Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_FS_H
3#define _LINUX_FS_H
4
5#include <linux/linkage.h>
6#include <linux/wait_bit.h>
7#include <linux/kdev_t.h>
8#include <linux/dcache.h>
9#include <linux/path.h>
10#include <linux/stat.h>
11#include <linux/cache.h>
12#include <linux/list.h>
13#include <linux/list_lru.h>
14#include <linux/llist.h>
15#include <linux/radix-tree.h>
16#include <linux/xarray.h>
17#include <linux/rbtree.h>
18#include <linux/init.h>
19#include <linux/pid.h>
20#include <linux/bug.h>
21#include <linux/mutex.h>
22#include <linux/rwsem.h>
23#include <linux/mm_types.h>
24#include <linux/capability.h>
25#include <linux/semaphore.h>
26#include <linux/fcntl.h>
27#include <linux/rculist_bl.h>
28#include <linux/atomic.h>
29#include <linux/shrinker.h>
30#include <linux/migrate_mode.h>
31#include <linux/uidgid.h>
32#include <linux/lockdep.h>
33#include <linux/percpu-rwsem.h>
34#include <linux/workqueue.h>
35#include <linux/delayed_call.h>
36#include <linux/uuid.h>
37#include <linux/errseq.h>
38#include <linux/ioprio.h>
39#include <linux/fs_types.h>
40#include <linux/build_bug.h>
41#include <linux/stddef.h>
42#include <linux/mount.h>
43#include <linux/cred.h>
44#include <linux/mnt_idmapping.h>
45#include <linux/slab.h>
46
47#include <asm/byteorder.h>
48#include <uapi/linux/fs.h>
49
50struct backing_dev_info;
51struct bdi_writeback;
52struct bio;
53struct io_comp_batch;
54struct export_operations;
55struct fiemap_extent_info;
56struct hd_geometry;
57struct iovec;
58struct kiocb;
59struct kobject;
60struct pipe_inode_info;
61struct poll_table_struct;
62struct kstatfs;
63struct vm_area_struct;
64struct vfsmount;
65struct cred;
66struct swap_info_struct;
67struct seq_file;
68struct workqueue_struct;
69struct iov_iter;
70struct fscrypt_inode_info;
71struct fscrypt_operations;
72struct fsverity_info;
73struct fsverity_operations;
74struct fs_context;
75struct fs_parameter_spec;
76struct fileattr;
77struct iomap_ops;
78
79extern void __init inode_init(void);
80extern void __init inode_init_early(void);
81extern void __init files_init(void);
82extern void __init files_maxfiles_init(void);
83
84extern unsigned long get_max_files(void);
85extern unsigned int sysctl_nr_open;
86
87typedef __kernel_rwf_t rwf_t;
88
89struct buffer_head;
90typedef int (get_block_t)(struct inode *inode, sector_t iblock,
91 struct buffer_head *bh_result, int create);
92typedef int (dio_iodone_t)(struct kiocb *iocb, loff_t offset,
93 ssize_t bytes, void *private);
94
95#define MAY_EXEC 0x00000001
96#define MAY_WRITE 0x00000002
97#define MAY_READ 0x00000004
98#define MAY_APPEND 0x00000008
99#define MAY_ACCESS 0x00000010
100#define MAY_OPEN 0x00000020
101#define MAY_CHDIR 0x00000040
102/* called from RCU mode, don't block */
103#define MAY_NOT_BLOCK 0x00000080
104
105/*
106 * flags in file.f_mode. Note that FMODE_READ and FMODE_WRITE must correspond
107 * to O_WRONLY and O_RDWR via the strange trick in do_dentry_open()
108 */
109
110/* file is open for reading */
111#define FMODE_READ ((__force fmode_t)0x1)
112/* file is open for writing */
113#define FMODE_WRITE ((__force fmode_t)0x2)
114/* file is seekable */
115#define FMODE_LSEEK ((__force fmode_t)0x4)
116/* file can be accessed using pread */
117#define FMODE_PREAD ((__force fmode_t)0x8)
118/* file can be accessed using pwrite */
119#define FMODE_PWRITE ((__force fmode_t)0x10)
120/* File is opened for execution with sys_execve / sys_uselib */
121#define FMODE_EXEC ((__force fmode_t)0x20)
122/* 32bit hashes as llseek() offset (for directories) */
123#define FMODE_32BITHASH ((__force fmode_t)0x200)
124/* 64bit hashes as llseek() offset (for directories) */
125#define FMODE_64BITHASH ((__force fmode_t)0x400)
126
127/*
128 * Don't update ctime and mtime.
129 *
130 * Currently a special hack for the XFS open_by_handle ioctl, but we'll
131 * hopefully graduate it to a proper O_CMTIME flag supported by open(2) soon.
132 */
133#define FMODE_NOCMTIME ((__force fmode_t)0x800)
134
135/* Expect random access pattern */
136#define FMODE_RANDOM ((__force fmode_t)0x1000)
137
138/* File is huge (eg. /dev/mem): treat loff_t as unsigned */
139#define FMODE_UNSIGNED_OFFSET ((__force fmode_t)0x2000)
140
141/* File is opened with O_PATH; almost nothing can be done with it */
142#define FMODE_PATH ((__force fmode_t)0x4000)
143
144/* File needs atomic accesses to f_pos */
145#define FMODE_ATOMIC_POS ((__force fmode_t)0x8000)
146/* Write access to underlying fs */
147#define FMODE_WRITER ((__force fmode_t)0x10000)
148/* Has read method(s) */
149#define FMODE_CAN_READ ((__force fmode_t)0x20000)
150/* Has write method(s) */
151#define FMODE_CAN_WRITE ((__force fmode_t)0x40000)
152
153#define FMODE_OPENED ((__force fmode_t)0x80000)
154#define FMODE_CREATED ((__force fmode_t)0x100000)
155
156/* File is stream-like */
157#define FMODE_STREAM ((__force fmode_t)0x200000)
158
159/* File supports DIRECT IO */
160#define FMODE_CAN_ODIRECT ((__force fmode_t)0x400000)
161
162#define FMODE_NOREUSE ((__force fmode_t)0x800000)
163
164/* File supports non-exclusive O_DIRECT writes from multiple threads */
165#define FMODE_DIO_PARALLEL_WRITE ((__force fmode_t)0x1000000)
166
167/* File is embedded in backing_file object */
168#define FMODE_BACKING ((__force fmode_t)0x2000000)
169
170/* File was opened by fanotify and shouldn't generate fanotify events */
171#define FMODE_NONOTIFY ((__force fmode_t)0x4000000)
172
173/* File is capable of returning -EAGAIN if I/O will block */
174#define FMODE_NOWAIT ((__force fmode_t)0x8000000)
175
176/* File represents mount that needs unmounting */
177#define FMODE_NEED_UNMOUNT ((__force fmode_t)0x10000000)
178
179/* File does not contribute to nr_files count */
180#define FMODE_NOACCOUNT ((__force fmode_t)0x20000000)
181
182/* File supports async buffered reads */
183#define FMODE_BUF_RASYNC ((__force fmode_t)0x40000000)
184
185/* File supports async nowait buffered writes */
186#define FMODE_BUF_WASYNC ((__force fmode_t)0x80000000)
187
188/*
189 * Attribute flags. These should be or-ed together to figure out what
190 * has been changed!
191 */
192#define ATTR_MODE (1 << 0)
193#define ATTR_UID (1 << 1)
194#define ATTR_GID (1 << 2)
195#define ATTR_SIZE (1 << 3)
196#define ATTR_ATIME (1 << 4)
197#define ATTR_MTIME (1 << 5)
198#define ATTR_CTIME (1 << 6)
199#define ATTR_ATIME_SET (1 << 7)
200#define ATTR_MTIME_SET (1 << 8)
201#define ATTR_FORCE (1 << 9) /* Not a change, but a change it */
202#define ATTR_KILL_SUID (1 << 11)
203#define ATTR_KILL_SGID (1 << 12)
204#define ATTR_FILE (1 << 13)
205#define ATTR_KILL_PRIV (1 << 14)
206#define ATTR_OPEN (1 << 15) /* Truncating from open(O_TRUNC) */
207#define ATTR_TIMES_SET (1 << 16)
208#define ATTR_TOUCH (1 << 17)
209
210/*
211 * Whiteout is represented by a char device. The following constants define the
212 * mode and device number to use.
213 */
214#define WHITEOUT_MODE 0
215#define WHITEOUT_DEV 0
216
217/*
218 * This is the Inode Attributes structure, used for notify_change(). It
219 * uses the above definitions as flags, to know which values have changed.
220 * Also, in this manner, a Filesystem can look at only the values it cares
221 * about. Basically, these are the attributes that the VFS layer can
222 * request to change from the FS layer.
223 *
224 * Derek Atkins <warlord@MIT.EDU> 94-10-20
225 */
226struct iattr {
227 unsigned int ia_valid;
228 umode_t ia_mode;
229 /*
230 * The two anonymous unions wrap structures with the same member.
231 *
232 * Filesystems raising FS_ALLOW_IDMAP need to use ia_vfs{g,u}id which
233 * are a dedicated type requiring the filesystem to use the dedicated
234 * helpers. Other filesystem can continue to use ia_{g,u}id until they
235 * have been ported.
236 *
237 * They always contain the same value. In other words FS_ALLOW_IDMAP
238 * pass down the same value on idmapped mounts as they would on regular
239 * mounts.
240 */
241 union {
242 kuid_t ia_uid;
243 vfsuid_t ia_vfsuid;
244 };
245 union {
246 kgid_t ia_gid;
247 vfsgid_t ia_vfsgid;
248 };
249 loff_t ia_size;
250 struct timespec64 ia_atime;
251 struct timespec64 ia_mtime;
252 struct timespec64 ia_ctime;
253
254 /*
255 * Not an attribute, but an auxiliary info for filesystems wanting to
256 * implement an ftruncate() like method. NOTE: filesystem should
257 * check for (ia_valid & ATTR_FILE), and not for (ia_file != NULL).
258 */
259 struct file *ia_file;
260};
261
262/*
263 * Includes for diskquotas.
264 */
265#include <linux/quota.h>
266
267/*
268 * Maximum number of layers of fs stack. Needs to be limited to
269 * prevent kernel stack overflow
270 */
271#define FILESYSTEM_MAX_STACK_DEPTH 2
272
273/**
274 * enum positive_aop_returns - aop return codes with specific semantics
275 *
276 * @AOP_WRITEPAGE_ACTIVATE: Informs the caller that page writeback has
277 * completed, that the page is still locked, and
278 * should be considered active. The VM uses this hint
279 * to return the page to the active list -- it won't
280 * be a candidate for writeback again in the near
281 * future. Other callers must be careful to unlock
282 * the page if they get this return. Returned by
283 * writepage();
284 *
285 * @AOP_TRUNCATED_PAGE: The AOP method that was handed a locked page has
286 * unlocked it and the page might have been truncated.
287 * The caller should back up to acquiring a new page and
288 * trying again. The aop will be taking reasonable
289 * precautions not to livelock. If the caller held a page
290 * reference, it should drop it before retrying. Returned
291 * by read_folio().
292 *
293 * address_space_operation functions return these large constants to indicate
294 * special semantics to the caller. These are much larger than the bytes in a
295 * page to allow for functions that return the number of bytes operated on in a
296 * given page.
297 */
298
299enum positive_aop_returns {
300 AOP_WRITEPAGE_ACTIVATE = 0x80000,
301 AOP_TRUNCATED_PAGE = 0x80001,
302};
303
304/*
305 * oh the beauties of C type declarations.
306 */
307struct page;
308struct address_space;
309struct writeback_control;
310struct readahead_control;
311
312/*
313 * Write life time hint values.
314 * Stored in struct inode as u8.
315 */
316enum rw_hint {
317 WRITE_LIFE_NOT_SET = 0,
318 WRITE_LIFE_NONE = RWH_WRITE_LIFE_NONE,
319 WRITE_LIFE_SHORT = RWH_WRITE_LIFE_SHORT,
320 WRITE_LIFE_MEDIUM = RWH_WRITE_LIFE_MEDIUM,
321 WRITE_LIFE_LONG = RWH_WRITE_LIFE_LONG,
322 WRITE_LIFE_EXTREME = RWH_WRITE_LIFE_EXTREME,
323};
324
325/* Match RWF_* bits to IOCB bits */
326#define IOCB_HIPRI (__force int) RWF_HIPRI
327#define IOCB_DSYNC (__force int) RWF_DSYNC
328#define IOCB_SYNC (__force int) RWF_SYNC
329#define IOCB_NOWAIT (__force int) RWF_NOWAIT
330#define IOCB_APPEND (__force int) RWF_APPEND
331
332/* non-RWF related bits - start at 16 */
333#define IOCB_EVENTFD (1 << 16)
334#define IOCB_DIRECT (1 << 17)
335#define IOCB_WRITE (1 << 18)
336/* iocb->ki_waitq is valid */
337#define IOCB_WAITQ (1 << 19)
338#define IOCB_NOIO (1 << 20)
339/* can use bio alloc cache */
340#define IOCB_ALLOC_CACHE (1 << 21)
341/*
342 * IOCB_DIO_CALLER_COMP can be set by the iocb owner, to indicate that the
343 * iocb completion can be passed back to the owner for execution from a safe
344 * context rather than needing to be punted through a workqueue. If this
345 * flag is set, the bio completion handling may set iocb->dio_complete to a
346 * handler function and iocb->private to context information for that handler.
347 * The issuer should call the handler with that context information from task
348 * context to complete the processing of the iocb. Note that while this
349 * provides a task context for the dio_complete() callback, it should only be
350 * used on the completion side for non-IO generating completions. It's fine to
351 * call blocking functions from this callback, but they should not wait for
352 * unrelated IO (like cache flushing, new IO generation, etc).
353 */
354#define IOCB_DIO_CALLER_COMP (1 << 22)
355
356/* for use in trace events */
357#define TRACE_IOCB_STRINGS \
358 { IOCB_HIPRI, "HIPRI" }, \
359 { IOCB_DSYNC, "DSYNC" }, \
360 { IOCB_SYNC, "SYNC" }, \
361 { IOCB_NOWAIT, "NOWAIT" }, \
362 { IOCB_APPEND, "APPEND" }, \
363 { IOCB_EVENTFD, "EVENTFD"}, \
364 { IOCB_DIRECT, "DIRECT" }, \
365 { IOCB_WRITE, "WRITE" }, \
366 { IOCB_WAITQ, "WAITQ" }, \
367 { IOCB_NOIO, "NOIO" }, \
368 { IOCB_ALLOC_CACHE, "ALLOC_CACHE" }, \
369 { IOCB_DIO_CALLER_COMP, "CALLER_COMP" }
370
371struct kiocb {
372 struct file *ki_filp;
373 loff_t ki_pos;
374 void (*ki_complete)(struct kiocb *iocb, long ret);
375 void *private;
376 int ki_flags;
377 u16 ki_ioprio; /* See linux/ioprio.h */
378 union {
379 /*
380 * Only used for async buffered reads, where it denotes the
381 * page waitqueue associated with completing the read. Valid
382 * IFF IOCB_WAITQ is set.
383 */
384 struct wait_page_queue *ki_waitq;
385 /*
386 * Can be used for O_DIRECT IO, where the completion handling
387 * is punted back to the issuer of the IO. May only be set
388 * if IOCB_DIO_CALLER_COMP is set by the issuer, and the issuer
389 * must then check for presence of this handler when ki_complete
390 * is invoked. The data passed in to this handler must be
391 * assigned to ->private when dio_complete is assigned.
392 */
393 ssize_t (*dio_complete)(void *data);
394 };
395};
396
397static inline bool is_sync_kiocb(struct kiocb *kiocb)
398{
399 return kiocb->ki_complete == NULL;
400}
401
402struct address_space_operations {
403 int (*writepage)(struct page *page, struct writeback_control *wbc);
404 int (*read_folio)(struct file *, struct folio *);
405
406 /* Write back some dirty pages from this mapping. */
407 int (*writepages)(struct address_space *, struct writeback_control *);
408
409 /* Mark a folio dirty. Return true if this dirtied it */
410 bool (*dirty_folio)(struct address_space *, struct folio *);
411
412 void (*readahead)(struct readahead_control *);
413
414 int (*write_begin)(struct file *, struct address_space *mapping,
415 loff_t pos, unsigned len,
416 struct page **pagep, void **fsdata);
417 int (*write_end)(struct file *, struct address_space *mapping,
418 loff_t pos, unsigned len, unsigned copied,
419 struct page *page, void *fsdata);
420
421 /* Unfortunately this kludge is needed for FIBMAP. Don't use it */
422 sector_t (*bmap)(struct address_space *, sector_t);
423 void (*invalidate_folio) (struct folio *, size_t offset, size_t len);
424 bool (*release_folio)(struct folio *, gfp_t);
425 void (*free_folio)(struct folio *folio);
426 ssize_t (*direct_IO)(struct kiocb *, struct iov_iter *iter);
427 /*
428 * migrate the contents of a folio to the specified target. If
429 * migrate_mode is MIGRATE_ASYNC, it must not block.
430 */
431 int (*migrate_folio)(struct address_space *, struct folio *dst,
432 struct folio *src, enum migrate_mode);
433 int (*launder_folio)(struct folio *);
434 bool (*is_partially_uptodate) (struct folio *, size_t from,
435 size_t count);
436 void (*is_dirty_writeback) (struct folio *, bool *dirty, bool *wb);
437 int (*error_remove_folio)(struct address_space *, struct folio *);
438
439 /* swapfile support */
440 int (*swap_activate)(struct swap_info_struct *sis, struct file *file,
441 sector_t *span);
442 void (*swap_deactivate)(struct file *file);
443 int (*swap_rw)(struct kiocb *iocb, struct iov_iter *iter);
444};
445
446extern const struct address_space_operations empty_aops;
447
448/**
449 * struct address_space - Contents of a cacheable, mappable object.
450 * @host: Owner, either the inode or the block_device.
451 * @i_pages: Cached pages.
452 * @invalidate_lock: Guards coherency between page cache contents and
453 * file offset->disk block mappings in the filesystem during invalidates.
454 * It is also used to block modification of page cache contents through
455 * memory mappings.
456 * @gfp_mask: Memory allocation flags to use for allocating pages.
457 * @i_mmap_writable: Number of VM_SHARED, VM_MAYWRITE mappings.
458 * @nr_thps: Number of THPs in the pagecache (non-shmem only).
459 * @i_mmap: Tree of private and shared mappings.
460 * @i_mmap_rwsem: Protects @i_mmap and @i_mmap_writable.
461 * @nrpages: Number of page entries, protected by the i_pages lock.
462 * @writeback_index: Writeback starts here.
463 * @a_ops: Methods.
464 * @flags: Error bits and flags (AS_*).
465 * @wb_err: The most recent error which has occurred.
466 * @i_private_lock: For use by the owner of the address_space.
467 * @i_private_list: For use by the owner of the address_space.
468 * @i_private_data: For use by the owner of the address_space.
469 */
470struct address_space {
471 struct inode *host;
472 struct xarray i_pages;
473 struct rw_semaphore invalidate_lock;
474 gfp_t gfp_mask;
475 atomic_t i_mmap_writable;
476#ifdef CONFIG_READ_ONLY_THP_FOR_FS
477 /* number of thp, only for non-shmem files */
478 atomic_t nr_thps;
479#endif
480 struct rb_root_cached i_mmap;
481 unsigned long nrpages;
482 pgoff_t writeback_index;
483 const struct address_space_operations *a_ops;
484 unsigned long flags;
485 struct rw_semaphore i_mmap_rwsem;
486 errseq_t wb_err;
487 spinlock_t i_private_lock;
488 struct list_head i_private_list;
489 void * i_private_data;
490} __attribute__((aligned(sizeof(long)))) __randomize_layout;
491 /*
492 * On most architectures that alignment is already the case; but
493 * must be enforced here for CRIS, to let the least significant bit
494 * of struct page's "mapping" pointer be used for PAGE_MAPPING_ANON.
495 */
496
497/* XArray tags, for tagging dirty and writeback pages in the pagecache. */
498#define PAGECACHE_TAG_DIRTY XA_MARK_0
499#define PAGECACHE_TAG_WRITEBACK XA_MARK_1
500#define PAGECACHE_TAG_TOWRITE XA_MARK_2
501
502/*
503 * Returns true if any of the pages in the mapping are marked with the tag.
504 */
505static inline bool mapping_tagged(struct address_space *mapping, xa_mark_t tag)
506{
507 return xa_marked(&mapping->i_pages, tag);
508}
509
510static inline void i_mmap_lock_write(struct address_space *mapping)
511{
512 down_write(&mapping->i_mmap_rwsem);
513}
514
515static inline int i_mmap_trylock_write(struct address_space *mapping)
516{
517 return down_write_trylock(&mapping->i_mmap_rwsem);
518}
519
520static inline void i_mmap_unlock_write(struct address_space *mapping)
521{
522 up_write(&mapping->i_mmap_rwsem);
523}
524
525static inline int i_mmap_trylock_read(struct address_space *mapping)
526{
527 return down_read_trylock(&mapping->i_mmap_rwsem);
528}
529
530static inline void i_mmap_lock_read(struct address_space *mapping)
531{
532 down_read(&mapping->i_mmap_rwsem);
533}
534
535static inline void i_mmap_unlock_read(struct address_space *mapping)
536{
537 up_read(&mapping->i_mmap_rwsem);
538}
539
540static inline void i_mmap_assert_locked(struct address_space *mapping)
541{
542 lockdep_assert_held(&mapping->i_mmap_rwsem);
543}
544
545static inline void i_mmap_assert_write_locked(struct address_space *mapping)
546{
547 lockdep_assert_held_write(&mapping->i_mmap_rwsem);
548}
549
550/*
551 * Might pages of this file be mapped into userspace?
552 */
553static inline int mapping_mapped(struct address_space *mapping)
554{
555 return !RB_EMPTY_ROOT(&mapping->i_mmap.rb_root);
556}
557
558/*
559 * Might pages of this file have been modified in userspace?
560 * Note that i_mmap_writable counts all VM_SHARED, VM_MAYWRITE vmas: do_mmap
561 * marks vma as VM_SHARED if it is shared, and the file was opened for
562 * writing i.e. vma may be mprotected writable even if now readonly.
563 *
564 * If i_mmap_writable is negative, no new writable mappings are allowed. You
565 * can only deny writable mappings, if none exists right now.
566 */
567static inline int mapping_writably_mapped(struct address_space *mapping)
568{
569 return atomic_read(&mapping->i_mmap_writable) > 0;
570}
571
572static inline int mapping_map_writable(struct address_space *mapping)
573{
574 return atomic_inc_unless_negative(&mapping->i_mmap_writable) ?
575 0 : -EPERM;
576}
577
578static inline void mapping_unmap_writable(struct address_space *mapping)
579{
580 atomic_dec(&mapping->i_mmap_writable);
581}
582
583static inline int mapping_deny_writable(struct address_space *mapping)
584{
585 return atomic_dec_unless_positive(&mapping->i_mmap_writable) ?
586 0 : -EBUSY;
587}
588
589static inline void mapping_allow_writable(struct address_space *mapping)
590{
591 atomic_inc(&mapping->i_mmap_writable);
592}
593
594/*
595 * Use sequence counter to get consistent i_size on 32-bit processors.
596 */
597#if BITS_PER_LONG==32 && defined(CONFIG_SMP)
598#include <linux/seqlock.h>
599#define __NEED_I_SIZE_ORDERED
600#define i_size_ordered_init(inode) seqcount_init(&inode->i_size_seqcount)
601#else
602#define i_size_ordered_init(inode) do { } while (0)
603#endif
604
605struct posix_acl;
606#define ACL_NOT_CACHED ((void *)(-1))
607/*
608 * ACL_DONT_CACHE is for stacked filesystems, that rely on underlying fs to
609 * cache the ACL. This also means that ->get_inode_acl() can be called in RCU
610 * mode with the LOOKUP_RCU flag.
611 */
612#define ACL_DONT_CACHE ((void *)(-3))
613
614static inline struct posix_acl *
615uncached_acl_sentinel(struct task_struct *task)
616{
617 return (void *)task + 1;
618}
619
620static inline bool
621is_uncached_acl(struct posix_acl *acl)
622{
623 return (long)acl & 1;
624}
625
626#define IOP_FASTPERM 0x0001
627#define IOP_LOOKUP 0x0002
628#define IOP_NOFOLLOW 0x0004
629#define IOP_XATTR 0x0008
630#define IOP_DEFAULT_READLINK 0x0010
631
632struct fsnotify_mark_connector;
633
634/*
635 * Keep mostly read-only and often accessed (especially for
636 * the RCU path lookup and 'stat' data) fields at the beginning
637 * of the 'struct inode'
638 */
639struct inode {
640 umode_t i_mode;
641 unsigned short i_opflags;
642 kuid_t i_uid;
643 kgid_t i_gid;
644 unsigned int i_flags;
645
646#ifdef CONFIG_FS_POSIX_ACL
647 struct posix_acl *i_acl;
648 struct posix_acl *i_default_acl;
649#endif
650
651 const struct inode_operations *i_op;
652 struct super_block *i_sb;
653 struct address_space *i_mapping;
654
655#ifdef CONFIG_SECURITY
656 void *i_security;
657#endif
658
659 /* Stat data, not accessed from path walking */
660 unsigned long i_ino;
661 /*
662 * Filesystems may only read i_nlink directly. They shall use the
663 * following functions for modification:
664 *
665 * (set|clear|inc|drop)_nlink
666 * inode_(inc|dec)_link_count
667 */
668 union {
669 const unsigned int i_nlink;
670 unsigned int __i_nlink;
671 };
672 dev_t i_rdev;
673 loff_t i_size;
674 struct timespec64 __i_atime;
675 struct timespec64 __i_mtime;
676 struct timespec64 __i_ctime; /* use inode_*_ctime accessors! */
677 spinlock_t i_lock; /* i_blocks, i_bytes, maybe i_size */
678 unsigned short i_bytes;
679 u8 i_blkbits;
680 u8 i_write_hint;
681 blkcnt_t i_blocks;
682
683#ifdef __NEED_I_SIZE_ORDERED
684 seqcount_t i_size_seqcount;
685#endif
686
687 /* Misc */
688 unsigned long i_state;
689 struct rw_semaphore i_rwsem;
690
691 unsigned long dirtied_when; /* jiffies of first dirtying */
692 unsigned long dirtied_time_when;
693
694 struct hlist_node i_hash;
695 struct list_head i_io_list; /* backing dev IO list */
696#ifdef CONFIG_CGROUP_WRITEBACK
697 struct bdi_writeback *i_wb; /* the associated cgroup wb */
698
699 /* foreign inode detection, see wbc_detach_inode() */
700 int i_wb_frn_winner;
701 u16 i_wb_frn_avg_time;
702 u16 i_wb_frn_history;
703#endif
704 struct list_head i_lru; /* inode LRU list */
705 struct list_head i_sb_list;
706 struct list_head i_wb_list; /* backing dev writeback list */
707 union {
708 struct hlist_head i_dentry;
709 struct rcu_head i_rcu;
710 };
711 atomic64_t i_version;
712 atomic64_t i_sequence; /* see futex */
713 atomic_t i_count;
714 atomic_t i_dio_count;
715 atomic_t i_writecount;
716#if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING)
717 atomic_t i_readcount; /* struct files open RO */
718#endif
719 union {
720 const struct file_operations *i_fop; /* former ->i_op->default_file_ops */
721 void (*free_inode)(struct inode *);
722 };
723 struct file_lock_context *i_flctx;
724 struct address_space i_data;
725 struct list_head i_devices;
726 union {
727 struct pipe_inode_info *i_pipe;
728 struct cdev *i_cdev;
729 char *i_link;
730 unsigned i_dir_seq;
731 };
732
733 __u32 i_generation;
734
735#ifdef CONFIG_FSNOTIFY
736 __u32 i_fsnotify_mask; /* all events this inode cares about */
737 struct fsnotify_mark_connector __rcu *i_fsnotify_marks;
738#endif
739
740#ifdef CONFIG_FS_ENCRYPTION
741 struct fscrypt_inode_info *i_crypt_info;
742#endif
743
744#ifdef CONFIG_FS_VERITY
745 struct fsverity_info *i_verity_info;
746#endif
747
748 void *i_private; /* fs or device private pointer */
749} __randomize_layout;
750
751struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode);
752
753static inline unsigned int i_blocksize(const struct inode *node)
754{
755 return (1 << node->i_blkbits);
756}
757
758static inline int inode_unhashed(struct inode *inode)
759{
760 return hlist_unhashed(&inode->i_hash);
761}
762
763/*
764 * __mark_inode_dirty expects inodes to be hashed. Since we don't
765 * want special inodes in the fileset inode space, we make them
766 * appear hashed, but do not put on any lists. hlist_del()
767 * will work fine and require no locking.
768 */
769static inline void inode_fake_hash(struct inode *inode)
770{
771 hlist_add_fake(&inode->i_hash);
772}
773
774/*
775 * inode->i_mutex nesting subclasses for the lock validator:
776 *
777 * 0: the object of the current VFS operation
778 * 1: parent
779 * 2: child/target
780 * 3: xattr
781 * 4: second non-directory
782 * 5: second parent (when locking independent directories in rename)
783 *
784 * I_MUTEX_NONDIR2 is for certain operations (such as rename) which lock two
785 * non-directories at once.
786 *
787 * The locking order between these classes is
788 * parent[2] -> child -> grandchild -> normal -> xattr -> second non-directory
789 */
790enum inode_i_mutex_lock_class
791{
792 I_MUTEX_NORMAL,
793 I_MUTEX_PARENT,
794 I_MUTEX_CHILD,
795 I_MUTEX_XATTR,
796 I_MUTEX_NONDIR2,
797 I_MUTEX_PARENT2,
798};
799
800static inline void inode_lock(struct inode *inode)
801{
802 down_write(&inode->i_rwsem);
803}
804
805static inline void inode_unlock(struct inode *inode)
806{
807 up_write(&inode->i_rwsem);
808}
809
810static inline void inode_lock_shared(struct inode *inode)
811{
812 down_read(&inode->i_rwsem);
813}
814
815static inline void inode_unlock_shared(struct inode *inode)
816{
817 up_read(&inode->i_rwsem);
818}
819
820static inline int inode_trylock(struct inode *inode)
821{
822 return down_write_trylock(&inode->i_rwsem);
823}
824
825static inline int inode_trylock_shared(struct inode *inode)
826{
827 return down_read_trylock(&inode->i_rwsem);
828}
829
830static inline int inode_is_locked(struct inode *inode)
831{
832 return rwsem_is_locked(&inode->i_rwsem);
833}
834
835static inline void inode_lock_nested(struct inode *inode, unsigned subclass)
836{
837 down_write_nested(&inode->i_rwsem, subclass);
838}
839
840static inline void inode_lock_shared_nested(struct inode *inode, unsigned subclass)
841{
842 down_read_nested(&inode->i_rwsem, subclass);
843}
844
845static inline void filemap_invalidate_lock(struct address_space *mapping)
846{
847 down_write(&mapping->invalidate_lock);
848}
849
850static inline void filemap_invalidate_unlock(struct address_space *mapping)
851{
852 up_write(&mapping->invalidate_lock);
853}
854
855static inline void filemap_invalidate_lock_shared(struct address_space *mapping)
856{
857 down_read(&mapping->invalidate_lock);
858}
859
860static inline int filemap_invalidate_trylock_shared(
861 struct address_space *mapping)
862{
863 return down_read_trylock(&mapping->invalidate_lock);
864}
865
866static inline void filemap_invalidate_unlock_shared(
867 struct address_space *mapping)
868{
869 up_read(&mapping->invalidate_lock);
870}
871
872void lock_two_nondirectories(struct inode *, struct inode*);
873void unlock_two_nondirectories(struct inode *, struct inode*);
874
875void filemap_invalidate_lock_two(struct address_space *mapping1,
876 struct address_space *mapping2);
877void filemap_invalidate_unlock_two(struct address_space *mapping1,
878 struct address_space *mapping2);
879
880
881/*
882 * NOTE: in a 32bit arch with a preemptable kernel and
883 * an UP compile the i_size_read/write must be atomic
884 * with respect to the local cpu (unlike with preempt disabled),
885 * but they don't need to be atomic with respect to other cpus like in
886 * true SMP (so they need either to either locally disable irq around
887 * the read or for example on x86 they can be still implemented as a
888 * cmpxchg8b without the need of the lock prefix). For SMP compiles
889 * and 64bit archs it makes no difference if preempt is enabled or not.
890 */
891static inline loff_t i_size_read(const struct inode *inode)
892{
893#if BITS_PER_LONG==32 && defined(CONFIG_SMP)
894 loff_t i_size;
895 unsigned int seq;
896
897 do {
898 seq = read_seqcount_begin(&inode->i_size_seqcount);
899 i_size = inode->i_size;
900 } while (read_seqcount_retry(&inode->i_size_seqcount, seq));
901 return i_size;
902#elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION)
903 loff_t i_size;
904
905 preempt_disable();
906 i_size = inode->i_size;
907 preempt_enable();
908 return i_size;
909#else
910 return inode->i_size;
911#endif
912}
913
914/*
915 * NOTE: unlike i_size_read(), i_size_write() does need locking around it
916 * (normally i_mutex), otherwise on 32bit/SMP an update of i_size_seqcount
917 * can be lost, resulting in subsequent i_size_read() calls spinning forever.
918 */
919static inline void i_size_write(struct inode *inode, loff_t i_size)
920{
921#if BITS_PER_LONG==32 && defined(CONFIG_SMP)
922 preempt_disable();
923 write_seqcount_begin(&inode->i_size_seqcount);
924 inode->i_size = i_size;
925 write_seqcount_end(&inode->i_size_seqcount);
926 preempt_enable();
927#elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION)
928 preempt_disable();
929 inode->i_size = i_size;
930 preempt_enable();
931#else
932 inode->i_size = i_size;
933#endif
934}
935
936static inline unsigned iminor(const struct inode *inode)
937{
938 return MINOR(inode->i_rdev);
939}
940
941static inline unsigned imajor(const struct inode *inode)
942{
943 return MAJOR(inode->i_rdev);
944}
945
946struct fown_struct {
947 rwlock_t lock; /* protects pid, uid, euid fields */
948 struct pid *pid; /* pid or -pgrp where SIGIO should be sent */
949 enum pid_type pid_type; /* Kind of process group SIGIO should be sent to */
950 kuid_t uid, euid; /* uid/euid of process setting the owner */
951 int signum; /* posix.1b rt signal to be delivered on IO */
952};
953
954/**
955 * struct file_ra_state - Track a file's readahead state.
956 * @start: Where the most recent readahead started.
957 * @size: Number of pages read in the most recent readahead.
958 * @async_size: Numer of pages that were/are not needed immediately
959 * and so were/are genuinely "ahead". Start next readahead when
960 * the first of these pages is accessed.
961 * @ra_pages: Maximum size of a readahead request, copied from the bdi.
962 * @mmap_miss: How many mmap accesses missed in the page cache.
963 * @prev_pos: The last byte in the most recent read request.
964 *
965 * When this structure is passed to ->readahead(), the "most recent"
966 * readahead means the current readahead.
967 */
968struct file_ra_state {
969 pgoff_t start;
970 unsigned int size;
971 unsigned int async_size;
972 unsigned int ra_pages;
973 unsigned int mmap_miss;
974 loff_t prev_pos;
975};
976
977/*
978 * Check if @index falls in the readahead windows.
979 */
980static inline int ra_has_index(struct file_ra_state *ra, pgoff_t index)
981{
982 return (index >= ra->start &&
983 index < ra->start + ra->size);
984}
985
986/*
987 * f_{lock,count,pos_lock} members can be highly contended and share
988 * the same cacheline. f_{lock,mode} are very frequently used together
989 * and so share the same cacheline as well. The read-mostly
990 * f_{path,inode,op} are kept on a separate cacheline.
991 */
992struct file {
993 union {
994 /* fput() uses task work when closing and freeing file (default). */
995 struct callback_head f_task_work;
996 /* fput() must use workqueue (most kernel threads). */
997 struct llist_node f_llist;
998 unsigned int f_iocb_flags;
999 };
1000
1001 /*
1002 * Protects f_ep, f_flags.
1003 * Must not be taken from IRQ context.
1004 */
1005 spinlock_t f_lock;
1006 fmode_t f_mode;
1007 atomic_long_t f_count;
1008 struct mutex f_pos_lock;
1009 loff_t f_pos;
1010 unsigned int f_flags;
1011 struct fown_struct f_owner;
1012 const struct cred *f_cred;
1013 struct file_ra_state f_ra;
1014 struct path f_path;
1015 struct inode *f_inode; /* cached value */
1016 const struct file_operations *f_op;
1017
1018 u64 f_version;
1019#ifdef CONFIG_SECURITY
1020 void *f_security;
1021#endif
1022 /* needed for tty driver, and maybe others */
1023 void *private_data;
1024
1025#ifdef CONFIG_EPOLL
1026 /* Used by fs/eventpoll.c to link all the hooks to this file */
1027 struct hlist_head *f_ep;
1028#endif /* #ifdef CONFIG_EPOLL */
1029 struct address_space *f_mapping;
1030 errseq_t f_wb_err;
1031 errseq_t f_sb_err; /* for syncfs */
1032} __randomize_layout
1033 __attribute__((aligned(4))); /* lest something weird decides that 2 is OK */
1034
1035struct file_handle {
1036 __u32 handle_bytes;
1037 int handle_type;
1038 /* file identifier */
1039 unsigned char f_handle[];
1040};
1041
1042static inline struct file *get_file(struct file *f)
1043{
1044 atomic_long_inc(&f->f_count);
1045 return f;
1046}
1047
1048struct file *get_file_rcu(struct file __rcu **f);
1049struct file *get_file_active(struct file **f);
1050
1051#define file_count(x) atomic_long_read(&(x)->f_count)
1052
1053#define MAX_NON_LFS ((1UL<<31) - 1)
1054
1055/* Page cache limit. The filesystems should put that into their s_maxbytes
1056 limits, otherwise bad things can happen in VM. */
1057#if BITS_PER_LONG==32
1058#define MAX_LFS_FILESIZE ((loff_t)ULONG_MAX << PAGE_SHIFT)
1059#elif BITS_PER_LONG==64
1060#define MAX_LFS_FILESIZE ((loff_t)LLONG_MAX)
1061#endif
1062
1063/* legacy typedef, should eventually be removed */
1064typedef void *fl_owner_t;
1065
1066struct file_lock;
1067
1068/* The following constant reflects the upper bound of the file/locking space */
1069#ifndef OFFSET_MAX
1070#define OFFSET_MAX type_max(loff_t)
1071#define OFFT_OFFSET_MAX type_max(off_t)
1072#endif
1073
1074extern void send_sigio(struct fown_struct *fown, int fd, int band);
1075
1076static inline struct inode *file_inode(const struct file *f)
1077{
1078 return f->f_inode;
1079}
1080
1081static inline struct dentry *file_dentry(const struct file *file)
1082{
1083 return d_real(file->f_path.dentry, file_inode(file));
1084}
1085
1086struct fasync_struct {
1087 rwlock_t fa_lock;
1088 int magic;
1089 int fa_fd;
1090 struct fasync_struct *fa_next; /* singly linked list */
1091 struct file *fa_file;
1092 struct rcu_head fa_rcu;
1093};
1094
1095#define FASYNC_MAGIC 0x4601
1096
1097/* SMP safe fasync helpers: */
1098extern int fasync_helper(int, struct file *, int, struct fasync_struct **);
1099extern struct fasync_struct *fasync_insert_entry(int, struct file *, struct fasync_struct **, struct fasync_struct *);
1100extern int fasync_remove_entry(struct file *, struct fasync_struct **);
1101extern struct fasync_struct *fasync_alloc(void);
1102extern void fasync_free(struct fasync_struct *);
1103
1104/* can be called from interrupts */
1105extern void kill_fasync(struct fasync_struct **, int, int);
1106
1107extern void __f_setown(struct file *filp, struct pid *, enum pid_type, int force);
1108extern int f_setown(struct file *filp, int who, int force);
1109extern void f_delown(struct file *filp);
1110extern pid_t f_getown(struct file *filp);
1111extern int send_sigurg(struct fown_struct *fown);
1112
1113/*
1114 * sb->s_flags. Note that these mirror the equivalent MS_* flags where
1115 * represented in both.
1116 */
1117#define SB_RDONLY BIT(0) /* Mount read-only */
1118#define SB_NOSUID BIT(1) /* Ignore suid and sgid bits */
1119#define SB_NODEV BIT(2) /* Disallow access to device special files */
1120#define SB_NOEXEC BIT(3) /* Disallow program execution */
1121#define SB_SYNCHRONOUS BIT(4) /* Writes are synced at once */
1122#define SB_MANDLOCK BIT(6) /* Allow mandatory locks on an FS */
1123#define SB_DIRSYNC BIT(7) /* Directory modifications are synchronous */
1124#define SB_NOATIME BIT(10) /* Do not update access times. */
1125#define SB_NODIRATIME BIT(11) /* Do not update directory access times */
1126#define SB_SILENT BIT(15)
1127#define SB_POSIXACL BIT(16) /* Supports POSIX ACLs */
1128#define SB_INLINECRYPT BIT(17) /* Use blk-crypto for encrypted files */
1129#define SB_KERNMOUNT BIT(22) /* this is a kern_mount call */
1130#define SB_I_VERSION BIT(23) /* Update inode I_version field */
1131#define SB_LAZYTIME BIT(25) /* Update the on-disk [acm]times lazily */
1132
1133/* These sb flags are internal to the kernel */
1134#define SB_DEAD BIT(21)
1135#define SB_DYING BIT(24)
1136#define SB_SUBMOUNT BIT(26)
1137#define SB_FORCE BIT(27)
1138#define SB_NOSEC BIT(28)
1139#define SB_BORN BIT(29)
1140#define SB_ACTIVE BIT(30)
1141#define SB_NOUSER BIT(31)
1142
1143/* These flags relate to encoding and casefolding */
1144#define SB_ENC_STRICT_MODE_FL (1 << 0)
1145
1146#define sb_has_strict_encoding(sb) \
1147 (sb->s_encoding_flags & SB_ENC_STRICT_MODE_FL)
1148
1149/*
1150 * Umount options
1151 */
1152
1153#define MNT_FORCE 0x00000001 /* Attempt to forcibily umount */
1154#define MNT_DETACH 0x00000002 /* Just detach from the tree */
1155#define MNT_EXPIRE 0x00000004 /* Mark for expiry */
1156#define UMOUNT_NOFOLLOW 0x00000008 /* Don't follow symlink on umount */
1157#define UMOUNT_UNUSED 0x80000000 /* Flag guaranteed to be unused */
1158
1159/* sb->s_iflags */
1160#define SB_I_CGROUPWB 0x00000001 /* cgroup-aware writeback enabled */
1161#define SB_I_NOEXEC 0x00000002 /* Ignore executables on this fs */
1162#define SB_I_NODEV 0x00000004 /* Ignore devices on this fs */
1163#define SB_I_STABLE_WRITES 0x00000008 /* don't modify blks until WB is done */
1164
1165/* sb->s_iflags to limit user namespace mounts */
1166#define SB_I_USERNS_VISIBLE 0x00000010 /* fstype already mounted */
1167#define SB_I_IMA_UNVERIFIABLE_SIGNATURE 0x00000020
1168#define SB_I_UNTRUSTED_MOUNTER 0x00000040
1169#define SB_I_EVM_UNSUPPORTED 0x00000080
1170
1171#define SB_I_SKIP_SYNC 0x00000100 /* Skip superblock at global sync */
1172#define SB_I_PERSB_BDI 0x00000200 /* has a per-sb bdi */
1173#define SB_I_TS_EXPIRY_WARNED 0x00000400 /* warned about timestamp range expiry */
1174#define SB_I_RETIRED 0x00000800 /* superblock shouldn't be reused */
1175#define SB_I_NOUMASK 0x00001000 /* VFS does not apply umask */
1176
1177/* Possible states of 'frozen' field */
1178enum {
1179 SB_UNFROZEN = 0, /* FS is unfrozen */
1180 SB_FREEZE_WRITE = 1, /* Writes, dir ops, ioctls frozen */
1181 SB_FREEZE_PAGEFAULT = 2, /* Page faults stopped as well */
1182 SB_FREEZE_FS = 3, /* For internal FS use (e.g. to stop
1183 * internal threads if needed) */
1184 SB_FREEZE_COMPLETE = 4, /* ->freeze_fs finished successfully */
1185};
1186
1187#define SB_FREEZE_LEVELS (SB_FREEZE_COMPLETE - 1)
1188
1189struct sb_writers {
1190 unsigned short frozen; /* Is sb frozen? */
1191 int freeze_kcount; /* How many kernel freeze requests? */
1192 int freeze_ucount; /* How many userspace freeze requests? */
1193 struct percpu_rw_semaphore rw_sem[SB_FREEZE_LEVELS];
1194};
1195
1196struct super_block {
1197 struct list_head s_list; /* Keep this first */
1198 dev_t s_dev; /* search index; _not_ kdev_t */
1199 unsigned char s_blocksize_bits;
1200 unsigned long s_blocksize;
1201 loff_t s_maxbytes; /* Max file size */
1202 struct file_system_type *s_type;
1203 const struct super_operations *s_op;
1204 const struct dquot_operations *dq_op;
1205 const struct quotactl_ops *s_qcop;
1206 const struct export_operations *s_export_op;
1207 unsigned long s_flags;
1208 unsigned long s_iflags; /* internal SB_I_* flags */
1209 unsigned long s_magic;
1210 struct dentry *s_root;
1211 struct rw_semaphore s_umount;
1212 int s_count;
1213 atomic_t s_active;
1214#ifdef CONFIG_SECURITY
1215 void *s_security;
1216#endif
1217 const struct xattr_handler * const *s_xattr;
1218#ifdef CONFIG_FS_ENCRYPTION
1219 const struct fscrypt_operations *s_cop;
1220 struct fscrypt_keyring *s_master_keys; /* master crypto keys in use */
1221#endif
1222#ifdef CONFIG_FS_VERITY
1223 const struct fsverity_operations *s_vop;
1224#endif
1225#if IS_ENABLED(CONFIG_UNICODE)
1226 struct unicode_map *s_encoding;
1227 __u16 s_encoding_flags;
1228#endif
1229 struct hlist_bl_head s_roots; /* alternate root dentries for NFS */
1230 struct list_head s_mounts; /* list of mounts; _not_ for fs use */
1231 struct block_device *s_bdev;
1232 struct bdev_handle *s_bdev_handle;
1233 struct backing_dev_info *s_bdi;
1234 struct mtd_info *s_mtd;
1235 struct hlist_node s_instances;
1236 unsigned int s_quota_types; /* Bitmask of supported quota types */
1237 struct quota_info s_dquot; /* Diskquota specific options */
1238
1239 struct sb_writers s_writers;
1240
1241 /*
1242 * Keep s_fs_info, s_time_gran, s_fsnotify_mask, and
1243 * s_fsnotify_marks together for cache efficiency. They are frequently
1244 * accessed and rarely modified.
1245 */
1246 void *s_fs_info; /* Filesystem private info */
1247
1248 /* Granularity of c/m/atime in ns (cannot be worse than a second) */
1249 u32 s_time_gran;
1250 /* Time limits for c/m/atime in seconds */
1251 time64_t s_time_min;
1252 time64_t s_time_max;
1253#ifdef CONFIG_FSNOTIFY
1254 __u32 s_fsnotify_mask;
1255 struct fsnotify_mark_connector __rcu *s_fsnotify_marks;
1256#endif
1257
1258 char s_id[32]; /* Informational name */
1259 uuid_t s_uuid; /* UUID */
1260
1261 unsigned int s_max_links;
1262
1263 /*
1264 * The next field is for VFS *only*. No filesystems have any business
1265 * even looking at it. You had been warned.
1266 */
1267 struct mutex s_vfs_rename_mutex; /* Kludge */
1268
1269 /*
1270 * Filesystem subtype. If non-empty the filesystem type field
1271 * in /proc/mounts will be "type.subtype"
1272 */
1273 const char *s_subtype;
1274
1275 const struct dentry_operations *s_d_op; /* default d_op for dentries */
1276
1277 struct shrinker *s_shrink; /* per-sb shrinker handle */
1278
1279 /* Number of inodes with nlink == 0 but still referenced */
1280 atomic_long_t s_remove_count;
1281
1282 /*
1283 * Number of inode/mount/sb objects that are being watched, note that
1284 * inodes objects are currently double-accounted.
1285 */
1286 atomic_long_t s_fsnotify_connectors;
1287
1288 /* Read-only state of the superblock is being changed */
1289 int s_readonly_remount;
1290
1291 /* per-sb errseq_t for reporting writeback errors via syncfs */
1292 errseq_t s_wb_err;
1293
1294 /* AIO completions deferred from interrupt context */
1295 struct workqueue_struct *s_dio_done_wq;
1296 struct hlist_head s_pins;
1297
1298 /*
1299 * Owning user namespace and default context in which to
1300 * interpret filesystem uids, gids, quotas, device nodes,
1301 * xattrs and security labels.
1302 */
1303 struct user_namespace *s_user_ns;
1304
1305 /*
1306 * The list_lru structure is essentially just a pointer to a table
1307 * of per-node lru lists, each of which has its own spinlock.
1308 * There is no need to put them into separate cachelines.
1309 */
1310 struct list_lru s_dentry_lru;
1311 struct list_lru s_inode_lru;
1312 struct rcu_head rcu;
1313 struct work_struct destroy_work;
1314
1315 struct mutex s_sync_lock; /* sync serialisation lock */
1316
1317 /*
1318 * Indicates how deep in a filesystem stack this SB is
1319 */
1320 int s_stack_depth;
1321
1322 /* s_inode_list_lock protects s_inodes */
1323 spinlock_t s_inode_list_lock ____cacheline_aligned_in_smp;
1324 struct list_head s_inodes; /* all inodes */
1325
1326 spinlock_t s_inode_wblist_lock;
1327 struct list_head s_inodes_wb; /* writeback inodes */
1328} __randomize_layout;
1329
1330static inline struct user_namespace *i_user_ns(const struct inode *inode)
1331{
1332 return inode->i_sb->s_user_ns;
1333}
1334
1335/* Helper functions so that in most cases filesystems will
1336 * not need to deal directly with kuid_t and kgid_t and can
1337 * instead deal with the raw numeric values that are stored
1338 * in the filesystem.
1339 */
1340static inline uid_t i_uid_read(const struct inode *inode)
1341{
1342 return from_kuid(i_user_ns(inode), inode->i_uid);
1343}
1344
1345static inline gid_t i_gid_read(const struct inode *inode)
1346{
1347 return from_kgid(i_user_ns(inode), inode->i_gid);
1348}
1349
1350static inline void i_uid_write(struct inode *inode, uid_t uid)
1351{
1352 inode->i_uid = make_kuid(i_user_ns(inode), uid);
1353}
1354
1355static inline void i_gid_write(struct inode *inode, gid_t gid)
1356{
1357 inode->i_gid = make_kgid(i_user_ns(inode), gid);
1358}
1359
1360/**
1361 * i_uid_into_vfsuid - map an inode's i_uid down according to an idmapping
1362 * @idmap: idmap of the mount the inode was found from
1363 * @inode: inode to map
1364 *
1365 * Return: whe inode's i_uid mapped down according to @idmap.
1366 * If the inode's i_uid has no mapping INVALID_VFSUID is returned.
1367 */
1368static inline vfsuid_t i_uid_into_vfsuid(struct mnt_idmap *idmap,
1369 const struct inode *inode)
1370{
1371 return make_vfsuid(idmap, i_user_ns(inode), inode->i_uid);
1372}
1373
1374/**
1375 * i_uid_needs_update - check whether inode's i_uid needs to be updated
1376 * @idmap: idmap of the mount the inode was found from
1377 * @attr: the new attributes of @inode
1378 * @inode: the inode to update
1379 *
1380 * Check whether the $inode's i_uid field needs to be updated taking idmapped
1381 * mounts into account if the filesystem supports it.
1382 *
1383 * Return: true if @inode's i_uid field needs to be updated, false if not.
1384 */
1385static inline bool i_uid_needs_update(struct mnt_idmap *idmap,
1386 const struct iattr *attr,
1387 const struct inode *inode)
1388{
1389 return ((attr->ia_valid & ATTR_UID) &&
1390 !vfsuid_eq(attr->ia_vfsuid,
1391 i_uid_into_vfsuid(idmap, inode)));
1392}
1393
1394/**
1395 * i_uid_update - update @inode's i_uid field
1396 * @idmap: idmap of the mount the inode was found from
1397 * @attr: the new attributes of @inode
1398 * @inode: the inode to update
1399 *
1400 * Safely update @inode's i_uid field translating the vfsuid of any idmapped
1401 * mount into the filesystem kuid.
1402 */
1403static inline void i_uid_update(struct mnt_idmap *idmap,
1404 const struct iattr *attr,
1405 struct inode *inode)
1406{
1407 if (attr->ia_valid & ATTR_UID)
1408 inode->i_uid = from_vfsuid(idmap, i_user_ns(inode),
1409 attr->ia_vfsuid);
1410}
1411
1412/**
1413 * i_gid_into_vfsgid - map an inode's i_gid down according to an idmapping
1414 * @idmap: idmap of the mount the inode was found from
1415 * @inode: inode to map
1416 *
1417 * Return: the inode's i_gid mapped down according to @idmap.
1418 * If the inode's i_gid has no mapping INVALID_VFSGID is returned.
1419 */
1420static inline vfsgid_t i_gid_into_vfsgid(struct mnt_idmap *idmap,
1421 const struct inode *inode)
1422{
1423 return make_vfsgid(idmap, i_user_ns(inode), inode->i_gid);
1424}
1425
1426/**
1427 * i_gid_needs_update - check whether inode's i_gid needs to be updated
1428 * @idmap: idmap of the mount the inode was found from
1429 * @attr: the new attributes of @inode
1430 * @inode: the inode to update
1431 *
1432 * Check whether the $inode's i_gid field needs to be updated taking idmapped
1433 * mounts into account if the filesystem supports it.
1434 *
1435 * Return: true if @inode's i_gid field needs to be updated, false if not.
1436 */
1437static inline bool i_gid_needs_update(struct mnt_idmap *idmap,
1438 const struct iattr *attr,
1439 const struct inode *inode)
1440{
1441 return ((attr->ia_valid & ATTR_GID) &&
1442 !vfsgid_eq(attr->ia_vfsgid,
1443 i_gid_into_vfsgid(idmap, inode)));
1444}
1445
1446/**
1447 * i_gid_update - update @inode's i_gid field
1448 * @idmap: idmap of the mount the inode was found from
1449 * @attr: the new attributes of @inode
1450 * @inode: the inode to update
1451 *
1452 * Safely update @inode's i_gid field translating the vfsgid of any idmapped
1453 * mount into the filesystem kgid.
1454 */
1455static inline void i_gid_update(struct mnt_idmap *idmap,
1456 const struct iattr *attr,
1457 struct inode *inode)
1458{
1459 if (attr->ia_valid & ATTR_GID)
1460 inode->i_gid = from_vfsgid(idmap, i_user_ns(inode),
1461 attr->ia_vfsgid);
1462}
1463
1464/**
1465 * inode_fsuid_set - initialize inode's i_uid field with callers fsuid
1466 * @inode: inode to initialize
1467 * @idmap: idmap of the mount the inode was found from
1468 *
1469 * Initialize the i_uid field of @inode. If the inode was found/created via
1470 * an idmapped mount map the caller's fsuid according to @idmap.
1471 */
1472static inline void inode_fsuid_set(struct inode *inode,
1473 struct mnt_idmap *idmap)
1474{
1475 inode->i_uid = mapped_fsuid(idmap, i_user_ns(inode));
1476}
1477
1478/**
1479 * inode_fsgid_set - initialize inode's i_gid field with callers fsgid
1480 * @inode: inode to initialize
1481 * @idmap: idmap of the mount the inode was found from
1482 *
1483 * Initialize the i_gid field of @inode. If the inode was found/created via
1484 * an idmapped mount map the caller's fsgid according to @idmap.
1485 */
1486static inline void inode_fsgid_set(struct inode *inode,
1487 struct mnt_idmap *idmap)
1488{
1489 inode->i_gid = mapped_fsgid(idmap, i_user_ns(inode));
1490}
1491
1492/**
1493 * fsuidgid_has_mapping() - check whether caller's fsuid/fsgid is mapped
1494 * @sb: the superblock we want a mapping in
1495 * @idmap: idmap of the relevant mount
1496 *
1497 * Check whether the caller's fsuid and fsgid have a valid mapping in the
1498 * s_user_ns of the superblock @sb. If the caller is on an idmapped mount map
1499 * the caller's fsuid and fsgid according to the @idmap first.
1500 *
1501 * Return: true if fsuid and fsgid is mapped, false if not.
1502 */
1503static inline bool fsuidgid_has_mapping(struct super_block *sb,
1504 struct mnt_idmap *idmap)
1505{
1506 struct user_namespace *fs_userns = sb->s_user_ns;
1507 kuid_t kuid;
1508 kgid_t kgid;
1509
1510 kuid = mapped_fsuid(idmap, fs_userns);
1511 if (!uid_valid(kuid))
1512 return false;
1513 kgid = mapped_fsgid(idmap, fs_userns);
1514 if (!gid_valid(kgid))
1515 return false;
1516 return kuid_has_mapping(fs_userns, kuid) &&
1517 kgid_has_mapping(fs_userns, kgid);
1518}
1519
1520struct timespec64 current_time(struct inode *inode);
1521struct timespec64 inode_set_ctime_current(struct inode *inode);
1522
1523static inline time64_t inode_get_atime_sec(const struct inode *inode)
1524{
1525 return inode->__i_atime.tv_sec;
1526}
1527
1528static inline long inode_get_atime_nsec(const struct inode *inode)
1529{
1530 return inode->__i_atime.tv_nsec;
1531}
1532
1533static inline struct timespec64 inode_get_atime(const struct inode *inode)
1534{
1535 return inode->__i_atime;
1536}
1537
1538static inline struct timespec64 inode_set_atime_to_ts(struct inode *inode,
1539 struct timespec64 ts)
1540{
1541 inode->__i_atime = ts;
1542 return ts;
1543}
1544
1545static inline struct timespec64 inode_set_atime(struct inode *inode,
1546 time64_t sec, long nsec)
1547{
1548 struct timespec64 ts = { .tv_sec = sec,
1549 .tv_nsec = nsec };
1550 return inode_set_atime_to_ts(inode, ts);
1551}
1552
1553static inline time64_t inode_get_mtime_sec(const struct inode *inode)
1554{
1555 return inode->__i_mtime.tv_sec;
1556}
1557
1558static inline long inode_get_mtime_nsec(const struct inode *inode)
1559{
1560 return inode->__i_mtime.tv_nsec;
1561}
1562
1563static inline struct timespec64 inode_get_mtime(const struct inode *inode)
1564{
1565 return inode->__i_mtime;
1566}
1567
1568static inline struct timespec64 inode_set_mtime_to_ts(struct inode *inode,
1569 struct timespec64 ts)
1570{
1571 inode->__i_mtime = ts;
1572 return ts;
1573}
1574
1575static inline struct timespec64 inode_set_mtime(struct inode *inode,
1576 time64_t sec, long nsec)
1577{
1578 struct timespec64 ts = { .tv_sec = sec,
1579 .tv_nsec = nsec };
1580 return inode_set_mtime_to_ts(inode, ts);
1581}
1582
1583static inline time64_t inode_get_ctime_sec(const struct inode *inode)
1584{
1585 return inode->__i_ctime.tv_sec;
1586}
1587
1588static inline long inode_get_ctime_nsec(const struct inode *inode)
1589{
1590 return inode->__i_ctime.tv_nsec;
1591}
1592
1593static inline struct timespec64 inode_get_ctime(const struct inode *inode)
1594{
1595 return inode->__i_ctime;
1596}
1597
1598static inline struct timespec64 inode_set_ctime_to_ts(struct inode *inode,
1599 struct timespec64 ts)
1600{
1601 inode->__i_ctime = ts;
1602 return ts;
1603}
1604
1605/**
1606 * inode_set_ctime - set the ctime in the inode
1607 * @inode: inode in which to set the ctime
1608 * @sec: tv_sec value to set
1609 * @nsec: tv_nsec value to set
1610 *
1611 * Set the ctime in @inode to { @sec, @nsec }
1612 */
1613static inline struct timespec64 inode_set_ctime(struct inode *inode,
1614 time64_t sec, long nsec)
1615{
1616 struct timespec64 ts = { .tv_sec = sec,
1617 .tv_nsec = nsec };
1618
1619 return inode_set_ctime_to_ts(inode, ts);
1620}
1621
1622struct timespec64 simple_inode_init_ts(struct inode *inode);
1623
1624/*
1625 * Snapshotting support.
1626 */
1627
1628/*
1629 * These are internal functions, please use sb_start_{write,pagefault,intwrite}
1630 * instead.
1631 */
1632static inline void __sb_end_write(struct super_block *sb, int level)
1633{
1634 percpu_up_read(sb->s_writers.rw_sem + level-1);
1635}
1636
1637static inline void __sb_start_write(struct super_block *sb, int level)
1638{
1639 percpu_down_read(sb->s_writers.rw_sem + level - 1);
1640}
1641
1642static inline bool __sb_start_write_trylock(struct super_block *sb, int level)
1643{
1644 return percpu_down_read_trylock(sb->s_writers.rw_sem + level - 1);
1645}
1646
1647#define __sb_writers_acquired(sb, lev) \
1648 percpu_rwsem_acquire(&(sb)->s_writers.rw_sem[(lev)-1], 1, _THIS_IP_)
1649#define __sb_writers_release(sb, lev) \
1650 percpu_rwsem_release(&(sb)->s_writers.rw_sem[(lev)-1], 1, _THIS_IP_)
1651
1652/**
1653 * __sb_write_started - check if sb freeze level is held
1654 * @sb: the super we write to
1655 * @level: the freeze level
1656 *
1657 * * > 0 - sb freeze level is held
1658 * * 0 - sb freeze level is not held
1659 * * < 0 - !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN
1660 */
1661static inline int __sb_write_started(const struct super_block *sb, int level)
1662{
1663 return lockdep_is_held_type(sb->s_writers.rw_sem + level - 1, 1);
1664}
1665
1666/**
1667 * sb_write_started - check if SB_FREEZE_WRITE is held
1668 * @sb: the super we write to
1669 *
1670 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN.
1671 */
1672static inline bool sb_write_started(const struct super_block *sb)
1673{
1674 return __sb_write_started(sb, SB_FREEZE_WRITE);
1675}
1676
1677/**
1678 * sb_write_not_started - check if SB_FREEZE_WRITE is not held
1679 * @sb: the super we write to
1680 *
1681 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN.
1682 */
1683static inline bool sb_write_not_started(const struct super_block *sb)
1684{
1685 return __sb_write_started(sb, SB_FREEZE_WRITE) <= 0;
1686}
1687
1688/**
1689 * file_write_started - check if SB_FREEZE_WRITE is held
1690 * @file: the file we write to
1691 *
1692 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN.
1693 * May be false positive with !S_ISREG, because file_start_write() has
1694 * no effect on !S_ISREG.
1695 */
1696static inline bool file_write_started(const struct file *file)
1697{
1698 if (!S_ISREG(file_inode(file)->i_mode))
1699 return true;
1700 return sb_write_started(file_inode(file)->i_sb);
1701}
1702
1703/**
1704 * file_write_not_started - check if SB_FREEZE_WRITE is not held
1705 * @file: the file we write to
1706 *
1707 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN.
1708 * May be false positive with !S_ISREG, because file_start_write() has
1709 * no effect on !S_ISREG.
1710 */
1711static inline bool file_write_not_started(const struct file *file)
1712{
1713 if (!S_ISREG(file_inode(file)->i_mode))
1714 return true;
1715 return sb_write_not_started(file_inode(file)->i_sb);
1716}
1717
1718/**
1719 * sb_end_write - drop write access to a superblock
1720 * @sb: the super we wrote to
1721 *
1722 * Decrement number of writers to the filesystem. Wake up possible waiters
1723 * wanting to freeze the filesystem.
1724 */
1725static inline void sb_end_write(struct super_block *sb)
1726{
1727 __sb_end_write(sb, SB_FREEZE_WRITE);
1728}
1729
1730/**
1731 * sb_end_pagefault - drop write access to a superblock from a page fault
1732 * @sb: the super we wrote to
1733 *
1734 * Decrement number of processes handling write page fault to the filesystem.
1735 * Wake up possible waiters wanting to freeze the filesystem.
1736 */
1737static inline void sb_end_pagefault(struct super_block *sb)
1738{
1739 __sb_end_write(sb, SB_FREEZE_PAGEFAULT);
1740}
1741
1742/**
1743 * sb_end_intwrite - drop write access to a superblock for internal fs purposes
1744 * @sb: the super we wrote to
1745 *
1746 * Decrement fs-internal number of writers to the filesystem. Wake up possible
1747 * waiters wanting to freeze the filesystem.
1748 */
1749static inline void sb_end_intwrite(struct super_block *sb)
1750{
1751 __sb_end_write(sb, SB_FREEZE_FS);
1752}
1753
1754/**
1755 * sb_start_write - get write access to a superblock
1756 * @sb: the super we write to
1757 *
1758 * When a process wants to write data or metadata to a file system (i.e. dirty
1759 * a page or an inode), it should embed the operation in a sb_start_write() -
1760 * sb_end_write() pair to get exclusion against file system freezing. This
1761 * function increments number of writers preventing freezing. If the file
1762 * system is already frozen, the function waits until the file system is
1763 * thawed.
1764 *
1765 * Since freeze protection behaves as a lock, users have to preserve
1766 * ordering of freeze protection and other filesystem locks. Generally,
1767 * freeze protection should be the outermost lock. In particular, we have:
1768 *
1769 * sb_start_write
1770 * -> i_mutex (write path, truncate, directory ops, ...)
1771 * -> s_umount (freeze_super, thaw_super)
1772 */
1773static inline void sb_start_write(struct super_block *sb)
1774{
1775 __sb_start_write(sb, SB_FREEZE_WRITE);
1776}
1777
1778static inline bool sb_start_write_trylock(struct super_block *sb)
1779{
1780 return __sb_start_write_trylock(sb, SB_FREEZE_WRITE);
1781}
1782
1783/**
1784 * sb_start_pagefault - get write access to a superblock from a page fault
1785 * @sb: the super we write to
1786 *
1787 * When a process starts handling write page fault, it should embed the
1788 * operation into sb_start_pagefault() - sb_end_pagefault() pair to get
1789 * exclusion against file system freezing. This is needed since the page fault
1790 * is going to dirty a page. This function increments number of running page
1791 * faults preventing freezing. If the file system is already frozen, the
1792 * function waits until the file system is thawed.
1793 *
1794 * Since page fault freeze protection behaves as a lock, users have to preserve
1795 * ordering of freeze protection and other filesystem locks. It is advised to
1796 * put sb_start_pagefault() close to mmap_lock in lock ordering. Page fault
1797 * handling code implies lock dependency:
1798 *
1799 * mmap_lock
1800 * -> sb_start_pagefault
1801 */
1802static inline void sb_start_pagefault(struct super_block *sb)
1803{
1804 __sb_start_write(sb, SB_FREEZE_PAGEFAULT);
1805}
1806
1807/**
1808 * sb_start_intwrite - get write access to a superblock for internal fs purposes
1809 * @sb: the super we write to
1810 *
1811 * This is the third level of protection against filesystem freezing. It is
1812 * free for use by a filesystem. The only requirement is that it must rank
1813 * below sb_start_pagefault.
1814 *
1815 * For example filesystem can call sb_start_intwrite() when starting a
1816 * transaction which somewhat eases handling of freezing for internal sources
1817 * of filesystem changes (internal fs threads, discarding preallocation on file
1818 * close, etc.).
1819 */
1820static inline void sb_start_intwrite(struct super_block *sb)
1821{
1822 __sb_start_write(sb, SB_FREEZE_FS);
1823}
1824
1825static inline bool sb_start_intwrite_trylock(struct super_block *sb)
1826{
1827 return __sb_start_write_trylock(sb, SB_FREEZE_FS);
1828}
1829
1830bool inode_owner_or_capable(struct mnt_idmap *idmap,
1831 const struct inode *inode);
1832
1833/*
1834 * VFS helper functions..
1835 */
1836int vfs_create(struct mnt_idmap *, struct inode *,
1837 struct dentry *, umode_t, bool);
1838int vfs_mkdir(struct mnt_idmap *, struct inode *,
1839 struct dentry *, umode_t);
1840int vfs_mknod(struct mnt_idmap *, struct inode *, struct dentry *,
1841 umode_t, dev_t);
1842int vfs_symlink(struct mnt_idmap *, struct inode *,
1843 struct dentry *, const char *);
1844int vfs_link(struct dentry *, struct mnt_idmap *, struct inode *,
1845 struct dentry *, struct inode **);
1846int vfs_rmdir(struct mnt_idmap *, struct inode *, struct dentry *);
1847int vfs_unlink(struct mnt_idmap *, struct inode *, struct dentry *,
1848 struct inode **);
1849
1850/**
1851 * struct renamedata - contains all information required for renaming
1852 * @old_mnt_idmap: idmap of the old mount the inode was found from
1853 * @old_dir: parent of source
1854 * @old_dentry: source
1855 * @new_mnt_idmap: idmap of the new mount the inode was found from
1856 * @new_dir: parent of destination
1857 * @new_dentry: destination
1858 * @delegated_inode: returns an inode needing a delegation break
1859 * @flags: rename flags
1860 */
1861struct renamedata {
1862 struct mnt_idmap *old_mnt_idmap;
1863 struct inode *old_dir;
1864 struct dentry *old_dentry;
1865 struct mnt_idmap *new_mnt_idmap;
1866 struct inode *new_dir;
1867 struct dentry *new_dentry;
1868 struct inode **delegated_inode;
1869 unsigned int flags;
1870} __randomize_layout;
1871
1872int vfs_rename(struct renamedata *);
1873
1874static inline int vfs_whiteout(struct mnt_idmap *idmap,
1875 struct inode *dir, struct dentry *dentry)
1876{
1877 return vfs_mknod(idmap, dir, dentry, S_IFCHR | WHITEOUT_MODE,
1878 WHITEOUT_DEV);
1879}
1880
1881struct file *kernel_tmpfile_open(struct mnt_idmap *idmap,
1882 const struct path *parentpath,
1883 umode_t mode, int open_flag,
1884 const struct cred *cred);
1885struct file *kernel_file_open(const struct path *path, int flags,
1886 struct inode *inode, const struct cred *cred);
1887
1888int vfs_mkobj(struct dentry *, umode_t,
1889 int (*f)(struct dentry *, umode_t, void *),
1890 void *);
1891
1892int vfs_fchown(struct file *file, uid_t user, gid_t group);
1893int vfs_fchmod(struct file *file, umode_t mode);
1894int vfs_utimes(const struct path *path, struct timespec64 *times);
1895
1896extern long vfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
1897
1898#ifdef CONFIG_COMPAT
1899extern long compat_ptr_ioctl(struct file *file, unsigned int cmd,
1900 unsigned long arg);
1901#else
1902#define compat_ptr_ioctl NULL
1903#endif
1904
1905/*
1906 * VFS file helper functions.
1907 */
1908void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode,
1909 const struct inode *dir, umode_t mode);
1910extern bool may_open_dev(const struct path *path);
1911umode_t mode_strip_sgid(struct mnt_idmap *idmap,
1912 const struct inode *dir, umode_t mode);
1913
1914/*
1915 * This is the "filldir" function type, used by readdir() to let
1916 * the kernel specify what kind of dirent layout it wants to have.
1917 * This allows the kernel to read directories into kernel space or
1918 * to have different dirent layouts depending on the binary type.
1919 * Return 'true' to keep going and 'false' if there are no more entries.
1920 */
1921struct dir_context;
1922typedef bool (*filldir_t)(struct dir_context *, const char *, int, loff_t, u64,
1923 unsigned);
1924
1925struct dir_context {
1926 filldir_t actor;
1927 loff_t pos;
1928};
1929
1930/*
1931 * These flags let !MMU mmap() govern direct device mapping vs immediate
1932 * copying more easily for MAP_PRIVATE, especially for ROM filesystems.
1933 *
1934 * NOMMU_MAP_COPY: Copy can be mapped (MAP_PRIVATE)
1935 * NOMMU_MAP_DIRECT: Can be mapped directly (MAP_SHARED)
1936 * NOMMU_MAP_READ: Can be mapped for reading
1937 * NOMMU_MAP_WRITE: Can be mapped for writing
1938 * NOMMU_MAP_EXEC: Can be mapped for execution
1939 */
1940#define NOMMU_MAP_COPY 0x00000001
1941#define NOMMU_MAP_DIRECT 0x00000008
1942#define NOMMU_MAP_READ VM_MAYREAD
1943#define NOMMU_MAP_WRITE VM_MAYWRITE
1944#define NOMMU_MAP_EXEC VM_MAYEXEC
1945
1946#define NOMMU_VMFLAGS \
1947 (NOMMU_MAP_READ | NOMMU_MAP_WRITE | NOMMU_MAP_EXEC)
1948
1949/*
1950 * These flags control the behavior of the remap_file_range function pointer.
1951 * If it is called with len == 0 that means "remap to end of source file".
1952 * See Documentation/filesystems/vfs.rst for more details about this call.
1953 *
1954 * REMAP_FILE_DEDUP: only remap if contents identical (i.e. deduplicate)
1955 * REMAP_FILE_CAN_SHORTEN: caller can handle a shortened request
1956 */
1957#define REMAP_FILE_DEDUP (1 << 0)
1958#define REMAP_FILE_CAN_SHORTEN (1 << 1)
1959
1960/*
1961 * These flags signal that the caller is ok with altering various aspects of
1962 * the behavior of the remap operation. The changes must be made by the
1963 * implementation; the vfs remap helper functions can take advantage of them.
1964 * Flags in this category exist to preserve the quirky behavior of the hoisted
1965 * btrfs clone/dedupe ioctls.
1966 */
1967#define REMAP_FILE_ADVISORY (REMAP_FILE_CAN_SHORTEN)
1968
1969/*
1970 * These flags control the behavior of vfs_copy_file_range().
1971 * They are not available to the user via syscall.
1972 *
1973 * COPY_FILE_SPLICE: call splice direct instead of fs clone/copy ops
1974 */
1975#define COPY_FILE_SPLICE (1 << 0)
1976
1977struct iov_iter;
1978struct io_uring_cmd;
1979struct offset_ctx;
1980
1981struct file_operations {
1982 struct module *owner;
1983 loff_t (*llseek) (struct file *, loff_t, int);
1984 ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
1985 ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
1986 ssize_t (*read_iter) (struct kiocb *, struct iov_iter *);
1987 ssize_t (*write_iter) (struct kiocb *, struct iov_iter *);
1988 int (*iopoll)(struct kiocb *kiocb, struct io_comp_batch *,
1989 unsigned int flags);
1990 int (*iterate_shared) (struct file *, struct dir_context *);
1991 __poll_t (*poll) (struct file *, struct poll_table_struct *);
1992 long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
1993 long (*compat_ioctl) (struct file *, unsigned int, unsigned long);
1994 int (*mmap) (struct file *, struct vm_area_struct *);
1995 unsigned long mmap_supported_flags;
1996 int (*open) (struct inode *, struct file *);
1997 int (*flush) (struct file *, fl_owner_t id);
1998 int (*release) (struct inode *, struct file *);
1999 int (*fsync) (struct file *, loff_t, loff_t, int datasync);
2000 int (*fasync) (int, struct file *, int);
2001 int (*lock) (struct file *, int, struct file_lock *);
2002 unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2003 int (*check_flags)(int);
2004 int (*flock) (struct file *, int, struct file_lock *);
2005 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int);
2006 ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int);
2007 void (*splice_eof)(struct file *file);
2008 int (*setlease)(struct file *, int, struct file_lock **, void **);
2009 long (*fallocate)(struct file *file, int mode, loff_t offset,
2010 loff_t len);
2011 void (*show_fdinfo)(struct seq_file *m, struct file *f);
2012#ifndef CONFIG_MMU
2013 unsigned (*mmap_capabilities)(struct file *);
2014#endif
2015 ssize_t (*copy_file_range)(struct file *, loff_t, struct file *,
2016 loff_t, size_t, unsigned int);
2017 loff_t (*remap_file_range)(struct file *file_in, loff_t pos_in,
2018 struct file *file_out, loff_t pos_out,
2019 loff_t len, unsigned int remap_flags);
2020 int (*fadvise)(struct file *, loff_t, loff_t, int);
2021 int (*uring_cmd)(struct io_uring_cmd *ioucmd, unsigned int issue_flags);
2022 int (*uring_cmd_iopoll)(struct io_uring_cmd *, struct io_comp_batch *,
2023 unsigned int poll_flags);
2024} __randomize_layout;
2025
2026/* Wrap a directory iterator that needs exclusive inode access */
2027int wrap_directory_iterator(struct file *, struct dir_context *,
2028 int (*) (struct file *, struct dir_context *));
2029#define WRAP_DIR_ITER(x) \
2030 static int shared_##x(struct file *file , struct dir_context *ctx) \
2031 { return wrap_directory_iterator(file, ctx, x); }
2032
2033struct inode_operations {
2034 struct dentry * (*lookup) (struct inode *,struct dentry *, unsigned int);
2035 const char * (*get_link) (struct dentry *, struct inode *, struct delayed_call *);
2036 int (*permission) (struct mnt_idmap *, struct inode *, int);
2037 struct posix_acl * (*get_inode_acl)(struct inode *, int, bool);
2038
2039 int (*readlink) (struct dentry *, char __user *,int);
2040
2041 int (*create) (struct mnt_idmap *, struct inode *,struct dentry *,
2042 umode_t, bool);
2043 int (*link) (struct dentry *,struct inode *,struct dentry *);
2044 int (*unlink) (struct inode *,struct dentry *);
2045 int (*symlink) (struct mnt_idmap *, struct inode *,struct dentry *,
2046 const char *);
2047 int (*mkdir) (struct mnt_idmap *, struct inode *,struct dentry *,
2048 umode_t);
2049 int (*rmdir) (struct inode *,struct dentry *);
2050 int (*mknod) (struct mnt_idmap *, struct inode *,struct dentry *,
2051 umode_t,dev_t);
2052 int (*rename) (struct mnt_idmap *, struct inode *, struct dentry *,
2053 struct inode *, struct dentry *, unsigned int);
2054 int (*setattr) (struct mnt_idmap *, struct dentry *, struct iattr *);
2055 int (*getattr) (struct mnt_idmap *, const struct path *,
2056 struct kstat *, u32, unsigned int);
2057 ssize_t (*listxattr) (struct dentry *, char *, size_t);
2058 int (*fiemap)(struct inode *, struct fiemap_extent_info *, u64 start,
2059 u64 len);
2060 int (*update_time)(struct inode *, int);
2061 int (*atomic_open)(struct inode *, struct dentry *,
2062 struct file *, unsigned open_flag,
2063 umode_t create_mode);
2064 int (*tmpfile) (struct mnt_idmap *, struct inode *,
2065 struct file *, umode_t);
2066 struct posix_acl *(*get_acl)(struct mnt_idmap *, struct dentry *,
2067 int);
2068 int (*set_acl)(struct mnt_idmap *, struct dentry *,
2069 struct posix_acl *, int);
2070 int (*fileattr_set)(struct mnt_idmap *idmap,
2071 struct dentry *dentry, struct fileattr *fa);
2072 int (*fileattr_get)(struct dentry *dentry, struct fileattr *fa);
2073 struct offset_ctx *(*get_offset_ctx)(struct inode *inode);
2074} ____cacheline_aligned;
2075
2076static inline ssize_t call_read_iter(struct file *file, struct kiocb *kio,
2077 struct iov_iter *iter)
2078{
2079 return file->f_op->read_iter(kio, iter);
2080}
2081
2082static inline ssize_t call_write_iter(struct file *file, struct kiocb *kio,
2083 struct iov_iter *iter)
2084{
2085 return file->f_op->write_iter(kio, iter);
2086}
2087
2088static inline int call_mmap(struct file *file, struct vm_area_struct *vma)
2089{
2090 return file->f_op->mmap(file, vma);
2091}
2092
2093extern ssize_t vfs_read(struct file *, char __user *, size_t, loff_t *);
2094extern ssize_t vfs_write(struct file *, const char __user *, size_t, loff_t *);
2095extern ssize_t vfs_copy_file_range(struct file *, loff_t , struct file *,
2096 loff_t, size_t, unsigned int);
2097int __generic_remap_file_range_prep(struct file *file_in, loff_t pos_in,
2098 struct file *file_out, loff_t pos_out,
2099 loff_t *len, unsigned int remap_flags,
2100 const struct iomap_ops *dax_read_ops);
2101int generic_remap_file_range_prep(struct file *file_in, loff_t pos_in,
2102 struct file *file_out, loff_t pos_out,
2103 loff_t *count, unsigned int remap_flags);
2104extern loff_t vfs_clone_file_range(struct file *file_in, loff_t pos_in,
2105 struct file *file_out, loff_t pos_out,
2106 loff_t len, unsigned int remap_flags);
2107extern int vfs_dedupe_file_range(struct file *file,
2108 struct file_dedupe_range *same);
2109extern loff_t vfs_dedupe_file_range_one(struct file *src_file, loff_t src_pos,
2110 struct file *dst_file, loff_t dst_pos,
2111 loff_t len, unsigned int remap_flags);
2112
2113/**
2114 * enum freeze_holder - holder of the freeze
2115 * @FREEZE_HOLDER_KERNEL: kernel wants to freeze or thaw filesystem
2116 * @FREEZE_HOLDER_USERSPACE: userspace wants to freeze or thaw filesystem
2117 * @FREEZE_MAY_NEST: whether nesting freeze and thaw requests is allowed
2118 *
2119 * Indicate who the owner of the freeze or thaw request is and whether
2120 * the freeze needs to be exclusive or can nest.
2121 * Without @FREEZE_MAY_NEST, multiple freeze and thaw requests from the
2122 * same holder aren't allowed. It is however allowed to hold a single
2123 * @FREEZE_HOLDER_USERSPACE and a single @FREEZE_HOLDER_KERNEL freeze at
2124 * the same time. This is relied upon by some filesystems during online
2125 * repair or similar.
2126 */
2127enum freeze_holder {
2128 FREEZE_HOLDER_KERNEL = (1U << 0),
2129 FREEZE_HOLDER_USERSPACE = (1U << 1),
2130 FREEZE_MAY_NEST = (1U << 2),
2131};
2132
2133struct super_operations {
2134 struct inode *(*alloc_inode)(struct super_block *sb);
2135 void (*destroy_inode)(struct inode *);
2136 void (*free_inode)(struct inode *);
2137
2138 void (*dirty_inode) (struct inode *, int flags);
2139 int (*write_inode) (struct inode *, struct writeback_control *wbc);
2140 int (*drop_inode) (struct inode *);
2141 void (*evict_inode) (struct inode *);
2142 void (*put_super) (struct super_block *);
2143 int (*sync_fs)(struct super_block *sb, int wait);
2144 int (*freeze_super) (struct super_block *, enum freeze_holder who);
2145 int (*freeze_fs) (struct super_block *);
2146 int (*thaw_super) (struct super_block *, enum freeze_holder who);
2147 int (*unfreeze_fs) (struct super_block *);
2148 int (*statfs) (struct dentry *, struct kstatfs *);
2149 int (*remount_fs) (struct super_block *, int *, char *);
2150 void (*umount_begin) (struct super_block *);
2151
2152 int (*show_options)(struct seq_file *, struct dentry *);
2153 int (*show_devname)(struct seq_file *, struct dentry *);
2154 int (*show_path)(struct seq_file *, struct dentry *);
2155 int (*show_stats)(struct seq_file *, struct dentry *);
2156#ifdef CONFIG_QUOTA
2157 ssize_t (*quota_read)(struct super_block *, int, char *, size_t, loff_t);
2158 ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t);
2159 struct dquot **(*get_dquots)(struct inode *);
2160#endif
2161 long (*nr_cached_objects)(struct super_block *,
2162 struct shrink_control *);
2163 long (*free_cached_objects)(struct super_block *,
2164 struct shrink_control *);
2165 void (*shutdown)(struct super_block *sb);
2166};
2167
2168/*
2169 * Inode flags - they have no relation to superblock flags now
2170 */
2171#define S_SYNC (1 << 0) /* Writes are synced at once */
2172#define S_NOATIME (1 << 1) /* Do not update access times */
2173#define S_APPEND (1 << 2) /* Append-only file */
2174#define S_IMMUTABLE (1 << 3) /* Immutable file */
2175#define S_DEAD (1 << 4) /* removed, but still open directory */
2176#define S_NOQUOTA (1 << 5) /* Inode is not counted to quota */
2177#define S_DIRSYNC (1 << 6) /* Directory modifications are synchronous */
2178#define S_NOCMTIME (1 << 7) /* Do not update file c/mtime */
2179#define S_SWAPFILE (1 << 8) /* Do not truncate: swapon got its bmaps */
2180#define S_PRIVATE (1 << 9) /* Inode is fs-internal */
2181#define S_IMA (1 << 10) /* Inode has an associated IMA struct */
2182#define S_AUTOMOUNT (1 << 11) /* Automount/referral quasi-directory */
2183#define S_NOSEC (1 << 12) /* no suid or xattr security attributes */
2184#ifdef CONFIG_FS_DAX
2185#define S_DAX (1 << 13) /* Direct Access, avoiding the page cache */
2186#else
2187#define S_DAX 0 /* Make all the DAX code disappear */
2188#endif
2189#define S_ENCRYPTED (1 << 14) /* Encrypted file (using fs/crypto/) */
2190#define S_CASEFOLD (1 << 15) /* Casefolded file */
2191#define S_VERITY (1 << 16) /* Verity file (using fs/verity/) */
2192#define S_KERNEL_FILE (1 << 17) /* File is in use by the kernel (eg. fs/cachefiles) */
2193
2194/*
2195 * Note that nosuid etc flags are inode-specific: setting some file-system
2196 * flags just means all the inodes inherit those flags by default. It might be
2197 * possible to override it selectively if you really wanted to with some
2198 * ioctl() that is not currently implemented.
2199 *
2200 * Exception: SB_RDONLY is always applied to the entire file system.
2201 *
2202 * Unfortunately, it is possible to change a filesystems flags with it mounted
2203 * with files in use. This means that all of the inodes will not have their
2204 * i_flags updated. Hence, i_flags no longer inherit the superblock mount
2205 * flags, so these have to be checked separately. -- rmk@arm.uk.linux.org
2206 */
2207#define __IS_FLG(inode, flg) ((inode)->i_sb->s_flags & (flg))
2208
2209static inline bool sb_rdonly(const struct super_block *sb) { return sb->s_flags & SB_RDONLY; }
2210#define IS_RDONLY(inode) sb_rdonly((inode)->i_sb)
2211#define IS_SYNC(inode) (__IS_FLG(inode, SB_SYNCHRONOUS) || \
2212 ((inode)->i_flags & S_SYNC))
2213#define IS_DIRSYNC(inode) (__IS_FLG(inode, SB_SYNCHRONOUS|SB_DIRSYNC) || \
2214 ((inode)->i_flags & (S_SYNC|S_DIRSYNC)))
2215#define IS_MANDLOCK(inode) __IS_FLG(inode, SB_MANDLOCK)
2216#define IS_NOATIME(inode) __IS_FLG(inode, SB_RDONLY|SB_NOATIME)
2217#define IS_I_VERSION(inode) __IS_FLG(inode, SB_I_VERSION)
2218
2219#define IS_NOQUOTA(inode) ((inode)->i_flags & S_NOQUOTA)
2220#define IS_APPEND(inode) ((inode)->i_flags & S_APPEND)
2221#define IS_IMMUTABLE(inode) ((inode)->i_flags & S_IMMUTABLE)
2222
2223#ifdef CONFIG_FS_POSIX_ACL
2224#define IS_POSIXACL(inode) __IS_FLG(inode, SB_POSIXACL)
2225#else
2226#define IS_POSIXACL(inode) 0
2227#endif
2228
2229#define IS_DEADDIR(inode) ((inode)->i_flags & S_DEAD)
2230#define IS_NOCMTIME(inode) ((inode)->i_flags & S_NOCMTIME)
2231#define IS_SWAPFILE(inode) ((inode)->i_flags & S_SWAPFILE)
2232#define IS_PRIVATE(inode) ((inode)->i_flags & S_PRIVATE)
2233#define IS_IMA(inode) ((inode)->i_flags & S_IMA)
2234#define IS_AUTOMOUNT(inode) ((inode)->i_flags & S_AUTOMOUNT)
2235#define IS_NOSEC(inode) ((inode)->i_flags & S_NOSEC)
2236#define IS_DAX(inode) ((inode)->i_flags & S_DAX)
2237#define IS_ENCRYPTED(inode) ((inode)->i_flags & S_ENCRYPTED)
2238#define IS_CASEFOLDED(inode) ((inode)->i_flags & S_CASEFOLD)
2239#define IS_VERITY(inode) ((inode)->i_flags & S_VERITY)
2240
2241#define IS_WHITEOUT(inode) (S_ISCHR(inode->i_mode) && \
2242 (inode)->i_rdev == WHITEOUT_DEV)
2243
2244static inline bool HAS_UNMAPPED_ID(struct mnt_idmap *idmap,
2245 struct inode *inode)
2246{
2247 return !vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
2248 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode));
2249}
2250
2251static inline void init_sync_kiocb(struct kiocb *kiocb, struct file *filp)
2252{
2253 *kiocb = (struct kiocb) {
2254 .ki_filp = filp,
2255 .ki_flags = filp->f_iocb_flags,
2256 .ki_ioprio = get_current_ioprio(),
2257 };
2258}
2259
2260static inline void kiocb_clone(struct kiocb *kiocb, struct kiocb *kiocb_src,
2261 struct file *filp)
2262{
2263 *kiocb = (struct kiocb) {
2264 .ki_filp = filp,
2265 .ki_flags = kiocb_src->ki_flags,
2266 .ki_ioprio = kiocb_src->ki_ioprio,
2267 .ki_pos = kiocb_src->ki_pos,
2268 };
2269}
2270
2271/*
2272 * Inode state bits. Protected by inode->i_lock
2273 *
2274 * Four bits determine the dirty state of the inode: I_DIRTY_SYNC,
2275 * I_DIRTY_DATASYNC, I_DIRTY_PAGES, and I_DIRTY_TIME.
2276 *
2277 * Four bits define the lifetime of an inode. Initially, inodes are I_NEW,
2278 * until that flag is cleared. I_WILL_FREE, I_FREEING and I_CLEAR are set at
2279 * various stages of removing an inode.
2280 *
2281 * Two bits are used for locking and completion notification, I_NEW and I_SYNC.
2282 *
2283 * I_DIRTY_SYNC Inode is dirty, but doesn't have to be written on
2284 * fdatasync() (unless I_DIRTY_DATASYNC is also set).
2285 * Timestamp updates are the usual cause.
2286 * I_DIRTY_DATASYNC Data-related inode changes pending. We keep track of
2287 * these changes separately from I_DIRTY_SYNC so that we
2288 * don't have to write inode on fdatasync() when only
2289 * e.g. the timestamps have changed.
2290 * I_DIRTY_PAGES Inode has dirty pages. Inode itself may be clean.
2291 * I_DIRTY_TIME The inode itself has dirty timestamps, and the
2292 * lazytime mount option is enabled. We keep track of this
2293 * separately from I_DIRTY_SYNC in order to implement
2294 * lazytime. This gets cleared if I_DIRTY_INODE
2295 * (I_DIRTY_SYNC and/or I_DIRTY_DATASYNC) gets set. But
2296 * I_DIRTY_TIME can still be set if I_DIRTY_SYNC is already
2297 * in place because writeback might already be in progress
2298 * and we don't want to lose the time update
2299 * I_NEW Serves as both a mutex and completion notification.
2300 * New inodes set I_NEW. If two processes both create
2301 * the same inode, one of them will release its inode and
2302 * wait for I_NEW to be released before returning.
2303 * Inodes in I_WILL_FREE, I_FREEING or I_CLEAR state can
2304 * also cause waiting on I_NEW, without I_NEW actually
2305 * being set. find_inode() uses this to prevent returning
2306 * nearly-dead inodes.
2307 * I_WILL_FREE Must be set when calling write_inode_now() if i_count
2308 * is zero. I_FREEING must be set when I_WILL_FREE is
2309 * cleared.
2310 * I_FREEING Set when inode is about to be freed but still has dirty
2311 * pages or buffers attached or the inode itself is still
2312 * dirty.
2313 * I_CLEAR Added by clear_inode(). In this state the inode is
2314 * clean and can be destroyed. Inode keeps I_FREEING.
2315 *
2316 * Inodes that are I_WILL_FREE, I_FREEING or I_CLEAR are
2317 * prohibited for many purposes. iget() must wait for
2318 * the inode to be completely released, then create it
2319 * anew. Other functions will just ignore such inodes,
2320 * if appropriate. I_NEW is used for waiting.
2321 *
2322 * I_SYNC Writeback of inode is running. The bit is set during
2323 * data writeback, and cleared with a wakeup on the bit
2324 * address once it is done. The bit is also used to pin
2325 * the inode in memory for flusher thread.
2326 *
2327 * I_REFERENCED Marks the inode as recently references on the LRU list.
2328 *
2329 * I_DIO_WAKEUP Never set. Only used as a key for wait_on_bit().
2330 *
2331 * I_WB_SWITCH Cgroup bdi_writeback switching in progress. Used to
2332 * synchronize competing switching instances and to tell
2333 * wb stat updates to grab the i_pages lock. See
2334 * inode_switch_wbs_work_fn() for details.
2335 *
2336 * I_OVL_INUSE Used by overlayfs to get exclusive ownership on upper
2337 * and work dirs among overlayfs mounts.
2338 *
2339 * I_CREATING New object's inode in the middle of setting up.
2340 *
2341 * I_DONTCACHE Evict inode as soon as it is not used anymore.
2342 *
2343 * I_SYNC_QUEUED Inode is queued in b_io or b_more_io writeback lists.
2344 * Used to detect that mark_inode_dirty() should not move
2345 * inode between dirty lists.
2346 *
2347 * I_PINNING_FSCACHE_WB Inode is pinning an fscache object for writeback.
2348 *
2349 * Q: What is the difference between I_WILL_FREE and I_FREEING?
2350 */
2351#define I_DIRTY_SYNC (1 << 0)
2352#define I_DIRTY_DATASYNC (1 << 1)
2353#define I_DIRTY_PAGES (1 << 2)
2354#define __I_NEW 3
2355#define I_NEW (1 << __I_NEW)
2356#define I_WILL_FREE (1 << 4)
2357#define I_FREEING (1 << 5)
2358#define I_CLEAR (1 << 6)
2359#define __I_SYNC 7
2360#define I_SYNC (1 << __I_SYNC)
2361#define I_REFERENCED (1 << 8)
2362#define __I_DIO_WAKEUP 9
2363#define I_DIO_WAKEUP (1 << __I_DIO_WAKEUP)
2364#define I_LINKABLE (1 << 10)
2365#define I_DIRTY_TIME (1 << 11)
2366#define I_WB_SWITCH (1 << 13)
2367#define I_OVL_INUSE (1 << 14)
2368#define I_CREATING (1 << 15)
2369#define I_DONTCACHE (1 << 16)
2370#define I_SYNC_QUEUED (1 << 17)
2371#define I_PINNING_NETFS_WB (1 << 18)
2372
2373#define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
2374#define I_DIRTY (I_DIRTY_INODE | I_DIRTY_PAGES)
2375#define I_DIRTY_ALL (I_DIRTY | I_DIRTY_TIME)
2376
2377extern void __mark_inode_dirty(struct inode *, int);
2378static inline void mark_inode_dirty(struct inode *inode)
2379{
2380 __mark_inode_dirty(inode, I_DIRTY);
2381}
2382
2383static inline void mark_inode_dirty_sync(struct inode *inode)
2384{
2385 __mark_inode_dirty(inode, I_DIRTY_SYNC);
2386}
2387
2388/*
2389 * Returns true if the given inode itself only has dirty timestamps (its pages
2390 * may still be dirty) and isn't currently being allocated or freed.
2391 * Filesystems should call this if when writing an inode when lazytime is
2392 * enabled, they want to opportunistically write the timestamps of other inodes
2393 * located very nearby on-disk, e.g. in the same inode block. This returns true
2394 * if the given inode is in need of such an opportunistic update. Requires
2395 * i_lock, or at least later re-checking under i_lock.
2396 */
2397static inline bool inode_is_dirtytime_only(struct inode *inode)
2398{
2399 return (inode->i_state & (I_DIRTY_TIME | I_NEW |
2400 I_FREEING | I_WILL_FREE)) == I_DIRTY_TIME;
2401}
2402
2403extern void inc_nlink(struct inode *inode);
2404extern void drop_nlink(struct inode *inode);
2405extern void clear_nlink(struct inode *inode);
2406extern void set_nlink(struct inode *inode, unsigned int nlink);
2407
2408static inline void inode_inc_link_count(struct inode *inode)
2409{
2410 inc_nlink(inode);
2411 mark_inode_dirty(inode);
2412}
2413
2414static inline void inode_dec_link_count(struct inode *inode)
2415{
2416 drop_nlink(inode);
2417 mark_inode_dirty(inode);
2418}
2419
2420enum file_time_flags {
2421 S_ATIME = 1,
2422 S_MTIME = 2,
2423 S_CTIME = 4,
2424 S_VERSION = 8,
2425};
2426
2427extern bool atime_needs_update(const struct path *, struct inode *);
2428extern void touch_atime(const struct path *);
2429int inode_update_time(struct inode *inode, int flags);
2430
2431static inline void file_accessed(struct file *file)
2432{
2433 if (!(file->f_flags & O_NOATIME))
2434 touch_atime(&file->f_path);
2435}
2436
2437extern int file_modified(struct file *file);
2438int kiocb_modified(struct kiocb *iocb);
2439
2440int sync_inode_metadata(struct inode *inode, int wait);
2441
2442struct file_system_type {
2443 const char *name;
2444 int fs_flags;
2445#define FS_REQUIRES_DEV 1
2446#define FS_BINARY_MOUNTDATA 2
2447#define FS_HAS_SUBTYPE 4
2448#define FS_USERNS_MOUNT 8 /* Can be mounted by userns root */
2449#define FS_DISALLOW_NOTIFY_PERM 16 /* Disable fanotify permission events */
2450#define FS_ALLOW_IDMAP 32 /* FS has been updated to handle vfs idmappings. */
2451#define FS_RENAME_DOES_D_MOVE 32768 /* FS will handle d_move() during rename() internally. */
2452 int (*init_fs_context)(struct fs_context *);
2453 const struct fs_parameter_spec *parameters;
2454 struct dentry *(*mount) (struct file_system_type *, int,
2455 const char *, void *);
2456 void (*kill_sb) (struct super_block *);
2457 struct module *owner;
2458 struct file_system_type * next;
2459 struct hlist_head fs_supers;
2460
2461 struct lock_class_key s_lock_key;
2462 struct lock_class_key s_umount_key;
2463 struct lock_class_key s_vfs_rename_key;
2464 struct lock_class_key s_writers_key[SB_FREEZE_LEVELS];
2465
2466 struct lock_class_key i_lock_key;
2467 struct lock_class_key i_mutex_key;
2468 struct lock_class_key invalidate_lock_key;
2469 struct lock_class_key i_mutex_dir_key;
2470};
2471
2472#define MODULE_ALIAS_FS(NAME) MODULE_ALIAS("fs-" NAME)
2473
2474extern struct dentry *mount_bdev(struct file_system_type *fs_type,
2475 int flags, const char *dev_name, void *data,
2476 int (*fill_super)(struct super_block *, void *, int));
2477extern struct dentry *mount_single(struct file_system_type *fs_type,
2478 int flags, void *data,
2479 int (*fill_super)(struct super_block *, void *, int));
2480extern struct dentry *mount_nodev(struct file_system_type *fs_type,
2481 int flags, void *data,
2482 int (*fill_super)(struct super_block *, void *, int));
2483extern struct dentry *mount_subtree(struct vfsmount *mnt, const char *path);
2484void retire_super(struct super_block *sb);
2485void generic_shutdown_super(struct super_block *sb);
2486void kill_block_super(struct super_block *sb);
2487void kill_anon_super(struct super_block *sb);
2488void kill_litter_super(struct super_block *sb);
2489void deactivate_super(struct super_block *sb);
2490void deactivate_locked_super(struct super_block *sb);
2491int set_anon_super(struct super_block *s, void *data);
2492int set_anon_super_fc(struct super_block *s, struct fs_context *fc);
2493int get_anon_bdev(dev_t *);
2494void free_anon_bdev(dev_t);
2495struct super_block *sget_fc(struct fs_context *fc,
2496 int (*test)(struct super_block *, struct fs_context *),
2497 int (*set)(struct super_block *, struct fs_context *));
2498struct super_block *sget(struct file_system_type *type,
2499 int (*test)(struct super_block *,void *),
2500 int (*set)(struct super_block *,void *),
2501 int flags, void *data);
2502struct super_block *sget_dev(struct fs_context *fc, dev_t dev);
2503
2504/* Alas, no aliases. Too much hassle with bringing module.h everywhere */
2505#define fops_get(fops) \
2506 (((fops) && try_module_get((fops)->owner) ? (fops) : NULL))
2507#define fops_put(fops) \
2508 do { if (fops) module_put((fops)->owner); } while(0)
2509/*
2510 * This one is to be used *ONLY* from ->open() instances.
2511 * fops must be non-NULL, pinned down *and* module dependencies
2512 * should be sufficient to pin the caller down as well.
2513 */
2514#define replace_fops(f, fops) \
2515 do { \
2516 struct file *__file = (f); \
2517 fops_put(__file->f_op); \
2518 BUG_ON(!(__file->f_op = (fops))); \
2519 } while(0)
2520
2521extern int register_filesystem(struct file_system_type *);
2522extern int unregister_filesystem(struct file_system_type *);
2523extern int vfs_statfs(const struct path *, struct kstatfs *);
2524extern int user_statfs(const char __user *, struct kstatfs *);
2525extern int fd_statfs(int, struct kstatfs *);
2526int freeze_super(struct super_block *super, enum freeze_holder who);
2527int thaw_super(struct super_block *super, enum freeze_holder who);
2528extern __printf(2, 3)
2529int super_setup_bdi_name(struct super_block *sb, char *fmt, ...);
2530extern int super_setup_bdi(struct super_block *sb);
2531
2532extern int current_umask(void);
2533
2534extern void ihold(struct inode * inode);
2535extern void iput(struct inode *);
2536int inode_update_timestamps(struct inode *inode, int flags);
2537int generic_update_time(struct inode *, int);
2538
2539/* /sys/fs */
2540extern struct kobject *fs_kobj;
2541
2542#define MAX_RW_COUNT (INT_MAX & PAGE_MASK)
2543
2544/* fs/open.c */
2545struct audit_names;
2546struct filename {
2547 const char *name; /* pointer to actual string */
2548 const __user char *uptr; /* original userland pointer */
2549 atomic_t refcnt;
2550 struct audit_names *aname;
2551 const char iname[];
2552};
2553static_assert(offsetof(struct filename, iname) % sizeof(long) == 0);
2554
2555static inline struct mnt_idmap *file_mnt_idmap(const struct file *file)
2556{
2557 return mnt_idmap(file->f_path.mnt);
2558}
2559
2560/**
2561 * is_idmapped_mnt - check whether a mount is mapped
2562 * @mnt: the mount to check
2563 *
2564 * If @mnt has an non @nop_mnt_idmap attached to it then @mnt is mapped.
2565 *
2566 * Return: true if mount is mapped, false if not.
2567 */
2568static inline bool is_idmapped_mnt(const struct vfsmount *mnt)
2569{
2570 return mnt_idmap(mnt) != &nop_mnt_idmap;
2571}
2572
2573extern long vfs_truncate(const struct path *, loff_t);
2574int do_truncate(struct mnt_idmap *, struct dentry *, loff_t start,
2575 unsigned int time_attrs, struct file *filp);
2576extern int vfs_fallocate(struct file *file, int mode, loff_t offset,
2577 loff_t len);
2578extern long do_sys_open(int dfd, const char __user *filename, int flags,
2579 umode_t mode);
2580extern struct file *file_open_name(struct filename *, int, umode_t);
2581extern struct file *filp_open(const char *, int, umode_t);
2582extern struct file *file_open_root(const struct path *,
2583 const char *, int, umode_t);
2584static inline struct file *file_open_root_mnt(struct vfsmount *mnt,
2585 const char *name, int flags, umode_t mode)
2586{
2587 return file_open_root(&(struct path){.mnt = mnt, .dentry = mnt->mnt_root},
2588 name, flags, mode);
2589}
2590struct file *dentry_open(const struct path *path, int flags,
2591 const struct cred *creds);
2592struct file *dentry_create(const struct path *path, int flags, umode_t mode,
2593 const struct cred *cred);
2594struct path *backing_file_user_path(struct file *f);
2595
2596/*
2597 * When mmapping a file on a stackable filesystem (e.g., overlayfs), the file
2598 * stored in ->vm_file is a backing file whose f_inode is on the underlying
2599 * filesystem. When the mapped file path and inode number are displayed to
2600 * user (e.g. via /proc/<pid>/maps), these helpers should be used to get the
2601 * path and inode number to display to the user, which is the path of the fd
2602 * that user has requested to map and the inode number that would be returned
2603 * by fstat() on that same fd.
2604 */
2605/* Get the path to display in /proc/<pid>/maps */
2606static inline const struct path *file_user_path(struct file *f)
2607{
2608 if (unlikely(f->f_mode & FMODE_BACKING))
2609 return backing_file_user_path(f);
2610 return &f->f_path;
2611}
2612/* Get the inode whose inode number to display in /proc/<pid>/maps */
2613static inline const struct inode *file_user_inode(struct file *f)
2614{
2615 if (unlikely(f->f_mode & FMODE_BACKING))
2616 return d_inode(backing_file_user_path(f)->dentry);
2617 return file_inode(f);
2618}
2619
2620static inline struct file *file_clone_open(struct file *file)
2621{
2622 return dentry_open(&file->f_path, file->f_flags, file->f_cred);
2623}
2624extern int filp_close(struct file *, fl_owner_t id);
2625
2626extern struct filename *getname_flags(const char __user *, int, int *);
2627extern struct filename *getname_uflags(const char __user *, int);
2628extern struct filename *getname(const char __user *);
2629extern struct filename *getname_kernel(const char *);
2630extern void putname(struct filename *name);
2631
2632extern int finish_open(struct file *file, struct dentry *dentry,
2633 int (*open)(struct inode *, struct file *));
2634extern int finish_no_open(struct file *file, struct dentry *dentry);
2635
2636/* Helper for the simple case when original dentry is used */
2637static inline int finish_open_simple(struct file *file, int error)
2638{
2639 if (error)
2640 return error;
2641
2642 return finish_open(file, file->f_path.dentry, NULL);
2643}
2644
2645/* fs/dcache.c */
2646extern void __init vfs_caches_init_early(void);
2647extern void __init vfs_caches_init(void);
2648
2649extern struct kmem_cache *names_cachep;
2650
2651#define __getname() kmem_cache_alloc(names_cachep, GFP_KERNEL)
2652#define __putname(name) kmem_cache_free(names_cachep, (void *)(name))
2653
2654extern struct super_block *blockdev_superblock;
2655static inline bool sb_is_blkdev_sb(struct super_block *sb)
2656{
2657 return IS_ENABLED(CONFIG_BLOCK) && sb == blockdev_superblock;
2658}
2659
2660void emergency_thaw_all(void);
2661extern int sync_filesystem(struct super_block *);
2662extern const struct file_operations def_blk_fops;
2663extern const struct file_operations def_chr_fops;
2664
2665/* fs/char_dev.c */
2666#define CHRDEV_MAJOR_MAX 512
2667/* Marks the bottom of the first segment of free char majors */
2668#define CHRDEV_MAJOR_DYN_END 234
2669/* Marks the top and bottom of the second segment of free char majors */
2670#define CHRDEV_MAJOR_DYN_EXT_START 511
2671#define CHRDEV_MAJOR_DYN_EXT_END 384
2672
2673extern int alloc_chrdev_region(dev_t *, unsigned, unsigned, const char *);
2674extern int register_chrdev_region(dev_t, unsigned, const char *);
2675extern int __register_chrdev(unsigned int major, unsigned int baseminor,
2676 unsigned int count, const char *name,
2677 const struct file_operations *fops);
2678extern void __unregister_chrdev(unsigned int major, unsigned int baseminor,
2679 unsigned int count, const char *name);
2680extern void unregister_chrdev_region(dev_t, unsigned);
2681extern void chrdev_show(struct seq_file *,off_t);
2682
2683static inline int register_chrdev(unsigned int major, const char *name,
2684 const struct file_operations *fops)
2685{
2686 return __register_chrdev(major, 0, 256, name, fops);
2687}
2688
2689static inline void unregister_chrdev(unsigned int major, const char *name)
2690{
2691 __unregister_chrdev(major, 0, 256, name);
2692}
2693
2694extern void init_special_inode(struct inode *, umode_t, dev_t);
2695
2696/* Invalid inode operations -- fs/bad_inode.c */
2697extern void make_bad_inode(struct inode *);
2698extern bool is_bad_inode(struct inode *);
2699
2700extern int __must_check file_fdatawait_range(struct file *file, loff_t lstart,
2701 loff_t lend);
2702extern int __must_check file_check_and_advance_wb_err(struct file *file);
2703extern int __must_check file_write_and_wait_range(struct file *file,
2704 loff_t start, loff_t end);
2705
2706static inline int file_write_and_wait(struct file *file)
2707{
2708 return file_write_and_wait_range(file, 0, LLONG_MAX);
2709}
2710
2711extern int vfs_fsync_range(struct file *file, loff_t start, loff_t end,
2712 int datasync);
2713extern int vfs_fsync(struct file *file, int datasync);
2714
2715extern int sync_file_range(struct file *file, loff_t offset, loff_t nbytes,
2716 unsigned int flags);
2717
2718static inline bool iocb_is_dsync(const struct kiocb *iocb)
2719{
2720 return (iocb->ki_flags & IOCB_DSYNC) ||
2721 IS_SYNC(iocb->ki_filp->f_mapping->host);
2722}
2723
2724/*
2725 * Sync the bytes written if this was a synchronous write. Expect ki_pos
2726 * to already be updated for the write, and will return either the amount
2727 * of bytes passed in, or an error if syncing the file failed.
2728 */
2729static inline ssize_t generic_write_sync(struct kiocb *iocb, ssize_t count)
2730{
2731 if (iocb_is_dsync(iocb)) {
2732 int ret = vfs_fsync_range(iocb->ki_filp,
2733 iocb->ki_pos - count, iocb->ki_pos - 1,
2734 (iocb->ki_flags & IOCB_SYNC) ? 0 : 1);
2735 if (ret)
2736 return ret;
2737 }
2738
2739 return count;
2740}
2741
2742extern void emergency_sync(void);
2743extern void emergency_remount(void);
2744
2745#ifdef CONFIG_BLOCK
2746extern int bmap(struct inode *inode, sector_t *block);
2747#else
2748static inline int bmap(struct inode *inode, sector_t *block)
2749{
2750 return -EINVAL;
2751}
2752#endif
2753
2754int notify_change(struct mnt_idmap *, struct dentry *,
2755 struct iattr *, struct inode **);
2756int inode_permission(struct mnt_idmap *, struct inode *, int);
2757int generic_permission(struct mnt_idmap *, struct inode *, int);
2758static inline int file_permission(struct file *file, int mask)
2759{
2760 return inode_permission(file_mnt_idmap(file),
2761 file_inode(file), mask);
2762}
2763static inline int path_permission(const struct path *path, int mask)
2764{
2765 return inode_permission(mnt_idmap(path->mnt),
2766 d_inode(path->dentry), mask);
2767}
2768int __check_sticky(struct mnt_idmap *idmap, struct inode *dir,
2769 struct inode *inode);
2770
2771static inline bool execute_ok(struct inode *inode)
2772{
2773 return (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode);
2774}
2775
2776static inline bool inode_wrong_type(const struct inode *inode, umode_t mode)
2777{
2778 return (inode->i_mode ^ mode) & S_IFMT;
2779}
2780
2781/**
2782 * file_start_write - get write access to a superblock for regular file io
2783 * @file: the file we want to write to
2784 *
2785 * This is a variant of sb_start_write() which is a noop on non-regualr file.
2786 * Should be matched with a call to file_end_write().
2787 */
2788static inline void file_start_write(struct file *file)
2789{
2790 if (!S_ISREG(file_inode(file)->i_mode))
2791 return;
2792 sb_start_write(file_inode(file)->i_sb);
2793}
2794
2795static inline bool file_start_write_trylock(struct file *file)
2796{
2797 if (!S_ISREG(file_inode(file)->i_mode))
2798 return true;
2799 return sb_start_write_trylock(file_inode(file)->i_sb);
2800}
2801
2802/**
2803 * file_end_write - drop write access to a superblock of a regular file
2804 * @file: the file we wrote to
2805 *
2806 * Should be matched with a call to file_start_write().
2807 */
2808static inline void file_end_write(struct file *file)
2809{
2810 if (!S_ISREG(file_inode(file)->i_mode))
2811 return;
2812 sb_end_write(file_inode(file)->i_sb);
2813}
2814
2815/**
2816 * kiocb_start_write - get write access to a superblock for async file io
2817 * @iocb: the io context we want to submit the write with
2818 *
2819 * This is a variant of sb_start_write() for async io submission.
2820 * Should be matched with a call to kiocb_end_write().
2821 */
2822static inline void kiocb_start_write(struct kiocb *iocb)
2823{
2824 struct inode *inode = file_inode(iocb->ki_filp);
2825
2826 sb_start_write(inode->i_sb);
2827 /*
2828 * Fool lockdep by telling it the lock got released so that it
2829 * doesn't complain about the held lock when we return to userspace.
2830 */
2831 __sb_writers_release(inode->i_sb, SB_FREEZE_WRITE);
2832}
2833
2834/**
2835 * kiocb_end_write - drop write access to a superblock after async file io
2836 * @iocb: the io context we sumbitted the write with
2837 *
2838 * Should be matched with a call to kiocb_start_write().
2839 */
2840static inline void kiocb_end_write(struct kiocb *iocb)
2841{
2842 struct inode *inode = file_inode(iocb->ki_filp);
2843
2844 /*
2845 * Tell lockdep we inherited freeze protection from submission thread.
2846 */
2847 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
2848 sb_end_write(inode->i_sb);
2849}
2850
2851/*
2852 * This is used for regular files where some users -- especially the
2853 * currently executed binary in a process, previously handled via
2854 * VM_DENYWRITE -- cannot handle concurrent write (and maybe mmap
2855 * read-write shared) accesses.
2856 *
2857 * get_write_access() gets write permission for a file.
2858 * put_write_access() releases this write permission.
2859 * deny_write_access() denies write access to a file.
2860 * allow_write_access() re-enables write access to a file.
2861 *
2862 * The i_writecount field of an inode can have the following values:
2863 * 0: no write access, no denied write access
2864 * < 0: (-i_writecount) users that denied write access to the file.
2865 * > 0: (i_writecount) users that have write access to the file.
2866 *
2867 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
2868 * except for the cases where we don't hold i_writecount yet. Then we need to
2869 * use {get,deny}_write_access() - these functions check the sign and refuse
2870 * to do the change if sign is wrong.
2871 */
2872static inline int get_write_access(struct inode *inode)
2873{
2874 return atomic_inc_unless_negative(&inode->i_writecount) ? 0 : -ETXTBSY;
2875}
2876static inline int deny_write_access(struct file *file)
2877{
2878 struct inode *inode = file_inode(file);
2879 return atomic_dec_unless_positive(&inode->i_writecount) ? 0 : -ETXTBSY;
2880}
2881static inline void put_write_access(struct inode * inode)
2882{
2883 atomic_dec(&inode->i_writecount);
2884}
2885static inline void allow_write_access(struct file *file)
2886{
2887 if (file)
2888 atomic_inc(&file_inode(file)->i_writecount);
2889}
2890static inline bool inode_is_open_for_write(const struct inode *inode)
2891{
2892 return atomic_read(&inode->i_writecount) > 0;
2893}
2894
2895#if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING)
2896static inline void i_readcount_dec(struct inode *inode)
2897{
2898 BUG_ON(atomic_dec_return(&inode->i_readcount) < 0);
2899}
2900static inline void i_readcount_inc(struct inode *inode)
2901{
2902 atomic_inc(&inode->i_readcount);
2903}
2904#else
2905static inline void i_readcount_dec(struct inode *inode)
2906{
2907 return;
2908}
2909static inline void i_readcount_inc(struct inode *inode)
2910{
2911 return;
2912}
2913#endif
2914extern int do_pipe_flags(int *, int);
2915
2916extern ssize_t kernel_read(struct file *, void *, size_t, loff_t *);
2917ssize_t __kernel_read(struct file *file, void *buf, size_t count, loff_t *pos);
2918extern ssize_t kernel_write(struct file *, const void *, size_t, loff_t *);
2919extern ssize_t __kernel_write(struct file *, const void *, size_t, loff_t *);
2920extern struct file * open_exec(const char *);
2921
2922/* fs/dcache.c -- generic fs support functions */
2923extern bool is_subdir(struct dentry *, struct dentry *);
2924extern bool path_is_under(const struct path *, const struct path *);
2925
2926extern char *file_path(struct file *, char *, int);
2927
2928#include <linux/err.h>
2929
2930/* needed for stackable file system support */
2931extern loff_t default_llseek(struct file *file, loff_t offset, int whence);
2932
2933extern loff_t vfs_llseek(struct file *file, loff_t offset, int whence);
2934
2935extern int inode_init_always(struct super_block *, struct inode *);
2936extern void inode_init_once(struct inode *);
2937extern void address_space_init_once(struct address_space *mapping);
2938extern struct inode * igrab(struct inode *);
2939extern ino_t iunique(struct super_block *, ino_t);
2940extern int inode_needs_sync(struct inode *inode);
2941extern int generic_delete_inode(struct inode *inode);
2942static inline int generic_drop_inode(struct inode *inode)
2943{
2944 return !inode->i_nlink || inode_unhashed(inode);
2945}
2946extern void d_mark_dontcache(struct inode *inode);
2947
2948extern struct inode *ilookup5_nowait(struct super_block *sb,
2949 unsigned long hashval, int (*test)(struct inode *, void *),
2950 void *data);
2951extern struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
2952 int (*test)(struct inode *, void *), void *data);
2953extern struct inode *ilookup(struct super_block *sb, unsigned long ino);
2954
2955extern struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
2956 int (*test)(struct inode *, void *),
2957 int (*set)(struct inode *, void *),
2958 void *data);
2959extern struct inode * iget5_locked(struct super_block *, unsigned long, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *);
2960extern struct inode * iget_locked(struct super_block *, unsigned long);
2961extern struct inode *find_inode_nowait(struct super_block *,
2962 unsigned long,
2963 int (*match)(struct inode *,
2964 unsigned long, void *),
2965 void *data);
2966extern struct inode *find_inode_rcu(struct super_block *, unsigned long,
2967 int (*)(struct inode *, void *), void *);
2968extern struct inode *find_inode_by_ino_rcu(struct super_block *, unsigned long);
2969extern int insert_inode_locked4(struct inode *, unsigned long, int (*test)(struct inode *, void *), void *);
2970extern int insert_inode_locked(struct inode *);
2971#ifdef CONFIG_DEBUG_LOCK_ALLOC
2972extern void lockdep_annotate_inode_mutex_key(struct inode *inode);
2973#else
2974static inline void lockdep_annotate_inode_mutex_key(struct inode *inode) { };
2975#endif
2976extern void unlock_new_inode(struct inode *);
2977extern void discard_new_inode(struct inode *);
2978extern unsigned int get_next_ino(void);
2979extern void evict_inodes(struct super_block *sb);
2980void dump_mapping(const struct address_space *);
2981
2982/*
2983 * Userspace may rely on the inode number being non-zero. For example, glibc
2984 * simply ignores files with zero i_ino in unlink() and other places.
2985 *
2986 * As an additional complication, if userspace was compiled with
2987 * _FILE_OFFSET_BITS=32 on a 64-bit kernel we'll only end up reading out the
2988 * lower 32 bits, so we need to check that those aren't zero explicitly. With
2989 * _FILE_OFFSET_BITS=64, this may cause some harmless false-negatives, but
2990 * better safe than sorry.
2991 */
2992static inline bool is_zero_ino(ino_t ino)
2993{
2994 return (u32)ino == 0;
2995}
2996
2997extern void __iget(struct inode * inode);
2998extern void iget_failed(struct inode *);
2999extern void clear_inode(struct inode *);
3000extern void __destroy_inode(struct inode *);
3001extern struct inode *new_inode_pseudo(struct super_block *sb);
3002extern struct inode *new_inode(struct super_block *sb);
3003extern void free_inode_nonrcu(struct inode *inode);
3004extern int setattr_should_drop_suidgid(struct mnt_idmap *, struct inode *);
3005extern int file_remove_privs(struct file *);
3006int setattr_should_drop_sgid(struct mnt_idmap *idmap,
3007 const struct inode *inode);
3008
3009/*
3010 * This must be used for allocating filesystems specific inodes to set
3011 * up the inode reclaim context correctly.
3012 */
3013static inline void *
3014alloc_inode_sb(struct super_block *sb, struct kmem_cache *cache, gfp_t gfp)
3015{
3016 return kmem_cache_alloc_lru(cache, &sb->s_inode_lru, gfp);
3017}
3018
3019extern void __insert_inode_hash(struct inode *, unsigned long hashval);
3020static inline void insert_inode_hash(struct inode *inode)
3021{
3022 __insert_inode_hash(inode, inode->i_ino);
3023}
3024
3025extern void __remove_inode_hash(struct inode *);
3026static inline void remove_inode_hash(struct inode *inode)
3027{
3028 if (!inode_unhashed(inode) && !hlist_fake(&inode->i_hash))
3029 __remove_inode_hash(inode);
3030}
3031
3032extern void inode_sb_list_add(struct inode *inode);
3033extern void inode_add_lru(struct inode *inode);
3034
3035extern int sb_set_blocksize(struct super_block *, int);
3036extern int sb_min_blocksize(struct super_block *, int);
3037
3038extern int generic_file_mmap(struct file *, struct vm_area_struct *);
3039extern int generic_file_readonly_mmap(struct file *, struct vm_area_struct *);
3040extern ssize_t generic_write_checks(struct kiocb *, struct iov_iter *);
3041int generic_write_checks_count(struct kiocb *iocb, loff_t *count);
3042extern int generic_write_check_limits(struct file *file, loff_t pos,
3043 loff_t *count);
3044extern int generic_file_rw_checks(struct file *file_in, struct file *file_out);
3045ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *to,
3046 ssize_t already_read);
3047extern ssize_t generic_file_read_iter(struct kiocb *, struct iov_iter *);
3048extern ssize_t __generic_file_write_iter(struct kiocb *, struct iov_iter *);
3049extern ssize_t generic_file_write_iter(struct kiocb *, struct iov_iter *);
3050extern ssize_t generic_file_direct_write(struct kiocb *, struct iov_iter *);
3051ssize_t generic_perform_write(struct kiocb *, struct iov_iter *);
3052ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter,
3053 ssize_t direct_written, ssize_t buffered_written);
3054
3055ssize_t vfs_iter_read(struct file *file, struct iov_iter *iter, loff_t *ppos,
3056 rwf_t flags);
3057ssize_t vfs_iter_write(struct file *file, struct iov_iter *iter, loff_t *ppos,
3058 rwf_t flags);
3059ssize_t vfs_iocb_iter_read(struct file *file, struct kiocb *iocb,
3060 struct iov_iter *iter);
3061ssize_t vfs_iocb_iter_write(struct file *file, struct kiocb *iocb,
3062 struct iov_iter *iter);
3063
3064/* fs/splice.c */
3065ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
3066 struct pipe_inode_info *pipe,
3067 size_t len, unsigned int flags);
3068ssize_t copy_splice_read(struct file *in, loff_t *ppos,
3069 struct pipe_inode_info *pipe,
3070 size_t len, unsigned int flags);
3071extern ssize_t iter_file_splice_write(struct pipe_inode_info *,
3072 struct file *, loff_t *, size_t, unsigned int);
3073
3074
3075extern void
3076file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping);
3077extern loff_t noop_llseek(struct file *file, loff_t offset, int whence);
3078#define no_llseek NULL
3079extern loff_t vfs_setpos(struct file *file, loff_t offset, loff_t maxsize);
3080extern loff_t generic_file_llseek(struct file *file, loff_t offset, int whence);
3081extern loff_t generic_file_llseek_size(struct file *file, loff_t offset,
3082 int whence, loff_t maxsize, loff_t eof);
3083extern loff_t fixed_size_llseek(struct file *file, loff_t offset,
3084 int whence, loff_t size);
3085extern loff_t no_seek_end_llseek_size(struct file *, loff_t, int, loff_t);
3086extern loff_t no_seek_end_llseek(struct file *, loff_t, int);
3087int rw_verify_area(int, struct file *, const loff_t *, size_t);
3088extern int generic_file_open(struct inode * inode, struct file * filp);
3089extern int nonseekable_open(struct inode * inode, struct file * filp);
3090extern int stream_open(struct inode * inode, struct file * filp);
3091
3092#ifdef CONFIG_BLOCK
3093typedef void (dio_submit_t)(struct bio *bio, struct inode *inode,
3094 loff_t file_offset);
3095
3096enum {
3097 /* need locking between buffered and direct access */
3098 DIO_LOCKING = 0x01,
3099
3100 /* filesystem does not support filling holes */
3101 DIO_SKIP_HOLES = 0x02,
3102};
3103
3104ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
3105 struct block_device *bdev, struct iov_iter *iter,
3106 get_block_t get_block,
3107 dio_iodone_t end_io,
3108 int flags);
3109
3110static inline ssize_t blockdev_direct_IO(struct kiocb *iocb,
3111 struct inode *inode,
3112 struct iov_iter *iter,
3113 get_block_t get_block)
3114{
3115 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3116 get_block, NULL, DIO_LOCKING | DIO_SKIP_HOLES);
3117}
3118#endif
3119
3120void inode_dio_wait(struct inode *inode);
3121
3122/**
3123 * inode_dio_begin - signal start of a direct I/O requests
3124 * @inode: inode the direct I/O happens on
3125 *
3126 * This is called once we've finished processing a direct I/O request,
3127 * and is used to wake up callers waiting for direct I/O to be quiesced.
3128 */
3129static inline void inode_dio_begin(struct inode *inode)
3130{
3131 atomic_inc(&inode->i_dio_count);
3132}
3133
3134/**
3135 * inode_dio_end - signal finish of a direct I/O requests
3136 * @inode: inode the direct I/O happens on
3137 *
3138 * This is called once we've finished processing a direct I/O request,
3139 * and is used to wake up callers waiting for direct I/O to be quiesced.
3140 */
3141static inline void inode_dio_end(struct inode *inode)
3142{
3143 if (atomic_dec_and_test(&inode->i_dio_count))
3144 wake_up_bit(&inode->i_state, __I_DIO_WAKEUP);
3145}
3146
3147extern void inode_set_flags(struct inode *inode, unsigned int flags,
3148 unsigned int mask);
3149
3150extern const struct file_operations generic_ro_fops;
3151
3152#define special_file(m) (S_ISCHR(m)||S_ISBLK(m)||S_ISFIFO(m)||S_ISSOCK(m))
3153
3154extern int readlink_copy(char __user *, int, const char *);
3155extern int page_readlink(struct dentry *, char __user *, int);
3156extern const char *page_get_link(struct dentry *, struct inode *,
3157 struct delayed_call *);
3158extern void page_put_link(void *);
3159extern int page_symlink(struct inode *inode, const char *symname, int len);
3160extern const struct inode_operations page_symlink_inode_operations;
3161extern void kfree_link(void *);
3162void generic_fillattr(struct mnt_idmap *, u32, struct inode *, struct kstat *);
3163void generic_fill_statx_attr(struct inode *inode, struct kstat *stat);
3164extern int vfs_getattr_nosec(const struct path *, struct kstat *, u32, unsigned int);
3165extern int vfs_getattr(const struct path *, struct kstat *, u32, unsigned int);
3166void __inode_add_bytes(struct inode *inode, loff_t bytes);
3167void inode_add_bytes(struct inode *inode, loff_t bytes);
3168void __inode_sub_bytes(struct inode *inode, loff_t bytes);
3169void inode_sub_bytes(struct inode *inode, loff_t bytes);
3170static inline loff_t __inode_get_bytes(struct inode *inode)
3171{
3172 return (((loff_t)inode->i_blocks) << 9) + inode->i_bytes;
3173}
3174loff_t inode_get_bytes(struct inode *inode);
3175void inode_set_bytes(struct inode *inode, loff_t bytes);
3176const char *simple_get_link(struct dentry *, struct inode *,
3177 struct delayed_call *);
3178extern const struct inode_operations simple_symlink_inode_operations;
3179
3180extern int iterate_dir(struct file *, struct dir_context *);
3181
3182int vfs_fstatat(int dfd, const char __user *filename, struct kstat *stat,
3183 int flags);
3184int vfs_fstat(int fd, struct kstat *stat);
3185
3186static inline int vfs_stat(const char __user *filename, struct kstat *stat)
3187{
3188 return vfs_fstatat(AT_FDCWD, filename, stat, 0);
3189}
3190static inline int vfs_lstat(const char __user *name, struct kstat *stat)
3191{
3192 return vfs_fstatat(AT_FDCWD, name, stat, AT_SYMLINK_NOFOLLOW);
3193}
3194
3195extern const char *vfs_get_link(struct dentry *, struct delayed_call *);
3196extern int vfs_readlink(struct dentry *, char __user *, int);
3197
3198extern struct file_system_type *get_filesystem(struct file_system_type *fs);
3199extern void put_filesystem(struct file_system_type *fs);
3200extern struct file_system_type *get_fs_type(const char *name);
3201extern void drop_super(struct super_block *sb);
3202extern void drop_super_exclusive(struct super_block *sb);
3203extern void iterate_supers(void (*)(struct super_block *, void *), void *);
3204extern void iterate_supers_type(struct file_system_type *,
3205 void (*)(struct super_block *, void *), void *);
3206
3207extern int dcache_dir_open(struct inode *, struct file *);
3208extern int dcache_dir_close(struct inode *, struct file *);
3209extern loff_t dcache_dir_lseek(struct file *, loff_t, int);
3210extern int dcache_readdir(struct file *, struct dir_context *);
3211extern int simple_setattr(struct mnt_idmap *, struct dentry *,
3212 struct iattr *);
3213extern int simple_getattr(struct mnt_idmap *, const struct path *,
3214 struct kstat *, u32, unsigned int);
3215extern int simple_statfs(struct dentry *, struct kstatfs *);
3216extern int simple_open(struct inode *inode, struct file *file);
3217extern int simple_link(struct dentry *, struct inode *, struct dentry *);
3218extern int simple_unlink(struct inode *, struct dentry *);
3219extern int simple_rmdir(struct inode *, struct dentry *);
3220void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry,
3221 struct inode *new_dir, struct dentry *new_dentry);
3222extern int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
3223 struct inode *new_dir, struct dentry *new_dentry);
3224extern int simple_rename(struct mnt_idmap *, struct inode *,
3225 struct dentry *, struct inode *, struct dentry *,
3226 unsigned int);
3227extern void simple_recursive_removal(struct dentry *,
3228 void (*callback)(struct dentry *));
3229extern int noop_fsync(struct file *, loff_t, loff_t, int);
3230extern ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter);
3231extern int simple_empty(struct dentry *);
3232extern int simple_write_begin(struct file *file, struct address_space *mapping,
3233 loff_t pos, unsigned len,
3234 struct page **pagep, void **fsdata);
3235extern const struct address_space_operations ram_aops;
3236extern int always_delete_dentry(const struct dentry *);
3237extern struct inode *alloc_anon_inode(struct super_block *);
3238extern int simple_nosetlease(struct file *, int, struct file_lock **, void **);
3239extern const struct dentry_operations simple_dentry_operations;
3240
3241extern struct dentry *simple_lookup(struct inode *, struct dentry *, unsigned int flags);
3242extern ssize_t generic_read_dir(struct file *, char __user *, size_t, loff_t *);
3243extern const struct file_operations simple_dir_operations;
3244extern const struct inode_operations simple_dir_inode_operations;
3245extern void make_empty_dir_inode(struct inode *inode);
3246extern bool is_empty_dir_inode(struct inode *inode);
3247struct tree_descr { const char *name; const struct file_operations *ops; int mode; };
3248struct dentry *d_alloc_name(struct dentry *, const char *);
3249extern int simple_fill_super(struct super_block *, unsigned long,
3250 const struct tree_descr *);
3251extern int simple_pin_fs(struct file_system_type *, struct vfsmount **mount, int *count);
3252extern void simple_release_fs(struct vfsmount **mount, int *count);
3253
3254extern ssize_t simple_read_from_buffer(void __user *to, size_t count,
3255 loff_t *ppos, const void *from, size_t available);
3256extern ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
3257 const void __user *from, size_t count);
3258
3259struct offset_ctx {
3260 struct xarray xa;
3261 u32 next_offset;
3262};
3263
3264void simple_offset_init(struct offset_ctx *octx);
3265int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry);
3266void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry);
3267int simple_offset_rename_exchange(struct inode *old_dir,
3268 struct dentry *old_dentry,
3269 struct inode *new_dir,
3270 struct dentry *new_dentry);
3271void simple_offset_destroy(struct offset_ctx *octx);
3272
3273extern const struct file_operations simple_offset_dir_operations;
3274
3275extern int __generic_file_fsync(struct file *, loff_t, loff_t, int);
3276extern int generic_file_fsync(struct file *, loff_t, loff_t, int);
3277
3278extern int generic_check_addressable(unsigned, u64);
3279
3280extern void generic_set_encrypted_ci_d_ops(struct dentry *dentry);
3281
3282int may_setattr(struct mnt_idmap *idmap, struct inode *inode,
3283 unsigned int ia_valid);
3284int setattr_prepare(struct mnt_idmap *, struct dentry *, struct iattr *);
3285extern int inode_newsize_ok(const struct inode *, loff_t offset);
3286void setattr_copy(struct mnt_idmap *, struct inode *inode,
3287 const struct iattr *attr);
3288
3289extern int file_update_time(struct file *file);
3290
3291static inline bool vma_is_dax(const struct vm_area_struct *vma)
3292{
3293 return vma->vm_file && IS_DAX(vma->vm_file->f_mapping->host);
3294}
3295
3296static inline bool vma_is_fsdax(struct vm_area_struct *vma)
3297{
3298 struct inode *inode;
3299
3300 if (!IS_ENABLED(CONFIG_FS_DAX) || !vma->vm_file)
3301 return false;
3302 if (!vma_is_dax(vma))
3303 return false;
3304 inode = file_inode(vma->vm_file);
3305 if (S_ISCHR(inode->i_mode))
3306 return false; /* device-dax */
3307 return true;
3308}
3309
3310static inline int iocb_flags(struct file *file)
3311{
3312 int res = 0;
3313 if (file->f_flags & O_APPEND)
3314 res |= IOCB_APPEND;
3315 if (file->f_flags & O_DIRECT)
3316 res |= IOCB_DIRECT;
3317 if (file->f_flags & O_DSYNC)
3318 res |= IOCB_DSYNC;
3319 if (file->f_flags & __O_SYNC)
3320 res |= IOCB_SYNC;
3321 return res;
3322}
3323
3324static inline int kiocb_set_rw_flags(struct kiocb *ki, rwf_t flags)
3325{
3326 int kiocb_flags = 0;
3327
3328 /* make sure there's no overlap between RWF and private IOCB flags */
3329 BUILD_BUG_ON((__force int) RWF_SUPPORTED & IOCB_EVENTFD);
3330
3331 if (!flags)
3332 return 0;
3333 if (unlikely(flags & ~RWF_SUPPORTED))
3334 return -EOPNOTSUPP;
3335
3336 if (flags & RWF_NOWAIT) {
3337 if (!(ki->ki_filp->f_mode & FMODE_NOWAIT))
3338 return -EOPNOTSUPP;
3339 kiocb_flags |= IOCB_NOIO;
3340 }
3341 kiocb_flags |= (__force int) (flags & RWF_SUPPORTED);
3342 if (flags & RWF_SYNC)
3343 kiocb_flags |= IOCB_DSYNC;
3344
3345 ki->ki_flags |= kiocb_flags;
3346 return 0;
3347}
3348
3349static inline ino_t parent_ino(struct dentry *dentry)
3350{
3351 ino_t res;
3352
3353 /*
3354 * Don't strictly need d_lock here? If the parent ino could change
3355 * then surely we'd have a deeper race in the caller?
3356 */
3357 spin_lock(&dentry->d_lock);
3358 res = dentry->d_parent->d_inode->i_ino;
3359 spin_unlock(&dentry->d_lock);
3360 return res;
3361}
3362
3363/* Transaction based IO helpers */
3364
3365/*
3366 * An argresp is stored in an allocated page and holds the
3367 * size of the argument or response, along with its content
3368 */
3369struct simple_transaction_argresp {
3370 ssize_t size;
3371 char data[];
3372};
3373
3374#define SIMPLE_TRANSACTION_LIMIT (PAGE_SIZE - sizeof(struct simple_transaction_argresp))
3375
3376char *simple_transaction_get(struct file *file, const char __user *buf,
3377 size_t size);
3378ssize_t simple_transaction_read(struct file *file, char __user *buf,
3379 size_t size, loff_t *pos);
3380int simple_transaction_release(struct inode *inode, struct file *file);
3381
3382void simple_transaction_set(struct file *file, size_t n);
3383
3384/*
3385 * simple attribute files
3386 *
3387 * These attributes behave similar to those in sysfs:
3388 *
3389 * Writing to an attribute immediately sets a value, an open file can be
3390 * written to multiple times.
3391 *
3392 * Reading from an attribute creates a buffer from the value that might get
3393 * read with multiple read calls. When the attribute has been read
3394 * completely, no further read calls are possible until the file is opened
3395 * again.
3396 *
3397 * All attributes contain a text representation of a numeric value
3398 * that are accessed with the get() and set() functions.
3399 */
3400#define DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, __is_signed) \
3401static int __fops ## _open(struct inode *inode, struct file *file) \
3402{ \
3403 __simple_attr_check_format(__fmt, 0ull); \
3404 return simple_attr_open(inode, file, __get, __set, __fmt); \
3405} \
3406static const struct file_operations __fops = { \
3407 .owner = THIS_MODULE, \
3408 .open = __fops ## _open, \
3409 .release = simple_attr_release, \
3410 .read = simple_attr_read, \
3411 .write = (__is_signed) ? simple_attr_write_signed : simple_attr_write, \
3412 .llseek = generic_file_llseek, \
3413}
3414
3415#define DEFINE_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt) \
3416 DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, false)
3417
3418#define DEFINE_SIMPLE_ATTRIBUTE_SIGNED(__fops, __get, __set, __fmt) \
3419 DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, true)
3420
3421static inline __printf(1, 2)
3422void __simple_attr_check_format(const char *fmt, ...)
3423{
3424 /* don't do anything, just let the compiler check the arguments; */
3425}
3426
3427int simple_attr_open(struct inode *inode, struct file *file,
3428 int (*get)(void *, u64 *), int (*set)(void *, u64),
3429 const char *fmt);
3430int simple_attr_release(struct inode *inode, struct file *file);
3431ssize_t simple_attr_read(struct file *file, char __user *buf,
3432 size_t len, loff_t *ppos);
3433ssize_t simple_attr_write(struct file *file, const char __user *buf,
3434 size_t len, loff_t *ppos);
3435ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
3436 size_t len, loff_t *ppos);
3437
3438struct ctl_table;
3439int __init list_bdev_fs_names(char *buf, size_t size);
3440
3441#define __FMODE_EXEC ((__force int) FMODE_EXEC)
3442#define __FMODE_NONOTIFY ((__force int) FMODE_NONOTIFY)
3443
3444#define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
3445#define OPEN_FMODE(flag) ((__force fmode_t)(((flag + 1) & O_ACCMODE) | \
3446 (flag & __FMODE_NONOTIFY)))
3447
3448static inline bool is_sxid(umode_t mode)
3449{
3450 return mode & (S_ISUID | S_ISGID);
3451}
3452
3453static inline int check_sticky(struct mnt_idmap *idmap,
3454 struct inode *dir, struct inode *inode)
3455{
3456 if (!(dir->i_mode & S_ISVTX))
3457 return 0;
3458
3459 return __check_sticky(idmap, dir, inode);
3460}
3461
3462static inline void inode_has_no_xattr(struct inode *inode)
3463{
3464 if (!is_sxid(inode->i_mode) && (inode->i_sb->s_flags & SB_NOSEC))
3465 inode->i_flags |= S_NOSEC;
3466}
3467
3468static inline bool is_root_inode(struct inode *inode)
3469{
3470 return inode == inode->i_sb->s_root->d_inode;
3471}
3472
3473static inline bool dir_emit(struct dir_context *ctx,
3474 const char *name, int namelen,
3475 u64 ino, unsigned type)
3476{
3477 return ctx->actor(ctx, name, namelen, ctx->pos, ino, type);
3478}
3479static inline bool dir_emit_dot(struct file *file, struct dir_context *ctx)
3480{
3481 return ctx->actor(ctx, ".", 1, ctx->pos,
3482 file->f_path.dentry->d_inode->i_ino, DT_DIR);
3483}
3484static inline bool dir_emit_dotdot(struct file *file, struct dir_context *ctx)
3485{
3486 return ctx->actor(ctx, "..", 2, ctx->pos,
3487 parent_ino(file->f_path.dentry), DT_DIR);
3488}
3489static inline bool dir_emit_dots(struct file *file, struct dir_context *ctx)
3490{
3491 if (ctx->pos == 0) {
3492 if (!dir_emit_dot(file, ctx))
3493 return false;
3494 ctx->pos = 1;
3495 }
3496 if (ctx->pos == 1) {
3497 if (!dir_emit_dotdot(file, ctx))
3498 return false;
3499 ctx->pos = 2;
3500 }
3501 return true;
3502}
3503static inline bool dir_relax(struct inode *inode)
3504{
3505 inode_unlock(inode);
3506 inode_lock(inode);
3507 return !IS_DEADDIR(inode);
3508}
3509
3510static inline bool dir_relax_shared(struct inode *inode)
3511{
3512 inode_unlock_shared(inode);
3513 inode_lock_shared(inode);
3514 return !IS_DEADDIR(inode);
3515}
3516
3517extern bool path_noexec(const struct path *path);
3518extern void inode_nohighmem(struct inode *inode);
3519
3520/* mm/fadvise.c */
3521extern int vfs_fadvise(struct file *file, loff_t offset, loff_t len,
3522 int advice);
3523extern int generic_fadvise(struct file *file, loff_t offset, loff_t len,
3524 int advice);
3525
3526#endif /* _LINUX_FS_H */