Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * Copyright (C) 2012 Regents of the University of California
4 */
5
6#ifndef _ASM_RISCV_BITOPS_H
7#define _ASM_RISCV_BITOPS_H
8
9#ifndef _LINUX_BITOPS_H
10#error "Only <linux/bitops.h> can be included directly"
11#endif /* _LINUX_BITOPS_H */
12
13#include <linux/compiler.h>
14#include <linux/irqflags.h>
15#include <asm/barrier.h>
16#include <asm/bitsperlong.h>
17
18#if !defined(CONFIG_RISCV_ISA_ZBB) || defined(NO_ALTERNATIVE)
19#include <asm-generic/bitops/__ffs.h>
20#include <asm-generic/bitops/__fls.h>
21#include <asm-generic/bitops/ffs.h>
22#include <asm-generic/bitops/fls.h>
23
24#else
25#include <asm/alternative-macros.h>
26#include <asm/hwcap.h>
27
28#if (BITS_PER_LONG == 64)
29#define CTZW "ctzw "
30#define CLZW "clzw "
31#elif (BITS_PER_LONG == 32)
32#define CTZW "ctz "
33#define CLZW "clz "
34#else
35#error "Unexpected BITS_PER_LONG"
36#endif
37
38static __always_inline unsigned long variable__ffs(unsigned long word)
39{
40 int num;
41
42 asm goto(ALTERNATIVE("j %l[legacy]", "nop", 0,
43 RISCV_ISA_EXT_ZBB, 1)
44 : : : : legacy);
45
46 asm volatile (".option push\n"
47 ".option arch,+zbb\n"
48 "ctz %0, %1\n"
49 ".option pop\n"
50 : "=r" (word) : "r" (word) :);
51
52 return word;
53
54legacy:
55 num = 0;
56#if BITS_PER_LONG == 64
57 if ((word & 0xffffffff) == 0) {
58 num += 32;
59 word >>= 32;
60 }
61#endif
62 if ((word & 0xffff) == 0) {
63 num += 16;
64 word >>= 16;
65 }
66 if ((word & 0xff) == 0) {
67 num += 8;
68 word >>= 8;
69 }
70 if ((word & 0xf) == 0) {
71 num += 4;
72 word >>= 4;
73 }
74 if ((word & 0x3) == 0) {
75 num += 2;
76 word >>= 2;
77 }
78 if ((word & 0x1) == 0)
79 num += 1;
80 return num;
81}
82
83/**
84 * __ffs - find first set bit in a long word
85 * @word: The word to search
86 *
87 * Undefined if no set bit exists, so code should check against 0 first.
88 */
89#define __ffs(word) \
90 (__builtin_constant_p(word) ? \
91 (unsigned long)__builtin_ctzl(word) : \
92 variable__ffs(word))
93
94static __always_inline unsigned long variable__fls(unsigned long word)
95{
96 int num;
97
98 asm goto(ALTERNATIVE("j %l[legacy]", "nop", 0,
99 RISCV_ISA_EXT_ZBB, 1)
100 : : : : legacy);
101
102 asm volatile (".option push\n"
103 ".option arch,+zbb\n"
104 "clz %0, %1\n"
105 ".option pop\n"
106 : "=r" (word) : "r" (word) :);
107
108 return BITS_PER_LONG - 1 - word;
109
110legacy:
111 num = BITS_PER_LONG - 1;
112#if BITS_PER_LONG == 64
113 if (!(word & (~0ul << 32))) {
114 num -= 32;
115 word <<= 32;
116 }
117#endif
118 if (!(word & (~0ul << (BITS_PER_LONG - 16)))) {
119 num -= 16;
120 word <<= 16;
121 }
122 if (!(word & (~0ul << (BITS_PER_LONG - 8)))) {
123 num -= 8;
124 word <<= 8;
125 }
126 if (!(word & (~0ul << (BITS_PER_LONG - 4)))) {
127 num -= 4;
128 word <<= 4;
129 }
130 if (!(word & (~0ul << (BITS_PER_LONG - 2)))) {
131 num -= 2;
132 word <<= 2;
133 }
134 if (!(word & (~0ul << (BITS_PER_LONG - 1))))
135 num -= 1;
136 return num;
137}
138
139/**
140 * __fls - find last set bit in a long word
141 * @word: the word to search
142 *
143 * Undefined if no set bit exists, so code should check against 0 first.
144 */
145#define __fls(word) \
146 (__builtin_constant_p(word) ? \
147 (unsigned long)(BITS_PER_LONG - 1 - __builtin_clzl(word)) : \
148 variable__fls(word))
149
150static __always_inline int variable_ffs(int x)
151{
152 int r;
153
154 if (!x)
155 return 0;
156
157 asm goto(ALTERNATIVE("j %l[legacy]", "nop", 0,
158 RISCV_ISA_EXT_ZBB, 1)
159 : : : : legacy);
160
161 asm volatile (".option push\n"
162 ".option arch,+zbb\n"
163 CTZW "%0, %1\n"
164 ".option pop\n"
165 : "=r" (r) : "r" (x) :);
166
167 return r + 1;
168
169legacy:
170 r = 1;
171 if (!(x & 0xffff)) {
172 x >>= 16;
173 r += 16;
174 }
175 if (!(x & 0xff)) {
176 x >>= 8;
177 r += 8;
178 }
179 if (!(x & 0xf)) {
180 x >>= 4;
181 r += 4;
182 }
183 if (!(x & 3)) {
184 x >>= 2;
185 r += 2;
186 }
187 if (!(x & 1)) {
188 x >>= 1;
189 r += 1;
190 }
191 return r;
192}
193
194/**
195 * ffs - find first set bit in a word
196 * @x: the word to search
197 *
198 * This is defined the same way as the libc and compiler builtin ffs routines.
199 *
200 * ffs(value) returns 0 if value is 0 or the position of the first set bit if
201 * value is nonzero. The first (least significant) bit is at position 1.
202 */
203#define ffs(x) (__builtin_constant_p(x) ? __builtin_ffs(x) : variable_ffs(x))
204
205static __always_inline int variable_fls(unsigned int x)
206{
207 int r;
208
209 if (!x)
210 return 0;
211
212 asm goto(ALTERNATIVE("j %l[legacy]", "nop", 0,
213 RISCV_ISA_EXT_ZBB, 1)
214 : : : : legacy);
215
216 asm volatile (".option push\n"
217 ".option arch,+zbb\n"
218 CLZW "%0, %1\n"
219 ".option pop\n"
220 : "=r" (r) : "r" (x) :);
221
222 return 32 - r;
223
224legacy:
225 r = 32;
226 if (!(x & 0xffff0000u)) {
227 x <<= 16;
228 r -= 16;
229 }
230 if (!(x & 0xff000000u)) {
231 x <<= 8;
232 r -= 8;
233 }
234 if (!(x & 0xf0000000u)) {
235 x <<= 4;
236 r -= 4;
237 }
238 if (!(x & 0xc0000000u)) {
239 x <<= 2;
240 r -= 2;
241 }
242 if (!(x & 0x80000000u)) {
243 x <<= 1;
244 r -= 1;
245 }
246 return r;
247}
248
249/**
250 * fls - find last set bit in a word
251 * @x: the word to search
252 *
253 * This is defined in a similar way as ffs, but returns the position of the most
254 * significant set bit.
255 *
256 * fls(value) returns 0 if value is 0 or the position of the last set bit if
257 * value is nonzero. The last (most significant) bit is at position 32.
258 */
259#define fls(x) \
260({ \
261 typeof(x) x_ = (x); \
262 __builtin_constant_p(x_) ? \
263 (int)((x_ != 0) ? (32 - __builtin_clz(x_)) : 0) \
264 : \
265 variable_fls(x_); \
266})
267
268#endif /* !defined(CONFIG_RISCV_ISA_ZBB) || defined(NO_ALTERNATIVE) */
269
270#include <asm-generic/bitops/ffz.h>
271#include <asm-generic/bitops/fls64.h>
272#include <asm-generic/bitops/sched.h>
273
274#include <asm/arch_hweight.h>
275
276#include <asm-generic/bitops/const_hweight.h>
277
278#if (BITS_PER_LONG == 64)
279#define __AMO(op) "amo" #op ".d"
280#elif (BITS_PER_LONG == 32)
281#define __AMO(op) "amo" #op ".w"
282#else
283#error "Unexpected BITS_PER_LONG"
284#endif
285
286#define __test_and_op_bit_ord(op, mod, nr, addr, ord) \
287({ \
288 unsigned long __res, __mask; \
289 __mask = BIT_MASK(nr); \
290 __asm__ __volatile__ ( \
291 __AMO(op) #ord " %0, %2, %1" \
292 : "=r" (__res), "+A" (addr[BIT_WORD(nr)]) \
293 : "r" (mod(__mask)) \
294 : "memory"); \
295 ((__res & __mask) != 0); \
296})
297
298#define __op_bit_ord(op, mod, nr, addr, ord) \
299 __asm__ __volatile__ ( \
300 __AMO(op) #ord " zero, %1, %0" \
301 : "+A" (addr[BIT_WORD(nr)]) \
302 : "r" (mod(BIT_MASK(nr))) \
303 : "memory");
304
305#define __test_and_op_bit(op, mod, nr, addr) \
306 __test_and_op_bit_ord(op, mod, nr, addr, .aqrl)
307#define __op_bit(op, mod, nr, addr) \
308 __op_bit_ord(op, mod, nr, addr, )
309
310/* Bitmask modifiers */
311#define __NOP(x) (x)
312#define __NOT(x) (~(x))
313
314/**
315 * test_and_set_bit - Set a bit and return its old value
316 * @nr: Bit to set
317 * @addr: Address to count from
318 *
319 * This operation may be reordered on other architectures than x86.
320 */
321static inline int test_and_set_bit(int nr, volatile unsigned long *addr)
322{
323 return __test_and_op_bit(or, __NOP, nr, addr);
324}
325
326/**
327 * test_and_clear_bit - Clear a bit and return its old value
328 * @nr: Bit to clear
329 * @addr: Address to count from
330 *
331 * This operation can be reordered on other architectures other than x86.
332 */
333static inline int test_and_clear_bit(int nr, volatile unsigned long *addr)
334{
335 return __test_and_op_bit(and, __NOT, nr, addr);
336}
337
338/**
339 * test_and_change_bit - Change a bit and return its old value
340 * @nr: Bit to change
341 * @addr: Address to count from
342 *
343 * This operation is atomic and cannot be reordered.
344 * It also implies a memory barrier.
345 */
346static inline int test_and_change_bit(int nr, volatile unsigned long *addr)
347{
348 return __test_and_op_bit(xor, __NOP, nr, addr);
349}
350
351/**
352 * set_bit - Atomically set a bit in memory
353 * @nr: the bit to set
354 * @addr: the address to start counting from
355 *
356 * Note: there are no guarantees that this function will not be reordered
357 * on non x86 architectures, so if you are writing portable code,
358 * make sure not to rely on its reordering guarantees.
359 *
360 * Note that @nr may be almost arbitrarily large; this function is not
361 * restricted to acting on a single-word quantity.
362 */
363static inline void set_bit(int nr, volatile unsigned long *addr)
364{
365 __op_bit(or, __NOP, nr, addr);
366}
367
368/**
369 * clear_bit - Clears a bit in memory
370 * @nr: Bit to clear
371 * @addr: Address to start counting from
372 *
373 * Note: there are no guarantees that this function will not be reordered
374 * on non x86 architectures, so if you are writing portable code,
375 * make sure not to rely on its reordering guarantees.
376 */
377static inline void clear_bit(int nr, volatile unsigned long *addr)
378{
379 __op_bit(and, __NOT, nr, addr);
380}
381
382/**
383 * change_bit - Toggle a bit in memory
384 * @nr: Bit to change
385 * @addr: Address to start counting from
386 *
387 * change_bit() may be reordered on other architectures than x86.
388 * Note that @nr may be almost arbitrarily large; this function is not
389 * restricted to acting on a single-word quantity.
390 */
391static inline void change_bit(int nr, volatile unsigned long *addr)
392{
393 __op_bit(xor, __NOP, nr, addr);
394}
395
396/**
397 * test_and_set_bit_lock - Set a bit and return its old value, for lock
398 * @nr: Bit to set
399 * @addr: Address to count from
400 *
401 * This operation is atomic and provides acquire barrier semantics.
402 * It can be used to implement bit locks.
403 */
404static inline int test_and_set_bit_lock(
405 unsigned long nr, volatile unsigned long *addr)
406{
407 return __test_and_op_bit_ord(or, __NOP, nr, addr, .aq);
408}
409
410/**
411 * clear_bit_unlock - Clear a bit in memory, for unlock
412 * @nr: the bit to set
413 * @addr: the address to start counting from
414 *
415 * This operation is atomic and provides release barrier semantics.
416 */
417static inline void clear_bit_unlock(
418 unsigned long nr, volatile unsigned long *addr)
419{
420 __op_bit_ord(and, __NOT, nr, addr, .rl);
421}
422
423/**
424 * __clear_bit_unlock - Clear a bit in memory, for unlock
425 * @nr: the bit to set
426 * @addr: the address to start counting from
427 *
428 * This operation is like clear_bit_unlock, however it is not atomic.
429 * It does provide release barrier semantics so it can be used to unlock
430 * a bit lock, however it would only be used if no other CPU can modify
431 * any bits in the memory until the lock is released (a good example is
432 * if the bit lock itself protects access to the other bits in the word).
433 *
434 * On RISC-V systems there seems to be no benefit to taking advantage of the
435 * non-atomic property here: it's a lot more instructions and we still have to
436 * provide release semantics anyway.
437 */
438static inline void __clear_bit_unlock(
439 unsigned long nr, volatile unsigned long *addr)
440{
441 clear_bit_unlock(nr, addr);
442}
443
444static inline bool xor_unlock_is_negative_byte(unsigned long mask,
445 volatile unsigned long *addr)
446{
447 unsigned long res;
448 __asm__ __volatile__ (
449 __AMO(xor) ".rl %0, %2, %1"
450 : "=r" (res), "+A" (*addr)
451 : "r" (__NOP(mask))
452 : "memory");
453 return (res & BIT(7)) != 0;
454}
455
456#undef __test_and_op_bit
457#undef __op_bit
458#undef __NOP
459#undef __NOT
460#undef __AMO
461
462#include <asm-generic/bitops/non-atomic.h>
463#include <asm-generic/bitops/le.h>
464#include <asm-generic/bitops/ext2-atomic.h>
465
466#endif /* _ASM_RISCV_BITOPS_H */