); 3116 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 3117 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3118} 3119 3120static inline struct net_device *first_net_device(struct net *net) 3121{ 3122 return list_empty(&net->dev_base_head) ? NULL : 3123 net_device_entry(net->dev_base_head.next); 3124} 3125 3126static inline struct net_device *first_net_device_rcu(struct net *net) 3127{ 3128 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 3129 3130 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3131} 3132 3133int netdev_boot_setup_check(struct net_device *dev); 3134struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 3135 const char *hwaddr); 3136struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 3137void dev_add_pack(struct packet_type *pt); 3138void dev_remove_pack(struct packet_type *pt); 3139void __dev_remove_pack(struct packet_type *pt); 3140void dev_add_offload(struct packet_offload *po); 3141void dev_remove_offload(struct packet_offload *po); 3142 3143int dev_get_iflink(const struct net_device *dev); 3144int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 3145int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 3146 struct net_device_path_stack *stack); 3147struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 3148 unsigned short mask); 3149struct net_device *dev_get_by_name(struct net *net, const char *name); 3150struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 3151struct net_device *__dev_get_by_name(struct net *net, const char *name); 3152bool netdev_name_in_use(struct net *net, const char *name); 3153int dev_alloc_name(struct net_device *dev, const char *name); 3154int dev_open(struct net_device *dev, struct netlink_ext_ack *extack); 3155void dev_close(struct net_device *dev); 3156void dev_close_many(struct list_head *head, bool unlink); 3157void dev_disable_lro(struct net_device *dev); 3158int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 3159u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3160 struct net_device *sb_dev); 3161u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 3162 struct net_device *sb_dev); 3163 3164int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev); 3165int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 3166 3167static inline int dev_queue_xmit(struct sk_buff *skb) 3168{ 3169 return __dev_queue_xmit(skb, NULL); 3170} 3171 3172static inline int dev_queue_xmit_accel(struct sk_buff *skb, 3173 struct net_device *sb_dev) 3174{ 3175 return __dev_queue_xmit(skb, sb_dev); 3176} 3177 3178static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 3179{ 3180 int ret; 3181 3182 ret = __dev_direct_xmit(skb, queue_id); 3183 if (!dev_xmit_complete(ret)) 3184 kfree_skb(skb); 3185 return ret; 3186} 3187 3188int register_netdevice(struct net_device *dev); 3189void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 3190void unregister_netdevice_many(struct list_head *head); 3191static inline void unregister_netdevice(struct net_device *dev) 3192{ 3193 unregister_netdevice_queue(dev, NULL); 3194} 3195 3196int netdev_refcnt_read(const struct net_device *dev); 3197void free_netdev(struct net_device *dev); 3198void netdev_freemem(struct net_device *dev); 3199int init_dummy_netdev(struct net_device *dev); 3200 3201struct net_device *netdev_get_xmit_slave(struct net_device *dev, 3202 struct sk_buff *skb, 3203 bool all_slaves); 3204struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 3205 struct sock *sk); 3206struct net_device *dev_get_by_index(struct net *net, int ifindex); 3207struct net_device *__dev_get_by_index(struct net *net, int ifindex); 3208struct net_device *netdev_get_by_index(struct net *net, int ifindex, 3209 netdevice_tracker *tracker, gfp_t gfp); 3210struct net_device *netdev_get_by_name(struct net *net, const char *name, 3211 netdevice_tracker *tracker, gfp_t gfp); 3212struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 3213struct net_device *dev_get_by_napi_id(unsigned int napi_id); 3214 3215static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 3216 unsigned short type, 3217 const void *daddr, const void *saddr, 3218 unsigned int len) 3219{ 3220 if (!dev->header_ops || !dev->header_ops->create) 3221 return 0; 3222 3223 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 3224} 3225 3226static inline int dev_parse_header(const struct sk_buff *skb, 3227 unsigned char *haddr) 3228{ 3229 const struct net_device *dev = skb->dev; 3230 3231 if (!dev->header_ops || !dev->header_ops->parse) 3232 return 0; 3233 return dev->header_ops->parse(skb, haddr); 3234} 3235 3236static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb) 3237{ 3238 const struct net_device *dev = skb->dev; 3239 3240 if (!dev->header_ops || !dev->header_ops->parse_protocol) 3241 return 0; 3242 return dev->header_ops->parse_protocol(skb); 3243} 3244 3245/* ll_header must have at least hard_header_len allocated */ 3246static inline bool dev_validate_header(const struct net_device *dev, 3247 char *ll_header, int len) 3248{ 3249 if (likely(len >= dev->hard_header_len)) 3250 return true; 3251 if (len < dev->min_header_len) 3252 return false; 3253 3254 if (capable(CAP_SYS_RAWIO)) { 3255 memset(ll_header + len, 0, dev->hard_header_len - len); 3256 return true; 3257 } 3258 3259 if (dev->header_ops && dev->header_ops->validate) 3260 return dev->header_ops->validate(ll_header, len); 3261 3262 return false; 3263} 3264 3265static inline bool dev_has_header(const struct net_device *dev) 3266{ 3267 return dev->header_ops && dev->header_ops->create; 3268} 3269 3270/* 3271 * Incoming packets are placed on per-CPU queues 3272 */ 3273struct softnet_data { 3274 struct list_head poll_list; 3275 struct sk_buff_head process_queue; 3276 3277 /* stats */ 3278 unsigned int processed; 3279 unsigned int time_squeeze; 3280#ifdef CONFIG_RPS 3281 struct softnet_data *rps_ipi_list; 3282#endif 3283 3284 bool in_net_rx_action; 3285 bool in_napi_threaded_poll; 3286 3287#ifdef CONFIG_NET_FLOW_LIMIT 3288 struct sd_flow_limit __rcu *flow_limit; 3289#endif 3290 struct Qdisc *output_queue; 3291 struct Qdisc **output_queue_tailp; 3292 struct sk_buff *completion_queue; 3293#ifdef CONFIG_XFRM_OFFLOAD 3294 struct sk_buff_head xfrm_backlog; 3295#endif 3296 /* written and read only by owning cpu: */ 3297 struct { 3298 u16 recursion; 3299 u8 more; 3300#ifdef CONFIG_NET_EGRESS 3301 u8 skip_txqueue; 3302#endif 3303 } xmit; 3304#ifdef CONFIG_RPS 3305 /* input_queue_head should be written by cpu owning this struct, 3306 * and only read by other cpus. Worth using a cache line. 3307 */ 3308 unsigned int input_queue_head ____cacheline_aligned_in_smp; 3309 3310 /* Elements below can be accessed between CPUs for RPS/RFS */ 3311 call_single_data_t csd ____cacheline_aligned_in_smp; 3312 struct softnet_data *rps_ipi_next; 3313 unsigned int cpu; 3314 unsigned int input_queue_tail; 3315#endif 3316 unsigned int received_rps; 3317 unsigned int dropped; 3318 struct sk_buff_head input_pkt_queue; 3319 struct napi_struct backlog; 3320 3321 /* Another possibly contended cache line */ 3322 spinlock_t defer_lock ____cacheline_aligned_in_smp; 3323 int defer_count; 3324 int defer_ipi_scheduled; 3325 struct sk_buff *defer_list; 3326 call_single_data_t defer_csd; 3327}; 3328 3329static inline void input_queue_head_incr(struct softnet_data *sd) 3330{ 3331#ifdef CONFIG_RPS 3332 sd->input_queue_head++; 3333#endif 3334} 3335 3336static inline void input_queue_tail_incr_save(struct softnet_data *sd, 3337 unsigned int *qtail) 3338{ 3339#ifdef CONFIG_RPS 3340 *qtail = ++sd->input_queue_tail; 3341#endif 3342} 3343 3344DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 3345 3346static inline int dev_recursion_level(void) 3347{ 3348 return this_cpu_read(softnet_data.xmit.recursion); 3349} 3350 3351#define XMIT_RECURSION_LIMIT 8 3352static inline bool dev_xmit_recursion(void) 3353{ 3354 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) > 3355 XMIT_RECURSION_LIMIT); 3356} 3357 3358static inline void dev_xmit_recursion_inc(void) 3359{ 3360 __this_cpu_inc(softnet_data.xmit.recursion); 3361} 3362 3363static inline void dev_xmit_recursion_dec(void) 3364{ 3365 __this_cpu_dec(softnet_data.xmit.recursion); 3366} 3367 3368void __netif_schedule(struct Qdisc *q); 3369void netif_schedule_queue(struct netdev_queue *txq); 3370 3371static inline void netif_tx_schedule_all(struct net_device *dev) 3372{ 3373 unsigned int i; 3374 3375 for (i = 0; i < dev->num_tx_queues; i++) 3376 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 3377} 3378 3379static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3380{ 3381 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3382} 3383 3384/** 3385 * netif_start_queue - allow transmit 3386 * @dev: network device 3387 * 3388 * Allow upper layers to call the device hard_start_xmit routine. 3389 */ 3390static inline void netif_start_queue(struct net_device *dev) 3391{ 3392 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3393} 3394 3395static inline void netif_tx_start_all_queues(struct net_device *dev) 3396{ 3397 unsigned int i; 3398 3399 for (i = 0; i < dev->num_tx_queues; i++) { 3400 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3401 netif_tx_start_queue(txq); 3402 } 3403} 3404 3405void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3406 3407/** 3408 * netif_wake_queue - restart transmit 3409 * @dev: network device 3410 * 3411 * Allow upper layers to call the device hard_start_xmit routine. 3412 * Used for flow control when transmit resources are available. 3413 */ 3414static inline void netif_wake_queue(struct net_device *dev) 3415{ 3416 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3417} 3418 3419static inline void netif_tx_wake_all_queues(struct net_device *dev) 3420{ 3421 unsigned int i; 3422 3423 for (i = 0; i < dev->num_tx_queues; i++) { 3424 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3425 netif_tx_wake_queue(txq); 3426 } 3427} 3428 3429static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3430{ 3431 /* Must be an atomic op see netif_txq_try_stop() */ 3432 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3433} 3434 3435/** 3436 * netif_stop_queue - stop transmitted packets 3437 * @dev: network device 3438 * 3439 * Stop upper layers calling the device hard_start_xmit routine. 3440 * Used for flow control when transmit resources are unavailable. 3441 */ 3442static inline void netif_stop_queue(struct net_device *dev) 3443{ 3444 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3445} 3446 3447void netif_tx_stop_all_queues(struct net_device *dev); 3448 3449static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3450{ 3451 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3452} 3453 3454/** 3455 * netif_queue_stopped - test if transmit queue is flowblocked 3456 * @dev: network device 3457 * 3458 * Test if transmit queue on device is currently unable to send. 3459 */ 3460static inline bool netif_queue_stopped(const struct net_device *dev) 3461{ 3462 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3463} 3464 3465static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3466{ 3467 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3468} 3469 3470static inline bool 3471netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3472{ 3473 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3474} 3475 3476static inline bool 3477netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3478{ 3479 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3480} 3481 3482/** 3483 * netdev_queue_set_dql_min_limit - set dql minimum limit 3484 * @dev_queue: pointer to transmit queue 3485 * @min_limit: dql minimum limit 3486 * 3487 * Forces xmit_more() to return true until the minimum threshold 3488 * defined by @min_limit is reached (or until the tx queue is 3489 * empty). Warning: to be use with care, misuse will impact the 3490 * latency. 3491 */ 3492static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue, 3493 unsigned int min_limit) 3494{ 3495#ifdef CONFIG_BQL 3496 dev_queue->dql.min_limit = min_limit; 3497#endif 3498} 3499 3500static inline int netdev_queue_dql_avail(const struct netdev_queue *txq) 3501{ 3502#ifdef CONFIG_BQL 3503 /* Non-BQL migrated drivers will return 0, too. */ 3504 return dql_avail(&txq->dql); 3505#else 3506 return 0; 3507#endif 3508} 3509 3510/** 3511 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3512 * @dev_queue: pointer to transmit queue 3513 * 3514 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3515 * to give appropriate hint to the CPU. 3516 */ 3517static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3518{ 3519#ifdef CONFIG_BQL 3520 prefetchw(&dev_queue->dql.num_queued); 3521#endif 3522} 3523 3524/** 3525 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3526 * @dev_queue: pointer to transmit queue 3527 * 3528 * BQL enabled drivers might use this helper in their TX completion path, 3529 * to give appropriate hint to the CPU. 3530 */ 3531static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3532{ 3533#ifdef CONFIG_BQL 3534 prefetchw(&dev_queue->dql.limit); 3535#endif 3536} 3537 3538/** 3539 * netdev_tx_sent_queue - report the number of bytes queued to a given tx queue 3540 * @dev_queue: network device queue 3541 * @bytes: number of bytes queued to the device queue 3542 * 3543 * Report the number of bytes queued for sending/completion to the network 3544 * device hardware queue. @bytes should be a good approximation and should 3545 * exactly match netdev_completed_queue() @bytes. 3546 * This is typically called once per packet, from ndo_start_xmit(). 3547 */ 3548static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3549 unsigned int bytes) 3550{ 3551#ifdef CONFIG_BQL 3552 dql_queued(&dev_queue->dql, bytes); 3553 3554 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3555 return; 3556 3557 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3558 3559 /* 3560 * The XOFF flag must be set before checking the dql_avail below, 3561 * because in netdev_tx_completed_queue we update the dql_completed 3562 * before checking the XOFF flag. 3563 */ 3564 smp_mb(); 3565 3566 /* check again in case another CPU has just made room avail */ 3567 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3568 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3569#endif 3570} 3571 3572/* Variant of netdev_tx_sent_queue() for drivers that are aware 3573 * that they should not test BQL status themselves. 3574 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last 3575 * skb of a batch. 3576 * Returns true if the doorbell must be used to kick the NIC. 3577 */ 3578static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3579 unsigned int bytes, 3580 bool xmit_more) 3581{ 3582 if (xmit_more) { 3583#ifdef CONFIG_BQL 3584 dql_queued(&dev_queue->dql, bytes); 3585#endif 3586 return netif_tx_queue_stopped(dev_queue); 3587 } 3588 netdev_tx_sent_queue(dev_queue, bytes); 3589 return true; 3590} 3591 3592/** 3593 * netdev_sent_queue - report the number of bytes queued to hardware 3594 * @dev: network device 3595 * @bytes: number of bytes queued to the hardware device queue 3596 * 3597 * Report the number of bytes queued for sending/completion to the network 3598 * device hardware queue#0. @bytes should be a good approximation and should 3599 * exactly match netdev_completed_queue() @bytes. 3600 * This is typically called once per packet, from ndo_start_xmit(). 3601 */ 3602static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3603{ 3604 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3605} 3606 3607static inline bool __netdev_sent_queue(struct net_device *dev, 3608 unsigned int bytes, 3609 bool xmit_more) 3610{ 3611 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes, 3612 xmit_more); 3613} 3614 3615/** 3616 * netdev_tx_completed_queue - report number of packets/bytes at TX completion. 3617 * @dev_queue: network device queue 3618 * @pkts: number of packets (currently ignored) 3619 * @bytes: number of bytes dequeued from the device queue 3620 * 3621 * Must be called at most once per TX completion round (and not per 3622 * individual packet), so that BQL can adjust its limits appropriately. 3623 */ 3624static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3625 unsigned int pkts, unsigned int bytes) 3626{ 3627#ifdef CONFIG_BQL 3628 if (unlikely(!bytes)) 3629 return; 3630 3631 dql_completed(&dev_queue->dql, bytes); 3632 3633 /* 3634 * Without the memory barrier there is a small possiblity that 3635 * netdev_tx_sent_queue will miss the update and cause the queue to 3636 * be stopped forever 3637 */ 3638 smp_mb(); /* NOTE: netdev_txq_completed_mb() assumes this exists */ 3639 3640 if (unlikely(dql_avail(&dev_queue->dql) < 0)) 3641 return; 3642 3643 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3644 netif_schedule_queue(dev_queue); 3645#endif 3646} 3647 3648/** 3649 * netdev_completed_queue - report bytes and packets completed by device 3650 * @dev: network device 3651 * @pkts: actual number of packets sent over the medium 3652 * @bytes: actual number of bytes sent over the medium 3653 * 3654 * Report the number of bytes and packets transmitted by the network device 3655 * hardware queue over the physical medium, @bytes must exactly match the 3656 * @bytes amount passed to netdev_sent_queue() 3657 */ 3658static inline void netdev_completed_queue(struct net_device *dev, 3659 unsigned int pkts, unsigned int bytes) 3660{ 3661 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3662} 3663 3664static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3665{ 3666#ifdef CONFIG_BQL 3667 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3668 dql_reset(&q->dql); 3669#endif 3670} 3671 3672/** 3673 * netdev_reset_queue - reset the packets and bytes count of a network device 3674 * @dev_queue: network device 3675 * 3676 * Reset the bytes and packet count of a network device and clear the 3677 * software flow control OFF bit for this network device 3678 */ 3679static inline void netdev_reset_queue(struct net_device *dev_queue) 3680{ 3681 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3682} 3683 3684/** 3685 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3686 * @dev: network device 3687 * @queue_index: given tx queue index 3688 * 3689 * Returns 0 if given tx queue index >= number of device tx queues, 3690 * otherwise returns the originally passed tx queue index. 3691 */ 3692static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3693{ 3694 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3695 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3696 dev->name, queue_index, 3697 dev->real_num_tx_queues); 3698 return 0; 3699 } 3700 3701 return queue_index; 3702} 3703 3704/** 3705 * netif_running - test if up 3706 * @dev: network device 3707 * 3708 * Test if the device has been brought up. 3709 */ 3710static inline bool netif_running(const struct net_device *dev) 3711{ 3712 return test_bit(__LINK_STATE_START, &dev->state); 3713} 3714 3715/* 3716 * Routines to manage the subqueues on a device. We only need start, 3717 * stop, and a check if it's stopped. All other device management is 3718 * done at the overall netdevice level. 3719 * Also test the device if we're multiqueue. 3720 */ 3721 3722/** 3723 * netif_start_subqueue - allow sending packets on subqueue 3724 * @dev: network device 3725 * @queue_index: sub queue index 3726 * 3727 * Start individual transmit queue of a device with multiple transmit queues. 3728 */ 3729static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3730{ 3731 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3732 3733 netif_tx_start_queue(txq); 3734} 3735 3736/** 3737 * netif_stop_subqueue - stop sending packets on subqueue 3738 * @dev: network device 3739 * @queue_index: sub queue index 3740 * 3741 * Stop individual transmit queue of a device with multiple transmit queues. 3742 */ 3743static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3744{ 3745 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3746 netif_tx_stop_queue(txq); 3747} 3748 3749/** 3750 * __netif_subqueue_stopped - test status of subqueue 3751 * @dev: network device 3752 * @queue_index: sub queue index 3753 * 3754 * Check individual transmit queue of a device with multiple transmit queues. 3755 */ 3756static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3757 u16 queue_index) 3758{ 3759 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3760 3761 return netif_tx_queue_stopped(txq); 3762} 3763 3764/** 3765 * netif_subqueue_stopped - test status of subqueue 3766 * @dev: network device 3767 * @skb: sub queue buffer pointer 3768 * 3769 * Check individual transmit queue of a device with multiple transmit queues. 3770 */ 3771static inline bool netif_subqueue_stopped(const struct net_device *dev, 3772 struct sk_buff *skb) 3773{ 3774 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3775} 3776 3777/** 3778 * netif_wake_subqueue - allow sending packets on subqueue 3779 * @dev: network device 3780 * @queue_index: sub queue index 3781 * 3782 * Resume individual transmit queue of a device with multiple transmit queues. 3783 */ 3784static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3785{ 3786 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3787 3788 netif_tx_wake_queue(txq); 3789} 3790 3791#ifdef CONFIG_XPS 3792int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3793 u16 index); 3794int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 3795 u16 index, enum xps_map_type type); 3796 3797/** 3798 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 3799 * @j: CPU/Rx queue index 3800 * @mask: bitmask of all cpus/rx queues 3801 * @nr_bits: number of bits in the bitmask 3802 * 3803 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 3804 */ 3805static inline bool netif_attr_test_mask(unsigned long j, 3806 const unsigned long *mask, 3807 unsigned int nr_bits) 3808{ 3809 cpu_max_bits_warn(j, nr_bits); 3810 return test_bit(j, mask); 3811} 3812 3813/** 3814 * netif_attr_test_online - Test for online CPU/Rx queue 3815 * @j: CPU/Rx queue index 3816 * @online_mask: bitmask for CPUs/Rx queues that are online 3817 * @nr_bits: number of bits in the bitmask 3818 * 3819 * Returns true if a CPU/Rx queue is online. 3820 */ 3821static inline bool netif_attr_test_online(unsigned long j, 3822 const unsigned long *online_mask, 3823 unsigned int nr_bits) 3824{ 3825 cpu_max_bits_warn(j, nr_bits); 3826 3827 if (online_mask) 3828 return test_bit(j, online_mask); 3829 3830 return (j < nr_bits); 3831} 3832 3833/** 3834 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 3835 * @n: CPU/Rx queue index 3836 * @srcp: the cpumask/Rx queue mask pointer 3837 * @nr_bits: number of bits in the bitmask 3838 * 3839 * Returns >= nr_bits if no further CPUs/Rx queues set. 3840 */ 3841static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 3842 unsigned int nr_bits) 3843{ 3844 /* -1 is a legal arg here. */ 3845 if (n != -1) 3846 cpu_max_bits_warn(n, nr_bits); 3847 3848 if (srcp) 3849 return find_next_bit(srcp, nr_bits, n + 1); 3850 3851 return n + 1; 3852} 3853 3854/** 3855 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p 3856 * @n: CPU/Rx queue index 3857 * @src1p: the first CPUs/Rx queues mask pointer 3858 * @src2p: the second CPUs/Rx queues mask pointer 3859 * @nr_bits: number of bits in the bitmask 3860 * 3861 * Returns >= nr_bits if no further CPUs/Rx queues set in both. 3862 */ 3863static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 3864 const unsigned long *src2p, 3865 unsigned int nr_bits) 3866{ 3867 /* -1 is a legal arg here. */ 3868 if (n != -1) 3869 cpu_max_bits_warn(n, nr_bits); 3870 3871 if (src1p && src2p) 3872 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 3873 else if (src1p) 3874 return find_next_bit(src1p, nr_bits, n + 1); 3875 else if (src2p) 3876 return find_next_bit(src2p, nr_bits, n + 1); 3877 3878 return n + 1; 3879} 3880#else 3881static inline int netif_set_xps_queue(struct net_device *dev, 3882 const struct cpumask *mask, 3883 u16 index) 3884{ 3885 return 0; 3886} 3887 3888static inline int __netif_set_xps_queue(struct net_device *dev, 3889 const unsigned long *mask, 3890 u16 index, enum xps_map_type type) 3891{ 3892 return 0; 3893} 3894#endif 3895 3896/** 3897 * netif_is_multiqueue - test if device has multiple transmit queues 3898 * @dev: network device 3899 * 3900 * Check if device has multiple transmit queues 3901 */ 3902static inline bool netif_is_multiqueue(const struct net_device *dev) 3903{ 3904 return dev->num_tx_queues > 1; 3905} 3906 3907int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3908 3909#ifdef CONFIG_SYSFS 3910int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3911#else 3912static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3913 unsigned int rxqs) 3914{ 3915 dev->real_num_rx_queues = rxqs; 3916 return 0; 3917} 3918#endif 3919int netif_set_real_num_queues(struct net_device *dev, 3920 unsigned int txq, unsigned int rxq); 3921 3922int netif_get_num_default_rss_queues(void); 3923 3924void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason); 3925void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason); 3926 3927/* 3928 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3929 * interrupt context or with hardware interrupts being disabled. 3930 * (in_hardirq() || irqs_disabled()) 3931 * 3932 * We provide four helpers that can be used in following contexts : 3933 * 3934 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3935 * replacing kfree_skb(skb) 3936 * 3937 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3938 * Typically used in place of consume_skb(skb) in TX completion path 3939 * 3940 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3941 * replacing kfree_skb(skb) 3942 * 3943 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3944 * and consumed a packet. Used in place of consume_skb(skb) 3945 */ 3946static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3947{ 3948 dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 3949} 3950 3951static inline void dev_consume_skb_irq(struct sk_buff *skb) 3952{ 3953 dev_kfree_skb_irq_reason(skb, SKB_CONSUMED); 3954} 3955 3956static inline void dev_kfree_skb_any(struct sk_buff *skb) 3957{ 3958 dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 3959} 3960 3961static inline void dev_consume_skb_any(struct sk_buff *skb) 3962{ 3963 dev_kfree_skb_any_reason(skb, SKB_CONSUMED); 3964} 3965 3966u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 3967 struct bpf_prog *xdp_prog); 3968void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3969int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb); 3970int netif_rx(struct sk_buff *skb); 3971int __netif_rx(struct sk_buff *skb); 3972 3973int netif_receive_skb(struct sk_buff *skb); 3974int netif_receive_skb_core(struct sk_buff *skb); 3975void netif_receive_skb_list_internal(struct list_head *head); 3976void netif_receive_skb_list(struct list_head *head); 3977gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3978void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3979struct sk_buff *napi_get_frags(struct napi_struct *napi); 3980void napi_get_frags_check(struct napi_struct *napi); 3981gro_result_t napi_gro_frags(struct napi_struct *napi); 3982struct packet_offload *gro_find_receive_by_type(__be16 type); 3983struct packet_offload *gro_find_complete_by_type(__be16 type); 3984 3985static inline void napi_free_frags(struct napi_struct *napi) 3986{ 3987 kfree_skb(napi->skb); 3988 napi->skb = NULL; 3989} 3990 3991bool netdev_is_rx_handler_busy(struct net_device *dev); 3992int netdev_rx_handler_register(struct net_device *dev, 3993 rx_handler_func_t *rx_handler, 3994 void *rx_handler_data); 3995void netdev_rx_handler_unregister(struct net_device *dev); 3996 3997bool dev_valid_name(const char *name); 3998static inline bool is_socket_ioctl_cmd(unsigned int cmd) 3999{ 4000 return _IOC_TYPE(cmd) == SOCK_IOC_TYPE; 4001} 4002int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg); 4003int put_user_ifreq(struct ifreq *ifr, void __user *arg); 4004int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 4005 void __user *data, bool *need_copyout); 4006int dev_ifconf(struct net *net, struct ifconf __user *ifc); 4007int generic_hwtstamp_get_lower(struct net_device *dev, 4008 struct kernel_hwtstamp_config *kernel_cfg); 4009int generic_hwtstamp_set_lower(struct net_device *dev, 4010 struct kernel_hwtstamp_config *kernel_cfg, 4011 struct netlink_ext_ack *extack); 4012int dev_set_hwtstamp_phylib(struct net_device *dev, 4013 struct kernel_hwtstamp_config *cfg, 4014 struct netlink_ext_ack *extack); 4015int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata); 4016unsigned int dev_get_flags(const struct net_device *); 4017int __dev_change_flags(struct net_device *dev, unsigned int flags, 4018 struct netlink_ext_ack *extack); 4019int dev_change_flags(struct net_device *dev, unsigned int flags, 4020 struct netlink_ext_ack *extack); 4021int dev_set_alias(struct net_device *, const char *, size_t); 4022int dev_get_alias(const struct net_device *, char *, size_t); 4023int __dev_change_net_namespace(struct net_device *dev, struct net *net, 4024 const char *pat, int new_ifindex); 4025static inline 4026int dev_change_net_namespace(struct net_device *dev, struct net *net, 4027 const char *pat) 4028{ 4029 return __dev_change_net_namespace(dev, net, pat, 0); 4030} 4031int __dev_set_mtu(struct net_device *, int); 4032int dev_set_mtu(struct net_device *, int); 4033int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 4034 struct netlink_ext_ack *extack); 4035int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 4036 struct netlink_ext_ack *extack); 4037int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 4038 struct netlink_ext_ack *extack); 4039int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name); 4040int dev_get_port_parent_id(struct net_device *dev, 4041 struct netdev_phys_item_id *ppid, bool recurse); 4042bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b); 4043 4044struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 4045struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 4046 struct netdev_queue *txq, int *ret); 4047 4048int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog); 4049u8 dev_xdp_prog_count(struct net_device *dev); 4050u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode); 4051 4052int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 4053int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 4054int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb); 4055bool is_skb_forwardable(const struct net_device *dev, 4056 const struct sk_buff *skb); 4057 4058static __always_inline bool __is_skb_forwardable(const struct net_device *dev, 4059 const struct sk_buff *skb, 4060 const bool check_mtu) 4061{ 4062 const u32 vlan_hdr_len = 4; /* VLAN_HLEN */ 4063 unsigned int len; 4064 4065 if (!(dev->flags & IFF_UP)) 4066 return false; 4067 4068 if (!check_mtu) 4069 return true; 4070 4071 len = dev->mtu + dev->hard_header_len + vlan_hdr_len; 4072 if (skb->len <= len) 4073 return true; 4074 4075 /* if TSO is enabled, we don't care about the length as the packet 4076 * could be forwarded without being segmented before 4077 */ 4078 if (skb_is_gso(skb)) 4079 return true; 4080 4081 return false; 4082} 4083 4084void netdev_core_stats_inc(struct net_device *dev, u32 offset); 4085 4086#define DEV_CORE_STATS_INC(FIELD) \ 4087static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev) \ 4088{ \ 4089 netdev_core_stats_inc(dev, \ 4090 offsetof(struct net_device_core_stats, FIELD)); \ 4091} 4092DEV_CORE_STATS_INC(rx_dropped) 4093DEV_CORE_STATS_INC(tx_dropped) 4094DEV_CORE_STATS_INC(rx_nohandler) 4095DEV_CORE_STATS_INC(rx_otherhost_dropped) 4096#undef DEV_CORE_STATS_INC 4097 4098static __always_inline int ____dev_forward_skb(struct net_device *dev, 4099 struct sk_buff *skb, 4100 const bool check_mtu) 4101{ 4102 if (skb_orphan_frags(skb, GFP_ATOMIC) || 4103 unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) { 4104 dev_core_stats_rx_dropped_inc(dev); 4105 kfree_skb(skb); 4106 return NET_RX_DROP; 4107 } 4108 4109 skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev))); 4110 skb->priority = 0; 4111 return 0; 4112} 4113 4114bool dev_nit_active(struct net_device *dev); 4115void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 4116 4117static inline void __dev_put(struct net_device *dev) 4118{ 4119 if (dev) { 4120#ifdef CONFIG_PCPU_DEV_REFCNT 4121 this_cpu_dec(*dev->pcpu_refcnt); 4122#else 4123 refcount_dec(&dev->dev_refcnt); 4124#endif 4125 } 4126} 4127 4128static inline void __dev_hold(struct net_device *dev) 4129{ 4130 if (dev) { 4131#ifdef CONFIG_PCPU_DEV_REFCNT 4132 this_cpu_inc(*dev->pcpu_refcnt); 4133#else 4134 refcount_inc(&dev->dev_refcnt); 4135#endif 4136 } 4137} 4138 4139static inline void __netdev_tracker_alloc(struct net_device *dev, 4140 netdevice_tracker *tracker, 4141 gfp_t gfp) 4142{ 4143#ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4144 ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp); 4145#endif 4146} 4147 4148/* netdev_tracker_alloc() can upgrade a prior untracked reference 4149 * taken by dev_get_by_name()/dev_get_by_index() to a tracked one. 4150 */ 4151static inline void netdev_tracker_alloc(struct net_device *dev, 4152 netdevice_tracker *tracker, gfp_t gfp) 4153{ 4154#ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4155 refcount_dec(&dev->refcnt_tracker.no_tracker); 4156 __netdev_tracker_alloc(dev, tracker, gfp); 4157#endif 4158} 4159 4160static inline void netdev_tracker_free(struct net_device *dev, 4161 netdevice_tracker *tracker) 4162{ 4163#ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4164 ref_tracker_free(&dev->refcnt_tracker, tracker); 4165#endif 4166} 4167 4168static inline void netdev_hold(struct net_device *dev, 4169 netdevice_tracker *tracker, gfp_t gfp) 4170{ 4171 if (dev) { 4172 __dev_hold(dev); 4173 __netdev_tracker_alloc(dev, tracker, gfp); 4174 } 4175} 4176 4177static inline void netdev_put(struct net_device *dev, 4178 netdevice_tracker *tracker) 4179{ 4180 if (dev) { 4181 netdev_tracker_free(dev, tracker); 4182 __dev_put(dev); 4183 } 4184} 4185 4186/** 4187 * dev_hold - get reference to device 4188 * @dev: network device 4189 * 4190 * Hold reference to device to keep it from being freed. 4191 * Try using netdev_hold() instead. 4192 */ 4193static inline void dev_hold(struct net_device *dev) 4194{ 4195 netdev_hold(dev, NULL, GFP_ATOMIC); 4196} 4197 4198/** 4199 * dev_put - release reference to device 4200 * @dev: network device 4201 * 4202 * Release reference to device to allow it to be freed. 4203 * Try using netdev_put() instead. 4204 */ 4205static inline void dev_put(struct net_device *dev) 4206{ 4207 netdev_put(dev, NULL); 4208} 4209 4210static inline void netdev_ref_replace(struct net_device *odev, 4211 struct net_device *ndev, 4212 netdevice_tracker *tracker, 4213 gfp_t gfp) 4214{ 4215 if (odev) 4216 netdev_tracker_free(odev, tracker); 4217 4218 __dev_hold(ndev); 4219 __dev_put(odev); 4220 4221 if (ndev) 4222 __netdev_tracker_alloc(ndev, tracker, gfp); 4223} 4224 4225/* Carrier loss detection, dial on demand. The functions netif_carrier_on 4226 * and _off may be called from IRQ context, but it is caller 4227 * who is responsible for serialization of these calls. 4228 * 4229 * The name carrier is inappropriate, these functions should really be 4230 * called netif_lowerlayer_*() because they represent the state of any 4231 * kind of lower layer not just hardware media. 4232 */ 4233void linkwatch_fire_event(struct net_device *dev); 4234 4235/** 4236 * linkwatch_sync_dev - sync linkwatch for the given device 4237 * @dev: network device to sync linkwatch for 4238 * 4239 * Sync linkwatch for the given device, removing it from the 4240 * pending work list (if queued). 4241 */ 4242void linkwatch_sync_dev(struct net_device *dev); 4243 4244/** 4245 * netif_carrier_ok - test if carrier present 4246 * @dev: network device 4247 * 4248 * Check if carrier is present on device 4249 */ 4250static inline bool netif_carrier_ok(const struct net_device *dev) 4251{ 4252 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 4253} 4254 4255unsigned long dev_trans_start(struct net_device *dev); 4256 4257void __netdev_watchdog_up(struct net_device *dev); 4258 4259void netif_carrier_on(struct net_device *dev); 4260void netif_carrier_off(struct net_device *dev); 4261void netif_carrier_event(struct net_device *dev); 4262 4263/** 4264 * netif_dormant_on - mark device as dormant. 4265 * @dev: network device 4266 * 4267 * Mark device as dormant (as per RFC2863). 4268 * 4269 * The dormant state indicates that the relevant interface is not 4270 * actually in a condition to pass packets (i.e., it is not 'up') but is 4271 * in a "pending" state, waiting for some external event. For "on- 4272 * demand" interfaces, this new state identifies the situation where the 4273 * interface is waiting for events to place it in the up state. 4274 */ 4275static inline void netif_dormant_on(struct net_device *dev) 4276{ 4277 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 4278 linkwatch_fire_event(dev); 4279} 4280 4281/** 4282 * netif_dormant_off - set device as not dormant. 4283 * @dev: network device 4284 * 4285 * Device is not in dormant state. 4286 */ 4287static inline void netif_dormant_off(struct net_device *dev) 4288{ 4289 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 4290 linkwatch_fire_event(dev); 4291} 4292 4293/** 4294 * netif_dormant - test if device is dormant 4295 * @dev: network device 4296 * 4297 * Check if device is dormant. 4298 */ 4299static inline bool netif_dormant(const struct net_device *dev) 4300{ 4301 return test_bit(__LINK_STATE_DORMANT, &dev->state); 4302} 4303 4304 4305/** 4306 * netif_testing_on - mark device as under test. 4307 * @dev: network device 4308 * 4309 * Mark device as under test (as per RFC2863). 4310 * 4311 * The testing state indicates that some test(s) must be performed on 4312 * the interface. After completion, of the test, the interface state 4313 * will change to up, dormant, or down, as appropriate. 4314 */ 4315static inline void netif_testing_on(struct net_device *dev) 4316{ 4317 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state)) 4318 linkwatch_fire_event(dev); 4319} 4320 4321/** 4322 * netif_testing_off - set device as not under test. 4323 * @dev: network device 4324 * 4325 * Device is not in testing state. 4326 */ 4327static inline void netif_testing_off(struct net_device *dev) 4328{ 4329 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state)) 4330 linkwatch_fire_event(dev); 4331} 4332 4333/** 4334 * netif_testing - test if device is under test 4335 * @dev: network device 4336 * 4337 * Check if device is under test 4338 */ 4339static inline bool netif_testing(const struct net_device *dev) 4340{ 4341 return test_bit(__LINK_STATE_TESTING, &dev->state); 4342} 4343 4344 4345/** 4346 * netif_oper_up - test if device is operational 4347 * @dev: network device 4348 * 4349 * Check if carrier is operational 4350 */ 4351static inline bool netif_oper_up(const struct net_device *dev) 4352{ 4353 return (dev->operstate == IF_OPER_UP || 4354 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 4355} 4356 4357/** 4358 * netif_device_present - is device available or removed 4359 * @dev: network device 4360 * 4361 * Check if device has not been removed from system. 4362 */ 4363static inline bool netif_device_present(const struct net_device *dev) 4364{ 4365 return test_bit(__LINK_STATE_PRESENT, &dev->state); 4366} 4367 4368void netif_device_detach(struct net_device *dev); 4369 4370void netif_device_attach(struct net_device *dev); 4371 4372/* 4373 * Network interface message level settings 4374 */ 4375 4376enum { 4377 NETIF_MSG_DRV_BIT, 4378 NETIF_MSG_PROBE_BIT, 4379 NETIF_MSG_LINK_BIT, 4380 NETIF_MSG_TIMER_BIT, 4381 NETIF_MSG_IFDOWN_BIT, 4382 NETIF_MSG_IFUP_BIT, 4383 NETIF_MSG_RX_ERR_BIT, 4384 NETIF_MSG_TX_ERR_BIT, 4385 NETIF_MSG_TX_QUEUED_BIT, 4386 NETIF_MSG_INTR_BIT, 4387 NETIF_MSG_TX_DONE_BIT, 4388 NETIF_MSG_RX_STATUS_BIT, 4389 NETIF_MSG_PKTDATA_BIT, 4390 NETIF_MSG_HW_BIT, 4391 NETIF_MSG_WOL_BIT, 4392 4393 /* When you add a new bit above, update netif_msg_class_names array 4394 * in net/ethtool/common.c 4395 */ 4396 NETIF_MSG_CLASS_COUNT, 4397}; 4398/* Both ethtool_ops interface and internal driver implementation use u32 */ 4399static_assert(NETIF_MSG_CLASS_COUNT <= 32); 4400 4401#define __NETIF_MSG_BIT(bit) ((u32)1 << (bit)) 4402#define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT) 4403 4404#define NETIF_MSG_DRV __NETIF_MSG(DRV) 4405#define NETIF_MSG_PROBE __NETIF_MSG(PROBE) 4406#define NETIF_MSG_LINK __NETIF_MSG(LINK) 4407#define NETIF_MSG_TIMER __NETIF_MSG(TIMER) 4408#define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN) 4409#define NETIF_MSG_IFUP __NETIF_MSG(IFUP) 4410#define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR) 4411#define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR) 4412#define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED) 4413#define NETIF_MSG_INTR __NETIF_MSG(INTR) 4414#define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE) 4415#define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS) 4416#define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA) 4417#define NETIF_MSG_HW __NETIF_MSG(HW) 4418#define NETIF_MSG_WOL __NETIF_MSG(WOL) 4419 4420#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 4421#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 4422#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 4423#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 4424#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 4425#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 4426#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 4427#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 4428#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 4429#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 4430#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 4431#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 4432#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 4433#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 4434#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 4435 4436static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 4437{ 4438 /* use default */ 4439 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 4440 return default_msg_enable_bits; 4441 if (debug_value == 0) /* no output */ 4442 return 0; 4443 /* set low N bits */ 4444 return (1U << debug_value) - 1; 4445} 4446 4447static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 4448{ 4449 spin_lock(&txq->_xmit_lock); 4450 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4451 WRITE_ONCE(txq->xmit_lock_owner, cpu); 4452} 4453 4454static inline bool __netif_tx_acquire(struct netdev_queue *txq) 4455{ 4456 __acquire(&txq->_xmit_lock); 4457 return true; 4458} 4459 4460static inline void __netif_tx_release(struct netdev_queue *txq) 4461{ 4462 __release(&txq->_xmit_lock); 4463} 4464 4465static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 4466{ 4467 spin_lock_bh(&txq->_xmit_lock); 4468 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4469 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4470} 4471 4472static inline bool __netif_tx_trylock(struct netdev_queue *txq) 4473{ 4474 bool ok = spin_trylock(&txq->_xmit_lock); 4475 4476 if (likely(ok)) { 4477 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4478 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4479 } 4480 return ok; 4481} 4482 4483static inline void __netif_tx_unlock(struct netdev_queue *txq) 4484{ 4485 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4486 WRITE_ONCE(txq->xmit_lock_owner, -1); 4487 spin_unlock(&txq->_xmit_lock); 4488} 4489 4490static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 4491{ 4492 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4493 WRITE_ONCE(txq->xmit_lock_owner, -1); 4494 spin_unlock_bh(&txq->_xmit_lock); 4495} 4496 4497/* 4498 * txq->trans_start can be read locklessly from dev_watchdog() 4499 */ 4500static inline void txq_trans_update(struct netdev_queue *txq) 4501{ 4502 if (txq->xmit_lock_owner != -1) 4503 WRITE_ONCE(txq->trans_start, jiffies); 4504} 4505 4506static inline void txq_trans_cond_update(struct netdev_queue *txq) 4507{ 4508 unsigned long now = jiffies; 4509 4510 if (READ_ONCE(txq->trans_start) != now) 4511 WRITE_ONCE(txq->trans_start, now); 4512} 4513 4514/* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 4515static inline void netif_trans_update(struct net_device *dev) 4516{ 4517 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 4518 4519 txq_trans_cond_update(txq); 4520} 4521 4522/** 4523 * netif_tx_lock - grab network device transmit lock 4524 * @dev: network device 4525 * 4526 * Get network device transmit lock 4527 */ 4528void netif_tx_lock(struct net_device *dev); 4529 4530static inline void netif_tx_lock_bh(struct net_device *dev) 4531{ 4532 local_bh_disable(); 4533 netif_tx_lock(dev); 4534} 4535 4536void netif_tx_unlock(struct net_device *dev); 4537 4538static inline void netif_tx_unlock_bh(struct net_device *dev) 4539{ 4540 netif_tx_unlock(dev); 4541 local_bh_enable(); 4542} 4543 4544#define HARD_TX_LOCK(dev, txq, cpu) { \ 4545 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4546 __netif_tx_lock(txq, cpu); \ 4547 } else { \ 4548 __netif_tx_acquire(txq); \ 4549 } \ 4550} 4551 4552#define HARD_TX_TRYLOCK(dev, txq) \ 4553 (((dev->features & NETIF_F_LLTX) == 0) ? \ 4554 __netif_tx_trylock(txq) : \ 4555 __netif_tx_acquire(txq)) 4556 4557#define HARD_TX_UNLOCK(dev, txq) { \ 4558 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4559 __netif_tx_unlock(txq); \ 4560 } else { \ 4561 __netif_tx_release(txq); \ 4562 } \ 4563} 4564 4565static inline void netif_tx_disable(struct net_device *dev) 4566{ 4567 unsigned int i; 4568 int cpu; 4569 4570 local_bh_disable(); 4571 cpu = smp_processor_id(); 4572 spin_lock(&dev->tx_global_lock); 4573 for (i = 0; i < dev->num_tx_queues; i++) { 4574 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4575 4576 __netif_tx_lock(txq, cpu); 4577 netif_tx_stop_queue(txq); 4578 __netif_tx_unlock(txq); 4579 } 4580 spin_unlock(&dev->tx_global_lock); 4581 local_bh_enable(); 4582} 4583 4584static inline void netif_addr_lock(struct net_device *dev) 4585{ 4586 unsigned char nest_level = 0; 4587 4588#ifdef CONFIG_LOCKDEP 4589 nest_level = dev->nested_level; 4590#endif 4591 spin_lock_nested(&dev->addr_list_lock, nest_level); 4592} 4593 4594static inline void netif_addr_lock_bh(struct net_device *dev) 4595{ 4596 unsigned char nest_level = 0; 4597 4598#ifdef CONFIG_LOCKDEP 4599 nest_level = dev->nested_level; 4600#endif 4601 local_bh_disable(); 4602 spin_lock_nested(&dev->addr_list_lock, nest_level); 4603} 4604 4605static inline void netif_addr_unlock(struct net_device *dev) 4606{ 4607 spin_unlock(&dev->addr_list_lock); 4608} 4609 4610static inline void netif_addr_unlock_bh(struct net_device *dev) 4611{ 4612 spin_unlock_bh(&dev->addr_list_lock); 4613} 4614 4615/* 4616 * dev_addrs walker. Should be used only for read access. Call with 4617 * rcu_read_lock held. 4618 */ 4619#define for_each_dev_addr(dev, ha) \ 4620 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 4621 4622/* These functions live elsewhere (drivers/net/net_init.c, but related) */ 4623 4624void ether_setup(struct net_device *dev); 4625 4626/* Support for loadable net-drivers */ 4627struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 4628 unsigned char name_assign_type, 4629 void (*setup)(struct net_device *), 4630 unsigned int txqs, unsigned int rxqs); 4631#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 4632 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 4633 4634#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 4635 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 4636 count) 4637 4638int register_netdev(struct net_device *dev); 4639void unregister_netdev(struct net_device *dev); 4640 4641int devm_register_netdev(struct device *dev, struct net_device *ndev); 4642 4643/* General hardware address lists handling functions */ 4644int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4645 struct netdev_hw_addr_list *from_list, int addr_len); 4646void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4647 struct netdev_hw_addr_list *from_list, int addr_len); 4648int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4649 struct net_device *dev, 4650 int (*sync)(struct net_device *, const unsigned char *), 4651 int (*unsync)(struct net_device *, 4652 const unsigned char *)); 4653int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list, 4654 struct net_device *dev, 4655 int (*sync)(struct net_device *, 4656 const unsigned char *, int), 4657 int (*unsync)(struct net_device *, 4658 const unsigned char *, int)); 4659void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list, 4660 struct net_device *dev, 4661 int (*unsync)(struct net_device *, 4662 const unsigned char *, int)); 4663void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4664 struct net_device *dev, 4665 int (*unsync)(struct net_device *, 4666 const unsigned char *)); 4667void __hw_addr_init(struct netdev_hw_addr_list *list); 4668 4669/* Functions used for device addresses handling */ 4670void dev_addr_mod(struct net_device *dev, unsigned int offset, 4671 const void *addr, size_t len); 4672 4673static inline void 4674__dev_addr_set(struct net_device *dev, const void *addr, size_t len) 4675{ 4676 dev_addr_mod(dev, 0, addr, len); 4677} 4678 4679static inline void dev_addr_set(struct net_device *dev, const u8 *addr) 4680{ 4681 __dev_addr_set(dev, addr, dev->addr_len); 4682} 4683 4684int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4685 unsigned char addr_type); 4686int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4687 unsigned char addr_type); 4688 4689/* Functions used for unicast addresses handling */ 4690int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4691int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4692int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4693int dev_uc_sync(struct net_device *to, struct net_device *from); 4694int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4695void dev_uc_unsync(struct net_device *to, struct net_device *from); 4696void dev_uc_flush(struct net_device *dev); 4697void dev_uc_init(struct net_device *dev); 4698 4699/** 4700 * __dev_uc_sync - Synchonize device's unicast list 4701 * @dev: device to sync 4702 * @sync: function to call if address should be added 4703 * @unsync: function to call if address should be removed 4704 * 4705 * Add newly added addresses to the interface, and release 4706 * addresses that have been deleted. 4707 */ 4708static inline int __dev_uc_sync(struct net_device *dev, 4709 int (*sync)(struct net_device *, 4710 const unsigned char *), 4711 int (*unsync)(struct net_device *, 4712 const unsigned char *)) 4713{ 4714 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4715} 4716 4717/** 4718 * __dev_uc_unsync - Remove synchronized addresses from device 4719 * @dev: device to sync 4720 * @unsync: function to call if address should be removed 4721 * 4722 * Remove all addresses that were added to the device by dev_uc_sync(). 4723 */ 4724static inline void __dev_uc_unsync(struct net_device *dev, 4725 int (*unsync)(struct net_device *, 4726 const unsigned char *)) 4727{ 4728 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 4729} 4730 4731/* Functions used for multicast addresses handling */ 4732int dev_mc_add(struct net_device *dev, const unsigned char *addr); 4733int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 4734int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 4735int dev_mc_del(struct net_device *dev, const unsigned char *addr); 4736int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 4737int dev_mc_sync(struct net_device *to, struct net_device *from); 4738int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 4739void dev_mc_unsync(struct net_device *to, struct net_device *from); 4740void dev_mc_flush(struct net_device *dev); 4741void dev_mc_init(struct net_device *dev); 4742 4743/** 4744 * __dev_mc_sync - Synchonize device's multicast list 4745 * @dev: device to sync 4746 * @sync: function to call if address should be added 4747 * @unsync: function to call if address should be removed 4748 * 4749 * Add newly added addresses to the interface, and release 4750 * addresses that have been deleted. 4751 */ 4752static inline int __dev_mc_sync(struct net_device *dev, 4753 int (*sync)(struct net_device *, 4754 const unsigned char *), 4755 int (*unsync)(struct net_device *, 4756 const unsigned char *)) 4757{ 4758 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 4759} 4760 4761/** 4762 * __dev_mc_unsync - Remove synchronized addresses from device 4763 * @dev: device to sync 4764 * @unsync: function to call if address should be removed 4765 * 4766 * Remove all addresses that were added to the device by dev_mc_sync(). 4767 */ 4768static inline void __dev_mc_unsync(struct net_device *dev, 4769 int (*unsync)(struct net_device *, 4770 const unsigned char *)) 4771{ 4772 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 4773} 4774 4775/* Functions used for secondary unicast and multicast support */ 4776void dev_set_rx_mode(struct net_device *dev); 4777int dev_set_promiscuity(struct net_device *dev, int inc); 4778int dev_set_allmulti(struct net_device *dev, int inc); 4779void netdev_state_change(struct net_device *dev); 4780void __netdev_notify_peers(struct net_device *dev); 4781void netdev_notify_peers(struct net_device *dev); 4782void netdev_features_change(struct net_device *dev); 4783/* Load a device via the kmod */ 4784void dev_load(struct net *net, const char *name); 4785struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 4786 struct rtnl_link_stats64 *storage); 4787void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 4788 const struct net_device_stats *netdev_stats); 4789void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 4790 const struct pcpu_sw_netstats __percpu *netstats); 4791void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s); 4792 4793extern int netdev_max_backlog; 4794extern int dev_rx_weight; 4795extern int dev_tx_weight; 4796extern int gro_normal_batch; 4797 4798enum { 4799 NESTED_SYNC_IMM_BIT, 4800 NESTED_SYNC_TODO_BIT, 4801}; 4802 4803#define __NESTED_SYNC_BIT(bit) ((u32)1 << (bit)) 4804#define __NESTED_SYNC(name) __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT) 4805 4806#define NESTED_SYNC_IMM __NESTED_SYNC(IMM) 4807#define NESTED_SYNC_TODO __NESTED_SYNC(TODO) 4808 4809struct netdev_nested_priv { 4810 unsigned char flags; 4811 void *data; 4812}; 4813 4814bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 4815struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4816 struct list_head **iter); 4817 4818/* iterate through upper list, must be called under RCU read lock */ 4819#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 4820 for (iter = &(dev)->adj_list.upper, \ 4821 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 4822 updev; \ 4823 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 4824 4825int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 4826 int (*fn)(struct net_device *upper_dev, 4827 struct netdev_nested_priv *priv), 4828 struct netdev_nested_priv *priv); 4829 4830bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 4831 struct net_device *upper_dev); 4832 4833bool netdev_has_any_upper_dev(struct net_device *dev); 4834 4835void *netdev_lower_get_next_private(struct net_device *dev, 4836 struct list_head **iter); 4837void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4838 struct list_head **iter); 4839 4840#define netdev_for_each_lower_private(dev, priv, iter) \ 4841 for (iter = (dev)->adj_list.lower.next, \ 4842 priv = netdev_lower_get_next_private(dev, &(iter)); \ 4843 priv; \ 4844 priv = netdev_lower_get_next_private(dev, &(iter))) 4845 4846#define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 4847 for (iter = &(dev)->adj_list.lower, \ 4848 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 4849 priv; \ 4850 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 4851 4852void *netdev_lower_get_next(struct net_device *dev, 4853 struct list_head **iter); 4854 4855#define netdev_for_each_lower_dev(dev, ldev, iter) \ 4856 for (iter = (dev)->adj_list.lower.next, \ 4857 ldev = netdev_lower_get_next(dev, &(iter)); \ 4858 ldev; \ 4859 ldev = netdev_lower_get_next(dev, &(iter))) 4860 4861struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 4862 struct list_head **iter); 4863int netdev_walk_all_lower_dev(struct net_device *dev, 4864 int (*fn)(struct net_device *lower_dev, 4865 struct netdev_nested_priv *priv), 4866 struct netdev_nested_priv *priv); 4867int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 4868 int (*fn)(struct net_device *lower_dev, 4869 struct netdev_nested_priv *priv), 4870 struct netdev_nested_priv *priv); 4871 4872void *netdev_adjacent_get_private(struct list_head *adj_list); 4873void *netdev_lower_get_first_private_rcu(struct net_device *dev); 4874struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 4875struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 4876int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 4877 struct netlink_ext_ack *extack); 4878int netdev_master_upper_dev_link(struct net_device *dev, 4879 struct net_device *upper_dev, 4880 void *upper_priv, void *upper_info, 4881 struct netlink_ext_ack *extack); 4882void netdev_upper_dev_unlink(struct net_device *dev, 4883 struct net_device *upper_dev); 4884int netdev_adjacent_change_prepare(struct net_device *old_dev, 4885 struct net_device *new_dev, 4886 struct net_device *dev, 4887 struct netlink_ext_ack *extack); 4888void netdev_adjacent_change_commit(struct net_device *old_dev, 4889 struct net_device *new_dev, 4890 struct net_device *dev); 4891void netdev_adjacent_change_abort(struct net_device *old_dev, 4892 struct net_device *new_dev, 4893 struct net_device *dev); 4894void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4895void *netdev_lower_dev_get_private(struct net_device *dev, 4896 struct net_device *lower_dev); 4897void netdev_lower_state_changed(struct net_device *lower_dev, 4898 void *lower_state_info); 4899 4900/* RSS keys are 40 or 52 bytes long */ 4901#define NETDEV_RSS_KEY_LEN 52 4902extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4903void netdev_rss_key_fill(void *buffer, size_t len); 4904 4905int skb_checksum_help(struct sk_buff *skb); 4906int skb_crc32c_csum_help(struct sk_buff *skb); 4907int skb_csum_hwoffload_help(struct sk_buff *skb, 4908 const netdev_features_t features); 4909 4910struct netdev_bonding_info { 4911 ifslave slave; 4912 ifbond master; 4913}; 4914 4915struct netdev_notifier_bonding_info { 4916 struct netdev_notifier_info info; /* must be first */ 4917 struct netdev_bonding_info bonding_info; 4918}; 4919 4920void netdev_bonding_info_change(struct net_device *dev, 4921 struct netdev_bonding_info *bonding_info); 4922 4923#if IS_ENABLED(CONFIG_ETHTOOL_NETLINK) 4924void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data); 4925#else 4926static inline void ethtool_notify(struct net_device *dev, unsigned int cmd, 4927 const void *data) 4928{ 4929} 4930#endif 4931 4932__be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4933 4934static inline bool can_checksum_protocol(netdev_features_t features, 4935 __be16 protocol) 4936{ 4937 if (protocol == htons(ETH_P_FCOE)) 4938 return !!(features & NETIF_F_FCOE_CRC); 4939 4940 /* Assume this is an IP checksum (not SCTP CRC) */ 4941 4942 if (features & NETIF_F_HW_CSUM) { 4943 /* Can checksum everything */ 4944 return true; 4945 } 4946 4947 switch (protocol) { 4948 case htons(ETH_P_IP): 4949 return !!(features & NETIF_F_IP_CSUM); 4950 case htons(ETH_P_IPV6): 4951 return !!(features & NETIF_F_IPV6_CSUM); 4952 default: 4953 return false; 4954 } 4955} 4956 4957#ifdef CONFIG_BUG 4958void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb); 4959#else 4960static inline void netdev_rx_csum_fault(struct net_device *dev, 4961 struct sk_buff *skb) 4962{ 4963} 4964#endif 4965/* rx skb timestamps */ 4966void net_enable_timestamp(void); 4967void net_disable_timestamp(void); 4968 4969static inline ktime_t netdev_get_tstamp(struct net_device *dev, 4970 const struct skb_shared_hwtstamps *hwtstamps, 4971 bool cycles) 4972{ 4973 const struct net_device_ops *ops = dev->netdev_ops; 4974 4975 if (ops->ndo_get_tstamp) 4976 return ops->ndo_get_tstamp(dev, hwtstamps, cycles); 4977 4978 return hwtstamps->hwtstamp; 4979} 4980 4981static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4982 struct sk_buff *skb, struct net_device *dev, 4983 bool more) 4984{ 4985 __this_cpu_write(softnet_data.xmit.more, more); 4986 return ops->ndo_start_xmit(skb, dev); 4987} 4988 4989static inline bool netdev_xmit_more(void) 4990{ 4991 return __this_cpu_read(softnet_data.xmit.more); 4992} 4993 4994static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4995 struct netdev_queue *txq, bool more) 4996{ 4997 const struct net_device_ops *ops = dev->netdev_ops; 4998 netdev_tx_t rc; 4999 5000 rc = __netdev_start_xmit(ops, skb, dev, more); 5001 if (rc == NETDEV_TX_OK) 5002 txq_trans_update(txq); 5003 5004 return rc; 5005} 5006 5007int netdev_class_create_file_ns(const struct class_attribute *class_attr, 5008 const void *ns); 5009void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 5010 const void *ns); 5011 5012extern const struct kobj_ns_type_operations net_ns_type_operations; 5013 5014const char *netdev_drivername(const struct net_device *dev); 5015 5016static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 5017 netdev_features_t f2) 5018{ 5019 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 5020 if (f1 & NETIF_F_HW_CSUM) 5021 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5022 else 5023 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5024 } 5025 5026 return f1 & f2; 5027} 5028 5029static inline netdev_features_t netdev_get_wanted_features( 5030 struct net_device *dev) 5031{ 5032 return (dev->features & ~dev->hw_features) | dev->wanted_features; 5033} 5034netdev_features_t netdev_increment_features(netdev_features_t all, 5035 netdev_features_t one, netdev_features_t mask); 5036 5037/* Allow TSO being used on stacked device : 5038 * Performing the GSO segmentation before last device 5039 * is a performance improvement. 5040 */ 5041static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 5042 netdev_features_t mask) 5043{ 5044 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 5045} 5046 5047int __netdev_update_features(struct net_device *dev); 5048void netdev_update_features(struct net_device *dev); 5049void netdev_change_features(struct net_device *dev); 5050 5051void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5052 struct net_device *dev); 5053 5054netdev_features_t passthru_features_check(struct sk_buff *skb, 5055 struct net_device *dev, 5056 netdev_features_t features); 5057netdev_features_t netif_skb_features(struct sk_buff *skb); 5058void skb_warn_bad_offload(const struct sk_buff *skb); 5059 5060static inline bool net_gso_ok(netdev_features_t features, int gso_type) 5061{ 5062 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 5063 5064 /* check flags correspondence */ 5065 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 5066 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 5067 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 5068 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 5069 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 5070 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 5071 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 5072 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 5073 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 5074 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 5075 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 5076 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 5077 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 5078 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 5079 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 5080 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 5081 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 5082 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 5083 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT)); 5084 5085 return (features & feature) == feature; 5086} 5087 5088static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 5089{ 5090 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 5091 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 5092} 5093 5094static inline bool netif_needs_gso(struct sk_buff *skb, 5095 netdev_features_t features) 5096{ 5097 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 5098 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 5099 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 5100} 5101 5102void netif_set_tso_max_size(struct net_device *dev, unsigned int size); 5103void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs); 5104void netif_inherit_tso_max(struct net_device *to, 5105 const struct net_device *from); 5106 5107static inline bool netif_is_macsec(const struct net_device *dev) 5108{ 5109 return dev->priv_flags & IFF_MACSEC; 5110} 5111 5112static inline bool netif_is_macvlan(const struct net_device *dev) 5113{ 5114 return dev->priv_flags & IFF_MACVLAN; 5115} 5116 5117static inline bool netif_is_macvlan_port(const struct net_device *dev) 5118{ 5119 return dev->priv_flags & IFF_MACVLAN_PORT; 5120} 5121 5122static inline bool netif_is_bond_master(const struct net_device *dev) 5123{ 5124 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 5125} 5126 5127static inline bool netif_is_bond_slave(const struct net_device *dev) 5128{ 5129 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 5130} 5131 5132static inline bool netif_supports_nofcs(struct net_device *dev) 5133{ 5134 return dev->priv_flags & IFF_SUPP_NOFCS; 5135} 5136 5137static inline bool netif_has_l3_rx_handler(const struct net_device *dev) 5138{ 5139 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER; 5140} 5141 5142static inline bool netif_is_l3_master(const struct net_device *dev) 5143{ 5144 return dev->priv_flags & IFF_L3MDEV_MASTER; 5145} 5146 5147static inline bool netif_is_l3_slave(const struct net_device *dev) 5148{ 5149 return dev->priv_flags & IFF_L3MDEV_SLAVE; 5150} 5151 5152static inline int dev_sdif(const struct net_device *dev) 5153{ 5154#ifdef CONFIG_NET_L3_MASTER_DEV 5155 if (netif_is_l3_slave(dev)) 5156 return dev->ifindex; 5157#endif 5158 return 0; 5159} 5160 5161static inline bool netif_is_bridge_master(const struct net_device *dev) 5162{ 5163 return dev->priv_flags & IFF_EBRIDGE; 5164} 5165 5166static inline bool netif_is_bridge_port(const struct net_device *dev) 5167{ 5168 return dev->priv_flags & IFF_BRIDGE_PORT; 5169} 5170 5171static inline bool netif_is_ovs_master(const struct net_device *dev) 5172{ 5173 return dev->priv_flags & IFF_OPENVSWITCH; 5174} 5175 5176static inline bool netif_is_ovs_port(const struct net_device *dev) 5177{ 5178 return dev->priv_flags & IFF_OVS_DATAPATH; 5179} 5180 5181static inline bool netif_is_any_bridge_master(const struct net_device *dev) 5182{ 5183 return netif_is_bridge_master(dev) || netif_is_ovs_master(dev); 5184} 5185 5186static inline bool netif_is_any_bridge_port(const struct net_device *dev) 5187{ 5188 return netif_is_bridge_port(dev) || netif_is_ovs_port(dev); 5189} 5190 5191static inline bool netif_is_team_master(const struct net_device *dev) 5192{ 5193 return dev->priv_flags & IFF_TEAM; 5194} 5195 5196static inline bool netif_is_team_port(const struct net_device *dev) 5197{ 5198 return dev->priv_flags & IFF_TEAM_PORT; 5199} 5200 5201static inline bool netif_is_lag_master(const struct net_device *dev) 5202{ 5203 return netif_is_bond_master(dev) || netif_is_team_master(dev); 5204} 5205 5206static inline bool netif_is_lag_port(const struct net_device *dev) 5207{ 5208 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 5209} 5210 5211static inline bool netif_is_rxfh_configured(const struct net_device *dev) 5212{ 5213 return dev->priv_flags & IFF_RXFH_CONFIGURED; 5214} 5215 5216static inline bool netif_is_failover(const struct net_device *dev) 5217{ 5218 return dev->priv_flags & IFF_FAILOVER; 5219} 5220 5221static inline bool netif_is_failover_slave(const struct net_device *dev) 5222{ 5223 return dev->priv_flags & IFF_FAILOVER_SLAVE; 5224} 5225 5226/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 5227static inline void netif_keep_dst(struct net_device *dev) 5228{ 5229 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 5230} 5231 5232/* return true if dev can't cope with mtu frames that need vlan tag insertion */ 5233static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 5234{ 5235 /* TODO: reserve and use an additional IFF bit, if we get more users */ 5236 return netif_is_macsec(dev); 5237} 5238 5239extern struct pernet_operations __net_initdata loopback_net_ops; 5240 5241/* Logging, debugging and troubleshooting/diagnostic helpers. */ 5242 5243/* netdev_printk helpers, similar to dev_printk */ 5244 5245static inline const char *netdev_name(const struct net_device *dev) 5246{ 5247 if (!dev->name[0] || strchr(dev->name, '%')) 5248 return "(unnamed net_device)"; 5249 return dev->name; 5250} 5251 5252static inline const char *netdev_reg_state(const struct net_device *dev) 5253{ 5254 switch (dev->reg_state) { 5255 case NETREG_UNINITIALIZED: return " (uninitialized)"; 5256 case NETREG_REGISTERED: return ""; 5257 case NETREG_UNREGISTERING: return " (unregistering)"; 5258 case NETREG_UNREGISTERED: return " (unregistered)"; 5259 case NETREG_RELEASED: return " (released)"; 5260 case NETREG_DUMMY: return " (dummy)"; 5261 } 5262 5263 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 5264 return " (unknown)"; 5265} 5266 5267#define MODULE_ALIAS_NETDEV(device) \ 5268 MODULE_ALIAS("netdev-" device) 5269 5270/* 5271 * netdev_WARN() acts like dev_printk(), but with the key difference 5272 * of using a WARN/WARN_ON to get the message out, including the 5273 * file/line information and a backtrace. 5274 */ 5275#define netdev_WARN(dev, format, args...) \ 5276 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5277 netdev_reg_state(dev), ##args) 5278 5279#define netdev_WARN_ONCE(dev, format, args...) \ 5280 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5281 netdev_reg_state(dev), ##args) 5282 5283/* 5284 * The list of packet types we will receive (as opposed to discard) 5285 * and the routines to invoke. 5286 * 5287 * Why 16. Because with 16 the only overlap we get on a hash of the 5288 * low nibble of the protocol value is RARP/SNAP/X.25. 5289 * 5290 * 0800 IP 5291 * 0001 802.3 5292 * 0002 AX.25 5293 * 0004 802.2 5294 * 8035 RARP 5295 * 0005 SNAP 5296 * 0805 X.25 5297 * 0806 ARP 5298 * 8137 IPX 5299 * 0009 Localtalk 5300 * 86DD IPv6 5301 */ 5302#define PTYPE_HASH_SIZE (16) 5303#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 5304 5305extern struct list_head ptype_all __read_mostly; 5306extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 5307 5308extern struct net_device *blackhole_netdev; 5309 5310/* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */ 5311#define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD) 5312#define DEV_STATS_ADD(DEV, FIELD, VAL) \ 5313 atomic_long_add((VAL), &(DEV)->stats.__##FIELD) 5314#define DEV_STATS_READ(DEV, FIELD) atomic_long_read(&(DEV)->stats.__##FIELD) 5315 5316#endif /* _LINUX_NETDEVICE_H */