at v6.8 435 lines 14 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* 3 * Based on arch/arm/include/asm/memory.h 4 * 5 * Copyright (C) 2000-2002 Russell King 6 * Copyright (C) 2012 ARM Ltd. 7 * 8 * Note: this file should not be included by non-asm/.h files 9 */ 10#ifndef __ASM_MEMORY_H 11#define __ASM_MEMORY_H 12 13#include <linux/const.h> 14#include <linux/sizes.h> 15#include <asm/page-def.h> 16 17/* 18 * Size of the PCI I/O space. This must remain a power of two so that 19 * IO_SPACE_LIMIT acts as a mask for the low bits of I/O addresses. 20 */ 21#define PCI_IO_SIZE SZ_16M 22 23/* 24 * VMEMMAP_SIZE - allows the whole linear region to be covered by 25 * a struct page array 26 * 27 * If we are configured with a 52-bit kernel VA then our VMEMMAP_SIZE 28 * needs to cover the memory region from the beginning of the 52-bit 29 * PAGE_OFFSET all the way to PAGE_END for 48-bit. This allows us to 30 * keep a constant PAGE_OFFSET and "fallback" to using the higher end 31 * of the VMEMMAP where 52-bit support is not available in hardware. 32 */ 33#define VMEMMAP_SHIFT (PAGE_SHIFT - STRUCT_PAGE_MAX_SHIFT) 34#define VMEMMAP_SIZE ((_PAGE_END(VA_BITS_MIN) - PAGE_OFFSET) >> VMEMMAP_SHIFT) 35 36/* 37 * PAGE_OFFSET - the virtual address of the start of the linear map, at the 38 * start of the TTBR1 address space. 39 * PAGE_END - the end of the linear map, where all other kernel mappings begin. 40 * KIMAGE_VADDR - the virtual address of the start of the kernel image. 41 * VA_BITS - the maximum number of bits for virtual addresses. 42 */ 43#define VA_BITS (CONFIG_ARM64_VA_BITS) 44#define _PAGE_OFFSET(va) (-(UL(1) << (va))) 45#define PAGE_OFFSET (_PAGE_OFFSET(VA_BITS)) 46#define KIMAGE_VADDR (MODULES_END) 47#define MODULES_END (MODULES_VADDR + MODULES_VSIZE) 48#define MODULES_VADDR (_PAGE_END(VA_BITS_MIN)) 49#define MODULES_VSIZE (SZ_2G) 50#define VMEMMAP_START (-(UL(1) << (VA_BITS - VMEMMAP_SHIFT))) 51#define VMEMMAP_END (VMEMMAP_START + VMEMMAP_SIZE) 52#define PCI_IO_END (VMEMMAP_START - SZ_8M) 53#define PCI_IO_START (PCI_IO_END - PCI_IO_SIZE) 54#define FIXADDR_TOP (VMEMMAP_START - SZ_32M) 55 56#if VA_BITS > 48 57#define VA_BITS_MIN (48) 58#else 59#define VA_BITS_MIN (VA_BITS) 60#endif 61 62#define _PAGE_END(va) (-(UL(1) << ((va) - 1))) 63 64#define KERNEL_START _text 65#define KERNEL_END _end 66 67/* 68 * Generic and Software Tag-Based KASAN modes require 1/8th and 1/16th of the 69 * kernel virtual address space for storing the shadow memory respectively. 70 * 71 * The mapping between a virtual memory address and its corresponding shadow 72 * memory address is defined based on the formula: 73 * 74 * shadow_addr = (addr >> KASAN_SHADOW_SCALE_SHIFT) + KASAN_SHADOW_OFFSET 75 * 76 * where KASAN_SHADOW_SCALE_SHIFT is the order of the number of bits that map 77 * to a single shadow byte and KASAN_SHADOW_OFFSET is a constant that offsets 78 * the mapping. Note that KASAN_SHADOW_OFFSET does not point to the start of 79 * the shadow memory region. 80 * 81 * Based on this mapping, we define two constants: 82 * 83 * KASAN_SHADOW_START: the start of the shadow memory region; 84 * KASAN_SHADOW_END: the end of the shadow memory region. 85 * 86 * KASAN_SHADOW_END is defined first as the shadow address that corresponds to 87 * the upper bound of possible virtual kernel memory addresses UL(1) << 64 88 * according to the mapping formula. 89 * 90 * KASAN_SHADOW_START is defined second based on KASAN_SHADOW_END. The shadow 91 * memory start must map to the lowest possible kernel virtual memory address 92 * and thus it depends on the actual bitness of the address space. 93 * 94 * As KASAN inserts redzones between stack variables, this increases the stack 95 * memory usage significantly. Thus, we double the (minimum) stack size. 96 */ 97#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) 98#define KASAN_SHADOW_OFFSET _AC(CONFIG_KASAN_SHADOW_OFFSET, UL) 99#define KASAN_SHADOW_END ((UL(1) << (64 - KASAN_SHADOW_SCALE_SHIFT)) + KASAN_SHADOW_OFFSET) 100#define _KASAN_SHADOW_START(va) (KASAN_SHADOW_END - (UL(1) << ((va) - KASAN_SHADOW_SCALE_SHIFT))) 101#define KASAN_SHADOW_START _KASAN_SHADOW_START(vabits_actual) 102#define PAGE_END KASAN_SHADOW_START 103#define KASAN_THREAD_SHIFT 1 104#else 105#define KASAN_THREAD_SHIFT 0 106#define PAGE_END (_PAGE_END(VA_BITS_MIN)) 107#endif /* CONFIG_KASAN */ 108 109#define MIN_THREAD_SHIFT (14 + KASAN_THREAD_SHIFT) 110 111/* 112 * VMAP'd stacks are allocated at page granularity, so we must ensure that such 113 * stacks are a multiple of page size. 114 */ 115#if defined(CONFIG_VMAP_STACK) && (MIN_THREAD_SHIFT < PAGE_SHIFT) 116#define THREAD_SHIFT PAGE_SHIFT 117#else 118#define THREAD_SHIFT MIN_THREAD_SHIFT 119#endif 120 121#if THREAD_SHIFT >= PAGE_SHIFT 122#define THREAD_SIZE_ORDER (THREAD_SHIFT - PAGE_SHIFT) 123#endif 124 125#define THREAD_SIZE (UL(1) << THREAD_SHIFT) 126 127/* 128 * By aligning VMAP'd stacks to 2 * THREAD_SIZE, we can detect overflow by 129 * checking sp & (1 << THREAD_SHIFT), which we can do cheaply in the entry 130 * assembly. 131 */ 132#ifdef CONFIG_VMAP_STACK 133#define THREAD_ALIGN (2 * THREAD_SIZE) 134#else 135#define THREAD_ALIGN THREAD_SIZE 136#endif 137 138#define IRQ_STACK_SIZE THREAD_SIZE 139 140#define OVERFLOW_STACK_SIZE SZ_4K 141 142/* 143 * With the minimum frame size of [x29, x30], exactly half the combined 144 * sizes of the hyp and overflow stacks is the maximum size needed to 145 * save the unwinded stacktrace; plus an additional entry to delimit the 146 * end. 147 */ 148#define NVHE_STACKTRACE_SIZE ((OVERFLOW_STACK_SIZE + PAGE_SIZE) / 2 + sizeof(long)) 149 150/* 151 * Alignment of kernel segments (e.g. .text, .data). 152 * 153 * 4 KB granule: 16 level 3 entries, with contiguous bit 154 * 16 KB granule: 4 level 3 entries, without contiguous bit 155 * 64 KB granule: 1 level 3 entry 156 */ 157#define SEGMENT_ALIGN SZ_64K 158 159/* 160 * Memory types available. 161 * 162 * IMPORTANT: MT_NORMAL must be index 0 since vm_get_page_prot() may 'or' in 163 * the MT_NORMAL_TAGGED memory type for PROT_MTE mappings. Note 164 * that protection_map[] only contains MT_NORMAL attributes. 165 */ 166#define MT_NORMAL 0 167#define MT_NORMAL_TAGGED 1 168#define MT_NORMAL_NC 2 169#define MT_DEVICE_nGnRnE 3 170#define MT_DEVICE_nGnRE 4 171 172/* 173 * Memory types for Stage-2 translation 174 */ 175#define MT_S2_NORMAL 0xf 176#define MT_S2_DEVICE_nGnRE 0x1 177 178/* 179 * Memory types for Stage-2 translation when ID_AA64MMFR2_EL1.FWB is 0001 180 * Stage-2 enforces Normal-WB and Device-nGnRE 181 */ 182#define MT_S2_FWB_NORMAL 6 183#define MT_S2_FWB_DEVICE_nGnRE 1 184 185#ifdef CONFIG_ARM64_4K_PAGES 186#define IOREMAP_MAX_ORDER (PUD_SHIFT) 187#else 188#define IOREMAP_MAX_ORDER (PMD_SHIFT) 189#endif 190 191/* 192 * Open-coded (swapper_pg_dir - reserved_pg_dir) as this cannot be calculated 193 * until link time. 194 */ 195#define RESERVED_SWAPPER_OFFSET (PAGE_SIZE) 196 197/* 198 * Open-coded (swapper_pg_dir - tramp_pg_dir) as this cannot be calculated 199 * until link time. 200 */ 201#define TRAMP_SWAPPER_OFFSET (2 * PAGE_SIZE) 202 203#ifndef __ASSEMBLY__ 204 205#include <linux/bitops.h> 206#include <linux/compiler.h> 207#include <linux/mmdebug.h> 208#include <linux/types.h> 209#include <asm/boot.h> 210#include <asm/bug.h> 211#include <asm/sections.h> 212 213#if VA_BITS > 48 214extern u64 vabits_actual; 215#else 216#define vabits_actual ((u64)VA_BITS) 217#endif 218 219extern s64 memstart_addr; 220/* PHYS_OFFSET - the physical address of the start of memory. */ 221#define PHYS_OFFSET ({ VM_BUG_ON(memstart_addr & 1); memstart_addr; }) 222 223/* the offset between the kernel virtual and physical mappings */ 224extern u64 kimage_voffset; 225 226static inline unsigned long kaslr_offset(void) 227{ 228 return (u64)&_text - KIMAGE_VADDR; 229} 230 231#ifdef CONFIG_RANDOMIZE_BASE 232void kaslr_init(void); 233static inline bool kaslr_enabled(void) 234{ 235 extern bool __kaslr_is_enabled; 236 return __kaslr_is_enabled; 237} 238#else 239static inline void kaslr_init(void) { } 240static inline bool kaslr_enabled(void) { return false; } 241#endif 242 243/* 244 * Allow all memory at the discovery stage. We will clip it later. 245 */ 246#define MIN_MEMBLOCK_ADDR 0 247#define MAX_MEMBLOCK_ADDR U64_MAX 248 249/* 250 * PFNs are used to describe any physical page; this means 251 * PFN 0 == physical address 0. 252 * 253 * This is the PFN of the first RAM page in the kernel 254 * direct-mapped view. We assume this is the first page 255 * of RAM in the mem_map as well. 256 */ 257#define PHYS_PFN_OFFSET (PHYS_OFFSET >> PAGE_SHIFT) 258 259/* 260 * When dealing with data aborts, watchpoints, or instruction traps we may end 261 * up with a tagged userland pointer. Clear the tag to get a sane pointer to 262 * pass on to access_ok(), for instance. 263 */ 264#define __untagged_addr(addr) \ 265 ((__force __typeof__(addr))sign_extend64((__force u64)(addr), 55)) 266 267#define untagged_addr(addr) ({ \ 268 u64 __addr = (__force u64)(addr); \ 269 __addr &= __untagged_addr(__addr); \ 270 (__force __typeof__(addr))__addr; \ 271}) 272 273#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 274#define __tag_shifted(tag) ((u64)(tag) << 56) 275#define __tag_reset(addr) __untagged_addr(addr) 276#define __tag_get(addr) (__u8)((u64)(addr) >> 56) 277#else 278#define __tag_shifted(tag) 0UL 279#define __tag_reset(addr) (addr) 280#define __tag_get(addr) 0 281#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 282 283static inline const void *__tag_set(const void *addr, u8 tag) 284{ 285 u64 __addr = (u64)addr & ~__tag_shifted(0xff); 286 return (const void *)(__addr | __tag_shifted(tag)); 287} 288 289#ifdef CONFIG_KASAN_HW_TAGS 290#define arch_enable_tag_checks_sync() mte_enable_kernel_sync() 291#define arch_enable_tag_checks_async() mte_enable_kernel_async() 292#define arch_enable_tag_checks_asymm() mte_enable_kernel_asymm() 293#define arch_suppress_tag_checks_start() mte_enable_tco() 294#define arch_suppress_tag_checks_stop() mte_disable_tco() 295#define arch_force_async_tag_fault() mte_check_tfsr_exit() 296#define arch_get_random_tag() mte_get_random_tag() 297#define arch_get_mem_tag(addr) mte_get_mem_tag(addr) 298#define arch_set_mem_tag_range(addr, size, tag, init) \ 299 mte_set_mem_tag_range((addr), (size), (tag), (init)) 300#endif /* CONFIG_KASAN_HW_TAGS */ 301 302/* 303 * Physical vs virtual RAM address space conversion. These are 304 * private definitions which should NOT be used outside memory.h 305 * files. Use virt_to_phys/phys_to_virt/__pa/__va instead. 306 */ 307 308 309/* 310 * Check whether an arbitrary address is within the linear map, which 311 * lives in the [PAGE_OFFSET, PAGE_END) interval at the bottom of the 312 * kernel's TTBR1 address range. 313 */ 314#define __is_lm_address(addr) (((u64)(addr) - PAGE_OFFSET) < (PAGE_END - PAGE_OFFSET)) 315 316#define __lm_to_phys(addr) (((addr) - PAGE_OFFSET) + PHYS_OFFSET) 317#define __kimg_to_phys(addr) ((addr) - kimage_voffset) 318 319#define __virt_to_phys_nodebug(x) ({ \ 320 phys_addr_t __x = (phys_addr_t)(__tag_reset(x)); \ 321 __is_lm_address(__x) ? __lm_to_phys(__x) : __kimg_to_phys(__x); \ 322}) 323 324#define __pa_symbol_nodebug(x) __kimg_to_phys((phys_addr_t)(x)) 325 326#ifdef CONFIG_DEBUG_VIRTUAL 327extern phys_addr_t __virt_to_phys(unsigned long x); 328extern phys_addr_t __phys_addr_symbol(unsigned long x); 329#else 330#define __virt_to_phys(x) __virt_to_phys_nodebug(x) 331#define __phys_addr_symbol(x) __pa_symbol_nodebug(x) 332#endif /* CONFIG_DEBUG_VIRTUAL */ 333 334#define __phys_to_virt(x) ((unsigned long)((x) - PHYS_OFFSET) | PAGE_OFFSET) 335#define __phys_to_kimg(x) ((unsigned long)((x) + kimage_voffset)) 336 337/* 338 * Convert a page to/from a physical address 339 */ 340#define page_to_phys(page) (__pfn_to_phys(page_to_pfn(page))) 341#define phys_to_page(phys) (pfn_to_page(__phys_to_pfn(phys))) 342 343/* 344 * Note: Drivers should NOT use these. They are the wrong 345 * translation for translating DMA addresses. Use the driver 346 * DMA support - see dma-mapping.h. 347 */ 348#define virt_to_phys virt_to_phys 349static inline phys_addr_t virt_to_phys(const volatile void *x) 350{ 351 return __virt_to_phys((unsigned long)(x)); 352} 353 354#define phys_to_virt phys_to_virt 355static inline void *phys_to_virt(phys_addr_t x) 356{ 357 return (void *)(__phys_to_virt(x)); 358} 359 360/* Needed already here for resolving __phys_to_pfn() in virt_to_pfn() */ 361#include <asm-generic/memory_model.h> 362 363static inline unsigned long virt_to_pfn(const void *kaddr) 364{ 365 return __phys_to_pfn(virt_to_phys(kaddr)); 366} 367 368/* 369 * Drivers should NOT use these either. 370 */ 371#define __pa(x) __virt_to_phys((unsigned long)(x)) 372#define __pa_symbol(x) __phys_addr_symbol(RELOC_HIDE((unsigned long)(x), 0)) 373#define __pa_nodebug(x) __virt_to_phys_nodebug((unsigned long)(x)) 374#define __va(x) ((void *)__phys_to_virt((phys_addr_t)(x))) 375#define pfn_to_kaddr(pfn) __va((pfn) << PAGE_SHIFT) 376#define sym_to_pfn(x) __phys_to_pfn(__pa_symbol(x)) 377 378/* 379 * virt_to_page(x) convert a _valid_ virtual address to struct page * 380 * virt_addr_valid(x) indicates whether a virtual address is valid 381 */ 382#define ARCH_PFN_OFFSET ((unsigned long)PHYS_PFN_OFFSET) 383 384#if defined(CONFIG_DEBUG_VIRTUAL) 385#define page_to_virt(x) ({ \ 386 __typeof__(x) __page = x; \ 387 void *__addr = __va(page_to_phys(__page)); \ 388 (void *)__tag_set((const void *)__addr, page_kasan_tag(__page));\ 389}) 390#define virt_to_page(x) pfn_to_page(virt_to_pfn(x)) 391#else 392#define page_to_virt(x) ({ \ 393 __typeof__(x) __page = x; \ 394 u64 __idx = ((u64)__page - VMEMMAP_START) / sizeof(struct page);\ 395 u64 __addr = PAGE_OFFSET + (__idx * PAGE_SIZE); \ 396 (void *)__tag_set((const void *)__addr, page_kasan_tag(__page));\ 397}) 398 399#define virt_to_page(x) ({ \ 400 u64 __idx = (__tag_reset((u64)x) - PAGE_OFFSET) / PAGE_SIZE; \ 401 u64 __addr = VMEMMAP_START + (__idx * sizeof(struct page)); \ 402 (struct page *)__addr; \ 403}) 404#endif /* CONFIG_DEBUG_VIRTUAL */ 405 406#define virt_addr_valid(addr) ({ \ 407 __typeof__(addr) __addr = __tag_reset(addr); \ 408 __is_lm_address(__addr) && pfn_is_map_memory(virt_to_pfn(__addr)); \ 409}) 410 411void dump_mem_limit(void); 412#endif /* !ASSEMBLY */ 413 414/* 415 * Given that the GIC architecture permits ITS implementations that can only be 416 * configured with a LPI table address once, GICv3 systems with many CPUs may 417 * end up reserving a lot of different regions after a kexec for their LPI 418 * tables (one per CPU), as we are forced to reuse the same memory after kexec 419 * (and thus reserve it persistently with EFI beforehand) 420 */ 421#if defined(CONFIG_EFI) && defined(CONFIG_ARM_GIC_V3_ITS) 422# define INIT_MEMBLOCK_RESERVED_REGIONS (INIT_MEMBLOCK_REGIONS + NR_CPUS + 1) 423#endif 424 425/* 426 * memory regions which marked with flag MEMBLOCK_NOMAP(for example, the memory 427 * of the EFI_UNUSABLE_MEMORY type) may divide a continuous memory block into 428 * multiple parts. As a result, the number of memory regions is large. 429 */ 430#ifdef CONFIG_EFI 431#define INIT_MEMBLOCK_MEMORY_REGIONS (INIT_MEMBLOCK_REGIONS * 8) 432#endif 433 434 435#endif /* __ASM_MEMORY_H */