Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * Copyright (C) 2012 Regents of the University of California
4 */
5
6#ifndef _ASM_RISCV_PGTABLE_H
7#define _ASM_RISCV_PGTABLE_H
8
9#include <linux/mmzone.h>
10#include <linux/sizes.h>
11
12#include <asm/pgtable-bits.h>
13
14#ifndef CONFIG_MMU
15#define KERNEL_LINK_ADDR PAGE_OFFSET
16#define KERN_VIRT_SIZE (UL(-1))
17#else
18
19#define ADDRESS_SPACE_END (UL(-1))
20
21#ifdef CONFIG_64BIT
22/* Leave 2GB for kernel and BPF at the end of the address space */
23#define KERNEL_LINK_ADDR (ADDRESS_SPACE_END - SZ_2G + 1)
24#else
25#define KERNEL_LINK_ADDR PAGE_OFFSET
26#endif
27
28/* Number of entries in the page global directory */
29#define PTRS_PER_PGD (PAGE_SIZE / sizeof(pgd_t))
30/* Number of entries in the page table */
31#define PTRS_PER_PTE (PAGE_SIZE / sizeof(pte_t))
32
33/*
34 * Half of the kernel address space (1/4 of the entries of the page global
35 * directory) is for the direct mapping.
36 */
37#define KERN_VIRT_SIZE ((PTRS_PER_PGD / 2 * PGDIR_SIZE) / 2)
38
39#define VMALLOC_SIZE (KERN_VIRT_SIZE >> 1)
40#define VMALLOC_END PAGE_OFFSET
41#define VMALLOC_START (PAGE_OFFSET - VMALLOC_SIZE)
42
43#define BPF_JIT_REGION_SIZE (SZ_128M)
44#ifdef CONFIG_64BIT
45#define BPF_JIT_REGION_START (BPF_JIT_REGION_END - BPF_JIT_REGION_SIZE)
46#define BPF_JIT_REGION_END (MODULES_END)
47#else
48#define BPF_JIT_REGION_START (PAGE_OFFSET - BPF_JIT_REGION_SIZE)
49#define BPF_JIT_REGION_END (VMALLOC_END)
50#endif
51
52/* Modules always live before the kernel */
53#ifdef CONFIG_64BIT
54/* This is used to define the end of the KASAN shadow region */
55#define MODULES_LOWEST_VADDR (KERNEL_LINK_ADDR - SZ_2G)
56#define MODULES_VADDR (PFN_ALIGN((unsigned long)&_end) - SZ_2G)
57#define MODULES_END (PFN_ALIGN((unsigned long)&_start))
58#endif
59
60/*
61 * Roughly size the vmemmap space to be large enough to fit enough
62 * struct pages to map half the virtual address space. Then
63 * position vmemmap directly below the VMALLOC region.
64 */
65#define VA_BITS_SV32 32
66#ifdef CONFIG_64BIT
67#define VA_BITS_SV39 39
68#define VA_BITS_SV48 48
69#define VA_BITS_SV57 57
70
71#define VA_BITS (pgtable_l5_enabled ? \
72 VA_BITS_SV57 : (pgtable_l4_enabled ? VA_BITS_SV48 : VA_BITS_SV39))
73#else
74#define VA_BITS VA_BITS_SV32
75#endif
76
77#define VMEMMAP_SHIFT \
78 (VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT)
79#define VMEMMAP_SIZE BIT(VMEMMAP_SHIFT)
80#define VMEMMAP_END VMALLOC_START
81#define VMEMMAP_START (VMALLOC_START - VMEMMAP_SIZE)
82
83/*
84 * Define vmemmap for pfn_to_page & page_to_pfn calls. Needed if kernel
85 * is configured with CONFIG_SPARSEMEM_VMEMMAP enabled.
86 */
87#define vmemmap ((struct page *)VMEMMAP_START - (phys_ram_base >> PAGE_SHIFT))
88
89#define PCI_IO_SIZE SZ_16M
90#define PCI_IO_END VMEMMAP_START
91#define PCI_IO_START (PCI_IO_END - PCI_IO_SIZE)
92
93#define FIXADDR_TOP PCI_IO_START
94#ifdef CONFIG_64BIT
95#define MAX_FDT_SIZE PMD_SIZE
96#define FIX_FDT_SIZE (MAX_FDT_SIZE + SZ_2M)
97#define FIXADDR_SIZE (PMD_SIZE + FIX_FDT_SIZE)
98#else
99#define MAX_FDT_SIZE PGDIR_SIZE
100#define FIX_FDT_SIZE MAX_FDT_SIZE
101#define FIXADDR_SIZE (PGDIR_SIZE + FIX_FDT_SIZE)
102#endif
103#define FIXADDR_START (FIXADDR_TOP - FIXADDR_SIZE)
104
105#endif
106
107#ifdef CONFIG_XIP_KERNEL
108#define XIP_OFFSET SZ_32M
109#define XIP_OFFSET_MASK (SZ_32M - 1)
110#else
111#define XIP_OFFSET 0
112#endif
113
114#ifndef __ASSEMBLY__
115
116#include <asm/page.h>
117#include <asm/tlbflush.h>
118#include <linux/mm_types.h>
119#include <asm/compat.h>
120
121#define __page_val_to_pfn(_val) (((_val) & _PAGE_PFN_MASK) >> _PAGE_PFN_SHIFT)
122
123#ifdef CONFIG_64BIT
124#include <asm/pgtable-64.h>
125
126#define VA_USER_SV39 (UL(1) << (VA_BITS_SV39 - 1))
127#define VA_USER_SV48 (UL(1) << (VA_BITS_SV48 - 1))
128#define VA_USER_SV57 (UL(1) << (VA_BITS_SV57 - 1))
129
130#ifdef CONFIG_COMPAT
131#define MMAP_VA_BITS_64 ((VA_BITS >= VA_BITS_SV48) ? VA_BITS_SV48 : VA_BITS)
132#define MMAP_MIN_VA_BITS_64 (VA_BITS_SV39)
133#define MMAP_VA_BITS (is_compat_task() ? VA_BITS_SV32 : MMAP_VA_BITS_64)
134#define MMAP_MIN_VA_BITS (is_compat_task() ? VA_BITS_SV32 : MMAP_MIN_VA_BITS_64)
135#else
136#define MMAP_VA_BITS ((VA_BITS >= VA_BITS_SV48) ? VA_BITS_SV48 : VA_BITS)
137#define MMAP_MIN_VA_BITS (VA_BITS_SV39)
138#endif /* CONFIG_COMPAT */
139
140#else
141#include <asm/pgtable-32.h>
142#endif /* CONFIG_64BIT */
143
144#include <linux/page_table_check.h>
145
146#ifdef CONFIG_XIP_KERNEL
147#define XIP_FIXUP(addr) ({ \
148 uintptr_t __a = (uintptr_t)(addr); \
149 (__a >= CONFIG_XIP_PHYS_ADDR && \
150 __a < CONFIG_XIP_PHYS_ADDR + XIP_OFFSET * 2) ? \
151 __a - CONFIG_XIP_PHYS_ADDR + CONFIG_PHYS_RAM_BASE - XIP_OFFSET :\
152 __a; \
153 })
154#else
155#define XIP_FIXUP(addr) (addr)
156#endif /* CONFIG_XIP_KERNEL */
157
158struct pt_alloc_ops {
159 pte_t *(*get_pte_virt)(phys_addr_t pa);
160 phys_addr_t (*alloc_pte)(uintptr_t va);
161#ifndef __PAGETABLE_PMD_FOLDED
162 pmd_t *(*get_pmd_virt)(phys_addr_t pa);
163 phys_addr_t (*alloc_pmd)(uintptr_t va);
164 pud_t *(*get_pud_virt)(phys_addr_t pa);
165 phys_addr_t (*alloc_pud)(uintptr_t va);
166 p4d_t *(*get_p4d_virt)(phys_addr_t pa);
167 phys_addr_t (*alloc_p4d)(uintptr_t va);
168#endif
169};
170
171extern struct pt_alloc_ops pt_ops __initdata;
172
173#ifdef CONFIG_MMU
174/* Number of PGD entries that a user-mode program can use */
175#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
176
177/* Page protection bits */
178#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER)
179
180#define PAGE_NONE __pgprot(_PAGE_PROT_NONE | _PAGE_READ)
181#define PAGE_READ __pgprot(_PAGE_BASE | _PAGE_READ)
182#define PAGE_WRITE __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE)
183#define PAGE_EXEC __pgprot(_PAGE_BASE | _PAGE_EXEC)
184#define PAGE_READ_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
185#define PAGE_WRITE_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | \
186 _PAGE_EXEC | _PAGE_WRITE)
187
188#define PAGE_COPY PAGE_READ
189#define PAGE_COPY_EXEC PAGE_READ_EXEC
190#define PAGE_SHARED PAGE_WRITE
191#define PAGE_SHARED_EXEC PAGE_WRITE_EXEC
192
193#define _PAGE_KERNEL (_PAGE_READ \
194 | _PAGE_WRITE \
195 | _PAGE_PRESENT \
196 | _PAGE_ACCESSED \
197 | _PAGE_DIRTY \
198 | _PAGE_GLOBAL)
199
200#define PAGE_KERNEL __pgprot(_PAGE_KERNEL)
201#define PAGE_KERNEL_READ __pgprot(_PAGE_KERNEL & ~_PAGE_WRITE)
202#define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL | _PAGE_EXEC)
203#define PAGE_KERNEL_READ_EXEC __pgprot((_PAGE_KERNEL & ~_PAGE_WRITE) \
204 | _PAGE_EXEC)
205
206#define PAGE_TABLE __pgprot(_PAGE_TABLE)
207
208#define _PAGE_IOREMAP ((_PAGE_KERNEL & ~_PAGE_MTMASK) | _PAGE_IO)
209#define PAGE_KERNEL_IO __pgprot(_PAGE_IOREMAP)
210
211extern pgd_t swapper_pg_dir[];
212extern pgd_t trampoline_pg_dir[];
213extern pgd_t early_pg_dir[];
214
215#ifdef CONFIG_TRANSPARENT_HUGEPAGE
216static inline int pmd_present(pmd_t pmd)
217{
218 /*
219 * Checking for _PAGE_LEAF is needed too because:
220 * When splitting a THP, split_huge_page() will temporarily clear
221 * the present bit, in this situation, pmd_present() and
222 * pmd_trans_huge() still needs to return true.
223 */
224 return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE | _PAGE_LEAF));
225}
226#else
227static inline int pmd_present(pmd_t pmd)
228{
229 return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
230}
231#endif
232
233static inline int pmd_none(pmd_t pmd)
234{
235 return (pmd_val(pmd) == 0);
236}
237
238static inline int pmd_bad(pmd_t pmd)
239{
240 return !pmd_present(pmd) || (pmd_val(pmd) & _PAGE_LEAF);
241}
242
243#define pmd_leaf pmd_leaf
244static inline int pmd_leaf(pmd_t pmd)
245{
246 return pmd_present(pmd) && (pmd_val(pmd) & _PAGE_LEAF);
247}
248
249static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
250{
251 WRITE_ONCE(*pmdp, pmd);
252}
253
254static inline void pmd_clear(pmd_t *pmdp)
255{
256 set_pmd(pmdp, __pmd(0));
257}
258
259static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot)
260{
261 unsigned long prot_val = pgprot_val(prot);
262
263 ALT_THEAD_PMA(prot_val);
264
265 return __pgd((pfn << _PAGE_PFN_SHIFT) | prot_val);
266}
267
268static inline unsigned long _pgd_pfn(pgd_t pgd)
269{
270 return __page_val_to_pfn(pgd_val(pgd));
271}
272
273static inline struct page *pmd_page(pmd_t pmd)
274{
275 return pfn_to_page(__page_val_to_pfn(pmd_val(pmd)));
276}
277
278static inline unsigned long pmd_page_vaddr(pmd_t pmd)
279{
280 return (unsigned long)pfn_to_virt(__page_val_to_pfn(pmd_val(pmd)));
281}
282
283static inline pte_t pmd_pte(pmd_t pmd)
284{
285 return __pte(pmd_val(pmd));
286}
287
288static inline pte_t pud_pte(pud_t pud)
289{
290 return __pte(pud_val(pud));
291}
292
293#ifdef CONFIG_RISCV_ISA_SVNAPOT
294#include <asm/cpufeature.h>
295
296static __always_inline bool has_svnapot(void)
297{
298 return riscv_has_extension_likely(RISCV_ISA_EXT_SVNAPOT);
299}
300
301static inline unsigned long pte_napot(pte_t pte)
302{
303 return pte_val(pte) & _PAGE_NAPOT;
304}
305
306static inline pte_t pte_mknapot(pte_t pte, unsigned int order)
307{
308 int pos = order - 1 + _PAGE_PFN_SHIFT;
309 unsigned long napot_bit = BIT(pos);
310 unsigned long napot_mask = ~GENMASK(pos, _PAGE_PFN_SHIFT);
311
312 return __pte((pte_val(pte) & napot_mask) | napot_bit | _PAGE_NAPOT);
313}
314
315#else
316
317static __always_inline bool has_svnapot(void) { return false; }
318
319static inline unsigned long pte_napot(pte_t pte)
320{
321 return 0;
322}
323
324#endif /* CONFIG_RISCV_ISA_SVNAPOT */
325
326/* Yields the page frame number (PFN) of a page table entry */
327static inline unsigned long pte_pfn(pte_t pte)
328{
329 unsigned long res = __page_val_to_pfn(pte_val(pte));
330
331 if (has_svnapot() && pte_napot(pte))
332 res = res & (res - 1UL);
333
334 return res;
335}
336
337#define pte_page(x) pfn_to_page(pte_pfn(x))
338
339/* Constructs a page table entry */
340static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot)
341{
342 unsigned long prot_val = pgprot_val(prot);
343
344 ALT_THEAD_PMA(prot_val);
345
346 return __pte((pfn << _PAGE_PFN_SHIFT) | prot_val);
347}
348
349#define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot)
350
351static inline int pte_present(pte_t pte)
352{
353 return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
354}
355
356static inline int pte_none(pte_t pte)
357{
358 return (pte_val(pte) == 0);
359}
360
361static inline int pte_write(pte_t pte)
362{
363 return pte_val(pte) & _PAGE_WRITE;
364}
365
366static inline int pte_exec(pte_t pte)
367{
368 return pte_val(pte) & _PAGE_EXEC;
369}
370
371static inline int pte_user(pte_t pte)
372{
373 return pte_val(pte) & _PAGE_USER;
374}
375
376static inline int pte_huge(pte_t pte)
377{
378 return pte_present(pte) && (pte_val(pte) & _PAGE_LEAF);
379}
380
381static inline int pte_dirty(pte_t pte)
382{
383 return pte_val(pte) & _PAGE_DIRTY;
384}
385
386static inline int pte_young(pte_t pte)
387{
388 return pte_val(pte) & _PAGE_ACCESSED;
389}
390
391static inline int pte_special(pte_t pte)
392{
393 return pte_val(pte) & _PAGE_SPECIAL;
394}
395
396/* static inline pte_t pte_rdprotect(pte_t pte) */
397
398static inline pte_t pte_wrprotect(pte_t pte)
399{
400 return __pte(pte_val(pte) & ~(_PAGE_WRITE));
401}
402
403/* static inline pte_t pte_mkread(pte_t pte) */
404
405static inline pte_t pte_mkwrite_novma(pte_t pte)
406{
407 return __pte(pte_val(pte) | _PAGE_WRITE);
408}
409
410/* static inline pte_t pte_mkexec(pte_t pte) */
411
412static inline pte_t pte_mkdirty(pte_t pte)
413{
414 return __pte(pte_val(pte) | _PAGE_DIRTY);
415}
416
417static inline pte_t pte_mkclean(pte_t pte)
418{
419 return __pte(pte_val(pte) & ~(_PAGE_DIRTY));
420}
421
422static inline pte_t pte_mkyoung(pte_t pte)
423{
424 return __pte(pte_val(pte) | _PAGE_ACCESSED);
425}
426
427static inline pte_t pte_mkold(pte_t pte)
428{
429 return __pte(pte_val(pte) & ~(_PAGE_ACCESSED));
430}
431
432static inline pte_t pte_mkspecial(pte_t pte)
433{
434 return __pte(pte_val(pte) | _PAGE_SPECIAL);
435}
436
437static inline pte_t pte_mkhuge(pte_t pte)
438{
439 return pte;
440}
441
442#define pte_leaf_size(pte) (pte_napot(pte) ? \
443 napot_cont_size(napot_cont_order(pte)) :\
444 PAGE_SIZE)
445
446#ifdef CONFIG_NUMA_BALANCING
447/*
448 * See the comment in include/asm-generic/pgtable.h
449 */
450static inline int pte_protnone(pte_t pte)
451{
452 return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)) == _PAGE_PROT_NONE;
453}
454
455static inline int pmd_protnone(pmd_t pmd)
456{
457 return pte_protnone(pmd_pte(pmd));
458}
459#endif
460
461/* Modify page protection bits */
462static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
463{
464 unsigned long newprot_val = pgprot_val(newprot);
465
466 ALT_THEAD_PMA(newprot_val);
467
468 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | newprot_val);
469}
470
471#define pgd_ERROR(e) \
472 pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e))
473
474
475/* Commit new configuration to MMU hardware */
476static inline void update_mmu_cache_range(struct vm_fault *vmf,
477 struct vm_area_struct *vma, unsigned long address,
478 pte_t *ptep, unsigned int nr)
479{
480 /*
481 * The kernel assumes that TLBs don't cache invalid entries, but
482 * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a
483 * cache flush; it is necessary even after writing invalid entries.
484 * Relying on flush_tlb_fix_spurious_fault would suffice, but
485 * the extra traps reduce performance. So, eagerly SFENCE.VMA.
486 */
487 while (nr--)
488 local_flush_tlb_page(address + nr * PAGE_SIZE);
489}
490#define update_mmu_cache(vma, addr, ptep) \
491 update_mmu_cache_range(NULL, vma, addr, ptep, 1)
492
493#define __HAVE_ARCH_UPDATE_MMU_TLB
494#define update_mmu_tlb update_mmu_cache
495
496static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
497 unsigned long address, pmd_t *pmdp)
498{
499 pte_t *ptep = (pte_t *)pmdp;
500
501 update_mmu_cache(vma, address, ptep);
502}
503
504#define __HAVE_ARCH_PTE_SAME
505static inline int pte_same(pte_t pte_a, pte_t pte_b)
506{
507 return pte_val(pte_a) == pte_val(pte_b);
508}
509
510/*
511 * Certain architectures need to do special things when PTEs within
512 * a page table are directly modified. Thus, the following hook is
513 * made available.
514 */
515static inline void set_pte(pte_t *ptep, pte_t pteval)
516{
517 WRITE_ONCE(*ptep, pteval);
518}
519
520void flush_icache_pte(pte_t pte);
521
522static inline void __set_pte_at(pte_t *ptep, pte_t pteval)
523{
524 if (pte_present(pteval) && pte_exec(pteval))
525 flush_icache_pte(pteval);
526
527 set_pte(ptep, pteval);
528}
529
530static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
531 pte_t *ptep, pte_t pteval, unsigned int nr)
532{
533 page_table_check_ptes_set(mm, ptep, pteval, nr);
534
535 for (;;) {
536 __set_pte_at(ptep, pteval);
537 if (--nr == 0)
538 break;
539 ptep++;
540 pte_val(pteval) += 1 << _PAGE_PFN_SHIFT;
541 }
542}
543#define set_ptes set_ptes
544
545static inline void pte_clear(struct mm_struct *mm,
546 unsigned long addr, pte_t *ptep)
547{
548 __set_pte_at(ptep, __pte(0));
549}
550
551#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS /* defined in mm/pgtable.c */
552extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
553 pte_t *ptep, pte_t entry, int dirty);
554#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG /* defined in mm/pgtable.c */
555extern int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long address,
556 pte_t *ptep);
557
558#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
559static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
560 unsigned long address, pte_t *ptep)
561{
562 pte_t pte = __pte(atomic_long_xchg((atomic_long_t *)ptep, 0));
563
564 page_table_check_pte_clear(mm, pte);
565
566 return pte;
567}
568
569#define __HAVE_ARCH_PTEP_SET_WRPROTECT
570static inline void ptep_set_wrprotect(struct mm_struct *mm,
571 unsigned long address, pte_t *ptep)
572{
573 atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep);
574}
575
576#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
577static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
578 unsigned long address, pte_t *ptep)
579{
580 /*
581 * This comment is borrowed from x86, but applies equally to RISC-V:
582 *
583 * Clearing the accessed bit without a TLB flush
584 * doesn't cause data corruption. [ It could cause incorrect
585 * page aging and the (mistaken) reclaim of hot pages, but the
586 * chance of that should be relatively low. ]
587 *
588 * So as a performance optimization don't flush the TLB when
589 * clearing the accessed bit, it will eventually be flushed by
590 * a context switch or a VM operation anyway. [ In the rare
591 * event of it not getting flushed for a long time the delay
592 * shouldn't really matter because there's no real memory
593 * pressure for swapout to react to. ]
594 */
595 return ptep_test_and_clear_young(vma, address, ptep);
596}
597
598#define pgprot_noncached pgprot_noncached
599static inline pgprot_t pgprot_noncached(pgprot_t _prot)
600{
601 unsigned long prot = pgprot_val(_prot);
602
603 prot &= ~_PAGE_MTMASK;
604 prot |= _PAGE_IO;
605
606 return __pgprot(prot);
607}
608
609#define pgprot_writecombine pgprot_writecombine
610static inline pgprot_t pgprot_writecombine(pgprot_t _prot)
611{
612 unsigned long prot = pgprot_val(_prot);
613
614 prot &= ~_PAGE_MTMASK;
615 prot |= _PAGE_NOCACHE;
616
617 return __pgprot(prot);
618}
619
620/*
621 * THP functions
622 */
623static inline pmd_t pte_pmd(pte_t pte)
624{
625 return __pmd(pte_val(pte));
626}
627
628static inline pmd_t pmd_mkhuge(pmd_t pmd)
629{
630 return pmd;
631}
632
633static inline pmd_t pmd_mkinvalid(pmd_t pmd)
634{
635 return __pmd(pmd_val(pmd) & ~(_PAGE_PRESENT|_PAGE_PROT_NONE));
636}
637
638#define __pmd_to_phys(pmd) (__page_val_to_pfn(pmd_val(pmd)) << PAGE_SHIFT)
639
640static inline unsigned long pmd_pfn(pmd_t pmd)
641{
642 return ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT);
643}
644
645#define __pud_to_phys(pud) (__page_val_to_pfn(pud_val(pud)) << PAGE_SHIFT)
646
647static inline unsigned long pud_pfn(pud_t pud)
648{
649 return ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT);
650}
651
652static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
653{
654 return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
655}
656
657#define pmd_write pmd_write
658static inline int pmd_write(pmd_t pmd)
659{
660 return pte_write(pmd_pte(pmd));
661}
662
663#define pmd_dirty pmd_dirty
664static inline int pmd_dirty(pmd_t pmd)
665{
666 return pte_dirty(pmd_pte(pmd));
667}
668
669#define pmd_young pmd_young
670static inline int pmd_young(pmd_t pmd)
671{
672 return pte_young(pmd_pte(pmd));
673}
674
675static inline int pmd_user(pmd_t pmd)
676{
677 return pte_user(pmd_pte(pmd));
678}
679
680static inline pmd_t pmd_mkold(pmd_t pmd)
681{
682 return pte_pmd(pte_mkold(pmd_pte(pmd)));
683}
684
685static inline pmd_t pmd_mkyoung(pmd_t pmd)
686{
687 return pte_pmd(pte_mkyoung(pmd_pte(pmd)));
688}
689
690static inline pmd_t pmd_mkwrite_novma(pmd_t pmd)
691{
692 return pte_pmd(pte_mkwrite_novma(pmd_pte(pmd)));
693}
694
695static inline pmd_t pmd_wrprotect(pmd_t pmd)
696{
697 return pte_pmd(pte_wrprotect(pmd_pte(pmd)));
698}
699
700static inline pmd_t pmd_mkclean(pmd_t pmd)
701{
702 return pte_pmd(pte_mkclean(pmd_pte(pmd)));
703}
704
705static inline pmd_t pmd_mkdirty(pmd_t pmd)
706{
707 return pte_pmd(pte_mkdirty(pmd_pte(pmd)));
708}
709
710static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
711 pmd_t *pmdp, pmd_t pmd)
712{
713 page_table_check_pmd_set(mm, pmdp, pmd);
714 return __set_pte_at((pte_t *)pmdp, pmd_pte(pmd));
715}
716
717static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
718 pud_t *pudp, pud_t pud)
719{
720 page_table_check_pud_set(mm, pudp, pud);
721 return __set_pte_at((pte_t *)pudp, pud_pte(pud));
722}
723
724#ifdef CONFIG_PAGE_TABLE_CHECK
725static inline bool pte_user_accessible_page(pte_t pte)
726{
727 return pte_present(pte) && pte_user(pte);
728}
729
730static inline bool pmd_user_accessible_page(pmd_t pmd)
731{
732 return pmd_leaf(pmd) && pmd_user(pmd);
733}
734
735static inline bool pud_user_accessible_page(pud_t pud)
736{
737 return pud_leaf(pud) && pud_user(pud);
738}
739#endif
740
741#ifdef CONFIG_TRANSPARENT_HUGEPAGE
742static inline int pmd_trans_huge(pmd_t pmd)
743{
744 return pmd_leaf(pmd);
745}
746
747#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
748static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
749 unsigned long address, pmd_t *pmdp,
750 pmd_t entry, int dirty)
751{
752 return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty);
753}
754
755#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
756static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
757 unsigned long address, pmd_t *pmdp)
758{
759 return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
760}
761
762#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
763static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
764 unsigned long address, pmd_t *pmdp)
765{
766 pmd_t pmd = __pmd(atomic_long_xchg((atomic_long_t *)pmdp, 0));
767
768 page_table_check_pmd_clear(mm, pmd);
769
770 return pmd;
771}
772
773#define __HAVE_ARCH_PMDP_SET_WRPROTECT
774static inline void pmdp_set_wrprotect(struct mm_struct *mm,
775 unsigned long address, pmd_t *pmdp)
776{
777 ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
778}
779
780#define pmdp_establish pmdp_establish
781static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
782 unsigned long address, pmd_t *pmdp, pmd_t pmd)
783{
784 page_table_check_pmd_set(vma->vm_mm, pmdp, pmd);
785 return __pmd(atomic_long_xchg((atomic_long_t *)pmdp, pmd_val(pmd)));
786}
787
788#define pmdp_collapse_flush pmdp_collapse_flush
789extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
790 unsigned long address, pmd_t *pmdp);
791#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
792
793/*
794 * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
795 * are !pte_none() && !pte_present().
796 *
797 * Format of swap PTE:
798 * bit 0: _PAGE_PRESENT (zero)
799 * bit 1 to 3: _PAGE_LEAF (zero)
800 * bit 5: _PAGE_PROT_NONE (zero)
801 * bit 6: exclusive marker
802 * bits 7 to 11: swap type
803 * bits 12 to XLEN-1: swap offset
804 */
805#define __SWP_TYPE_SHIFT 7
806#define __SWP_TYPE_BITS 5
807#define __SWP_TYPE_MASK ((1UL << __SWP_TYPE_BITS) - 1)
808#define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
809
810#define MAX_SWAPFILES_CHECK() \
811 BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
812
813#define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
814#define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT)
815#define __swp_entry(type, offset) ((swp_entry_t) \
816 { (((type) & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT) | \
817 ((offset) << __SWP_OFFSET_SHIFT) })
818
819#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
820#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
821
822static inline int pte_swp_exclusive(pte_t pte)
823{
824 return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
825}
826
827static inline pte_t pte_swp_mkexclusive(pte_t pte)
828{
829 return __pte(pte_val(pte) | _PAGE_SWP_EXCLUSIVE);
830}
831
832static inline pte_t pte_swp_clear_exclusive(pte_t pte)
833{
834 return __pte(pte_val(pte) & ~_PAGE_SWP_EXCLUSIVE);
835}
836
837#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
838#define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) })
839#define __swp_entry_to_pmd(swp) __pmd((swp).val)
840#endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
841
842/*
843 * In the RV64 Linux scheme, we give the user half of the virtual-address space
844 * and give the kernel the other (upper) half.
845 */
846#ifdef CONFIG_64BIT
847#define KERN_VIRT_START (-(BIT(VA_BITS)) + TASK_SIZE)
848#else
849#define KERN_VIRT_START FIXADDR_START
850#endif
851
852/*
853 * Task size is 0x4000000000 for RV64 or 0x9fc00000 for RV32.
854 * Note that PGDIR_SIZE must evenly divide TASK_SIZE.
855 * Task size is:
856 * - 0x9fc00000 (~2.5GB) for RV32.
857 * - 0x4000000000 ( 256GB) for RV64 using SV39 mmu
858 * - 0x800000000000 ( 128TB) for RV64 using SV48 mmu
859 * - 0x100000000000000 ( 64PB) for RV64 using SV57 mmu
860 *
861 * Note that PGDIR_SIZE must evenly divide TASK_SIZE since "RISC-V
862 * Instruction Set Manual Volume II: Privileged Architecture" states that
863 * "load and store effective addresses, which are 64bits, must have bits
864 * 63–48 all equal to bit 47, or else a page-fault exception will occur."
865 * Similarly for SV57, bits 63–57 must be equal to bit 56.
866 */
867#ifdef CONFIG_64BIT
868#define TASK_SIZE_64 (PGDIR_SIZE * PTRS_PER_PGD / 2)
869#define TASK_SIZE_MIN (PGDIR_SIZE_L3 * PTRS_PER_PGD / 2)
870
871#ifdef CONFIG_COMPAT
872#define TASK_SIZE_32 (_AC(0x80000000, UL))
873#define TASK_SIZE (test_thread_flag(TIF_32BIT) ? \
874 TASK_SIZE_32 : TASK_SIZE_64)
875#else
876#define TASK_SIZE TASK_SIZE_64
877#endif
878
879#else
880#define TASK_SIZE FIXADDR_START
881#define TASK_SIZE_MIN TASK_SIZE
882#endif
883
884#else /* CONFIG_MMU */
885
886#define PAGE_SHARED __pgprot(0)
887#define PAGE_KERNEL __pgprot(0)
888#define swapper_pg_dir NULL
889#define TASK_SIZE 0xffffffffUL
890#define VMALLOC_START _AC(0, UL)
891#define VMALLOC_END TASK_SIZE
892
893#endif /* !CONFIG_MMU */
894
895extern char _start[];
896extern void *_dtb_early_va;
897extern uintptr_t _dtb_early_pa;
898#if defined(CONFIG_XIP_KERNEL) && defined(CONFIG_MMU)
899#define dtb_early_va (*(void **)XIP_FIXUP(&_dtb_early_va))
900#define dtb_early_pa (*(uintptr_t *)XIP_FIXUP(&_dtb_early_pa))
901#else
902#define dtb_early_va _dtb_early_va
903#define dtb_early_pa _dtb_early_pa
904#endif /* CONFIG_XIP_KERNEL */
905extern u64 satp_mode;
906
907void paging_init(void);
908void misc_mem_init(void);
909
910/*
911 * ZERO_PAGE is a global shared page that is always zero,
912 * used for zero-mapped memory areas, etc.
913 */
914extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
915#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
916
917#endif /* !__ASSEMBLY__ */
918
919#endif /* _ASM_RISCV_PGTABLE_H */