at v6.8 919 lines 24 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* 3 * Copyright (C) 2012 Regents of the University of California 4 */ 5 6#ifndef _ASM_RISCV_PGTABLE_H 7#define _ASM_RISCV_PGTABLE_H 8 9#include <linux/mmzone.h> 10#include <linux/sizes.h> 11 12#include <asm/pgtable-bits.h> 13 14#ifndef CONFIG_MMU 15#define KERNEL_LINK_ADDR PAGE_OFFSET 16#define KERN_VIRT_SIZE (UL(-1)) 17#else 18 19#define ADDRESS_SPACE_END (UL(-1)) 20 21#ifdef CONFIG_64BIT 22/* Leave 2GB for kernel and BPF at the end of the address space */ 23#define KERNEL_LINK_ADDR (ADDRESS_SPACE_END - SZ_2G + 1) 24#else 25#define KERNEL_LINK_ADDR PAGE_OFFSET 26#endif 27 28/* Number of entries in the page global directory */ 29#define PTRS_PER_PGD (PAGE_SIZE / sizeof(pgd_t)) 30/* Number of entries in the page table */ 31#define PTRS_PER_PTE (PAGE_SIZE / sizeof(pte_t)) 32 33/* 34 * Half of the kernel address space (1/4 of the entries of the page global 35 * directory) is for the direct mapping. 36 */ 37#define KERN_VIRT_SIZE ((PTRS_PER_PGD / 2 * PGDIR_SIZE) / 2) 38 39#define VMALLOC_SIZE (KERN_VIRT_SIZE >> 1) 40#define VMALLOC_END PAGE_OFFSET 41#define VMALLOC_START (PAGE_OFFSET - VMALLOC_SIZE) 42 43#define BPF_JIT_REGION_SIZE (SZ_128M) 44#ifdef CONFIG_64BIT 45#define BPF_JIT_REGION_START (BPF_JIT_REGION_END - BPF_JIT_REGION_SIZE) 46#define BPF_JIT_REGION_END (MODULES_END) 47#else 48#define BPF_JIT_REGION_START (PAGE_OFFSET - BPF_JIT_REGION_SIZE) 49#define BPF_JIT_REGION_END (VMALLOC_END) 50#endif 51 52/* Modules always live before the kernel */ 53#ifdef CONFIG_64BIT 54/* This is used to define the end of the KASAN shadow region */ 55#define MODULES_LOWEST_VADDR (KERNEL_LINK_ADDR - SZ_2G) 56#define MODULES_VADDR (PFN_ALIGN((unsigned long)&_end) - SZ_2G) 57#define MODULES_END (PFN_ALIGN((unsigned long)&_start)) 58#endif 59 60/* 61 * Roughly size the vmemmap space to be large enough to fit enough 62 * struct pages to map half the virtual address space. Then 63 * position vmemmap directly below the VMALLOC region. 64 */ 65#define VA_BITS_SV32 32 66#ifdef CONFIG_64BIT 67#define VA_BITS_SV39 39 68#define VA_BITS_SV48 48 69#define VA_BITS_SV57 57 70 71#define VA_BITS (pgtable_l5_enabled ? \ 72 VA_BITS_SV57 : (pgtable_l4_enabled ? VA_BITS_SV48 : VA_BITS_SV39)) 73#else 74#define VA_BITS VA_BITS_SV32 75#endif 76 77#define VMEMMAP_SHIFT \ 78 (VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT) 79#define VMEMMAP_SIZE BIT(VMEMMAP_SHIFT) 80#define VMEMMAP_END VMALLOC_START 81#define VMEMMAP_START (VMALLOC_START - VMEMMAP_SIZE) 82 83/* 84 * Define vmemmap for pfn_to_page & page_to_pfn calls. Needed if kernel 85 * is configured with CONFIG_SPARSEMEM_VMEMMAP enabled. 86 */ 87#define vmemmap ((struct page *)VMEMMAP_START - (phys_ram_base >> PAGE_SHIFT)) 88 89#define PCI_IO_SIZE SZ_16M 90#define PCI_IO_END VMEMMAP_START 91#define PCI_IO_START (PCI_IO_END - PCI_IO_SIZE) 92 93#define FIXADDR_TOP PCI_IO_START 94#ifdef CONFIG_64BIT 95#define MAX_FDT_SIZE PMD_SIZE 96#define FIX_FDT_SIZE (MAX_FDT_SIZE + SZ_2M) 97#define FIXADDR_SIZE (PMD_SIZE + FIX_FDT_SIZE) 98#else 99#define MAX_FDT_SIZE PGDIR_SIZE 100#define FIX_FDT_SIZE MAX_FDT_SIZE 101#define FIXADDR_SIZE (PGDIR_SIZE + FIX_FDT_SIZE) 102#endif 103#define FIXADDR_START (FIXADDR_TOP - FIXADDR_SIZE) 104 105#endif 106 107#ifdef CONFIG_XIP_KERNEL 108#define XIP_OFFSET SZ_32M 109#define XIP_OFFSET_MASK (SZ_32M - 1) 110#else 111#define XIP_OFFSET 0 112#endif 113 114#ifndef __ASSEMBLY__ 115 116#include <asm/page.h> 117#include <asm/tlbflush.h> 118#include <linux/mm_types.h> 119#include <asm/compat.h> 120 121#define __page_val_to_pfn(_val) (((_val) & _PAGE_PFN_MASK) >> _PAGE_PFN_SHIFT) 122 123#ifdef CONFIG_64BIT 124#include <asm/pgtable-64.h> 125 126#define VA_USER_SV39 (UL(1) << (VA_BITS_SV39 - 1)) 127#define VA_USER_SV48 (UL(1) << (VA_BITS_SV48 - 1)) 128#define VA_USER_SV57 (UL(1) << (VA_BITS_SV57 - 1)) 129 130#ifdef CONFIG_COMPAT 131#define MMAP_VA_BITS_64 ((VA_BITS >= VA_BITS_SV48) ? VA_BITS_SV48 : VA_BITS) 132#define MMAP_MIN_VA_BITS_64 (VA_BITS_SV39) 133#define MMAP_VA_BITS (is_compat_task() ? VA_BITS_SV32 : MMAP_VA_BITS_64) 134#define MMAP_MIN_VA_BITS (is_compat_task() ? VA_BITS_SV32 : MMAP_MIN_VA_BITS_64) 135#else 136#define MMAP_VA_BITS ((VA_BITS >= VA_BITS_SV48) ? VA_BITS_SV48 : VA_BITS) 137#define MMAP_MIN_VA_BITS (VA_BITS_SV39) 138#endif /* CONFIG_COMPAT */ 139 140#else 141#include <asm/pgtable-32.h> 142#endif /* CONFIG_64BIT */ 143 144#include <linux/page_table_check.h> 145 146#ifdef CONFIG_XIP_KERNEL 147#define XIP_FIXUP(addr) ({ \ 148 uintptr_t __a = (uintptr_t)(addr); \ 149 (__a >= CONFIG_XIP_PHYS_ADDR && \ 150 __a < CONFIG_XIP_PHYS_ADDR + XIP_OFFSET * 2) ? \ 151 __a - CONFIG_XIP_PHYS_ADDR + CONFIG_PHYS_RAM_BASE - XIP_OFFSET :\ 152 __a; \ 153 }) 154#else 155#define XIP_FIXUP(addr) (addr) 156#endif /* CONFIG_XIP_KERNEL */ 157 158struct pt_alloc_ops { 159 pte_t *(*get_pte_virt)(phys_addr_t pa); 160 phys_addr_t (*alloc_pte)(uintptr_t va); 161#ifndef __PAGETABLE_PMD_FOLDED 162 pmd_t *(*get_pmd_virt)(phys_addr_t pa); 163 phys_addr_t (*alloc_pmd)(uintptr_t va); 164 pud_t *(*get_pud_virt)(phys_addr_t pa); 165 phys_addr_t (*alloc_pud)(uintptr_t va); 166 p4d_t *(*get_p4d_virt)(phys_addr_t pa); 167 phys_addr_t (*alloc_p4d)(uintptr_t va); 168#endif 169}; 170 171extern struct pt_alloc_ops pt_ops __initdata; 172 173#ifdef CONFIG_MMU 174/* Number of PGD entries that a user-mode program can use */ 175#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) 176 177/* Page protection bits */ 178#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER) 179 180#define PAGE_NONE __pgprot(_PAGE_PROT_NONE | _PAGE_READ) 181#define PAGE_READ __pgprot(_PAGE_BASE | _PAGE_READ) 182#define PAGE_WRITE __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE) 183#define PAGE_EXEC __pgprot(_PAGE_BASE | _PAGE_EXEC) 184#define PAGE_READ_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC) 185#define PAGE_WRITE_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | \ 186 _PAGE_EXEC | _PAGE_WRITE) 187 188#define PAGE_COPY PAGE_READ 189#define PAGE_COPY_EXEC PAGE_READ_EXEC 190#define PAGE_SHARED PAGE_WRITE 191#define PAGE_SHARED_EXEC PAGE_WRITE_EXEC 192 193#define _PAGE_KERNEL (_PAGE_READ \ 194 | _PAGE_WRITE \ 195 | _PAGE_PRESENT \ 196 | _PAGE_ACCESSED \ 197 | _PAGE_DIRTY \ 198 | _PAGE_GLOBAL) 199 200#define PAGE_KERNEL __pgprot(_PAGE_KERNEL) 201#define PAGE_KERNEL_READ __pgprot(_PAGE_KERNEL & ~_PAGE_WRITE) 202#define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL | _PAGE_EXEC) 203#define PAGE_KERNEL_READ_EXEC __pgprot((_PAGE_KERNEL & ~_PAGE_WRITE) \ 204 | _PAGE_EXEC) 205 206#define PAGE_TABLE __pgprot(_PAGE_TABLE) 207 208#define _PAGE_IOREMAP ((_PAGE_KERNEL & ~_PAGE_MTMASK) | _PAGE_IO) 209#define PAGE_KERNEL_IO __pgprot(_PAGE_IOREMAP) 210 211extern pgd_t swapper_pg_dir[]; 212extern pgd_t trampoline_pg_dir[]; 213extern pgd_t early_pg_dir[]; 214 215#ifdef CONFIG_TRANSPARENT_HUGEPAGE 216static inline int pmd_present(pmd_t pmd) 217{ 218 /* 219 * Checking for _PAGE_LEAF is needed too because: 220 * When splitting a THP, split_huge_page() will temporarily clear 221 * the present bit, in this situation, pmd_present() and 222 * pmd_trans_huge() still needs to return true. 223 */ 224 return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE | _PAGE_LEAF)); 225} 226#else 227static inline int pmd_present(pmd_t pmd) 228{ 229 return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE)); 230} 231#endif 232 233static inline int pmd_none(pmd_t pmd) 234{ 235 return (pmd_val(pmd) == 0); 236} 237 238static inline int pmd_bad(pmd_t pmd) 239{ 240 return !pmd_present(pmd) || (pmd_val(pmd) & _PAGE_LEAF); 241} 242 243#define pmd_leaf pmd_leaf 244static inline int pmd_leaf(pmd_t pmd) 245{ 246 return pmd_present(pmd) && (pmd_val(pmd) & _PAGE_LEAF); 247} 248 249static inline void set_pmd(pmd_t *pmdp, pmd_t pmd) 250{ 251 WRITE_ONCE(*pmdp, pmd); 252} 253 254static inline void pmd_clear(pmd_t *pmdp) 255{ 256 set_pmd(pmdp, __pmd(0)); 257} 258 259static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot) 260{ 261 unsigned long prot_val = pgprot_val(prot); 262 263 ALT_THEAD_PMA(prot_val); 264 265 return __pgd((pfn << _PAGE_PFN_SHIFT) | prot_val); 266} 267 268static inline unsigned long _pgd_pfn(pgd_t pgd) 269{ 270 return __page_val_to_pfn(pgd_val(pgd)); 271} 272 273static inline struct page *pmd_page(pmd_t pmd) 274{ 275 return pfn_to_page(__page_val_to_pfn(pmd_val(pmd))); 276} 277 278static inline unsigned long pmd_page_vaddr(pmd_t pmd) 279{ 280 return (unsigned long)pfn_to_virt(__page_val_to_pfn(pmd_val(pmd))); 281} 282 283static inline pte_t pmd_pte(pmd_t pmd) 284{ 285 return __pte(pmd_val(pmd)); 286} 287 288static inline pte_t pud_pte(pud_t pud) 289{ 290 return __pte(pud_val(pud)); 291} 292 293#ifdef CONFIG_RISCV_ISA_SVNAPOT 294#include <asm/cpufeature.h> 295 296static __always_inline bool has_svnapot(void) 297{ 298 return riscv_has_extension_likely(RISCV_ISA_EXT_SVNAPOT); 299} 300 301static inline unsigned long pte_napot(pte_t pte) 302{ 303 return pte_val(pte) & _PAGE_NAPOT; 304} 305 306static inline pte_t pte_mknapot(pte_t pte, unsigned int order) 307{ 308 int pos = order - 1 + _PAGE_PFN_SHIFT; 309 unsigned long napot_bit = BIT(pos); 310 unsigned long napot_mask = ~GENMASK(pos, _PAGE_PFN_SHIFT); 311 312 return __pte((pte_val(pte) & napot_mask) | napot_bit | _PAGE_NAPOT); 313} 314 315#else 316 317static __always_inline bool has_svnapot(void) { return false; } 318 319static inline unsigned long pte_napot(pte_t pte) 320{ 321 return 0; 322} 323 324#endif /* CONFIG_RISCV_ISA_SVNAPOT */ 325 326/* Yields the page frame number (PFN) of a page table entry */ 327static inline unsigned long pte_pfn(pte_t pte) 328{ 329 unsigned long res = __page_val_to_pfn(pte_val(pte)); 330 331 if (has_svnapot() && pte_napot(pte)) 332 res = res & (res - 1UL); 333 334 return res; 335} 336 337#define pte_page(x) pfn_to_page(pte_pfn(x)) 338 339/* Constructs a page table entry */ 340static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot) 341{ 342 unsigned long prot_val = pgprot_val(prot); 343 344 ALT_THEAD_PMA(prot_val); 345 346 return __pte((pfn << _PAGE_PFN_SHIFT) | prot_val); 347} 348 349#define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot) 350 351static inline int pte_present(pte_t pte) 352{ 353 return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)); 354} 355 356static inline int pte_none(pte_t pte) 357{ 358 return (pte_val(pte) == 0); 359} 360 361static inline int pte_write(pte_t pte) 362{ 363 return pte_val(pte) & _PAGE_WRITE; 364} 365 366static inline int pte_exec(pte_t pte) 367{ 368 return pte_val(pte) & _PAGE_EXEC; 369} 370 371static inline int pte_user(pte_t pte) 372{ 373 return pte_val(pte) & _PAGE_USER; 374} 375 376static inline int pte_huge(pte_t pte) 377{ 378 return pte_present(pte) && (pte_val(pte) & _PAGE_LEAF); 379} 380 381static inline int pte_dirty(pte_t pte) 382{ 383 return pte_val(pte) & _PAGE_DIRTY; 384} 385 386static inline int pte_young(pte_t pte) 387{ 388 return pte_val(pte) & _PAGE_ACCESSED; 389} 390 391static inline int pte_special(pte_t pte) 392{ 393 return pte_val(pte) & _PAGE_SPECIAL; 394} 395 396/* static inline pte_t pte_rdprotect(pte_t pte) */ 397 398static inline pte_t pte_wrprotect(pte_t pte) 399{ 400 return __pte(pte_val(pte) & ~(_PAGE_WRITE)); 401} 402 403/* static inline pte_t pte_mkread(pte_t pte) */ 404 405static inline pte_t pte_mkwrite_novma(pte_t pte) 406{ 407 return __pte(pte_val(pte) | _PAGE_WRITE); 408} 409 410/* static inline pte_t pte_mkexec(pte_t pte) */ 411 412static inline pte_t pte_mkdirty(pte_t pte) 413{ 414 return __pte(pte_val(pte) | _PAGE_DIRTY); 415} 416 417static inline pte_t pte_mkclean(pte_t pte) 418{ 419 return __pte(pte_val(pte) & ~(_PAGE_DIRTY)); 420} 421 422static inline pte_t pte_mkyoung(pte_t pte) 423{ 424 return __pte(pte_val(pte) | _PAGE_ACCESSED); 425} 426 427static inline pte_t pte_mkold(pte_t pte) 428{ 429 return __pte(pte_val(pte) & ~(_PAGE_ACCESSED)); 430} 431 432static inline pte_t pte_mkspecial(pte_t pte) 433{ 434 return __pte(pte_val(pte) | _PAGE_SPECIAL); 435} 436 437static inline pte_t pte_mkhuge(pte_t pte) 438{ 439 return pte; 440} 441 442#define pte_leaf_size(pte) (pte_napot(pte) ? \ 443 napot_cont_size(napot_cont_order(pte)) :\ 444 PAGE_SIZE) 445 446#ifdef CONFIG_NUMA_BALANCING 447/* 448 * See the comment in include/asm-generic/pgtable.h 449 */ 450static inline int pte_protnone(pte_t pte) 451{ 452 return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)) == _PAGE_PROT_NONE; 453} 454 455static inline int pmd_protnone(pmd_t pmd) 456{ 457 return pte_protnone(pmd_pte(pmd)); 458} 459#endif 460 461/* Modify page protection bits */ 462static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 463{ 464 unsigned long newprot_val = pgprot_val(newprot); 465 466 ALT_THEAD_PMA(newprot_val); 467 468 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | newprot_val); 469} 470 471#define pgd_ERROR(e) \ 472 pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e)) 473 474 475/* Commit new configuration to MMU hardware */ 476static inline void update_mmu_cache_range(struct vm_fault *vmf, 477 struct vm_area_struct *vma, unsigned long address, 478 pte_t *ptep, unsigned int nr) 479{ 480 /* 481 * The kernel assumes that TLBs don't cache invalid entries, but 482 * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a 483 * cache flush; it is necessary even after writing invalid entries. 484 * Relying on flush_tlb_fix_spurious_fault would suffice, but 485 * the extra traps reduce performance. So, eagerly SFENCE.VMA. 486 */ 487 while (nr--) 488 local_flush_tlb_page(address + nr * PAGE_SIZE); 489} 490#define update_mmu_cache(vma, addr, ptep) \ 491 update_mmu_cache_range(NULL, vma, addr, ptep, 1) 492 493#define __HAVE_ARCH_UPDATE_MMU_TLB 494#define update_mmu_tlb update_mmu_cache 495 496static inline void update_mmu_cache_pmd(struct vm_area_struct *vma, 497 unsigned long address, pmd_t *pmdp) 498{ 499 pte_t *ptep = (pte_t *)pmdp; 500 501 update_mmu_cache(vma, address, ptep); 502} 503 504#define __HAVE_ARCH_PTE_SAME 505static inline int pte_same(pte_t pte_a, pte_t pte_b) 506{ 507 return pte_val(pte_a) == pte_val(pte_b); 508} 509 510/* 511 * Certain architectures need to do special things when PTEs within 512 * a page table are directly modified. Thus, the following hook is 513 * made available. 514 */ 515static inline void set_pte(pte_t *ptep, pte_t pteval) 516{ 517 WRITE_ONCE(*ptep, pteval); 518} 519 520void flush_icache_pte(pte_t pte); 521 522static inline void __set_pte_at(pte_t *ptep, pte_t pteval) 523{ 524 if (pte_present(pteval) && pte_exec(pteval)) 525 flush_icache_pte(pteval); 526 527 set_pte(ptep, pteval); 528} 529 530static inline void set_ptes(struct mm_struct *mm, unsigned long addr, 531 pte_t *ptep, pte_t pteval, unsigned int nr) 532{ 533 page_table_check_ptes_set(mm, ptep, pteval, nr); 534 535 for (;;) { 536 __set_pte_at(ptep, pteval); 537 if (--nr == 0) 538 break; 539 ptep++; 540 pte_val(pteval) += 1 << _PAGE_PFN_SHIFT; 541 } 542} 543#define set_ptes set_ptes 544 545static inline void pte_clear(struct mm_struct *mm, 546 unsigned long addr, pte_t *ptep) 547{ 548 __set_pte_at(ptep, __pte(0)); 549} 550 551#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS /* defined in mm/pgtable.c */ 552extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address, 553 pte_t *ptep, pte_t entry, int dirty); 554#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG /* defined in mm/pgtable.c */ 555extern int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long address, 556 pte_t *ptep); 557 558#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 559static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 560 unsigned long address, pte_t *ptep) 561{ 562 pte_t pte = __pte(atomic_long_xchg((atomic_long_t *)ptep, 0)); 563 564 page_table_check_pte_clear(mm, pte); 565 566 return pte; 567} 568 569#define __HAVE_ARCH_PTEP_SET_WRPROTECT 570static inline void ptep_set_wrprotect(struct mm_struct *mm, 571 unsigned long address, pte_t *ptep) 572{ 573 atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep); 574} 575 576#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 577static inline int ptep_clear_flush_young(struct vm_area_struct *vma, 578 unsigned long address, pte_t *ptep) 579{ 580 /* 581 * This comment is borrowed from x86, but applies equally to RISC-V: 582 * 583 * Clearing the accessed bit without a TLB flush 584 * doesn't cause data corruption. [ It could cause incorrect 585 * page aging and the (mistaken) reclaim of hot pages, but the 586 * chance of that should be relatively low. ] 587 * 588 * So as a performance optimization don't flush the TLB when 589 * clearing the accessed bit, it will eventually be flushed by 590 * a context switch or a VM operation anyway. [ In the rare 591 * event of it not getting flushed for a long time the delay 592 * shouldn't really matter because there's no real memory 593 * pressure for swapout to react to. ] 594 */ 595 return ptep_test_and_clear_young(vma, address, ptep); 596} 597 598#define pgprot_noncached pgprot_noncached 599static inline pgprot_t pgprot_noncached(pgprot_t _prot) 600{ 601 unsigned long prot = pgprot_val(_prot); 602 603 prot &= ~_PAGE_MTMASK; 604 prot |= _PAGE_IO; 605 606 return __pgprot(prot); 607} 608 609#define pgprot_writecombine pgprot_writecombine 610static inline pgprot_t pgprot_writecombine(pgprot_t _prot) 611{ 612 unsigned long prot = pgprot_val(_prot); 613 614 prot &= ~_PAGE_MTMASK; 615 prot |= _PAGE_NOCACHE; 616 617 return __pgprot(prot); 618} 619 620/* 621 * THP functions 622 */ 623static inline pmd_t pte_pmd(pte_t pte) 624{ 625 return __pmd(pte_val(pte)); 626} 627 628static inline pmd_t pmd_mkhuge(pmd_t pmd) 629{ 630 return pmd; 631} 632 633static inline pmd_t pmd_mkinvalid(pmd_t pmd) 634{ 635 return __pmd(pmd_val(pmd) & ~(_PAGE_PRESENT|_PAGE_PROT_NONE)); 636} 637 638#define __pmd_to_phys(pmd) (__page_val_to_pfn(pmd_val(pmd)) << PAGE_SHIFT) 639 640static inline unsigned long pmd_pfn(pmd_t pmd) 641{ 642 return ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT); 643} 644 645#define __pud_to_phys(pud) (__page_val_to_pfn(pud_val(pud)) << PAGE_SHIFT) 646 647static inline unsigned long pud_pfn(pud_t pud) 648{ 649 return ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT); 650} 651 652static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 653{ 654 return pte_pmd(pte_modify(pmd_pte(pmd), newprot)); 655} 656 657#define pmd_write pmd_write 658static inline int pmd_write(pmd_t pmd) 659{ 660 return pte_write(pmd_pte(pmd)); 661} 662 663#define pmd_dirty pmd_dirty 664static inline int pmd_dirty(pmd_t pmd) 665{ 666 return pte_dirty(pmd_pte(pmd)); 667} 668 669#define pmd_young pmd_young 670static inline int pmd_young(pmd_t pmd) 671{ 672 return pte_young(pmd_pte(pmd)); 673} 674 675static inline int pmd_user(pmd_t pmd) 676{ 677 return pte_user(pmd_pte(pmd)); 678} 679 680static inline pmd_t pmd_mkold(pmd_t pmd) 681{ 682 return pte_pmd(pte_mkold(pmd_pte(pmd))); 683} 684 685static inline pmd_t pmd_mkyoung(pmd_t pmd) 686{ 687 return pte_pmd(pte_mkyoung(pmd_pte(pmd))); 688} 689 690static inline pmd_t pmd_mkwrite_novma(pmd_t pmd) 691{ 692 return pte_pmd(pte_mkwrite_novma(pmd_pte(pmd))); 693} 694 695static inline pmd_t pmd_wrprotect(pmd_t pmd) 696{ 697 return pte_pmd(pte_wrprotect(pmd_pte(pmd))); 698} 699 700static inline pmd_t pmd_mkclean(pmd_t pmd) 701{ 702 return pte_pmd(pte_mkclean(pmd_pte(pmd))); 703} 704 705static inline pmd_t pmd_mkdirty(pmd_t pmd) 706{ 707 return pte_pmd(pte_mkdirty(pmd_pte(pmd))); 708} 709 710static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr, 711 pmd_t *pmdp, pmd_t pmd) 712{ 713 page_table_check_pmd_set(mm, pmdp, pmd); 714 return __set_pte_at((pte_t *)pmdp, pmd_pte(pmd)); 715} 716 717static inline void set_pud_at(struct mm_struct *mm, unsigned long addr, 718 pud_t *pudp, pud_t pud) 719{ 720 page_table_check_pud_set(mm, pudp, pud); 721 return __set_pte_at((pte_t *)pudp, pud_pte(pud)); 722} 723 724#ifdef CONFIG_PAGE_TABLE_CHECK 725static inline bool pte_user_accessible_page(pte_t pte) 726{ 727 return pte_present(pte) && pte_user(pte); 728} 729 730static inline bool pmd_user_accessible_page(pmd_t pmd) 731{ 732 return pmd_leaf(pmd) && pmd_user(pmd); 733} 734 735static inline bool pud_user_accessible_page(pud_t pud) 736{ 737 return pud_leaf(pud) && pud_user(pud); 738} 739#endif 740 741#ifdef CONFIG_TRANSPARENT_HUGEPAGE 742static inline int pmd_trans_huge(pmd_t pmd) 743{ 744 return pmd_leaf(pmd); 745} 746 747#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 748static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 749 unsigned long address, pmd_t *pmdp, 750 pmd_t entry, int dirty) 751{ 752 return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty); 753} 754 755#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 756static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 757 unsigned long address, pmd_t *pmdp) 758{ 759 return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp); 760} 761 762#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 763static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 764 unsigned long address, pmd_t *pmdp) 765{ 766 pmd_t pmd = __pmd(atomic_long_xchg((atomic_long_t *)pmdp, 0)); 767 768 page_table_check_pmd_clear(mm, pmd); 769 770 return pmd; 771} 772 773#define __HAVE_ARCH_PMDP_SET_WRPROTECT 774static inline void pmdp_set_wrprotect(struct mm_struct *mm, 775 unsigned long address, pmd_t *pmdp) 776{ 777 ptep_set_wrprotect(mm, address, (pte_t *)pmdp); 778} 779 780#define pmdp_establish pmdp_establish 781static inline pmd_t pmdp_establish(struct vm_area_struct *vma, 782 unsigned long address, pmd_t *pmdp, pmd_t pmd) 783{ 784 page_table_check_pmd_set(vma->vm_mm, pmdp, pmd); 785 return __pmd(atomic_long_xchg((atomic_long_t *)pmdp, pmd_val(pmd))); 786} 787 788#define pmdp_collapse_flush pmdp_collapse_flush 789extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 790 unsigned long address, pmd_t *pmdp); 791#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 792 793/* 794 * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that 795 * are !pte_none() && !pte_present(). 796 * 797 * Format of swap PTE: 798 * bit 0: _PAGE_PRESENT (zero) 799 * bit 1 to 3: _PAGE_LEAF (zero) 800 * bit 5: _PAGE_PROT_NONE (zero) 801 * bit 6: exclusive marker 802 * bits 7 to 11: swap type 803 * bits 12 to XLEN-1: swap offset 804 */ 805#define __SWP_TYPE_SHIFT 7 806#define __SWP_TYPE_BITS 5 807#define __SWP_TYPE_MASK ((1UL << __SWP_TYPE_BITS) - 1) 808#define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT) 809 810#define MAX_SWAPFILES_CHECK() \ 811 BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS) 812 813#define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK) 814#define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT) 815#define __swp_entry(type, offset) ((swp_entry_t) \ 816 { (((type) & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT) | \ 817 ((offset) << __SWP_OFFSET_SHIFT) }) 818 819#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 820#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 821 822static inline int pte_swp_exclusive(pte_t pte) 823{ 824 return pte_val(pte) & _PAGE_SWP_EXCLUSIVE; 825} 826 827static inline pte_t pte_swp_mkexclusive(pte_t pte) 828{ 829 return __pte(pte_val(pte) | _PAGE_SWP_EXCLUSIVE); 830} 831 832static inline pte_t pte_swp_clear_exclusive(pte_t pte) 833{ 834 return __pte(pte_val(pte) & ~_PAGE_SWP_EXCLUSIVE); 835} 836 837#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 838#define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) }) 839#define __swp_entry_to_pmd(swp) __pmd((swp).val) 840#endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */ 841 842/* 843 * In the RV64 Linux scheme, we give the user half of the virtual-address space 844 * and give the kernel the other (upper) half. 845 */ 846#ifdef CONFIG_64BIT 847#define KERN_VIRT_START (-(BIT(VA_BITS)) + TASK_SIZE) 848#else 849#define KERN_VIRT_START FIXADDR_START 850#endif 851 852/* 853 * Task size is 0x4000000000 for RV64 or 0x9fc00000 for RV32. 854 * Note that PGDIR_SIZE must evenly divide TASK_SIZE. 855 * Task size is: 856 * - 0x9fc00000 (~2.5GB) for RV32. 857 * - 0x4000000000 ( 256GB) for RV64 using SV39 mmu 858 * - 0x800000000000 ( 128TB) for RV64 using SV48 mmu 859 * - 0x100000000000000 ( 64PB) for RV64 using SV57 mmu 860 * 861 * Note that PGDIR_SIZE must evenly divide TASK_SIZE since "RISC-V 862 * Instruction Set Manual Volume II: Privileged Architecture" states that 863 * "load and store effective addresses, which are 64bits, must have bits 864 * 63–48 all equal to bit 47, or else a page-fault exception will occur." 865 * Similarly for SV57, bits 63–57 must be equal to bit 56. 866 */ 867#ifdef CONFIG_64BIT 868#define TASK_SIZE_64 (PGDIR_SIZE * PTRS_PER_PGD / 2) 869#define TASK_SIZE_MIN (PGDIR_SIZE_L3 * PTRS_PER_PGD / 2) 870 871#ifdef CONFIG_COMPAT 872#define TASK_SIZE_32 (_AC(0x80000000, UL)) 873#define TASK_SIZE (test_thread_flag(TIF_32BIT) ? \ 874 TASK_SIZE_32 : TASK_SIZE_64) 875#else 876#define TASK_SIZE TASK_SIZE_64 877#endif 878 879#else 880#define TASK_SIZE FIXADDR_START 881#define TASK_SIZE_MIN TASK_SIZE 882#endif 883 884#else /* CONFIG_MMU */ 885 886#define PAGE_SHARED __pgprot(0) 887#define PAGE_KERNEL __pgprot(0) 888#define swapper_pg_dir NULL 889#define TASK_SIZE 0xffffffffUL 890#define VMALLOC_START _AC(0, UL) 891#define VMALLOC_END TASK_SIZE 892 893#endif /* !CONFIG_MMU */ 894 895extern char _start[]; 896extern void *_dtb_early_va; 897extern uintptr_t _dtb_early_pa; 898#if defined(CONFIG_XIP_KERNEL) && defined(CONFIG_MMU) 899#define dtb_early_va (*(void **)XIP_FIXUP(&_dtb_early_va)) 900#define dtb_early_pa (*(uintptr_t *)XIP_FIXUP(&_dtb_early_pa)) 901#else 902#define dtb_early_va _dtb_early_va 903#define dtb_early_pa _dtb_early_pa 904#endif /* CONFIG_XIP_KERNEL */ 905extern u64 satp_mode; 906 907void paging_init(void); 908void misc_mem_init(void); 909 910/* 911 * ZERO_PAGE is a global shared page that is always zero, 912 * used for zero-mapped memory areas, etc. 913 */ 914extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]; 915#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 916 917#endif /* !__ASSEMBLY__ */ 918 919#endif /* _ASM_RISCV_PGTABLE_H */