at v6.8-rc7 1276 lines 38 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* 3 * tools/testing/selftests/kvm/include/x86_64/processor.h 4 * 5 * Copyright (C) 2018, Google LLC. 6 */ 7 8#ifndef SELFTEST_KVM_PROCESSOR_H 9#define SELFTEST_KVM_PROCESSOR_H 10 11#include <assert.h> 12#include <stdint.h> 13#include <syscall.h> 14 15#include <asm/msr-index.h> 16#include <asm/prctl.h> 17 18#include <linux/kvm_para.h> 19#include <linux/stringify.h> 20 21#include "../kvm_util.h" 22 23extern bool host_cpu_is_intel; 24extern bool host_cpu_is_amd; 25 26#define NMI_VECTOR 0x02 27 28#define X86_EFLAGS_FIXED (1u << 1) 29 30#define X86_CR4_VME (1ul << 0) 31#define X86_CR4_PVI (1ul << 1) 32#define X86_CR4_TSD (1ul << 2) 33#define X86_CR4_DE (1ul << 3) 34#define X86_CR4_PSE (1ul << 4) 35#define X86_CR4_PAE (1ul << 5) 36#define X86_CR4_MCE (1ul << 6) 37#define X86_CR4_PGE (1ul << 7) 38#define X86_CR4_PCE (1ul << 8) 39#define X86_CR4_OSFXSR (1ul << 9) 40#define X86_CR4_OSXMMEXCPT (1ul << 10) 41#define X86_CR4_UMIP (1ul << 11) 42#define X86_CR4_LA57 (1ul << 12) 43#define X86_CR4_VMXE (1ul << 13) 44#define X86_CR4_SMXE (1ul << 14) 45#define X86_CR4_FSGSBASE (1ul << 16) 46#define X86_CR4_PCIDE (1ul << 17) 47#define X86_CR4_OSXSAVE (1ul << 18) 48#define X86_CR4_SMEP (1ul << 20) 49#define X86_CR4_SMAP (1ul << 21) 50#define X86_CR4_PKE (1ul << 22) 51 52struct xstate_header { 53 u64 xstate_bv; 54 u64 xcomp_bv; 55 u64 reserved[6]; 56} __attribute__((packed)); 57 58struct xstate { 59 u8 i387[512]; 60 struct xstate_header header; 61 u8 extended_state_area[0]; 62} __attribute__ ((packed, aligned (64))); 63 64#define XFEATURE_MASK_FP BIT_ULL(0) 65#define XFEATURE_MASK_SSE BIT_ULL(1) 66#define XFEATURE_MASK_YMM BIT_ULL(2) 67#define XFEATURE_MASK_BNDREGS BIT_ULL(3) 68#define XFEATURE_MASK_BNDCSR BIT_ULL(4) 69#define XFEATURE_MASK_OPMASK BIT_ULL(5) 70#define XFEATURE_MASK_ZMM_Hi256 BIT_ULL(6) 71#define XFEATURE_MASK_Hi16_ZMM BIT_ULL(7) 72#define XFEATURE_MASK_PT BIT_ULL(8) 73#define XFEATURE_MASK_PKRU BIT_ULL(9) 74#define XFEATURE_MASK_PASID BIT_ULL(10) 75#define XFEATURE_MASK_CET_USER BIT_ULL(11) 76#define XFEATURE_MASK_CET_KERNEL BIT_ULL(12) 77#define XFEATURE_MASK_LBR BIT_ULL(15) 78#define XFEATURE_MASK_XTILE_CFG BIT_ULL(17) 79#define XFEATURE_MASK_XTILE_DATA BIT_ULL(18) 80 81#define XFEATURE_MASK_AVX512 (XFEATURE_MASK_OPMASK | \ 82 XFEATURE_MASK_ZMM_Hi256 | \ 83 XFEATURE_MASK_Hi16_ZMM) 84#define XFEATURE_MASK_XTILE (XFEATURE_MASK_XTILE_DATA | \ 85 XFEATURE_MASK_XTILE_CFG) 86 87/* Note, these are ordered alphabetically to match kvm_cpuid_entry2. Eww. */ 88enum cpuid_output_regs { 89 KVM_CPUID_EAX, 90 KVM_CPUID_EBX, 91 KVM_CPUID_ECX, 92 KVM_CPUID_EDX 93}; 94 95/* 96 * Pack the information into a 64-bit value so that each X86_FEATURE_XXX can be 97 * passed by value with no overhead. 98 */ 99struct kvm_x86_cpu_feature { 100 u32 function; 101 u16 index; 102 u8 reg; 103 u8 bit; 104}; 105#define KVM_X86_CPU_FEATURE(fn, idx, gpr, __bit) \ 106({ \ 107 struct kvm_x86_cpu_feature feature = { \ 108 .function = fn, \ 109 .index = idx, \ 110 .reg = KVM_CPUID_##gpr, \ 111 .bit = __bit, \ 112 }; \ 113 \ 114 kvm_static_assert((fn & 0xc0000000) == 0 || \ 115 (fn & 0xc0000000) == 0x40000000 || \ 116 (fn & 0xc0000000) == 0x80000000 || \ 117 (fn & 0xc0000000) == 0xc0000000); \ 118 kvm_static_assert(idx < BIT(sizeof(feature.index) * BITS_PER_BYTE)); \ 119 feature; \ 120}) 121 122/* 123 * Basic Leafs, a.k.a. Intel defined 124 */ 125#define X86_FEATURE_MWAIT KVM_X86_CPU_FEATURE(0x1, 0, ECX, 3) 126#define X86_FEATURE_VMX KVM_X86_CPU_FEATURE(0x1, 0, ECX, 5) 127#define X86_FEATURE_SMX KVM_X86_CPU_FEATURE(0x1, 0, ECX, 6) 128#define X86_FEATURE_PDCM KVM_X86_CPU_FEATURE(0x1, 0, ECX, 15) 129#define X86_FEATURE_PCID KVM_X86_CPU_FEATURE(0x1, 0, ECX, 17) 130#define X86_FEATURE_X2APIC KVM_X86_CPU_FEATURE(0x1, 0, ECX, 21) 131#define X86_FEATURE_MOVBE KVM_X86_CPU_FEATURE(0x1, 0, ECX, 22) 132#define X86_FEATURE_TSC_DEADLINE_TIMER KVM_X86_CPU_FEATURE(0x1, 0, ECX, 24) 133#define X86_FEATURE_XSAVE KVM_X86_CPU_FEATURE(0x1, 0, ECX, 26) 134#define X86_FEATURE_OSXSAVE KVM_X86_CPU_FEATURE(0x1, 0, ECX, 27) 135#define X86_FEATURE_RDRAND KVM_X86_CPU_FEATURE(0x1, 0, ECX, 30) 136#define X86_FEATURE_HYPERVISOR KVM_X86_CPU_FEATURE(0x1, 0, ECX, 31) 137#define X86_FEATURE_PAE KVM_X86_CPU_FEATURE(0x1, 0, EDX, 6) 138#define X86_FEATURE_MCE KVM_X86_CPU_FEATURE(0x1, 0, EDX, 7) 139#define X86_FEATURE_APIC KVM_X86_CPU_FEATURE(0x1, 0, EDX, 9) 140#define X86_FEATURE_CLFLUSH KVM_X86_CPU_FEATURE(0x1, 0, EDX, 19) 141#define X86_FEATURE_XMM KVM_X86_CPU_FEATURE(0x1, 0, EDX, 25) 142#define X86_FEATURE_XMM2 KVM_X86_CPU_FEATURE(0x1, 0, EDX, 26) 143#define X86_FEATURE_FSGSBASE KVM_X86_CPU_FEATURE(0x7, 0, EBX, 0) 144#define X86_FEATURE_TSC_ADJUST KVM_X86_CPU_FEATURE(0x7, 0, EBX, 1) 145#define X86_FEATURE_SGX KVM_X86_CPU_FEATURE(0x7, 0, EBX, 2) 146#define X86_FEATURE_HLE KVM_X86_CPU_FEATURE(0x7, 0, EBX, 4) 147#define X86_FEATURE_SMEP KVM_X86_CPU_FEATURE(0x7, 0, EBX, 7) 148#define X86_FEATURE_INVPCID KVM_X86_CPU_FEATURE(0x7, 0, EBX, 10) 149#define X86_FEATURE_RTM KVM_X86_CPU_FEATURE(0x7, 0, EBX, 11) 150#define X86_FEATURE_MPX KVM_X86_CPU_FEATURE(0x7, 0, EBX, 14) 151#define X86_FEATURE_SMAP KVM_X86_CPU_FEATURE(0x7, 0, EBX, 20) 152#define X86_FEATURE_PCOMMIT KVM_X86_CPU_FEATURE(0x7, 0, EBX, 22) 153#define X86_FEATURE_CLFLUSHOPT KVM_X86_CPU_FEATURE(0x7, 0, EBX, 23) 154#define X86_FEATURE_CLWB KVM_X86_CPU_FEATURE(0x7, 0, EBX, 24) 155#define X86_FEATURE_UMIP KVM_X86_CPU_FEATURE(0x7, 0, ECX, 2) 156#define X86_FEATURE_PKU KVM_X86_CPU_FEATURE(0x7, 0, ECX, 3) 157#define X86_FEATURE_OSPKE KVM_X86_CPU_FEATURE(0x7, 0, ECX, 4) 158#define X86_FEATURE_LA57 KVM_X86_CPU_FEATURE(0x7, 0, ECX, 16) 159#define X86_FEATURE_RDPID KVM_X86_CPU_FEATURE(0x7, 0, ECX, 22) 160#define X86_FEATURE_SGX_LC KVM_X86_CPU_FEATURE(0x7, 0, ECX, 30) 161#define X86_FEATURE_SHSTK KVM_X86_CPU_FEATURE(0x7, 0, ECX, 7) 162#define X86_FEATURE_IBT KVM_X86_CPU_FEATURE(0x7, 0, EDX, 20) 163#define X86_FEATURE_AMX_TILE KVM_X86_CPU_FEATURE(0x7, 0, EDX, 24) 164#define X86_FEATURE_SPEC_CTRL KVM_X86_CPU_FEATURE(0x7, 0, EDX, 26) 165#define X86_FEATURE_ARCH_CAPABILITIES KVM_X86_CPU_FEATURE(0x7, 0, EDX, 29) 166#define X86_FEATURE_PKS KVM_X86_CPU_FEATURE(0x7, 0, ECX, 31) 167#define X86_FEATURE_XTILECFG KVM_X86_CPU_FEATURE(0xD, 0, EAX, 17) 168#define X86_FEATURE_XTILEDATA KVM_X86_CPU_FEATURE(0xD, 0, EAX, 18) 169#define X86_FEATURE_XSAVES KVM_X86_CPU_FEATURE(0xD, 1, EAX, 3) 170#define X86_FEATURE_XFD KVM_X86_CPU_FEATURE(0xD, 1, EAX, 4) 171#define X86_FEATURE_XTILEDATA_XFD KVM_X86_CPU_FEATURE(0xD, 18, ECX, 2) 172 173/* 174 * Extended Leafs, a.k.a. AMD defined 175 */ 176#define X86_FEATURE_SVM KVM_X86_CPU_FEATURE(0x80000001, 0, ECX, 2) 177#define X86_FEATURE_NX KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 20) 178#define X86_FEATURE_GBPAGES KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 26) 179#define X86_FEATURE_RDTSCP KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 27) 180#define X86_FEATURE_LM KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 29) 181#define X86_FEATURE_INVTSC KVM_X86_CPU_FEATURE(0x80000007, 0, EDX, 8) 182#define X86_FEATURE_RDPRU KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 4) 183#define X86_FEATURE_AMD_IBPB KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 12) 184#define X86_FEATURE_NPT KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 0) 185#define X86_FEATURE_LBRV KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 1) 186#define X86_FEATURE_NRIPS KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 3) 187#define X86_FEATURE_TSCRATEMSR KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 4) 188#define X86_FEATURE_PAUSEFILTER KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 10) 189#define X86_FEATURE_PFTHRESHOLD KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 12) 190#define X86_FEATURE_VGIF KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 16) 191#define X86_FEATURE_SEV KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 1) 192#define X86_FEATURE_SEV_ES KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 3) 193 194/* 195 * KVM defined paravirt features. 196 */ 197#define X86_FEATURE_KVM_CLOCKSOURCE KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 0) 198#define X86_FEATURE_KVM_NOP_IO_DELAY KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 1) 199#define X86_FEATURE_KVM_MMU_OP KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 2) 200#define X86_FEATURE_KVM_CLOCKSOURCE2 KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 3) 201#define X86_FEATURE_KVM_ASYNC_PF KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 4) 202#define X86_FEATURE_KVM_STEAL_TIME KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 5) 203#define X86_FEATURE_KVM_PV_EOI KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 6) 204#define X86_FEATURE_KVM_PV_UNHALT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 7) 205/* Bit 8 apparently isn't used?!?! */ 206#define X86_FEATURE_KVM_PV_TLB_FLUSH KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 9) 207#define X86_FEATURE_KVM_ASYNC_PF_VMEXIT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 10) 208#define X86_FEATURE_KVM_PV_SEND_IPI KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 11) 209#define X86_FEATURE_KVM_POLL_CONTROL KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 12) 210#define X86_FEATURE_KVM_PV_SCHED_YIELD KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 13) 211#define X86_FEATURE_KVM_ASYNC_PF_INT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 14) 212#define X86_FEATURE_KVM_MSI_EXT_DEST_ID KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 15) 213#define X86_FEATURE_KVM_HC_MAP_GPA_RANGE KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 16) 214#define X86_FEATURE_KVM_MIGRATION_CONTROL KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 17) 215 216/* 217 * Same idea as X86_FEATURE_XXX, but X86_PROPERTY_XXX retrieves a multi-bit 218 * value/property as opposed to a single-bit feature. Again, pack the info 219 * into a 64-bit value to pass by value with no overhead. 220 */ 221struct kvm_x86_cpu_property { 222 u32 function; 223 u8 index; 224 u8 reg; 225 u8 lo_bit; 226 u8 hi_bit; 227}; 228#define KVM_X86_CPU_PROPERTY(fn, idx, gpr, low_bit, high_bit) \ 229({ \ 230 struct kvm_x86_cpu_property property = { \ 231 .function = fn, \ 232 .index = idx, \ 233 .reg = KVM_CPUID_##gpr, \ 234 .lo_bit = low_bit, \ 235 .hi_bit = high_bit, \ 236 }; \ 237 \ 238 kvm_static_assert(low_bit < high_bit); \ 239 kvm_static_assert((fn & 0xc0000000) == 0 || \ 240 (fn & 0xc0000000) == 0x40000000 || \ 241 (fn & 0xc0000000) == 0x80000000 || \ 242 (fn & 0xc0000000) == 0xc0000000); \ 243 kvm_static_assert(idx < BIT(sizeof(property.index) * BITS_PER_BYTE)); \ 244 property; \ 245}) 246 247#define X86_PROPERTY_MAX_BASIC_LEAF KVM_X86_CPU_PROPERTY(0, 0, EAX, 0, 31) 248#define X86_PROPERTY_PMU_VERSION KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 0, 7) 249#define X86_PROPERTY_PMU_NR_GP_COUNTERS KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 8, 15) 250#define X86_PROPERTY_PMU_GP_COUNTERS_BIT_WIDTH KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 16, 23) 251#define X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 24, 31) 252#define X86_PROPERTY_PMU_EVENTS_MASK KVM_X86_CPU_PROPERTY(0xa, 0, EBX, 0, 7) 253#define X86_PROPERTY_PMU_FIXED_COUNTERS_BITMASK KVM_X86_CPU_PROPERTY(0xa, 0, ECX, 0, 31) 254#define X86_PROPERTY_PMU_NR_FIXED_COUNTERS KVM_X86_CPU_PROPERTY(0xa, 0, EDX, 0, 4) 255#define X86_PROPERTY_PMU_FIXED_COUNTERS_BIT_WIDTH KVM_X86_CPU_PROPERTY(0xa, 0, EDX, 5, 12) 256 257#define X86_PROPERTY_SUPPORTED_XCR0_LO KVM_X86_CPU_PROPERTY(0xd, 0, EAX, 0, 31) 258#define X86_PROPERTY_XSTATE_MAX_SIZE_XCR0 KVM_X86_CPU_PROPERTY(0xd, 0, EBX, 0, 31) 259#define X86_PROPERTY_XSTATE_MAX_SIZE KVM_X86_CPU_PROPERTY(0xd, 0, ECX, 0, 31) 260#define X86_PROPERTY_SUPPORTED_XCR0_HI KVM_X86_CPU_PROPERTY(0xd, 0, EDX, 0, 31) 261 262#define X86_PROPERTY_XSTATE_TILE_SIZE KVM_X86_CPU_PROPERTY(0xd, 18, EAX, 0, 31) 263#define X86_PROPERTY_XSTATE_TILE_OFFSET KVM_X86_CPU_PROPERTY(0xd, 18, EBX, 0, 31) 264#define X86_PROPERTY_AMX_MAX_PALETTE_TABLES KVM_X86_CPU_PROPERTY(0x1d, 0, EAX, 0, 31) 265#define X86_PROPERTY_AMX_TOTAL_TILE_BYTES KVM_X86_CPU_PROPERTY(0x1d, 1, EAX, 0, 15) 266#define X86_PROPERTY_AMX_BYTES_PER_TILE KVM_X86_CPU_PROPERTY(0x1d, 1, EAX, 16, 31) 267#define X86_PROPERTY_AMX_BYTES_PER_ROW KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 0, 15) 268#define X86_PROPERTY_AMX_NR_TILE_REGS KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 16, 31) 269#define X86_PROPERTY_AMX_MAX_ROWS KVM_X86_CPU_PROPERTY(0x1d, 1, ECX, 0, 15) 270 271#define X86_PROPERTY_MAX_KVM_LEAF KVM_X86_CPU_PROPERTY(0x40000000, 0, EAX, 0, 31) 272 273#define X86_PROPERTY_MAX_EXT_LEAF KVM_X86_CPU_PROPERTY(0x80000000, 0, EAX, 0, 31) 274#define X86_PROPERTY_MAX_PHY_ADDR KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 0, 7) 275#define X86_PROPERTY_MAX_VIRT_ADDR KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 8, 15) 276#define X86_PROPERTY_PHYS_ADDR_REDUCTION KVM_X86_CPU_PROPERTY(0x8000001F, 0, EBX, 6, 11) 277 278#define X86_PROPERTY_MAX_CENTAUR_LEAF KVM_X86_CPU_PROPERTY(0xC0000000, 0, EAX, 0, 31) 279 280/* 281 * Intel's architectural PMU events are bizarre. They have a "feature" bit 282 * that indicates the feature is _not_ supported, and a property that states 283 * the length of the bit mask of unsupported features. A feature is supported 284 * if the size of the bit mask is larger than the "unavailable" bit, and said 285 * bit is not set. 286 * 287 * Wrap the "unavailable" feature to simplify checking whether or not a given 288 * architectural event is supported. 289 */ 290struct kvm_x86_pmu_feature { 291 struct kvm_x86_cpu_feature anti_feature; 292}; 293#define KVM_X86_PMU_FEATURE(name, __bit) \ 294({ \ 295 struct kvm_x86_pmu_feature feature = { \ 296 .anti_feature = KVM_X86_CPU_FEATURE(0xa, 0, EBX, __bit), \ 297 }; \ 298 \ 299 feature; \ 300}) 301 302#define X86_PMU_FEATURE_BRANCH_INSNS_RETIRED KVM_X86_PMU_FEATURE(BRANCH_INSNS_RETIRED, 5) 303 304static inline unsigned int x86_family(unsigned int eax) 305{ 306 unsigned int x86; 307 308 x86 = (eax >> 8) & 0xf; 309 310 if (x86 == 0xf) 311 x86 += (eax >> 20) & 0xff; 312 313 return x86; 314} 315 316static inline unsigned int x86_model(unsigned int eax) 317{ 318 return ((eax >> 12) & 0xf0) | ((eax >> 4) & 0x0f); 319} 320 321/* Page table bitfield declarations */ 322#define PTE_PRESENT_MASK BIT_ULL(0) 323#define PTE_WRITABLE_MASK BIT_ULL(1) 324#define PTE_USER_MASK BIT_ULL(2) 325#define PTE_ACCESSED_MASK BIT_ULL(5) 326#define PTE_DIRTY_MASK BIT_ULL(6) 327#define PTE_LARGE_MASK BIT_ULL(7) 328#define PTE_GLOBAL_MASK BIT_ULL(8) 329#define PTE_NX_MASK BIT_ULL(63) 330 331#define PHYSICAL_PAGE_MASK GENMASK_ULL(51, 12) 332 333#define PAGE_SHIFT 12 334#define PAGE_SIZE (1ULL << PAGE_SHIFT) 335#define PAGE_MASK (~(PAGE_SIZE-1) & PHYSICAL_PAGE_MASK) 336 337#define HUGEPAGE_SHIFT(x) (PAGE_SHIFT + (((x) - 1) * 9)) 338#define HUGEPAGE_SIZE(x) (1UL << HUGEPAGE_SHIFT(x)) 339#define HUGEPAGE_MASK(x) (~(HUGEPAGE_SIZE(x) - 1) & PHYSICAL_PAGE_MASK) 340 341#define PTE_GET_PA(pte) ((pte) & PHYSICAL_PAGE_MASK) 342#define PTE_GET_PFN(pte) (PTE_GET_PA(pte) >> PAGE_SHIFT) 343 344/* General Registers in 64-Bit Mode */ 345struct gpr64_regs { 346 u64 rax; 347 u64 rcx; 348 u64 rdx; 349 u64 rbx; 350 u64 rsp; 351 u64 rbp; 352 u64 rsi; 353 u64 rdi; 354 u64 r8; 355 u64 r9; 356 u64 r10; 357 u64 r11; 358 u64 r12; 359 u64 r13; 360 u64 r14; 361 u64 r15; 362}; 363 364struct desc64 { 365 uint16_t limit0; 366 uint16_t base0; 367 unsigned base1:8, type:4, s:1, dpl:2, p:1; 368 unsigned limit1:4, avl:1, l:1, db:1, g:1, base2:8; 369 uint32_t base3; 370 uint32_t zero1; 371} __attribute__((packed)); 372 373struct desc_ptr { 374 uint16_t size; 375 uint64_t address; 376} __attribute__((packed)); 377 378struct kvm_x86_state { 379 struct kvm_xsave *xsave; 380 struct kvm_vcpu_events events; 381 struct kvm_mp_state mp_state; 382 struct kvm_regs regs; 383 struct kvm_xcrs xcrs; 384 struct kvm_sregs sregs; 385 struct kvm_debugregs debugregs; 386 union { 387 struct kvm_nested_state nested; 388 char nested_[16384]; 389 }; 390 struct kvm_msrs msrs; 391}; 392 393static inline uint64_t get_desc64_base(const struct desc64 *desc) 394{ 395 return ((uint64_t)desc->base3 << 32) | 396 (desc->base0 | ((desc->base1) << 16) | ((desc->base2) << 24)); 397} 398 399static inline uint64_t rdtsc(void) 400{ 401 uint32_t eax, edx; 402 uint64_t tsc_val; 403 /* 404 * The lfence is to wait (on Intel CPUs) until all previous 405 * instructions have been executed. If software requires RDTSC to be 406 * executed prior to execution of any subsequent instruction, it can 407 * execute LFENCE immediately after RDTSC 408 */ 409 __asm__ __volatile__("lfence; rdtsc; lfence" : "=a"(eax), "=d"(edx)); 410 tsc_val = ((uint64_t)edx) << 32 | eax; 411 return tsc_val; 412} 413 414static inline uint64_t rdtscp(uint32_t *aux) 415{ 416 uint32_t eax, edx; 417 418 __asm__ __volatile__("rdtscp" : "=a"(eax), "=d"(edx), "=c"(*aux)); 419 return ((uint64_t)edx) << 32 | eax; 420} 421 422static inline uint64_t rdmsr(uint32_t msr) 423{ 424 uint32_t a, d; 425 426 __asm__ __volatile__("rdmsr" : "=a"(a), "=d"(d) : "c"(msr) : "memory"); 427 428 return a | ((uint64_t) d << 32); 429} 430 431static inline void wrmsr(uint32_t msr, uint64_t value) 432{ 433 uint32_t a = value; 434 uint32_t d = value >> 32; 435 436 __asm__ __volatile__("wrmsr" :: "a"(a), "d"(d), "c"(msr) : "memory"); 437} 438 439 440static inline uint16_t inw(uint16_t port) 441{ 442 uint16_t tmp; 443 444 __asm__ __volatile__("in %%dx, %%ax" 445 : /* output */ "=a" (tmp) 446 : /* input */ "d" (port)); 447 448 return tmp; 449} 450 451static inline uint16_t get_es(void) 452{ 453 uint16_t es; 454 455 __asm__ __volatile__("mov %%es, %[es]" 456 : /* output */ [es]"=rm"(es)); 457 return es; 458} 459 460static inline uint16_t get_cs(void) 461{ 462 uint16_t cs; 463 464 __asm__ __volatile__("mov %%cs, %[cs]" 465 : /* output */ [cs]"=rm"(cs)); 466 return cs; 467} 468 469static inline uint16_t get_ss(void) 470{ 471 uint16_t ss; 472 473 __asm__ __volatile__("mov %%ss, %[ss]" 474 : /* output */ [ss]"=rm"(ss)); 475 return ss; 476} 477 478static inline uint16_t get_ds(void) 479{ 480 uint16_t ds; 481 482 __asm__ __volatile__("mov %%ds, %[ds]" 483 : /* output */ [ds]"=rm"(ds)); 484 return ds; 485} 486 487static inline uint16_t get_fs(void) 488{ 489 uint16_t fs; 490 491 __asm__ __volatile__("mov %%fs, %[fs]" 492 : /* output */ [fs]"=rm"(fs)); 493 return fs; 494} 495 496static inline uint16_t get_gs(void) 497{ 498 uint16_t gs; 499 500 __asm__ __volatile__("mov %%gs, %[gs]" 501 : /* output */ [gs]"=rm"(gs)); 502 return gs; 503} 504 505static inline uint16_t get_tr(void) 506{ 507 uint16_t tr; 508 509 __asm__ __volatile__("str %[tr]" 510 : /* output */ [tr]"=rm"(tr)); 511 return tr; 512} 513 514static inline uint64_t get_cr0(void) 515{ 516 uint64_t cr0; 517 518 __asm__ __volatile__("mov %%cr0, %[cr0]" 519 : /* output */ [cr0]"=r"(cr0)); 520 return cr0; 521} 522 523static inline uint64_t get_cr3(void) 524{ 525 uint64_t cr3; 526 527 __asm__ __volatile__("mov %%cr3, %[cr3]" 528 : /* output */ [cr3]"=r"(cr3)); 529 return cr3; 530} 531 532static inline uint64_t get_cr4(void) 533{ 534 uint64_t cr4; 535 536 __asm__ __volatile__("mov %%cr4, %[cr4]" 537 : /* output */ [cr4]"=r"(cr4)); 538 return cr4; 539} 540 541static inline void set_cr4(uint64_t val) 542{ 543 __asm__ __volatile__("mov %0, %%cr4" : : "r" (val) : "memory"); 544} 545 546static inline u64 xgetbv(u32 index) 547{ 548 u32 eax, edx; 549 550 __asm__ __volatile__("xgetbv;" 551 : "=a" (eax), "=d" (edx) 552 : "c" (index)); 553 return eax | ((u64)edx << 32); 554} 555 556static inline void xsetbv(u32 index, u64 value) 557{ 558 u32 eax = value; 559 u32 edx = value >> 32; 560 561 __asm__ __volatile__("xsetbv" :: "a" (eax), "d" (edx), "c" (index)); 562} 563 564static inline void wrpkru(u32 pkru) 565{ 566 /* Note, ECX and EDX are architecturally required to be '0'. */ 567 asm volatile(".byte 0x0f,0x01,0xef\n\t" 568 : : "a" (pkru), "c"(0), "d"(0)); 569} 570 571static inline struct desc_ptr get_gdt(void) 572{ 573 struct desc_ptr gdt; 574 __asm__ __volatile__("sgdt %[gdt]" 575 : /* output */ [gdt]"=m"(gdt)); 576 return gdt; 577} 578 579static inline struct desc_ptr get_idt(void) 580{ 581 struct desc_ptr idt; 582 __asm__ __volatile__("sidt %[idt]" 583 : /* output */ [idt]"=m"(idt)); 584 return idt; 585} 586 587static inline void outl(uint16_t port, uint32_t value) 588{ 589 __asm__ __volatile__("outl %%eax, %%dx" : : "d"(port), "a"(value)); 590} 591 592static inline void __cpuid(uint32_t function, uint32_t index, 593 uint32_t *eax, uint32_t *ebx, 594 uint32_t *ecx, uint32_t *edx) 595{ 596 *eax = function; 597 *ecx = index; 598 599 asm volatile("cpuid" 600 : "=a" (*eax), 601 "=b" (*ebx), 602 "=c" (*ecx), 603 "=d" (*edx) 604 : "0" (*eax), "2" (*ecx) 605 : "memory"); 606} 607 608static inline void cpuid(uint32_t function, 609 uint32_t *eax, uint32_t *ebx, 610 uint32_t *ecx, uint32_t *edx) 611{ 612 return __cpuid(function, 0, eax, ebx, ecx, edx); 613} 614 615static inline uint32_t this_cpu_fms(void) 616{ 617 uint32_t eax, ebx, ecx, edx; 618 619 cpuid(1, &eax, &ebx, &ecx, &edx); 620 return eax; 621} 622 623static inline uint32_t this_cpu_family(void) 624{ 625 return x86_family(this_cpu_fms()); 626} 627 628static inline uint32_t this_cpu_model(void) 629{ 630 return x86_model(this_cpu_fms()); 631} 632 633static inline bool this_cpu_vendor_string_is(const char *vendor) 634{ 635 const uint32_t *chunk = (const uint32_t *)vendor; 636 uint32_t eax, ebx, ecx, edx; 637 638 cpuid(0, &eax, &ebx, &ecx, &edx); 639 return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]); 640} 641 642static inline bool this_cpu_is_intel(void) 643{ 644 return this_cpu_vendor_string_is("GenuineIntel"); 645} 646 647/* 648 * Exclude early K5 samples with a vendor string of "AMDisbetter!" 649 */ 650static inline bool this_cpu_is_amd(void) 651{ 652 return this_cpu_vendor_string_is("AuthenticAMD"); 653} 654 655static inline uint32_t __this_cpu_has(uint32_t function, uint32_t index, 656 uint8_t reg, uint8_t lo, uint8_t hi) 657{ 658 uint32_t gprs[4]; 659 660 __cpuid(function, index, 661 &gprs[KVM_CPUID_EAX], &gprs[KVM_CPUID_EBX], 662 &gprs[KVM_CPUID_ECX], &gprs[KVM_CPUID_EDX]); 663 664 return (gprs[reg] & GENMASK(hi, lo)) >> lo; 665} 666 667static inline bool this_cpu_has(struct kvm_x86_cpu_feature feature) 668{ 669 return __this_cpu_has(feature.function, feature.index, 670 feature.reg, feature.bit, feature.bit); 671} 672 673static inline uint32_t this_cpu_property(struct kvm_x86_cpu_property property) 674{ 675 return __this_cpu_has(property.function, property.index, 676 property.reg, property.lo_bit, property.hi_bit); 677} 678 679static __always_inline bool this_cpu_has_p(struct kvm_x86_cpu_property property) 680{ 681 uint32_t max_leaf; 682 683 switch (property.function & 0xc0000000) { 684 case 0: 685 max_leaf = this_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF); 686 break; 687 case 0x40000000: 688 max_leaf = this_cpu_property(X86_PROPERTY_MAX_KVM_LEAF); 689 break; 690 case 0x80000000: 691 max_leaf = this_cpu_property(X86_PROPERTY_MAX_EXT_LEAF); 692 break; 693 case 0xc0000000: 694 max_leaf = this_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF); 695 } 696 return max_leaf >= property.function; 697} 698 699static inline bool this_pmu_has(struct kvm_x86_pmu_feature feature) 700{ 701 uint32_t nr_bits = this_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH); 702 703 return nr_bits > feature.anti_feature.bit && 704 !this_cpu_has(feature.anti_feature); 705} 706 707static __always_inline uint64_t this_cpu_supported_xcr0(void) 708{ 709 if (!this_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO)) 710 return 0; 711 712 return this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) | 713 ((uint64_t)this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32); 714} 715 716typedef u32 __attribute__((vector_size(16))) sse128_t; 717#define __sse128_u union { sse128_t vec; u64 as_u64[2]; u32 as_u32[4]; } 718#define sse128_lo(x) ({ __sse128_u t; t.vec = x; t.as_u64[0]; }) 719#define sse128_hi(x) ({ __sse128_u t; t.vec = x; t.as_u64[1]; }) 720 721static inline void read_sse_reg(int reg, sse128_t *data) 722{ 723 switch (reg) { 724 case 0: 725 asm("movdqa %%xmm0, %0" : "=m"(*data)); 726 break; 727 case 1: 728 asm("movdqa %%xmm1, %0" : "=m"(*data)); 729 break; 730 case 2: 731 asm("movdqa %%xmm2, %0" : "=m"(*data)); 732 break; 733 case 3: 734 asm("movdqa %%xmm3, %0" : "=m"(*data)); 735 break; 736 case 4: 737 asm("movdqa %%xmm4, %0" : "=m"(*data)); 738 break; 739 case 5: 740 asm("movdqa %%xmm5, %0" : "=m"(*data)); 741 break; 742 case 6: 743 asm("movdqa %%xmm6, %0" : "=m"(*data)); 744 break; 745 case 7: 746 asm("movdqa %%xmm7, %0" : "=m"(*data)); 747 break; 748 default: 749 BUG(); 750 } 751} 752 753static inline void write_sse_reg(int reg, const sse128_t *data) 754{ 755 switch (reg) { 756 case 0: 757 asm("movdqa %0, %%xmm0" : : "m"(*data)); 758 break; 759 case 1: 760 asm("movdqa %0, %%xmm1" : : "m"(*data)); 761 break; 762 case 2: 763 asm("movdqa %0, %%xmm2" : : "m"(*data)); 764 break; 765 case 3: 766 asm("movdqa %0, %%xmm3" : : "m"(*data)); 767 break; 768 case 4: 769 asm("movdqa %0, %%xmm4" : : "m"(*data)); 770 break; 771 case 5: 772 asm("movdqa %0, %%xmm5" : : "m"(*data)); 773 break; 774 case 6: 775 asm("movdqa %0, %%xmm6" : : "m"(*data)); 776 break; 777 case 7: 778 asm("movdqa %0, %%xmm7" : : "m"(*data)); 779 break; 780 default: 781 BUG(); 782 } 783} 784 785static inline void cpu_relax(void) 786{ 787 asm volatile("rep; nop" ::: "memory"); 788} 789 790#define ud2() \ 791 __asm__ __volatile__( \ 792 "ud2\n" \ 793 ) 794 795#define hlt() \ 796 __asm__ __volatile__( \ 797 "hlt\n" \ 798 ) 799 800struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu); 801void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state); 802void kvm_x86_state_cleanup(struct kvm_x86_state *state); 803 804const struct kvm_msr_list *kvm_get_msr_index_list(void); 805const struct kvm_msr_list *kvm_get_feature_msr_index_list(void); 806bool kvm_msr_is_in_save_restore_list(uint32_t msr_index); 807uint64_t kvm_get_feature_msr(uint64_t msr_index); 808 809static inline void vcpu_msrs_get(struct kvm_vcpu *vcpu, 810 struct kvm_msrs *msrs) 811{ 812 int r = __vcpu_ioctl(vcpu, KVM_GET_MSRS, msrs); 813 814 TEST_ASSERT(r == msrs->nmsrs, 815 "KVM_GET_MSRS failed, r: %i (failed on MSR %x)", 816 r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index); 817} 818static inline void vcpu_msrs_set(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs) 819{ 820 int r = __vcpu_ioctl(vcpu, KVM_SET_MSRS, msrs); 821 822 TEST_ASSERT(r == msrs->nmsrs, 823 "KVM_SET_MSRS failed, r: %i (failed on MSR %x)", 824 r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index); 825} 826static inline void vcpu_debugregs_get(struct kvm_vcpu *vcpu, 827 struct kvm_debugregs *debugregs) 828{ 829 vcpu_ioctl(vcpu, KVM_GET_DEBUGREGS, debugregs); 830} 831static inline void vcpu_debugregs_set(struct kvm_vcpu *vcpu, 832 struct kvm_debugregs *debugregs) 833{ 834 vcpu_ioctl(vcpu, KVM_SET_DEBUGREGS, debugregs); 835} 836static inline void vcpu_xsave_get(struct kvm_vcpu *vcpu, 837 struct kvm_xsave *xsave) 838{ 839 vcpu_ioctl(vcpu, KVM_GET_XSAVE, xsave); 840} 841static inline void vcpu_xsave2_get(struct kvm_vcpu *vcpu, 842 struct kvm_xsave *xsave) 843{ 844 vcpu_ioctl(vcpu, KVM_GET_XSAVE2, xsave); 845} 846static inline void vcpu_xsave_set(struct kvm_vcpu *vcpu, 847 struct kvm_xsave *xsave) 848{ 849 vcpu_ioctl(vcpu, KVM_SET_XSAVE, xsave); 850} 851static inline void vcpu_xcrs_get(struct kvm_vcpu *vcpu, 852 struct kvm_xcrs *xcrs) 853{ 854 vcpu_ioctl(vcpu, KVM_GET_XCRS, xcrs); 855} 856static inline void vcpu_xcrs_set(struct kvm_vcpu *vcpu, struct kvm_xcrs *xcrs) 857{ 858 vcpu_ioctl(vcpu, KVM_SET_XCRS, xcrs); 859} 860 861const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid, 862 uint32_t function, uint32_t index); 863const struct kvm_cpuid2 *kvm_get_supported_cpuid(void); 864const struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void); 865const struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vcpu *vcpu); 866 867static inline uint32_t kvm_cpu_fms(void) 868{ 869 return get_cpuid_entry(kvm_get_supported_cpuid(), 0x1, 0)->eax; 870} 871 872static inline uint32_t kvm_cpu_family(void) 873{ 874 return x86_family(kvm_cpu_fms()); 875} 876 877static inline uint32_t kvm_cpu_model(void) 878{ 879 return x86_model(kvm_cpu_fms()); 880} 881 882bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid, 883 struct kvm_x86_cpu_feature feature); 884 885static inline bool kvm_cpu_has(struct kvm_x86_cpu_feature feature) 886{ 887 return kvm_cpuid_has(kvm_get_supported_cpuid(), feature); 888} 889 890uint32_t kvm_cpuid_property(const struct kvm_cpuid2 *cpuid, 891 struct kvm_x86_cpu_property property); 892 893static inline uint32_t kvm_cpu_property(struct kvm_x86_cpu_property property) 894{ 895 return kvm_cpuid_property(kvm_get_supported_cpuid(), property); 896} 897 898static __always_inline bool kvm_cpu_has_p(struct kvm_x86_cpu_property property) 899{ 900 uint32_t max_leaf; 901 902 switch (property.function & 0xc0000000) { 903 case 0: 904 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF); 905 break; 906 case 0x40000000: 907 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_KVM_LEAF); 908 break; 909 case 0x80000000: 910 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_EXT_LEAF); 911 break; 912 case 0xc0000000: 913 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF); 914 } 915 return max_leaf >= property.function; 916} 917 918static inline bool kvm_pmu_has(struct kvm_x86_pmu_feature feature) 919{ 920 uint32_t nr_bits = kvm_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH); 921 922 return nr_bits > feature.anti_feature.bit && 923 !kvm_cpu_has(feature.anti_feature); 924} 925 926static __always_inline uint64_t kvm_cpu_supported_xcr0(void) 927{ 928 if (!kvm_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO)) 929 return 0; 930 931 return kvm_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) | 932 ((uint64_t)kvm_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32); 933} 934 935static inline size_t kvm_cpuid2_size(int nr_entries) 936{ 937 return sizeof(struct kvm_cpuid2) + 938 sizeof(struct kvm_cpuid_entry2) * nr_entries; 939} 940 941/* 942 * Allocate a "struct kvm_cpuid2* instance, with the 0-length arrary of 943 * entries sized to hold @nr_entries. The caller is responsible for freeing 944 * the struct. 945 */ 946static inline struct kvm_cpuid2 *allocate_kvm_cpuid2(int nr_entries) 947{ 948 struct kvm_cpuid2 *cpuid; 949 950 cpuid = malloc(kvm_cpuid2_size(nr_entries)); 951 TEST_ASSERT(cpuid, "-ENOMEM when allocating kvm_cpuid2"); 952 953 cpuid->nent = nr_entries; 954 955 return cpuid; 956} 957 958void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid); 959void vcpu_set_hv_cpuid(struct kvm_vcpu *vcpu); 960 961static inline struct kvm_cpuid_entry2 *__vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu, 962 uint32_t function, 963 uint32_t index) 964{ 965 return (struct kvm_cpuid_entry2 *)get_cpuid_entry(vcpu->cpuid, 966 function, index); 967} 968 969static inline struct kvm_cpuid_entry2 *vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu, 970 uint32_t function) 971{ 972 return __vcpu_get_cpuid_entry(vcpu, function, 0); 973} 974 975static inline int __vcpu_set_cpuid(struct kvm_vcpu *vcpu) 976{ 977 int r; 978 979 TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first"); 980 r = __vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid); 981 if (r) 982 return r; 983 984 /* On success, refresh the cache to pick up adjustments made by KVM. */ 985 vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid); 986 return 0; 987} 988 989static inline void vcpu_set_cpuid(struct kvm_vcpu *vcpu) 990{ 991 TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first"); 992 vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid); 993 994 /* Refresh the cache to pick up adjustments made by KVM. */ 995 vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid); 996} 997 998void vcpu_set_cpuid_maxphyaddr(struct kvm_vcpu *vcpu, uint8_t maxphyaddr); 999 1000void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function); 1001void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu, 1002 struct kvm_x86_cpu_feature feature, 1003 bool set); 1004 1005static inline void vcpu_set_cpuid_feature(struct kvm_vcpu *vcpu, 1006 struct kvm_x86_cpu_feature feature) 1007{ 1008 vcpu_set_or_clear_cpuid_feature(vcpu, feature, true); 1009 1010} 1011 1012static inline void vcpu_clear_cpuid_feature(struct kvm_vcpu *vcpu, 1013 struct kvm_x86_cpu_feature feature) 1014{ 1015 vcpu_set_or_clear_cpuid_feature(vcpu, feature, false); 1016} 1017 1018uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index); 1019int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value); 1020 1021/* 1022 * Assert on an MSR access(es) and pretty print the MSR name when possible. 1023 * Note, the caller provides the stringified name so that the name of macro is 1024 * printed, not the value the macro resolves to (due to macro expansion). 1025 */ 1026#define TEST_ASSERT_MSR(cond, fmt, msr, str, args...) \ 1027do { \ 1028 if (__builtin_constant_p(msr)) { \ 1029 TEST_ASSERT(cond, fmt, str, args); \ 1030 } else if (!(cond)) { \ 1031 char buf[16]; \ 1032 \ 1033 snprintf(buf, sizeof(buf), "MSR 0x%x", msr); \ 1034 TEST_ASSERT(cond, fmt, buf, args); \ 1035 } \ 1036} while (0) 1037 1038/* 1039 * Returns true if KVM should return the last written value when reading an MSR 1040 * from userspace, e.g. the MSR isn't a command MSR, doesn't emulate state that 1041 * is changing, etc. This is NOT an exhaustive list! The intent is to filter 1042 * out MSRs that are not durable _and_ that a selftest wants to write. 1043 */ 1044static inline bool is_durable_msr(uint32_t msr) 1045{ 1046 return msr != MSR_IA32_TSC; 1047} 1048 1049#define vcpu_set_msr(vcpu, msr, val) \ 1050do { \ 1051 uint64_t r, v = val; \ 1052 \ 1053 TEST_ASSERT_MSR(_vcpu_set_msr(vcpu, msr, v) == 1, \ 1054 "KVM_SET_MSRS failed on %s, value = 0x%lx", msr, #msr, v); \ 1055 if (!is_durable_msr(msr)) \ 1056 break; \ 1057 r = vcpu_get_msr(vcpu, msr); \ 1058 TEST_ASSERT_MSR(r == v, "Set %s to '0x%lx', got back '0x%lx'", msr, #msr, v, r);\ 1059} while (0) 1060 1061void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits); 1062bool vm_is_unrestricted_guest(struct kvm_vm *vm); 1063 1064struct ex_regs { 1065 uint64_t rax, rcx, rdx, rbx; 1066 uint64_t rbp, rsi, rdi; 1067 uint64_t r8, r9, r10, r11; 1068 uint64_t r12, r13, r14, r15; 1069 uint64_t vector; 1070 uint64_t error_code; 1071 uint64_t rip; 1072 uint64_t cs; 1073 uint64_t rflags; 1074}; 1075 1076struct idt_entry { 1077 uint16_t offset0; 1078 uint16_t selector; 1079 uint16_t ist : 3; 1080 uint16_t : 5; 1081 uint16_t type : 4; 1082 uint16_t : 1; 1083 uint16_t dpl : 2; 1084 uint16_t p : 1; 1085 uint16_t offset1; 1086 uint32_t offset2; uint32_t reserved; 1087}; 1088 1089void vm_init_descriptor_tables(struct kvm_vm *vm); 1090void vcpu_init_descriptor_tables(struct kvm_vcpu *vcpu); 1091void vm_install_exception_handler(struct kvm_vm *vm, int vector, 1092 void (*handler)(struct ex_regs *)); 1093 1094/* If a toddler were to say "abracadabra". */ 1095#define KVM_EXCEPTION_MAGIC 0xabacadabaULL 1096 1097/* 1098 * KVM selftest exception fixup uses registers to coordinate with the exception 1099 * handler, versus the kernel's in-memory tables and KVM-Unit-Tests's in-memory 1100 * per-CPU data. Using only registers avoids having to map memory into the 1101 * guest, doesn't require a valid, stable GS.base, and reduces the risk of 1102 * for recursive faults when accessing memory in the handler. The downside to 1103 * using registers is that it restricts what registers can be used by the actual 1104 * instruction. But, selftests are 64-bit only, making register* pressure a 1105 * minor concern. Use r9-r11 as they are volatile, i.e. don't need to be saved 1106 * by the callee, and except for r11 are not implicit parameters to any 1107 * instructions. Ideally, fixup would use r8-r10 and thus avoid implicit 1108 * parameters entirely, but Hyper-V's hypercall ABI uses r8 and testing Hyper-V 1109 * is higher priority than testing non-faulting SYSCALL/SYSRET. 1110 * 1111 * Note, the fixup handler deliberately does not handle #DE, i.e. the vector 1112 * is guaranteed to be non-zero on fault. 1113 * 1114 * REGISTER INPUTS: 1115 * r9 = MAGIC 1116 * r10 = RIP 1117 * r11 = new RIP on fault 1118 * 1119 * REGISTER OUTPUTS: 1120 * r9 = exception vector (non-zero) 1121 * r10 = error code 1122 */ 1123#define KVM_ASM_SAFE(insn) \ 1124 "mov $" __stringify(KVM_EXCEPTION_MAGIC) ", %%r9\n\t" \ 1125 "lea 1f(%%rip), %%r10\n\t" \ 1126 "lea 2f(%%rip), %%r11\n\t" \ 1127 "1: " insn "\n\t" \ 1128 "xor %%r9, %%r9\n\t" \ 1129 "2:\n\t" \ 1130 "mov %%r9b, %[vector]\n\t" \ 1131 "mov %%r10, %[error_code]\n\t" 1132 1133#define KVM_ASM_SAFE_OUTPUTS(v, ec) [vector] "=qm"(v), [error_code] "=rm"(ec) 1134#define KVM_ASM_SAFE_CLOBBERS "r9", "r10", "r11" 1135 1136#define kvm_asm_safe(insn, inputs...) \ 1137({ \ 1138 uint64_t ign_error_code; \ 1139 uint8_t vector; \ 1140 \ 1141 asm volatile(KVM_ASM_SAFE(insn) \ 1142 : KVM_ASM_SAFE_OUTPUTS(vector, ign_error_code) \ 1143 : inputs \ 1144 : KVM_ASM_SAFE_CLOBBERS); \ 1145 vector; \ 1146}) 1147 1148#define kvm_asm_safe_ec(insn, error_code, inputs...) \ 1149({ \ 1150 uint8_t vector; \ 1151 \ 1152 asm volatile(KVM_ASM_SAFE(insn) \ 1153 : KVM_ASM_SAFE_OUTPUTS(vector, error_code) \ 1154 : inputs \ 1155 : KVM_ASM_SAFE_CLOBBERS); \ 1156 vector; \ 1157}) 1158 1159static inline uint8_t rdmsr_safe(uint32_t msr, uint64_t *val) 1160{ 1161 uint64_t error_code; 1162 uint8_t vector; 1163 uint32_t a, d; 1164 1165 asm volatile(KVM_ASM_SAFE("rdmsr") 1166 : "=a"(a), "=d"(d), KVM_ASM_SAFE_OUTPUTS(vector, error_code) 1167 : "c"(msr) 1168 : KVM_ASM_SAFE_CLOBBERS); 1169 1170 *val = (uint64_t)a | ((uint64_t)d << 32); 1171 return vector; 1172} 1173 1174static inline uint8_t wrmsr_safe(uint32_t msr, uint64_t val) 1175{ 1176 return kvm_asm_safe("wrmsr", "a"(val & -1u), "d"(val >> 32), "c"(msr)); 1177} 1178 1179static inline uint8_t xsetbv_safe(uint32_t index, uint64_t value) 1180{ 1181 u32 eax = value; 1182 u32 edx = value >> 32; 1183 1184 return kvm_asm_safe("xsetbv", "a" (eax), "d" (edx), "c" (index)); 1185} 1186 1187bool kvm_is_tdp_enabled(void); 1188 1189uint64_t *__vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr, 1190 int *level); 1191uint64_t *vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr); 1192 1193uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2, 1194 uint64_t a3); 1195uint64_t __xen_hypercall(uint64_t nr, uint64_t a0, void *a1); 1196void xen_hypercall(uint64_t nr, uint64_t a0, void *a1); 1197 1198static inline uint64_t __kvm_hypercall_map_gpa_range(uint64_t gpa, 1199 uint64_t size, uint64_t flags) 1200{ 1201 return kvm_hypercall(KVM_HC_MAP_GPA_RANGE, gpa, size >> PAGE_SHIFT, flags, 0); 1202} 1203 1204static inline void kvm_hypercall_map_gpa_range(uint64_t gpa, uint64_t size, 1205 uint64_t flags) 1206{ 1207 uint64_t ret = __kvm_hypercall_map_gpa_range(gpa, size, flags); 1208 1209 GUEST_ASSERT(!ret); 1210} 1211 1212void __vm_xsave_require_permission(uint64_t xfeature, const char *name); 1213 1214#define vm_xsave_require_permission(xfeature) \ 1215 __vm_xsave_require_permission(xfeature, #xfeature) 1216 1217enum pg_level { 1218 PG_LEVEL_NONE, 1219 PG_LEVEL_4K, 1220 PG_LEVEL_2M, 1221 PG_LEVEL_1G, 1222 PG_LEVEL_512G, 1223 PG_LEVEL_NUM 1224}; 1225 1226#define PG_LEVEL_SHIFT(_level) ((_level - 1) * 9 + 12) 1227#define PG_LEVEL_SIZE(_level) (1ull << PG_LEVEL_SHIFT(_level)) 1228 1229#define PG_SIZE_4K PG_LEVEL_SIZE(PG_LEVEL_4K) 1230#define PG_SIZE_2M PG_LEVEL_SIZE(PG_LEVEL_2M) 1231#define PG_SIZE_1G PG_LEVEL_SIZE(PG_LEVEL_1G) 1232 1233void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level); 1234void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, 1235 uint64_t nr_bytes, int level); 1236 1237/* 1238 * Basic CPU control in CR0 1239 */ 1240#define X86_CR0_PE (1UL<<0) /* Protection Enable */ 1241#define X86_CR0_MP (1UL<<1) /* Monitor Coprocessor */ 1242#define X86_CR0_EM (1UL<<2) /* Emulation */ 1243#define X86_CR0_TS (1UL<<3) /* Task Switched */ 1244#define X86_CR0_ET (1UL<<4) /* Extension Type */ 1245#define X86_CR0_NE (1UL<<5) /* Numeric Error */ 1246#define X86_CR0_WP (1UL<<16) /* Write Protect */ 1247#define X86_CR0_AM (1UL<<18) /* Alignment Mask */ 1248#define X86_CR0_NW (1UL<<29) /* Not Write-through */ 1249#define X86_CR0_CD (1UL<<30) /* Cache Disable */ 1250#define X86_CR0_PG (1UL<<31) /* Paging */ 1251 1252#define PFERR_PRESENT_BIT 0 1253#define PFERR_WRITE_BIT 1 1254#define PFERR_USER_BIT 2 1255#define PFERR_RSVD_BIT 3 1256#define PFERR_FETCH_BIT 4 1257#define PFERR_PK_BIT 5 1258#define PFERR_SGX_BIT 15 1259#define PFERR_GUEST_FINAL_BIT 32 1260#define PFERR_GUEST_PAGE_BIT 33 1261#define PFERR_IMPLICIT_ACCESS_BIT 48 1262 1263#define PFERR_PRESENT_MASK BIT(PFERR_PRESENT_BIT) 1264#define PFERR_WRITE_MASK BIT(PFERR_WRITE_BIT) 1265#define PFERR_USER_MASK BIT(PFERR_USER_BIT) 1266#define PFERR_RSVD_MASK BIT(PFERR_RSVD_BIT) 1267#define PFERR_FETCH_MASK BIT(PFERR_FETCH_BIT) 1268#define PFERR_PK_MASK BIT(PFERR_PK_BIT) 1269#define PFERR_SGX_MASK BIT(PFERR_SGX_BIT) 1270#define PFERR_GUEST_FINAL_MASK BIT_ULL(PFERR_GUEST_FINAL_BIT) 1271#define PFERR_GUEST_PAGE_MASK BIT_ULL(PFERR_GUEST_PAGE_BIT) 1272#define PFERR_IMPLICIT_ACCESS BIT_ULL(PFERR_IMPLICIT_ACCESS_BIT) 1273 1274bool sys_clocksource_is_based_on_tsc(void); 1275 1276#endif /* SELFTEST_KVM_PROCESSOR_H */