at v6.8 66 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MMZONE_H 3#define _LINUX_MMZONE_H 4 5#ifndef __ASSEMBLY__ 6#ifndef __GENERATING_BOUNDS_H 7 8#include <linux/spinlock.h> 9#include <linux/list.h> 10#include <linux/list_nulls.h> 11#include <linux/wait.h> 12#include <linux/bitops.h> 13#include <linux/cache.h> 14#include <linux/threads.h> 15#include <linux/numa.h> 16#include <linux/init.h> 17#include <linux/seqlock.h> 18#include <linux/nodemask.h> 19#include <linux/pageblock-flags.h> 20#include <linux/page-flags-layout.h> 21#include <linux/atomic.h> 22#include <linux/mm_types.h> 23#include <linux/page-flags.h> 24#include <linux/local_lock.h> 25#include <linux/zswap.h> 26#include <asm/page.h> 27 28/* Free memory management - zoned buddy allocator. */ 29#ifndef CONFIG_ARCH_FORCE_MAX_ORDER 30#define MAX_PAGE_ORDER 10 31#else 32#define MAX_PAGE_ORDER CONFIG_ARCH_FORCE_MAX_ORDER 33#endif 34#define MAX_ORDER_NR_PAGES (1 << MAX_PAGE_ORDER) 35 36#define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES) 37 38#define NR_PAGE_ORDERS (MAX_PAGE_ORDER + 1) 39 40/* 41 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 42 * costly to service. That is between allocation orders which should 43 * coalesce naturally under reasonable reclaim pressure and those which 44 * will not. 45 */ 46#define PAGE_ALLOC_COSTLY_ORDER 3 47 48enum migratetype { 49 MIGRATE_UNMOVABLE, 50 MIGRATE_MOVABLE, 51 MIGRATE_RECLAIMABLE, 52 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 53 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES, 54#ifdef CONFIG_CMA 55 /* 56 * MIGRATE_CMA migration type is designed to mimic the way 57 * ZONE_MOVABLE works. Only movable pages can be allocated 58 * from MIGRATE_CMA pageblocks and page allocator never 59 * implicitly change migration type of MIGRATE_CMA pageblock. 60 * 61 * The way to use it is to change migratetype of a range of 62 * pageblocks to MIGRATE_CMA which can be done by 63 * __free_pageblock_cma() function. 64 */ 65 MIGRATE_CMA, 66#endif 67#ifdef CONFIG_MEMORY_ISOLATION 68 MIGRATE_ISOLATE, /* can't allocate from here */ 69#endif 70 MIGRATE_TYPES 71}; 72 73/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */ 74extern const char * const migratetype_names[MIGRATE_TYPES]; 75 76#ifdef CONFIG_CMA 77# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 78# define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA) 79#else 80# define is_migrate_cma(migratetype) false 81# define is_migrate_cma_page(_page) false 82#endif 83 84static inline bool is_migrate_movable(int mt) 85{ 86 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE; 87} 88 89/* 90 * Check whether a migratetype can be merged with another migratetype. 91 * 92 * It is only mergeable when it can fall back to other migratetypes for 93 * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c. 94 */ 95static inline bool migratetype_is_mergeable(int mt) 96{ 97 return mt < MIGRATE_PCPTYPES; 98} 99 100#define for_each_migratetype_order(order, type) \ 101 for (order = 0; order < NR_PAGE_ORDERS; order++) \ 102 for (type = 0; type < MIGRATE_TYPES; type++) 103 104extern int page_group_by_mobility_disabled; 105 106#define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1) 107 108#define get_pageblock_migratetype(page) \ 109 get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK) 110 111#define folio_migratetype(folio) \ 112 get_pfnblock_flags_mask(&folio->page, folio_pfn(folio), \ 113 MIGRATETYPE_MASK) 114struct free_area { 115 struct list_head free_list[MIGRATE_TYPES]; 116 unsigned long nr_free; 117}; 118 119struct pglist_data; 120 121#ifdef CONFIG_NUMA 122enum numa_stat_item { 123 NUMA_HIT, /* allocated in intended node */ 124 NUMA_MISS, /* allocated in non intended node */ 125 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 126 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 127 NUMA_LOCAL, /* allocation from local node */ 128 NUMA_OTHER, /* allocation from other node */ 129 NR_VM_NUMA_EVENT_ITEMS 130}; 131#else 132#define NR_VM_NUMA_EVENT_ITEMS 0 133#endif 134 135enum zone_stat_item { 136 /* First 128 byte cacheline (assuming 64 bit words) */ 137 NR_FREE_PAGES, 138 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */ 139 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE, 140 NR_ZONE_ACTIVE_ANON, 141 NR_ZONE_INACTIVE_FILE, 142 NR_ZONE_ACTIVE_FILE, 143 NR_ZONE_UNEVICTABLE, 144 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */ 145 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 146 /* Second 128 byte cacheline */ 147 NR_BOUNCE, 148#if IS_ENABLED(CONFIG_ZSMALLOC) 149 NR_ZSPAGES, /* allocated in zsmalloc */ 150#endif 151 NR_FREE_CMA_PAGES, 152#ifdef CONFIG_UNACCEPTED_MEMORY 153 NR_UNACCEPTED, 154#endif 155 NR_VM_ZONE_STAT_ITEMS }; 156 157enum node_stat_item { 158 NR_LRU_BASE, 159 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 160 NR_ACTIVE_ANON, /* " " " " " */ 161 NR_INACTIVE_FILE, /* " " " " " */ 162 NR_ACTIVE_FILE, /* " " " " " */ 163 NR_UNEVICTABLE, /* " " " " " */ 164 NR_SLAB_RECLAIMABLE_B, 165 NR_SLAB_UNRECLAIMABLE_B, 166 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 167 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 168 WORKINGSET_NODES, 169 WORKINGSET_REFAULT_BASE, 170 WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE, 171 WORKINGSET_REFAULT_FILE, 172 WORKINGSET_ACTIVATE_BASE, 173 WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE, 174 WORKINGSET_ACTIVATE_FILE, 175 WORKINGSET_RESTORE_BASE, 176 WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE, 177 WORKINGSET_RESTORE_FILE, 178 WORKINGSET_NODERECLAIM, 179 NR_ANON_MAPPED, /* Mapped anonymous pages */ 180 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 181 only modified from process context */ 182 NR_FILE_PAGES, 183 NR_FILE_DIRTY, 184 NR_WRITEBACK, 185 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 186 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 187 NR_SHMEM_THPS, 188 NR_SHMEM_PMDMAPPED, 189 NR_FILE_THPS, 190 NR_FILE_PMDMAPPED, 191 NR_ANON_THPS, 192 NR_VMSCAN_WRITE, 193 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 194 NR_DIRTIED, /* page dirtyings since bootup */ 195 NR_WRITTEN, /* page writings since bootup */ 196 NR_THROTTLED_WRITTEN, /* NR_WRITTEN while reclaim throttled */ 197 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */ 198 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */ 199 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */ 200 NR_KERNEL_STACK_KB, /* measured in KiB */ 201#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK) 202 NR_KERNEL_SCS_KB, /* measured in KiB */ 203#endif 204 NR_PAGETABLE, /* used for pagetables */ 205 NR_SECONDARY_PAGETABLE, /* secondary pagetables, e.g. KVM pagetables */ 206#ifdef CONFIG_SWAP 207 NR_SWAPCACHE, 208#endif 209#ifdef CONFIG_NUMA_BALANCING 210 PGPROMOTE_SUCCESS, /* promote successfully */ 211 PGPROMOTE_CANDIDATE, /* candidate pages to promote */ 212#endif 213 /* PGDEMOTE_*: pages demoted */ 214 PGDEMOTE_KSWAPD, 215 PGDEMOTE_DIRECT, 216 PGDEMOTE_KHUGEPAGED, 217 NR_VM_NODE_STAT_ITEMS 218}; 219 220/* 221 * Returns true if the item should be printed in THPs (/proc/vmstat 222 * currently prints number of anon, file and shmem THPs. But the item 223 * is charged in pages). 224 */ 225static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item) 226{ 227 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 228 return false; 229 230 return item == NR_ANON_THPS || 231 item == NR_FILE_THPS || 232 item == NR_SHMEM_THPS || 233 item == NR_SHMEM_PMDMAPPED || 234 item == NR_FILE_PMDMAPPED; 235} 236 237/* 238 * Returns true if the value is measured in bytes (most vmstat values are 239 * measured in pages). This defines the API part, the internal representation 240 * might be different. 241 */ 242static __always_inline bool vmstat_item_in_bytes(int idx) 243{ 244 /* 245 * Global and per-node slab counters track slab pages. 246 * It's expected that changes are multiples of PAGE_SIZE. 247 * Internally values are stored in pages. 248 * 249 * Per-memcg and per-lruvec counters track memory, consumed 250 * by individual slab objects. These counters are actually 251 * byte-precise. 252 */ 253 return (idx == NR_SLAB_RECLAIMABLE_B || 254 idx == NR_SLAB_UNRECLAIMABLE_B); 255} 256 257/* 258 * We do arithmetic on the LRU lists in various places in the code, 259 * so it is important to keep the active lists LRU_ACTIVE higher in 260 * the array than the corresponding inactive lists, and to keep 261 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 262 * 263 * This has to be kept in sync with the statistics in zone_stat_item 264 * above and the descriptions in vmstat_text in mm/vmstat.c 265 */ 266#define LRU_BASE 0 267#define LRU_ACTIVE 1 268#define LRU_FILE 2 269 270enum lru_list { 271 LRU_INACTIVE_ANON = LRU_BASE, 272 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 273 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 274 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 275 LRU_UNEVICTABLE, 276 NR_LRU_LISTS 277}; 278 279enum vmscan_throttle_state { 280 VMSCAN_THROTTLE_WRITEBACK, 281 VMSCAN_THROTTLE_ISOLATED, 282 VMSCAN_THROTTLE_NOPROGRESS, 283 VMSCAN_THROTTLE_CONGESTED, 284 NR_VMSCAN_THROTTLE, 285}; 286 287#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 288 289#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 290 291static inline bool is_file_lru(enum lru_list lru) 292{ 293 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 294} 295 296static inline bool is_active_lru(enum lru_list lru) 297{ 298 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 299} 300 301#define WORKINGSET_ANON 0 302#define WORKINGSET_FILE 1 303#define ANON_AND_FILE 2 304 305enum lruvec_flags { 306 /* 307 * An lruvec has many dirty pages backed by a congested BDI: 308 * 1. LRUVEC_CGROUP_CONGESTED is set by cgroup-level reclaim. 309 * It can be cleared by cgroup reclaim or kswapd. 310 * 2. LRUVEC_NODE_CONGESTED is set by kswapd node-level reclaim. 311 * It can only be cleared by kswapd. 312 * 313 * Essentially, kswapd can unthrottle an lruvec throttled by cgroup 314 * reclaim, but not vice versa. This only applies to the root cgroup. 315 * The goal is to prevent cgroup reclaim on the root cgroup (e.g. 316 * memory.reclaim) to unthrottle an unbalanced node (that was throttled 317 * by kswapd). 318 */ 319 LRUVEC_CGROUP_CONGESTED, 320 LRUVEC_NODE_CONGESTED, 321}; 322 323#endif /* !__GENERATING_BOUNDS_H */ 324 325/* 326 * Evictable pages are divided into multiple generations. The youngest and the 327 * oldest generation numbers, max_seq and min_seq, are monotonically increasing. 328 * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An 329 * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the 330 * corresponding generation. The gen counter in folio->flags stores gen+1 while 331 * a page is on one of lrugen->folios[]. Otherwise it stores 0. 332 * 333 * A page is added to the youngest generation on faulting. The aging needs to 334 * check the accessed bit at least twice before handing this page over to the 335 * eviction. The first check takes care of the accessed bit set on the initial 336 * fault; the second check makes sure this page hasn't been used since then. 337 * This process, AKA second chance, requires a minimum of two generations, 338 * hence MIN_NR_GENS. And to maintain ABI compatibility with the active/inactive 339 * LRU, e.g., /proc/vmstat, these two generations are considered active; the 340 * rest of generations, if they exist, are considered inactive. See 341 * lru_gen_is_active(). 342 * 343 * PG_active is always cleared while a page is on one of lrugen->folios[] so 344 * that the aging needs not to worry about it. And it's set again when a page 345 * considered active is isolated for non-reclaiming purposes, e.g., migration. 346 * See lru_gen_add_folio() and lru_gen_del_folio(). 347 * 348 * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the 349 * number of categories of the active/inactive LRU when keeping track of 350 * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits 351 * in folio->flags. 352 */ 353#define MIN_NR_GENS 2U 354#define MAX_NR_GENS 4U 355 356/* 357 * Each generation is divided into multiple tiers. A page accessed N times 358 * through file descriptors is in tier order_base_2(N). A page in the first tier 359 * (N=0,1) is marked by PG_referenced unless it was faulted in through page 360 * tables or read ahead. A page in any other tier (N>1) is marked by 361 * PG_referenced and PG_workingset. This implies a minimum of two tiers is 362 * supported without using additional bits in folio->flags. 363 * 364 * In contrast to moving across generations which requires the LRU lock, moving 365 * across tiers only involves atomic operations on folio->flags and therefore 366 * has a negligible cost in the buffered access path. In the eviction path, 367 * comparisons of refaulted/(evicted+protected) from the first tier and the 368 * rest infer whether pages accessed multiple times through file descriptors 369 * are statistically hot and thus worth protecting. 370 * 371 * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the 372 * number of categories of the active/inactive LRU when keeping track of 373 * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in 374 * folio->flags. 375 */ 376#define MAX_NR_TIERS 4U 377 378#ifndef __GENERATING_BOUNDS_H 379 380struct lruvec; 381struct page_vma_mapped_walk; 382 383#define LRU_GEN_MASK ((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF) 384#define LRU_REFS_MASK ((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF) 385 386#ifdef CONFIG_LRU_GEN 387 388enum { 389 LRU_GEN_ANON, 390 LRU_GEN_FILE, 391}; 392 393enum { 394 LRU_GEN_CORE, 395 LRU_GEN_MM_WALK, 396 LRU_GEN_NONLEAF_YOUNG, 397 NR_LRU_GEN_CAPS 398}; 399 400#define MIN_LRU_BATCH BITS_PER_LONG 401#define MAX_LRU_BATCH (MIN_LRU_BATCH * 64) 402 403/* whether to keep historical stats from evicted generations */ 404#ifdef CONFIG_LRU_GEN_STATS 405#define NR_HIST_GENS MAX_NR_GENS 406#else 407#define NR_HIST_GENS 1U 408#endif 409 410/* 411 * The youngest generation number is stored in max_seq for both anon and file 412 * types as they are aged on an equal footing. The oldest generation numbers are 413 * stored in min_seq[] separately for anon and file types as clean file pages 414 * can be evicted regardless of swap constraints. 415 * 416 * Normally anon and file min_seq are in sync. But if swapping is constrained, 417 * e.g., out of swap space, file min_seq is allowed to advance and leave anon 418 * min_seq behind. 419 * 420 * The number of pages in each generation is eventually consistent and therefore 421 * can be transiently negative when reset_batch_size() is pending. 422 */ 423struct lru_gen_folio { 424 /* the aging increments the youngest generation number */ 425 unsigned long max_seq; 426 /* the eviction increments the oldest generation numbers */ 427 unsigned long min_seq[ANON_AND_FILE]; 428 /* the birth time of each generation in jiffies */ 429 unsigned long timestamps[MAX_NR_GENS]; 430 /* the multi-gen LRU lists, lazily sorted on eviction */ 431 struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 432 /* the multi-gen LRU sizes, eventually consistent */ 433 long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 434 /* the exponential moving average of refaulted */ 435 unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS]; 436 /* the exponential moving average of evicted+protected */ 437 unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS]; 438 /* the first tier doesn't need protection, hence the minus one */ 439 unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS - 1]; 440 /* can be modified without holding the LRU lock */ 441 atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; 442 atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; 443 /* whether the multi-gen LRU is enabled */ 444 bool enabled; 445 /* the memcg generation this lru_gen_folio belongs to */ 446 u8 gen; 447 /* the list segment this lru_gen_folio belongs to */ 448 u8 seg; 449 /* per-node lru_gen_folio list for global reclaim */ 450 struct hlist_nulls_node list; 451}; 452 453enum { 454 MM_LEAF_TOTAL, /* total leaf entries */ 455 MM_LEAF_OLD, /* old leaf entries */ 456 MM_LEAF_YOUNG, /* young leaf entries */ 457 MM_NONLEAF_TOTAL, /* total non-leaf entries */ 458 MM_NONLEAF_FOUND, /* non-leaf entries found in Bloom filters */ 459 MM_NONLEAF_ADDED, /* non-leaf entries added to Bloom filters */ 460 NR_MM_STATS 461}; 462 463/* double-buffering Bloom filters */ 464#define NR_BLOOM_FILTERS 2 465 466struct lru_gen_mm_state { 467 /* set to max_seq after each iteration */ 468 unsigned long seq; 469 /* where the current iteration continues after */ 470 struct list_head *head; 471 /* where the last iteration ended before */ 472 struct list_head *tail; 473 /* Bloom filters flip after each iteration */ 474 unsigned long *filters[NR_BLOOM_FILTERS]; 475 /* the mm stats for debugging */ 476 unsigned long stats[NR_HIST_GENS][NR_MM_STATS]; 477}; 478 479struct lru_gen_mm_walk { 480 /* the lruvec under reclaim */ 481 struct lruvec *lruvec; 482 /* unstable max_seq from lru_gen_folio */ 483 unsigned long max_seq; 484 /* the next address within an mm to scan */ 485 unsigned long next_addr; 486 /* to batch promoted pages */ 487 int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 488 /* to batch the mm stats */ 489 int mm_stats[NR_MM_STATS]; 490 /* total batched items */ 491 int batched; 492 bool can_swap; 493 bool force_scan; 494}; 495 496/* 497 * For each node, memcgs are divided into two generations: the old and the 498 * young. For each generation, memcgs are randomly sharded into multiple bins 499 * to improve scalability. For each bin, the hlist_nulls is virtually divided 500 * into three segments: the head, the tail and the default. 501 * 502 * An onlining memcg is added to the tail of a random bin in the old generation. 503 * The eviction starts at the head of a random bin in the old generation. The 504 * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes 505 * the old generation, is incremented when all its bins become empty. 506 * 507 * There are four operations: 508 * 1. MEMCG_LRU_HEAD, which moves a memcg to the head of a random bin in its 509 * current generation (old or young) and updates its "seg" to "head"; 510 * 2. MEMCG_LRU_TAIL, which moves a memcg to the tail of a random bin in its 511 * current generation (old or young) and updates its "seg" to "tail"; 512 * 3. MEMCG_LRU_OLD, which moves a memcg to the head of a random bin in the old 513 * generation, updates its "gen" to "old" and resets its "seg" to "default"; 514 * 4. MEMCG_LRU_YOUNG, which moves a memcg to the tail of a random bin in the 515 * young generation, updates its "gen" to "young" and resets its "seg" to 516 * "default". 517 * 518 * The events that trigger the above operations are: 519 * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD; 520 * 2. The first attempt to reclaim a memcg below low, which triggers 521 * MEMCG_LRU_TAIL; 522 * 3. The first attempt to reclaim a memcg offlined or below reclaimable size 523 * threshold, which triggers MEMCG_LRU_TAIL; 524 * 4. The second attempt to reclaim a memcg offlined or below reclaimable size 525 * threshold, which triggers MEMCG_LRU_YOUNG; 526 * 5. Attempting to reclaim a memcg below min, which triggers MEMCG_LRU_YOUNG; 527 * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG; 528 * 7. Offlining a memcg, which triggers MEMCG_LRU_OLD. 529 * 530 * Notes: 531 * 1. Memcg LRU only applies to global reclaim, and the round-robin incrementing 532 * of their max_seq counters ensures the eventual fairness to all eligible 533 * memcgs. For memcg reclaim, it still relies on mem_cgroup_iter(). 534 * 2. There are only two valid generations: old (seq) and young (seq+1). 535 * MEMCG_NR_GENS is set to three so that when reading the generation counter 536 * locklessly, a stale value (seq-1) does not wraparound to young. 537 */ 538#define MEMCG_NR_GENS 3 539#define MEMCG_NR_BINS 8 540 541struct lru_gen_memcg { 542 /* the per-node memcg generation counter */ 543 unsigned long seq; 544 /* each memcg has one lru_gen_folio per node */ 545 unsigned long nr_memcgs[MEMCG_NR_GENS]; 546 /* per-node lru_gen_folio list for global reclaim */ 547 struct hlist_nulls_head fifo[MEMCG_NR_GENS][MEMCG_NR_BINS]; 548 /* protects the above */ 549 spinlock_t lock; 550}; 551 552void lru_gen_init_pgdat(struct pglist_data *pgdat); 553void lru_gen_init_lruvec(struct lruvec *lruvec); 554void lru_gen_look_around(struct page_vma_mapped_walk *pvmw); 555 556void lru_gen_init_memcg(struct mem_cgroup *memcg); 557void lru_gen_exit_memcg(struct mem_cgroup *memcg); 558void lru_gen_online_memcg(struct mem_cgroup *memcg); 559void lru_gen_offline_memcg(struct mem_cgroup *memcg); 560void lru_gen_release_memcg(struct mem_cgroup *memcg); 561void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid); 562 563#else /* !CONFIG_LRU_GEN */ 564 565static inline void lru_gen_init_pgdat(struct pglist_data *pgdat) 566{ 567} 568 569static inline void lru_gen_init_lruvec(struct lruvec *lruvec) 570{ 571} 572 573static inline void lru_gen_look_around(struct page_vma_mapped_walk *pvmw) 574{ 575} 576 577static inline void lru_gen_init_memcg(struct mem_cgroup *memcg) 578{ 579} 580 581static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg) 582{ 583} 584 585static inline void lru_gen_online_memcg(struct mem_cgroup *memcg) 586{ 587} 588 589static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg) 590{ 591} 592 593static inline void lru_gen_release_memcg(struct mem_cgroup *memcg) 594{ 595} 596 597static inline void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid) 598{ 599} 600 601#endif /* CONFIG_LRU_GEN */ 602 603struct lruvec { 604 struct list_head lists[NR_LRU_LISTS]; 605 /* per lruvec lru_lock for memcg */ 606 spinlock_t lru_lock; 607 /* 608 * These track the cost of reclaiming one LRU - file or anon - 609 * over the other. As the observed cost of reclaiming one LRU 610 * increases, the reclaim scan balance tips toward the other. 611 */ 612 unsigned long anon_cost; 613 unsigned long file_cost; 614 /* Non-resident age, driven by LRU movement */ 615 atomic_long_t nonresident_age; 616 /* Refaults at the time of last reclaim cycle */ 617 unsigned long refaults[ANON_AND_FILE]; 618 /* Various lruvec state flags (enum lruvec_flags) */ 619 unsigned long flags; 620#ifdef CONFIG_LRU_GEN 621 /* evictable pages divided into generations */ 622 struct lru_gen_folio lrugen; 623#ifdef CONFIG_LRU_GEN_WALKS_MMU 624 /* to concurrently iterate lru_gen_mm_list */ 625 struct lru_gen_mm_state mm_state; 626#endif 627#endif /* CONFIG_LRU_GEN */ 628#ifdef CONFIG_MEMCG 629 struct pglist_data *pgdat; 630#endif 631 struct zswap_lruvec_state zswap_lruvec_state; 632}; 633 634/* Isolate for asynchronous migration */ 635#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 636/* Isolate unevictable pages */ 637#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) 638 639/* LRU Isolation modes. */ 640typedef unsigned __bitwise isolate_mode_t; 641 642enum zone_watermarks { 643 WMARK_MIN, 644 WMARK_LOW, 645 WMARK_HIGH, 646 WMARK_PROMO, 647 NR_WMARK 648}; 649 650/* 651 * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. One additional list 652 * for THP which will usually be GFP_MOVABLE. Even if it is another type, 653 * it should not contribute to serious fragmentation causing THP allocation 654 * failures. 655 */ 656#ifdef CONFIG_TRANSPARENT_HUGEPAGE 657#define NR_PCP_THP 1 658#else 659#define NR_PCP_THP 0 660#endif 661#define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1)) 662#define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP) 663 664#define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost) 665#define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost) 666#define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost) 667#define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost) 668 669/* 670 * Flags used in pcp->flags field. 671 * 672 * PCPF_PREV_FREE_HIGH_ORDER: a high-order page is freed in the 673 * previous page freeing. To avoid to drain PCP for an accident 674 * high-order page freeing. 675 * 676 * PCPF_FREE_HIGH_BATCH: preserve "pcp->batch" pages in PCP before 677 * draining PCP for consecutive high-order pages freeing without 678 * allocation if data cache slice of CPU is large enough. To reduce 679 * zone lock contention and keep cache-hot pages reusing. 680 */ 681#define PCPF_PREV_FREE_HIGH_ORDER BIT(0) 682#define PCPF_FREE_HIGH_BATCH BIT(1) 683 684struct per_cpu_pages { 685 spinlock_t lock; /* Protects lists field */ 686 int count; /* number of pages in the list */ 687 int high; /* high watermark, emptying needed */ 688 int high_min; /* min high watermark */ 689 int high_max; /* max high watermark */ 690 int batch; /* chunk size for buddy add/remove */ 691 u8 flags; /* protected by pcp->lock */ 692 u8 alloc_factor; /* batch scaling factor during allocate */ 693#ifdef CONFIG_NUMA 694 u8 expire; /* When 0, remote pagesets are drained */ 695#endif 696 short free_count; /* consecutive free count */ 697 698 /* Lists of pages, one per migrate type stored on the pcp-lists */ 699 struct list_head lists[NR_PCP_LISTS]; 700} ____cacheline_aligned_in_smp; 701 702struct per_cpu_zonestat { 703#ifdef CONFIG_SMP 704 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 705 s8 stat_threshold; 706#endif 707#ifdef CONFIG_NUMA 708 /* 709 * Low priority inaccurate counters that are only folded 710 * on demand. Use a large type to avoid the overhead of 711 * folding during refresh_cpu_vm_stats. 712 */ 713 unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; 714#endif 715}; 716 717struct per_cpu_nodestat { 718 s8 stat_threshold; 719 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS]; 720}; 721 722#endif /* !__GENERATING_BOUNDS.H */ 723 724enum zone_type { 725 /* 726 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able 727 * to DMA to all of the addressable memory (ZONE_NORMAL). 728 * On architectures where this area covers the whole 32 bit address 729 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller 730 * DMA addressing constraints. This distinction is important as a 32bit 731 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit 732 * platforms may need both zones as they support peripherals with 733 * different DMA addressing limitations. 734 */ 735#ifdef CONFIG_ZONE_DMA 736 ZONE_DMA, 737#endif 738#ifdef CONFIG_ZONE_DMA32 739 ZONE_DMA32, 740#endif 741 /* 742 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 743 * performed on pages in ZONE_NORMAL if the DMA devices support 744 * transfers to all addressable memory. 745 */ 746 ZONE_NORMAL, 747#ifdef CONFIG_HIGHMEM 748 /* 749 * A memory area that is only addressable by the kernel through 750 * mapping portions into its own address space. This is for example 751 * used by i386 to allow the kernel to address the memory beyond 752 * 900MB. The kernel will set up special mappings (page 753 * table entries on i386) for each page that the kernel needs to 754 * access. 755 */ 756 ZONE_HIGHMEM, 757#endif 758 /* 759 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains 760 * movable pages with few exceptional cases described below. Main use 761 * cases for ZONE_MOVABLE are to make memory offlining/unplug more 762 * likely to succeed, and to locally limit unmovable allocations - e.g., 763 * to increase the number of THP/huge pages. Notable special cases are: 764 * 765 * 1. Pinned pages: (long-term) pinning of movable pages might 766 * essentially turn such pages unmovable. Therefore, we do not allow 767 * pinning long-term pages in ZONE_MOVABLE. When pages are pinned and 768 * faulted, they come from the right zone right away. However, it is 769 * still possible that address space already has pages in 770 * ZONE_MOVABLE at the time when pages are pinned (i.e. user has 771 * touches that memory before pinning). In such case we migrate them 772 * to a different zone. When migration fails - pinning fails. 773 * 2. memblock allocations: kernelcore/movablecore setups might create 774 * situations where ZONE_MOVABLE contains unmovable allocations 775 * after boot. Memory offlining and allocations fail early. 776 * 3. Memory holes: kernelcore/movablecore setups might create very rare 777 * situations where ZONE_MOVABLE contains memory holes after boot, 778 * for example, if we have sections that are only partially 779 * populated. Memory offlining and allocations fail early. 780 * 4. PG_hwpoison pages: while poisoned pages can be skipped during 781 * memory offlining, such pages cannot be allocated. 782 * 5. Unmovable PG_offline pages: in paravirtualized environments, 783 * hotplugged memory blocks might only partially be managed by the 784 * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The 785 * parts not manged by the buddy are unmovable PG_offline pages. In 786 * some cases (virtio-mem), such pages can be skipped during 787 * memory offlining, however, cannot be moved/allocated. These 788 * techniques might use alloc_contig_range() to hide previously 789 * exposed pages from the buddy again (e.g., to implement some sort 790 * of memory unplug in virtio-mem). 791 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create 792 * situations where ZERO_PAGE(0) which is allocated differently 793 * on different platforms may end up in a movable zone. ZERO_PAGE(0) 794 * cannot be migrated. 795 * 7. Memory-hotplug: when using memmap_on_memory and onlining the 796 * memory to the MOVABLE zone, the vmemmap pages are also placed in 797 * such zone. Such pages cannot be really moved around as they are 798 * self-stored in the range, but they are treated as movable when 799 * the range they describe is about to be offlined. 800 * 801 * In general, no unmovable allocations that degrade memory offlining 802 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range()) 803 * have to expect that migrating pages in ZONE_MOVABLE can fail (even 804 * if has_unmovable_pages() states that there are no unmovable pages, 805 * there can be false negatives). 806 */ 807 ZONE_MOVABLE, 808#ifdef CONFIG_ZONE_DEVICE 809 ZONE_DEVICE, 810#endif 811 __MAX_NR_ZONES 812 813}; 814 815#ifndef __GENERATING_BOUNDS_H 816 817#define ASYNC_AND_SYNC 2 818 819struct zone { 820 /* Read-mostly fields */ 821 822 /* zone watermarks, access with *_wmark_pages(zone) macros */ 823 unsigned long _watermark[NR_WMARK]; 824 unsigned long watermark_boost; 825 826 unsigned long nr_reserved_highatomic; 827 828 /* 829 * We don't know if the memory that we're going to allocate will be 830 * freeable or/and it will be released eventually, so to avoid totally 831 * wasting several GB of ram we must reserve some of the lower zone 832 * memory (otherwise we risk to run OOM on the lower zones despite 833 * there being tons of freeable ram on the higher zones). This array is 834 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl 835 * changes. 836 */ 837 long lowmem_reserve[MAX_NR_ZONES]; 838 839#ifdef CONFIG_NUMA 840 int node; 841#endif 842 struct pglist_data *zone_pgdat; 843 struct per_cpu_pages __percpu *per_cpu_pageset; 844 struct per_cpu_zonestat __percpu *per_cpu_zonestats; 845 /* 846 * the high and batch values are copied to individual pagesets for 847 * faster access 848 */ 849 int pageset_high_min; 850 int pageset_high_max; 851 int pageset_batch; 852 853#ifndef CONFIG_SPARSEMEM 854 /* 855 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 856 * In SPARSEMEM, this map is stored in struct mem_section 857 */ 858 unsigned long *pageblock_flags; 859#endif /* CONFIG_SPARSEMEM */ 860 861 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 862 unsigned long zone_start_pfn; 863 864 /* 865 * spanned_pages is the total pages spanned by the zone, including 866 * holes, which is calculated as: 867 * spanned_pages = zone_end_pfn - zone_start_pfn; 868 * 869 * present_pages is physical pages existing within the zone, which 870 * is calculated as: 871 * present_pages = spanned_pages - absent_pages(pages in holes); 872 * 873 * present_early_pages is present pages existing within the zone 874 * located on memory available since early boot, excluding hotplugged 875 * memory. 876 * 877 * managed_pages is present pages managed by the buddy system, which 878 * is calculated as (reserved_pages includes pages allocated by the 879 * bootmem allocator): 880 * managed_pages = present_pages - reserved_pages; 881 * 882 * cma pages is present pages that are assigned for CMA use 883 * (MIGRATE_CMA). 884 * 885 * So present_pages may be used by memory hotplug or memory power 886 * management logic to figure out unmanaged pages by checking 887 * (present_pages - managed_pages). And managed_pages should be used 888 * by page allocator and vm scanner to calculate all kinds of watermarks 889 * and thresholds. 890 * 891 * Locking rules: 892 * 893 * zone_start_pfn and spanned_pages are protected by span_seqlock. 894 * It is a seqlock because it has to be read outside of zone->lock, 895 * and it is done in the main allocator path. But, it is written 896 * quite infrequently. 897 * 898 * The span_seq lock is declared along with zone->lock because it is 899 * frequently read in proximity to zone->lock. It's good to 900 * give them a chance of being in the same cacheline. 901 * 902 * Write access to present_pages at runtime should be protected by 903 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of 904 * present_pages should use get_online_mems() to get a stable value. 905 */ 906 atomic_long_t managed_pages; 907 unsigned long spanned_pages; 908 unsigned long present_pages; 909#if defined(CONFIG_MEMORY_HOTPLUG) 910 unsigned long present_early_pages; 911#endif 912#ifdef CONFIG_CMA 913 unsigned long cma_pages; 914#endif 915 916 const char *name; 917 918#ifdef CONFIG_MEMORY_ISOLATION 919 /* 920 * Number of isolated pageblock. It is used to solve incorrect 921 * freepage counting problem due to racy retrieving migratetype 922 * of pageblock. Protected by zone->lock. 923 */ 924 unsigned long nr_isolate_pageblock; 925#endif 926 927#ifdef CONFIG_MEMORY_HOTPLUG 928 /* see spanned/present_pages for more description */ 929 seqlock_t span_seqlock; 930#endif 931 932 int initialized; 933 934 /* Write-intensive fields used from the page allocator */ 935 CACHELINE_PADDING(_pad1_); 936 937 /* free areas of different sizes */ 938 struct free_area free_area[NR_PAGE_ORDERS]; 939 940#ifdef CONFIG_UNACCEPTED_MEMORY 941 /* Pages to be accepted. All pages on the list are MAX_PAGE_ORDER */ 942 struct list_head unaccepted_pages; 943#endif 944 945 /* zone flags, see below */ 946 unsigned long flags; 947 948 /* Primarily protects free_area */ 949 spinlock_t lock; 950 951 /* Write-intensive fields used by compaction and vmstats. */ 952 CACHELINE_PADDING(_pad2_); 953 954 /* 955 * When free pages are below this point, additional steps are taken 956 * when reading the number of free pages to avoid per-cpu counter 957 * drift allowing watermarks to be breached 958 */ 959 unsigned long percpu_drift_mark; 960 961#if defined CONFIG_COMPACTION || defined CONFIG_CMA 962 /* pfn where compaction free scanner should start */ 963 unsigned long compact_cached_free_pfn; 964 /* pfn where compaction migration scanner should start */ 965 unsigned long compact_cached_migrate_pfn[ASYNC_AND_SYNC]; 966 unsigned long compact_init_migrate_pfn; 967 unsigned long compact_init_free_pfn; 968#endif 969 970#ifdef CONFIG_COMPACTION 971 /* 972 * On compaction failure, 1<<compact_defer_shift compactions 973 * are skipped before trying again. The number attempted since 974 * last failure is tracked with compact_considered. 975 * compact_order_failed is the minimum compaction failed order. 976 */ 977 unsigned int compact_considered; 978 unsigned int compact_defer_shift; 979 int compact_order_failed; 980#endif 981 982#if defined CONFIG_COMPACTION || defined CONFIG_CMA 983 /* Set to true when the PG_migrate_skip bits should be cleared */ 984 bool compact_blockskip_flush; 985#endif 986 987 bool contiguous; 988 989 CACHELINE_PADDING(_pad3_); 990 /* Zone statistics */ 991 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 992 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; 993} ____cacheline_internodealigned_in_smp; 994 995enum pgdat_flags { 996 PGDAT_DIRTY, /* reclaim scanning has recently found 997 * many dirty file pages at the tail 998 * of the LRU. 999 */ 1000 PGDAT_WRITEBACK, /* reclaim scanning has recently found 1001 * many pages under writeback 1002 */ 1003 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 1004}; 1005 1006enum zone_flags { 1007 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks. 1008 * Cleared when kswapd is woken. 1009 */ 1010 ZONE_RECLAIM_ACTIVE, /* kswapd may be scanning the zone. */ 1011 ZONE_BELOW_HIGH, /* zone is below high watermark. */ 1012}; 1013 1014static inline unsigned long zone_managed_pages(struct zone *zone) 1015{ 1016 return (unsigned long)atomic_long_read(&zone->managed_pages); 1017} 1018 1019static inline unsigned long zone_cma_pages(struct zone *zone) 1020{ 1021#ifdef CONFIG_CMA 1022 return zone->cma_pages; 1023#else 1024 return 0; 1025#endif 1026} 1027 1028static inline unsigned long zone_end_pfn(const struct zone *zone) 1029{ 1030 return zone->zone_start_pfn + zone->spanned_pages; 1031} 1032 1033static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) 1034{ 1035 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); 1036} 1037 1038static inline bool zone_is_initialized(struct zone *zone) 1039{ 1040 return zone->initialized; 1041} 1042 1043static inline bool zone_is_empty(struct zone *zone) 1044{ 1045 return zone->spanned_pages == 0; 1046} 1047 1048#ifndef BUILD_VDSO32_64 1049/* 1050 * The zone field is never updated after free_area_init_core() 1051 * sets it, so none of the operations on it need to be atomic. 1052 */ 1053 1054/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 1055#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 1056#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 1057#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 1058#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 1059#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 1060#define LRU_GEN_PGOFF (KASAN_TAG_PGOFF - LRU_GEN_WIDTH) 1061#define LRU_REFS_PGOFF (LRU_GEN_PGOFF - LRU_REFS_WIDTH) 1062 1063/* 1064 * Define the bit shifts to access each section. For non-existent 1065 * sections we define the shift as 0; that plus a 0 mask ensures 1066 * the compiler will optimise away reference to them. 1067 */ 1068#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 1069#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 1070#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 1071#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 1072#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 1073 1074/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 1075#ifdef NODE_NOT_IN_PAGE_FLAGS 1076#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 1077#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF) ? \ 1078 SECTIONS_PGOFF : ZONES_PGOFF) 1079#else 1080#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 1081#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF) ? \ 1082 NODES_PGOFF : ZONES_PGOFF) 1083#endif 1084 1085#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 1086 1087#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 1088#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 1089#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 1090#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 1091#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 1092#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 1093 1094static inline enum zone_type page_zonenum(const struct page *page) 1095{ 1096 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT); 1097 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 1098} 1099 1100static inline enum zone_type folio_zonenum(const struct folio *folio) 1101{ 1102 return page_zonenum(&folio->page); 1103} 1104 1105#ifdef CONFIG_ZONE_DEVICE 1106static inline bool is_zone_device_page(const struct page *page) 1107{ 1108 return page_zonenum(page) == ZONE_DEVICE; 1109} 1110 1111/* 1112 * Consecutive zone device pages should not be merged into the same sgl 1113 * or bvec segment with other types of pages or if they belong to different 1114 * pgmaps. Otherwise getting the pgmap of a given segment is not possible 1115 * without scanning the entire segment. This helper returns true either if 1116 * both pages are not zone device pages or both pages are zone device pages 1117 * with the same pgmap. 1118 */ 1119static inline bool zone_device_pages_have_same_pgmap(const struct page *a, 1120 const struct page *b) 1121{ 1122 if (is_zone_device_page(a) != is_zone_device_page(b)) 1123 return false; 1124 if (!is_zone_device_page(a)) 1125 return true; 1126 return a->pgmap == b->pgmap; 1127} 1128 1129extern void memmap_init_zone_device(struct zone *, unsigned long, 1130 unsigned long, struct dev_pagemap *); 1131#else 1132static inline bool is_zone_device_page(const struct page *page) 1133{ 1134 return false; 1135} 1136static inline bool zone_device_pages_have_same_pgmap(const struct page *a, 1137 const struct page *b) 1138{ 1139 return true; 1140} 1141#endif 1142 1143static inline bool folio_is_zone_device(const struct folio *folio) 1144{ 1145 return is_zone_device_page(&folio->page); 1146} 1147 1148static inline bool is_zone_movable_page(const struct page *page) 1149{ 1150 return page_zonenum(page) == ZONE_MOVABLE; 1151} 1152 1153static inline bool folio_is_zone_movable(const struct folio *folio) 1154{ 1155 return folio_zonenum(folio) == ZONE_MOVABLE; 1156} 1157#endif 1158 1159/* 1160 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty 1161 * intersection with the given zone 1162 */ 1163static inline bool zone_intersects(struct zone *zone, 1164 unsigned long start_pfn, unsigned long nr_pages) 1165{ 1166 if (zone_is_empty(zone)) 1167 return false; 1168 if (start_pfn >= zone_end_pfn(zone) || 1169 start_pfn + nr_pages <= zone->zone_start_pfn) 1170 return false; 1171 1172 return true; 1173} 1174 1175/* 1176 * The "priority" of VM scanning is how much of the queues we will scan in one 1177 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 1178 * queues ("queue_length >> 12") during an aging round. 1179 */ 1180#define DEF_PRIORITY 12 1181 1182/* Maximum number of zones on a zonelist */ 1183#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 1184 1185enum { 1186 ZONELIST_FALLBACK, /* zonelist with fallback */ 1187#ifdef CONFIG_NUMA 1188 /* 1189 * The NUMA zonelists are doubled because we need zonelists that 1190 * restrict the allocations to a single node for __GFP_THISNODE. 1191 */ 1192 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */ 1193#endif 1194 MAX_ZONELISTS 1195}; 1196 1197/* 1198 * This struct contains information about a zone in a zonelist. It is stored 1199 * here to avoid dereferences into large structures and lookups of tables 1200 */ 1201struct zoneref { 1202 struct zone *zone; /* Pointer to actual zone */ 1203 int zone_idx; /* zone_idx(zoneref->zone) */ 1204}; 1205 1206/* 1207 * One allocation request operates on a zonelist. A zonelist 1208 * is a list of zones, the first one is the 'goal' of the 1209 * allocation, the other zones are fallback zones, in decreasing 1210 * priority. 1211 * 1212 * To speed the reading of the zonelist, the zonerefs contain the zone index 1213 * of the entry being read. Helper functions to access information given 1214 * a struct zoneref are 1215 * 1216 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 1217 * zonelist_zone_idx() - Return the index of the zone for an entry 1218 * zonelist_node_idx() - Return the index of the node for an entry 1219 */ 1220struct zonelist { 1221 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 1222}; 1223 1224/* 1225 * The array of struct pages for flatmem. 1226 * It must be declared for SPARSEMEM as well because there are configurations 1227 * that rely on that. 1228 */ 1229extern struct page *mem_map; 1230 1231#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1232struct deferred_split { 1233 spinlock_t split_queue_lock; 1234 struct list_head split_queue; 1235 unsigned long split_queue_len; 1236}; 1237#endif 1238 1239#ifdef CONFIG_MEMORY_FAILURE 1240/* 1241 * Per NUMA node memory failure handling statistics. 1242 */ 1243struct memory_failure_stats { 1244 /* 1245 * Number of raw pages poisoned. 1246 * Cases not accounted: memory outside kernel control, offline page, 1247 * arch-specific memory_failure (SGX), hwpoison_filter() filtered 1248 * error events, and unpoison actions from hwpoison_unpoison. 1249 */ 1250 unsigned long total; 1251 /* 1252 * Recovery results of poisoned raw pages handled by memory_failure, 1253 * in sync with mf_result. 1254 * total = ignored + failed + delayed + recovered. 1255 * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted. 1256 */ 1257 unsigned long ignored; 1258 unsigned long failed; 1259 unsigned long delayed; 1260 unsigned long recovered; 1261}; 1262#endif 1263 1264/* 1265 * On NUMA machines, each NUMA node would have a pg_data_t to describe 1266 * it's memory layout. On UMA machines there is a single pglist_data which 1267 * describes the whole memory. 1268 * 1269 * Memory statistics and page replacement data structures are maintained on a 1270 * per-zone basis. 1271 */ 1272typedef struct pglist_data { 1273 /* 1274 * node_zones contains just the zones for THIS node. Not all of the 1275 * zones may be populated, but it is the full list. It is referenced by 1276 * this node's node_zonelists as well as other node's node_zonelists. 1277 */ 1278 struct zone node_zones[MAX_NR_ZONES]; 1279 1280 /* 1281 * node_zonelists contains references to all zones in all nodes. 1282 * Generally the first zones will be references to this node's 1283 * node_zones. 1284 */ 1285 struct zonelist node_zonelists[MAX_ZONELISTS]; 1286 1287 int nr_zones; /* number of populated zones in this node */ 1288#ifdef CONFIG_FLATMEM /* means !SPARSEMEM */ 1289 struct page *node_mem_map; 1290#ifdef CONFIG_PAGE_EXTENSION 1291 struct page_ext *node_page_ext; 1292#endif 1293#endif 1294#if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT) 1295 /* 1296 * Must be held any time you expect node_start_pfn, 1297 * node_present_pages, node_spanned_pages or nr_zones to stay constant. 1298 * Also synchronizes pgdat->first_deferred_pfn during deferred page 1299 * init. 1300 * 1301 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to 1302 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG 1303 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT. 1304 * 1305 * Nests above zone->lock and zone->span_seqlock 1306 */ 1307 spinlock_t node_size_lock; 1308#endif 1309 unsigned long node_start_pfn; 1310 unsigned long node_present_pages; /* total number of physical pages */ 1311 unsigned long node_spanned_pages; /* total size of physical page 1312 range, including holes */ 1313 int node_id; 1314 wait_queue_head_t kswapd_wait; 1315 wait_queue_head_t pfmemalloc_wait; 1316 1317 /* workqueues for throttling reclaim for different reasons. */ 1318 wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE]; 1319 1320 atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */ 1321 unsigned long nr_reclaim_start; /* nr pages written while throttled 1322 * when throttling started. */ 1323#ifdef CONFIG_MEMORY_HOTPLUG 1324 struct mutex kswapd_lock; 1325#endif 1326 struct task_struct *kswapd; /* Protected by kswapd_lock */ 1327 int kswapd_order; 1328 enum zone_type kswapd_highest_zoneidx; 1329 1330 int kswapd_failures; /* Number of 'reclaimed == 0' runs */ 1331 1332#ifdef CONFIG_COMPACTION 1333 int kcompactd_max_order; 1334 enum zone_type kcompactd_highest_zoneidx; 1335 wait_queue_head_t kcompactd_wait; 1336 struct task_struct *kcompactd; 1337 bool proactive_compact_trigger; 1338#endif 1339 /* 1340 * This is a per-node reserve of pages that are not available 1341 * to userspace allocations. 1342 */ 1343 unsigned long totalreserve_pages; 1344 1345#ifdef CONFIG_NUMA 1346 /* 1347 * node reclaim becomes active if more unmapped pages exist. 1348 */ 1349 unsigned long min_unmapped_pages; 1350 unsigned long min_slab_pages; 1351#endif /* CONFIG_NUMA */ 1352 1353 /* Write-intensive fields used by page reclaim */ 1354 CACHELINE_PADDING(_pad1_); 1355 1356#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1357 /* 1358 * If memory initialisation on large machines is deferred then this 1359 * is the first PFN that needs to be initialised. 1360 */ 1361 unsigned long first_deferred_pfn; 1362#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1363 1364#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1365 struct deferred_split deferred_split_queue; 1366#endif 1367 1368#ifdef CONFIG_NUMA_BALANCING 1369 /* start time in ms of current promote rate limit period */ 1370 unsigned int nbp_rl_start; 1371 /* number of promote candidate pages at start time of current rate limit period */ 1372 unsigned long nbp_rl_nr_cand; 1373 /* promote threshold in ms */ 1374 unsigned int nbp_threshold; 1375 /* start time in ms of current promote threshold adjustment period */ 1376 unsigned int nbp_th_start; 1377 /* 1378 * number of promote candidate pages at start time of current promote 1379 * threshold adjustment period 1380 */ 1381 unsigned long nbp_th_nr_cand; 1382#endif 1383 /* Fields commonly accessed by the page reclaim scanner */ 1384 1385 /* 1386 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED. 1387 * 1388 * Use mem_cgroup_lruvec() to look up lruvecs. 1389 */ 1390 struct lruvec __lruvec; 1391 1392 unsigned long flags; 1393 1394#ifdef CONFIG_LRU_GEN 1395 /* kswap mm walk data */ 1396 struct lru_gen_mm_walk mm_walk; 1397 /* lru_gen_folio list */ 1398 struct lru_gen_memcg memcg_lru; 1399#endif 1400 1401 CACHELINE_PADDING(_pad2_); 1402 1403 /* Per-node vmstats */ 1404 struct per_cpu_nodestat __percpu *per_cpu_nodestats; 1405 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS]; 1406#ifdef CONFIG_NUMA 1407 struct memory_tier __rcu *memtier; 1408#endif 1409#ifdef CONFIG_MEMORY_FAILURE 1410 struct memory_failure_stats mf_stats; 1411#endif 1412} pg_data_t; 1413 1414#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 1415#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 1416 1417#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 1418#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) 1419 1420static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) 1421{ 1422 return pgdat->node_start_pfn + pgdat->node_spanned_pages; 1423} 1424 1425#include <linux/memory_hotplug.h> 1426 1427void build_all_zonelists(pg_data_t *pgdat); 1428void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order, 1429 enum zone_type highest_zoneidx); 1430bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 1431 int highest_zoneidx, unsigned int alloc_flags, 1432 long free_pages); 1433bool zone_watermark_ok(struct zone *z, unsigned int order, 1434 unsigned long mark, int highest_zoneidx, 1435 unsigned int alloc_flags); 1436bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 1437 unsigned long mark, int highest_zoneidx); 1438/* 1439 * Memory initialization context, use to differentiate memory added by 1440 * the platform statically or via memory hotplug interface. 1441 */ 1442enum meminit_context { 1443 MEMINIT_EARLY, 1444 MEMINIT_HOTPLUG, 1445}; 1446 1447extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 1448 unsigned long size); 1449 1450extern void lruvec_init(struct lruvec *lruvec); 1451 1452static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec) 1453{ 1454#ifdef CONFIG_MEMCG 1455 return lruvec->pgdat; 1456#else 1457 return container_of(lruvec, struct pglist_data, __lruvec); 1458#endif 1459} 1460 1461#ifdef CONFIG_HAVE_MEMORYLESS_NODES 1462int local_memory_node(int node_id); 1463#else 1464static inline int local_memory_node(int node_id) { return node_id; }; 1465#endif 1466 1467/* 1468 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 1469 */ 1470#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 1471 1472#ifdef CONFIG_ZONE_DEVICE 1473static inline bool zone_is_zone_device(struct zone *zone) 1474{ 1475 return zone_idx(zone) == ZONE_DEVICE; 1476} 1477#else 1478static inline bool zone_is_zone_device(struct zone *zone) 1479{ 1480 return false; 1481} 1482#endif 1483 1484/* 1485 * Returns true if a zone has pages managed by the buddy allocator. 1486 * All the reclaim decisions have to use this function rather than 1487 * populated_zone(). If the whole zone is reserved then we can easily 1488 * end up with populated_zone() && !managed_zone(). 1489 */ 1490static inline bool managed_zone(struct zone *zone) 1491{ 1492 return zone_managed_pages(zone); 1493} 1494 1495/* Returns true if a zone has memory */ 1496static inline bool populated_zone(struct zone *zone) 1497{ 1498 return zone->present_pages; 1499} 1500 1501#ifdef CONFIG_NUMA 1502static inline int zone_to_nid(struct zone *zone) 1503{ 1504 return zone->node; 1505} 1506 1507static inline void zone_set_nid(struct zone *zone, int nid) 1508{ 1509 zone->node = nid; 1510} 1511#else 1512static inline int zone_to_nid(struct zone *zone) 1513{ 1514 return 0; 1515} 1516 1517static inline void zone_set_nid(struct zone *zone, int nid) {} 1518#endif 1519 1520extern int movable_zone; 1521 1522static inline int is_highmem_idx(enum zone_type idx) 1523{ 1524#ifdef CONFIG_HIGHMEM 1525 return (idx == ZONE_HIGHMEM || 1526 (idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM)); 1527#else 1528 return 0; 1529#endif 1530} 1531 1532/** 1533 * is_highmem - helper function to quickly check if a struct zone is a 1534 * highmem zone or not. This is an attempt to keep references 1535 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 1536 * @zone: pointer to struct zone variable 1537 * Return: 1 for a highmem zone, 0 otherwise 1538 */ 1539static inline int is_highmem(struct zone *zone) 1540{ 1541 return is_highmem_idx(zone_idx(zone)); 1542} 1543 1544#ifdef CONFIG_ZONE_DMA 1545bool has_managed_dma(void); 1546#else 1547static inline bool has_managed_dma(void) 1548{ 1549 return false; 1550} 1551#endif 1552 1553 1554#ifndef CONFIG_NUMA 1555 1556extern struct pglist_data contig_page_data; 1557static inline struct pglist_data *NODE_DATA(int nid) 1558{ 1559 return &contig_page_data; 1560} 1561 1562#else /* CONFIG_NUMA */ 1563 1564#include <asm/mmzone.h> 1565 1566#endif /* !CONFIG_NUMA */ 1567 1568extern struct pglist_data *first_online_pgdat(void); 1569extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 1570extern struct zone *next_zone(struct zone *zone); 1571 1572/** 1573 * for_each_online_pgdat - helper macro to iterate over all online nodes 1574 * @pgdat: pointer to a pg_data_t variable 1575 */ 1576#define for_each_online_pgdat(pgdat) \ 1577 for (pgdat = first_online_pgdat(); \ 1578 pgdat; \ 1579 pgdat = next_online_pgdat(pgdat)) 1580/** 1581 * for_each_zone - helper macro to iterate over all memory zones 1582 * @zone: pointer to struct zone variable 1583 * 1584 * The user only needs to declare the zone variable, for_each_zone 1585 * fills it in. 1586 */ 1587#define for_each_zone(zone) \ 1588 for (zone = (first_online_pgdat())->node_zones; \ 1589 zone; \ 1590 zone = next_zone(zone)) 1591 1592#define for_each_populated_zone(zone) \ 1593 for (zone = (first_online_pgdat())->node_zones; \ 1594 zone; \ 1595 zone = next_zone(zone)) \ 1596 if (!populated_zone(zone)) \ 1597 ; /* do nothing */ \ 1598 else 1599 1600static inline struct zone *zonelist_zone(struct zoneref *zoneref) 1601{ 1602 return zoneref->zone; 1603} 1604 1605static inline int zonelist_zone_idx(struct zoneref *zoneref) 1606{ 1607 return zoneref->zone_idx; 1608} 1609 1610static inline int zonelist_node_idx(struct zoneref *zoneref) 1611{ 1612 return zone_to_nid(zoneref->zone); 1613} 1614 1615struct zoneref *__next_zones_zonelist(struct zoneref *z, 1616 enum zone_type highest_zoneidx, 1617 nodemask_t *nodes); 1618 1619/** 1620 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 1621 * @z: The cursor used as a starting point for the search 1622 * @highest_zoneidx: The zone index of the highest zone to return 1623 * @nodes: An optional nodemask to filter the zonelist with 1624 * 1625 * This function returns the next zone at or below a given zone index that is 1626 * within the allowed nodemask using a cursor as the starting point for the 1627 * search. The zoneref returned is a cursor that represents the current zone 1628 * being examined. It should be advanced by one before calling 1629 * next_zones_zonelist again. 1630 * 1631 * Return: the next zone at or below highest_zoneidx within the allowed 1632 * nodemask using a cursor within a zonelist as a starting point 1633 */ 1634static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z, 1635 enum zone_type highest_zoneidx, 1636 nodemask_t *nodes) 1637{ 1638 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx)) 1639 return z; 1640 return __next_zones_zonelist(z, highest_zoneidx, nodes); 1641} 1642 1643/** 1644 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 1645 * @zonelist: The zonelist to search for a suitable zone 1646 * @highest_zoneidx: The zone index of the highest zone to return 1647 * @nodes: An optional nodemask to filter the zonelist with 1648 * 1649 * This function returns the first zone at or below a given zone index that is 1650 * within the allowed nodemask. The zoneref returned is a cursor that can be 1651 * used to iterate the zonelist with next_zones_zonelist by advancing it by 1652 * one before calling. 1653 * 1654 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is 1655 * never NULL). This may happen either genuinely, or due to concurrent nodemask 1656 * update due to cpuset modification. 1657 * 1658 * Return: Zoneref pointer for the first suitable zone found 1659 */ 1660static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 1661 enum zone_type highest_zoneidx, 1662 nodemask_t *nodes) 1663{ 1664 return next_zones_zonelist(zonelist->_zonerefs, 1665 highest_zoneidx, nodes); 1666} 1667 1668/** 1669 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 1670 * @zone: The current zone in the iterator 1671 * @z: The current pointer within zonelist->_zonerefs being iterated 1672 * @zlist: The zonelist being iterated 1673 * @highidx: The zone index of the highest zone to return 1674 * @nodemask: Nodemask allowed by the allocator 1675 * 1676 * This iterator iterates though all zones at or below a given zone index and 1677 * within a given nodemask 1678 */ 1679#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1680 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \ 1681 zone; \ 1682 z = next_zones_zonelist(++z, highidx, nodemask), \ 1683 zone = zonelist_zone(z)) 1684 1685#define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \ 1686 for (zone = z->zone; \ 1687 zone; \ 1688 z = next_zones_zonelist(++z, highidx, nodemask), \ 1689 zone = zonelist_zone(z)) 1690 1691 1692/** 1693 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 1694 * @zone: The current zone in the iterator 1695 * @z: The current pointer within zonelist->zones being iterated 1696 * @zlist: The zonelist being iterated 1697 * @highidx: The zone index of the highest zone to return 1698 * 1699 * This iterator iterates though all zones at or below a given zone index. 1700 */ 1701#define for_each_zone_zonelist(zone, z, zlist, highidx) \ 1702 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 1703 1704/* Whether the 'nodes' are all movable nodes */ 1705static inline bool movable_only_nodes(nodemask_t *nodes) 1706{ 1707 struct zonelist *zonelist; 1708 struct zoneref *z; 1709 int nid; 1710 1711 if (nodes_empty(*nodes)) 1712 return false; 1713 1714 /* 1715 * We can chose arbitrary node from the nodemask to get a 1716 * zonelist as they are interlinked. We just need to find 1717 * at least one zone that can satisfy kernel allocations. 1718 */ 1719 nid = first_node(*nodes); 1720 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; 1721 z = first_zones_zonelist(zonelist, ZONE_NORMAL, nodes); 1722 return (!z->zone) ? true : false; 1723} 1724 1725 1726#ifdef CONFIG_SPARSEMEM 1727#include <asm/sparsemem.h> 1728#endif 1729 1730#ifdef CONFIG_FLATMEM 1731#define pfn_to_nid(pfn) (0) 1732#endif 1733 1734#ifdef CONFIG_SPARSEMEM 1735 1736/* 1737 * PA_SECTION_SHIFT physical address to/from section number 1738 * PFN_SECTION_SHIFT pfn to/from section number 1739 */ 1740#define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1741#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1742 1743#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1744 1745#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1746#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1747 1748#define SECTION_BLOCKFLAGS_BITS \ 1749 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1750 1751#if (MAX_PAGE_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS 1752#error Allocator MAX_PAGE_ORDER exceeds SECTION_SIZE 1753#endif 1754 1755static inline unsigned long pfn_to_section_nr(unsigned long pfn) 1756{ 1757 return pfn >> PFN_SECTION_SHIFT; 1758} 1759static inline unsigned long section_nr_to_pfn(unsigned long sec) 1760{ 1761 return sec << PFN_SECTION_SHIFT; 1762} 1763 1764#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1765#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1766 1767#define SUBSECTION_SHIFT 21 1768#define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT) 1769 1770#define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT) 1771#define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT) 1772#define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1)) 1773 1774#if SUBSECTION_SHIFT > SECTION_SIZE_BITS 1775#error Subsection size exceeds section size 1776#else 1777#define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT)) 1778#endif 1779 1780#define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION) 1781#define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK) 1782 1783struct mem_section_usage { 1784 struct rcu_head rcu; 1785#ifdef CONFIG_SPARSEMEM_VMEMMAP 1786 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION); 1787#endif 1788 /* See declaration of similar field in struct zone */ 1789 unsigned long pageblock_flags[0]; 1790}; 1791 1792void subsection_map_init(unsigned long pfn, unsigned long nr_pages); 1793 1794struct page; 1795struct page_ext; 1796struct mem_section { 1797 /* 1798 * This is, logically, a pointer to an array of struct 1799 * pages. However, it is stored with some other magic. 1800 * (see sparse.c::sparse_init_one_section()) 1801 * 1802 * Additionally during early boot we encode node id of 1803 * the location of the section here to guide allocation. 1804 * (see sparse.c::memory_present()) 1805 * 1806 * Making it a UL at least makes someone do a cast 1807 * before using it wrong. 1808 */ 1809 unsigned long section_mem_map; 1810 1811 struct mem_section_usage *usage; 1812#ifdef CONFIG_PAGE_EXTENSION 1813 /* 1814 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use 1815 * section. (see page_ext.h about this.) 1816 */ 1817 struct page_ext *page_ext; 1818 unsigned long pad; 1819#endif 1820 /* 1821 * WARNING: mem_section must be a power-of-2 in size for the 1822 * calculation and use of SECTION_ROOT_MASK to make sense. 1823 */ 1824}; 1825 1826#ifdef CONFIG_SPARSEMEM_EXTREME 1827#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1828#else 1829#define SECTIONS_PER_ROOT 1 1830#endif 1831 1832#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1833#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1834#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1835 1836#ifdef CONFIG_SPARSEMEM_EXTREME 1837extern struct mem_section **mem_section; 1838#else 1839extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1840#endif 1841 1842static inline unsigned long *section_to_usemap(struct mem_section *ms) 1843{ 1844 return ms->usage->pageblock_flags; 1845} 1846 1847static inline struct mem_section *__nr_to_section(unsigned long nr) 1848{ 1849 unsigned long root = SECTION_NR_TO_ROOT(nr); 1850 1851 if (unlikely(root >= NR_SECTION_ROOTS)) 1852 return NULL; 1853 1854#ifdef CONFIG_SPARSEMEM_EXTREME 1855 if (!mem_section || !mem_section[root]) 1856 return NULL; 1857#endif 1858 return &mem_section[root][nr & SECTION_ROOT_MASK]; 1859} 1860extern size_t mem_section_usage_size(void); 1861 1862/* 1863 * We use the lower bits of the mem_map pointer to store 1864 * a little bit of information. The pointer is calculated 1865 * as mem_map - section_nr_to_pfn(pnum). The result is 1866 * aligned to the minimum alignment of the two values: 1867 * 1. All mem_map arrays are page-aligned. 1868 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT 1869 * lowest bits. PFN_SECTION_SHIFT is arch-specific 1870 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the 1871 * worst combination is powerpc with 256k pages, 1872 * which results in PFN_SECTION_SHIFT equal 6. 1873 * To sum it up, at least 6 bits are available on all architectures. 1874 * However, we can exceed 6 bits on some other architectures except 1875 * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available 1876 * with the worst case of 64K pages on arm64) if we make sure the 1877 * exceeded bit is not applicable to powerpc. 1878 */ 1879enum { 1880 SECTION_MARKED_PRESENT_BIT, 1881 SECTION_HAS_MEM_MAP_BIT, 1882 SECTION_IS_ONLINE_BIT, 1883 SECTION_IS_EARLY_BIT, 1884#ifdef CONFIG_ZONE_DEVICE 1885 SECTION_TAINT_ZONE_DEVICE_BIT, 1886#endif 1887 SECTION_MAP_LAST_BIT, 1888}; 1889 1890#define SECTION_MARKED_PRESENT BIT(SECTION_MARKED_PRESENT_BIT) 1891#define SECTION_HAS_MEM_MAP BIT(SECTION_HAS_MEM_MAP_BIT) 1892#define SECTION_IS_ONLINE BIT(SECTION_IS_ONLINE_BIT) 1893#define SECTION_IS_EARLY BIT(SECTION_IS_EARLY_BIT) 1894#ifdef CONFIG_ZONE_DEVICE 1895#define SECTION_TAINT_ZONE_DEVICE BIT(SECTION_TAINT_ZONE_DEVICE_BIT) 1896#endif 1897#define SECTION_MAP_MASK (~(BIT(SECTION_MAP_LAST_BIT) - 1)) 1898#define SECTION_NID_SHIFT SECTION_MAP_LAST_BIT 1899 1900static inline struct page *__section_mem_map_addr(struct mem_section *section) 1901{ 1902 unsigned long map = section->section_mem_map; 1903 map &= SECTION_MAP_MASK; 1904 return (struct page *)map; 1905} 1906 1907static inline int present_section(struct mem_section *section) 1908{ 1909 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1910} 1911 1912static inline int present_section_nr(unsigned long nr) 1913{ 1914 return present_section(__nr_to_section(nr)); 1915} 1916 1917static inline int valid_section(struct mem_section *section) 1918{ 1919 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1920} 1921 1922static inline int early_section(struct mem_section *section) 1923{ 1924 return (section && (section->section_mem_map & SECTION_IS_EARLY)); 1925} 1926 1927static inline int valid_section_nr(unsigned long nr) 1928{ 1929 return valid_section(__nr_to_section(nr)); 1930} 1931 1932static inline int online_section(struct mem_section *section) 1933{ 1934 return (section && (section->section_mem_map & SECTION_IS_ONLINE)); 1935} 1936 1937#ifdef CONFIG_ZONE_DEVICE 1938static inline int online_device_section(struct mem_section *section) 1939{ 1940 unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE; 1941 1942 return section && ((section->section_mem_map & flags) == flags); 1943} 1944#else 1945static inline int online_device_section(struct mem_section *section) 1946{ 1947 return 0; 1948} 1949#endif 1950 1951static inline int online_section_nr(unsigned long nr) 1952{ 1953 return online_section(__nr_to_section(nr)); 1954} 1955 1956#ifdef CONFIG_MEMORY_HOTPLUG 1957void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1958void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1959#endif 1960 1961static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1962{ 1963 return __nr_to_section(pfn_to_section_nr(pfn)); 1964} 1965 1966extern unsigned long __highest_present_section_nr; 1967 1968static inline int subsection_map_index(unsigned long pfn) 1969{ 1970 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION; 1971} 1972 1973#ifdef CONFIG_SPARSEMEM_VMEMMAP 1974static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 1975{ 1976 int idx = subsection_map_index(pfn); 1977 1978 return test_bit(idx, READ_ONCE(ms->usage)->subsection_map); 1979} 1980#else 1981static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 1982{ 1983 return 1; 1984} 1985#endif 1986 1987#ifndef CONFIG_HAVE_ARCH_PFN_VALID 1988/** 1989 * pfn_valid - check if there is a valid memory map entry for a PFN 1990 * @pfn: the page frame number to check 1991 * 1992 * Check if there is a valid memory map entry aka struct page for the @pfn. 1993 * Note, that availability of the memory map entry does not imply that 1994 * there is actual usable memory at that @pfn. The struct page may 1995 * represent a hole or an unusable page frame. 1996 * 1997 * Return: 1 for PFNs that have memory map entries and 0 otherwise 1998 */ 1999static inline int pfn_valid(unsigned long pfn) 2000{ 2001 struct mem_section *ms; 2002 int ret; 2003 2004 /* 2005 * Ensure the upper PAGE_SHIFT bits are clear in the 2006 * pfn. Else it might lead to false positives when 2007 * some of the upper bits are set, but the lower bits 2008 * match a valid pfn. 2009 */ 2010 if (PHYS_PFN(PFN_PHYS(pfn)) != pfn) 2011 return 0; 2012 2013 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 2014 return 0; 2015 ms = __pfn_to_section(pfn); 2016 rcu_read_lock_sched(); 2017 if (!valid_section(ms)) { 2018 rcu_read_unlock_sched(); 2019 return 0; 2020 } 2021 /* 2022 * Traditionally early sections always returned pfn_valid() for 2023 * the entire section-sized span. 2024 */ 2025 ret = early_section(ms) || pfn_section_valid(ms, pfn); 2026 rcu_read_unlock_sched(); 2027 2028 return ret; 2029} 2030#endif 2031 2032static inline int pfn_in_present_section(unsigned long pfn) 2033{ 2034 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 2035 return 0; 2036 return present_section(__pfn_to_section(pfn)); 2037} 2038 2039static inline unsigned long next_present_section_nr(unsigned long section_nr) 2040{ 2041 while (++section_nr <= __highest_present_section_nr) { 2042 if (present_section_nr(section_nr)) 2043 return section_nr; 2044 } 2045 2046 return -1; 2047} 2048 2049/* 2050 * These are _only_ used during initialisation, therefore they 2051 * can use __initdata ... They could have names to indicate 2052 * this restriction. 2053 */ 2054#ifdef CONFIG_NUMA 2055#define pfn_to_nid(pfn) \ 2056({ \ 2057 unsigned long __pfn_to_nid_pfn = (pfn); \ 2058 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 2059}) 2060#else 2061#define pfn_to_nid(pfn) (0) 2062#endif 2063 2064void sparse_init(void); 2065#else 2066#define sparse_init() do {} while (0) 2067#define sparse_index_init(_sec, _nid) do {} while (0) 2068#define pfn_in_present_section pfn_valid 2069#define subsection_map_init(_pfn, _nr_pages) do {} while (0) 2070#endif /* CONFIG_SPARSEMEM */ 2071 2072#endif /* !__GENERATING_BOUNDS.H */ 2073#endif /* !__ASSEMBLY__ */ 2074#endif /* _LINUX_MMZONE_H */