at v6.8 128 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MM_H 3#define _LINUX_MM_H 4 5#include <linux/errno.h> 6#include <linux/mmdebug.h> 7#include <linux/gfp.h> 8#include <linux/bug.h> 9#include <linux/list.h> 10#include <linux/mmzone.h> 11#include <linux/rbtree.h> 12#include <linux/atomic.h> 13#include <linux/debug_locks.h> 14#include <linux/mm_types.h> 15#include <linux/mmap_lock.h> 16#include <linux/range.h> 17#include <linux/pfn.h> 18#include <linux/percpu-refcount.h> 19#include <linux/bit_spinlock.h> 20#include <linux/shrinker.h> 21#include <linux/resource.h> 22#include <linux/page_ext.h> 23#include <linux/err.h> 24#include <linux/page-flags.h> 25#include <linux/page_ref.h> 26#include <linux/overflow.h> 27#include <linux/sizes.h> 28#include <linux/sched.h> 29#include <linux/pgtable.h> 30#include <linux/kasan.h> 31#include <linux/memremap.h> 32#include <linux/slab.h> 33 34struct mempolicy; 35struct anon_vma; 36struct anon_vma_chain; 37struct user_struct; 38struct pt_regs; 39 40extern int sysctl_page_lock_unfairness; 41 42void mm_core_init(void); 43void init_mm_internals(void); 44 45#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */ 46extern unsigned long max_mapnr; 47 48static inline void set_max_mapnr(unsigned long limit) 49{ 50 max_mapnr = limit; 51} 52#else 53static inline void set_max_mapnr(unsigned long limit) { } 54#endif 55 56extern atomic_long_t _totalram_pages; 57static inline unsigned long totalram_pages(void) 58{ 59 return (unsigned long)atomic_long_read(&_totalram_pages); 60} 61 62static inline void totalram_pages_inc(void) 63{ 64 atomic_long_inc(&_totalram_pages); 65} 66 67static inline void totalram_pages_dec(void) 68{ 69 atomic_long_dec(&_totalram_pages); 70} 71 72static inline void totalram_pages_add(long count) 73{ 74 atomic_long_add(count, &_totalram_pages); 75} 76 77extern void * high_memory; 78extern int page_cluster; 79extern const int page_cluster_max; 80 81#ifdef CONFIG_SYSCTL 82extern int sysctl_legacy_va_layout; 83#else 84#define sysctl_legacy_va_layout 0 85#endif 86 87#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 88extern const int mmap_rnd_bits_min; 89extern const int mmap_rnd_bits_max; 90extern int mmap_rnd_bits __read_mostly; 91#endif 92#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 93extern const int mmap_rnd_compat_bits_min; 94extern const int mmap_rnd_compat_bits_max; 95extern int mmap_rnd_compat_bits __read_mostly; 96#endif 97 98#include <asm/page.h> 99#include <asm/processor.h> 100 101#ifndef __pa_symbol 102#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 103#endif 104 105#ifndef page_to_virt 106#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 107#endif 108 109#ifndef lm_alias 110#define lm_alias(x) __va(__pa_symbol(x)) 111#endif 112 113/* 114 * To prevent common memory management code establishing 115 * a zero page mapping on a read fault. 116 * This macro should be defined within <asm/pgtable.h>. 117 * s390 does this to prevent multiplexing of hardware bits 118 * related to the physical page in case of virtualization. 119 */ 120#ifndef mm_forbids_zeropage 121#define mm_forbids_zeropage(X) (0) 122#endif 123 124/* 125 * On some architectures it is expensive to call memset() for small sizes. 126 * If an architecture decides to implement their own version of 127 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 128 * define their own version of this macro in <asm/pgtable.h> 129 */ 130#if BITS_PER_LONG == 64 131/* This function must be updated when the size of struct page grows above 96 132 * or reduces below 56. The idea that compiler optimizes out switch() 133 * statement, and only leaves move/store instructions. Also the compiler can 134 * combine write statements if they are both assignments and can be reordered, 135 * this can result in several of the writes here being dropped. 136 */ 137#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 138static inline void __mm_zero_struct_page(struct page *page) 139{ 140 unsigned long *_pp = (void *)page; 141 142 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */ 143 BUILD_BUG_ON(sizeof(struct page) & 7); 144 BUILD_BUG_ON(sizeof(struct page) < 56); 145 BUILD_BUG_ON(sizeof(struct page) > 96); 146 147 switch (sizeof(struct page)) { 148 case 96: 149 _pp[11] = 0; 150 fallthrough; 151 case 88: 152 _pp[10] = 0; 153 fallthrough; 154 case 80: 155 _pp[9] = 0; 156 fallthrough; 157 case 72: 158 _pp[8] = 0; 159 fallthrough; 160 case 64: 161 _pp[7] = 0; 162 fallthrough; 163 case 56: 164 _pp[6] = 0; 165 _pp[5] = 0; 166 _pp[4] = 0; 167 _pp[3] = 0; 168 _pp[2] = 0; 169 _pp[1] = 0; 170 _pp[0] = 0; 171 } 172} 173#else 174#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 175#endif 176 177/* 178 * Default maximum number of active map areas, this limits the number of vmas 179 * per mm struct. Users can overwrite this number by sysctl but there is a 180 * problem. 181 * 182 * When a program's coredump is generated as ELF format, a section is created 183 * per a vma. In ELF, the number of sections is represented in unsigned short. 184 * This means the number of sections should be smaller than 65535 at coredump. 185 * Because the kernel adds some informative sections to a image of program at 186 * generating coredump, we need some margin. The number of extra sections is 187 * 1-3 now and depends on arch. We use "5" as safe margin, here. 188 * 189 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 190 * not a hard limit any more. Although some userspace tools can be surprised by 191 * that. 192 */ 193#define MAPCOUNT_ELF_CORE_MARGIN (5) 194#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 195 196extern int sysctl_max_map_count; 197 198extern unsigned long sysctl_user_reserve_kbytes; 199extern unsigned long sysctl_admin_reserve_kbytes; 200 201extern int sysctl_overcommit_memory; 202extern int sysctl_overcommit_ratio; 203extern unsigned long sysctl_overcommit_kbytes; 204 205int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, 206 loff_t *); 207int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, 208 loff_t *); 209int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *, 210 loff_t *); 211 212#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 213#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 214#define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio)) 215#else 216#define nth_page(page,n) ((page) + (n)) 217#define folio_page_idx(folio, p) ((p) - &(folio)->page) 218#endif 219 220/* to align the pointer to the (next) page boundary */ 221#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 222 223/* to align the pointer to the (prev) page boundary */ 224#define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE) 225 226/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 227#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 228 229#define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 230static inline struct folio *lru_to_folio(struct list_head *head) 231{ 232 return list_entry((head)->prev, struct folio, lru); 233} 234 235void setup_initial_init_mm(void *start_code, void *end_code, 236 void *end_data, void *brk); 237 238/* 239 * Linux kernel virtual memory manager primitives. 240 * The idea being to have a "virtual" mm in the same way 241 * we have a virtual fs - giving a cleaner interface to the 242 * mm details, and allowing different kinds of memory mappings 243 * (from shared memory to executable loading to arbitrary 244 * mmap() functions). 245 */ 246 247struct vm_area_struct *vm_area_alloc(struct mm_struct *); 248struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 249void vm_area_free(struct vm_area_struct *); 250/* Use only if VMA has no other users */ 251void __vm_area_free(struct vm_area_struct *vma); 252 253#ifndef CONFIG_MMU 254extern struct rb_root nommu_region_tree; 255extern struct rw_semaphore nommu_region_sem; 256 257extern unsigned int kobjsize(const void *objp); 258#endif 259 260/* 261 * vm_flags in vm_area_struct, see mm_types.h. 262 * When changing, update also include/trace/events/mmflags.h 263 */ 264#define VM_NONE 0x00000000 265 266#define VM_READ 0x00000001 /* currently active flags */ 267#define VM_WRITE 0x00000002 268#define VM_EXEC 0x00000004 269#define VM_SHARED 0x00000008 270 271/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 272#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 273#define VM_MAYWRITE 0x00000020 274#define VM_MAYEXEC 0x00000040 275#define VM_MAYSHARE 0x00000080 276 277#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 278#ifdef CONFIG_MMU 279#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 280#else /* CONFIG_MMU */ 281#define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */ 282#define VM_UFFD_MISSING 0 283#endif /* CONFIG_MMU */ 284#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 285#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 286 287#define VM_LOCKED 0x00002000 288#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 289 290 /* Used by sys_madvise() */ 291#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 292#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 293 294#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 295#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 296#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 297#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 298#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 299#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 300#define VM_SYNC 0x00800000 /* Synchronous page faults */ 301#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 302#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 303#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 304 305#ifdef CONFIG_MEM_SOFT_DIRTY 306# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 307#else 308# define VM_SOFTDIRTY 0 309#endif 310 311#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 312#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 313#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 314#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 315 316#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 317#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 318#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 319#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 320#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 321#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 322#define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */ 323#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 324#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 325#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 326#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 327#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 328#define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5) 329#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 330 331#ifdef CONFIG_ARCH_HAS_PKEYS 332# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 333# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 334# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 335# define VM_PKEY_BIT2 VM_HIGH_ARCH_2 336# define VM_PKEY_BIT3 VM_HIGH_ARCH_3 337#ifdef CONFIG_PPC 338# define VM_PKEY_BIT4 VM_HIGH_ARCH_4 339#else 340# define VM_PKEY_BIT4 0 341#endif 342#endif /* CONFIG_ARCH_HAS_PKEYS */ 343 344#ifdef CONFIG_X86_USER_SHADOW_STACK 345/* 346 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of 347 * support core mm. 348 * 349 * These VMAs will get a single end guard page. This helps userspace protect 350 * itself from attacks. A single page is enough for current shadow stack archs 351 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c 352 * for more details on the guard size. 353 */ 354# define VM_SHADOW_STACK VM_HIGH_ARCH_5 355#else 356# define VM_SHADOW_STACK VM_NONE 357#endif 358 359#if defined(CONFIG_X86) 360# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 361#elif defined(CONFIG_PPC) 362# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 363#elif defined(CONFIG_PARISC) 364# define VM_GROWSUP VM_ARCH_1 365#elif defined(CONFIG_SPARC64) 366# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 367# define VM_ARCH_CLEAR VM_SPARC_ADI 368#elif defined(CONFIG_ARM64) 369# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 370# define VM_ARCH_CLEAR VM_ARM64_BTI 371#elif !defined(CONFIG_MMU) 372# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 373#endif 374 375#if defined(CONFIG_ARM64_MTE) 376# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */ 377# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */ 378#else 379# define VM_MTE VM_NONE 380# define VM_MTE_ALLOWED VM_NONE 381#endif 382 383#ifndef VM_GROWSUP 384# define VM_GROWSUP VM_NONE 385#endif 386 387#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 388# define VM_UFFD_MINOR_BIT 38 389# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ 390#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 391# define VM_UFFD_MINOR VM_NONE 392#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 393 394/* Bits set in the VMA until the stack is in its final location */ 395#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY) 396 397#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 398 399/* Common data flag combinations */ 400#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 401 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 402#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 403 VM_MAYWRITE | VM_MAYEXEC) 404#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 405 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 406 407#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 408#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 409#endif 410 411#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 412#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 413#endif 414 415#define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK) 416 417#ifdef CONFIG_STACK_GROWSUP 418#define VM_STACK VM_GROWSUP 419#define VM_STACK_EARLY VM_GROWSDOWN 420#else 421#define VM_STACK VM_GROWSDOWN 422#define VM_STACK_EARLY 0 423#endif 424 425#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 426 427/* VMA basic access permission flags */ 428#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 429 430 431/* 432 * Special vmas that are non-mergable, non-mlock()able. 433 */ 434#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 435 436/* This mask prevents VMA from being scanned with khugepaged */ 437#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 438 439/* This mask defines which mm->def_flags a process can inherit its parent */ 440#define VM_INIT_DEF_MASK VM_NOHUGEPAGE 441 442/* This mask represents all the VMA flag bits used by mlock */ 443#define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT) 444 445/* Arch-specific flags to clear when updating VM flags on protection change */ 446#ifndef VM_ARCH_CLEAR 447# define VM_ARCH_CLEAR VM_NONE 448#endif 449#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 450 451/* 452 * mapping from the currently active vm_flags protection bits (the 453 * low four bits) to a page protection mask.. 454 */ 455 456/* 457 * The default fault flags that should be used by most of the 458 * arch-specific page fault handlers. 459 */ 460#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 461 FAULT_FLAG_KILLABLE | \ 462 FAULT_FLAG_INTERRUPTIBLE) 463 464/** 465 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 466 * @flags: Fault flags. 467 * 468 * This is mostly used for places where we want to try to avoid taking 469 * the mmap_lock for too long a time when waiting for another condition 470 * to change, in which case we can try to be polite to release the 471 * mmap_lock in the first round to avoid potential starvation of other 472 * processes that would also want the mmap_lock. 473 * 474 * Return: true if the page fault allows retry and this is the first 475 * attempt of the fault handling; false otherwise. 476 */ 477static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 478{ 479 return (flags & FAULT_FLAG_ALLOW_RETRY) && 480 (!(flags & FAULT_FLAG_TRIED)); 481} 482 483#define FAULT_FLAG_TRACE \ 484 { FAULT_FLAG_WRITE, "WRITE" }, \ 485 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 486 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 487 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 488 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 489 { FAULT_FLAG_TRIED, "TRIED" }, \ 490 { FAULT_FLAG_USER, "USER" }, \ 491 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 492 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 493 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \ 494 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" } 495 496/* 497 * vm_fault is filled by the pagefault handler and passed to the vma's 498 * ->fault function. The vma's ->fault is responsible for returning a bitmask 499 * of VM_FAULT_xxx flags that give details about how the fault was handled. 500 * 501 * MM layer fills up gfp_mask for page allocations but fault handler might 502 * alter it if its implementation requires a different allocation context. 503 * 504 * pgoff should be used in favour of virtual_address, if possible. 505 */ 506struct vm_fault { 507 const struct { 508 struct vm_area_struct *vma; /* Target VMA */ 509 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 510 pgoff_t pgoff; /* Logical page offset based on vma */ 511 unsigned long address; /* Faulting virtual address - masked */ 512 unsigned long real_address; /* Faulting virtual address - unmasked */ 513 }; 514 enum fault_flag flags; /* FAULT_FLAG_xxx flags 515 * XXX: should really be 'const' */ 516 pmd_t *pmd; /* Pointer to pmd entry matching 517 * the 'address' */ 518 pud_t *pud; /* Pointer to pud entry matching 519 * the 'address' 520 */ 521 union { 522 pte_t orig_pte; /* Value of PTE at the time of fault */ 523 pmd_t orig_pmd; /* Value of PMD at the time of fault, 524 * used by PMD fault only. 525 */ 526 }; 527 528 struct page *cow_page; /* Page handler may use for COW fault */ 529 struct page *page; /* ->fault handlers should return a 530 * page here, unless VM_FAULT_NOPAGE 531 * is set (which is also implied by 532 * VM_FAULT_ERROR). 533 */ 534 /* These three entries are valid only while holding ptl lock */ 535 pte_t *pte; /* Pointer to pte entry matching 536 * the 'address'. NULL if the page 537 * table hasn't been allocated. 538 */ 539 spinlock_t *ptl; /* Page table lock. 540 * Protects pte page table if 'pte' 541 * is not NULL, otherwise pmd. 542 */ 543 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 544 * vm_ops->map_pages() sets up a page 545 * table from atomic context. 546 * do_fault_around() pre-allocates 547 * page table to avoid allocation from 548 * atomic context. 549 */ 550}; 551 552/* 553 * These are the virtual MM functions - opening of an area, closing and 554 * unmapping it (needed to keep files on disk up-to-date etc), pointer 555 * to the functions called when a no-page or a wp-page exception occurs. 556 */ 557struct vm_operations_struct { 558 void (*open)(struct vm_area_struct * area); 559 /** 560 * @close: Called when the VMA is being removed from the MM. 561 * Context: User context. May sleep. Caller holds mmap_lock. 562 */ 563 void (*close)(struct vm_area_struct * area); 564 /* Called any time before splitting to check if it's allowed */ 565 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 566 int (*mremap)(struct vm_area_struct *area); 567 /* 568 * Called by mprotect() to make driver-specific permission 569 * checks before mprotect() is finalised. The VMA must not 570 * be modified. Returns 0 if mprotect() can proceed. 571 */ 572 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 573 unsigned long end, unsigned long newflags); 574 vm_fault_t (*fault)(struct vm_fault *vmf); 575 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order); 576 vm_fault_t (*map_pages)(struct vm_fault *vmf, 577 pgoff_t start_pgoff, pgoff_t end_pgoff); 578 unsigned long (*pagesize)(struct vm_area_struct * area); 579 580 /* notification that a previously read-only page is about to become 581 * writable, if an error is returned it will cause a SIGBUS */ 582 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 583 584 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 585 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 586 587 /* called by access_process_vm when get_user_pages() fails, typically 588 * for use by special VMAs. See also generic_access_phys() for a generic 589 * implementation useful for any iomem mapping. 590 */ 591 int (*access)(struct vm_area_struct *vma, unsigned long addr, 592 void *buf, int len, int write); 593 594 /* Called by the /proc/PID/maps code to ask the vma whether it 595 * has a special name. Returning non-NULL will also cause this 596 * vma to be dumped unconditionally. */ 597 const char *(*name)(struct vm_area_struct *vma); 598 599#ifdef CONFIG_NUMA 600 /* 601 * set_policy() op must add a reference to any non-NULL @new mempolicy 602 * to hold the policy upon return. Caller should pass NULL @new to 603 * remove a policy and fall back to surrounding context--i.e. do not 604 * install a MPOL_DEFAULT policy, nor the task or system default 605 * mempolicy. 606 */ 607 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 608 609 /* 610 * get_policy() op must add reference [mpol_get()] to any policy at 611 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 612 * in mm/mempolicy.c will do this automatically. 613 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 614 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 615 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 616 * must return NULL--i.e., do not "fallback" to task or system default 617 * policy. 618 */ 619 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 620 unsigned long addr, pgoff_t *ilx); 621#endif 622 /* 623 * Called by vm_normal_page() for special PTEs to find the 624 * page for @addr. This is useful if the default behavior 625 * (using pte_page()) would not find the correct page. 626 */ 627 struct page *(*find_special_page)(struct vm_area_struct *vma, 628 unsigned long addr); 629}; 630 631#ifdef CONFIG_NUMA_BALANCING 632static inline void vma_numab_state_init(struct vm_area_struct *vma) 633{ 634 vma->numab_state = NULL; 635} 636static inline void vma_numab_state_free(struct vm_area_struct *vma) 637{ 638 kfree(vma->numab_state); 639} 640#else 641static inline void vma_numab_state_init(struct vm_area_struct *vma) {} 642static inline void vma_numab_state_free(struct vm_area_struct *vma) {} 643#endif /* CONFIG_NUMA_BALANCING */ 644 645#ifdef CONFIG_PER_VMA_LOCK 646/* 647 * Try to read-lock a vma. The function is allowed to occasionally yield false 648 * locked result to avoid performance overhead, in which case we fall back to 649 * using mmap_lock. The function should never yield false unlocked result. 650 */ 651static inline bool vma_start_read(struct vm_area_struct *vma) 652{ 653 /* 654 * Check before locking. A race might cause false locked result. 655 * We can use READ_ONCE() for the mm_lock_seq here, and don't need 656 * ACQUIRE semantics, because this is just a lockless check whose result 657 * we don't rely on for anything - the mm_lock_seq read against which we 658 * need ordering is below. 659 */ 660 if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq)) 661 return false; 662 663 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0)) 664 return false; 665 666 /* 667 * Overflow might produce false locked result. 668 * False unlocked result is impossible because we modify and check 669 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq 670 * modification invalidates all existing locks. 671 * 672 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are 673 * racing with vma_end_write_all(), we only start reading from the VMA 674 * after it has been unlocked. 675 * This pairs with RELEASE semantics in vma_end_write_all(). 676 */ 677 if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) { 678 up_read(&vma->vm_lock->lock); 679 return false; 680 } 681 return true; 682} 683 684static inline void vma_end_read(struct vm_area_struct *vma) 685{ 686 rcu_read_lock(); /* keeps vma alive till the end of up_read */ 687 up_read(&vma->vm_lock->lock); 688 rcu_read_unlock(); 689} 690 691/* WARNING! Can only be used if mmap_lock is expected to be write-locked */ 692static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq) 693{ 694 mmap_assert_write_locked(vma->vm_mm); 695 696 /* 697 * current task is holding mmap_write_lock, both vma->vm_lock_seq and 698 * mm->mm_lock_seq can't be concurrently modified. 699 */ 700 *mm_lock_seq = vma->vm_mm->mm_lock_seq; 701 return (vma->vm_lock_seq == *mm_lock_seq); 702} 703 704/* 705 * Begin writing to a VMA. 706 * Exclude concurrent readers under the per-VMA lock until the currently 707 * write-locked mmap_lock is dropped or downgraded. 708 */ 709static inline void vma_start_write(struct vm_area_struct *vma) 710{ 711 int mm_lock_seq; 712 713 if (__is_vma_write_locked(vma, &mm_lock_seq)) 714 return; 715 716 down_write(&vma->vm_lock->lock); 717 /* 718 * We should use WRITE_ONCE() here because we can have concurrent reads 719 * from the early lockless pessimistic check in vma_start_read(). 720 * We don't really care about the correctness of that early check, but 721 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy. 722 */ 723 WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq); 724 up_write(&vma->vm_lock->lock); 725} 726 727static inline void vma_assert_write_locked(struct vm_area_struct *vma) 728{ 729 int mm_lock_seq; 730 731 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma); 732} 733 734static inline void vma_assert_locked(struct vm_area_struct *vma) 735{ 736 if (!rwsem_is_locked(&vma->vm_lock->lock)) 737 vma_assert_write_locked(vma); 738} 739 740static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached) 741{ 742 /* When detaching vma should be write-locked */ 743 if (detached) 744 vma_assert_write_locked(vma); 745 vma->detached = detached; 746} 747 748static inline void release_fault_lock(struct vm_fault *vmf) 749{ 750 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 751 vma_end_read(vmf->vma); 752 else 753 mmap_read_unlock(vmf->vma->vm_mm); 754} 755 756static inline void assert_fault_locked(struct vm_fault *vmf) 757{ 758 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 759 vma_assert_locked(vmf->vma); 760 else 761 mmap_assert_locked(vmf->vma->vm_mm); 762} 763 764struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 765 unsigned long address); 766 767#else /* CONFIG_PER_VMA_LOCK */ 768 769static inline bool vma_start_read(struct vm_area_struct *vma) 770 { return false; } 771static inline void vma_end_read(struct vm_area_struct *vma) {} 772static inline void vma_start_write(struct vm_area_struct *vma) {} 773static inline void vma_assert_write_locked(struct vm_area_struct *vma) 774 { mmap_assert_write_locked(vma->vm_mm); } 775static inline void vma_mark_detached(struct vm_area_struct *vma, 776 bool detached) {} 777 778static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 779 unsigned long address) 780{ 781 return NULL; 782} 783 784static inline void release_fault_lock(struct vm_fault *vmf) 785{ 786 mmap_read_unlock(vmf->vma->vm_mm); 787} 788 789static inline void assert_fault_locked(struct vm_fault *vmf) 790{ 791 mmap_assert_locked(vmf->vma->vm_mm); 792} 793 794#endif /* CONFIG_PER_VMA_LOCK */ 795 796extern const struct vm_operations_struct vma_dummy_vm_ops; 797 798/* 799 * WARNING: vma_init does not initialize vma->vm_lock. 800 * Use vm_area_alloc()/vm_area_free() if vma needs locking. 801 */ 802static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 803{ 804 memset(vma, 0, sizeof(*vma)); 805 vma->vm_mm = mm; 806 vma->vm_ops = &vma_dummy_vm_ops; 807 INIT_LIST_HEAD(&vma->anon_vma_chain); 808 vma_mark_detached(vma, false); 809 vma_numab_state_init(vma); 810} 811 812/* Use when VMA is not part of the VMA tree and needs no locking */ 813static inline void vm_flags_init(struct vm_area_struct *vma, 814 vm_flags_t flags) 815{ 816 ACCESS_PRIVATE(vma, __vm_flags) = flags; 817} 818 819/* 820 * Use when VMA is part of the VMA tree and modifications need coordination 821 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and 822 * it should be locked explicitly beforehand. 823 */ 824static inline void vm_flags_reset(struct vm_area_struct *vma, 825 vm_flags_t flags) 826{ 827 vma_assert_write_locked(vma); 828 vm_flags_init(vma, flags); 829} 830 831static inline void vm_flags_reset_once(struct vm_area_struct *vma, 832 vm_flags_t flags) 833{ 834 vma_assert_write_locked(vma); 835 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags); 836} 837 838static inline void vm_flags_set(struct vm_area_struct *vma, 839 vm_flags_t flags) 840{ 841 vma_start_write(vma); 842 ACCESS_PRIVATE(vma, __vm_flags) |= flags; 843} 844 845static inline void vm_flags_clear(struct vm_area_struct *vma, 846 vm_flags_t flags) 847{ 848 vma_start_write(vma); 849 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags; 850} 851 852/* 853 * Use only if VMA is not part of the VMA tree or has no other users and 854 * therefore needs no locking. 855 */ 856static inline void __vm_flags_mod(struct vm_area_struct *vma, 857 vm_flags_t set, vm_flags_t clear) 858{ 859 vm_flags_init(vma, (vma->vm_flags | set) & ~clear); 860} 861 862/* 863 * Use only when the order of set/clear operations is unimportant, otherwise 864 * use vm_flags_{set|clear} explicitly. 865 */ 866static inline void vm_flags_mod(struct vm_area_struct *vma, 867 vm_flags_t set, vm_flags_t clear) 868{ 869 vma_start_write(vma); 870 __vm_flags_mod(vma, set, clear); 871} 872 873static inline void vma_set_anonymous(struct vm_area_struct *vma) 874{ 875 vma->vm_ops = NULL; 876} 877 878static inline bool vma_is_anonymous(struct vm_area_struct *vma) 879{ 880 return !vma->vm_ops; 881} 882 883/* 884 * Indicate if the VMA is a heap for the given task; for 885 * /proc/PID/maps that is the heap of the main task. 886 */ 887static inline bool vma_is_initial_heap(const struct vm_area_struct *vma) 888{ 889 return vma->vm_start < vma->vm_mm->brk && 890 vma->vm_end > vma->vm_mm->start_brk; 891} 892 893/* 894 * Indicate if the VMA is a stack for the given task; for 895 * /proc/PID/maps that is the stack of the main task. 896 */ 897static inline bool vma_is_initial_stack(const struct vm_area_struct *vma) 898{ 899 /* 900 * We make no effort to guess what a given thread considers to be 901 * its "stack". It's not even well-defined for programs written 902 * languages like Go. 903 */ 904 return vma->vm_start <= vma->vm_mm->start_stack && 905 vma->vm_end >= vma->vm_mm->start_stack; 906} 907 908static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 909{ 910 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 911 912 if (!maybe_stack) 913 return false; 914 915 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 916 VM_STACK_INCOMPLETE_SETUP) 917 return true; 918 919 return false; 920} 921 922static inline bool vma_is_foreign(struct vm_area_struct *vma) 923{ 924 if (!current->mm) 925 return true; 926 927 if (current->mm != vma->vm_mm) 928 return true; 929 930 return false; 931} 932 933static inline bool vma_is_accessible(struct vm_area_struct *vma) 934{ 935 return vma->vm_flags & VM_ACCESS_FLAGS; 936} 937 938static inline bool is_shared_maywrite(vm_flags_t vm_flags) 939{ 940 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) == 941 (VM_SHARED | VM_MAYWRITE); 942} 943 944static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma) 945{ 946 return is_shared_maywrite(vma->vm_flags); 947} 948 949static inline 950struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max) 951{ 952 return mas_find(&vmi->mas, max - 1); 953} 954 955static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi) 956{ 957 /* 958 * Uses mas_find() to get the first VMA when the iterator starts. 959 * Calling mas_next() could skip the first entry. 960 */ 961 return mas_find(&vmi->mas, ULONG_MAX); 962} 963 964static inline 965struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi) 966{ 967 return mas_next_range(&vmi->mas, ULONG_MAX); 968} 969 970 971static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi) 972{ 973 return mas_prev(&vmi->mas, 0); 974} 975 976static inline 977struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi) 978{ 979 return mas_prev_range(&vmi->mas, 0); 980} 981 982static inline unsigned long vma_iter_addr(struct vma_iterator *vmi) 983{ 984 return vmi->mas.index; 985} 986 987static inline unsigned long vma_iter_end(struct vma_iterator *vmi) 988{ 989 return vmi->mas.last + 1; 990} 991static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi, 992 unsigned long count) 993{ 994 return mas_expected_entries(&vmi->mas, count); 995} 996 997static inline int vma_iter_clear_gfp(struct vma_iterator *vmi, 998 unsigned long start, unsigned long end, gfp_t gfp) 999{ 1000 __mas_set_range(&vmi->mas, start, end - 1); 1001 mas_store_gfp(&vmi->mas, NULL, gfp); 1002 if (unlikely(mas_is_err(&vmi->mas))) 1003 return -ENOMEM; 1004 1005 return 0; 1006} 1007 1008/* Free any unused preallocations */ 1009static inline void vma_iter_free(struct vma_iterator *vmi) 1010{ 1011 mas_destroy(&vmi->mas); 1012} 1013 1014static inline int vma_iter_bulk_store(struct vma_iterator *vmi, 1015 struct vm_area_struct *vma) 1016{ 1017 vmi->mas.index = vma->vm_start; 1018 vmi->mas.last = vma->vm_end - 1; 1019 mas_store(&vmi->mas, vma); 1020 if (unlikely(mas_is_err(&vmi->mas))) 1021 return -ENOMEM; 1022 1023 return 0; 1024} 1025 1026static inline void vma_iter_invalidate(struct vma_iterator *vmi) 1027{ 1028 mas_pause(&vmi->mas); 1029} 1030 1031static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr) 1032{ 1033 mas_set(&vmi->mas, addr); 1034} 1035 1036#define for_each_vma(__vmi, __vma) \ 1037 while (((__vma) = vma_next(&(__vmi))) != NULL) 1038 1039/* The MM code likes to work with exclusive end addresses */ 1040#define for_each_vma_range(__vmi, __vma, __end) \ 1041 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL) 1042 1043#ifdef CONFIG_SHMEM 1044/* 1045 * The vma_is_shmem is not inline because it is used only by slow 1046 * paths in userfault. 1047 */ 1048bool vma_is_shmem(struct vm_area_struct *vma); 1049bool vma_is_anon_shmem(struct vm_area_struct *vma); 1050#else 1051static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 1052static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; } 1053#endif 1054 1055int vma_is_stack_for_current(struct vm_area_struct *vma); 1056 1057/* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 1058#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 1059 1060struct mmu_gather; 1061struct inode; 1062 1063/* 1064 * compound_order() can be called without holding a reference, which means 1065 * that niceties like page_folio() don't work. These callers should be 1066 * prepared to handle wild return values. For example, PG_head may be 1067 * set before the order is initialised, or this may be a tail page. 1068 * See compaction.c for some good examples. 1069 */ 1070static inline unsigned int compound_order(struct page *page) 1071{ 1072 struct folio *folio = (struct folio *)page; 1073 1074 if (!test_bit(PG_head, &folio->flags)) 1075 return 0; 1076 return folio->_flags_1 & 0xff; 1077} 1078 1079/** 1080 * folio_order - The allocation order of a folio. 1081 * @folio: The folio. 1082 * 1083 * A folio is composed of 2^order pages. See get_order() for the definition 1084 * of order. 1085 * 1086 * Return: The order of the folio. 1087 */ 1088static inline unsigned int folio_order(struct folio *folio) 1089{ 1090 if (!folio_test_large(folio)) 1091 return 0; 1092 return folio->_flags_1 & 0xff; 1093} 1094 1095#include <linux/huge_mm.h> 1096 1097/* 1098 * Methods to modify the page usage count. 1099 * 1100 * What counts for a page usage: 1101 * - cache mapping (page->mapping) 1102 * - private data (page->private) 1103 * - page mapped in a task's page tables, each mapping 1104 * is counted separately 1105 * 1106 * Also, many kernel routines increase the page count before a critical 1107 * routine so they can be sure the page doesn't go away from under them. 1108 */ 1109 1110/* 1111 * Drop a ref, return true if the refcount fell to zero (the page has no users) 1112 */ 1113static inline int put_page_testzero(struct page *page) 1114{ 1115 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 1116 return page_ref_dec_and_test(page); 1117} 1118 1119static inline int folio_put_testzero(struct folio *folio) 1120{ 1121 return put_page_testzero(&folio->page); 1122} 1123 1124/* 1125 * Try to grab a ref unless the page has a refcount of zero, return false if 1126 * that is the case. 1127 * This can be called when MMU is off so it must not access 1128 * any of the virtual mappings. 1129 */ 1130static inline bool get_page_unless_zero(struct page *page) 1131{ 1132 return page_ref_add_unless(page, 1, 0); 1133} 1134 1135static inline struct folio *folio_get_nontail_page(struct page *page) 1136{ 1137 if (unlikely(!get_page_unless_zero(page))) 1138 return NULL; 1139 return (struct folio *)page; 1140} 1141 1142extern int page_is_ram(unsigned long pfn); 1143 1144enum { 1145 REGION_INTERSECTS, 1146 REGION_DISJOINT, 1147 REGION_MIXED, 1148}; 1149 1150int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 1151 unsigned long desc); 1152 1153/* Support for virtually mapped pages */ 1154struct page *vmalloc_to_page(const void *addr); 1155unsigned long vmalloc_to_pfn(const void *addr); 1156 1157/* 1158 * Determine if an address is within the vmalloc range 1159 * 1160 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 1161 * is no special casing required. 1162 */ 1163#ifdef CONFIG_MMU 1164extern bool is_vmalloc_addr(const void *x); 1165extern int is_vmalloc_or_module_addr(const void *x); 1166#else 1167static inline bool is_vmalloc_addr(const void *x) 1168{ 1169 return false; 1170} 1171static inline int is_vmalloc_or_module_addr(const void *x) 1172{ 1173 return 0; 1174} 1175#endif 1176 1177/* 1178 * How many times the entire folio is mapped as a single unit (eg by a 1179 * PMD or PUD entry). This is probably not what you want, except for 1180 * debugging purposes - it does not include PTE-mapped sub-pages; look 1181 * at folio_mapcount() or page_mapcount() or total_mapcount() instead. 1182 */ 1183static inline int folio_entire_mapcount(struct folio *folio) 1184{ 1185 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 1186 return atomic_read(&folio->_entire_mapcount) + 1; 1187} 1188 1189/* 1190 * The atomic page->_mapcount, starts from -1: so that transitions 1191 * both from it and to it can be tracked, using atomic_inc_and_test 1192 * and atomic_add_negative(-1). 1193 */ 1194static inline void page_mapcount_reset(struct page *page) 1195{ 1196 atomic_set(&(page)->_mapcount, -1); 1197} 1198 1199/** 1200 * page_mapcount() - Number of times this precise page is mapped. 1201 * @page: The page. 1202 * 1203 * The number of times this page is mapped. If this page is part of 1204 * a large folio, it includes the number of times this page is mapped 1205 * as part of that folio. 1206 * 1207 * The result is undefined for pages which cannot be mapped into userspace. 1208 * For example SLAB or special types of pages. See function page_has_type(). 1209 * They use this field in struct page differently. 1210 */ 1211static inline int page_mapcount(struct page *page) 1212{ 1213 int mapcount = atomic_read(&page->_mapcount) + 1; 1214 1215 if (unlikely(PageCompound(page))) 1216 mapcount += folio_entire_mapcount(page_folio(page)); 1217 1218 return mapcount; 1219} 1220 1221int folio_total_mapcount(struct folio *folio); 1222 1223/** 1224 * folio_mapcount() - Calculate the number of mappings of this folio. 1225 * @folio: The folio. 1226 * 1227 * A large folio tracks both how many times the entire folio is mapped, 1228 * and how many times each individual page in the folio is mapped. 1229 * This function calculates the total number of times the folio is 1230 * mapped. 1231 * 1232 * Return: The number of times this folio is mapped. 1233 */ 1234static inline int folio_mapcount(struct folio *folio) 1235{ 1236 if (likely(!folio_test_large(folio))) 1237 return atomic_read(&folio->_mapcount) + 1; 1238 return folio_total_mapcount(folio); 1239} 1240 1241static inline int total_mapcount(struct page *page) 1242{ 1243 if (likely(!PageCompound(page))) 1244 return atomic_read(&page->_mapcount) + 1; 1245 return folio_total_mapcount(page_folio(page)); 1246} 1247 1248static inline bool folio_large_is_mapped(struct folio *folio) 1249{ 1250 /* 1251 * Reading _entire_mapcount below could be omitted if hugetlb 1252 * participated in incrementing nr_pages_mapped when compound mapped. 1253 */ 1254 return atomic_read(&folio->_nr_pages_mapped) > 0 || 1255 atomic_read(&folio->_entire_mapcount) >= 0; 1256} 1257 1258/** 1259 * folio_mapped - Is this folio mapped into userspace? 1260 * @folio: The folio. 1261 * 1262 * Return: True if any page in this folio is referenced by user page tables. 1263 */ 1264static inline bool folio_mapped(struct folio *folio) 1265{ 1266 if (likely(!folio_test_large(folio))) 1267 return atomic_read(&folio->_mapcount) >= 0; 1268 return folio_large_is_mapped(folio); 1269} 1270 1271/* 1272 * Return true if this page is mapped into pagetables. 1273 * For compound page it returns true if any sub-page of compound page is mapped, 1274 * even if this particular sub-page is not itself mapped by any PTE or PMD. 1275 */ 1276static inline bool page_mapped(struct page *page) 1277{ 1278 if (likely(!PageCompound(page))) 1279 return atomic_read(&page->_mapcount) >= 0; 1280 return folio_large_is_mapped(page_folio(page)); 1281} 1282 1283static inline struct page *virt_to_head_page(const void *x) 1284{ 1285 struct page *page = virt_to_page(x); 1286 1287 return compound_head(page); 1288} 1289 1290static inline struct folio *virt_to_folio(const void *x) 1291{ 1292 struct page *page = virt_to_page(x); 1293 1294 return page_folio(page); 1295} 1296 1297void __folio_put(struct folio *folio); 1298 1299void put_pages_list(struct list_head *pages); 1300 1301void split_page(struct page *page, unsigned int order); 1302void folio_copy(struct folio *dst, struct folio *src); 1303 1304unsigned long nr_free_buffer_pages(void); 1305 1306void destroy_large_folio(struct folio *folio); 1307 1308/* Returns the number of bytes in this potentially compound page. */ 1309static inline unsigned long page_size(struct page *page) 1310{ 1311 return PAGE_SIZE << compound_order(page); 1312} 1313 1314/* Returns the number of bits needed for the number of bytes in a page */ 1315static inline unsigned int page_shift(struct page *page) 1316{ 1317 return PAGE_SHIFT + compound_order(page); 1318} 1319 1320/** 1321 * thp_order - Order of a transparent huge page. 1322 * @page: Head page of a transparent huge page. 1323 */ 1324static inline unsigned int thp_order(struct page *page) 1325{ 1326 VM_BUG_ON_PGFLAGS(PageTail(page), page); 1327 return compound_order(page); 1328} 1329 1330/** 1331 * thp_size - Size of a transparent huge page. 1332 * @page: Head page of a transparent huge page. 1333 * 1334 * Return: Number of bytes in this page. 1335 */ 1336static inline unsigned long thp_size(struct page *page) 1337{ 1338 return PAGE_SIZE << thp_order(page); 1339} 1340 1341#ifdef CONFIG_MMU 1342/* 1343 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1344 * servicing faults for write access. In the normal case, do always want 1345 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1346 * that do not have writing enabled, when used by access_process_vm. 1347 */ 1348static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1349{ 1350 if (likely(vma->vm_flags & VM_WRITE)) 1351 pte = pte_mkwrite(pte, vma); 1352 return pte; 1353} 1354 1355vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 1356void set_pte_range(struct vm_fault *vmf, struct folio *folio, 1357 struct page *page, unsigned int nr, unsigned long addr); 1358 1359vm_fault_t finish_fault(struct vm_fault *vmf); 1360#endif 1361 1362/* 1363 * Multiple processes may "see" the same page. E.g. for untouched 1364 * mappings of /dev/null, all processes see the same page full of 1365 * zeroes, and text pages of executables and shared libraries have 1366 * only one copy in memory, at most, normally. 1367 * 1368 * For the non-reserved pages, page_count(page) denotes a reference count. 1369 * page_count() == 0 means the page is free. page->lru is then used for 1370 * freelist management in the buddy allocator. 1371 * page_count() > 0 means the page has been allocated. 1372 * 1373 * Pages are allocated by the slab allocator in order to provide memory 1374 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1375 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1376 * unless a particular usage is carefully commented. (the responsibility of 1377 * freeing the kmalloc memory is the caller's, of course). 1378 * 1379 * A page may be used by anyone else who does a __get_free_page(). 1380 * In this case, page_count still tracks the references, and should only 1381 * be used through the normal accessor functions. The top bits of page->flags 1382 * and page->virtual store page management information, but all other fields 1383 * are unused and could be used privately, carefully. The management of this 1384 * page is the responsibility of the one who allocated it, and those who have 1385 * subsequently been given references to it. 1386 * 1387 * The other pages (we may call them "pagecache pages") are completely 1388 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1389 * The following discussion applies only to them. 1390 * 1391 * A pagecache page contains an opaque `private' member, which belongs to the 1392 * page's address_space. Usually, this is the address of a circular list of 1393 * the page's disk buffers. PG_private must be set to tell the VM to call 1394 * into the filesystem to release these pages. 1395 * 1396 * A page may belong to an inode's memory mapping. In this case, page->mapping 1397 * is the pointer to the inode, and page->index is the file offset of the page, 1398 * in units of PAGE_SIZE. 1399 * 1400 * If pagecache pages are not associated with an inode, they are said to be 1401 * anonymous pages. These may become associated with the swapcache, and in that 1402 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1403 * 1404 * In either case (swapcache or inode backed), the pagecache itself holds one 1405 * reference to the page. Setting PG_private should also increment the 1406 * refcount. The each user mapping also has a reference to the page. 1407 * 1408 * The pagecache pages are stored in a per-mapping radix tree, which is 1409 * rooted at mapping->i_pages, and indexed by offset. 1410 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1411 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1412 * 1413 * All pagecache pages may be subject to I/O: 1414 * - inode pages may need to be read from disk, 1415 * - inode pages which have been modified and are MAP_SHARED may need 1416 * to be written back to the inode on disk, 1417 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1418 * modified may need to be swapped out to swap space and (later) to be read 1419 * back into memory. 1420 */ 1421 1422#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX) 1423DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1424 1425bool __put_devmap_managed_page_refs(struct page *page, int refs); 1426static inline bool put_devmap_managed_page_refs(struct page *page, int refs) 1427{ 1428 if (!static_branch_unlikely(&devmap_managed_key)) 1429 return false; 1430 if (!is_zone_device_page(page)) 1431 return false; 1432 return __put_devmap_managed_page_refs(page, refs); 1433} 1434#else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1435static inline bool put_devmap_managed_page_refs(struct page *page, int refs) 1436{ 1437 return false; 1438} 1439#endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1440 1441static inline bool put_devmap_managed_page(struct page *page) 1442{ 1443 return put_devmap_managed_page_refs(page, 1); 1444} 1445 1446/* 127: arbitrary random number, small enough to assemble well */ 1447#define folio_ref_zero_or_close_to_overflow(folio) \ 1448 ((unsigned int) folio_ref_count(folio) + 127u <= 127u) 1449 1450/** 1451 * folio_get - Increment the reference count on a folio. 1452 * @folio: The folio. 1453 * 1454 * Context: May be called in any context, as long as you know that 1455 * you have a refcount on the folio. If you do not already have one, 1456 * folio_try_get() may be the right interface for you to use. 1457 */ 1458static inline void folio_get(struct folio *folio) 1459{ 1460 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); 1461 folio_ref_inc(folio); 1462} 1463 1464static inline void get_page(struct page *page) 1465{ 1466 folio_get(page_folio(page)); 1467} 1468 1469static inline __must_check bool try_get_page(struct page *page) 1470{ 1471 page = compound_head(page); 1472 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1473 return false; 1474 page_ref_inc(page); 1475 return true; 1476} 1477 1478/** 1479 * folio_put - Decrement the reference count on a folio. 1480 * @folio: The folio. 1481 * 1482 * If the folio's reference count reaches zero, the memory will be 1483 * released back to the page allocator and may be used by another 1484 * allocation immediately. Do not access the memory or the struct folio 1485 * after calling folio_put() unless you can be sure that it wasn't the 1486 * last reference. 1487 * 1488 * Context: May be called in process or interrupt context, but not in NMI 1489 * context. May be called while holding a spinlock. 1490 */ 1491static inline void folio_put(struct folio *folio) 1492{ 1493 if (folio_put_testzero(folio)) 1494 __folio_put(folio); 1495} 1496 1497/** 1498 * folio_put_refs - Reduce the reference count on a folio. 1499 * @folio: The folio. 1500 * @refs: The amount to subtract from the folio's reference count. 1501 * 1502 * If the folio's reference count reaches zero, the memory will be 1503 * released back to the page allocator and may be used by another 1504 * allocation immediately. Do not access the memory or the struct folio 1505 * after calling folio_put_refs() unless you can be sure that these weren't 1506 * the last references. 1507 * 1508 * Context: May be called in process or interrupt context, but not in NMI 1509 * context. May be called while holding a spinlock. 1510 */ 1511static inline void folio_put_refs(struct folio *folio, int refs) 1512{ 1513 if (folio_ref_sub_and_test(folio, refs)) 1514 __folio_put(folio); 1515} 1516 1517/* 1518 * union release_pages_arg - an array of pages or folios 1519 * 1520 * release_pages() releases a simple array of multiple pages, and 1521 * accepts various different forms of said page array: either 1522 * a regular old boring array of pages, an array of folios, or 1523 * an array of encoded page pointers. 1524 * 1525 * The transparent union syntax for this kind of "any of these 1526 * argument types" is all kinds of ugly, so look away. 1527 */ 1528typedef union { 1529 struct page **pages; 1530 struct folio **folios; 1531 struct encoded_page **encoded_pages; 1532} release_pages_arg __attribute__ ((__transparent_union__)); 1533 1534void release_pages(release_pages_arg, int nr); 1535 1536/** 1537 * folios_put - Decrement the reference count on an array of folios. 1538 * @folios: The folios. 1539 * @nr: How many folios there are. 1540 * 1541 * Like folio_put(), but for an array of folios. This is more efficient 1542 * than writing the loop yourself as it will optimise the locks which 1543 * need to be taken if the folios are freed. 1544 * 1545 * Context: May be called in process or interrupt context, but not in NMI 1546 * context. May be called while holding a spinlock. 1547 */ 1548static inline void folios_put(struct folio **folios, unsigned int nr) 1549{ 1550 release_pages(folios, nr); 1551} 1552 1553static inline void put_page(struct page *page) 1554{ 1555 struct folio *folio = page_folio(page); 1556 1557 /* 1558 * For some devmap managed pages we need to catch refcount transition 1559 * from 2 to 1: 1560 */ 1561 if (put_devmap_managed_page(&folio->page)) 1562 return; 1563 folio_put(folio); 1564} 1565 1566/* 1567 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1568 * the page's refcount so that two separate items are tracked: the original page 1569 * reference count, and also a new count of how many pin_user_pages() calls were 1570 * made against the page. ("gup-pinned" is another term for the latter). 1571 * 1572 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1573 * distinct from normal pages. As such, the unpin_user_page() call (and its 1574 * variants) must be used in order to release gup-pinned pages. 1575 * 1576 * Choice of value: 1577 * 1578 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1579 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1580 * simpler, due to the fact that adding an even power of two to the page 1581 * refcount has the effect of using only the upper N bits, for the code that 1582 * counts up using the bias value. This means that the lower bits are left for 1583 * the exclusive use of the original code that increments and decrements by one 1584 * (or at least, by much smaller values than the bias value). 1585 * 1586 * Of course, once the lower bits overflow into the upper bits (and this is 1587 * OK, because subtraction recovers the original values), then visual inspection 1588 * no longer suffices to directly view the separate counts. However, for normal 1589 * applications that don't have huge page reference counts, this won't be an 1590 * issue. 1591 * 1592 * Locking: the lockless algorithm described in folio_try_get_rcu() 1593 * provides safe operation for get_user_pages(), page_mkclean() and 1594 * other calls that race to set up page table entries. 1595 */ 1596#define GUP_PIN_COUNTING_BIAS (1U << 10) 1597 1598void unpin_user_page(struct page *page); 1599void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1600 bool make_dirty); 1601void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1602 bool make_dirty); 1603void unpin_user_pages(struct page **pages, unsigned long npages); 1604 1605static inline bool is_cow_mapping(vm_flags_t flags) 1606{ 1607 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1608} 1609 1610#ifndef CONFIG_MMU 1611static inline bool is_nommu_shared_mapping(vm_flags_t flags) 1612{ 1613 /* 1614 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected 1615 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of 1616 * a file mapping. R/O MAP_PRIVATE mappings might still modify 1617 * underlying memory if ptrace is active, so this is only possible if 1618 * ptrace does not apply. Note that there is no mprotect() to upgrade 1619 * write permissions later. 1620 */ 1621 return flags & (VM_MAYSHARE | VM_MAYOVERLAY); 1622} 1623#endif 1624 1625#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1626#define SECTION_IN_PAGE_FLAGS 1627#endif 1628 1629/* 1630 * The identification function is mainly used by the buddy allocator for 1631 * determining if two pages could be buddies. We are not really identifying 1632 * the zone since we could be using the section number id if we do not have 1633 * node id available in page flags. 1634 * We only guarantee that it will return the same value for two combinable 1635 * pages in a zone. 1636 */ 1637static inline int page_zone_id(struct page *page) 1638{ 1639 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1640} 1641 1642#ifdef NODE_NOT_IN_PAGE_FLAGS 1643extern int page_to_nid(const struct page *page); 1644#else 1645static inline int page_to_nid(const struct page *page) 1646{ 1647 struct page *p = (struct page *)page; 1648 1649 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1650} 1651#endif 1652 1653static inline int folio_nid(const struct folio *folio) 1654{ 1655 return page_to_nid(&folio->page); 1656} 1657 1658#ifdef CONFIG_NUMA_BALANCING 1659/* page access time bits needs to hold at least 4 seconds */ 1660#define PAGE_ACCESS_TIME_MIN_BITS 12 1661#if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS 1662#define PAGE_ACCESS_TIME_BUCKETS \ 1663 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT) 1664#else 1665#define PAGE_ACCESS_TIME_BUCKETS 0 1666#endif 1667 1668#define PAGE_ACCESS_TIME_MASK \ 1669 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS) 1670 1671static inline int cpu_pid_to_cpupid(int cpu, int pid) 1672{ 1673 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1674} 1675 1676static inline int cpupid_to_pid(int cpupid) 1677{ 1678 return cpupid & LAST__PID_MASK; 1679} 1680 1681static inline int cpupid_to_cpu(int cpupid) 1682{ 1683 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1684} 1685 1686static inline int cpupid_to_nid(int cpupid) 1687{ 1688 return cpu_to_node(cpupid_to_cpu(cpupid)); 1689} 1690 1691static inline bool cpupid_pid_unset(int cpupid) 1692{ 1693 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1694} 1695 1696static inline bool cpupid_cpu_unset(int cpupid) 1697{ 1698 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1699} 1700 1701static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1702{ 1703 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1704} 1705 1706#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1707#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1708static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1709{ 1710 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1711} 1712 1713static inline int folio_last_cpupid(struct folio *folio) 1714{ 1715 return folio->_last_cpupid; 1716} 1717static inline void page_cpupid_reset_last(struct page *page) 1718{ 1719 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1720} 1721#else 1722static inline int folio_last_cpupid(struct folio *folio) 1723{ 1724 return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1725} 1726 1727int folio_xchg_last_cpupid(struct folio *folio, int cpupid); 1728 1729static inline void page_cpupid_reset_last(struct page *page) 1730{ 1731 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1732} 1733#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1734 1735static inline int folio_xchg_access_time(struct folio *folio, int time) 1736{ 1737 int last_time; 1738 1739 last_time = folio_xchg_last_cpupid(folio, 1740 time >> PAGE_ACCESS_TIME_BUCKETS); 1741 return last_time << PAGE_ACCESS_TIME_BUCKETS; 1742} 1743 1744static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1745{ 1746 unsigned int pid_bit; 1747 1748 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG)); 1749 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) { 1750 __set_bit(pid_bit, &vma->numab_state->pids_active[1]); 1751 } 1752} 1753#else /* !CONFIG_NUMA_BALANCING */ 1754static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1755{ 1756 return folio_nid(folio); /* XXX */ 1757} 1758 1759static inline int folio_xchg_access_time(struct folio *folio, int time) 1760{ 1761 return 0; 1762} 1763 1764static inline int folio_last_cpupid(struct folio *folio) 1765{ 1766 return folio_nid(folio); /* XXX */ 1767} 1768 1769static inline int cpupid_to_nid(int cpupid) 1770{ 1771 return -1; 1772} 1773 1774static inline int cpupid_to_pid(int cpupid) 1775{ 1776 return -1; 1777} 1778 1779static inline int cpupid_to_cpu(int cpupid) 1780{ 1781 return -1; 1782} 1783 1784static inline int cpu_pid_to_cpupid(int nid, int pid) 1785{ 1786 return -1; 1787} 1788 1789static inline bool cpupid_pid_unset(int cpupid) 1790{ 1791 return true; 1792} 1793 1794static inline void page_cpupid_reset_last(struct page *page) 1795{ 1796} 1797 1798static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1799{ 1800 return false; 1801} 1802 1803static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1804{ 1805} 1806#endif /* CONFIG_NUMA_BALANCING */ 1807 1808#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1809 1810/* 1811 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1812 * setting tags for all pages to native kernel tag value 0xff, as the default 1813 * value 0x00 maps to 0xff. 1814 */ 1815 1816static inline u8 page_kasan_tag(const struct page *page) 1817{ 1818 u8 tag = KASAN_TAG_KERNEL; 1819 1820 if (kasan_enabled()) { 1821 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1822 tag ^= 0xff; 1823 } 1824 1825 return tag; 1826} 1827 1828static inline void page_kasan_tag_set(struct page *page, u8 tag) 1829{ 1830 unsigned long old_flags, flags; 1831 1832 if (!kasan_enabled()) 1833 return; 1834 1835 tag ^= 0xff; 1836 old_flags = READ_ONCE(page->flags); 1837 do { 1838 flags = old_flags; 1839 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1840 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1841 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags))); 1842} 1843 1844static inline void page_kasan_tag_reset(struct page *page) 1845{ 1846 if (kasan_enabled()) 1847 page_kasan_tag_set(page, KASAN_TAG_KERNEL); 1848} 1849 1850#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1851 1852static inline u8 page_kasan_tag(const struct page *page) 1853{ 1854 return 0xff; 1855} 1856 1857static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1858static inline void page_kasan_tag_reset(struct page *page) { } 1859 1860#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1861 1862static inline struct zone *page_zone(const struct page *page) 1863{ 1864 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1865} 1866 1867static inline pg_data_t *page_pgdat(const struct page *page) 1868{ 1869 return NODE_DATA(page_to_nid(page)); 1870} 1871 1872static inline struct zone *folio_zone(const struct folio *folio) 1873{ 1874 return page_zone(&folio->page); 1875} 1876 1877static inline pg_data_t *folio_pgdat(const struct folio *folio) 1878{ 1879 return page_pgdat(&folio->page); 1880} 1881 1882#ifdef SECTION_IN_PAGE_FLAGS 1883static inline void set_page_section(struct page *page, unsigned long section) 1884{ 1885 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1886 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1887} 1888 1889static inline unsigned long page_to_section(const struct page *page) 1890{ 1891 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1892} 1893#endif 1894 1895/** 1896 * folio_pfn - Return the Page Frame Number of a folio. 1897 * @folio: The folio. 1898 * 1899 * A folio may contain multiple pages. The pages have consecutive 1900 * Page Frame Numbers. 1901 * 1902 * Return: The Page Frame Number of the first page in the folio. 1903 */ 1904static inline unsigned long folio_pfn(struct folio *folio) 1905{ 1906 return page_to_pfn(&folio->page); 1907} 1908 1909static inline struct folio *pfn_folio(unsigned long pfn) 1910{ 1911 return page_folio(pfn_to_page(pfn)); 1912} 1913 1914/** 1915 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. 1916 * @folio: The folio. 1917 * 1918 * This function checks if a folio has been pinned via a call to 1919 * a function in the pin_user_pages() family. 1920 * 1921 * For small folios, the return value is partially fuzzy: false is not fuzzy, 1922 * because it means "definitely not pinned for DMA", but true means "probably 1923 * pinned for DMA, but possibly a false positive due to having at least 1924 * GUP_PIN_COUNTING_BIAS worth of normal folio references". 1925 * 1926 * False positives are OK, because: a) it's unlikely for a folio to 1927 * get that many refcounts, and b) all the callers of this routine are 1928 * expected to be able to deal gracefully with a false positive. 1929 * 1930 * For large folios, the result will be exactly correct. That's because 1931 * we have more tracking data available: the _pincount field is used 1932 * instead of the GUP_PIN_COUNTING_BIAS scheme. 1933 * 1934 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1935 * 1936 * Return: True, if it is likely that the page has been "dma-pinned". 1937 * False, if the page is definitely not dma-pinned. 1938 */ 1939static inline bool folio_maybe_dma_pinned(struct folio *folio) 1940{ 1941 if (folio_test_large(folio)) 1942 return atomic_read(&folio->_pincount) > 0; 1943 1944 /* 1945 * folio_ref_count() is signed. If that refcount overflows, then 1946 * folio_ref_count() returns a negative value, and callers will avoid 1947 * further incrementing the refcount. 1948 * 1949 * Here, for that overflow case, use the sign bit to count a little 1950 * bit higher via unsigned math, and thus still get an accurate result. 1951 */ 1952 return ((unsigned int)folio_ref_count(folio)) >= 1953 GUP_PIN_COUNTING_BIAS; 1954} 1955 1956static inline bool page_maybe_dma_pinned(struct page *page) 1957{ 1958 return folio_maybe_dma_pinned(page_folio(page)); 1959} 1960 1961/* 1962 * This should most likely only be called during fork() to see whether we 1963 * should break the cow immediately for an anon page on the src mm. 1964 * 1965 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq. 1966 */ 1967static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma, 1968 struct folio *folio) 1969{ 1970 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1)); 1971 1972 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) 1973 return false; 1974 1975 return folio_maybe_dma_pinned(folio); 1976} 1977 1978/** 1979 * is_zero_page - Query if a page is a zero page 1980 * @page: The page to query 1981 * 1982 * This returns true if @page is one of the permanent zero pages. 1983 */ 1984static inline bool is_zero_page(const struct page *page) 1985{ 1986 return is_zero_pfn(page_to_pfn(page)); 1987} 1988 1989/** 1990 * is_zero_folio - Query if a folio is a zero page 1991 * @folio: The folio to query 1992 * 1993 * This returns true if @folio is one of the permanent zero pages. 1994 */ 1995static inline bool is_zero_folio(const struct folio *folio) 1996{ 1997 return is_zero_page(&folio->page); 1998} 1999 2000/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */ 2001#ifdef CONFIG_MIGRATION 2002static inline bool folio_is_longterm_pinnable(struct folio *folio) 2003{ 2004#ifdef CONFIG_CMA 2005 int mt = folio_migratetype(folio); 2006 2007 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE) 2008 return false; 2009#endif 2010 /* The zero page can be "pinned" but gets special handling. */ 2011 if (is_zero_folio(folio)) 2012 return true; 2013 2014 /* Coherent device memory must always allow eviction. */ 2015 if (folio_is_device_coherent(folio)) 2016 return false; 2017 2018 /* Otherwise, non-movable zone folios can be pinned. */ 2019 return !folio_is_zone_movable(folio); 2020 2021} 2022#else 2023static inline bool folio_is_longterm_pinnable(struct folio *folio) 2024{ 2025 return true; 2026} 2027#endif 2028 2029static inline void set_page_zone(struct page *page, enum zone_type zone) 2030{ 2031 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 2032 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 2033} 2034 2035static inline void set_page_node(struct page *page, unsigned long node) 2036{ 2037 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 2038 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 2039} 2040 2041static inline void set_page_links(struct page *page, enum zone_type zone, 2042 unsigned long node, unsigned long pfn) 2043{ 2044 set_page_zone(page, zone); 2045 set_page_node(page, node); 2046#ifdef SECTION_IN_PAGE_FLAGS 2047 set_page_section(page, pfn_to_section_nr(pfn)); 2048#endif 2049} 2050 2051/** 2052 * folio_nr_pages - The number of pages in the folio. 2053 * @folio: The folio. 2054 * 2055 * Return: A positive power of two. 2056 */ 2057static inline long folio_nr_pages(struct folio *folio) 2058{ 2059 if (!folio_test_large(folio)) 2060 return 1; 2061#ifdef CONFIG_64BIT 2062 return folio->_folio_nr_pages; 2063#else 2064 return 1L << (folio->_flags_1 & 0xff); 2065#endif 2066} 2067 2068/* 2069 * compound_nr() returns the number of pages in this potentially compound 2070 * page. compound_nr() can be called on a tail page, and is defined to 2071 * return 1 in that case. 2072 */ 2073static inline unsigned long compound_nr(struct page *page) 2074{ 2075 struct folio *folio = (struct folio *)page; 2076 2077 if (!test_bit(PG_head, &folio->flags)) 2078 return 1; 2079#ifdef CONFIG_64BIT 2080 return folio->_folio_nr_pages; 2081#else 2082 return 1L << (folio->_flags_1 & 0xff); 2083#endif 2084} 2085 2086/** 2087 * thp_nr_pages - The number of regular pages in this huge page. 2088 * @page: The head page of a huge page. 2089 */ 2090static inline int thp_nr_pages(struct page *page) 2091{ 2092 return folio_nr_pages((struct folio *)page); 2093} 2094 2095/** 2096 * folio_next - Move to the next physical folio. 2097 * @folio: The folio we're currently operating on. 2098 * 2099 * If you have physically contiguous memory which may span more than 2100 * one folio (eg a &struct bio_vec), use this function to move from one 2101 * folio to the next. Do not use it if the memory is only virtually 2102 * contiguous as the folios are almost certainly not adjacent to each 2103 * other. This is the folio equivalent to writing ``page++``. 2104 * 2105 * Context: We assume that the folios are refcounted and/or locked at a 2106 * higher level and do not adjust the reference counts. 2107 * Return: The next struct folio. 2108 */ 2109static inline struct folio *folio_next(struct folio *folio) 2110{ 2111 return (struct folio *)folio_page(folio, folio_nr_pages(folio)); 2112} 2113 2114/** 2115 * folio_shift - The size of the memory described by this folio. 2116 * @folio: The folio. 2117 * 2118 * A folio represents a number of bytes which is a power-of-two in size. 2119 * This function tells you which power-of-two the folio is. See also 2120 * folio_size() and folio_order(). 2121 * 2122 * Context: The caller should have a reference on the folio to prevent 2123 * it from being split. It is not necessary for the folio to be locked. 2124 * Return: The base-2 logarithm of the size of this folio. 2125 */ 2126static inline unsigned int folio_shift(struct folio *folio) 2127{ 2128 return PAGE_SHIFT + folio_order(folio); 2129} 2130 2131/** 2132 * folio_size - The number of bytes in a folio. 2133 * @folio: The folio. 2134 * 2135 * Context: The caller should have a reference on the folio to prevent 2136 * it from being split. It is not necessary for the folio to be locked. 2137 * Return: The number of bytes in this folio. 2138 */ 2139static inline size_t folio_size(struct folio *folio) 2140{ 2141 return PAGE_SIZE << folio_order(folio); 2142} 2143 2144/** 2145 * folio_estimated_sharers - Estimate the number of sharers of a folio. 2146 * @folio: The folio. 2147 * 2148 * folio_estimated_sharers() aims to serve as a function to efficiently 2149 * estimate the number of processes sharing a folio. This is done by 2150 * looking at the precise mapcount of the first subpage in the folio, and 2151 * assuming the other subpages are the same. This may not be true for large 2152 * folios. If you want exact mapcounts for exact calculations, look at 2153 * page_mapcount() or folio_total_mapcount(). 2154 * 2155 * Return: The estimated number of processes sharing a folio. 2156 */ 2157static inline int folio_estimated_sharers(struct folio *folio) 2158{ 2159 return page_mapcount(folio_page(folio, 0)); 2160} 2161 2162#ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE 2163static inline int arch_make_page_accessible(struct page *page) 2164{ 2165 return 0; 2166} 2167#endif 2168 2169#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE 2170static inline int arch_make_folio_accessible(struct folio *folio) 2171{ 2172 int ret; 2173 long i, nr = folio_nr_pages(folio); 2174 2175 for (i = 0; i < nr; i++) { 2176 ret = arch_make_page_accessible(folio_page(folio, i)); 2177 if (ret) 2178 break; 2179 } 2180 2181 return ret; 2182} 2183#endif 2184 2185/* 2186 * Some inline functions in vmstat.h depend on page_zone() 2187 */ 2188#include <linux/vmstat.h> 2189 2190static __always_inline void *lowmem_page_address(const struct page *page) 2191{ 2192 return page_to_virt(page); 2193} 2194 2195#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 2196#define HASHED_PAGE_VIRTUAL 2197#endif 2198 2199#if defined(WANT_PAGE_VIRTUAL) 2200static inline void *page_address(const struct page *page) 2201{ 2202 return page->virtual; 2203} 2204static inline void set_page_address(struct page *page, void *address) 2205{ 2206 page->virtual = address; 2207} 2208#define page_address_init() do { } while(0) 2209#endif 2210 2211#if defined(HASHED_PAGE_VIRTUAL) 2212void *page_address(const struct page *page); 2213void set_page_address(struct page *page, void *virtual); 2214void page_address_init(void); 2215#endif 2216 2217#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 2218#define page_address(page) lowmem_page_address(page) 2219#define set_page_address(page, address) do { } while(0) 2220#define page_address_init() do { } while(0) 2221#endif 2222 2223static inline void *folio_address(const struct folio *folio) 2224{ 2225 return page_address(&folio->page); 2226} 2227 2228extern pgoff_t __page_file_index(struct page *page); 2229 2230/* 2231 * Return the pagecache index of the passed page. Regular pagecache pages 2232 * use ->index whereas swapcache pages use swp_offset(->private) 2233 */ 2234static inline pgoff_t page_index(struct page *page) 2235{ 2236 if (unlikely(PageSwapCache(page))) 2237 return __page_file_index(page); 2238 return page->index; 2239} 2240 2241/* 2242 * Return true only if the page has been allocated with 2243 * ALLOC_NO_WATERMARKS and the low watermark was not 2244 * met implying that the system is under some pressure. 2245 */ 2246static inline bool page_is_pfmemalloc(const struct page *page) 2247{ 2248 /* 2249 * lru.next has bit 1 set if the page is allocated from the 2250 * pfmemalloc reserves. Callers may simply overwrite it if 2251 * they do not need to preserve that information. 2252 */ 2253 return (uintptr_t)page->lru.next & BIT(1); 2254} 2255 2256/* 2257 * Return true only if the folio has been allocated with 2258 * ALLOC_NO_WATERMARKS and the low watermark was not 2259 * met implying that the system is under some pressure. 2260 */ 2261static inline bool folio_is_pfmemalloc(const struct folio *folio) 2262{ 2263 /* 2264 * lru.next has bit 1 set if the page is allocated from the 2265 * pfmemalloc reserves. Callers may simply overwrite it if 2266 * they do not need to preserve that information. 2267 */ 2268 return (uintptr_t)folio->lru.next & BIT(1); 2269} 2270 2271/* 2272 * Only to be called by the page allocator on a freshly allocated 2273 * page. 2274 */ 2275static inline void set_page_pfmemalloc(struct page *page) 2276{ 2277 page->lru.next = (void *)BIT(1); 2278} 2279 2280static inline void clear_page_pfmemalloc(struct page *page) 2281{ 2282 page->lru.next = NULL; 2283} 2284 2285/* 2286 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 2287 */ 2288extern void pagefault_out_of_memory(void); 2289 2290#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 2291#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 2292#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) 2293 2294/* 2295 * Parameter block passed down to zap_pte_range in exceptional cases. 2296 */ 2297struct zap_details { 2298 struct folio *single_folio; /* Locked folio to be unmapped */ 2299 bool even_cows; /* Zap COWed private pages too? */ 2300 zap_flags_t zap_flags; /* Extra flags for zapping */ 2301}; 2302 2303/* 2304 * Whether to drop the pte markers, for example, the uffd-wp information for 2305 * file-backed memory. This should only be specified when we will completely 2306 * drop the page in the mm, either by truncation or unmapping of the vma. By 2307 * default, the flag is not set. 2308 */ 2309#define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0)) 2310/* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */ 2311#define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1)) 2312 2313#ifdef CONFIG_SCHED_MM_CID 2314void sched_mm_cid_before_execve(struct task_struct *t); 2315void sched_mm_cid_after_execve(struct task_struct *t); 2316void sched_mm_cid_fork(struct task_struct *t); 2317void sched_mm_cid_exit_signals(struct task_struct *t); 2318static inline int task_mm_cid(struct task_struct *t) 2319{ 2320 return t->mm_cid; 2321} 2322#else 2323static inline void sched_mm_cid_before_execve(struct task_struct *t) { } 2324static inline void sched_mm_cid_after_execve(struct task_struct *t) { } 2325static inline void sched_mm_cid_fork(struct task_struct *t) { } 2326static inline void sched_mm_cid_exit_signals(struct task_struct *t) { } 2327static inline int task_mm_cid(struct task_struct *t) 2328{ 2329 /* 2330 * Use the processor id as a fall-back when the mm cid feature is 2331 * disabled. This provides functional per-cpu data structure accesses 2332 * in user-space, althrough it won't provide the memory usage benefits. 2333 */ 2334 return raw_smp_processor_id(); 2335} 2336#endif 2337 2338#ifdef CONFIG_MMU 2339extern bool can_do_mlock(void); 2340#else 2341static inline bool can_do_mlock(void) { return false; } 2342#endif 2343extern int user_shm_lock(size_t, struct ucounts *); 2344extern void user_shm_unlock(size_t, struct ucounts *); 2345 2346struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 2347 pte_t pte); 2348struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 2349 pte_t pte); 2350struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 2351 unsigned long addr, pmd_t pmd); 2352struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 2353 pmd_t pmd); 2354 2355void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2356 unsigned long size); 2357void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2358 unsigned long size, struct zap_details *details); 2359static inline void zap_vma_pages(struct vm_area_struct *vma) 2360{ 2361 zap_page_range_single(vma, vma->vm_start, 2362 vma->vm_end - vma->vm_start, NULL); 2363} 2364void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 2365 struct vm_area_struct *start_vma, unsigned long start, 2366 unsigned long end, unsigned long tree_end, bool mm_wr_locked); 2367 2368struct mmu_notifier_range; 2369 2370void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 2371 unsigned long end, unsigned long floor, unsigned long ceiling); 2372int 2373copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 2374int follow_pte(struct mm_struct *mm, unsigned long address, 2375 pte_t **ptepp, spinlock_t **ptlp); 2376int follow_pfn(struct vm_area_struct *vma, unsigned long address, 2377 unsigned long *pfn); 2378int follow_phys(struct vm_area_struct *vma, unsigned long address, 2379 unsigned int flags, unsigned long *prot, resource_size_t *phys); 2380int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 2381 void *buf, int len, int write); 2382 2383extern void truncate_pagecache(struct inode *inode, loff_t new); 2384extern void truncate_setsize(struct inode *inode, loff_t newsize); 2385void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 2386void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 2387int generic_error_remove_folio(struct address_space *mapping, 2388 struct folio *folio); 2389 2390struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 2391 unsigned long address, struct pt_regs *regs); 2392 2393#ifdef CONFIG_MMU 2394extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2395 unsigned long address, unsigned int flags, 2396 struct pt_regs *regs); 2397extern int fixup_user_fault(struct mm_struct *mm, 2398 unsigned long address, unsigned int fault_flags, 2399 bool *unlocked); 2400void unmap_mapping_pages(struct address_space *mapping, 2401 pgoff_t start, pgoff_t nr, bool even_cows); 2402void unmap_mapping_range(struct address_space *mapping, 2403 loff_t const holebegin, loff_t const holelen, int even_cows); 2404#else 2405static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2406 unsigned long address, unsigned int flags, 2407 struct pt_regs *regs) 2408{ 2409 /* should never happen if there's no MMU */ 2410 BUG(); 2411 return VM_FAULT_SIGBUS; 2412} 2413static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 2414 unsigned int fault_flags, bool *unlocked) 2415{ 2416 /* should never happen if there's no MMU */ 2417 BUG(); 2418 return -EFAULT; 2419} 2420static inline void unmap_mapping_pages(struct address_space *mapping, 2421 pgoff_t start, pgoff_t nr, bool even_cows) { } 2422static inline void unmap_mapping_range(struct address_space *mapping, 2423 loff_t const holebegin, loff_t const holelen, int even_cows) { } 2424#endif 2425 2426static inline void unmap_shared_mapping_range(struct address_space *mapping, 2427 loff_t const holebegin, loff_t const holelen) 2428{ 2429 unmap_mapping_range(mapping, holebegin, holelen, 0); 2430} 2431 2432static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm, 2433 unsigned long addr); 2434 2435extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 2436 void *buf, int len, unsigned int gup_flags); 2437extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 2438 void *buf, int len, unsigned int gup_flags); 2439 2440long get_user_pages_remote(struct mm_struct *mm, 2441 unsigned long start, unsigned long nr_pages, 2442 unsigned int gup_flags, struct page **pages, 2443 int *locked); 2444long pin_user_pages_remote(struct mm_struct *mm, 2445 unsigned long start, unsigned long nr_pages, 2446 unsigned int gup_flags, struct page **pages, 2447 int *locked); 2448 2449/* 2450 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT. 2451 */ 2452static inline struct page *get_user_page_vma_remote(struct mm_struct *mm, 2453 unsigned long addr, 2454 int gup_flags, 2455 struct vm_area_struct **vmap) 2456{ 2457 struct page *page; 2458 struct vm_area_struct *vma; 2459 int got; 2460 2461 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT))) 2462 return ERR_PTR(-EINVAL); 2463 2464 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL); 2465 2466 if (got < 0) 2467 return ERR_PTR(got); 2468 2469 vma = vma_lookup(mm, addr); 2470 if (WARN_ON_ONCE(!vma)) { 2471 put_page(page); 2472 return ERR_PTR(-EINVAL); 2473 } 2474 2475 *vmap = vma; 2476 return page; 2477} 2478 2479long get_user_pages(unsigned long start, unsigned long nr_pages, 2480 unsigned int gup_flags, struct page **pages); 2481long pin_user_pages(unsigned long start, unsigned long nr_pages, 2482 unsigned int gup_flags, struct page **pages); 2483long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2484 struct page **pages, unsigned int gup_flags); 2485long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2486 struct page **pages, unsigned int gup_flags); 2487 2488int get_user_pages_fast(unsigned long start, int nr_pages, 2489 unsigned int gup_flags, struct page **pages); 2490int pin_user_pages_fast(unsigned long start, int nr_pages, 2491 unsigned int gup_flags, struct page **pages); 2492void folio_add_pin(struct folio *folio); 2493 2494int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 2495int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 2496 struct task_struct *task, bool bypass_rlim); 2497 2498struct kvec; 2499struct page *get_dump_page(unsigned long addr); 2500 2501bool folio_mark_dirty(struct folio *folio); 2502bool set_page_dirty(struct page *page); 2503int set_page_dirty_lock(struct page *page); 2504 2505int get_cmdline(struct task_struct *task, char *buffer, int buflen); 2506 2507extern unsigned long move_page_tables(struct vm_area_struct *vma, 2508 unsigned long old_addr, struct vm_area_struct *new_vma, 2509 unsigned long new_addr, unsigned long len, 2510 bool need_rmap_locks, bool for_stack); 2511 2512/* 2513 * Flags used by change_protection(). For now we make it a bitmap so 2514 * that we can pass in multiple flags just like parameters. However 2515 * for now all the callers are only use one of the flags at the same 2516 * time. 2517 */ 2518/* 2519 * Whether we should manually check if we can map individual PTEs writable, 2520 * because something (e.g., COW, uffd-wp) blocks that from happening for all 2521 * PTEs automatically in a writable mapping. 2522 */ 2523#define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0) 2524/* Whether this protection change is for NUMA hints */ 2525#define MM_CP_PROT_NUMA (1UL << 1) 2526/* Whether this change is for write protecting */ 2527#define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 2528#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 2529#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 2530 MM_CP_UFFD_WP_RESOLVE) 2531 2532bool vma_needs_dirty_tracking(struct vm_area_struct *vma); 2533int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 2534static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma) 2535{ 2536 /* 2537 * We want to check manually if we can change individual PTEs writable 2538 * if we can't do that automatically for all PTEs in a mapping. For 2539 * private mappings, that's always the case when we have write 2540 * permissions as we properly have to handle COW. 2541 */ 2542 if (vma->vm_flags & VM_SHARED) 2543 return vma_wants_writenotify(vma, vma->vm_page_prot); 2544 return !!(vma->vm_flags & VM_WRITE); 2545 2546} 2547bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr, 2548 pte_t pte); 2549extern long change_protection(struct mmu_gather *tlb, 2550 struct vm_area_struct *vma, unsigned long start, 2551 unsigned long end, unsigned long cp_flags); 2552extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb, 2553 struct vm_area_struct *vma, struct vm_area_struct **pprev, 2554 unsigned long start, unsigned long end, unsigned long newflags); 2555 2556/* 2557 * doesn't attempt to fault and will return short. 2558 */ 2559int get_user_pages_fast_only(unsigned long start, int nr_pages, 2560 unsigned int gup_flags, struct page **pages); 2561 2562static inline bool get_user_page_fast_only(unsigned long addr, 2563 unsigned int gup_flags, struct page **pagep) 2564{ 2565 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 2566} 2567/* 2568 * per-process(per-mm_struct) statistics. 2569 */ 2570static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 2571{ 2572 return percpu_counter_read_positive(&mm->rss_stat[member]); 2573} 2574 2575void mm_trace_rss_stat(struct mm_struct *mm, int member); 2576 2577static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 2578{ 2579 percpu_counter_add(&mm->rss_stat[member], value); 2580 2581 mm_trace_rss_stat(mm, member); 2582} 2583 2584static inline void inc_mm_counter(struct mm_struct *mm, int member) 2585{ 2586 percpu_counter_inc(&mm->rss_stat[member]); 2587 2588 mm_trace_rss_stat(mm, member); 2589} 2590 2591static inline void dec_mm_counter(struct mm_struct *mm, int member) 2592{ 2593 percpu_counter_dec(&mm->rss_stat[member]); 2594 2595 mm_trace_rss_stat(mm, member); 2596} 2597 2598/* Optimized variant when page is already known not to be PageAnon */ 2599static inline int mm_counter_file(struct page *page) 2600{ 2601 if (PageSwapBacked(page)) 2602 return MM_SHMEMPAGES; 2603 return MM_FILEPAGES; 2604} 2605 2606static inline int mm_counter(struct page *page) 2607{ 2608 if (PageAnon(page)) 2609 return MM_ANONPAGES; 2610 return mm_counter_file(page); 2611} 2612 2613static inline unsigned long get_mm_rss(struct mm_struct *mm) 2614{ 2615 return get_mm_counter(mm, MM_FILEPAGES) + 2616 get_mm_counter(mm, MM_ANONPAGES) + 2617 get_mm_counter(mm, MM_SHMEMPAGES); 2618} 2619 2620static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 2621{ 2622 return max(mm->hiwater_rss, get_mm_rss(mm)); 2623} 2624 2625static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 2626{ 2627 return max(mm->hiwater_vm, mm->total_vm); 2628} 2629 2630static inline void update_hiwater_rss(struct mm_struct *mm) 2631{ 2632 unsigned long _rss = get_mm_rss(mm); 2633 2634 if ((mm)->hiwater_rss < _rss) 2635 (mm)->hiwater_rss = _rss; 2636} 2637 2638static inline void update_hiwater_vm(struct mm_struct *mm) 2639{ 2640 if (mm->hiwater_vm < mm->total_vm) 2641 mm->hiwater_vm = mm->total_vm; 2642} 2643 2644static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2645{ 2646 mm->hiwater_rss = get_mm_rss(mm); 2647} 2648 2649static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2650 struct mm_struct *mm) 2651{ 2652 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2653 2654 if (*maxrss < hiwater_rss) 2655 *maxrss = hiwater_rss; 2656} 2657 2658#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2659static inline int pte_special(pte_t pte) 2660{ 2661 return 0; 2662} 2663 2664static inline pte_t pte_mkspecial(pte_t pte) 2665{ 2666 return pte; 2667} 2668#endif 2669 2670#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 2671static inline int pte_devmap(pte_t pte) 2672{ 2673 return 0; 2674} 2675#endif 2676 2677extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2678 spinlock_t **ptl); 2679static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2680 spinlock_t **ptl) 2681{ 2682 pte_t *ptep; 2683 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2684 return ptep; 2685} 2686 2687#ifdef __PAGETABLE_P4D_FOLDED 2688static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2689 unsigned long address) 2690{ 2691 return 0; 2692} 2693#else 2694int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2695#endif 2696 2697#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2698static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2699 unsigned long address) 2700{ 2701 return 0; 2702} 2703static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2704static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2705 2706#else 2707int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2708 2709static inline void mm_inc_nr_puds(struct mm_struct *mm) 2710{ 2711 if (mm_pud_folded(mm)) 2712 return; 2713 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2714} 2715 2716static inline void mm_dec_nr_puds(struct mm_struct *mm) 2717{ 2718 if (mm_pud_folded(mm)) 2719 return; 2720 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2721} 2722#endif 2723 2724#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2725static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2726 unsigned long address) 2727{ 2728 return 0; 2729} 2730 2731static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2732static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2733 2734#else 2735int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2736 2737static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2738{ 2739 if (mm_pmd_folded(mm)) 2740 return; 2741 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2742} 2743 2744static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2745{ 2746 if (mm_pmd_folded(mm)) 2747 return; 2748 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2749} 2750#endif 2751 2752#ifdef CONFIG_MMU 2753static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2754{ 2755 atomic_long_set(&mm->pgtables_bytes, 0); 2756} 2757 2758static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2759{ 2760 return atomic_long_read(&mm->pgtables_bytes); 2761} 2762 2763static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2764{ 2765 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2766} 2767 2768static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2769{ 2770 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2771} 2772#else 2773 2774static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2775static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2776{ 2777 return 0; 2778} 2779 2780static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2781static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2782#endif 2783 2784int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2785int __pte_alloc_kernel(pmd_t *pmd); 2786 2787#if defined(CONFIG_MMU) 2788 2789static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2790 unsigned long address) 2791{ 2792 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2793 NULL : p4d_offset(pgd, address); 2794} 2795 2796static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2797 unsigned long address) 2798{ 2799 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2800 NULL : pud_offset(p4d, address); 2801} 2802 2803static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2804{ 2805 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2806 NULL: pmd_offset(pud, address); 2807} 2808#endif /* CONFIG_MMU */ 2809 2810static inline struct ptdesc *virt_to_ptdesc(const void *x) 2811{ 2812 return page_ptdesc(virt_to_page(x)); 2813} 2814 2815static inline void *ptdesc_to_virt(const struct ptdesc *pt) 2816{ 2817 return page_to_virt(ptdesc_page(pt)); 2818} 2819 2820static inline void *ptdesc_address(const struct ptdesc *pt) 2821{ 2822 return folio_address(ptdesc_folio(pt)); 2823} 2824 2825static inline bool pagetable_is_reserved(struct ptdesc *pt) 2826{ 2827 return folio_test_reserved(ptdesc_folio(pt)); 2828} 2829 2830/** 2831 * pagetable_alloc - Allocate pagetables 2832 * @gfp: GFP flags 2833 * @order: desired pagetable order 2834 * 2835 * pagetable_alloc allocates memory for page tables as well as a page table 2836 * descriptor to describe that memory. 2837 * 2838 * Return: The ptdesc describing the allocated page tables. 2839 */ 2840static inline struct ptdesc *pagetable_alloc(gfp_t gfp, unsigned int order) 2841{ 2842 struct page *page = alloc_pages(gfp | __GFP_COMP, order); 2843 2844 return page_ptdesc(page); 2845} 2846 2847/** 2848 * pagetable_free - Free pagetables 2849 * @pt: The page table descriptor 2850 * 2851 * pagetable_free frees the memory of all page tables described by a page 2852 * table descriptor and the memory for the descriptor itself. 2853 */ 2854static inline void pagetable_free(struct ptdesc *pt) 2855{ 2856 struct page *page = ptdesc_page(pt); 2857 2858 __free_pages(page, compound_order(page)); 2859} 2860 2861#if USE_SPLIT_PTE_PTLOCKS 2862#if ALLOC_SPLIT_PTLOCKS 2863void __init ptlock_cache_init(void); 2864bool ptlock_alloc(struct ptdesc *ptdesc); 2865void ptlock_free(struct ptdesc *ptdesc); 2866 2867static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 2868{ 2869 return ptdesc->ptl; 2870} 2871#else /* ALLOC_SPLIT_PTLOCKS */ 2872static inline void ptlock_cache_init(void) 2873{ 2874} 2875 2876static inline bool ptlock_alloc(struct ptdesc *ptdesc) 2877{ 2878 return true; 2879} 2880 2881static inline void ptlock_free(struct ptdesc *ptdesc) 2882{ 2883} 2884 2885static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 2886{ 2887 return &ptdesc->ptl; 2888} 2889#endif /* ALLOC_SPLIT_PTLOCKS */ 2890 2891static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2892{ 2893 return ptlock_ptr(page_ptdesc(pmd_page(*pmd))); 2894} 2895 2896static inline bool ptlock_init(struct ptdesc *ptdesc) 2897{ 2898 /* 2899 * prep_new_page() initialize page->private (and therefore page->ptl) 2900 * with 0. Make sure nobody took it in use in between. 2901 * 2902 * It can happen if arch try to use slab for page table allocation: 2903 * slab code uses page->slab_cache, which share storage with page->ptl. 2904 */ 2905 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc)); 2906 if (!ptlock_alloc(ptdesc)) 2907 return false; 2908 spin_lock_init(ptlock_ptr(ptdesc)); 2909 return true; 2910} 2911 2912#else /* !USE_SPLIT_PTE_PTLOCKS */ 2913/* 2914 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2915 */ 2916static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2917{ 2918 return &mm->page_table_lock; 2919} 2920static inline void ptlock_cache_init(void) {} 2921static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; } 2922static inline void ptlock_free(struct ptdesc *ptdesc) {} 2923#endif /* USE_SPLIT_PTE_PTLOCKS */ 2924 2925static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc) 2926{ 2927 struct folio *folio = ptdesc_folio(ptdesc); 2928 2929 if (!ptlock_init(ptdesc)) 2930 return false; 2931 __folio_set_pgtable(folio); 2932 lruvec_stat_add_folio(folio, NR_PAGETABLE); 2933 return true; 2934} 2935 2936static inline void pagetable_pte_dtor(struct ptdesc *ptdesc) 2937{ 2938 struct folio *folio = ptdesc_folio(ptdesc); 2939 2940 ptlock_free(ptdesc); 2941 __folio_clear_pgtable(folio); 2942 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 2943} 2944 2945pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp); 2946static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr) 2947{ 2948 return __pte_offset_map(pmd, addr, NULL); 2949} 2950 2951pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 2952 unsigned long addr, spinlock_t **ptlp); 2953static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 2954 unsigned long addr, spinlock_t **ptlp) 2955{ 2956 pte_t *pte; 2957 2958 __cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp)); 2959 return pte; 2960} 2961 2962pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd, 2963 unsigned long addr, spinlock_t **ptlp); 2964 2965#define pte_unmap_unlock(pte, ptl) do { \ 2966 spin_unlock(ptl); \ 2967 pte_unmap(pte); \ 2968} while (0) 2969 2970#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2971 2972#define pte_alloc_map(mm, pmd, address) \ 2973 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2974 2975#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2976 (pte_alloc(mm, pmd) ? \ 2977 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2978 2979#define pte_alloc_kernel(pmd, address) \ 2980 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2981 NULL: pte_offset_kernel(pmd, address)) 2982 2983#if USE_SPLIT_PMD_PTLOCKS 2984 2985static inline struct page *pmd_pgtable_page(pmd_t *pmd) 2986{ 2987 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2988 return virt_to_page((void *)((unsigned long) pmd & mask)); 2989} 2990 2991static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd) 2992{ 2993 return page_ptdesc(pmd_pgtable_page(pmd)); 2994} 2995 2996static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2997{ 2998 return ptlock_ptr(pmd_ptdesc(pmd)); 2999} 3000 3001static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) 3002{ 3003#ifdef CONFIG_TRANSPARENT_HUGEPAGE 3004 ptdesc->pmd_huge_pte = NULL; 3005#endif 3006 return ptlock_init(ptdesc); 3007} 3008 3009static inline void pmd_ptlock_free(struct ptdesc *ptdesc) 3010{ 3011#ifdef CONFIG_TRANSPARENT_HUGEPAGE 3012 VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc)); 3013#endif 3014 ptlock_free(ptdesc); 3015} 3016 3017#define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte) 3018 3019#else 3020 3021static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3022{ 3023 return &mm->page_table_lock; 3024} 3025 3026static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; } 3027static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {} 3028 3029#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 3030 3031#endif 3032 3033static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 3034{ 3035 spinlock_t *ptl = pmd_lockptr(mm, pmd); 3036 spin_lock(ptl); 3037 return ptl; 3038} 3039 3040static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc) 3041{ 3042 struct folio *folio = ptdesc_folio(ptdesc); 3043 3044 if (!pmd_ptlock_init(ptdesc)) 3045 return false; 3046 __folio_set_pgtable(folio); 3047 lruvec_stat_add_folio(folio, NR_PAGETABLE); 3048 return true; 3049} 3050 3051static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc) 3052{ 3053 struct folio *folio = ptdesc_folio(ptdesc); 3054 3055 pmd_ptlock_free(ptdesc); 3056 __folio_clear_pgtable(folio); 3057 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 3058} 3059 3060/* 3061 * No scalability reason to split PUD locks yet, but follow the same pattern 3062 * as the PMD locks to make it easier if we decide to. The VM should not be 3063 * considered ready to switch to split PUD locks yet; there may be places 3064 * which need to be converted from page_table_lock. 3065 */ 3066static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 3067{ 3068 return &mm->page_table_lock; 3069} 3070 3071static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 3072{ 3073 spinlock_t *ptl = pud_lockptr(mm, pud); 3074 3075 spin_lock(ptl); 3076 return ptl; 3077} 3078 3079static inline void pagetable_pud_ctor(struct ptdesc *ptdesc) 3080{ 3081 struct folio *folio = ptdesc_folio(ptdesc); 3082 3083 __folio_set_pgtable(folio); 3084 lruvec_stat_add_folio(folio, NR_PAGETABLE); 3085} 3086 3087static inline void pagetable_pud_dtor(struct ptdesc *ptdesc) 3088{ 3089 struct folio *folio = ptdesc_folio(ptdesc); 3090 3091 __folio_clear_pgtable(folio); 3092 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 3093} 3094 3095extern void __init pagecache_init(void); 3096extern void free_initmem(void); 3097 3098/* 3099 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 3100 * into the buddy system. The freed pages will be poisoned with pattern 3101 * "poison" if it's within range [0, UCHAR_MAX]. 3102 * Return pages freed into the buddy system. 3103 */ 3104extern unsigned long free_reserved_area(void *start, void *end, 3105 int poison, const char *s); 3106 3107extern void adjust_managed_page_count(struct page *page, long count); 3108 3109extern void reserve_bootmem_region(phys_addr_t start, 3110 phys_addr_t end, int nid); 3111 3112/* Free the reserved page into the buddy system, so it gets managed. */ 3113static inline void free_reserved_page(struct page *page) 3114{ 3115 ClearPageReserved(page); 3116 init_page_count(page); 3117 __free_page(page); 3118 adjust_managed_page_count(page, 1); 3119} 3120#define free_highmem_page(page) free_reserved_page(page) 3121 3122static inline void mark_page_reserved(struct page *page) 3123{ 3124 SetPageReserved(page); 3125 adjust_managed_page_count(page, -1); 3126} 3127 3128static inline void free_reserved_ptdesc(struct ptdesc *pt) 3129{ 3130 free_reserved_page(ptdesc_page(pt)); 3131} 3132 3133/* 3134 * Default method to free all the __init memory into the buddy system. 3135 * The freed pages will be poisoned with pattern "poison" if it's within 3136 * range [0, UCHAR_MAX]. 3137 * Return pages freed into the buddy system. 3138 */ 3139static inline unsigned long free_initmem_default(int poison) 3140{ 3141 extern char __init_begin[], __init_end[]; 3142 3143 return free_reserved_area(&__init_begin, &__init_end, 3144 poison, "unused kernel image (initmem)"); 3145} 3146 3147static inline unsigned long get_num_physpages(void) 3148{ 3149 int nid; 3150 unsigned long phys_pages = 0; 3151 3152 for_each_online_node(nid) 3153 phys_pages += node_present_pages(nid); 3154 3155 return phys_pages; 3156} 3157 3158/* 3159 * Using memblock node mappings, an architecture may initialise its 3160 * zones, allocate the backing mem_map and account for memory holes in an 3161 * architecture independent manner. 3162 * 3163 * An architecture is expected to register range of page frames backed by 3164 * physical memory with memblock_add[_node]() before calling 3165 * free_area_init() passing in the PFN each zone ends at. At a basic 3166 * usage, an architecture is expected to do something like 3167 * 3168 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 3169 * max_highmem_pfn}; 3170 * for_each_valid_physical_page_range() 3171 * memblock_add_node(base, size, nid, MEMBLOCK_NONE) 3172 * free_area_init(max_zone_pfns); 3173 */ 3174void free_area_init(unsigned long *max_zone_pfn); 3175unsigned long node_map_pfn_alignment(void); 3176unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 3177 unsigned long end_pfn); 3178extern unsigned long absent_pages_in_range(unsigned long start_pfn, 3179 unsigned long end_pfn); 3180extern void get_pfn_range_for_nid(unsigned int nid, 3181 unsigned long *start_pfn, unsigned long *end_pfn); 3182 3183#ifndef CONFIG_NUMA 3184static inline int early_pfn_to_nid(unsigned long pfn) 3185{ 3186 return 0; 3187} 3188#else 3189/* please see mm/page_alloc.c */ 3190extern int __meminit early_pfn_to_nid(unsigned long pfn); 3191#endif 3192 3193extern void set_dma_reserve(unsigned long new_dma_reserve); 3194extern void mem_init(void); 3195extern void __init mmap_init(void); 3196 3197extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); 3198static inline void show_mem(void) 3199{ 3200 __show_mem(0, NULL, MAX_NR_ZONES - 1); 3201} 3202extern long si_mem_available(void); 3203extern void si_meminfo(struct sysinfo * val); 3204extern void si_meminfo_node(struct sysinfo *val, int nid); 3205#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 3206extern unsigned long arch_reserved_kernel_pages(void); 3207#endif 3208 3209extern __printf(3, 4) 3210void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 3211 3212extern void setup_per_cpu_pageset(void); 3213 3214/* nommu.c */ 3215extern atomic_long_t mmap_pages_allocated; 3216extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 3217 3218/* interval_tree.c */ 3219void vma_interval_tree_insert(struct vm_area_struct *node, 3220 struct rb_root_cached *root); 3221void vma_interval_tree_insert_after(struct vm_area_struct *node, 3222 struct vm_area_struct *prev, 3223 struct rb_root_cached *root); 3224void vma_interval_tree_remove(struct vm_area_struct *node, 3225 struct rb_root_cached *root); 3226struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 3227 unsigned long start, unsigned long last); 3228struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 3229 unsigned long start, unsigned long last); 3230 3231#define vma_interval_tree_foreach(vma, root, start, last) \ 3232 for (vma = vma_interval_tree_iter_first(root, start, last); \ 3233 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 3234 3235void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 3236 struct rb_root_cached *root); 3237void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 3238 struct rb_root_cached *root); 3239struct anon_vma_chain * 3240anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 3241 unsigned long start, unsigned long last); 3242struct anon_vma_chain *anon_vma_interval_tree_iter_next( 3243 struct anon_vma_chain *node, unsigned long start, unsigned long last); 3244#ifdef CONFIG_DEBUG_VM_RB 3245void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 3246#endif 3247 3248#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 3249 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 3250 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 3251 3252/* mmap.c */ 3253extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 3254extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma, 3255 unsigned long start, unsigned long end, pgoff_t pgoff, 3256 struct vm_area_struct *next); 3257extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, 3258 unsigned long start, unsigned long end, pgoff_t pgoff); 3259extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 3260extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 3261extern void unlink_file_vma(struct vm_area_struct *); 3262extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 3263 unsigned long addr, unsigned long len, pgoff_t pgoff, 3264 bool *need_rmap_locks); 3265extern void exit_mmap(struct mm_struct *); 3266struct vm_area_struct *vma_modify(struct vma_iterator *vmi, 3267 struct vm_area_struct *prev, 3268 struct vm_area_struct *vma, 3269 unsigned long start, unsigned long end, 3270 unsigned long vm_flags, 3271 struct mempolicy *policy, 3272 struct vm_userfaultfd_ctx uffd_ctx, 3273 struct anon_vma_name *anon_name); 3274 3275/* We are about to modify the VMA's flags. */ 3276static inline struct vm_area_struct 3277*vma_modify_flags(struct vma_iterator *vmi, 3278 struct vm_area_struct *prev, 3279 struct vm_area_struct *vma, 3280 unsigned long start, unsigned long end, 3281 unsigned long new_flags) 3282{ 3283 return vma_modify(vmi, prev, vma, start, end, new_flags, 3284 vma_policy(vma), vma->vm_userfaultfd_ctx, 3285 anon_vma_name(vma)); 3286} 3287 3288/* We are about to modify the VMA's flags and/or anon_name. */ 3289static inline struct vm_area_struct 3290*vma_modify_flags_name(struct vma_iterator *vmi, 3291 struct vm_area_struct *prev, 3292 struct vm_area_struct *vma, 3293 unsigned long start, 3294 unsigned long end, 3295 unsigned long new_flags, 3296 struct anon_vma_name *new_name) 3297{ 3298 return vma_modify(vmi, prev, vma, start, end, new_flags, 3299 vma_policy(vma), vma->vm_userfaultfd_ctx, new_name); 3300} 3301 3302/* We are about to modify the VMA's memory policy. */ 3303static inline struct vm_area_struct 3304*vma_modify_policy(struct vma_iterator *vmi, 3305 struct vm_area_struct *prev, 3306 struct vm_area_struct *vma, 3307 unsigned long start, unsigned long end, 3308 struct mempolicy *new_pol) 3309{ 3310 return vma_modify(vmi, prev, vma, start, end, vma->vm_flags, 3311 new_pol, vma->vm_userfaultfd_ctx, anon_vma_name(vma)); 3312} 3313 3314/* We are about to modify the VMA's flags and/or uffd context. */ 3315static inline struct vm_area_struct 3316*vma_modify_flags_uffd(struct vma_iterator *vmi, 3317 struct vm_area_struct *prev, 3318 struct vm_area_struct *vma, 3319 unsigned long start, unsigned long end, 3320 unsigned long new_flags, 3321 struct vm_userfaultfd_ctx new_ctx) 3322{ 3323 return vma_modify(vmi, prev, vma, start, end, new_flags, 3324 vma_policy(vma), new_ctx, anon_vma_name(vma)); 3325} 3326 3327static inline int check_data_rlimit(unsigned long rlim, 3328 unsigned long new, 3329 unsigned long start, 3330 unsigned long end_data, 3331 unsigned long start_data) 3332{ 3333 if (rlim < RLIM_INFINITY) { 3334 if (((new - start) + (end_data - start_data)) > rlim) 3335 return -ENOSPC; 3336 } 3337 3338 return 0; 3339} 3340 3341extern int mm_take_all_locks(struct mm_struct *mm); 3342extern void mm_drop_all_locks(struct mm_struct *mm); 3343 3344extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3345extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3346extern struct file *get_mm_exe_file(struct mm_struct *mm); 3347extern struct file *get_task_exe_file(struct task_struct *task); 3348 3349extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 3350extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 3351 3352extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 3353 const struct vm_special_mapping *sm); 3354extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 3355 unsigned long addr, unsigned long len, 3356 unsigned long flags, 3357 const struct vm_special_mapping *spec); 3358/* This is an obsolete alternative to _install_special_mapping. */ 3359extern int install_special_mapping(struct mm_struct *mm, 3360 unsigned long addr, unsigned long len, 3361 unsigned long flags, struct page **pages); 3362 3363unsigned long randomize_stack_top(unsigned long stack_top); 3364unsigned long randomize_page(unsigned long start, unsigned long range); 3365 3366extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 3367 3368extern unsigned long mmap_region(struct file *file, unsigned long addr, 3369 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 3370 struct list_head *uf); 3371extern unsigned long do_mmap(struct file *file, unsigned long addr, 3372 unsigned long len, unsigned long prot, unsigned long flags, 3373 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 3374 struct list_head *uf); 3375extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 3376 unsigned long start, size_t len, struct list_head *uf, 3377 bool unlock); 3378extern int do_munmap(struct mm_struct *, unsigned long, size_t, 3379 struct list_head *uf); 3380extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 3381 3382#ifdef CONFIG_MMU 3383extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 3384 unsigned long start, unsigned long end, 3385 struct list_head *uf, bool unlock); 3386extern int __mm_populate(unsigned long addr, unsigned long len, 3387 int ignore_errors); 3388static inline void mm_populate(unsigned long addr, unsigned long len) 3389{ 3390 /* Ignore errors */ 3391 (void) __mm_populate(addr, len, 1); 3392} 3393#else 3394static inline void mm_populate(unsigned long addr, unsigned long len) {} 3395#endif 3396 3397/* This takes the mm semaphore itself */ 3398extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 3399extern int vm_munmap(unsigned long, size_t); 3400extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 3401 unsigned long, unsigned long, 3402 unsigned long, unsigned long); 3403 3404struct vm_unmapped_area_info { 3405#define VM_UNMAPPED_AREA_TOPDOWN 1 3406 unsigned long flags; 3407 unsigned long length; 3408 unsigned long low_limit; 3409 unsigned long high_limit; 3410 unsigned long align_mask; 3411 unsigned long align_offset; 3412}; 3413 3414extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 3415 3416/* truncate.c */ 3417extern void truncate_inode_pages(struct address_space *, loff_t); 3418extern void truncate_inode_pages_range(struct address_space *, 3419 loff_t lstart, loff_t lend); 3420extern void truncate_inode_pages_final(struct address_space *); 3421 3422/* generic vm_area_ops exported for stackable file systems */ 3423extern vm_fault_t filemap_fault(struct vm_fault *vmf); 3424extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3425 pgoff_t start_pgoff, pgoff_t end_pgoff); 3426extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 3427 3428extern unsigned long stack_guard_gap; 3429/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 3430int expand_stack_locked(struct vm_area_struct *vma, unsigned long address); 3431struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr); 3432 3433/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 3434int expand_downwards(struct vm_area_struct *vma, unsigned long address); 3435 3436/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 3437extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 3438extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 3439 struct vm_area_struct **pprev); 3440 3441/* 3442 * Look up the first VMA which intersects the interval [start_addr, end_addr) 3443 * NULL if none. Assume start_addr < end_addr. 3444 */ 3445struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 3446 unsigned long start_addr, unsigned long end_addr); 3447 3448/** 3449 * vma_lookup() - Find a VMA at a specific address 3450 * @mm: The process address space. 3451 * @addr: The user address. 3452 * 3453 * Return: The vm_area_struct at the given address, %NULL otherwise. 3454 */ 3455static inline 3456struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 3457{ 3458 return mtree_load(&mm->mm_mt, addr); 3459} 3460 3461static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma) 3462{ 3463 if (vma->vm_flags & VM_GROWSDOWN) 3464 return stack_guard_gap; 3465 3466 /* See reasoning around the VM_SHADOW_STACK definition */ 3467 if (vma->vm_flags & VM_SHADOW_STACK) 3468 return PAGE_SIZE; 3469 3470 return 0; 3471} 3472 3473static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 3474{ 3475 unsigned long gap = stack_guard_start_gap(vma); 3476 unsigned long vm_start = vma->vm_start; 3477 3478 vm_start -= gap; 3479 if (vm_start > vma->vm_start) 3480 vm_start = 0; 3481 return vm_start; 3482} 3483 3484static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 3485{ 3486 unsigned long vm_end = vma->vm_end; 3487 3488 if (vma->vm_flags & VM_GROWSUP) { 3489 vm_end += stack_guard_gap; 3490 if (vm_end < vma->vm_end) 3491 vm_end = -PAGE_SIZE; 3492 } 3493 return vm_end; 3494} 3495 3496static inline unsigned long vma_pages(struct vm_area_struct *vma) 3497{ 3498 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 3499} 3500 3501/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 3502static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 3503 unsigned long vm_start, unsigned long vm_end) 3504{ 3505 struct vm_area_struct *vma = vma_lookup(mm, vm_start); 3506 3507 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 3508 vma = NULL; 3509 3510 return vma; 3511} 3512 3513static inline bool range_in_vma(struct vm_area_struct *vma, 3514 unsigned long start, unsigned long end) 3515{ 3516 return (vma && vma->vm_start <= start && end <= vma->vm_end); 3517} 3518 3519#ifdef CONFIG_MMU 3520pgprot_t vm_get_page_prot(unsigned long vm_flags); 3521void vma_set_page_prot(struct vm_area_struct *vma); 3522#else 3523static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 3524{ 3525 return __pgprot(0); 3526} 3527static inline void vma_set_page_prot(struct vm_area_struct *vma) 3528{ 3529 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3530} 3531#endif 3532 3533void vma_set_file(struct vm_area_struct *vma, struct file *file); 3534 3535#ifdef CONFIG_NUMA_BALANCING 3536unsigned long change_prot_numa(struct vm_area_struct *vma, 3537 unsigned long start, unsigned long end); 3538#endif 3539 3540struct vm_area_struct *find_extend_vma_locked(struct mm_struct *, 3541 unsigned long addr); 3542int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 3543 unsigned long pfn, unsigned long size, pgprot_t); 3544int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 3545 unsigned long pfn, unsigned long size, pgprot_t prot); 3546int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 3547int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 3548 struct page **pages, unsigned long *num); 3549int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 3550 unsigned long num); 3551int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 3552 unsigned long num); 3553vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 3554 unsigned long pfn); 3555vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 3556 unsigned long pfn, pgprot_t pgprot); 3557vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 3558 pfn_t pfn); 3559vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 3560 unsigned long addr, pfn_t pfn); 3561int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 3562 3563static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 3564 unsigned long addr, struct page *page) 3565{ 3566 int err = vm_insert_page(vma, addr, page); 3567 3568 if (err == -ENOMEM) 3569 return VM_FAULT_OOM; 3570 if (err < 0 && err != -EBUSY) 3571 return VM_FAULT_SIGBUS; 3572 3573 return VM_FAULT_NOPAGE; 3574} 3575 3576#ifndef io_remap_pfn_range 3577static inline int io_remap_pfn_range(struct vm_area_struct *vma, 3578 unsigned long addr, unsigned long pfn, 3579 unsigned long size, pgprot_t prot) 3580{ 3581 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 3582} 3583#endif 3584 3585static inline vm_fault_t vmf_error(int err) 3586{ 3587 if (err == -ENOMEM) 3588 return VM_FAULT_OOM; 3589 else if (err == -EHWPOISON) 3590 return VM_FAULT_HWPOISON; 3591 return VM_FAULT_SIGBUS; 3592} 3593 3594/* 3595 * Convert errno to return value for ->page_mkwrite() calls. 3596 * 3597 * This should eventually be merged with vmf_error() above, but will need a 3598 * careful audit of all vmf_error() callers. 3599 */ 3600static inline vm_fault_t vmf_fs_error(int err) 3601{ 3602 if (err == 0) 3603 return VM_FAULT_LOCKED; 3604 if (err == -EFAULT || err == -EAGAIN) 3605 return VM_FAULT_NOPAGE; 3606 if (err == -ENOMEM) 3607 return VM_FAULT_OOM; 3608 /* -ENOSPC, -EDQUOT, -EIO ... */ 3609 return VM_FAULT_SIGBUS; 3610} 3611 3612struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 3613 unsigned int foll_flags); 3614 3615static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 3616{ 3617 if (vm_fault & VM_FAULT_OOM) 3618 return -ENOMEM; 3619 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 3620 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 3621 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 3622 return -EFAULT; 3623 return 0; 3624} 3625 3626/* 3627 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether 3628 * a (NUMA hinting) fault is required. 3629 */ 3630static inline bool gup_can_follow_protnone(struct vm_area_struct *vma, 3631 unsigned int flags) 3632{ 3633 /* 3634 * If callers don't want to honor NUMA hinting faults, no need to 3635 * determine if we would actually have to trigger a NUMA hinting fault. 3636 */ 3637 if (!(flags & FOLL_HONOR_NUMA_FAULT)) 3638 return true; 3639 3640 /* 3641 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs. 3642 * 3643 * Requiring a fault here even for inaccessible VMAs would mean that 3644 * FOLL_FORCE cannot make any progress, because handle_mm_fault() 3645 * refuses to process NUMA hinting faults in inaccessible VMAs. 3646 */ 3647 return !vma_is_accessible(vma); 3648} 3649 3650typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 3651extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 3652 unsigned long size, pte_fn_t fn, void *data); 3653extern int apply_to_existing_page_range(struct mm_struct *mm, 3654 unsigned long address, unsigned long size, 3655 pte_fn_t fn, void *data); 3656 3657#ifdef CONFIG_PAGE_POISONING 3658extern void __kernel_poison_pages(struct page *page, int numpages); 3659extern void __kernel_unpoison_pages(struct page *page, int numpages); 3660extern bool _page_poisoning_enabled_early; 3661DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 3662static inline bool page_poisoning_enabled(void) 3663{ 3664 return _page_poisoning_enabled_early; 3665} 3666/* 3667 * For use in fast paths after init_mem_debugging() has run, or when a 3668 * false negative result is not harmful when called too early. 3669 */ 3670static inline bool page_poisoning_enabled_static(void) 3671{ 3672 return static_branch_unlikely(&_page_poisoning_enabled); 3673} 3674static inline void kernel_poison_pages(struct page *page, int numpages) 3675{ 3676 if (page_poisoning_enabled_static()) 3677 __kernel_poison_pages(page, numpages); 3678} 3679static inline void kernel_unpoison_pages(struct page *page, int numpages) 3680{ 3681 if (page_poisoning_enabled_static()) 3682 __kernel_unpoison_pages(page, numpages); 3683} 3684#else 3685static inline bool page_poisoning_enabled(void) { return false; } 3686static inline bool page_poisoning_enabled_static(void) { return false; } 3687static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 3688static inline void kernel_poison_pages(struct page *page, int numpages) { } 3689static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 3690#endif 3691 3692DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 3693static inline bool want_init_on_alloc(gfp_t flags) 3694{ 3695 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 3696 &init_on_alloc)) 3697 return true; 3698 return flags & __GFP_ZERO; 3699} 3700 3701DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 3702static inline bool want_init_on_free(void) 3703{ 3704 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 3705 &init_on_free); 3706} 3707 3708extern bool _debug_pagealloc_enabled_early; 3709DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 3710 3711static inline bool debug_pagealloc_enabled(void) 3712{ 3713 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 3714 _debug_pagealloc_enabled_early; 3715} 3716 3717/* 3718 * For use in fast paths after mem_debugging_and_hardening_init() has run, 3719 * or when a false negative result is not harmful when called too early. 3720 */ 3721static inline bool debug_pagealloc_enabled_static(void) 3722{ 3723 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 3724 return false; 3725 3726 return static_branch_unlikely(&_debug_pagealloc_enabled); 3727} 3728 3729/* 3730 * To support DEBUG_PAGEALLOC architecture must ensure that 3731 * __kernel_map_pages() never fails 3732 */ 3733extern void __kernel_map_pages(struct page *page, int numpages, int enable); 3734#ifdef CONFIG_DEBUG_PAGEALLOC 3735static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 3736{ 3737 if (debug_pagealloc_enabled_static()) 3738 __kernel_map_pages(page, numpages, 1); 3739} 3740 3741static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 3742{ 3743 if (debug_pagealloc_enabled_static()) 3744 __kernel_map_pages(page, numpages, 0); 3745} 3746 3747extern unsigned int _debug_guardpage_minorder; 3748DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3749 3750static inline unsigned int debug_guardpage_minorder(void) 3751{ 3752 return _debug_guardpage_minorder; 3753} 3754 3755static inline bool debug_guardpage_enabled(void) 3756{ 3757 return static_branch_unlikely(&_debug_guardpage_enabled); 3758} 3759 3760static inline bool page_is_guard(struct page *page) 3761{ 3762 if (!debug_guardpage_enabled()) 3763 return false; 3764 3765 return PageGuard(page); 3766} 3767 3768bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order, 3769 int migratetype); 3770static inline bool set_page_guard(struct zone *zone, struct page *page, 3771 unsigned int order, int migratetype) 3772{ 3773 if (!debug_guardpage_enabled()) 3774 return false; 3775 return __set_page_guard(zone, page, order, migratetype); 3776} 3777 3778void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order, 3779 int migratetype); 3780static inline void clear_page_guard(struct zone *zone, struct page *page, 3781 unsigned int order, int migratetype) 3782{ 3783 if (!debug_guardpage_enabled()) 3784 return; 3785 __clear_page_guard(zone, page, order, migratetype); 3786} 3787 3788#else /* CONFIG_DEBUG_PAGEALLOC */ 3789static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 3790static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 3791static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3792static inline bool debug_guardpage_enabled(void) { return false; } 3793static inline bool page_is_guard(struct page *page) { return false; } 3794static inline bool set_page_guard(struct zone *zone, struct page *page, 3795 unsigned int order, int migratetype) { return false; } 3796static inline void clear_page_guard(struct zone *zone, struct page *page, 3797 unsigned int order, int migratetype) {} 3798#endif /* CONFIG_DEBUG_PAGEALLOC */ 3799 3800#ifdef __HAVE_ARCH_GATE_AREA 3801extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 3802extern int in_gate_area_no_mm(unsigned long addr); 3803extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 3804#else 3805static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3806{ 3807 return NULL; 3808} 3809static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 3810static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 3811{ 3812 return 0; 3813} 3814#endif /* __HAVE_ARCH_GATE_AREA */ 3815 3816extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 3817 3818#ifdef CONFIG_SYSCTL 3819extern int sysctl_drop_caches; 3820int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, 3821 loff_t *); 3822#endif 3823 3824void drop_slab(void); 3825 3826#ifndef CONFIG_MMU 3827#define randomize_va_space 0 3828#else 3829extern int randomize_va_space; 3830#endif 3831 3832const char * arch_vma_name(struct vm_area_struct *vma); 3833#ifdef CONFIG_MMU 3834void print_vma_addr(char *prefix, unsigned long rip); 3835#else 3836static inline void print_vma_addr(char *prefix, unsigned long rip) 3837{ 3838} 3839#endif 3840 3841void *sparse_buffer_alloc(unsigned long size); 3842struct page * __populate_section_memmap(unsigned long pfn, 3843 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 3844 struct dev_pagemap *pgmap); 3845void pmd_init(void *addr); 3846void pud_init(void *addr); 3847pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3848p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3849pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3850pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3851pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3852 struct vmem_altmap *altmap, struct page *reuse); 3853void *vmemmap_alloc_block(unsigned long size, int node); 3854struct vmem_altmap; 3855void *vmemmap_alloc_block_buf(unsigned long size, int node, 3856 struct vmem_altmap *altmap); 3857void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3858void vmemmap_set_pmd(pmd_t *pmd, void *p, int node, 3859 unsigned long addr, unsigned long next); 3860int vmemmap_check_pmd(pmd_t *pmd, int node, 3861 unsigned long addr, unsigned long next); 3862int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3863 int node, struct vmem_altmap *altmap); 3864int vmemmap_populate_hugepages(unsigned long start, unsigned long end, 3865 int node, struct vmem_altmap *altmap); 3866int vmemmap_populate(unsigned long start, unsigned long end, int node, 3867 struct vmem_altmap *altmap); 3868void vmemmap_populate_print_last(void); 3869#ifdef CONFIG_MEMORY_HOTPLUG 3870void vmemmap_free(unsigned long start, unsigned long end, 3871 struct vmem_altmap *altmap); 3872#endif 3873 3874#ifdef CONFIG_SPARSEMEM_VMEMMAP 3875static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3876{ 3877 /* number of pfns from base where pfn_to_page() is valid */ 3878 if (altmap) 3879 return altmap->reserve + altmap->free; 3880 return 0; 3881} 3882 3883static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3884 unsigned long nr_pfns) 3885{ 3886 altmap->alloc -= nr_pfns; 3887} 3888#else 3889static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3890{ 3891 return 0; 3892} 3893 3894static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3895 unsigned long nr_pfns) 3896{ 3897} 3898#endif 3899 3900#define VMEMMAP_RESERVE_NR 2 3901#ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP 3902static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap, 3903 struct dev_pagemap *pgmap) 3904{ 3905 unsigned long nr_pages; 3906 unsigned long nr_vmemmap_pages; 3907 3908 if (!pgmap || !is_power_of_2(sizeof(struct page))) 3909 return false; 3910 3911 nr_pages = pgmap_vmemmap_nr(pgmap); 3912 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT); 3913 /* 3914 * For vmemmap optimization with DAX we need minimum 2 vmemmap 3915 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst 3916 */ 3917 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR); 3918} 3919/* 3920 * If we don't have an architecture override, use the generic rule 3921 */ 3922#ifndef vmemmap_can_optimize 3923#define vmemmap_can_optimize __vmemmap_can_optimize 3924#endif 3925 3926#else 3927static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap, 3928 struct dev_pagemap *pgmap) 3929{ 3930 return false; 3931} 3932#endif 3933 3934void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3935 unsigned long nr_pages); 3936 3937enum mf_flags { 3938 MF_COUNT_INCREASED = 1 << 0, 3939 MF_ACTION_REQUIRED = 1 << 1, 3940 MF_MUST_KILL = 1 << 2, 3941 MF_SOFT_OFFLINE = 1 << 3, 3942 MF_UNPOISON = 1 << 4, 3943 MF_SW_SIMULATED = 1 << 5, 3944 MF_NO_RETRY = 1 << 6, 3945 MF_MEM_PRE_REMOVE = 1 << 7, 3946}; 3947int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 3948 unsigned long count, int mf_flags); 3949extern int memory_failure(unsigned long pfn, int flags); 3950extern void memory_failure_queue_kick(int cpu); 3951extern int unpoison_memory(unsigned long pfn); 3952extern void shake_page(struct page *p); 3953extern atomic_long_t num_poisoned_pages __read_mostly; 3954extern int soft_offline_page(unsigned long pfn, int flags); 3955#ifdef CONFIG_MEMORY_FAILURE 3956/* 3957 * Sysfs entries for memory failure handling statistics. 3958 */ 3959extern const struct attribute_group memory_failure_attr_group; 3960extern void memory_failure_queue(unsigned long pfn, int flags); 3961extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3962 bool *migratable_cleared); 3963void num_poisoned_pages_inc(unsigned long pfn); 3964void num_poisoned_pages_sub(unsigned long pfn, long i); 3965struct task_struct *task_early_kill(struct task_struct *tsk, int force_early); 3966#else 3967static inline void memory_failure_queue(unsigned long pfn, int flags) 3968{ 3969} 3970 3971static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3972 bool *migratable_cleared) 3973{ 3974 return 0; 3975} 3976 3977static inline void num_poisoned_pages_inc(unsigned long pfn) 3978{ 3979} 3980 3981static inline void num_poisoned_pages_sub(unsigned long pfn, long i) 3982{ 3983} 3984#endif 3985 3986#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_KSM) 3987void add_to_kill_ksm(struct task_struct *tsk, struct page *p, 3988 struct vm_area_struct *vma, struct list_head *to_kill, 3989 unsigned long ksm_addr); 3990#endif 3991 3992#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG) 3993extern void memblk_nr_poison_inc(unsigned long pfn); 3994extern void memblk_nr_poison_sub(unsigned long pfn, long i); 3995#else 3996static inline void memblk_nr_poison_inc(unsigned long pfn) 3997{ 3998} 3999 4000static inline void memblk_nr_poison_sub(unsigned long pfn, long i) 4001{ 4002} 4003#endif 4004 4005#ifndef arch_memory_failure 4006static inline int arch_memory_failure(unsigned long pfn, int flags) 4007{ 4008 return -ENXIO; 4009} 4010#endif 4011 4012#ifndef arch_is_platform_page 4013static inline bool arch_is_platform_page(u64 paddr) 4014{ 4015 return false; 4016} 4017#endif 4018 4019/* 4020 * Error handlers for various types of pages. 4021 */ 4022enum mf_result { 4023 MF_IGNORED, /* Error: cannot be handled */ 4024 MF_FAILED, /* Error: handling failed */ 4025 MF_DELAYED, /* Will be handled later */ 4026 MF_RECOVERED, /* Successfully recovered */ 4027}; 4028 4029enum mf_action_page_type { 4030 MF_MSG_KERNEL, 4031 MF_MSG_KERNEL_HIGH_ORDER, 4032 MF_MSG_SLAB, 4033 MF_MSG_DIFFERENT_COMPOUND, 4034 MF_MSG_HUGE, 4035 MF_MSG_FREE_HUGE, 4036 MF_MSG_UNMAP_FAILED, 4037 MF_MSG_DIRTY_SWAPCACHE, 4038 MF_MSG_CLEAN_SWAPCACHE, 4039 MF_MSG_DIRTY_MLOCKED_LRU, 4040 MF_MSG_CLEAN_MLOCKED_LRU, 4041 MF_MSG_DIRTY_UNEVICTABLE_LRU, 4042 MF_MSG_CLEAN_UNEVICTABLE_LRU, 4043 MF_MSG_DIRTY_LRU, 4044 MF_MSG_CLEAN_LRU, 4045 MF_MSG_TRUNCATED_LRU, 4046 MF_MSG_BUDDY, 4047 MF_MSG_DAX, 4048 MF_MSG_UNSPLIT_THP, 4049 MF_MSG_UNKNOWN, 4050}; 4051 4052#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4053extern void clear_huge_page(struct page *page, 4054 unsigned long addr_hint, 4055 unsigned int pages_per_huge_page); 4056int copy_user_large_folio(struct folio *dst, struct folio *src, 4057 unsigned long addr_hint, 4058 struct vm_area_struct *vma); 4059long copy_folio_from_user(struct folio *dst_folio, 4060 const void __user *usr_src, 4061 bool allow_pagefault); 4062 4063/** 4064 * vma_is_special_huge - Are transhuge page-table entries considered special? 4065 * @vma: Pointer to the struct vm_area_struct to consider 4066 * 4067 * Whether transhuge page-table entries are considered "special" following 4068 * the definition in vm_normal_page(). 4069 * 4070 * Return: true if transhuge page-table entries should be considered special, 4071 * false otherwise. 4072 */ 4073static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 4074{ 4075 return vma_is_dax(vma) || (vma->vm_file && 4076 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 4077} 4078 4079#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4080 4081#if MAX_NUMNODES > 1 4082void __init setup_nr_node_ids(void); 4083#else 4084static inline void setup_nr_node_ids(void) {} 4085#endif 4086 4087extern int memcmp_pages(struct page *page1, struct page *page2); 4088 4089static inline int pages_identical(struct page *page1, struct page *page2) 4090{ 4091 return !memcmp_pages(page1, page2); 4092} 4093 4094#ifdef CONFIG_MAPPING_DIRTY_HELPERS 4095unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 4096 pgoff_t first_index, pgoff_t nr, 4097 pgoff_t bitmap_pgoff, 4098 unsigned long *bitmap, 4099 pgoff_t *start, 4100 pgoff_t *end); 4101 4102unsigned long wp_shared_mapping_range(struct address_space *mapping, 4103 pgoff_t first_index, pgoff_t nr); 4104#endif 4105 4106extern int sysctl_nr_trim_pages; 4107 4108#ifdef CONFIG_PRINTK 4109void mem_dump_obj(void *object); 4110#else 4111static inline void mem_dump_obj(void *object) {} 4112#endif 4113 4114/** 4115 * seal_check_write - Check for F_SEAL_WRITE or F_SEAL_FUTURE_WRITE flags and 4116 * handle them. 4117 * @seals: the seals to check 4118 * @vma: the vma to operate on 4119 * 4120 * Check whether F_SEAL_WRITE or F_SEAL_FUTURE_WRITE are set; if so, do proper 4121 * check/handling on the vma flags. Return 0 if check pass, or <0 for errors. 4122 */ 4123static inline int seal_check_write(int seals, struct vm_area_struct *vma) 4124{ 4125 if (seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 4126 /* 4127 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 4128 * write seals are active. 4129 */ 4130 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 4131 return -EPERM; 4132 4133 /* 4134 * Since an F_SEAL_[FUTURE_]WRITE sealed memfd can be mapped as 4135 * MAP_SHARED and read-only, take care to not allow mprotect to 4136 * revert protections on such mappings. Do this only for shared 4137 * mappings. For private mappings, don't need to mask 4138 * VM_MAYWRITE as we still want them to be COW-writable. 4139 */ 4140 if (vma->vm_flags & VM_SHARED) 4141 vm_flags_clear(vma, VM_MAYWRITE); 4142 } 4143 4144 return 0; 4145} 4146 4147#ifdef CONFIG_ANON_VMA_NAME 4148int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4149 unsigned long len_in, 4150 struct anon_vma_name *anon_name); 4151#else 4152static inline int 4153madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4154 unsigned long len_in, struct anon_vma_name *anon_name) { 4155 return 0; 4156} 4157#endif 4158 4159#ifdef CONFIG_UNACCEPTED_MEMORY 4160 4161bool range_contains_unaccepted_memory(phys_addr_t start, phys_addr_t end); 4162void accept_memory(phys_addr_t start, phys_addr_t end); 4163 4164#else 4165 4166static inline bool range_contains_unaccepted_memory(phys_addr_t start, 4167 phys_addr_t end) 4168{ 4169 return false; 4170} 4171 4172static inline void accept_memory(phys_addr_t start, phys_addr_t end) 4173{ 4174} 4175 4176#endif 4177 4178static inline bool pfn_is_unaccepted_memory(unsigned long pfn) 4179{ 4180 phys_addr_t paddr = pfn << PAGE_SHIFT; 4181 4182 return range_contains_unaccepted_memory(paddr, paddr + PAGE_SIZE); 4183} 4184 4185#endif /* _LINUX_MM_H */