at v6.8 119 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_FS_H 3#define _LINUX_FS_H 4 5#include <linux/linkage.h> 6#include <linux/wait_bit.h> 7#include <linux/kdev_t.h> 8#include <linux/dcache.h> 9#include <linux/path.h> 10#include <linux/stat.h> 11#include <linux/cache.h> 12#include <linux/list.h> 13#include <linux/list_lru.h> 14#include <linux/llist.h> 15#include <linux/radix-tree.h> 16#include <linux/xarray.h> 17#include <linux/rbtree.h> 18#include <linux/init.h> 19#include <linux/pid.h> 20#include <linux/bug.h> 21#include <linux/mutex.h> 22#include <linux/rwsem.h> 23#include <linux/mm_types.h> 24#include <linux/capability.h> 25#include <linux/semaphore.h> 26#include <linux/fcntl.h> 27#include <linux/rculist_bl.h> 28#include <linux/atomic.h> 29#include <linux/shrinker.h> 30#include <linux/migrate_mode.h> 31#include <linux/uidgid.h> 32#include <linux/lockdep.h> 33#include <linux/percpu-rwsem.h> 34#include <linux/workqueue.h> 35#include <linux/delayed_call.h> 36#include <linux/uuid.h> 37#include <linux/errseq.h> 38#include <linux/ioprio.h> 39#include <linux/fs_types.h> 40#include <linux/build_bug.h> 41#include <linux/stddef.h> 42#include <linux/mount.h> 43#include <linux/cred.h> 44#include <linux/mnt_idmapping.h> 45#include <linux/slab.h> 46 47#include <asm/byteorder.h> 48#include <uapi/linux/fs.h> 49 50struct backing_dev_info; 51struct bdi_writeback; 52struct bio; 53struct io_comp_batch; 54struct export_operations; 55struct fiemap_extent_info; 56struct hd_geometry; 57struct iovec; 58struct kiocb; 59struct kobject; 60struct pipe_inode_info; 61struct poll_table_struct; 62struct kstatfs; 63struct vm_area_struct; 64struct vfsmount; 65struct cred; 66struct swap_info_struct; 67struct seq_file; 68struct workqueue_struct; 69struct iov_iter; 70struct fscrypt_inode_info; 71struct fscrypt_operations; 72struct fsverity_info; 73struct fsverity_operations; 74struct fs_context; 75struct fs_parameter_spec; 76struct fileattr; 77struct iomap_ops; 78 79extern void __init inode_init(void); 80extern void __init inode_init_early(void); 81extern void __init files_init(void); 82extern void __init files_maxfiles_init(void); 83 84extern unsigned long get_max_files(void); 85extern unsigned int sysctl_nr_open; 86 87typedef __kernel_rwf_t rwf_t; 88 89struct buffer_head; 90typedef int (get_block_t)(struct inode *inode, sector_t iblock, 91 struct buffer_head *bh_result, int create); 92typedef int (dio_iodone_t)(struct kiocb *iocb, loff_t offset, 93 ssize_t bytes, void *private); 94 95#define MAY_EXEC 0x00000001 96#define MAY_WRITE 0x00000002 97#define MAY_READ 0x00000004 98#define MAY_APPEND 0x00000008 99#define MAY_ACCESS 0x00000010 100#define MAY_OPEN 0x00000020 101#define MAY_CHDIR 0x00000040 102/* called from RCU mode, don't block */ 103#define MAY_NOT_BLOCK 0x00000080 104 105/* 106 * flags in file.f_mode. Note that FMODE_READ and FMODE_WRITE must correspond 107 * to O_WRONLY and O_RDWR via the strange trick in do_dentry_open() 108 */ 109 110/* file is open for reading */ 111#define FMODE_READ ((__force fmode_t)0x1) 112/* file is open for writing */ 113#define FMODE_WRITE ((__force fmode_t)0x2) 114/* file is seekable */ 115#define FMODE_LSEEK ((__force fmode_t)0x4) 116/* file can be accessed using pread */ 117#define FMODE_PREAD ((__force fmode_t)0x8) 118/* file can be accessed using pwrite */ 119#define FMODE_PWRITE ((__force fmode_t)0x10) 120/* File is opened for execution with sys_execve / sys_uselib */ 121#define FMODE_EXEC ((__force fmode_t)0x20) 122/* 32bit hashes as llseek() offset (for directories) */ 123#define FMODE_32BITHASH ((__force fmode_t)0x200) 124/* 64bit hashes as llseek() offset (for directories) */ 125#define FMODE_64BITHASH ((__force fmode_t)0x400) 126 127/* 128 * Don't update ctime and mtime. 129 * 130 * Currently a special hack for the XFS open_by_handle ioctl, but we'll 131 * hopefully graduate it to a proper O_CMTIME flag supported by open(2) soon. 132 */ 133#define FMODE_NOCMTIME ((__force fmode_t)0x800) 134 135/* Expect random access pattern */ 136#define FMODE_RANDOM ((__force fmode_t)0x1000) 137 138/* File is huge (eg. /dev/mem): treat loff_t as unsigned */ 139#define FMODE_UNSIGNED_OFFSET ((__force fmode_t)0x2000) 140 141/* File is opened with O_PATH; almost nothing can be done with it */ 142#define FMODE_PATH ((__force fmode_t)0x4000) 143 144/* File needs atomic accesses to f_pos */ 145#define FMODE_ATOMIC_POS ((__force fmode_t)0x8000) 146/* Write access to underlying fs */ 147#define FMODE_WRITER ((__force fmode_t)0x10000) 148/* Has read method(s) */ 149#define FMODE_CAN_READ ((__force fmode_t)0x20000) 150/* Has write method(s) */ 151#define FMODE_CAN_WRITE ((__force fmode_t)0x40000) 152 153#define FMODE_OPENED ((__force fmode_t)0x80000) 154#define FMODE_CREATED ((__force fmode_t)0x100000) 155 156/* File is stream-like */ 157#define FMODE_STREAM ((__force fmode_t)0x200000) 158 159/* File supports DIRECT IO */ 160#define FMODE_CAN_ODIRECT ((__force fmode_t)0x400000) 161 162#define FMODE_NOREUSE ((__force fmode_t)0x800000) 163 164/* File supports non-exclusive O_DIRECT writes from multiple threads */ 165#define FMODE_DIO_PARALLEL_WRITE ((__force fmode_t)0x1000000) 166 167/* File is embedded in backing_file object */ 168#define FMODE_BACKING ((__force fmode_t)0x2000000) 169 170/* File was opened by fanotify and shouldn't generate fanotify events */ 171#define FMODE_NONOTIFY ((__force fmode_t)0x4000000) 172 173/* File is capable of returning -EAGAIN if I/O will block */ 174#define FMODE_NOWAIT ((__force fmode_t)0x8000000) 175 176/* File represents mount that needs unmounting */ 177#define FMODE_NEED_UNMOUNT ((__force fmode_t)0x10000000) 178 179/* File does not contribute to nr_files count */ 180#define FMODE_NOACCOUNT ((__force fmode_t)0x20000000) 181 182/* File supports async buffered reads */ 183#define FMODE_BUF_RASYNC ((__force fmode_t)0x40000000) 184 185/* File supports async nowait buffered writes */ 186#define FMODE_BUF_WASYNC ((__force fmode_t)0x80000000) 187 188/* 189 * Attribute flags. These should be or-ed together to figure out what 190 * has been changed! 191 */ 192#define ATTR_MODE (1 << 0) 193#define ATTR_UID (1 << 1) 194#define ATTR_GID (1 << 2) 195#define ATTR_SIZE (1 << 3) 196#define ATTR_ATIME (1 << 4) 197#define ATTR_MTIME (1 << 5) 198#define ATTR_CTIME (1 << 6) 199#define ATTR_ATIME_SET (1 << 7) 200#define ATTR_MTIME_SET (1 << 8) 201#define ATTR_FORCE (1 << 9) /* Not a change, but a change it */ 202#define ATTR_KILL_SUID (1 << 11) 203#define ATTR_KILL_SGID (1 << 12) 204#define ATTR_FILE (1 << 13) 205#define ATTR_KILL_PRIV (1 << 14) 206#define ATTR_OPEN (1 << 15) /* Truncating from open(O_TRUNC) */ 207#define ATTR_TIMES_SET (1 << 16) 208#define ATTR_TOUCH (1 << 17) 209 210/* 211 * Whiteout is represented by a char device. The following constants define the 212 * mode and device number to use. 213 */ 214#define WHITEOUT_MODE 0 215#define WHITEOUT_DEV 0 216 217/* 218 * This is the Inode Attributes structure, used for notify_change(). It 219 * uses the above definitions as flags, to know which values have changed. 220 * Also, in this manner, a Filesystem can look at only the values it cares 221 * about. Basically, these are the attributes that the VFS layer can 222 * request to change from the FS layer. 223 * 224 * Derek Atkins <warlord@MIT.EDU> 94-10-20 225 */ 226struct iattr { 227 unsigned int ia_valid; 228 umode_t ia_mode; 229 /* 230 * The two anonymous unions wrap structures with the same member. 231 * 232 * Filesystems raising FS_ALLOW_IDMAP need to use ia_vfs{g,u}id which 233 * are a dedicated type requiring the filesystem to use the dedicated 234 * helpers. Other filesystem can continue to use ia_{g,u}id until they 235 * have been ported. 236 * 237 * They always contain the same value. In other words FS_ALLOW_IDMAP 238 * pass down the same value on idmapped mounts as they would on regular 239 * mounts. 240 */ 241 union { 242 kuid_t ia_uid; 243 vfsuid_t ia_vfsuid; 244 }; 245 union { 246 kgid_t ia_gid; 247 vfsgid_t ia_vfsgid; 248 }; 249 loff_t ia_size; 250 struct timespec64 ia_atime; 251 struct timespec64 ia_mtime; 252 struct timespec64 ia_ctime; 253 254 /* 255 * Not an attribute, but an auxiliary info for filesystems wanting to 256 * implement an ftruncate() like method. NOTE: filesystem should 257 * check for (ia_valid & ATTR_FILE), and not for (ia_file != NULL). 258 */ 259 struct file *ia_file; 260}; 261 262/* 263 * Includes for diskquotas. 264 */ 265#include <linux/quota.h> 266 267/* 268 * Maximum number of layers of fs stack. Needs to be limited to 269 * prevent kernel stack overflow 270 */ 271#define FILESYSTEM_MAX_STACK_DEPTH 2 272 273/** 274 * enum positive_aop_returns - aop return codes with specific semantics 275 * 276 * @AOP_WRITEPAGE_ACTIVATE: Informs the caller that page writeback has 277 * completed, that the page is still locked, and 278 * should be considered active. The VM uses this hint 279 * to return the page to the active list -- it won't 280 * be a candidate for writeback again in the near 281 * future. Other callers must be careful to unlock 282 * the page if they get this return. Returned by 283 * writepage(); 284 * 285 * @AOP_TRUNCATED_PAGE: The AOP method that was handed a locked page has 286 * unlocked it and the page might have been truncated. 287 * The caller should back up to acquiring a new page and 288 * trying again. The aop will be taking reasonable 289 * precautions not to livelock. If the caller held a page 290 * reference, it should drop it before retrying. Returned 291 * by read_folio(). 292 * 293 * address_space_operation functions return these large constants to indicate 294 * special semantics to the caller. These are much larger than the bytes in a 295 * page to allow for functions that return the number of bytes operated on in a 296 * given page. 297 */ 298 299enum positive_aop_returns { 300 AOP_WRITEPAGE_ACTIVATE = 0x80000, 301 AOP_TRUNCATED_PAGE = 0x80001, 302}; 303 304/* 305 * oh the beauties of C type declarations. 306 */ 307struct page; 308struct address_space; 309struct writeback_control; 310struct readahead_control; 311 312/* 313 * Write life time hint values. 314 * Stored in struct inode as u8. 315 */ 316enum rw_hint { 317 WRITE_LIFE_NOT_SET = 0, 318 WRITE_LIFE_NONE = RWH_WRITE_LIFE_NONE, 319 WRITE_LIFE_SHORT = RWH_WRITE_LIFE_SHORT, 320 WRITE_LIFE_MEDIUM = RWH_WRITE_LIFE_MEDIUM, 321 WRITE_LIFE_LONG = RWH_WRITE_LIFE_LONG, 322 WRITE_LIFE_EXTREME = RWH_WRITE_LIFE_EXTREME, 323}; 324 325/* Match RWF_* bits to IOCB bits */ 326#define IOCB_HIPRI (__force int) RWF_HIPRI 327#define IOCB_DSYNC (__force int) RWF_DSYNC 328#define IOCB_SYNC (__force int) RWF_SYNC 329#define IOCB_NOWAIT (__force int) RWF_NOWAIT 330#define IOCB_APPEND (__force int) RWF_APPEND 331 332/* non-RWF related bits - start at 16 */ 333#define IOCB_EVENTFD (1 << 16) 334#define IOCB_DIRECT (1 << 17) 335#define IOCB_WRITE (1 << 18) 336/* iocb->ki_waitq is valid */ 337#define IOCB_WAITQ (1 << 19) 338#define IOCB_NOIO (1 << 20) 339/* can use bio alloc cache */ 340#define IOCB_ALLOC_CACHE (1 << 21) 341/* 342 * IOCB_DIO_CALLER_COMP can be set by the iocb owner, to indicate that the 343 * iocb completion can be passed back to the owner for execution from a safe 344 * context rather than needing to be punted through a workqueue. If this 345 * flag is set, the bio completion handling may set iocb->dio_complete to a 346 * handler function and iocb->private to context information for that handler. 347 * The issuer should call the handler with that context information from task 348 * context to complete the processing of the iocb. Note that while this 349 * provides a task context for the dio_complete() callback, it should only be 350 * used on the completion side for non-IO generating completions. It's fine to 351 * call blocking functions from this callback, but they should not wait for 352 * unrelated IO (like cache flushing, new IO generation, etc). 353 */ 354#define IOCB_DIO_CALLER_COMP (1 << 22) 355/* kiocb is a read or write operation submitted by fs/aio.c. */ 356#define IOCB_AIO_RW (1 << 23) 357 358/* for use in trace events */ 359#define TRACE_IOCB_STRINGS \ 360 { IOCB_HIPRI, "HIPRI" }, \ 361 { IOCB_DSYNC, "DSYNC" }, \ 362 { IOCB_SYNC, "SYNC" }, \ 363 { IOCB_NOWAIT, "NOWAIT" }, \ 364 { IOCB_APPEND, "APPEND" }, \ 365 { IOCB_EVENTFD, "EVENTFD"}, \ 366 { IOCB_DIRECT, "DIRECT" }, \ 367 { IOCB_WRITE, "WRITE" }, \ 368 { IOCB_WAITQ, "WAITQ" }, \ 369 { IOCB_NOIO, "NOIO" }, \ 370 { IOCB_ALLOC_CACHE, "ALLOC_CACHE" }, \ 371 { IOCB_DIO_CALLER_COMP, "CALLER_COMP" } 372 373struct kiocb { 374 struct file *ki_filp; 375 loff_t ki_pos; 376 void (*ki_complete)(struct kiocb *iocb, long ret); 377 void *private; 378 int ki_flags; 379 u16 ki_ioprio; /* See linux/ioprio.h */ 380 union { 381 /* 382 * Only used for async buffered reads, where it denotes the 383 * page waitqueue associated with completing the read. Valid 384 * IFF IOCB_WAITQ is set. 385 */ 386 struct wait_page_queue *ki_waitq; 387 /* 388 * Can be used for O_DIRECT IO, where the completion handling 389 * is punted back to the issuer of the IO. May only be set 390 * if IOCB_DIO_CALLER_COMP is set by the issuer, and the issuer 391 * must then check for presence of this handler when ki_complete 392 * is invoked. The data passed in to this handler must be 393 * assigned to ->private when dio_complete is assigned. 394 */ 395 ssize_t (*dio_complete)(void *data); 396 }; 397}; 398 399static inline bool is_sync_kiocb(struct kiocb *kiocb) 400{ 401 return kiocb->ki_complete == NULL; 402} 403 404struct address_space_operations { 405 int (*writepage)(struct page *page, struct writeback_control *wbc); 406 int (*read_folio)(struct file *, struct folio *); 407 408 /* Write back some dirty pages from this mapping. */ 409 int (*writepages)(struct address_space *, struct writeback_control *); 410 411 /* Mark a folio dirty. Return true if this dirtied it */ 412 bool (*dirty_folio)(struct address_space *, struct folio *); 413 414 void (*readahead)(struct readahead_control *); 415 416 int (*write_begin)(struct file *, struct address_space *mapping, 417 loff_t pos, unsigned len, 418 struct page **pagep, void **fsdata); 419 int (*write_end)(struct file *, struct address_space *mapping, 420 loff_t pos, unsigned len, unsigned copied, 421 struct page *page, void *fsdata); 422 423 /* Unfortunately this kludge is needed for FIBMAP. Don't use it */ 424 sector_t (*bmap)(struct address_space *, sector_t); 425 void (*invalidate_folio) (struct folio *, size_t offset, size_t len); 426 bool (*release_folio)(struct folio *, gfp_t); 427 void (*free_folio)(struct folio *folio); 428 ssize_t (*direct_IO)(struct kiocb *, struct iov_iter *iter); 429 /* 430 * migrate the contents of a folio to the specified target. If 431 * migrate_mode is MIGRATE_ASYNC, it must not block. 432 */ 433 int (*migrate_folio)(struct address_space *, struct folio *dst, 434 struct folio *src, enum migrate_mode); 435 int (*launder_folio)(struct folio *); 436 bool (*is_partially_uptodate) (struct folio *, size_t from, 437 size_t count); 438 void (*is_dirty_writeback) (struct folio *, bool *dirty, bool *wb); 439 int (*error_remove_folio)(struct address_space *, struct folio *); 440 441 /* swapfile support */ 442 int (*swap_activate)(struct swap_info_struct *sis, struct file *file, 443 sector_t *span); 444 void (*swap_deactivate)(struct file *file); 445 int (*swap_rw)(struct kiocb *iocb, struct iov_iter *iter); 446}; 447 448extern const struct address_space_operations empty_aops; 449 450/** 451 * struct address_space - Contents of a cacheable, mappable object. 452 * @host: Owner, either the inode or the block_device. 453 * @i_pages: Cached pages. 454 * @invalidate_lock: Guards coherency between page cache contents and 455 * file offset->disk block mappings in the filesystem during invalidates. 456 * It is also used to block modification of page cache contents through 457 * memory mappings. 458 * @gfp_mask: Memory allocation flags to use for allocating pages. 459 * @i_mmap_writable: Number of VM_SHARED, VM_MAYWRITE mappings. 460 * @nr_thps: Number of THPs in the pagecache (non-shmem only). 461 * @i_mmap: Tree of private and shared mappings. 462 * @i_mmap_rwsem: Protects @i_mmap and @i_mmap_writable. 463 * @nrpages: Number of page entries, protected by the i_pages lock. 464 * @writeback_index: Writeback starts here. 465 * @a_ops: Methods. 466 * @flags: Error bits and flags (AS_*). 467 * @wb_err: The most recent error which has occurred. 468 * @i_private_lock: For use by the owner of the address_space. 469 * @i_private_list: For use by the owner of the address_space. 470 * @i_private_data: For use by the owner of the address_space. 471 */ 472struct address_space { 473 struct inode *host; 474 struct xarray i_pages; 475 struct rw_semaphore invalidate_lock; 476 gfp_t gfp_mask; 477 atomic_t i_mmap_writable; 478#ifdef CONFIG_READ_ONLY_THP_FOR_FS 479 /* number of thp, only for non-shmem files */ 480 atomic_t nr_thps; 481#endif 482 struct rb_root_cached i_mmap; 483 unsigned long nrpages; 484 pgoff_t writeback_index; 485 const struct address_space_operations *a_ops; 486 unsigned long flags; 487 struct rw_semaphore i_mmap_rwsem; 488 errseq_t wb_err; 489 spinlock_t i_private_lock; 490 struct list_head i_private_list; 491 void * i_private_data; 492} __attribute__((aligned(sizeof(long)))) __randomize_layout; 493 /* 494 * On most architectures that alignment is already the case; but 495 * must be enforced here for CRIS, to let the least significant bit 496 * of struct page's "mapping" pointer be used for PAGE_MAPPING_ANON. 497 */ 498 499/* XArray tags, for tagging dirty and writeback pages in the pagecache. */ 500#define PAGECACHE_TAG_DIRTY XA_MARK_0 501#define PAGECACHE_TAG_WRITEBACK XA_MARK_1 502#define PAGECACHE_TAG_TOWRITE XA_MARK_2 503 504/* 505 * Returns true if any of the pages in the mapping are marked with the tag. 506 */ 507static inline bool mapping_tagged(struct address_space *mapping, xa_mark_t tag) 508{ 509 return xa_marked(&mapping->i_pages, tag); 510} 511 512static inline void i_mmap_lock_write(struct address_space *mapping) 513{ 514 down_write(&mapping->i_mmap_rwsem); 515} 516 517static inline int i_mmap_trylock_write(struct address_space *mapping) 518{ 519 return down_write_trylock(&mapping->i_mmap_rwsem); 520} 521 522static inline void i_mmap_unlock_write(struct address_space *mapping) 523{ 524 up_write(&mapping->i_mmap_rwsem); 525} 526 527static inline int i_mmap_trylock_read(struct address_space *mapping) 528{ 529 return down_read_trylock(&mapping->i_mmap_rwsem); 530} 531 532static inline void i_mmap_lock_read(struct address_space *mapping) 533{ 534 down_read(&mapping->i_mmap_rwsem); 535} 536 537static inline void i_mmap_unlock_read(struct address_space *mapping) 538{ 539 up_read(&mapping->i_mmap_rwsem); 540} 541 542static inline void i_mmap_assert_locked(struct address_space *mapping) 543{ 544 lockdep_assert_held(&mapping->i_mmap_rwsem); 545} 546 547static inline void i_mmap_assert_write_locked(struct address_space *mapping) 548{ 549 lockdep_assert_held_write(&mapping->i_mmap_rwsem); 550} 551 552/* 553 * Might pages of this file be mapped into userspace? 554 */ 555static inline int mapping_mapped(struct address_space *mapping) 556{ 557 return !RB_EMPTY_ROOT(&mapping->i_mmap.rb_root); 558} 559 560/* 561 * Might pages of this file have been modified in userspace? 562 * Note that i_mmap_writable counts all VM_SHARED, VM_MAYWRITE vmas: do_mmap 563 * marks vma as VM_SHARED if it is shared, and the file was opened for 564 * writing i.e. vma may be mprotected writable even if now readonly. 565 * 566 * If i_mmap_writable is negative, no new writable mappings are allowed. You 567 * can only deny writable mappings, if none exists right now. 568 */ 569static inline int mapping_writably_mapped(struct address_space *mapping) 570{ 571 return atomic_read(&mapping->i_mmap_writable) > 0; 572} 573 574static inline int mapping_map_writable(struct address_space *mapping) 575{ 576 return atomic_inc_unless_negative(&mapping->i_mmap_writable) ? 577 0 : -EPERM; 578} 579 580static inline void mapping_unmap_writable(struct address_space *mapping) 581{ 582 atomic_dec(&mapping->i_mmap_writable); 583} 584 585static inline int mapping_deny_writable(struct address_space *mapping) 586{ 587 return atomic_dec_unless_positive(&mapping->i_mmap_writable) ? 588 0 : -EBUSY; 589} 590 591static inline void mapping_allow_writable(struct address_space *mapping) 592{ 593 atomic_inc(&mapping->i_mmap_writable); 594} 595 596/* 597 * Use sequence counter to get consistent i_size on 32-bit processors. 598 */ 599#if BITS_PER_LONG==32 && defined(CONFIG_SMP) 600#include <linux/seqlock.h> 601#define __NEED_I_SIZE_ORDERED 602#define i_size_ordered_init(inode) seqcount_init(&inode->i_size_seqcount) 603#else 604#define i_size_ordered_init(inode) do { } while (0) 605#endif 606 607struct posix_acl; 608#define ACL_NOT_CACHED ((void *)(-1)) 609/* 610 * ACL_DONT_CACHE is for stacked filesystems, that rely on underlying fs to 611 * cache the ACL. This also means that ->get_inode_acl() can be called in RCU 612 * mode with the LOOKUP_RCU flag. 613 */ 614#define ACL_DONT_CACHE ((void *)(-3)) 615 616static inline struct posix_acl * 617uncached_acl_sentinel(struct task_struct *task) 618{ 619 return (void *)task + 1; 620} 621 622static inline bool 623is_uncached_acl(struct posix_acl *acl) 624{ 625 return (long)acl & 1; 626} 627 628#define IOP_FASTPERM 0x0001 629#define IOP_LOOKUP 0x0002 630#define IOP_NOFOLLOW 0x0004 631#define IOP_XATTR 0x0008 632#define IOP_DEFAULT_READLINK 0x0010 633 634struct fsnotify_mark_connector; 635 636/* 637 * Keep mostly read-only and often accessed (especially for 638 * the RCU path lookup and 'stat' data) fields at the beginning 639 * of the 'struct inode' 640 */ 641struct inode { 642 umode_t i_mode; 643 unsigned short i_opflags; 644 kuid_t i_uid; 645 kgid_t i_gid; 646 unsigned int i_flags; 647 648#ifdef CONFIG_FS_POSIX_ACL 649 struct posix_acl *i_acl; 650 struct posix_acl *i_default_acl; 651#endif 652 653 const struct inode_operations *i_op; 654 struct super_block *i_sb; 655 struct address_space *i_mapping; 656 657#ifdef CONFIG_SECURITY 658 void *i_security; 659#endif 660 661 /* Stat data, not accessed from path walking */ 662 unsigned long i_ino; 663 /* 664 * Filesystems may only read i_nlink directly. They shall use the 665 * following functions for modification: 666 * 667 * (set|clear|inc|drop)_nlink 668 * inode_(inc|dec)_link_count 669 */ 670 union { 671 const unsigned int i_nlink; 672 unsigned int __i_nlink; 673 }; 674 dev_t i_rdev; 675 loff_t i_size; 676 struct timespec64 __i_atime; 677 struct timespec64 __i_mtime; 678 struct timespec64 __i_ctime; /* use inode_*_ctime accessors! */ 679 spinlock_t i_lock; /* i_blocks, i_bytes, maybe i_size */ 680 unsigned short i_bytes; 681 u8 i_blkbits; 682 u8 i_write_hint; 683 blkcnt_t i_blocks; 684 685#ifdef __NEED_I_SIZE_ORDERED 686 seqcount_t i_size_seqcount; 687#endif 688 689 /* Misc */ 690 unsigned long i_state; 691 struct rw_semaphore i_rwsem; 692 693 unsigned long dirtied_when; /* jiffies of first dirtying */ 694 unsigned long dirtied_time_when; 695 696 struct hlist_node i_hash; 697 struct list_head i_io_list; /* backing dev IO list */ 698#ifdef CONFIG_CGROUP_WRITEBACK 699 struct bdi_writeback *i_wb; /* the associated cgroup wb */ 700 701 /* foreign inode detection, see wbc_detach_inode() */ 702 int i_wb_frn_winner; 703 u16 i_wb_frn_avg_time; 704 u16 i_wb_frn_history; 705#endif 706 struct list_head i_lru; /* inode LRU list */ 707 struct list_head i_sb_list; 708 struct list_head i_wb_list; /* backing dev writeback list */ 709 union { 710 struct hlist_head i_dentry; 711 struct rcu_head i_rcu; 712 }; 713 atomic64_t i_version; 714 atomic64_t i_sequence; /* see futex */ 715 atomic_t i_count; 716 atomic_t i_dio_count; 717 atomic_t i_writecount; 718#if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING) 719 atomic_t i_readcount; /* struct files open RO */ 720#endif 721 union { 722 const struct file_operations *i_fop; /* former ->i_op->default_file_ops */ 723 void (*free_inode)(struct inode *); 724 }; 725 struct file_lock_context *i_flctx; 726 struct address_space i_data; 727 struct list_head i_devices; 728 union { 729 struct pipe_inode_info *i_pipe; 730 struct cdev *i_cdev; 731 char *i_link; 732 unsigned i_dir_seq; 733 }; 734 735 __u32 i_generation; 736 737#ifdef CONFIG_FSNOTIFY 738 __u32 i_fsnotify_mask; /* all events this inode cares about */ 739 struct fsnotify_mark_connector __rcu *i_fsnotify_marks; 740#endif 741 742#ifdef CONFIG_FS_ENCRYPTION 743 struct fscrypt_inode_info *i_crypt_info; 744#endif 745 746#ifdef CONFIG_FS_VERITY 747 struct fsverity_info *i_verity_info; 748#endif 749 750 void *i_private; /* fs or device private pointer */ 751} __randomize_layout; 752 753struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode); 754 755static inline unsigned int i_blocksize(const struct inode *node) 756{ 757 return (1 << node->i_blkbits); 758} 759 760static inline int inode_unhashed(struct inode *inode) 761{ 762 return hlist_unhashed(&inode->i_hash); 763} 764 765/* 766 * __mark_inode_dirty expects inodes to be hashed. Since we don't 767 * want special inodes in the fileset inode space, we make them 768 * appear hashed, but do not put on any lists. hlist_del() 769 * will work fine and require no locking. 770 */ 771static inline void inode_fake_hash(struct inode *inode) 772{ 773 hlist_add_fake(&inode->i_hash); 774} 775 776/* 777 * inode->i_mutex nesting subclasses for the lock validator: 778 * 779 * 0: the object of the current VFS operation 780 * 1: parent 781 * 2: child/target 782 * 3: xattr 783 * 4: second non-directory 784 * 5: second parent (when locking independent directories in rename) 785 * 786 * I_MUTEX_NONDIR2 is for certain operations (such as rename) which lock two 787 * non-directories at once. 788 * 789 * The locking order between these classes is 790 * parent[2] -> child -> grandchild -> normal -> xattr -> second non-directory 791 */ 792enum inode_i_mutex_lock_class 793{ 794 I_MUTEX_NORMAL, 795 I_MUTEX_PARENT, 796 I_MUTEX_CHILD, 797 I_MUTEX_XATTR, 798 I_MUTEX_NONDIR2, 799 I_MUTEX_PARENT2, 800}; 801 802static inline void inode_lock(struct inode *inode) 803{ 804 down_write(&inode->i_rwsem); 805} 806 807static inline void inode_unlock(struct inode *inode) 808{ 809 up_write(&inode->i_rwsem); 810} 811 812static inline void inode_lock_shared(struct inode *inode) 813{ 814 down_read(&inode->i_rwsem); 815} 816 817static inline void inode_unlock_shared(struct inode *inode) 818{ 819 up_read(&inode->i_rwsem); 820} 821 822static inline int inode_trylock(struct inode *inode) 823{ 824 return down_write_trylock(&inode->i_rwsem); 825} 826 827static inline int inode_trylock_shared(struct inode *inode) 828{ 829 return down_read_trylock(&inode->i_rwsem); 830} 831 832static inline int inode_is_locked(struct inode *inode) 833{ 834 return rwsem_is_locked(&inode->i_rwsem); 835} 836 837static inline void inode_lock_nested(struct inode *inode, unsigned subclass) 838{ 839 down_write_nested(&inode->i_rwsem, subclass); 840} 841 842static inline void inode_lock_shared_nested(struct inode *inode, unsigned subclass) 843{ 844 down_read_nested(&inode->i_rwsem, subclass); 845} 846 847static inline void filemap_invalidate_lock(struct address_space *mapping) 848{ 849 down_write(&mapping->invalidate_lock); 850} 851 852static inline void filemap_invalidate_unlock(struct address_space *mapping) 853{ 854 up_write(&mapping->invalidate_lock); 855} 856 857static inline void filemap_invalidate_lock_shared(struct address_space *mapping) 858{ 859 down_read(&mapping->invalidate_lock); 860} 861 862static inline int filemap_invalidate_trylock_shared( 863 struct address_space *mapping) 864{ 865 return down_read_trylock(&mapping->invalidate_lock); 866} 867 868static inline void filemap_invalidate_unlock_shared( 869 struct address_space *mapping) 870{ 871 up_read(&mapping->invalidate_lock); 872} 873 874void lock_two_nondirectories(struct inode *, struct inode*); 875void unlock_two_nondirectories(struct inode *, struct inode*); 876 877void filemap_invalidate_lock_two(struct address_space *mapping1, 878 struct address_space *mapping2); 879void filemap_invalidate_unlock_two(struct address_space *mapping1, 880 struct address_space *mapping2); 881 882 883/* 884 * NOTE: in a 32bit arch with a preemptable kernel and 885 * an UP compile the i_size_read/write must be atomic 886 * with respect to the local cpu (unlike with preempt disabled), 887 * but they don't need to be atomic with respect to other cpus like in 888 * true SMP (so they need either to either locally disable irq around 889 * the read or for example on x86 they can be still implemented as a 890 * cmpxchg8b without the need of the lock prefix). For SMP compiles 891 * and 64bit archs it makes no difference if preempt is enabled or not. 892 */ 893static inline loff_t i_size_read(const struct inode *inode) 894{ 895#if BITS_PER_LONG==32 && defined(CONFIG_SMP) 896 loff_t i_size; 897 unsigned int seq; 898 899 do { 900 seq = read_seqcount_begin(&inode->i_size_seqcount); 901 i_size = inode->i_size; 902 } while (read_seqcount_retry(&inode->i_size_seqcount, seq)); 903 return i_size; 904#elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) 905 loff_t i_size; 906 907 preempt_disable(); 908 i_size = inode->i_size; 909 preempt_enable(); 910 return i_size; 911#else 912 return inode->i_size; 913#endif 914} 915 916/* 917 * NOTE: unlike i_size_read(), i_size_write() does need locking around it 918 * (normally i_mutex), otherwise on 32bit/SMP an update of i_size_seqcount 919 * can be lost, resulting in subsequent i_size_read() calls spinning forever. 920 */ 921static inline void i_size_write(struct inode *inode, loff_t i_size) 922{ 923#if BITS_PER_LONG==32 && defined(CONFIG_SMP) 924 preempt_disable(); 925 write_seqcount_begin(&inode->i_size_seqcount); 926 inode->i_size = i_size; 927 write_seqcount_end(&inode->i_size_seqcount); 928 preempt_enable(); 929#elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) 930 preempt_disable(); 931 inode->i_size = i_size; 932 preempt_enable(); 933#else 934 inode->i_size = i_size; 935#endif 936} 937 938static inline unsigned iminor(const struct inode *inode) 939{ 940 return MINOR(inode->i_rdev); 941} 942 943static inline unsigned imajor(const struct inode *inode) 944{ 945 return MAJOR(inode->i_rdev); 946} 947 948struct fown_struct { 949 rwlock_t lock; /* protects pid, uid, euid fields */ 950 struct pid *pid; /* pid or -pgrp where SIGIO should be sent */ 951 enum pid_type pid_type; /* Kind of process group SIGIO should be sent to */ 952 kuid_t uid, euid; /* uid/euid of process setting the owner */ 953 int signum; /* posix.1b rt signal to be delivered on IO */ 954}; 955 956/** 957 * struct file_ra_state - Track a file's readahead state. 958 * @start: Where the most recent readahead started. 959 * @size: Number of pages read in the most recent readahead. 960 * @async_size: Numer of pages that were/are not needed immediately 961 * and so were/are genuinely "ahead". Start next readahead when 962 * the first of these pages is accessed. 963 * @ra_pages: Maximum size of a readahead request, copied from the bdi. 964 * @mmap_miss: How many mmap accesses missed in the page cache. 965 * @prev_pos: The last byte in the most recent read request. 966 * 967 * When this structure is passed to ->readahead(), the "most recent" 968 * readahead means the current readahead. 969 */ 970struct file_ra_state { 971 pgoff_t start; 972 unsigned int size; 973 unsigned int async_size; 974 unsigned int ra_pages; 975 unsigned int mmap_miss; 976 loff_t prev_pos; 977}; 978 979/* 980 * Check if @index falls in the readahead windows. 981 */ 982static inline int ra_has_index(struct file_ra_state *ra, pgoff_t index) 983{ 984 return (index >= ra->start && 985 index < ra->start + ra->size); 986} 987 988/* 989 * f_{lock,count,pos_lock} members can be highly contended and share 990 * the same cacheline. f_{lock,mode} are very frequently used together 991 * and so share the same cacheline as well. The read-mostly 992 * f_{path,inode,op} are kept on a separate cacheline. 993 */ 994struct file { 995 union { 996 /* fput() uses task work when closing and freeing file (default). */ 997 struct callback_head f_task_work; 998 /* fput() must use workqueue (most kernel threads). */ 999 struct llist_node f_llist; 1000 unsigned int f_iocb_flags; 1001 }; 1002 1003 /* 1004 * Protects f_ep, f_flags. 1005 * Must not be taken from IRQ context. 1006 */ 1007 spinlock_t f_lock; 1008 fmode_t f_mode; 1009 atomic_long_t f_count; 1010 struct mutex f_pos_lock; 1011 loff_t f_pos; 1012 unsigned int f_flags; 1013 struct fown_struct f_owner; 1014 const struct cred *f_cred; 1015 struct file_ra_state f_ra; 1016 struct path f_path; 1017 struct inode *f_inode; /* cached value */ 1018 const struct file_operations *f_op; 1019 1020 u64 f_version; 1021#ifdef CONFIG_SECURITY 1022 void *f_security; 1023#endif 1024 /* needed for tty driver, and maybe others */ 1025 void *private_data; 1026 1027#ifdef CONFIG_EPOLL 1028 /* Used by fs/eventpoll.c to link all the hooks to this file */ 1029 struct hlist_head *f_ep; 1030#endif /* #ifdef CONFIG_EPOLL */ 1031 struct address_space *f_mapping; 1032 errseq_t f_wb_err; 1033 errseq_t f_sb_err; /* for syncfs */ 1034} __randomize_layout 1035 __attribute__((aligned(4))); /* lest something weird decides that 2 is OK */ 1036 1037struct file_handle { 1038 __u32 handle_bytes; 1039 int handle_type; 1040 /* file identifier */ 1041 unsigned char f_handle[]; 1042}; 1043 1044static inline struct file *get_file(struct file *f) 1045{ 1046 atomic_long_inc(&f->f_count); 1047 return f; 1048} 1049 1050struct file *get_file_rcu(struct file __rcu **f); 1051struct file *get_file_active(struct file **f); 1052 1053#define file_count(x) atomic_long_read(&(x)->f_count) 1054 1055#define MAX_NON_LFS ((1UL<<31) - 1) 1056 1057/* Page cache limit. The filesystems should put that into their s_maxbytes 1058 limits, otherwise bad things can happen in VM. */ 1059#if BITS_PER_LONG==32 1060#define MAX_LFS_FILESIZE ((loff_t)ULONG_MAX << PAGE_SHIFT) 1061#elif BITS_PER_LONG==64 1062#define MAX_LFS_FILESIZE ((loff_t)LLONG_MAX) 1063#endif 1064 1065/* legacy typedef, should eventually be removed */ 1066typedef void *fl_owner_t; 1067 1068struct file_lock; 1069 1070/* The following constant reflects the upper bound of the file/locking space */ 1071#ifndef OFFSET_MAX 1072#define OFFSET_MAX type_max(loff_t) 1073#define OFFT_OFFSET_MAX type_max(off_t) 1074#endif 1075 1076extern void send_sigio(struct fown_struct *fown, int fd, int band); 1077 1078static inline struct inode *file_inode(const struct file *f) 1079{ 1080 return f->f_inode; 1081} 1082 1083static inline struct dentry *file_dentry(const struct file *file) 1084{ 1085 return d_real(file->f_path.dentry, file_inode(file)); 1086} 1087 1088struct fasync_struct { 1089 rwlock_t fa_lock; 1090 int magic; 1091 int fa_fd; 1092 struct fasync_struct *fa_next; /* singly linked list */ 1093 struct file *fa_file; 1094 struct rcu_head fa_rcu; 1095}; 1096 1097#define FASYNC_MAGIC 0x4601 1098 1099/* SMP safe fasync helpers: */ 1100extern int fasync_helper(int, struct file *, int, struct fasync_struct **); 1101extern struct fasync_struct *fasync_insert_entry(int, struct file *, struct fasync_struct **, struct fasync_struct *); 1102extern int fasync_remove_entry(struct file *, struct fasync_struct **); 1103extern struct fasync_struct *fasync_alloc(void); 1104extern void fasync_free(struct fasync_struct *); 1105 1106/* can be called from interrupts */ 1107extern void kill_fasync(struct fasync_struct **, int, int); 1108 1109extern void __f_setown(struct file *filp, struct pid *, enum pid_type, int force); 1110extern int f_setown(struct file *filp, int who, int force); 1111extern void f_delown(struct file *filp); 1112extern pid_t f_getown(struct file *filp); 1113extern int send_sigurg(struct fown_struct *fown); 1114 1115/* 1116 * sb->s_flags. Note that these mirror the equivalent MS_* flags where 1117 * represented in both. 1118 */ 1119#define SB_RDONLY BIT(0) /* Mount read-only */ 1120#define SB_NOSUID BIT(1) /* Ignore suid and sgid bits */ 1121#define SB_NODEV BIT(2) /* Disallow access to device special files */ 1122#define SB_NOEXEC BIT(3) /* Disallow program execution */ 1123#define SB_SYNCHRONOUS BIT(4) /* Writes are synced at once */ 1124#define SB_MANDLOCK BIT(6) /* Allow mandatory locks on an FS */ 1125#define SB_DIRSYNC BIT(7) /* Directory modifications are synchronous */ 1126#define SB_NOATIME BIT(10) /* Do not update access times. */ 1127#define SB_NODIRATIME BIT(11) /* Do not update directory access times */ 1128#define SB_SILENT BIT(15) 1129#define SB_POSIXACL BIT(16) /* Supports POSIX ACLs */ 1130#define SB_INLINECRYPT BIT(17) /* Use blk-crypto for encrypted files */ 1131#define SB_KERNMOUNT BIT(22) /* this is a kern_mount call */ 1132#define SB_I_VERSION BIT(23) /* Update inode I_version field */ 1133#define SB_LAZYTIME BIT(25) /* Update the on-disk [acm]times lazily */ 1134 1135/* These sb flags are internal to the kernel */ 1136#define SB_DEAD BIT(21) 1137#define SB_DYING BIT(24) 1138#define SB_SUBMOUNT BIT(26) 1139#define SB_FORCE BIT(27) 1140#define SB_NOSEC BIT(28) 1141#define SB_BORN BIT(29) 1142#define SB_ACTIVE BIT(30) 1143#define SB_NOUSER BIT(31) 1144 1145/* These flags relate to encoding and casefolding */ 1146#define SB_ENC_STRICT_MODE_FL (1 << 0) 1147 1148#define sb_has_strict_encoding(sb) \ 1149 (sb->s_encoding_flags & SB_ENC_STRICT_MODE_FL) 1150 1151/* 1152 * Umount options 1153 */ 1154 1155#define MNT_FORCE 0x00000001 /* Attempt to forcibily umount */ 1156#define MNT_DETACH 0x00000002 /* Just detach from the tree */ 1157#define MNT_EXPIRE 0x00000004 /* Mark for expiry */ 1158#define UMOUNT_NOFOLLOW 0x00000008 /* Don't follow symlink on umount */ 1159#define UMOUNT_UNUSED 0x80000000 /* Flag guaranteed to be unused */ 1160 1161/* sb->s_iflags */ 1162#define SB_I_CGROUPWB 0x00000001 /* cgroup-aware writeback enabled */ 1163#define SB_I_NOEXEC 0x00000002 /* Ignore executables on this fs */ 1164#define SB_I_NODEV 0x00000004 /* Ignore devices on this fs */ 1165#define SB_I_STABLE_WRITES 0x00000008 /* don't modify blks until WB is done */ 1166 1167/* sb->s_iflags to limit user namespace mounts */ 1168#define SB_I_USERNS_VISIBLE 0x00000010 /* fstype already mounted */ 1169#define SB_I_IMA_UNVERIFIABLE_SIGNATURE 0x00000020 1170#define SB_I_UNTRUSTED_MOUNTER 0x00000040 1171#define SB_I_EVM_UNSUPPORTED 0x00000080 1172 1173#define SB_I_SKIP_SYNC 0x00000100 /* Skip superblock at global sync */ 1174#define SB_I_PERSB_BDI 0x00000200 /* has a per-sb bdi */ 1175#define SB_I_TS_EXPIRY_WARNED 0x00000400 /* warned about timestamp range expiry */ 1176#define SB_I_RETIRED 0x00000800 /* superblock shouldn't be reused */ 1177#define SB_I_NOUMASK 0x00001000 /* VFS does not apply umask */ 1178 1179/* Possible states of 'frozen' field */ 1180enum { 1181 SB_UNFROZEN = 0, /* FS is unfrozen */ 1182 SB_FREEZE_WRITE = 1, /* Writes, dir ops, ioctls frozen */ 1183 SB_FREEZE_PAGEFAULT = 2, /* Page faults stopped as well */ 1184 SB_FREEZE_FS = 3, /* For internal FS use (e.g. to stop 1185 * internal threads if needed) */ 1186 SB_FREEZE_COMPLETE = 4, /* ->freeze_fs finished successfully */ 1187}; 1188 1189#define SB_FREEZE_LEVELS (SB_FREEZE_COMPLETE - 1) 1190 1191struct sb_writers { 1192 unsigned short frozen; /* Is sb frozen? */ 1193 int freeze_kcount; /* How many kernel freeze requests? */ 1194 int freeze_ucount; /* How many userspace freeze requests? */ 1195 struct percpu_rw_semaphore rw_sem[SB_FREEZE_LEVELS]; 1196}; 1197 1198struct super_block { 1199 struct list_head s_list; /* Keep this first */ 1200 dev_t s_dev; /* search index; _not_ kdev_t */ 1201 unsigned char s_blocksize_bits; 1202 unsigned long s_blocksize; 1203 loff_t s_maxbytes; /* Max file size */ 1204 struct file_system_type *s_type; 1205 const struct super_operations *s_op; 1206 const struct dquot_operations *dq_op; 1207 const struct quotactl_ops *s_qcop; 1208 const struct export_operations *s_export_op; 1209 unsigned long s_flags; 1210 unsigned long s_iflags; /* internal SB_I_* flags */ 1211 unsigned long s_magic; 1212 struct dentry *s_root; 1213 struct rw_semaphore s_umount; 1214 int s_count; 1215 atomic_t s_active; 1216#ifdef CONFIG_SECURITY 1217 void *s_security; 1218#endif 1219 const struct xattr_handler * const *s_xattr; 1220#ifdef CONFIG_FS_ENCRYPTION 1221 const struct fscrypt_operations *s_cop; 1222 struct fscrypt_keyring *s_master_keys; /* master crypto keys in use */ 1223#endif 1224#ifdef CONFIG_FS_VERITY 1225 const struct fsverity_operations *s_vop; 1226#endif 1227#if IS_ENABLED(CONFIG_UNICODE) 1228 struct unicode_map *s_encoding; 1229 __u16 s_encoding_flags; 1230#endif 1231 struct hlist_bl_head s_roots; /* alternate root dentries for NFS */ 1232 struct list_head s_mounts; /* list of mounts; _not_ for fs use */ 1233 struct block_device *s_bdev; 1234 struct bdev_handle *s_bdev_handle; 1235 struct backing_dev_info *s_bdi; 1236 struct mtd_info *s_mtd; 1237 struct hlist_node s_instances; 1238 unsigned int s_quota_types; /* Bitmask of supported quota types */ 1239 struct quota_info s_dquot; /* Diskquota specific options */ 1240 1241 struct sb_writers s_writers; 1242 1243 /* 1244 * Keep s_fs_info, s_time_gran, s_fsnotify_mask, and 1245 * s_fsnotify_marks together for cache efficiency. They are frequently 1246 * accessed and rarely modified. 1247 */ 1248 void *s_fs_info; /* Filesystem private info */ 1249 1250 /* Granularity of c/m/atime in ns (cannot be worse than a second) */ 1251 u32 s_time_gran; 1252 /* Time limits for c/m/atime in seconds */ 1253 time64_t s_time_min; 1254 time64_t s_time_max; 1255#ifdef CONFIG_FSNOTIFY 1256 __u32 s_fsnotify_mask; 1257 struct fsnotify_mark_connector __rcu *s_fsnotify_marks; 1258#endif 1259 1260 char s_id[32]; /* Informational name */ 1261 uuid_t s_uuid; /* UUID */ 1262 1263 unsigned int s_max_links; 1264 1265 /* 1266 * The next field is for VFS *only*. No filesystems have any business 1267 * even looking at it. You had been warned. 1268 */ 1269 struct mutex s_vfs_rename_mutex; /* Kludge */ 1270 1271 /* 1272 * Filesystem subtype. If non-empty the filesystem type field 1273 * in /proc/mounts will be "type.subtype" 1274 */ 1275 const char *s_subtype; 1276 1277 const struct dentry_operations *s_d_op; /* default d_op for dentries */ 1278 1279 struct shrinker *s_shrink; /* per-sb shrinker handle */ 1280 1281 /* Number of inodes with nlink == 0 but still referenced */ 1282 atomic_long_t s_remove_count; 1283 1284 /* 1285 * Number of inode/mount/sb objects that are being watched, note that 1286 * inodes objects are currently double-accounted. 1287 */ 1288 atomic_long_t s_fsnotify_connectors; 1289 1290 /* Read-only state of the superblock is being changed */ 1291 int s_readonly_remount; 1292 1293 /* per-sb errseq_t for reporting writeback errors via syncfs */ 1294 errseq_t s_wb_err; 1295 1296 /* AIO completions deferred from interrupt context */ 1297 struct workqueue_struct *s_dio_done_wq; 1298 struct hlist_head s_pins; 1299 1300 /* 1301 * Owning user namespace and default context in which to 1302 * interpret filesystem uids, gids, quotas, device nodes, 1303 * xattrs and security labels. 1304 */ 1305 struct user_namespace *s_user_ns; 1306 1307 /* 1308 * The list_lru structure is essentially just a pointer to a table 1309 * of per-node lru lists, each of which has its own spinlock. 1310 * There is no need to put them into separate cachelines. 1311 */ 1312 struct list_lru s_dentry_lru; 1313 struct list_lru s_inode_lru; 1314 struct rcu_head rcu; 1315 struct work_struct destroy_work; 1316 1317 struct mutex s_sync_lock; /* sync serialisation lock */ 1318 1319 /* 1320 * Indicates how deep in a filesystem stack this SB is 1321 */ 1322 int s_stack_depth; 1323 1324 /* s_inode_list_lock protects s_inodes */ 1325 spinlock_t s_inode_list_lock ____cacheline_aligned_in_smp; 1326 struct list_head s_inodes; /* all inodes */ 1327 1328 spinlock_t s_inode_wblist_lock; 1329 struct list_head s_inodes_wb; /* writeback inodes */ 1330} __randomize_layout; 1331 1332static inline struct user_namespace *i_user_ns(const struct inode *inode) 1333{ 1334 return inode->i_sb->s_user_ns; 1335} 1336 1337/* Helper functions so that in most cases filesystems will 1338 * not need to deal directly with kuid_t and kgid_t and can 1339 * instead deal with the raw numeric values that are stored 1340 * in the filesystem. 1341 */ 1342static inline uid_t i_uid_read(const struct inode *inode) 1343{ 1344 return from_kuid(i_user_ns(inode), inode->i_uid); 1345} 1346 1347static inline gid_t i_gid_read(const struct inode *inode) 1348{ 1349 return from_kgid(i_user_ns(inode), inode->i_gid); 1350} 1351 1352static inline void i_uid_write(struct inode *inode, uid_t uid) 1353{ 1354 inode->i_uid = make_kuid(i_user_ns(inode), uid); 1355} 1356 1357static inline void i_gid_write(struct inode *inode, gid_t gid) 1358{ 1359 inode->i_gid = make_kgid(i_user_ns(inode), gid); 1360} 1361 1362/** 1363 * i_uid_into_vfsuid - map an inode's i_uid down according to an idmapping 1364 * @idmap: idmap of the mount the inode was found from 1365 * @inode: inode to map 1366 * 1367 * Return: whe inode's i_uid mapped down according to @idmap. 1368 * If the inode's i_uid has no mapping INVALID_VFSUID is returned. 1369 */ 1370static inline vfsuid_t i_uid_into_vfsuid(struct mnt_idmap *idmap, 1371 const struct inode *inode) 1372{ 1373 return make_vfsuid(idmap, i_user_ns(inode), inode->i_uid); 1374} 1375 1376/** 1377 * i_uid_needs_update - check whether inode's i_uid needs to be updated 1378 * @idmap: idmap of the mount the inode was found from 1379 * @attr: the new attributes of @inode 1380 * @inode: the inode to update 1381 * 1382 * Check whether the $inode's i_uid field needs to be updated taking idmapped 1383 * mounts into account if the filesystem supports it. 1384 * 1385 * Return: true if @inode's i_uid field needs to be updated, false if not. 1386 */ 1387static inline bool i_uid_needs_update(struct mnt_idmap *idmap, 1388 const struct iattr *attr, 1389 const struct inode *inode) 1390{ 1391 return ((attr->ia_valid & ATTR_UID) && 1392 !vfsuid_eq(attr->ia_vfsuid, 1393 i_uid_into_vfsuid(idmap, inode))); 1394} 1395 1396/** 1397 * i_uid_update - update @inode's i_uid field 1398 * @idmap: idmap of the mount the inode was found from 1399 * @attr: the new attributes of @inode 1400 * @inode: the inode to update 1401 * 1402 * Safely update @inode's i_uid field translating the vfsuid of any idmapped 1403 * mount into the filesystem kuid. 1404 */ 1405static inline void i_uid_update(struct mnt_idmap *idmap, 1406 const struct iattr *attr, 1407 struct inode *inode) 1408{ 1409 if (attr->ia_valid & ATTR_UID) 1410 inode->i_uid = from_vfsuid(idmap, i_user_ns(inode), 1411 attr->ia_vfsuid); 1412} 1413 1414/** 1415 * i_gid_into_vfsgid - map an inode's i_gid down according to an idmapping 1416 * @idmap: idmap of the mount the inode was found from 1417 * @inode: inode to map 1418 * 1419 * Return: the inode's i_gid mapped down according to @idmap. 1420 * If the inode's i_gid has no mapping INVALID_VFSGID is returned. 1421 */ 1422static inline vfsgid_t i_gid_into_vfsgid(struct mnt_idmap *idmap, 1423 const struct inode *inode) 1424{ 1425 return make_vfsgid(idmap, i_user_ns(inode), inode->i_gid); 1426} 1427 1428/** 1429 * i_gid_needs_update - check whether inode's i_gid needs to be updated 1430 * @idmap: idmap of the mount the inode was found from 1431 * @attr: the new attributes of @inode 1432 * @inode: the inode to update 1433 * 1434 * Check whether the $inode's i_gid field needs to be updated taking idmapped 1435 * mounts into account if the filesystem supports it. 1436 * 1437 * Return: true if @inode's i_gid field needs to be updated, false if not. 1438 */ 1439static inline bool i_gid_needs_update(struct mnt_idmap *idmap, 1440 const struct iattr *attr, 1441 const struct inode *inode) 1442{ 1443 return ((attr->ia_valid & ATTR_GID) && 1444 !vfsgid_eq(attr->ia_vfsgid, 1445 i_gid_into_vfsgid(idmap, inode))); 1446} 1447 1448/** 1449 * i_gid_update - update @inode's i_gid field 1450 * @idmap: idmap of the mount the inode was found from 1451 * @attr: the new attributes of @inode 1452 * @inode: the inode to update 1453 * 1454 * Safely update @inode's i_gid field translating the vfsgid of any idmapped 1455 * mount into the filesystem kgid. 1456 */ 1457static inline void i_gid_update(struct mnt_idmap *idmap, 1458 const struct iattr *attr, 1459 struct inode *inode) 1460{ 1461 if (attr->ia_valid & ATTR_GID) 1462 inode->i_gid = from_vfsgid(idmap, i_user_ns(inode), 1463 attr->ia_vfsgid); 1464} 1465 1466/** 1467 * inode_fsuid_set - initialize inode's i_uid field with callers fsuid 1468 * @inode: inode to initialize 1469 * @idmap: idmap of the mount the inode was found from 1470 * 1471 * Initialize the i_uid field of @inode. If the inode was found/created via 1472 * an idmapped mount map the caller's fsuid according to @idmap. 1473 */ 1474static inline void inode_fsuid_set(struct inode *inode, 1475 struct mnt_idmap *idmap) 1476{ 1477 inode->i_uid = mapped_fsuid(idmap, i_user_ns(inode)); 1478} 1479 1480/** 1481 * inode_fsgid_set - initialize inode's i_gid field with callers fsgid 1482 * @inode: inode to initialize 1483 * @idmap: idmap of the mount the inode was found from 1484 * 1485 * Initialize the i_gid field of @inode. If the inode was found/created via 1486 * an idmapped mount map the caller's fsgid according to @idmap. 1487 */ 1488static inline void inode_fsgid_set(struct inode *inode, 1489 struct mnt_idmap *idmap) 1490{ 1491 inode->i_gid = mapped_fsgid(idmap, i_user_ns(inode)); 1492} 1493 1494/** 1495 * fsuidgid_has_mapping() - check whether caller's fsuid/fsgid is mapped 1496 * @sb: the superblock we want a mapping in 1497 * @idmap: idmap of the relevant mount 1498 * 1499 * Check whether the caller's fsuid and fsgid have a valid mapping in the 1500 * s_user_ns of the superblock @sb. If the caller is on an idmapped mount map 1501 * the caller's fsuid and fsgid according to the @idmap first. 1502 * 1503 * Return: true if fsuid and fsgid is mapped, false if not. 1504 */ 1505static inline bool fsuidgid_has_mapping(struct super_block *sb, 1506 struct mnt_idmap *idmap) 1507{ 1508 struct user_namespace *fs_userns = sb->s_user_ns; 1509 kuid_t kuid; 1510 kgid_t kgid; 1511 1512 kuid = mapped_fsuid(idmap, fs_userns); 1513 if (!uid_valid(kuid)) 1514 return false; 1515 kgid = mapped_fsgid(idmap, fs_userns); 1516 if (!gid_valid(kgid)) 1517 return false; 1518 return kuid_has_mapping(fs_userns, kuid) && 1519 kgid_has_mapping(fs_userns, kgid); 1520} 1521 1522struct timespec64 current_time(struct inode *inode); 1523struct timespec64 inode_set_ctime_current(struct inode *inode); 1524 1525static inline time64_t inode_get_atime_sec(const struct inode *inode) 1526{ 1527 return inode->__i_atime.tv_sec; 1528} 1529 1530static inline long inode_get_atime_nsec(const struct inode *inode) 1531{ 1532 return inode->__i_atime.tv_nsec; 1533} 1534 1535static inline struct timespec64 inode_get_atime(const struct inode *inode) 1536{ 1537 return inode->__i_atime; 1538} 1539 1540static inline struct timespec64 inode_set_atime_to_ts(struct inode *inode, 1541 struct timespec64 ts) 1542{ 1543 inode->__i_atime = ts; 1544 return ts; 1545} 1546 1547static inline struct timespec64 inode_set_atime(struct inode *inode, 1548 time64_t sec, long nsec) 1549{ 1550 struct timespec64 ts = { .tv_sec = sec, 1551 .tv_nsec = nsec }; 1552 return inode_set_atime_to_ts(inode, ts); 1553} 1554 1555static inline time64_t inode_get_mtime_sec(const struct inode *inode) 1556{ 1557 return inode->__i_mtime.tv_sec; 1558} 1559 1560static inline long inode_get_mtime_nsec(const struct inode *inode) 1561{ 1562 return inode->__i_mtime.tv_nsec; 1563} 1564 1565static inline struct timespec64 inode_get_mtime(const struct inode *inode) 1566{ 1567 return inode->__i_mtime; 1568} 1569 1570static inline struct timespec64 inode_set_mtime_to_ts(struct inode *inode, 1571 struct timespec64 ts) 1572{ 1573 inode->__i_mtime = ts; 1574 return ts; 1575} 1576 1577static inline struct timespec64 inode_set_mtime(struct inode *inode, 1578 time64_t sec, long nsec) 1579{ 1580 struct timespec64 ts = { .tv_sec = sec, 1581 .tv_nsec = nsec }; 1582 return inode_set_mtime_to_ts(inode, ts); 1583} 1584 1585static inline time64_t inode_get_ctime_sec(const struct inode *inode) 1586{ 1587 return inode->__i_ctime.tv_sec; 1588} 1589 1590static inline long inode_get_ctime_nsec(const struct inode *inode) 1591{ 1592 return inode->__i_ctime.tv_nsec; 1593} 1594 1595static inline struct timespec64 inode_get_ctime(const struct inode *inode) 1596{ 1597 return inode->__i_ctime; 1598} 1599 1600static inline struct timespec64 inode_set_ctime_to_ts(struct inode *inode, 1601 struct timespec64 ts) 1602{ 1603 inode->__i_ctime = ts; 1604 return ts; 1605} 1606 1607/** 1608 * inode_set_ctime - set the ctime in the inode 1609 * @inode: inode in which to set the ctime 1610 * @sec: tv_sec value to set 1611 * @nsec: tv_nsec value to set 1612 * 1613 * Set the ctime in @inode to { @sec, @nsec } 1614 */ 1615static inline struct timespec64 inode_set_ctime(struct inode *inode, 1616 time64_t sec, long nsec) 1617{ 1618 struct timespec64 ts = { .tv_sec = sec, 1619 .tv_nsec = nsec }; 1620 1621 return inode_set_ctime_to_ts(inode, ts); 1622} 1623 1624struct timespec64 simple_inode_init_ts(struct inode *inode); 1625 1626/* 1627 * Snapshotting support. 1628 */ 1629 1630/* 1631 * These are internal functions, please use sb_start_{write,pagefault,intwrite} 1632 * instead. 1633 */ 1634static inline void __sb_end_write(struct super_block *sb, int level) 1635{ 1636 percpu_up_read(sb->s_writers.rw_sem + level-1); 1637} 1638 1639static inline void __sb_start_write(struct super_block *sb, int level) 1640{ 1641 percpu_down_read(sb->s_writers.rw_sem + level - 1); 1642} 1643 1644static inline bool __sb_start_write_trylock(struct super_block *sb, int level) 1645{ 1646 return percpu_down_read_trylock(sb->s_writers.rw_sem + level - 1); 1647} 1648 1649#define __sb_writers_acquired(sb, lev) \ 1650 percpu_rwsem_acquire(&(sb)->s_writers.rw_sem[(lev)-1], 1, _THIS_IP_) 1651#define __sb_writers_release(sb, lev) \ 1652 percpu_rwsem_release(&(sb)->s_writers.rw_sem[(lev)-1], 1, _THIS_IP_) 1653 1654/** 1655 * __sb_write_started - check if sb freeze level is held 1656 * @sb: the super we write to 1657 * @level: the freeze level 1658 * 1659 * * > 0 - sb freeze level is held 1660 * * 0 - sb freeze level is not held 1661 * * < 0 - !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN 1662 */ 1663static inline int __sb_write_started(const struct super_block *sb, int level) 1664{ 1665 return lockdep_is_held_type(sb->s_writers.rw_sem + level - 1, 1); 1666} 1667 1668/** 1669 * sb_write_started - check if SB_FREEZE_WRITE is held 1670 * @sb: the super we write to 1671 * 1672 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN. 1673 */ 1674static inline bool sb_write_started(const struct super_block *sb) 1675{ 1676 return __sb_write_started(sb, SB_FREEZE_WRITE); 1677} 1678 1679/** 1680 * sb_write_not_started - check if SB_FREEZE_WRITE is not held 1681 * @sb: the super we write to 1682 * 1683 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN. 1684 */ 1685static inline bool sb_write_not_started(const struct super_block *sb) 1686{ 1687 return __sb_write_started(sb, SB_FREEZE_WRITE) <= 0; 1688} 1689 1690/** 1691 * file_write_started - check if SB_FREEZE_WRITE is held 1692 * @file: the file we write to 1693 * 1694 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN. 1695 * May be false positive with !S_ISREG, because file_start_write() has 1696 * no effect on !S_ISREG. 1697 */ 1698static inline bool file_write_started(const struct file *file) 1699{ 1700 if (!S_ISREG(file_inode(file)->i_mode)) 1701 return true; 1702 return sb_write_started(file_inode(file)->i_sb); 1703} 1704 1705/** 1706 * file_write_not_started - check if SB_FREEZE_WRITE is not held 1707 * @file: the file we write to 1708 * 1709 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN. 1710 * May be false positive with !S_ISREG, because file_start_write() has 1711 * no effect on !S_ISREG. 1712 */ 1713static inline bool file_write_not_started(const struct file *file) 1714{ 1715 if (!S_ISREG(file_inode(file)->i_mode)) 1716 return true; 1717 return sb_write_not_started(file_inode(file)->i_sb); 1718} 1719 1720/** 1721 * sb_end_write - drop write access to a superblock 1722 * @sb: the super we wrote to 1723 * 1724 * Decrement number of writers to the filesystem. Wake up possible waiters 1725 * wanting to freeze the filesystem. 1726 */ 1727static inline void sb_end_write(struct super_block *sb) 1728{ 1729 __sb_end_write(sb, SB_FREEZE_WRITE); 1730} 1731 1732/** 1733 * sb_end_pagefault - drop write access to a superblock from a page fault 1734 * @sb: the super we wrote to 1735 * 1736 * Decrement number of processes handling write page fault to the filesystem. 1737 * Wake up possible waiters wanting to freeze the filesystem. 1738 */ 1739static inline void sb_end_pagefault(struct super_block *sb) 1740{ 1741 __sb_end_write(sb, SB_FREEZE_PAGEFAULT); 1742} 1743 1744/** 1745 * sb_end_intwrite - drop write access to a superblock for internal fs purposes 1746 * @sb: the super we wrote to 1747 * 1748 * Decrement fs-internal number of writers to the filesystem. Wake up possible 1749 * waiters wanting to freeze the filesystem. 1750 */ 1751static inline void sb_end_intwrite(struct super_block *sb) 1752{ 1753 __sb_end_write(sb, SB_FREEZE_FS); 1754} 1755 1756/** 1757 * sb_start_write - get write access to a superblock 1758 * @sb: the super we write to 1759 * 1760 * When a process wants to write data or metadata to a file system (i.e. dirty 1761 * a page or an inode), it should embed the operation in a sb_start_write() - 1762 * sb_end_write() pair to get exclusion against file system freezing. This 1763 * function increments number of writers preventing freezing. If the file 1764 * system is already frozen, the function waits until the file system is 1765 * thawed. 1766 * 1767 * Since freeze protection behaves as a lock, users have to preserve 1768 * ordering of freeze protection and other filesystem locks. Generally, 1769 * freeze protection should be the outermost lock. In particular, we have: 1770 * 1771 * sb_start_write 1772 * -> i_mutex (write path, truncate, directory ops, ...) 1773 * -> s_umount (freeze_super, thaw_super) 1774 */ 1775static inline void sb_start_write(struct super_block *sb) 1776{ 1777 __sb_start_write(sb, SB_FREEZE_WRITE); 1778} 1779 1780static inline bool sb_start_write_trylock(struct super_block *sb) 1781{ 1782 return __sb_start_write_trylock(sb, SB_FREEZE_WRITE); 1783} 1784 1785/** 1786 * sb_start_pagefault - get write access to a superblock from a page fault 1787 * @sb: the super we write to 1788 * 1789 * When a process starts handling write page fault, it should embed the 1790 * operation into sb_start_pagefault() - sb_end_pagefault() pair to get 1791 * exclusion against file system freezing. This is needed since the page fault 1792 * is going to dirty a page. This function increments number of running page 1793 * faults preventing freezing. If the file system is already frozen, the 1794 * function waits until the file system is thawed. 1795 * 1796 * Since page fault freeze protection behaves as a lock, users have to preserve 1797 * ordering of freeze protection and other filesystem locks. It is advised to 1798 * put sb_start_pagefault() close to mmap_lock in lock ordering. Page fault 1799 * handling code implies lock dependency: 1800 * 1801 * mmap_lock 1802 * -> sb_start_pagefault 1803 */ 1804static inline void sb_start_pagefault(struct super_block *sb) 1805{ 1806 __sb_start_write(sb, SB_FREEZE_PAGEFAULT); 1807} 1808 1809/** 1810 * sb_start_intwrite - get write access to a superblock for internal fs purposes 1811 * @sb: the super we write to 1812 * 1813 * This is the third level of protection against filesystem freezing. It is 1814 * free for use by a filesystem. The only requirement is that it must rank 1815 * below sb_start_pagefault. 1816 * 1817 * For example filesystem can call sb_start_intwrite() when starting a 1818 * transaction which somewhat eases handling of freezing for internal sources 1819 * of filesystem changes (internal fs threads, discarding preallocation on file 1820 * close, etc.). 1821 */ 1822static inline void sb_start_intwrite(struct super_block *sb) 1823{ 1824 __sb_start_write(sb, SB_FREEZE_FS); 1825} 1826 1827static inline bool sb_start_intwrite_trylock(struct super_block *sb) 1828{ 1829 return __sb_start_write_trylock(sb, SB_FREEZE_FS); 1830} 1831 1832bool inode_owner_or_capable(struct mnt_idmap *idmap, 1833 const struct inode *inode); 1834 1835/* 1836 * VFS helper functions.. 1837 */ 1838int vfs_create(struct mnt_idmap *, struct inode *, 1839 struct dentry *, umode_t, bool); 1840int vfs_mkdir(struct mnt_idmap *, struct inode *, 1841 struct dentry *, umode_t); 1842int vfs_mknod(struct mnt_idmap *, struct inode *, struct dentry *, 1843 umode_t, dev_t); 1844int vfs_symlink(struct mnt_idmap *, struct inode *, 1845 struct dentry *, const char *); 1846int vfs_link(struct dentry *, struct mnt_idmap *, struct inode *, 1847 struct dentry *, struct inode **); 1848int vfs_rmdir(struct mnt_idmap *, struct inode *, struct dentry *); 1849int vfs_unlink(struct mnt_idmap *, struct inode *, struct dentry *, 1850 struct inode **); 1851 1852/** 1853 * struct renamedata - contains all information required for renaming 1854 * @old_mnt_idmap: idmap of the old mount the inode was found from 1855 * @old_dir: parent of source 1856 * @old_dentry: source 1857 * @new_mnt_idmap: idmap of the new mount the inode was found from 1858 * @new_dir: parent of destination 1859 * @new_dentry: destination 1860 * @delegated_inode: returns an inode needing a delegation break 1861 * @flags: rename flags 1862 */ 1863struct renamedata { 1864 struct mnt_idmap *old_mnt_idmap; 1865 struct inode *old_dir; 1866 struct dentry *old_dentry; 1867 struct mnt_idmap *new_mnt_idmap; 1868 struct inode *new_dir; 1869 struct dentry *new_dentry; 1870 struct inode **delegated_inode; 1871 unsigned int flags; 1872} __randomize_layout; 1873 1874int vfs_rename(struct renamedata *); 1875 1876static inline int vfs_whiteout(struct mnt_idmap *idmap, 1877 struct inode *dir, struct dentry *dentry) 1878{ 1879 return vfs_mknod(idmap, dir, dentry, S_IFCHR | WHITEOUT_MODE, 1880 WHITEOUT_DEV); 1881} 1882 1883struct file *kernel_tmpfile_open(struct mnt_idmap *idmap, 1884 const struct path *parentpath, 1885 umode_t mode, int open_flag, 1886 const struct cred *cred); 1887struct file *kernel_file_open(const struct path *path, int flags, 1888 struct inode *inode, const struct cred *cred); 1889 1890int vfs_mkobj(struct dentry *, umode_t, 1891 int (*f)(struct dentry *, umode_t, void *), 1892 void *); 1893 1894int vfs_fchown(struct file *file, uid_t user, gid_t group); 1895int vfs_fchmod(struct file *file, umode_t mode); 1896int vfs_utimes(const struct path *path, struct timespec64 *times); 1897 1898extern long vfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 1899 1900#ifdef CONFIG_COMPAT 1901extern long compat_ptr_ioctl(struct file *file, unsigned int cmd, 1902 unsigned long arg); 1903#else 1904#define compat_ptr_ioctl NULL 1905#endif 1906 1907/* 1908 * VFS file helper functions. 1909 */ 1910void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode, 1911 const struct inode *dir, umode_t mode); 1912extern bool may_open_dev(const struct path *path); 1913umode_t mode_strip_sgid(struct mnt_idmap *idmap, 1914 const struct inode *dir, umode_t mode); 1915 1916/* 1917 * This is the "filldir" function type, used by readdir() to let 1918 * the kernel specify what kind of dirent layout it wants to have. 1919 * This allows the kernel to read directories into kernel space or 1920 * to have different dirent layouts depending on the binary type. 1921 * Return 'true' to keep going and 'false' if there are no more entries. 1922 */ 1923struct dir_context; 1924typedef bool (*filldir_t)(struct dir_context *, const char *, int, loff_t, u64, 1925 unsigned); 1926 1927struct dir_context { 1928 filldir_t actor; 1929 loff_t pos; 1930}; 1931 1932/* 1933 * These flags let !MMU mmap() govern direct device mapping vs immediate 1934 * copying more easily for MAP_PRIVATE, especially for ROM filesystems. 1935 * 1936 * NOMMU_MAP_COPY: Copy can be mapped (MAP_PRIVATE) 1937 * NOMMU_MAP_DIRECT: Can be mapped directly (MAP_SHARED) 1938 * NOMMU_MAP_READ: Can be mapped for reading 1939 * NOMMU_MAP_WRITE: Can be mapped for writing 1940 * NOMMU_MAP_EXEC: Can be mapped for execution 1941 */ 1942#define NOMMU_MAP_COPY 0x00000001 1943#define NOMMU_MAP_DIRECT 0x00000008 1944#define NOMMU_MAP_READ VM_MAYREAD 1945#define NOMMU_MAP_WRITE VM_MAYWRITE 1946#define NOMMU_MAP_EXEC VM_MAYEXEC 1947 1948#define NOMMU_VMFLAGS \ 1949 (NOMMU_MAP_READ | NOMMU_MAP_WRITE | NOMMU_MAP_EXEC) 1950 1951/* 1952 * These flags control the behavior of the remap_file_range function pointer. 1953 * If it is called with len == 0 that means "remap to end of source file". 1954 * See Documentation/filesystems/vfs.rst for more details about this call. 1955 * 1956 * REMAP_FILE_DEDUP: only remap if contents identical (i.e. deduplicate) 1957 * REMAP_FILE_CAN_SHORTEN: caller can handle a shortened request 1958 */ 1959#define REMAP_FILE_DEDUP (1 << 0) 1960#define REMAP_FILE_CAN_SHORTEN (1 << 1) 1961 1962/* 1963 * These flags signal that the caller is ok with altering various aspects of 1964 * the behavior of the remap operation. The changes must be made by the 1965 * implementation; the vfs remap helper functions can take advantage of them. 1966 * Flags in this category exist to preserve the quirky behavior of the hoisted 1967 * btrfs clone/dedupe ioctls. 1968 */ 1969#define REMAP_FILE_ADVISORY (REMAP_FILE_CAN_SHORTEN) 1970 1971/* 1972 * These flags control the behavior of vfs_copy_file_range(). 1973 * They are not available to the user via syscall. 1974 * 1975 * COPY_FILE_SPLICE: call splice direct instead of fs clone/copy ops 1976 */ 1977#define COPY_FILE_SPLICE (1 << 0) 1978 1979struct iov_iter; 1980struct io_uring_cmd; 1981struct offset_ctx; 1982 1983struct file_operations { 1984 struct module *owner; 1985 loff_t (*llseek) (struct file *, loff_t, int); 1986 ssize_t (*read) (struct file *, char __user *, size_t, loff_t *); 1987 ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *); 1988 ssize_t (*read_iter) (struct kiocb *, struct iov_iter *); 1989 ssize_t (*write_iter) (struct kiocb *, struct iov_iter *); 1990 int (*iopoll)(struct kiocb *kiocb, struct io_comp_batch *, 1991 unsigned int flags); 1992 int (*iterate_shared) (struct file *, struct dir_context *); 1993 __poll_t (*poll) (struct file *, struct poll_table_struct *); 1994 long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long); 1995 long (*compat_ioctl) (struct file *, unsigned int, unsigned long); 1996 int (*mmap) (struct file *, struct vm_area_struct *); 1997 unsigned long mmap_supported_flags; 1998 int (*open) (struct inode *, struct file *); 1999 int (*flush) (struct file *, fl_owner_t id); 2000 int (*release) (struct inode *, struct file *); 2001 int (*fsync) (struct file *, loff_t, loff_t, int datasync); 2002 int (*fasync) (int, struct file *, int); 2003 int (*lock) (struct file *, int, struct file_lock *); 2004 unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2005 int (*check_flags)(int); 2006 int (*flock) (struct file *, int, struct file_lock *); 2007 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int); 2008 ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int); 2009 void (*splice_eof)(struct file *file); 2010 int (*setlease)(struct file *, int, struct file_lock **, void **); 2011 long (*fallocate)(struct file *file, int mode, loff_t offset, 2012 loff_t len); 2013 void (*show_fdinfo)(struct seq_file *m, struct file *f); 2014#ifndef CONFIG_MMU 2015 unsigned (*mmap_capabilities)(struct file *); 2016#endif 2017 ssize_t (*copy_file_range)(struct file *, loff_t, struct file *, 2018 loff_t, size_t, unsigned int); 2019 loff_t (*remap_file_range)(struct file *file_in, loff_t pos_in, 2020 struct file *file_out, loff_t pos_out, 2021 loff_t len, unsigned int remap_flags); 2022 int (*fadvise)(struct file *, loff_t, loff_t, int); 2023 int (*uring_cmd)(struct io_uring_cmd *ioucmd, unsigned int issue_flags); 2024 int (*uring_cmd_iopoll)(struct io_uring_cmd *, struct io_comp_batch *, 2025 unsigned int poll_flags); 2026} __randomize_layout; 2027 2028/* Wrap a directory iterator that needs exclusive inode access */ 2029int wrap_directory_iterator(struct file *, struct dir_context *, 2030 int (*) (struct file *, struct dir_context *)); 2031#define WRAP_DIR_ITER(x) \ 2032 static int shared_##x(struct file *file , struct dir_context *ctx) \ 2033 { return wrap_directory_iterator(file, ctx, x); } 2034 2035struct inode_operations { 2036 struct dentry * (*lookup) (struct inode *,struct dentry *, unsigned int); 2037 const char * (*get_link) (struct dentry *, struct inode *, struct delayed_call *); 2038 int (*permission) (struct mnt_idmap *, struct inode *, int); 2039 struct posix_acl * (*get_inode_acl)(struct inode *, int, bool); 2040 2041 int (*readlink) (struct dentry *, char __user *,int); 2042 2043 int (*create) (struct mnt_idmap *, struct inode *,struct dentry *, 2044 umode_t, bool); 2045 int (*link) (struct dentry *,struct inode *,struct dentry *); 2046 int (*unlink) (struct inode *,struct dentry *); 2047 int (*symlink) (struct mnt_idmap *, struct inode *,struct dentry *, 2048 const char *); 2049 int (*mkdir) (struct mnt_idmap *, struct inode *,struct dentry *, 2050 umode_t); 2051 int (*rmdir) (struct inode *,struct dentry *); 2052 int (*mknod) (struct mnt_idmap *, struct inode *,struct dentry *, 2053 umode_t,dev_t); 2054 int (*rename) (struct mnt_idmap *, struct inode *, struct dentry *, 2055 struct inode *, struct dentry *, unsigned int); 2056 int (*setattr) (struct mnt_idmap *, struct dentry *, struct iattr *); 2057 int (*getattr) (struct mnt_idmap *, const struct path *, 2058 struct kstat *, u32, unsigned int); 2059 ssize_t (*listxattr) (struct dentry *, char *, size_t); 2060 int (*fiemap)(struct inode *, struct fiemap_extent_info *, u64 start, 2061 u64 len); 2062 int (*update_time)(struct inode *, int); 2063 int (*atomic_open)(struct inode *, struct dentry *, 2064 struct file *, unsigned open_flag, 2065 umode_t create_mode); 2066 int (*tmpfile) (struct mnt_idmap *, struct inode *, 2067 struct file *, umode_t); 2068 struct posix_acl *(*get_acl)(struct mnt_idmap *, struct dentry *, 2069 int); 2070 int (*set_acl)(struct mnt_idmap *, struct dentry *, 2071 struct posix_acl *, int); 2072 int (*fileattr_set)(struct mnt_idmap *idmap, 2073 struct dentry *dentry, struct fileattr *fa); 2074 int (*fileattr_get)(struct dentry *dentry, struct fileattr *fa); 2075 struct offset_ctx *(*get_offset_ctx)(struct inode *inode); 2076} ____cacheline_aligned; 2077 2078static inline ssize_t call_read_iter(struct file *file, struct kiocb *kio, 2079 struct iov_iter *iter) 2080{ 2081 return file->f_op->read_iter(kio, iter); 2082} 2083 2084static inline ssize_t call_write_iter(struct file *file, struct kiocb *kio, 2085 struct iov_iter *iter) 2086{ 2087 return file->f_op->write_iter(kio, iter); 2088} 2089 2090static inline int call_mmap(struct file *file, struct vm_area_struct *vma) 2091{ 2092 return file->f_op->mmap(file, vma); 2093} 2094 2095extern ssize_t vfs_read(struct file *, char __user *, size_t, loff_t *); 2096extern ssize_t vfs_write(struct file *, const char __user *, size_t, loff_t *); 2097extern ssize_t vfs_copy_file_range(struct file *, loff_t , struct file *, 2098 loff_t, size_t, unsigned int); 2099int __generic_remap_file_range_prep(struct file *file_in, loff_t pos_in, 2100 struct file *file_out, loff_t pos_out, 2101 loff_t *len, unsigned int remap_flags, 2102 const struct iomap_ops *dax_read_ops); 2103int generic_remap_file_range_prep(struct file *file_in, loff_t pos_in, 2104 struct file *file_out, loff_t pos_out, 2105 loff_t *count, unsigned int remap_flags); 2106extern loff_t vfs_clone_file_range(struct file *file_in, loff_t pos_in, 2107 struct file *file_out, loff_t pos_out, 2108 loff_t len, unsigned int remap_flags); 2109extern int vfs_dedupe_file_range(struct file *file, 2110 struct file_dedupe_range *same); 2111extern loff_t vfs_dedupe_file_range_one(struct file *src_file, loff_t src_pos, 2112 struct file *dst_file, loff_t dst_pos, 2113 loff_t len, unsigned int remap_flags); 2114 2115/** 2116 * enum freeze_holder - holder of the freeze 2117 * @FREEZE_HOLDER_KERNEL: kernel wants to freeze or thaw filesystem 2118 * @FREEZE_HOLDER_USERSPACE: userspace wants to freeze or thaw filesystem 2119 * @FREEZE_MAY_NEST: whether nesting freeze and thaw requests is allowed 2120 * 2121 * Indicate who the owner of the freeze or thaw request is and whether 2122 * the freeze needs to be exclusive or can nest. 2123 * Without @FREEZE_MAY_NEST, multiple freeze and thaw requests from the 2124 * same holder aren't allowed. It is however allowed to hold a single 2125 * @FREEZE_HOLDER_USERSPACE and a single @FREEZE_HOLDER_KERNEL freeze at 2126 * the same time. This is relied upon by some filesystems during online 2127 * repair or similar. 2128 */ 2129enum freeze_holder { 2130 FREEZE_HOLDER_KERNEL = (1U << 0), 2131 FREEZE_HOLDER_USERSPACE = (1U << 1), 2132 FREEZE_MAY_NEST = (1U << 2), 2133}; 2134 2135struct super_operations { 2136 struct inode *(*alloc_inode)(struct super_block *sb); 2137 void (*destroy_inode)(struct inode *); 2138 void (*free_inode)(struct inode *); 2139 2140 void (*dirty_inode) (struct inode *, int flags); 2141 int (*write_inode) (struct inode *, struct writeback_control *wbc); 2142 int (*drop_inode) (struct inode *); 2143 void (*evict_inode) (struct inode *); 2144 void (*put_super) (struct super_block *); 2145 int (*sync_fs)(struct super_block *sb, int wait); 2146 int (*freeze_super) (struct super_block *, enum freeze_holder who); 2147 int (*freeze_fs) (struct super_block *); 2148 int (*thaw_super) (struct super_block *, enum freeze_holder who); 2149 int (*unfreeze_fs) (struct super_block *); 2150 int (*statfs) (struct dentry *, struct kstatfs *); 2151 int (*remount_fs) (struct super_block *, int *, char *); 2152 void (*umount_begin) (struct super_block *); 2153 2154 int (*show_options)(struct seq_file *, struct dentry *); 2155 int (*show_devname)(struct seq_file *, struct dentry *); 2156 int (*show_path)(struct seq_file *, struct dentry *); 2157 int (*show_stats)(struct seq_file *, struct dentry *); 2158#ifdef CONFIG_QUOTA 2159 ssize_t (*quota_read)(struct super_block *, int, char *, size_t, loff_t); 2160 ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t); 2161 struct dquot **(*get_dquots)(struct inode *); 2162#endif 2163 long (*nr_cached_objects)(struct super_block *, 2164 struct shrink_control *); 2165 long (*free_cached_objects)(struct super_block *, 2166 struct shrink_control *); 2167 void (*shutdown)(struct super_block *sb); 2168}; 2169 2170/* 2171 * Inode flags - they have no relation to superblock flags now 2172 */ 2173#define S_SYNC (1 << 0) /* Writes are synced at once */ 2174#define S_NOATIME (1 << 1) /* Do not update access times */ 2175#define S_APPEND (1 << 2) /* Append-only file */ 2176#define S_IMMUTABLE (1 << 3) /* Immutable file */ 2177#define S_DEAD (1 << 4) /* removed, but still open directory */ 2178#define S_NOQUOTA (1 << 5) /* Inode is not counted to quota */ 2179#define S_DIRSYNC (1 << 6) /* Directory modifications are synchronous */ 2180#define S_NOCMTIME (1 << 7) /* Do not update file c/mtime */ 2181#define S_SWAPFILE (1 << 8) /* Do not truncate: swapon got its bmaps */ 2182#define S_PRIVATE (1 << 9) /* Inode is fs-internal */ 2183#define S_IMA (1 << 10) /* Inode has an associated IMA struct */ 2184#define S_AUTOMOUNT (1 << 11) /* Automount/referral quasi-directory */ 2185#define S_NOSEC (1 << 12) /* no suid or xattr security attributes */ 2186#ifdef CONFIG_FS_DAX 2187#define S_DAX (1 << 13) /* Direct Access, avoiding the page cache */ 2188#else 2189#define S_DAX 0 /* Make all the DAX code disappear */ 2190#endif 2191#define S_ENCRYPTED (1 << 14) /* Encrypted file (using fs/crypto/) */ 2192#define S_CASEFOLD (1 << 15) /* Casefolded file */ 2193#define S_VERITY (1 << 16) /* Verity file (using fs/verity/) */ 2194#define S_KERNEL_FILE (1 << 17) /* File is in use by the kernel (eg. fs/cachefiles) */ 2195 2196/* 2197 * Note that nosuid etc flags are inode-specific: setting some file-system 2198 * flags just means all the inodes inherit those flags by default. It might be 2199 * possible to override it selectively if you really wanted to with some 2200 * ioctl() that is not currently implemented. 2201 * 2202 * Exception: SB_RDONLY is always applied to the entire file system. 2203 * 2204 * Unfortunately, it is possible to change a filesystems flags with it mounted 2205 * with files in use. This means that all of the inodes will not have their 2206 * i_flags updated. Hence, i_flags no longer inherit the superblock mount 2207 * flags, so these have to be checked separately. -- rmk@arm.uk.linux.org 2208 */ 2209#define __IS_FLG(inode, flg) ((inode)->i_sb->s_flags & (flg)) 2210 2211static inline bool sb_rdonly(const struct super_block *sb) { return sb->s_flags & SB_RDONLY; } 2212#define IS_RDONLY(inode) sb_rdonly((inode)->i_sb) 2213#define IS_SYNC(inode) (__IS_FLG(inode, SB_SYNCHRONOUS) || \ 2214 ((inode)->i_flags & S_SYNC)) 2215#define IS_DIRSYNC(inode) (__IS_FLG(inode, SB_SYNCHRONOUS|SB_DIRSYNC) || \ 2216 ((inode)->i_flags & (S_SYNC|S_DIRSYNC))) 2217#define IS_MANDLOCK(inode) __IS_FLG(inode, SB_MANDLOCK) 2218#define IS_NOATIME(inode) __IS_FLG(inode, SB_RDONLY|SB_NOATIME) 2219#define IS_I_VERSION(inode) __IS_FLG(inode, SB_I_VERSION) 2220 2221#define IS_NOQUOTA(inode) ((inode)->i_flags & S_NOQUOTA) 2222#define IS_APPEND(inode) ((inode)->i_flags & S_APPEND) 2223#define IS_IMMUTABLE(inode) ((inode)->i_flags & S_IMMUTABLE) 2224 2225#ifdef CONFIG_FS_POSIX_ACL 2226#define IS_POSIXACL(inode) __IS_FLG(inode, SB_POSIXACL) 2227#else 2228#define IS_POSIXACL(inode) 0 2229#endif 2230 2231#define IS_DEADDIR(inode) ((inode)->i_flags & S_DEAD) 2232#define IS_NOCMTIME(inode) ((inode)->i_flags & S_NOCMTIME) 2233#define IS_SWAPFILE(inode) ((inode)->i_flags & S_SWAPFILE) 2234#define IS_PRIVATE(inode) ((inode)->i_flags & S_PRIVATE) 2235#define IS_IMA(inode) ((inode)->i_flags & S_IMA) 2236#define IS_AUTOMOUNT(inode) ((inode)->i_flags & S_AUTOMOUNT) 2237#define IS_NOSEC(inode) ((inode)->i_flags & S_NOSEC) 2238#define IS_DAX(inode) ((inode)->i_flags & S_DAX) 2239#define IS_ENCRYPTED(inode) ((inode)->i_flags & S_ENCRYPTED) 2240#define IS_CASEFOLDED(inode) ((inode)->i_flags & S_CASEFOLD) 2241#define IS_VERITY(inode) ((inode)->i_flags & S_VERITY) 2242 2243#define IS_WHITEOUT(inode) (S_ISCHR(inode->i_mode) && \ 2244 (inode)->i_rdev == WHITEOUT_DEV) 2245 2246static inline bool HAS_UNMAPPED_ID(struct mnt_idmap *idmap, 2247 struct inode *inode) 2248{ 2249 return !vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) || 2250 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)); 2251} 2252 2253static inline void init_sync_kiocb(struct kiocb *kiocb, struct file *filp) 2254{ 2255 *kiocb = (struct kiocb) { 2256 .ki_filp = filp, 2257 .ki_flags = filp->f_iocb_flags, 2258 .ki_ioprio = get_current_ioprio(), 2259 }; 2260} 2261 2262static inline void kiocb_clone(struct kiocb *kiocb, struct kiocb *kiocb_src, 2263 struct file *filp) 2264{ 2265 *kiocb = (struct kiocb) { 2266 .ki_filp = filp, 2267 .ki_flags = kiocb_src->ki_flags, 2268 .ki_ioprio = kiocb_src->ki_ioprio, 2269 .ki_pos = kiocb_src->ki_pos, 2270 }; 2271} 2272 2273/* 2274 * Inode state bits. Protected by inode->i_lock 2275 * 2276 * Four bits determine the dirty state of the inode: I_DIRTY_SYNC, 2277 * I_DIRTY_DATASYNC, I_DIRTY_PAGES, and I_DIRTY_TIME. 2278 * 2279 * Four bits define the lifetime of an inode. Initially, inodes are I_NEW, 2280 * until that flag is cleared. I_WILL_FREE, I_FREEING and I_CLEAR are set at 2281 * various stages of removing an inode. 2282 * 2283 * Two bits are used for locking and completion notification, I_NEW and I_SYNC. 2284 * 2285 * I_DIRTY_SYNC Inode is dirty, but doesn't have to be written on 2286 * fdatasync() (unless I_DIRTY_DATASYNC is also set). 2287 * Timestamp updates are the usual cause. 2288 * I_DIRTY_DATASYNC Data-related inode changes pending. We keep track of 2289 * these changes separately from I_DIRTY_SYNC so that we 2290 * don't have to write inode on fdatasync() when only 2291 * e.g. the timestamps have changed. 2292 * I_DIRTY_PAGES Inode has dirty pages. Inode itself may be clean. 2293 * I_DIRTY_TIME The inode itself has dirty timestamps, and the 2294 * lazytime mount option is enabled. We keep track of this 2295 * separately from I_DIRTY_SYNC in order to implement 2296 * lazytime. This gets cleared if I_DIRTY_INODE 2297 * (I_DIRTY_SYNC and/or I_DIRTY_DATASYNC) gets set. But 2298 * I_DIRTY_TIME can still be set if I_DIRTY_SYNC is already 2299 * in place because writeback might already be in progress 2300 * and we don't want to lose the time update 2301 * I_NEW Serves as both a mutex and completion notification. 2302 * New inodes set I_NEW. If two processes both create 2303 * the same inode, one of them will release its inode and 2304 * wait for I_NEW to be released before returning. 2305 * Inodes in I_WILL_FREE, I_FREEING or I_CLEAR state can 2306 * also cause waiting on I_NEW, without I_NEW actually 2307 * being set. find_inode() uses this to prevent returning 2308 * nearly-dead inodes. 2309 * I_WILL_FREE Must be set when calling write_inode_now() if i_count 2310 * is zero. I_FREEING must be set when I_WILL_FREE is 2311 * cleared. 2312 * I_FREEING Set when inode is about to be freed but still has dirty 2313 * pages or buffers attached or the inode itself is still 2314 * dirty. 2315 * I_CLEAR Added by clear_inode(). In this state the inode is 2316 * clean and can be destroyed. Inode keeps I_FREEING. 2317 * 2318 * Inodes that are I_WILL_FREE, I_FREEING or I_CLEAR are 2319 * prohibited for many purposes. iget() must wait for 2320 * the inode to be completely released, then create it 2321 * anew. Other functions will just ignore such inodes, 2322 * if appropriate. I_NEW is used for waiting. 2323 * 2324 * I_SYNC Writeback of inode is running. The bit is set during 2325 * data writeback, and cleared with a wakeup on the bit 2326 * address once it is done. The bit is also used to pin 2327 * the inode in memory for flusher thread. 2328 * 2329 * I_REFERENCED Marks the inode as recently references on the LRU list. 2330 * 2331 * I_DIO_WAKEUP Never set. Only used as a key for wait_on_bit(). 2332 * 2333 * I_WB_SWITCH Cgroup bdi_writeback switching in progress. Used to 2334 * synchronize competing switching instances and to tell 2335 * wb stat updates to grab the i_pages lock. See 2336 * inode_switch_wbs_work_fn() for details. 2337 * 2338 * I_OVL_INUSE Used by overlayfs to get exclusive ownership on upper 2339 * and work dirs among overlayfs mounts. 2340 * 2341 * I_CREATING New object's inode in the middle of setting up. 2342 * 2343 * I_DONTCACHE Evict inode as soon as it is not used anymore. 2344 * 2345 * I_SYNC_QUEUED Inode is queued in b_io or b_more_io writeback lists. 2346 * Used to detect that mark_inode_dirty() should not move 2347 * inode between dirty lists. 2348 * 2349 * I_PINNING_FSCACHE_WB Inode is pinning an fscache object for writeback. 2350 * 2351 * Q: What is the difference between I_WILL_FREE and I_FREEING? 2352 */ 2353#define I_DIRTY_SYNC (1 << 0) 2354#define I_DIRTY_DATASYNC (1 << 1) 2355#define I_DIRTY_PAGES (1 << 2) 2356#define __I_NEW 3 2357#define I_NEW (1 << __I_NEW) 2358#define I_WILL_FREE (1 << 4) 2359#define I_FREEING (1 << 5) 2360#define I_CLEAR (1 << 6) 2361#define __I_SYNC 7 2362#define I_SYNC (1 << __I_SYNC) 2363#define I_REFERENCED (1 << 8) 2364#define __I_DIO_WAKEUP 9 2365#define I_DIO_WAKEUP (1 << __I_DIO_WAKEUP) 2366#define I_LINKABLE (1 << 10) 2367#define I_DIRTY_TIME (1 << 11) 2368#define I_WB_SWITCH (1 << 13) 2369#define I_OVL_INUSE (1 << 14) 2370#define I_CREATING (1 << 15) 2371#define I_DONTCACHE (1 << 16) 2372#define I_SYNC_QUEUED (1 << 17) 2373#define I_PINNING_NETFS_WB (1 << 18) 2374 2375#define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC) 2376#define I_DIRTY (I_DIRTY_INODE | I_DIRTY_PAGES) 2377#define I_DIRTY_ALL (I_DIRTY | I_DIRTY_TIME) 2378 2379extern void __mark_inode_dirty(struct inode *, int); 2380static inline void mark_inode_dirty(struct inode *inode) 2381{ 2382 __mark_inode_dirty(inode, I_DIRTY); 2383} 2384 2385static inline void mark_inode_dirty_sync(struct inode *inode) 2386{ 2387 __mark_inode_dirty(inode, I_DIRTY_SYNC); 2388} 2389 2390/* 2391 * Returns true if the given inode itself only has dirty timestamps (its pages 2392 * may still be dirty) and isn't currently being allocated or freed. 2393 * Filesystems should call this if when writing an inode when lazytime is 2394 * enabled, they want to opportunistically write the timestamps of other inodes 2395 * located very nearby on-disk, e.g. in the same inode block. This returns true 2396 * if the given inode is in need of such an opportunistic update. Requires 2397 * i_lock, or at least later re-checking under i_lock. 2398 */ 2399static inline bool inode_is_dirtytime_only(struct inode *inode) 2400{ 2401 return (inode->i_state & (I_DIRTY_TIME | I_NEW | 2402 I_FREEING | I_WILL_FREE)) == I_DIRTY_TIME; 2403} 2404 2405extern void inc_nlink(struct inode *inode); 2406extern void drop_nlink(struct inode *inode); 2407extern void clear_nlink(struct inode *inode); 2408extern void set_nlink(struct inode *inode, unsigned int nlink); 2409 2410static inline void inode_inc_link_count(struct inode *inode) 2411{ 2412 inc_nlink(inode); 2413 mark_inode_dirty(inode); 2414} 2415 2416static inline void inode_dec_link_count(struct inode *inode) 2417{ 2418 drop_nlink(inode); 2419 mark_inode_dirty(inode); 2420} 2421 2422enum file_time_flags { 2423 S_ATIME = 1, 2424 S_MTIME = 2, 2425 S_CTIME = 4, 2426 S_VERSION = 8, 2427}; 2428 2429extern bool atime_needs_update(const struct path *, struct inode *); 2430extern void touch_atime(const struct path *); 2431int inode_update_time(struct inode *inode, int flags); 2432 2433static inline void file_accessed(struct file *file) 2434{ 2435 if (!(file->f_flags & O_NOATIME)) 2436 touch_atime(&file->f_path); 2437} 2438 2439extern int file_modified(struct file *file); 2440int kiocb_modified(struct kiocb *iocb); 2441 2442int sync_inode_metadata(struct inode *inode, int wait); 2443 2444struct file_system_type { 2445 const char *name; 2446 int fs_flags; 2447#define FS_REQUIRES_DEV 1 2448#define FS_BINARY_MOUNTDATA 2 2449#define FS_HAS_SUBTYPE 4 2450#define FS_USERNS_MOUNT 8 /* Can be mounted by userns root */ 2451#define FS_DISALLOW_NOTIFY_PERM 16 /* Disable fanotify permission events */ 2452#define FS_ALLOW_IDMAP 32 /* FS has been updated to handle vfs idmappings. */ 2453#define FS_RENAME_DOES_D_MOVE 32768 /* FS will handle d_move() during rename() internally. */ 2454 int (*init_fs_context)(struct fs_context *); 2455 const struct fs_parameter_spec *parameters; 2456 struct dentry *(*mount) (struct file_system_type *, int, 2457 const char *, void *); 2458 void (*kill_sb) (struct super_block *); 2459 struct module *owner; 2460 struct file_system_type * next; 2461 struct hlist_head fs_supers; 2462 2463 struct lock_class_key s_lock_key; 2464 struct lock_class_key s_umount_key; 2465 struct lock_class_key s_vfs_rename_key; 2466 struct lock_class_key s_writers_key[SB_FREEZE_LEVELS]; 2467 2468 struct lock_class_key i_lock_key; 2469 struct lock_class_key i_mutex_key; 2470 struct lock_class_key invalidate_lock_key; 2471 struct lock_class_key i_mutex_dir_key; 2472}; 2473 2474#define MODULE_ALIAS_FS(NAME) MODULE_ALIAS("fs-" NAME) 2475 2476extern struct dentry *mount_bdev(struct file_system_type *fs_type, 2477 int flags, const char *dev_name, void *data, 2478 int (*fill_super)(struct super_block *, void *, int)); 2479extern struct dentry *mount_single(struct file_system_type *fs_type, 2480 int flags, void *data, 2481 int (*fill_super)(struct super_block *, void *, int)); 2482extern struct dentry *mount_nodev(struct file_system_type *fs_type, 2483 int flags, void *data, 2484 int (*fill_super)(struct super_block *, void *, int)); 2485extern struct dentry *mount_subtree(struct vfsmount *mnt, const char *path); 2486void retire_super(struct super_block *sb); 2487void generic_shutdown_super(struct super_block *sb); 2488void kill_block_super(struct super_block *sb); 2489void kill_anon_super(struct super_block *sb); 2490void kill_litter_super(struct super_block *sb); 2491void deactivate_super(struct super_block *sb); 2492void deactivate_locked_super(struct super_block *sb); 2493int set_anon_super(struct super_block *s, void *data); 2494int set_anon_super_fc(struct super_block *s, struct fs_context *fc); 2495int get_anon_bdev(dev_t *); 2496void free_anon_bdev(dev_t); 2497struct super_block *sget_fc(struct fs_context *fc, 2498 int (*test)(struct super_block *, struct fs_context *), 2499 int (*set)(struct super_block *, struct fs_context *)); 2500struct super_block *sget(struct file_system_type *type, 2501 int (*test)(struct super_block *,void *), 2502 int (*set)(struct super_block *,void *), 2503 int flags, void *data); 2504struct super_block *sget_dev(struct fs_context *fc, dev_t dev); 2505 2506/* Alas, no aliases. Too much hassle with bringing module.h everywhere */ 2507#define fops_get(fops) \ 2508 (((fops) && try_module_get((fops)->owner) ? (fops) : NULL)) 2509#define fops_put(fops) \ 2510 do { if (fops) module_put((fops)->owner); } while(0) 2511/* 2512 * This one is to be used *ONLY* from ->open() instances. 2513 * fops must be non-NULL, pinned down *and* module dependencies 2514 * should be sufficient to pin the caller down as well. 2515 */ 2516#define replace_fops(f, fops) \ 2517 do { \ 2518 struct file *__file = (f); \ 2519 fops_put(__file->f_op); \ 2520 BUG_ON(!(__file->f_op = (fops))); \ 2521 } while(0) 2522 2523extern int register_filesystem(struct file_system_type *); 2524extern int unregister_filesystem(struct file_system_type *); 2525extern int vfs_statfs(const struct path *, struct kstatfs *); 2526extern int user_statfs(const char __user *, struct kstatfs *); 2527extern int fd_statfs(int, struct kstatfs *); 2528int freeze_super(struct super_block *super, enum freeze_holder who); 2529int thaw_super(struct super_block *super, enum freeze_holder who); 2530extern __printf(2, 3) 2531int super_setup_bdi_name(struct super_block *sb, char *fmt, ...); 2532extern int super_setup_bdi(struct super_block *sb); 2533 2534extern int current_umask(void); 2535 2536extern void ihold(struct inode * inode); 2537extern void iput(struct inode *); 2538int inode_update_timestamps(struct inode *inode, int flags); 2539int generic_update_time(struct inode *, int); 2540 2541/* /sys/fs */ 2542extern struct kobject *fs_kobj; 2543 2544#define MAX_RW_COUNT (INT_MAX & PAGE_MASK) 2545 2546/* fs/open.c */ 2547struct audit_names; 2548struct filename { 2549 const char *name; /* pointer to actual string */ 2550 const __user char *uptr; /* original userland pointer */ 2551 atomic_t refcnt; 2552 struct audit_names *aname; 2553 const char iname[]; 2554}; 2555static_assert(offsetof(struct filename, iname) % sizeof(long) == 0); 2556 2557static inline struct mnt_idmap *file_mnt_idmap(const struct file *file) 2558{ 2559 return mnt_idmap(file->f_path.mnt); 2560} 2561 2562/** 2563 * is_idmapped_mnt - check whether a mount is mapped 2564 * @mnt: the mount to check 2565 * 2566 * If @mnt has an non @nop_mnt_idmap attached to it then @mnt is mapped. 2567 * 2568 * Return: true if mount is mapped, false if not. 2569 */ 2570static inline bool is_idmapped_mnt(const struct vfsmount *mnt) 2571{ 2572 return mnt_idmap(mnt) != &nop_mnt_idmap; 2573} 2574 2575extern long vfs_truncate(const struct path *, loff_t); 2576int do_truncate(struct mnt_idmap *, struct dentry *, loff_t start, 2577 unsigned int time_attrs, struct file *filp); 2578extern int vfs_fallocate(struct file *file, int mode, loff_t offset, 2579 loff_t len); 2580extern long do_sys_open(int dfd, const char __user *filename, int flags, 2581 umode_t mode); 2582extern struct file *file_open_name(struct filename *, int, umode_t); 2583extern struct file *filp_open(const char *, int, umode_t); 2584extern struct file *file_open_root(const struct path *, 2585 const char *, int, umode_t); 2586static inline struct file *file_open_root_mnt(struct vfsmount *mnt, 2587 const char *name, int flags, umode_t mode) 2588{ 2589 return file_open_root(&(struct path){.mnt = mnt, .dentry = mnt->mnt_root}, 2590 name, flags, mode); 2591} 2592struct file *dentry_open(const struct path *path, int flags, 2593 const struct cred *creds); 2594struct file *dentry_create(const struct path *path, int flags, umode_t mode, 2595 const struct cred *cred); 2596struct path *backing_file_user_path(struct file *f); 2597 2598/* 2599 * When mmapping a file on a stackable filesystem (e.g., overlayfs), the file 2600 * stored in ->vm_file is a backing file whose f_inode is on the underlying 2601 * filesystem. When the mapped file path and inode number are displayed to 2602 * user (e.g. via /proc/<pid>/maps), these helpers should be used to get the 2603 * path and inode number to display to the user, which is the path of the fd 2604 * that user has requested to map and the inode number that would be returned 2605 * by fstat() on that same fd. 2606 */ 2607/* Get the path to display in /proc/<pid>/maps */ 2608static inline const struct path *file_user_path(struct file *f) 2609{ 2610 if (unlikely(f->f_mode & FMODE_BACKING)) 2611 return backing_file_user_path(f); 2612 return &f->f_path; 2613} 2614/* Get the inode whose inode number to display in /proc/<pid>/maps */ 2615static inline const struct inode *file_user_inode(struct file *f) 2616{ 2617 if (unlikely(f->f_mode & FMODE_BACKING)) 2618 return d_inode(backing_file_user_path(f)->dentry); 2619 return file_inode(f); 2620} 2621 2622static inline struct file *file_clone_open(struct file *file) 2623{ 2624 return dentry_open(&file->f_path, file->f_flags, file->f_cred); 2625} 2626extern int filp_close(struct file *, fl_owner_t id); 2627 2628extern struct filename *getname_flags(const char __user *, int, int *); 2629extern struct filename *getname_uflags(const char __user *, int); 2630extern struct filename *getname(const char __user *); 2631extern struct filename *getname_kernel(const char *); 2632extern void putname(struct filename *name); 2633 2634extern int finish_open(struct file *file, struct dentry *dentry, 2635 int (*open)(struct inode *, struct file *)); 2636extern int finish_no_open(struct file *file, struct dentry *dentry); 2637 2638/* Helper for the simple case when original dentry is used */ 2639static inline int finish_open_simple(struct file *file, int error) 2640{ 2641 if (error) 2642 return error; 2643 2644 return finish_open(file, file->f_path.dentry, NULL); 2645} 2646 2647/* fs/dcache.c */ 2648extern void __init vfs_caches_init_early(void); 2649extern void __init vfs_caches_init(void); 2650 2651extern struct kmem_cache *names_cachep; 2652 2653#define __getname() kmem_cache_alloc(names_cachep, GFP_KERNEL) 2654#define __putname(name) kmem_cache_free(names_cachep, (void *)(name)) 2655 2656extern struct super_block *blockdev_superblock; 2657static inline bool sb_is_blkdev_sb(struct super_block *sb) 2658{ 2659 return IS_ENABLED(CONFIG_BLOCK) && sb == blockdev_superblock; 2660} 2661 2662void emergency_thaw_all(void); 2663extern int sync_filesystem(struct super_block *); 2664extern const struct file_operations def_blk_fops; 2665extern const struct file_operations def_chr_fops; 2666 2667/* fs/char_dev.c */ 2668#define CHRDEV_MAJOR_MAX 512 2669/* Marks the bottom of the first segment of free char majors */ 2670#define CHRDEV_MAJOR_DYN_END 234 2671/* Marks the top and bottom of the second segment of free char majors */ 2672#define CHRDEV_MAJOR_DYN_EXT_START 511 2673#define CHRDEV_MAJOR_DYN_EXT_END 384 2674 2675extern int alloc_chrdev_region(dev_t *, unsigned, unsigned, const char *); 2676extern int register_chrdev_region(dev_t, unsigned, const char *); 2677extern int __register_chrdev(unsigned int major, unsigned int baseminor, 2678 unsigned int count, const char *name, 2679 const struct file_operations *fops); 2680extern void __unregister_chrdev(unsigned int major, unsigned int baseminor, 2681 unsigned int count, const char *name); 2682extern void unregister_chrdev_region(dev_t, unsigned); 2683extern void chrdev_show(struct seq_file *,off_t); 2684 2685static inline int register_chrdev(unsigned int major, const char *name, 2686 const struct file_operations *fops) 2687{ 2688 return __register_chrdev(major, 0, 256, name, fops); 2689} 2690 2691static inline void unregister_chrdev(unsigned int major, const char *name) 2692{ 2693 __unregister_chrdev(major, 0, 256, name); 2694} 2695 2696extern void init_special_inode(struct inode *, umode_t, dev_t); 2697 2698/* Invalid inode operations -- fs/bad_inode.c */ 2699extern void make_bad_inode(struct inode *); 2700extern bool is_bad_inode(struct inode *); 2701 2702extern int __must_check file_fdatawait_range(struct file *file, loff_t lstart, 2703 loff_t lend); 2704extern int __must_check file_check_and_advance_wb_err(struct file *file); 2705extern int __must_check file_write_and_wait_range(struct file *file, 2706 loff_t start, loff_t end); 2707 2708static inline int file_write_and_wait(struct file *file) 2709{ 2710 return file_write_and_wait_range(file, 0, LLONG_MAX); 2711} 2712 2713extern int vfs_fsync_range(struct file *file, loff_t start, loff_t end, 2714 int datasync); 2715extern int vfs_fsync(struct file *file, int datasync); 2716 2717extern int sync_file_range(struct file *file, loff_t offset, loff_t nbytes, 2718 unsigned int flags); 2719 2720static inline bool iocb_is_dsync(const struct kiocb *iocb) 2721{ 2722 return (iocb->ki_flags & IOCB_DSYNC) || 2723 IS_SYNC(iocb->ki_filp->f_mapping->host); 2724} 2725 2726/* 2727 * Sync the bytes written if this was a synchronous write. Expect ki_pos 2728 * to already be updated for the write, and will return either the amount 2729 * of bytes passed in, or an error if syncing the file failed. 2730 */ 2731static inline ssize_t generic_write_sync(struct kiocb *iocb, ssize_t count) 2732{ 2733 if (iocb_is_dsync(iocb)) { 2734 int ret = vfs_fsync_range(iocb->ki_filp, 2735 iocb->ki_pos - count, iocb->ki_pos - 1, 2736 (iocb->ki_flags & IOCB_SYNC) ? 0 : 1); 2737 if (ret) 2738 return ret; 2739 } 2740 2741 return count; 2742} 2743 2744extern void emergency_sync(void); 2745extern void emergency_remount(void); 2746 2747#ifdef CONFIG_BLOCK 2748extern int bmap(struct inode *inode, sector_t *block); 2749#else 2750static inline int bmap(struct inode *inode, sector_t *block) 2751{ 2752 return -EINVAL; 2753} 2754#endif 2755 2756int notify_change(struct mnt_idmap *, struct dentry *, 2757 struct iattr *, struct inode **); 2758int inode_permission(struct mnt_idmap *, struct inode *, int); 2759int generic_permission(struct mnt_idmap *, struct inode *, int); 2760static inline int file_permission(struct file *file, int mask) 2761{ 2762 return inode_permission(file_mnt_idmap(file), 2763 file_inode(file), mask); 2764} 2765static inline int path_permission(const struct path *path, int mask) 2766{ 2767 return inode_permission(mnt_idmap(path->mnt), 2768 d_inode(path->dentry), mask); 2769} 2770int __check_sticky(struct mnt_idmap *idmap, struct inode *dir, 2771 struct inode *inode); 2772 2773static inline bool execute_ok(struct inode *inode) 2774{ 2775 return (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode); 2776} 2777 2778static inline bool inode_wrong_type(const struct inode *inode, umode_t mode) 2779{ 2780 return (inode->i_mode ^ mode) & S_IFMT; 2781} 2782 2783/** 2784 * file_start_write - get write access to a superblock for regular file io 2785 * @file: the file we want to write to 2786 * 2787 * This is a variant of sb_start_write() which is a noop on non-regualr file. 2788 * Should be matched with a call to file_end_write(). 2789 */ 2790static inline void file_start_write(struct file *file) 2791{ 2792 if (!S_ISREG(file_inode(file)->i_mode)) 2793 return; 2794 sb_start_write(file_inode(file)->i_sb); 2795} 2796 2797static inline bool file_start_write_trylock(struct file *file) 2798{ 2799 if (!S_ISREG(file_inode(file)->i_mode)) 2800 return true; 2801 return sb_start_write_trylock(file_inode(file)->i_sb); 2802} 2803 2804/** 2805 * file_end_write - drop write access to a superblock of a regular file 2806 * @file: the file we wrote to 2807 * 2808 * Should be matched with a call to file_start_write(). 2809 */ 2810static inline void file_end_write(struct file *file) 2811{ 2812 if (!S_ISREG(file_inode(file)->i_mode)) 2813 return; 2814 sb_end_write(file_inode(file)->i_sb); 2815} 2816 2817/** 2818 * kiocb_start_write - get write access to a superblock for async file io 2819 * @iocb: the io context we want to submit the write with 2820 * 2821 * This is a variant of sb_start_write() for async io submission. 2822 * Should be matched with a call to kiocb_end_write(). 2823 */ 2824static inline void kiocb_start_write(struct kiocb *iocb) 2825{ 2826 struct inode *inode = file_inode(iocb->ki_filp); 2827 2828 sb_start_write(inode->i_sb); 2829 /* 2830 * Fool lockdep by telling it the lock got released so that it 2831 * doesn't complain about the held lock when we return to userspace. 2832 */ 2833 __sb_writers_release(inode->i_sb, SB_FREEZE_WRITE); 2834} 2835 2836/** 2837 * kiocb_end_write - drop write access to a superblock after async file io 2838 * @iocb: the io context we sumbitted the write with 2839 * 2840 * Should be matched with a call to kiocb_start_write(). 2841 */ 2842static inline void kiocb_end_write(struct kiocb *iocb) 2843{ 2844 struct inode *inode = file_inode(iocb->ki_filp); 2845 2846 /* 2847 * Tell lockdep we inherited freeze protection from submission thread. 2848 */ 2849 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE); 2850 sb_end_write(inode->i_sb); 2851} 2852 2853/* 2854 * This is used for regular files where some users -- especially the 2855 * currently executed binary in a process, previously handled via 2856 * VM_DENYWRITE -- cannot handle concurrent write (and maybe mmap 2857 * read-write shared) accesses. 2858 * 2859 * get_write_access() gets write permission for a file. 2860 * put_write_access() releases this write permission. 2861 * deny_write_access() denies write access to a file. 2862 * allow_write_access() re-enables write access to a file. 2863 * 2864 * The i_writecount field of an inode can have the following values: 2865 * 0: no write access, no denied write access 2866 * < 0: (-i_writecount) users that denied write access to the file. 2867 * > 0: (i_writecount) users that have write access to the file. 2868 * 2869 * Normally we operate on that counter with atomic_{inc,dec} and it's safe 2870 * except for the cases where we don't hold i_writecount yet. Then we need to 2871 * use {get,deny}_write_access() - these functions check the sign and refuse 2872 * to do the change if sign is wrong. 2873 */ 2874static inline int get_write_access(struct inode *inode) 2875{ 2876 return atomic_inc_unless_negative(&inode->i_writecount) ? 0 : -ETXTBSY; 2877} 2878static inline int deny_write_access(struct file *file) 2879{ 2880 struct inode *inode = file_inode(file); 2881 return atomic_dec_unless_positive(&inode->i_writecount) ? 0 : -ETXTBSY; 2882} 2883static inline void put_write_access(struct inode * inode) 2884{ 2885 atomic_dec(&inode->i_writecount); 2886} 2887static inline void allow_write_access(struct file *file) 2888{ 2889 if (file) 2890 atomic_inc(&file_inode(file)->i_writecount); 2891} 2892static inline bool inode_is_open_for_write(const struct inode *inode) 2893{ 2894 return atomic_read(&inode->i_writecount) > 0; 2895} 2896 2897#if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING) 2898static inline void i_readcount_dec(struct inode *inode) 2899{ 2900 BUG_ON(atomic_dec_return(&inode->i_readcount) < 0); 2901} 2902static inline void i_readcount_inc(struct inode *inode) 2903{ 2904 atomic_inc(&inode->i_readcount); 2905} 2906#else 2907static inline void i_readcount_dec(struct inode *inode) 2908{ 2909 return; 2910} 2911static inline void i_readcount_inc(struct inode *inode) 2912{ 2913 return; 2914} 2915#endif 2916extern int do_pipe_flags(int *, int); 2917 2918extern ssize_t kernel_read(struct file *, void *, size_t, loff_t *); 2919ssize_t __kernel_read(struct file *file, void *buf, size_t count, loff_t *pos); 2920extern ssize_t kernel_write(struct file *, const void *, size_t, loff_t *); 2921extern ssize_t __kernel_write(struct file *, const void *, size_t, loff_t *); 2922extern struct file * open_exec(const char *); 2923 2924/* fs/dcache.c -- generic fs support functions */ 2925extern bool is_subdir(struct dentry *, struct dentry *); 2926extern bool path_is_under(const struct path *, const struct path *); 2927 2928extern char *file_path(struct file *, char *, int); 2929 2930#include <linux/err.h> 2931 2932/* needed for stackable file system support */ 2933extern loff_t default_llseek(struct file *file, loff_t offset, int whence); 2934 2935extern loff_t vfs_llseek(struct file *file, loff_t offset, int whence); 2936 2937extern int inode_init_always(struct super_block *, struct inode *); 2938extern void inode_init_once(struct inode *); 2939extern void address_space_init_once(struct address_space *mapping); 2940extern struct inode * igrab(struct inode *); 2941extern ino_t iunique(struct super_block *, ino_t); 2942extern int inode_needs_sync(struct inode *inode); 2943extern int generic_delete_inode(struct inode *inode); 2944static inline int generic_drop_inode(struct inode *inode) 2945{ 2946 return !inode->i_nlink || inode_unhashed(inode); 2947} 2948extern void d_mark_dontcache(struct inode *inode); 2949 2950extern struct inode *ilookup5_nowait(struct super_block *sb, 2951 unsigned long hashval, int (*test)(struct inode *, void *), 2952 void *data); 2953extern struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 2954 int (*test)(struct inode *, void *), void *data); 2955extern struct inode *ilookup(struct super_block *sb, unsigned long ino); 2956 2957extern struct inode *inode_insert5(struct inode *inode, unsigned long hashval, 2958 int (*test)(struct inode *, void *), 2959 int (*set)(struct inode *, void *), 2960 void *data); 2961extern struct inode * iget5_locked(struct super_block *, unsigned long, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *); 2962extern struct inode * iget_locked(struct super_block *, unsigned long); 2963extern struct inode *find_inode_nowait(struct super_block *, 2964 unsigned long, 2965 int (*match)(struct inode *, 2966 unsigned long, void *), 2967 void *data); 2968extern struct inode *find_inode_rcu(struct super_block *, unsigned long, 2969 int (*)(struct inode *, void *), void *); 2970extern struct inode *find_inode_by_ino_rcu(struct super_block *, unsigned long); 2971extern int insert_inode_locked4(struct inode *, unsigned long, int (*test)(struct inode *, void *), void *); 2972extern int insert_inode_locked(struct inode *); 2973#ifdef CONFIG_DEBUG_LOCK_ALLOC 2974extern void lockdep_annotate_inode_mutex_key(struct inode *inode); 2975#else 2976static inline void lockdep_annotate_inode_mutex_key(struct inode *inode) { }; 2977#endif 2978extern void unlock_new_inode(struct inode *); 2979extern void discard_new_inode(struct inode *); 2980extern unsigned int get_next_ino(void); 2981extern void evict_inodes(struct super_block *sb); 2982void dump_mapping(const struct address_space *); 2983 2984/* 2985 * Userspace may rely on the inode number being non-zero. For example, glibc 2986 * simply ignores files with zero i_ino in unlink() and other places. 2987 * 2988 * As an additional complication, if userspace was compiled with 2989 * _FILE_OFFSET_BITS=32 on a 64-bit kernel we'll only end up reading out the 2990 * lower 32 bits, so we need to check that those aren't zero explicitly. With 2991 * _FILE_OFFSET_BITS=64, this may cause some harmless false-negatives, but 2992 * better safe than sorry. 2993 */ 2994static inline bool is_zero_ino(ino_t ino) 2995{ 2996 return (u32)ino == 0; 2997} 2998 2999extern void __iget(struct inode * inode); 3000extern void iget_failed(struct inode *); 3001extern void clear_inode(struct inode *); 3002extern void __destroy_inode(struct inode *); 3003extern struct inode *new_inode_pseudo(struct super_block *sb); 3004extern struct inode *new_inode(struct super_block *sb); 3005extern void free_inode_nonrcu(struct inode *inode); 3006extern int setattr_should_drop_suidgid(struct mnt_idmap *, struct inode *); 3007extern int file_remove_privs(struct file *); 3008int setattr_should_drop_sgid(struct mnt_idmap *idmap, 3009 const struct inode *inode); 3010 3011/* 3012 * This must be used for allocating filesystems specific inodes to set 3013 * up the inode reclaim context correctly. 3014 */ 3015static inline void * 3016alloc_inode_sb(struct super_block *sb, struct kmem_cache *cache, gfp_t gfp) 3017{ 3018 return kmem_cache_alloc_lru(cache, &sb->s_inode_lru, gfp); 3019} 3020 3021extern void __insert_inode_hash(struct inode *, unsigned long hashval); 3022static inline void insert_inode_hash(struct inode *inode) 3023{ 3024 __insert_inode_hash(inode, inode->i_ino); 3025} 3026 3027extern void __remove_inode_hash(struct inode *); 3028static inline void remove_inode_hash(struct inode *inode) 3029{ 3030 if (!inode_unhashed(inode) && !hlist_fake(&inode->i_hash)) 3031 __remove_inode_hash(inode); 3032} 3033 3034extern void inode_sb_list_add(struct inode *inode); 3035extern void inode_add_lru(struct inode *inode); 3036 3037extern int sb_set_blocksize(struct super_block *, int); 3038extern int sb_min_blocksize(struct super_block *, int); 3039 3040extern int generic_file_mmap(struct file *, struct vm_area_struct *); 3041extern int generic_file_readonly_mmap(struct file *, struct vm_area_struct *); 3042extern ssize_t generic_write_checks(struct kiocb *, struct iov_iter *); 3043int generic_write_checks_count(struct kiocb *iocb, loff_t *count); 3044extern int generic_write_check_limits(struct file *file, loff_t pos, 3045 loff_t *count); 3046extern int generic_file_rw_checks(struct file *file_in, struct file *file_out); 3047ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *to, 3048 ssize_t already_read); 3049extern ssize_t generic_file_read_iter(struct kiocb *, struct iov_iter *); 3050extern ssize_t __generic_file_write_iter(struct kiocb *, struct iov_iter *); 3051extern ssize_t generic_file_write_iter(struct kiocb *, struct iov_iter *); 3052extern ssize_t generic_file_direct_write(struct kiocb *, struct iov_iter *); 3053ssize_t generic_perform_write(struct kiocb *, struct iov_iter *); 3054ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter, 3055 ssize_t direct_written, ssize_t buffered_written); 3056 3057ssize_t vfs_iter_read(struct file *file, struct iov_iter *iter, loff_t *ppos, 3058 rwf_t flags); 3059ssize_t vfs_iter_write(struct file *file, struct iov_iter *iter, loff_t *ppos, 3060 rwf_t flags); 3061ssize_t vfs_iocb_iter_read(struct file *file, struct kiocb *iocb, 3062 struct iov_iter *iter); 3063ssize_t vfs_iocb_iter_write(struct file *file, struct kiocb *iocb, 3064 struct iov_iter *iter); 3065 3066/* fs/splice.c */ 3067ssize_t filemap_splice_read(struct file *in, loff_t *ppos, 3068 struct pipe_inode_info *pipe, 3069 size_t len, unsigned int flags); 3070ssize_t copy_splice_read(struct file *in, loff_t *ppos, 3071 struct pipe_inode_info *pipe, 3072 size_t len, unsigned int flags); 3073extern ssize_t iter_file_splice_write(struct pipe_inode_info *, 3074 struct file *, loff_t *, size_t, unsigned int); 3075 3076 3077extern void 3078file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping); 3079extern loff_t noop_llseek(struct file *file, loff_t offset, int whence); 3080#define no_llseek NULL 3081extern loff_t vfs_setpos(struct file *file, loff_t offset, loff_t maxsize); 3082extern loff_t generic_file_llseek(struct file *file, loff_t offset, int whence); 3083extern loff_t generic_file_llseek_size(struct file *file, loff_t offset, 3084 int whence, loff_t maxsize, loff_t eof); 3085extern loff_t fixed_size_llseek(struct file *file, loff_t offset, 3086 int whence, loff_t size); 3087extern loff_t no_seek_end_llseek_size(struct file *, loff_t, int, loff_t); 3088extern loff_t no_seek_end_llseek(struct file *, loff_t, int); 3089int rw_verify_area(int, struct file *, const loff_t *, size_t); 3090extern int generic_file_open(struct inode * inode, struct file * filp); 3091extern int nonseekable_open(struct inode * inode, struct file * filp); 3092extern int stream_open(struct inode * inode, struct file * filp); 3093 3094#ifdef CONFIG_BLOCK 3095typedef void (dio_submit_t)(struct bio *bio, struct inode *inode, 3096 loff_t file_offset); 3097 3098enum { 3099 /* need locking between buffered and direct access */ 3100 DIO_LOCKING = 0x01, 3101 3102 /* filesystem does not support filling holes */ 3103 DIO_SKIP_HOLES = 0x02, 3104}; 3105 3106ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 3107 struct block_device *bdev, struct iov_iter *iter, 3108 get_block_t get_block, 3109 dio_iodone_t end_io, 3110 int flags); 3111 3112static inline ssize_t blockdev_direct_IO(struct kiocb *iocb, 3113 struct inode *inode, 3114 struct iov_iter *iter, 3115 get_block_t get_block) 3116{ 3117 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter, 3118 get_block, NULL, DIO_LOCKING | DIO_SKIP_HOLES); 3119} 3120#endif 3121 3122void inode_dio_wait(struct inode *inode); 3123 3124/** 3125 * inode_dio_begin - signal start of a direct I/O requests 3126 * @inode: inode the direct I/O happens on 3127 * 3128 * This is called once we've finished processing a direct I/O request, 3129 * and is used to wake up callers waiting for direct I/O to be quiesced. 3130 */ 3131static inline void inode_dio_begin(struct inode *inode) 3132{ 3133 atomic_inc(&inode->i_dio_count); 3134} 3135 3136/** 3137 * inode_dio_end - signal finish of a direct I/O requests 3138 * @inode: inode the direct I/O happens on 3139 * 3140 * This is called once we've finished processing a direct I/O request, 3141 * and is used to wake up callers waiting for direct I/O to be quiesced. 3142 */ 3143static inline void inode_dio_end(struct inode *inode) 3144{ 3145 if (atomic_dec_and_test(&inode->i_dio_count)) 3146 wake_up_bit(&inode->i_state, __I_DIO_WAKEUP); 3147} 3148 3149extern void inode_set_flags(struct inode *inode, unsigned int flags, 3150 unsigned int mask); 3151 3152extern const struct file_operations generic_ro_fops; 3153 3154#define special_file(m) (S_ISCHR(m)||S_ISBLK(m)||S_ISFIFO(m)||S_ISSOCK(m)) 3155 3156extern int readlink_copy(char __user *, int, const char *); 3157extern int page_readlink(struct dentry *, char __user *, int); 3158extern const char *page_get_link(struct dentry *, struct inode *, 3159 struct delayed_call *); 3160extern void page_put_link(void *); 3161extern int page_symlink(struct inode *inode, const char *symname, int len); 3162extern const struct inode_operations page_symlink_inode_operations; 3163extern void kfree_link(void *); 3164void generic_fillattr(struct mnt_idmap *, u32, struct inode *, struct kstat *); 3165void generic_fill_statx_attr(struct inode *inode, struct kstat *stat); 3166extern int vfs_getattr_nosec(const struct path *, struct kstat *, u32, unsigned int); 3167extern int vfs_getattr(const struct path *, struct kstat *, u32, unsigned int); 3168void __inode_add_bytes(struct inode *inode, loff_t bytes); 3169void inode_add_bytes(struct inode *inode, loff_t bytes); 3170void __inode_sub_bytes(struct inode *inode, loff_t bytes); 3171void inode_sub_bytes(struct inode *inode, loff_t bytes); 3172static inline loff_t __inode_get_bytes(struct inode *inode) 3173{ 3174 return (((loff_t)inode->i_blocks) << 9) + inode->i_bytes; 3175} 3176loff_t inode_get_bytes(struct inode *inode); 3177void inode_set_bytes(struct inode *inode, loff_t bytes); 3178const char *simple_get_link(struct dentry *, struct inode *, 3179 struct delayed_call *); 3180extern const struct inode_operations simple_symlink_inode_operations; 3181 3182extern int iterate_dir(struct file *, struct dir_context *); 3183 3184int vfs_fstatat(int dfd, const char __user *filename, struct kstat *stat, 3185 int flags); 3186int vfs_fstat(int fd, struct kstat *stat); 3187 3188static inline int vfs_stat(const char __user *filename, struct kstat *stat) 3189{ 3190 return vfs_fstatat(AT_FDCWD, filename, stat, 0); 3191} 3192static inline int vfs_lstat(const char __user *name, struct kstat *stat) 3193{ 3194 return vfs_fstatat(AT_FDCWD, name, stat, AT_SYMLINK_NOFOLLOW); 3195} 3196 3197extern const char *vfs_get_link(struct dentry *, struct delayed_call *); 3198extern int vfs_readlink(struct dentry *, char __user *, int); 3199 3200extern struct file_system_type *get_filesystem(struct file_system_type *fs); 3201extern void put_filesystem(struct file_system_type *fs); 3202extern struct file_system_type *get_fs_type(const char *name); 3203extern void drop_super(struct super_block *sb); 3204extern void drop_super_exclusive(struct super_block *sb); 3205extern void iterate_supers(void (*)(struct super_block *, void *), void *); 3206extern void iterate_supers_type(struct file_system_type *, 3207 void (*)(struct super_block *, void *), void *); 3208 3209extern int dcache_dir_open(struct inode *, struct file *); 3210extern int dcache_dir_close(struct inode *, struct file *); 3211extern loff_t dcache_dir_lseek(struct file *, loff_t, int); 3212extern int dcache_readdir(struct file *, struct dir_context *); 3213extern int simple_setattr(struct mnt_idmap *, struct dentry *, 3214 struct iattr *); 3215extern int simple_getattr(struct mnt_idmap *, const struct path *, 3216 struct kstat *, u32, unsigned int); 3217extern int simple_statfs(struct dentry *, struct kstatfs *); 3218extern int simple_open(struct inode *inode, struct file *file); 3219extern int simple_link(struct dentry *, struct inode *, struct dentry *); 3220extern int simple_unlink(struct inode *, struct dentry *); 3221extern int simple_rmdir(struct inode *, struct dentry *); 3222void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry, 3223 struct inode *new_dir, struct dentry *new_dentry); 3224extern int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry, 3225 struct inode *new_dir, struct dentry *new_dentry); 3226extern int simple_rename(struct mnt_idmap *, struct inode *, 3227 struct dentry *, struct inode *, struct dentry *, 3228 unsigned int); 3229extern void simple_recursive_removal(struct dentry *, 3230 void (*callback)(struct dentry *)); 3231extern int noop_fsync(struct file *, loff_t, loff_t, int); 3232extern ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter); 3233extern int simple_empty(struct dentry *); 3234extern int simple_write_begin(struct file *file, struct address_space *mapping, 3235 loff_t pos, unsigned len, 3236 struct page **pagep, void **fsdata); 3237extern const struct address_space_operations ram_aops; 3238extern int always_delete_dentry(const struct dentry *); 3239extern struct inode *alloc_anon_inode(struct super_block *); 3240extern int simple_nosetlease(struct file *, int, struct file_lock **, void **); 3241extern const struct dentry_operations simple_dentry_operations; 3242 3243extern struct dentry *simple_lookup(struct inode *, struct dentry *, unsigned int flags); 3244extern ssize_t generic_read_dir(struct file *, char __user *, size_t, loff_t *); 3245extern const struct file_operations simple_dir_operations; 3246extern const struct inode_operations simple_dir_inode_operations; 3247extern void make_empty_dir_inode(struct inode *inode); 3248extern bool is_empty_dir_inode(struct inode *inode); 3249struct tree_descr { const char *name; const struct file_operations *ops; int mode; }; 3250struct dentry *d_alloc_name(struct dentry *, const char *); 3251extern int simple_fill_super(struct super_block *, unsigned long, 3252 const struct tree_descr *); 3253extern int simple_pin_fs(struct file_system_type *, struct vfsmount **mount, int *count); 3254extern void simple_release_fs(struct vfsmount **mount, int *count); 3255 3256extern ssize_t simple_read_from_buffer(void __user *to, size_t count, 3257 loff_t *ppos, const void *from, size_t available); 3258extern ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, 3259 const void __user *from, size_t count); 3260 3261struct offset_ctx { 3262 struct xarray xa; 3263 u32 next_offset; 3264}; 3265 3266void simple_offset_init(struct offset_ctx *octx); 3267int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry); 3268void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry); 3269int simple_offset_rename_exchange(struct inode *old_dir, 3270 struct dentry *old_dentry, 3271 struct inode *new_dir, 3272 struct dentry *new_dentry); 3273void simple_offset_destroy(struct offset_ctx *octx); 3274 3275extern const struct file_operations simple_offset_dir_operations; 3276 3277extern int __generic_file_fsync(struct file *, loff_t, loff_t, int); 3278extern int generic_file_fsync(struct file *, loff_t, loff_t, int); 3279 3280extern int generic_check_addressable(unsigned, u64); 3281 3282extern void generic_set_encrypted_ci_d_ops(struct dentry *dentry); 3283 3284int may_setattr(struct mnt_idmap *idmap, struct inode *inode, 3285 unsigned int ia_valid); 3286int setattr_prepare(struct mnt_idmap *, struct dentry *, struct iattr *); 3287extern int inode_newsize_ok(const struct inode *, loff_t offset); 3288void setattr_copy(struct mnt_idmap *, struct inode *inode, 3289 const struct iattr *attr); 3290 3291extern int file_update_time(struct file *file); 3292 3293static inline bool vma_is_dax(const struct vm_area_struct *vma) 3294{ 3295 return vma->vm_file && IS_DAX(vma->vm_file->f_mapping->host); 3296} 3297 3298static inline bool vma_is_fsdax(struct vm_area_struct *vma) 3299{ 3300 struct inode *inode; 3301 3302 if (!IS_ENABLED(CONFIG_FS_DAX) || !vma->vm_file) 3303 return false; 3304 if (!vma_is_dax(vma)) 3305 return false; 3306 inode = file_inode(vma->vm_file); 3307 if (S_ISCHR(inode->i_mode)) 3308 return false; /* device-dax */ 3309 return true; 3310} 3311 3312static inline int iocb_flags(struct file *file) 3313{ 3314 int res = 0; 3315 if (file->f_flags & O_APPEND) 3316 res |= IOCB_APPEND; 3317 if (file->f_flags & O_DIRECT) 3318 res |= IOCB_DIRECT; 3319 if (file->f_flags & O_DSYNC) 3320 res |= IOCB_DSYNC; 3321 if (file->f_flags & __O_SYNC) 3322 res |= IOCB_SYNC; 3323 return res; 3324} 3325 3326static inline int kiocb_set_rw_flags(struct kiocb *ki, rwf_t flags) 3327{ 3328 int kiocb_flags = 0; 3329 3330 /* make sure there's no overlap between RWF and private IOCB flags */ 3331 BUILD_BUG_ON((__force int) RWF_SUPPORTED & IOCB_EVENTFD); 3332 3333 if (!flags) 3334 return 0; 3335 if (unlikely(flags & ~RWF_SUPPORTED)) 3336 return -EOPNOTSUPP; 3337 3338 if (flags & RWF_NOWAIT) { 3339 if (!(ki->ki_filp->f_mode & FMODE_NOWAIT)) 3340 return -EOPNOTSUPP; 3341 kiocb_flags |= IOCB_NOIO; 3342 } 3343 kiocb_flags |= (__force int) (flags & RWF_SUPPORTED); 3344 if (flags & RWF_SYNC) 3345 kiocb_flags |= IOCB_DSYNC; 3346 3347 ki->ki_flags |= kiocb_flags; 3348 return 0; 3349} 3350 3351static inline ino_t parent_ino(struct dentry *dentry) 3352{ 3353 ino_t res; 3354 3355 /* 3356 * Don't strictly need d_lock here? If the parent ino could change 3357 * then surely we'd have a deeper race in the caller? 3358 */ 3359 spin_lock(&dentry->d_lock); 3360 res = dentry->d_parent->d_inode->i_ino; 3361 spin_unlock(&dentry->d_lock); 3362 return res; 3363} 3364 3365/* Transaction based IO helpers */ 3366 3367/* 3368 * An argresp is stored in an allocated page and holds the 3369 * size of the argument or response, along with its content 3370 */ 3371struct simple_transaction_argresp { 3372 ssize_t size; 3373 char data[]; 3374}; 3375 3376#define SIMPLE_TRANSACTION_LIMIT (PAGE_SIZE - sizeof(struct simple_transaction_argresp)) 3377 3378char *simple_transaction_get(struct file *file, const char __user *buf, 3379 size_t size); 3380ssize_t simple_transaction_read(struct file *file, char __user *buf, 3381 size_t size, loff_t *pos); 3382int simple_transaction_release(struct inode *inode, struct file *file); 3383 3384void simple_transaction_set(struct file *file, size_t n); 3385 3386/* 3387 * simple attribute files 3388 * 3389 * These attributes behave similar to those in sysfs: 3390 * 3391 * Writing to an attribute immediately sets a value, an open file can be 3392 * written to multiple times. 3393 * 3394 * Reading from an attribute creates a buffer from the value that might get 3395 * read with multiple read calls. When the attribute has been read 3396 * completely, no further read calls are possible until the file is opened 3397 * again. 3398 * 3399 * All attributes contain a text representation of a numeric value 3400 * that are accessed with the get() and set() functions. 3401 */ 3402#define DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, __is_signed) \ 3403static int __fops ## _open(struct inode *inode, struct file *file) \ 3404{ \ 3405 __simple_attr_check_format(__fmt, 0ull); \ 3406 return simple_attr_open(inode, file, __get, __set, __fmt); \ 3407} \ 3408static const struct file_operations __fops = { \ 3409 .owner = THIS_MODULE, \ 3410 .open = __fops ## _open, \ 3411 .release = simple_attr_release, \ 3412 .read = simple_attr_read, \ 3413 .write = (__is_signed) ? simple_attr_write_signed : simple_attr_write, \ 3414 .llseek = generic_file_llseek, \ 3415} 3416 3417#define DEFINE_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt) \ 3418 DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, false) 3419 3420#define DEFINE_SIMPLE_ATTRIBUTE_SIGNED(__fops, __get, __set, __fmt) \ 3421 DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, true) 3422 3423static inline __printf(1, 2) 3424void __simple_attr_check_format(const char *fmt, ...) 3425{ 3426 /* don't do anything, just let the compiler check the arguments; */ 3427} 3428 3429int simple_attr_open(struct inode *inode, struct file *file, 3430 int (*get)(void *, u64 *), int (*set)(void *, u64), 3431 const char *fmt); 3432int simple_attr_release(struct inode *inode, struct file *file); 3433ssize_t simple_attr_read(struct file *file, char __user *buf, 3434 size_t len, loff_t *ppos); 3435ssize_t simple_attr_write(struct file *file, const char __user *buf, 3436 size_t len, loff_t *ppos); 3437ssize_t simple_attr_write_signed(struct file *file, const char __user *buf, 3438 size_t len, loff_t *ppos); 3439 3440struct ctl_table; 3441int __init list_bdev_fs_names(char *buf, size_t size); 3442 3443#define __FMODE_EXEC ((__force int) FMODE_EXEC) 3444#define __FMODE_NONOTIFY ((__force int) FMODE_NONOTIFY) 3445 3446#define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE]) 3447#define OPEN_FMODE(flag) ((__force fmode_t)(((flag + 1) & O_ACCMODE) | \ 3448 (flag & __FMODE_NONOTIFY))) 3449 3450static inline bool is_sxid(umode_t mode) 3451{ 3452 return mode & (S_ISUID | S_ISGID); 3453} 3454 3455static inline int check_sticky(struct mnt_idmap *idmap, 3456 struct inode *dir, struct inode *inode) 3457{ 3458 if (!(dir->i_mode & S_ISVTX)) 3459 return 0; 3460 3461 return __check_sticky(idmap, dir, inode); 3462} 3463 3464static inline void inode_has_no_xattr(struct inode *inode) 3465{ 3466 if (!is_sxid(inode->i_mode) && (inode->i_sb->s_flags & SB_NOSEC)) 3467 inode->i_flags |= S_NOSEC; 3468} 3469 3470static inline bool is_root_inode(struct inode *inode) 3471{ 3472 return inode == inode->i_sb->s_root->d_inode; 3473} 3474 3475static inline bool dir_emit(struct dir_context *ctx, 3476 const char *name, int namelen, 3477 u64 ino, unsigned type) 3478{ 3479 return ctx->actor(ctx, name, namelen, ctx->pos, ino, type); 3480} 3481static inline bool dir_emit_dot(struct file *file, struct dir_context *ctx) 3482{ 3483 return ctx->actor(ctx, ".", 1, ctx->pos, 3484 file->f_path.dentry->d_inode->i_ino, DT_DIR); 3485} 3486static inline bool dir_emit_dotdot(struct file *file, struct dir_context *ctx) 3487{ 3488 return ctx->actor(ctx, "..", 2, ctx->pos, 3489 parent_ino(file->f_path.dentry), DT_DIR); 3490} 3491static inline bool dir_emit_dots(struct file *file, struct dir_context *ctx) 3492{ 3493 if (ctx->pos == 0) { 3494 if (!dir_emit_dot(file, ctx)) 3495 return false; 3496 ctx->pos = 1; 3497 } 3498 if (ctx->pos == 1) { 3499 if (!dir_emit_dotdot(file, ctx)) 3500 return false; 3501 ctx->pos = 2; 3502 } 3503 return true; 3504} 3505static inline bool dir_relax(struct inode *inode) 3506{ 3507 inode_unlock(inode); 3508 inode_lock(inode); 3509 return !IS_DEADDIR(inode); 3510} 3511 3512static inline bool dir_relax_shared(struct inode *inode) 3513{ 3514 inode_unlock_shared(inode); 3515 inode_lock_shared(inode); 3516 return !IS_DEADDIR(inode); 3517} 3518 3519extern bool path_noexec(const struct path *path); 3520extern void inode_nohighmem(struct inode *inode); 3521 3522/* mm/fadvise.c */ 3523extern int vfs_fadvise(struct file *file, loff_t offset, loff_t len, 3524 int advice); 3525extern int generic_fadvise(struct file *file, loff_t offset, loff_t len, 3526 int advice); 3527 3528#endif /* _LINUX_FS_H */