Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * cfg80211 scan result handling
4 *
5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2016 Intel Deutschland GmbH
8 * Copyright (C) 2018-2023 Intel Corporation
9 */
10#include <linux/kernel.h>
11#include <linux/slab.h>
12#include <linux/module.h>
13#include <linux/netdevice.h>
14#include <linux/wireless.h>
15#include <linux/nl80211.h>
16#include <linux/etherdevice.h>
17#include <linux/crc32.h>
18#include <linux/bitfield.h>
19#include <net/arp.h>
20#include <net/cfg80211.h>
21#include <net/cfg80211-wext.h>
22#include <net/iw_handler.h>
23#include <kunit/visibility.h>
24#include "core.h"
25#include "nl80211.h"
26#include "wext-compat.h"
27#include "rdev-ops.h"
28
29/**
30 * DOC: BSS tree/list structure
31 *
32 * At the top level, the BSS list is kept in both a list in each
33 * registered device (@bss_list) as well as an RB-tree for faster
34 * lookup. In the RB-tree, entries can be looked up using their
35 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
36 * for other BSSes.
37 *
38 * Due to the possibility of hidden SSIDs, there's a second level
39 * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
40 * The hidden_list connects all BSSes belonging to a single AP
41 * that has a hidden SSID, and connects beacon and probe response
42 * entries. For a probe response entry for a hidden SSID, the
43 * hidden_beacon_bss pointer points to the BSS struct holding the
44 * beacon's information.
45 *
46 * Reference counting is done for all these references except for
47 * the hidden_list, so that a beacon BSS struct that is otherwise
48 * not referenced has one reference for being on the bss_list and
49 * one for each probe response entry that points to it using the
50 * hidden_beacon_bss pointer. When a BSS struct that has such a
51 * pointer is get/put, the refcount update is also propagated to
52 * the referenced struct, this ensure that it cannot get removed
53 * while somebody is using the probe response version.
54 *
55 * Note that the hidden_beacon_bss pointer never changes, due to
56 * the reference counting. Therefore, no locking is needed for
57 * it.
58 *
59 * Also note that the hidden_beacon_bss pointer is only relevant
60 * if the driver uses something other than the IEs, e.g. private
61 * data stored in the BSS struct, since the beacon IEs are
62 * also linked into the probe response struct.
63 */
64
65/*
66 * Limit the number of BSS entries stored in mac80211. Each one is
67 * a bit over 4k at most, so this limits to roughly 4-5M of memory.
68 * If somebody wants to really attack this though, they'd likely
69 * use small beacons, and only one type of frame, limiting each of
70 * the entries to a much smaller size (in order to generate more
71 * entries in total, so overhead is bigger.)
72 */
73static int bss_entries_limit = 1000;
74module_param(bss_entries_limit, int, 0644);
75MODULE_PARM_DESC(bss_entries_limit,
76 "limit to number of scan BSS entries (per wiphy, default 1000)");
77
78#define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ)
79
80/**
81 * struct cfg80211_colocated_ap - colocated AP information
82 *
83 * @list: linked list to all colocated aPS
84 * @bssid: BSSID of the reported AP
85 * @ssid: SSID of the reported AP
86 * @ssid_len: length of the ssid
87 * @center_freq: frequency the reported AP is on
88 * @unsolicited_probe: the reported AP is part of an ESS, where all the APs
89 * that operate in the same channel as the reported AP and that might be
90 * detected by a STA receiving this frame, are transmitting unsolicited
91 * Probe Response frames every 20 TUs
92 * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP
93 * @same_ssid: the reported AP has the same SSID as the reporting AP
94 * @multi_bss: the reported AP is part of a multiple BSSID set
95 * @transmitted_bssid: the reported AP is the transmitting BSSID
96 * @colocated_ess: all the APs that share the same ESS as the reported AP are
97 * colocated and can be discovered via legacy bands.
98 * @short_ssid_valid: short_ssid is valid and can be used
99 * @short_ssid: the short SSID for this SSID
100 * @psd_20: The 20MHz PSD EIRP of the primary 20MHz channel for the reported AP
101 */
102struct cfg80211_colocated_ap {
103 struct list_head list;
104 u8 bssid[ETH_ALEN];
105 u8 ssid[IEEE80211_MAX_SSID_LEN];
106 size_t ssid_len;
107 u32 short_ssid;
108 u32 center_freq;
109 u8 unsolicited_probe:1,
110 oct_recommended:1,
111 same_ssid:1,
112 multi_bss:1,
113 transmitted_bssid:1,
114 colocated_ess:1,
115 short_ssid_valid:1;
116 s8 psd_20;
117};
118
119static void bss_free(struct cfg80211_internal_bss *bss)
120{
121 struct cfg80211_bss_ies *ies;
122
123 if (WARN_ON(atomic_read(&bss->hold)))
124 return;
125
126 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
127 if (ies && !bss->pub.hidden_beacon_bss)
128 kfree_rcu(ies, rcu_head);
129 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
130 if (ies)
131 kfree_rcu(ies, rcu_head);
132
133 /*
134 * This happens when the module is removed, it doesn't
135 * really matter any more save for completeness
136 */
137 if (!list_empty(&bss->hidden_list))
138 list_del(&bss->hidden_list);
139
140 kfree(bss);
141}
142
143static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
144 struct cfg80211_internal_bss *bss)
145{
146 lockdep_assert_held(&rdev->bss_lock);
147
148 bss->refcount++;
149
150 if (bss->pub.hidden_beacon_bss)
151 bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++;
152
153 if (bss->pub.transmitted_bss)
154 bss_from_pub(bss->pub.transmitted_bss)->refcount++;
155}
156
157static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
158 struct cfg80211_internal_bss *bss)
159{
160 lockdep_assert_held(&rdev->bss_lock);
161
162 if (bss->pub.hidden_beacon_bss) {
163 struct cfg80211_internal_bss *hbss;
164
165 hbss = bss_from_pub(bss->pub.hidden_beacon_bss);
166 hbss->refcount--;
167 if (hbss->refcount == 0)
168 bss_free(hbss);
169 }
170
171 if (bss->pub.transmitted_bss) {
172 struct cfg80211_internal_bss *tbss;
173
174 tbss = bss_from_pub(bss->pub.transmitted_bss);
175 tbss->refcount--;
176 if (tbss->refcount == 0)
177 bss_free(tbss);
178 }
179
180 bss->refcount--;
181 if (bss->refcount == 0)
182 bss_free(bss);
183}
184
185static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
186 struct cfg80211_internal_bss *bss)
187{
188 lockdep_assert_held(&rdev->bss_lock);
189
190 if (!list_empty(&bss->hidden_list)) {
191 /*
192 * don't remove the beacon entry if it has
193 * probe responses associated with it
194 */
195 if (!bss->pub.hidden_beacon_bss)
196 return false;
197 /*
198 * if it's a probe response entry break its
199 * link to the other entries in the group
200 */
201 list_del_init(&bss->hidden_list);
202 }
203
204 list_del_init(&bss->list);
205 list_del_init(&bss->pub.nontrans_list);
206 rb_erase(&bss->rbn, &rdev->bss_tree);
207 rdev->bss_entries--;
208 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
209 "rdev bss entries[%d]/list[empty:%d] corruption\n",
210 rdev->bss_entries, list_empty(&rdev->bss_list));
211 bss_ref_put(rdev, bss);
212 return true;
213}
214
215bool cfg80211_is_element_inherited(const struct element *elem,
216 const struct element *non_inherit_elem)
217{
218 u8 id_len, ext_id_len, i, loop_len, id;
219 const u8 *list;
220
221 if (elem->id == WLAN_EID_MULTIPLE_BSSID)
222 return false;
223
224 if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 &&
225 elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK)
226 return false;
227
228 if (!non_inherit_elem || non_inherit_elem->datalen < 2)
229 return true;
230
231 /*
232 * non inheritance element format is:
233 * ext ID (56) | IDs list len | list | extension IDs list len | list
234 * Both lists are optional. Both lengths are mandatory.
235 * This means valid length is:
236 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
237 */
238 id_len = non_inherit_elem->data[1];
239 if (non_inherit_elem->datalen < 3 + id_len)
240 return true;
241
242 ext_id_len = non_inherit_elem->data[2 + id_len];
243 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
244 return true;
245
246 if (elem->id == WLAN_EID_EXTENSION) {
247 if (!ext_id_len)
248 return true;
249 loop_len = ext_id_len;
250 list = &non_inherit_elem->data[3 + id_len];
251 id = elem->data[0];
252 } else {
253 if (!id_len)
254 return true;
255 loop_len = id_len;
256 list = &non_inherit_elem->data[2];
257 id = elem->id;
258 }
259
260 for (i = 0; i < loop_len; i++) {
261 if (list[i] == id)
262 return false;
263 }
264
265 return true;
266}
267EXPORT_SYMBOL(cfg80211_is_element_inherited);
268
269static size_t cfg80211_copy_elem_with_frags(const struct element *elem,
270 const u8 *ie, size_t ie_len,
271 u8 **pos, u8 *buf, size_t buf_len)
272{
273 if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len ||
274 elem->data + elem->datalen > ie + ie_len))
275 return 0;
276
277 if (elem->datalen + 2 > buf + buf_len - *pos)
278 return 0;
279
280 memcpy(*pos, elem, elem->datalen + 2);
281 *pos += elem->datalen + 2;
282
283 /* Finish if it is not fragmented */
284 if (elem->datalen != 255)
285 return *pos - buf;
286
287 ie_len = ie + ie_len - elem->data - elem->datalen;
288 ie = (const u8 *)elem->data + elem->datalen;
289
290 for_each_element(elem, ie, ie_len) {
291 if (elem->id != WLAN_EID_FRAGMENT)
292 break;
293
294 if (elem->datalen + 2 > buf + buf_len - *pos)
295 return 0;
296
297 memcpy(*pos, elem, elem->datalen + 2);
298 *pos += elem->datalen + 2;
299
300 if (elem->datalen != 255)
301 break;
302 }
303
304 return *pos - buf;
305}
306
307VISIBLE_IF_CFG80211_KUNIT size_t
308cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
309 const u8 *subie, size_t subie_len,
310 u8 *new_ie, size_t new_ie_len)
311{
312 const struct element *non_inherit_elem, *parent, *sub;
313 u8 *pos = new_ie;
314 u8 id, ext_id;
315 unsigned int match_len;
316
317 non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
318 subie, subie_len);
319
320 /* We copy the elements one by one from the parent to the generated
321 * elements.
322 * If they are not inherited (included in subie or in the non
323 * inheritance element), then we copy all occurrences the first time
324 * we see this element type.
325 */
326 for_each_element(parent, ie, ielen) {
327 if (parent->id == WLAN_EID_FRAGMENT)
328 continue;
329
330 if (parent->id == WLAN_EID_EXTENSION) {
331 if (parent->datalen < 1)
332 continue;
333
334 id = WLAN_EID_EXTENSION;
335 ext_id = parent->data[0];
336 match_len = 1;
337 } else {
338 id = parent->id;
339 match_len = 0;
340 }
341
342 /* Find first occurrence in subie */
343 sub = cfg80211_find_elem_match(id, subie, subie_len,
344 &ext_id, match_len, 0);
345
346 /* Copy from parent if not in subie and inherited */
347 if (!sub &&
348 cfg80211_is_element_inherited(parent, non_inherit_elem)) {
349 if (!cfg80211_copy_elem_with_frags(parent,
350 ie, ielen,
351 &pos, new_ie,
352 new_ie_len))
353 return 0;
354
355 continue;
356 }
357
358 /* Already copied if an earlier element had the same type */
359 if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie,
360 &ext_id, match_len, 0))
361 continue;
362
363 /* Not inheriting, copy all similar elements from subie */
364 while (sub) {
365 if (!cfg80211_copy_elem_with_frags(sub,
366 subie, subie_len,
367 &pos, new_ie,
368 new_ie_len))
369 return 0;
370
371 sub = cfg80211_find_elem_match(id,
372 sub->data + sub->datalen,
373 subie_len + subie -
374 (sub->data +
375 sub->datalen),
376 &ext_id, match_len, 0);
377 }
378 }
379
380 /* The above misses elements that are included in subie but not in the
381 * parent, so do a pass over subie and append those.
382 * Skip the non-tx BSSID caps and non-inheritance element.
383 */
384 for_each_element(sub, subie, subie_len) {
385 if (sub->id == WLAN_EID_NON_TX_BSSID_CAP)
386 continue;
387
388 if (sub->id == WLAN_EID_FRAGMENT)
389 continue;
390
391 if (sub->id == WLAN_EID_EXTENSION) {
392 if (sub->datalen < 1)
393 continue;
394
395 id = WLAN_EID_EXTENSION;
396 ext_id = sub->data[0];
397 match_len = 1;
398
399 if (ext_id == WLAN_EID_EXT_NON_INHERITANCE)
400 continue;
401 } else {
402 id = sub->id;
403 match_len = 0;
404 }
405
406 /* Processed if one was included in the parent */
407 if (cfg80211_find_elem_match(id, ie, ielen,
408 &ext_id, match_len, 0))
409 continue;
410
411 if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len,
412 &pos, new_ie, new_ie_len))
413 return 0;
414 }
415
416 return pos - new_ie;
417}
418EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_gen_new_ie);
419
420static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
421 const u8 *ssid, size_t ssid_len)
422{
423 const struct cfg80211_bss_ies *ies;
424 const struct element *ssid_elem;
425
426 if (bssid && !ether_addr_equal(a->bssid, bssid))
427 return false;
428
429 if (!ssid)
430 return true;
431
432 ies = rcu_access_pointer(a->ies);
433 if (!ies)
434 return false;
435 ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
436 if (!ssid_elem)
437 return false;
438 if (ssid_elem->datalen != ssid_len)
439 return false;
440 return memcmp(ssid_elem->data, ssid, ssid_len) == 0;
441}
442
443static int
444cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
445 struct cfg80211_bss *nontrans_bss)
446{
447 const struct element *ssid_elem;
448 struct cfg80211_bss *bss = NULL;
449
450 rcu_read_lock();
451 ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
452 if (!ssid_elem) {
453 rcu_read_unlock();
454 return -EINVAL;
455 }
456
457 /* check if nontrans_bss is in the list */
458 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
459 if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data,
460 ssid_elem->datalen)) {
461 rcu_read_unlock();
462 return 0;
463 }
464 }
465
466 rcu_read_unlock();
467
468 /*
469 * This is a bit weird - it's not on the list, but already on another
470 * one! The only way that could happen is if there's some BSSID/SSID
471 * shared by multiple APs in their multi-BSSID profiles, potentially
472 * with hidden SSID mixed in ... ignore it.
473 */
474 if (!list_empty(&nontrans_bss->nontrans_list))
475 return -EINVAL;
476
477 /* add to the list */
478 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
479 return 0;
480}
481
482static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
483 unsigned long expire_time)
484{
485 struct cfg80211_internal_bss *bss, *tmp;
486 bool expired = false;
487
488 lockdep_assert_held(&rdev->bss_lock);
489
490 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
491 if (atomic_read(&bss->hold))
492 continue;
493 if (!time_after(expire_time, bss->ts))
494 continue;
495
496 if (__cfg80211_unlink_bss(rdev, bss))
497 expired = true;
498 }
499
500 if (expired)
501 rdev->bss_generation++;
502}
503
504static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
505{
506 struct cfg80211_internal_bss *bss, *oldest = NULL;
507 bool ret;
508
509 lockdep_assert_held(&rdev->bss_lock);
510
511 list_for_each_entry(bss, &rdev->bss_list, list) {
512 if (atomic_read(&bss->hold))
513 continue;
514
515 if (!list_empty(&bss->hidden_list) &&
516 !bss->pub.hidden_beacon_bss)
517 continue;
518
519 if (oldest && time_before(oldest->ts, bss->ts))
520 continue;
521 oldest = bss;
522 }
523
524 if (WARN_ON(!oldest))
525 return false;
526
527 /*
528 * The callers make sure to increase rdev->bss_generation if anything
529 * gets removed (and a new entry added), so there's no need to also do
530 * it here.
531 */
532
533 ret = __cfg80211_unlink_bss(rdev, oldest);
534 WARN_ON(!ret);
535 return ret;
536}
537
538static u8 cfg80211_parse_bss_param(u8 data,
539 struct cfg80211_colocated_ap *coloc_ap)
540{
541 coloc_ap->oct_recommended =
542 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
543 coloc_ap->same_ssid =
544 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
545 coloc_ap->multi_bss =
546 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
547 coloc_ap->transmitted_bssid =
548 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
549 coloc_ap->unsolicited_probe =
550 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
551 coloc_ap->colocated_ess =
552 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
553
554 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
555}
556
557static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
558 const struct element **elem, u32 *s_ssid)
559{
560
561 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
562 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
563 return -EINVAL;
564
565 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
566 return 0;
567}
568
569static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
570{
571 struct cfg80211_colocated_ap *ap, *tmp_ap;
572
573 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
574 list_del(&ap->list);
575 kfree(ap);
576 }
577}
578
579static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
580 const u8 *pos, u8 length,
581 const struct element *ssid_elem,
582 u32 s_ssid_tmp)
583{
584 u8 bss_params;
585
586 entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
587
588 /* The length is already verified by the caller to contain bss_params */
589 if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) {
590 struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos;
591
592 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
593 entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid);
594 entry->short_ssid_valid = true;
595
596 bss_params = tbtt_info->bss_params;
597
598 /* Ignore disabled links */
599 if (length >= offsetofend(typeof(*tbtt_info), mld_params)) {
600 if (le16_get_bits(tbtt_info->mld_params.params,
601 IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK))
602 return -EINVAL;
603 }
604
605 if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
606 psd_20))
607 entry->psd_20 = tbtt_info->psd_20;
608 } else {
609 struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos;
610
611 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
612
613 bss_params = tbtt_info->bss_params;
614
615 if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
616 psd_20))
617 entry->psd_20 = tbtt_info->psd_20;
618 }
619
620 /* ignore entries with invalid BSSID */
621 if (!is_valid_ether_addr(entry->bssid))
622 return -EINVAL;
623
624 /* skip non colocated APs */
625 if (!cfg80211_parse_bss_param(bss_params, entry))
626 return -EINVAL;
627
628 /* no information about the short ssid. Consider the entry valid
629 * for now. It would later be dropped in case there are explicit
630 * SSIDs that need to be matched
631 */
632 if (!entry->same_ssid && !entry->short_ssid_valid)
633 return 0;
634
635 if (entry->same_ssid) {
636 entry->short_ssid = s_ssid_tmp;
637 entry->short_ssid_valid = true;
638
639 /*
640 * This is safe because we validate datalen in
641 * cfg80211_parse_colocated_ap(), before calling this
642 * function.
643 */
644 memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen);
645 entry->ssid_len = ssid_elem->datalen;
646 }
647
648 return 0;
649}
650
651static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
652 struct list_head *list)
653{
654 struct ieee80211_neighbor_ap_info *ap_info;
655 const struct element *elem, *ssid_elem;
656 const u8 *pos, *end;
657 u32 s_ssid_tmp;
658 int n_coloc = 0, ret;
659 LIST_HEAD(ap_list);
660
661 ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp);
662 if (ret)
663 return 0;
664
665 for_each_element_id(elem, WLAN_EID_REDUCED_NEIGHBOR_REPORT,
666 ies->data, ies->len) {
667 pos = elem->data;
668 end = elem->data + elem->datalen;
669
670 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
671 while (pos + sizeof(*ap_info) <= end) {
672 enum nl80211_band band;
673 int freq;
674 u8 length, i, count;
675
676 ap_info = (void *)pos;
677 count = u8_get_bits(ap_info->tbtt_info_hdr,
678 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
679 length = ap_info->tbtt_info_len;
680
681 pos += sizeof(*ap_info);
682
683 if (!ieee80211_operating_class_to_band(ap_info->op_class,
684 &band))
685 break;
686
687 freq = ieee80211_channel_to_frequency(ap_info->channel,
688 band);
689
690 if (end - pos < count * length)
691 break;
692
693 if (u8_get_bits(ap_info->tbtt_info_hdr,
694 IEEE80211_AP_INFO_TBTT_HDR_TYPE) !=
695 IEEE80211_TBTT_INFO_TYPE_TBTT) {
696 pos += count * length;
697 continue;
698 }
699
700 /* TBTT info must include bss param + BSSID +
701 * (short SSID or same_ssid bit to be set).
702 * ignore other options, and move to the
703 * next AP info
704 */
705 if (band != NL80211_BAND_6GHZ ||
706 !(length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
707 bss_params) ||
708 length == sizeof(struct ieee80211_tbtt_info_7_8_9) ||
709 length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
710 bss_params))) {
711 pos += count * length;
712 continue;
713 }
714
715 for (i = 0; i < count; i++) {
716 struct cfg80211_colocated_ap *entry;
717
718 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
719 GFP_ATOMIC);
720
721 if (!entry)
722 goto error;
723
724 entry->center_freq = freq;
725
726 if (!cfg80211_parse_ap_info(entry, pos, length,
727 ssid_elem,
728 s_ssid_tmp)) {
729 n_coloc++;
730 list_add_tail(&entry->list, &ap_list);
731 } else {
732 kfree(entry);
733 }
734
735 pos += length;
736 }
737 }
738
739error:
740 if (pos != end) {
741 cfg80211_free_coloc_ap_list(&ap_list);
742 return 0;
743 }
744 }
745
746 list_splice_tail(&ap_list, list);
747 return n_coloc;
748}
749
750static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
751 struct ieee80211_channel *chan,
752 bool add_to_6ghz)
753{
754 int i;
755 u32 n_channels = request->n_channels;
756 struct cfg80211_scan_6ghz_params *params =
757 &request->scan_6ghz_params[request->n_6ghz_params];
758
759 for (i = 0; i < n_channels; i++) {
760 if (request->channels[i] == chan) {
761 if (add_to_6ghz)
762 params->channel_idx = i;
763 return;
764 }
765 }
766
767 request->channels[n_channels] = chan;
768 if (add_to_6ghz)
769 request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
770 n_channels;
771
772 request->n_channels++;
773}
774
775static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
776 struct cfg80211_scan_request *request)
777{
778 int i;
779 u32 s_ssid;
780
781 for (i = 0; i < request->n_ssids; i++) {
782 /* wildcard ssid in the scan request */
783 if (!request->ssids[i].ssid_len) {
784 if (ap->multi_bss && !ap->transmitted_bssid)
785 continue;
786
787 return true;
788 }
789
790 if (ap->ssid_len &&
791 ap->ssid_len == request->ssids[i].ssid_len) {
792 if (!memcmp(request->ssids[i].ssid, ap->ssid,
793 ap->ssid_len))
794 return true;
795 } else if (ap->short_ssid_valid) {
796 s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
797 request->ssids[i].ssid_len);
798
799 if (ap->short_ssid == s_ssid)
800 return true;
801 }
802 }
803
804 return false;
805}
806
807static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
808{
809 u8 i;
810 struct cfg80211_colocated_ap *ap;
811 int n_channels, count = 0, err;
812 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
813 LIST_HEAD(coloc_ap_list);
814 bool need_scan_psc = true;
815 const struct ieee80211_sband_iftype_data *iftd;
816
817 rdev_req->scan_6ghz = true;
818
819 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
820 return -EOPNOTSUPP;
821
822 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
823 rdev_req->wdev->iftype);
824 if (!iftd || !iftd->he_cap.has_he)
825 return -EOPNOTSUPP;
826
827 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
828
829 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
830 struct cfg80211_internal_bss *intbss;
831
832 spin_lock_bh(&rdev->bss_lock);
833 list_for_each_entry(intbss, &rdev->bss_list, list) {
834 struct cfg80211_bss *res = &intbss->pub;
835 const struct cfg80211_bss_ies *ies;
836 const struct element *ssid_elem;
837 struct cfg80211_colocated_ap *entry;
838 u32 s_ssid_tmp;
839 int ret;
840
841 ies = rcu_access_pointer(res->ies);
842 count += cfg80211_parse_colocated_ap(ies,
843 &coloc_ap_list);
844
845 /* In case the scan request specified a specific BSSID
846 * and the BSS is found and operating on 6GHz band then
847 * add this AP to the collocated APs list.
848 * This is relevant for ML probe requests when the lower
849 * band APs have not been discovered.
850 */
851 if (is_broadcast_ether_addr(rdev_req->bssid) ||
852 !ether_addr_equal(rdev_req->bssid, res->bssid) ||
853 res->channel->band != NL80211_BAND_6GHZ)
854 continue;
855
856 ret = cfg80211_calc_short_ssid(ies, &ssid_elem,
857 &s_ssid_tmp);
858 if (ret)
859 continue;
860
861 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
862 GFP_ATOMIC);
863
864 if (!entry)
865 continue;
866
867 memcpy(entry->bssid, res->bssid, ETH_ALEN);
868 entry->short_ssid = s_ssid_tmp;
869 memcpy(entry->ssid, ssid_elem->data,
870 ssid_elem->datalen);
871 entry->ssid_len = ssid_elem->datalen;
872 entry->short_ssid_valid = true;
873 entry->center_freq = res->channel->center_freq;
874
875 list_add_tail(&entry->list, &coloc_ap_list);
876 count++;
877 }
878 spin_unlock_bh(&rdev->bss_lock);
879 }
880
881 request = kzalloc(struct_size(request, channels, n_channels) +
882 sizeof(*request->scan_6ghz_params) * count +
883 sizeof(*request->ssids) * rdev_req->n_ssids,
884 GFP_KERNEL);
885 if (!request) {
886 cfg80211_free_coloc_ap_list(&coloc_ap_list);
887 return -ENOMEM;
888 }
889
890 *request = *rdev_req;
891 request->n_channels = 0;
892 request->scan_6ghz_params =
893 (void *)&request->channels[n_channels];
894
895 /*
896 * PSC channels should not be scanned in case of direct scan with 1 SSID
897 * and at least one of the reported co-located APs with same SSID
898 * indicating that all APs in the same ESS are co-located
899 */
900 if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
901 list_for_each_entry(ap, &coloc_ap_list, list) {
902 if (ap->colocated_ess &&
903 cfg80211_find_ssid_match(ap, request)) {
904 need_scan_psc = false;
905 break;
906 }
907 }
908 }
909
910 /*
911 * add to the scan request the channels that need to be scanned
912 * regardless of the collocated APs (PSC channels or all channels
913 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
914 */
915 for (i = 0; i < rdev_req->n_channels; i++) {
916 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
917 ((need_scan_psc &&
918 cfg80211_channel_is_psc(rdev_req->channels[i])) ||
919 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
920 cfg80211_scan_req_add_chan(request,
921 rdev_req->channels[i],
922 false);
923 }
924 }
925
926 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
927 goto skip;
928
929 list_for_each_entry(ap, &coloc_ap_list, list) {
930 bool found = false;
931 struct cfg80211_scan_6ghz_params *scan_6ghz_params =
932 &request->scan_6ghz_params[request->n_6ghz_params];
933 struct ieee80211_channel *chan =
934 ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
935
936 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
937 continue;
938
939 for (i = 0; i < rdev_req->n_channels; i++) {
940 if (rdev_req->channels[i] == chan)
941 found = true;
942 }
943
944 if (!found)
945 continue;
946
947 if (request->n_ssids > 0 &&
948 !cfg80211_find_ssid_match(ap, request))
949 continue;
950
951 if (!is_broadcast_ether_addr(request->bssid) &&
952 !ether_addr_equal(request->bssid, ap->bssid))
953 continue;
954
955 if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
956 continue;
957
958 cfg80211_scan_req_add_chan(request, chan, true);
959 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
960 scan_6ghz_params->short_ssid = ap->short_ssid;
961 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
962 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
963 scan_6ghz_params->psd_20 = ap->psd_20;
964
965 /*
966 * If a PSC channel is added to the scan and 'need_scan_psc' is
967 * set to false, then all the APs that the scan logic is
968 * interested with on the channel are collocated and thus there
969 * is no need to perform the initial PSC channel listen.
970 */
971 if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
972 scan_6ghz_params->psc_no_listen = true;
973
974 request->n_6ghz_params++;
975 }
976
977skip:
978 cfg80211_free_coloc_ap_list(&coloc_ap_list);
979
980 if (request->n_channels) {
981 struct cfg80211_scan_request *old = rdev->int_scan_req;
982 rdev->int_scan_req = request;
983
984 /*
985 * Add the ssids from the parent scan request to the new scan
986 * request, so the driver would be able to use them in its
987 * probe requests to discover hidden APs on PSC channels.
988 */
989 request->ssids = (void *)&request->channels[request->n_channels];
990 request->n_ssids = rdev_req->n_ssids;
991 memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) *
992 request->n_ssids);
993
994 /*
995 * If this scan follows a previous scan, save the scan start
996 * info from the first part of the scan
997 */
998 if (old)
999 rdev->int_scan_req->info = old->info;
1000
1001 err = rdev_scan(rdev, request);
1002 if (err) {
1003 rdev->int_scan_req = old;
1004 kfree(request);
1005 } else {
1006 kfree(old);
1007 }
1008
1009 return err;
1010 }
1011
1012 kfree(request);
1013 return -EINVAL;
1014}
1015
1016int cfg80211_scan(struct cfg80211_registered_device *rdev)
1017{
1018 struct cfg80211_scan_request *request;
1019 struct cfg80211_scan_request *rdev_req = rdev->scan_req;
1020 u32 n_channels = 0, idx, i;
1021
1022 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
1023 return rdev_scan(rdev, rdev_req);
1024
1025 for (i = 0; i < rdev_req->n_channels; i++) {
1026 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1027 n_channels++;
1028 }
1029
1030 if (!n_channels)
1031 return cfg80211_scan_6ghz(rdev);
1032
1033 request = kzalloc(struct_size(request, channels, n_channels),
1034 GFP_KERNEL);
1035 if (!request)
1036 return -ENOMEM;
1037
1038 *request = *rdev_req;
1039 request->n_channels = n_channels;
1040
1041 for (i = idx = 0; i < rdev_req->n_channels; i++) {
1042 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1043 request->channels[idx++] = rdev_req->channels[i];
1044 }
1045
1046 rdev_req->scan_6ghz = false;
1047 rdev->int_scan_req = request;
1048 return rdev_scan(rdev, request);
1049}
1050
1051void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
1052 bool send_message)
1053{
1054 struct cfg80211_scan_request *request, *rdev_req;
1055 struct wireless_dev *wdev;
1056 struct sk_buff *msg;
1057#ifdef CONFIG_CFG80211_WEXT
1058 union iwreq_data wrqu;
1059#endif
1060
1061 lockdep_assert_held(&rdev->wiphy.mtx);
1062
1063 if (rdev->scan_msg) {
1064 nl80211_send_scan_msg(rdev, rdev->scan_msg);
1065 rdev->scan_msg = NULL;
1066 return;
1067 }
1068
1069 rdev_req = rdev->scan_req;
1070 if (!rdev_req)
1071 return;
1072
1073 wdev = rdev_req->wdev;
1074 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
1075
1076 if (wdev_running(wdev) &&
1077 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
1078 !rdev_req->scan_6ghz && !request->info.aborted &&
1079 !cfg80211_scan_6ghz(rdev))
1080 return;
1081
1082 /*
1083 * This must be before sending the other events!
1084 * Otherwise, wpa_supplicant gets completely confused with
1085 * wext events.
1086 */
1087 if (wdev->netdev)
1088 cfg80211_sme_scan_done(wdev->netdev);
1089
1090 if (!request->info.aborted &&
1091 request->flags & NL80211_SCAN_FLAG_FLUSH) {
1092 /* flush entries from previous scans */
1093 spin_lock_bh(&rdev->bss_lock);
1094 __cfg80211_bss_expire(rdev, request->scan_start);
1095 spin_unlock_bh(&rdev->bss_lock);
1096 }
1097
1098 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
1099
1100#ifdef CONFIG_CFG80211_WEXT
1101 if (wdev->netdev && !request->info.aborted) {
1102 memset(&wrqu, 0, sizeof(wrqu));
1103
1104 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
1105 }
1106#endif
1107
1108 dev_put(wdev->netdev);
1109
1110 kfree(rdev->int_scan_req);
1111 rdev->int_scan_req = NULL;
1112
1113 kfree(rdev->scan_req);
1114 rdev->scan_req = NULL;
1115
1116 if (!send_message)
1117 rdev->scan_msg = msg;
1118 else
1119 nl80211_send_scan_msg(rdev, msg);
1120}
1121
1122void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk)
1123{
1124 ___cfg80211_scan_done(wiphy_to_rdev(wiphy), true);
1125}
1126
1127void cfg80211_scan_done(struct cfg80211_scan_request *request,
1128 struct cfg80211_scan_info *info)
1129{
1130 struct cfg80211_scan_info old_info = request->info;
1131
1132 trace_cfg80211_scan_done(request, info);
1133 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1134 request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1135
1136 request->info = *info;
1137
1138 /*
1139 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1140 * be of the first part. In such a case old_info.scan_start_tsf should
1141 * be non zero.
1142 */
1143 if (request->scan_6ghz && old_info.scan_start_tsf) {
1144 request->info.scan_start_tsf = old_info.scan_start_tsf;
1145 memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1146 sizeof(request->info.tsf_bssid));
1147 }
1148
1149 request->notified = true;
1150 wiphy_work_queue(request->wiphy,
1151 &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1152}
1153EXPORT_SYMBOL(cfg80211_scan_done);
1154
1155void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1156 struct cfg80211_sched_scan_request *req)
1157{
1158 lockdep_assert_held(&rdev->wiphy.mtx);
1159
1160 list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1161}
1162
1163static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1164 struct cfg80211_sched_scan_request *req)
1165{
1166 lockdep_assert_held(&rdev->wiphy.mtx);
1167
1168 list_del_rcu(&req->list);
1169 kfree_rcu(req, rcu_head);
1170}
1171
1172static struct cfg80211_sched_scan_request *
1173cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1174{
1175 struct cfg80211_sched_scan_request *pos;
1176
1177 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1178 lockdep_is_held(&rdev->wiphy.mtx)) {
1179 if (pos->reqid == reqid)
1180 return pos;
1181 }
1182 return NULL;
1183}
1184
1185/*
1186 * Determines if a scheduled scan request can be handled. When a legacy
1187 * scheduled scan is running no other scheduled scan is allowed regardless
1188 * whether the request is for legacy or multi-support scan. When a multi-support
1189 * scheduled scan is running a request for legacy scan is not allowed. In this
1190 * case a request for multi-support scan can be handled if resources are
1191 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1192 */
1193int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1194 bool want_multi)
1195{
1196 struct cfg80211_sched_scan_request *pos;
1197 int i = 0;
1198
1199 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1200 /* request id zero means legacy in progress */
1201 if (!i && !pos->reqid)
1202 return -EINPROGRESS;
1203 i++;
1204 }
1205
1206 if (i) {
1207 /* no legacy allowed when multi request(s) are active */
1208 if (!want_multi)
1209 return -EINPROGRESS;
1210
1211 /* resource limit reached */
1212 if (i == rdev->wiphy.max_sched_scan_reqs)
1213 return -ENOSPC;
1214 }
1215 return 0;
1216}
1217
1218void cfg80211_sched_scan_results_wk(struct work_struct *work)
1219{
1220 struct cfg80211_registered_device *rdev;
1221 struct cfg80211_sched_scan_request *req, *tmp;
1222
1223 rdev = container_of(work, struct cfg80211_registered_device,
1224 sched_scan_res_wk);
1225
1226 wiphy_lock(&rdev->wiphy);
1227 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1228 if (req->report_results) {
1229 req->report_results = false;
1230 if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1231 /* flush entries from previous scans */
1232 spin_lock_bh(&rdev->bss_lock);
1233 __cfg80211_bss_expire(rdev, req->scan_start);
1234 spin_unlock_bh(&rdev->bss_lock);
1235 req->scan_start = jiffies;
1236 }
1237 nl80211_send_sched_scan(req,
1238 NL80211_CMD_SCHED_SCAN_RESULTS);
1239 }
1240 }
1241 wiphy_unlock(&rdev->wiphy);
1242}
1243
1244void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1245{
1246 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1247 struct cfg80211_sched_scan_request *request;
1248
1249 trace_cfg80211_sched_scan_results(wiphy, reqid);
1250 /* ignore if we're not scanning */
1251
1252 rcu_read_lock();
1253 request = cfg80211_find_sched_scan_req(rdev, reqid);
1254 if (request) {
1255 request->report_results = true;
1256 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1257 }
1258 rcu_read_unlock();
1259}
1260EXPORT_SYMBOL(cfg80211_sched_scan_results);
1261
1262void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1263{
1264 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1265
1266 lockdep_assert_held(&wiphy->mtx);
1267
1268 trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1269
1270 __cfg80211_stop_sched_scan(rdev, reqid, true);
1271}
1272EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1273
1274void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1275{
1276 wiphy_lock(wiphy);
1277 cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1278 wiphy_unlock(wiphy);
1279}
1280EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1281
1282int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1283 struct cfg80211_sched_scan_request *req,
1284 bool driver_initiated)
1285{
1286 lockdep_assert_held(&rdev->wiphy.mtx);
1287
1288 if (!driver_initiated) {
1289 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1290 if (err)
1291 return err;
1292 }
1293
1294 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1295
1296 cfg80211_del_sched_scan_req(rdev, req);
1297
1298 return 0;
1299}
1300
1301int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1302 u64 reqid, bool driver_initiated)
1303{
1304 struct cfg80211_sched_scan_request *sched_scan_req;
1305
1306 lockdep_assert_held(&rdev->wiphy.mtx);
1307
1308 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1309 if (!sched_scan_req)
1310 return -ENOENT;
1311
1312 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1313 driver_initiated);
1314}
1315
1316void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1317 unsigned long age_secs)
1318{
1319 struct cfg80211_internal_bss *bss;
1320 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1321
1322 spin_lock_bh(&rdev->bss_lock);
1323 list_for_each_entry(bss, &rdev->bss_list, list)
1324 bss->ts -= age_jiffies;
1325 spin_unlock_bh(&rdev->bss_lock);
1326}
1327
1328void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1329{
1330 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1331}
1332
1333void cfg80211_bss_flush(struct wiphy *wiphy)
1334{
1335 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1336
1337 spin_lock_bh(&rdev->bss_lock);
1338 __cfg80211_bss_expire(rdev, jiffies);
1339 spin_unlock_bh(&rdev->bss_lock);
1340}
1341EXPORT_SYMBOL(cfg80211_bss_flush);
1342
1343const struct element *
1344cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1345 const u8 *match, unsigned int match_len,
1346 unsigned int match_offset)
1347{
1348 const struct element *elem;
1349
1350 for_each_element_id(elem, eid, ies, len) {
1351 if (elem->datalen >= match_offset + match_len &&
1352 !memcmp(elem->data + match_offset, match, match_len))
1353 return elem;
1354 }
1355
1356 return NULL;
1357}
1358EXPORT_SYMBOL(cfg80211_find_elem_match);
1359
1360const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1361 const u8 *ies,
1362 unsigned int len)
1363{
1364 const struct element *elem;
1365 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1366 int match_len = (oui_type < 0) ? 3 : sizeof(match);
1367
1368 if (WARN_ON(oui_type > 0xff))
1369 return NULL;
1370
1371 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1372 match, match_len, 0);
1373
1374 if (!elem || elem->datalen < 4)
1375 return NULL;
1376
1377 return elem;
1378}
1379EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1380
1381/**
1382 * enum bss_compare_mode - BSS compare mode
1383 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1384 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1385 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1386 */
1387enum bss_compare_mode {
1388 BSS_CMP_REGULAR,
1389 BSS_CMP_HIDE_ZLEN,
1390 BSS_CMP_HIDE_NUL,
1391};
1392
1393static int cmp_bss(struct cfg80211_bss *a,
1394 struct cfg80211_bss *b,
1395 enum bss_compare_mode mode)
1396{
1397 const struct cfg80211_bss_ies *a_ies, *b_ies;
1398 const u8 *ie1 = NULL;
1399 const u8 *ie2 = NULL;
1400 int i, r;
1401
1402 if (a->channel != b->channel)
1403 return (b->channel->center_freq * 1000 + b->channel->freq_offset) -
1404 (a->channel->center_freq * 1000 + a->channel->freq_offset);
1405
1406 a_ies = rcu_access_pointer(a->ies);
1407 if (!a_ies)
1408 return -1;
1409 b_ies = rcu_access_pointer(b->ies);
1410 if (!b_ies)
1411 return 1;
1412
1413 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1414 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1415 a_ies->data, a_ies->len);
1416 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1417 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1418 b_ies->data, b_ies->len);
1419 if (ie1 && ie2) {
1420 int mesh_id_cmp;
1421
1422 if (ie1[1] == ie2[1])
1423 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1424 else
1425 mesh_id_cmp = ie2[1] - ie1[1];
1426
1427 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1428 a_ies->data, a_ies->len);
1429 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1430 b_ies->data, b_ies->len);
1431 if (ie1 && ie2) {
1432 if (mesh_id_cmp)
1433 return mesh_id_cmp;
1434 if (ie1[1] != ie2[1])
1435 return ie2[1] - ie1[1];
1436 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1437 }
1438 }
1439
1440 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1441 if (r)
1442 return r;
1443
1444 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1445 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1446
1447 if (!ie1 && !ie2)
1448 return 0;
1449
1450 /*
1451 * Note that with "hide_ssid", the function returns a match if
1452 * the already-present BSS ("b") is a hidden SSID beacon for
1453 * the new BSS ("a").
1454 */
1455
1456 /* sort missing IE before (left of) present IE */
1457 if (!ie1)
1458 return -1;
1459 if (!ie2)
1460 return 1;
1461
1462 switch (mode) {
1463 case BSS_CMP_HIDE_ZLEN:
1464 /*
1465 * In ZLEN mode we assume the BSS entry we're
1466 * looking for has a zero-length SSID. So if
1467 * the one we're looking at right now has that,
1468 * return 0. Otherwise, return the difference
1469 * in length, but since we're looking for the
1470 * 0-length it's really equivalent to returning
1471 * the length of the one we're looking at.
1472 *
1473 * No content comparison is needed as we assume
1474 * the content length is zero.
1475 */
1476 return ie2[1];
1477 case BSS_CMP_REGULAR:
1478 default:
1479 /* sort by length first, then by contents */
1480 if (ie1[1] != ie2[1])
1481 return ie2[1] - ie1[1];
1482 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1483 case BSS_CMP_HIDE_NUL:
1484 if (ie1[1] != ie2[1])
1485 return ie2[1] - ie1[1];
1486 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1487 for (i = 0; i < ie2[1]; i++)
1488 if (ie2[i + 2])
1489 return -1;
1490 return 0;
1491 }
1492}
1493
1494static bool cfg80211_bss_type_match(u16 capability,
1495 enum nl80211_band band,
1496 enum ieee80211_bss_type bss_type)
1497{
1498 bool ret = true;
1499 u16 mask, val;
1500
1501 if (bss_type == IEEE80211_BSS_TYPE_ANY)
1502 return ret;
1503
1504 if (band == NL80211_BAND_60GHZ) {
1505 mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1506 switch (bss_type) {
1507 case IEEE80211_BSS_TYPE_ESS:
1508 val = WLAN_CAPABILITY_DMG_TYPE_AP;
1509 break;
1510 case IEEE80211_BSS_TYPE_PBSS:
1511 val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1512 break;
1513 case IEEE80211_BSS_TYPE_IBSS:
1514 val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1515 break;
1516 default:
1517 return false;
1518 }
1519 } else {
1520 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1521 switch (bss_type) {
1522 case IEEE80211_BSS_TYPE_ESS:
1523 val = WLAN_CAPABILITY_ESS;
1524 break;
1525 case IEEE80211_BSS_TYPE_IBSS:
1526 val = WLAN_CAPABILITY_IBSS;
1527 break;
1528 case IEEE80211_BSS_TYPE_MBSS:
1529 val = 0;
1530 break;
1531 default:
1532 return false;
1533 }
1534 }
1535
1536 ret = ((capability & mask) == val);
1537 return ret;
1538}
1539
1540/* Returned bss is reference counted and must be cleaned up appropriately. */
1541struct cfg80211_bss *__cfg80211_get_bss(struct wiphy *wiphy,
1542 struct ieee80211_channel *channel,
1543 const u8 *bssid,
1544 const u8 *ssid, size_t ssid_len,
1545 enum ieee80211_bss_type bss_type,
1546 enum ieee80211_privacy privacy,
1547 u32 use_for)
1548{
1549 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1550 struct cfg80211_internal_bss *bss, *res = NULL;
1551 unsigned long now = jiffies;
1552 int bss_privacy;
1553
1554 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1555 privacy);
1556
1557 spin_lock_bh(&rdev->bss_lock);
1558
1559 list_for_each_entry(bss, &rdev->bss_list, list) {
1560 if (!cfg80211_bss_type_match(bss->pub.capability,
1561 bss->pub.channel->band, bss_type))
1562 continue;
1563
1564 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1565 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1566 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1567 continue;
1568 if (channel && bss->pub.channel != channel)
1569 continue;
1570 if (!is_valid_ether_addr(bss->pub.bssid))
1571 continue;
1572 if ((bss->pub.use_for & use_for) != use_for)
1573 continue;
1574 /* Don't get expired BSS structs */
1575 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1576 !atomic_read(&bss->hold))
1577 continue;
1578 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1579 res = bss;
1580 bss_ref_get(rdev, res);
1581 break;
1582 }
1583 }
1584
1585 spin_unlock_bh(&rdev->bss_lock);
1586 if (!res)
1587 return NULL;
1588 trace_cfg80211_return_bss(&res->pub);
1589 return &res->pub;
1590}
1591EXPORT_SYMBOL(__cfg80211_get_bss);
1592
1593static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1594 struct cfg80211_internal_bss *bss)
1595{
1596 struct rb_node **p = &rdev->bss_tree.rb_node;
1597 struct rb_node *parent = NULL;
1598 struct cfg80211_internal_bss *tbss;
1599 int cmp;
1600
1601 while (*p) {
1602 parent = *p;
1603 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1604
1605 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1606
1607 if (WARN_ON(!cmp)) {
1608 /* will sort of leak this BSS */
1609 return;
1610 }
1611
1612 if (cmp < 0)
1613 p = &(*p)->rb_left;
1614 else
1615 p = &(*p)->rb_right;
1616 }
1617
1618 rb_link_node(&bss->rbn, parent, p);
1619 rb_insert_color(&bss->rbn, &rdev->bss_tree);
1620}
1621
1622static struct cfg80211_internal_bss *
1623rb_find_bss(struct cfg80211_registered_device *rdev,
1624 struct cfg80211_internal_bss *res,
1625 enum bss_compare_mode mode)
1626{
1627 struct rb_node *n = rdev->bss_tree.rb_node;
1628 struct cfg80211_internal_bss *bss;
1629 int r;
1630
1631 while (n) {
1632 bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1633 r = cmp_bss(&res->pub, &bss->pub, mode);
1634
1635 if (r == 0)
1636 return bss;
1637 else if (r < 0)
1638 n = n->rb_left;
1639 else
1640 n = n->rb_right;
1641 }
1642
1643 return NULL;
1644}
1645
1646static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1647 struct cfg80211_internal_bss *new)
1648{
1649 const struct cfg80211_bss_ies *ies;
1650 struct cfg80211_internal_bss *bss;
1651 const u8 *ie;
1652 int i, ssidlen;
1653 u8 fold = 0;
1654 u32 n_entries = 0;
1655
1656 ies = rcu_access_pointer(new->pub.beacon_ies);
1657 if (WARN_ON(!ies))
1658 return false;
1659
1660 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1661 if (!ie) {
1662 /* nothing to do */
1663 return true;
1664 }
1665
1666 ssidlen = ie[1];
1667 for (i = 0; i < ssidlen; i++)
1668 fold |= ie[2 + i];
1669
1670 if (fold) {
1671 /* not a hidden SSID */
1672 return true;
1673 }
1674
1675 /* This is the bad part ... */
1676
1677 list_for_each_entry(bss, &rdev->bss_list, list) {
1678 /*
1679 * we're iterating all the entries anyway, so take the
1680 * opportunity to validate the list length accounting
1681 */
1682 n_entries++;
1683
1684 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1685 continue;
1686 if (bss->pub.channel != new->pub.channel)
1687 continue;
1688 if (rcu_access_pointer(bss->pub.beacon_ies))
1689 continue;
1690 ies = rcu_access_pointer(bss->pub.ies);
1691 if (!ies)
1692 continue;
1693 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1694 if (!ie)
1695 continue;
1696 if (ssidlen && ie[1] != ssidlen)
1697 continue;
1698 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1699 continue;
1700 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1701 list_del(&bss->hidden_list);
1702 /* combine them */
1703 list_add(&bss->hidden_list, &new->hidden_list);
1704 bss->pub.hidden_beacon_bss = &new->pub;
1705 new->refcount += bss->refcount;
1706 rcu_assign_pointer(bss->pub.beacon_ies,
1707 new->pub.beacon_ies);
1708 }
1709
1710 WARN_ONCE(n_entries != rdev->bss_entries,
1711 "rdev bss entries[%d]/list[len:%d] corruption\n",
1712 rdev->bss_entries, n_entries);
1713
1714 return true;
1715}
1716
1717static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
1718 const struct cfg80211_bss_ies *new_ies,
1719 const struct cfg80211_bss_ies *old_ies)
1720{
1721 struct cfg80211_internal_bss *bss;
1722
1723 /* Assign beacon IEs to all sub entries */
1724 list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1725 const struct cfg80211_bss_ies *ies;
1726
1727 ies = rcu_access_pointer(bss->pub.beacon_ies);
1728 WARN_ON(ies != old_ies);
1729
1730 rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
1731 }
1732}
1733
1734static bool
1735cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1736 struct cfg80211_internal_bss *known,
1737 struct cfg80211_internal_bss *new,
1738 bool signal_valid)
1739{
1740 lockdep_assert_held(&rdev->bss_lock);
1741
1742 /* Update IEs */
1743 if (rcu_access_pointer(new->pub.proberesp_ies)) {
1744 const struct cfg80211_bss_ies *old;
1745
1746 old = rcu_access_pointer(known->pub.proberesp_ies);
1747
1748 rcu_assign_pointer(known->pub.proberesp_ies,
1749 new->pub.proberesp_ies);
1750 /* Override possible earlier Beacon frame IEs */
1751 rcu_assign_pointer(known->pub.ies,
1752 new->pub.proberesp_ies);
1753 if (old)
1754 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1755 }
1756
1757 if (rcu_access_pointer(new->pub.beacon_ies)) {
1758 const struct cfg80211_bss_ies *old;
1759
1760 if (known->pub.hidden_beacon_bss &&
1761 !list_empty(&known->hidden_list)) {
1762 const struct cfg80211_bss_ies *f;
1763
1764 /* The known BSS struct is one of the probe
1765 * response members of a group, but we're
1766 * receiving a beacon (beacon_ies in the new
1767 * bss is used). This can only mean that the
1768 * AP changed its beacon from not having an
1769 * SSID to showing it, which is confusing so
1770 * drop this information.
1771 */
1772
1773 f = rcu_access_pointer(new->pub.beacon_ies);
1774 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1775 return false;
1776 }
1777
1778 old = rcu_access_pointer(known->pub.beacon_ies);
1779
1780 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1781
1782 /* Override IEs if they were from a beacon before */
1783 if (old == rcu_access_pointer(known->pub.ies))
1784 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1785
1786 cfg80211_update_hidden_bsses(known,
1787 rcu_access_pointer(new->pub.beacon_ies),
1788 old);
1789
1790 if (old)
1791 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1792 }
1793
1794 known->pub.beacon_interval = new->pub.beacon_interval;
1795
1796 /* don't update the signal if beacon was heard on
1797 * adjacent channel.
1798 */
1799 if (signal_valid)
1800 known->pub.signal = new->pub.signal;
1801 known->pub.capability = new->pub.capability;
1802 known->ts = new->ts;
1803 known->ts_boottime = new->ts_boottime;
1804 known->parent_tsf = new->parent_tsf;
1805 known->pub.chains = new->pub.chains;
1806 memcpy(known->pub.chain_signal, new->pub.chain_signal,
1807 IEEE80211_MAX_CHAINS);
1808 ether_addr_copy(known->parent_bssid, new->parent_bssid);
1809 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1810 known->pub.bssid_index = new->pub.bssid_index;
1811 known->pub.use_for &= new->pub.use_for;
1812 known->pub.cannot_use_reasons = new->pub.cannot_use_reasons;
1813
1814 return true;
1815}
1816
1817/* Returned bss is reference counted and must be cleaned up appropriately. */
1818static struct cfg80211_internal_bss *
1819__cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1820 struct cfg80211_internal_bss *tmp,
1821 bool signal_valid, unsigned long ts)
1822{
1823 struct cfg80211_internal_bss *found = NULL;
1824 struct cfg80211_bss_ies *ies;
1825
1826 if (WARN_ON(!tmp->pub.channel))
1827 goto free_ies;
1828
1829 tmp->ts = ts;
1830
1831 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies)))
1832 goto free_ies;
1833
1834 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1835
1836 if (found) {
1837 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1838 return NULL;
1839 } else {
1840 struct cfg80211_internal_bss *new;
1841 struct cfg80211_internal_bss *hidden;
1842
1843 /*
1844 * create a copy -- the "res" variable that is passed in
1845 * is allocated on the stack since it's not needed in the
1846 * more common case of an update
1847 */
1848 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1849 GFP_ATOMIC);
1850 if (!new)
1851 goto free_ies;
1852 memcpy(new, tmp, sizeof(*new));
1853 new->refcount = 1;
1854 INIT_LIST_HEAD(&new->hidden_list);
1855 INIT_LIST_HEAD(&new->pub.nontrans_list);
1856 /* we'll set this later if it was non-NULL */
1857 new->pub.transmitted_bss = NULL;
1858
1859 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1860 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1861 if (!hidden)
1862 hidden = rb_find_bss(rdev, tmp,
1863 BSS_CMP_HIDE_NUL);
1864 if (hidden) {
1865 new->pub.hidden_beacon_bss = &hidden->pub;
1866 list_add(&new->hidden_list,
1867 &hidden->hidden_list);
1868 hidden->refcount++;
1869
1870 ies = (void *)rcu_access_pointer(new->pub.beacon_ies);
1871 rcu_assign_pointer(new->pub.beacon_ies,
1872 hidden->pub.beacon_ies);
1873 if (ies)
1874 kfree_rcu(ies, rcu_head);
1875 }
1876 } else {
1877 /*
1878 * Ok so we found a beacon, and don't have an entry. If
1879 * it's a beacon with hidden SSID, we might be in for an
1880 * expensive search for any probe responses that should
1881 * be grouped with this beacon for updates ...
1882 */
1883 if (!cfg80211_combine_bsses(rdev, new)) {
1884 bss_ref_put(rdev, new);
1885 return NULL;
1886 }
1887 }
1888
1889 if (rdev->bss_entries >= bss_entries_limit &&
1890 !cfg80211_bss_expire_oldest(rdev)) {
1891 bss_ref_put(rdev, new);
1892 return NULL;
1893 }
1894
1895 /* This must be before the call to bss_ref_get */
1896 if (tmp->pub.transmitted_bss) {
1897 new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1898 bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss));
1899 }
1900
1901 list_add_tail(&new->list, &rdev->bss_list);
1902 rdev->bss_entries++;
1903 rb_insert_bss(rdev, new);
1904 found = new;
1905 }
1906
1907 rdev->bss_generation++;
1908 bss_ref_get(rdev, found);
1909
1910 return found;
1911
1912free_ies:
1913 ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1914 if (ies)
1915 kfree_rcu(ies, rcu_head);
1916 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1917 if (ies)
1918 kfree_rcu(ies, rcu_head);
1919
1920 return NULL;
1921}
1922
1923struct cfg80211_internal_bss *
1924cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1925 struct cfg80211_internal_bss *tmp,
1926 bool signal_valid, unsigned long ts)
1927{
1928 struct cfg80211_internal_bss *res;
1929
1930 spin_lock_bh(&rdev->bss_lock);
1931 res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts);
1932 spin_unlock_bh(&rdev->bss_lock);
1933
1934 return res;
1935}
1936
1937int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
1938 enum nl80211_band band)
1939{
1940 const struct element *tmp;
1941
1942 if (band == NL80211_BAND_6GHZ) {
1943 struct ieee80211_he_operation *he_oper;
1944
1945 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie,
1946 ielen);
1947 if (tmp && tmp->datalen >= sizeof(*he_oper) &&
1948 tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) {
1949 const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
1950
1951 he_oper = (void *)&tmp->data[1];
1952
1953 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
1954 if (!he_6ghz_oper)
1955 return -1;
1956
1957 return he_6ghz_oper->primary;
1958 }
1959 } else if (band == NL80211_BAND_S1GHZ) {
1960 tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen);
1961 if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) {
1962 struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data;
1963
1964 return s1gop->oper_ch;
1965 }
1966 } else {
1967 tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen);
1968 if (tmp && tmp->datalen == 1)
1969 return tmp->data[0];
1970
1971 tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen);
1972 if (tmp &&
1973 tmp->datalen >= sizeof(struct ieee80211_ht_operation)) {
1974 struct ieee80211_ht_operation *htop = (void *)tmp->data;
1975
1976 return htop->primary_chan;
1977 }
1978 }
1979
1980 return -1;
1981}
1982EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
1983
1984/*
1985 * Update RX channel information based on the available frame payload
1986 * information. This is mainly for the 2.4 GHz band where frames can be received
1987 * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1988 * element to indicate the current (transmitting) channel, but this might also
1989 * be needed on other bands if RX frequency does not match with the actual
1990 * operating channel of a BSS, or if the AP reports a different primary channel.
1991 */
1992static struct ieee80211_channel *
1993cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1994 struct ieee80211_channel *channel)
1995{
1996 u32 freq;
1997 int channel_number;
1998 struct ieee80211_channel *alt_channel;
1999
2000 channel_number = cfg80211_get_ies_channel_number(ie, ielen,
2001 channel->band);
2002
2003 if (channel_number < 0) {
2004 /* No channel information in frame payload */
2005 return channel;
2006 }
2007
2008 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
2009
2010 /*
2011 * Frame info (beacon/prob res) is the same as received channel,
2012 * no need for further processing.
2013 */
2014 if (freq == ieee80211_channel_to_khz(channel))
2015 return channel;
2016
2017 alt_channel = ieee80211_get_channel_khz(wiphy, freq);
2018 if (!alt_channel) {
2019 if (channel->band == NL80211_BAND_2GHZ ||
2020 channel->band == NL80211_BAND_6GHZ) {
2021 /*
2022 * Better not allow unexpected channels when that could
2023 * be going beyond the 1-11 range (e.g., discovering
2024 * BSS on channel 12 when radio is configured for
2025 * channel 11) or beyond the 6 GHz channel range.
2026 */
2027 return NULL;
2028 }
2029
2030 /* No match for the payload channel number - ignore it */
2031 return channel;
2032 }
2033
2034 /*
2035 * Use the channel determined through the payload channel number
2036 * instead of the RX channel reported by the driver.
2037 */
2038 if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
2039 return NULL;
2040 return alt_channel;
2041}
2042
2043struct cfg80211_inform_single_bss_data {
2044 struct cfg80211_inform_bss *drv_data;
2045 enum cfg80211_bss_frame_type ftype;
2046 struct ieee80211_channel *channel;
2047 u8 bssid[ETH_ALEN];
2048 u64 tsf;
2049 u16 capability;
2050 u16 beacon_interval;
2051 const u8 *ie;
2052 size_t ielen;
2053
2054 enum {
2055 BSS_SOURCE_DIRECT = 0,
2056 BSS_SOURCE_MBSSID,
2057 BSS_SOURCE_STA_PROFILE,
2058 } bss_source;
2059 /* Set if reporting bss_source != BSS_SOURCE_DIRECT */
2060 struct cfg80211_bss *source_bss;
2061 u8 max_bssid_indicator;
2062 u8 bssid_index;
2063
2064 u8 use_for;
2065 u64 cannot_use_reasons;
2066};
2067
2068/* Returned bss is reference counted and must be cleaned up appropriately. */
2069static struct cfg80211_bss *
2070cfg80211_inform_single_bss_data(struct wiphy *wiphy,
2071 struct cfg80211_inform_single_bss_data *data,
2072 gfp_t gfp)
2073{
2074 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2075 struct cfg80211_inform_bss *drv_data = data->drv_data;
2076 struct cfg80211_bss_ies *ies;
2077 struct ieee80211_channel *channel;
2078 struct cfg80211_internal_bss tmp = {}, *res;
2079 int bss_type;
2080 bool signal_valid;
2081 unsigned long ts;
2082
2083 if (WARN_ON(!wiphy))
2084 return NULL;
2085
2086 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2087 (drv_data->signal < 0 || drv_data->signal > 100)))
2088 return NULL;
2089
2090 if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss))
2091 return NULL;
2092
2093 channel = data->channel;
2094 if (!channel)
2095 channel = cfg80211_get_bss_channel(wiphy, data->ie, data->ielen,
2096 drv_data->chan);
2097 if (!channel)
2098 return NULL;
2099
2100 memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN);
2101 tmp.pub.channel = channel;
2102 if (data->bss_source != BSS_SOURCE_STA_PROFILE)
2103 tmp.pub.signal = drv_data->signal;
2104 else
2105 tmp.pub.signal = 0;
2106 tmp.pub.beacon_interval = data->beacon_interval;
2107 tmp.pub.capability = data->capability;
2108 tmp.ts_boottime = drv_data->boottime_ns;
2109 tmp.parent_tsf = drv_data->parent_tsf;
2110 ether_addr_copy(tmp.parent_bssid, drv_data->parent_bssid);
2111 tmp.pub.use_for = data->use_for;
2112 tmp.pub.cannot_use_reasons = data->cannot_use_reasons;
2113
2114 if (data->bss_source != BSS_SOURCE_DIRECT) {
2115 tmp.pub.transmitted_bss = data->source_bss;
2116 ts = bss_from_pub(data->source_bss)->ts;
2117 tmp.pub.bssid_index = data->bssid_index;
2118 tmp.pub.max_bssid_indicator = data->max_bssid_indicator;
2119 } else {
2120 ts = jiffies;
2121
2122 if (channel->band == NL80211_BAND_60GHZ) {
2123 bss_type = data->capability &
2124 WLAN_CAPABILITY_DMG_TYPE_MASK;
2125 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2126 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2127 regulatory_hint_found_beacon(wiphy, channel,
2128 gfp);
2129 } else {
2130 if (data->capability & WLAN_CAPABILITY_ESS)
2131 regulatory_hint_found_beacon(wiphy, channel,
2132 gfp);
2133 }
2134 }
2135
2136 /*
2137 * If we do not know here whether the IEs are from a Beacon or Probe
2138 * Response frame, we need to pick one of the options and only use it
2139 * with the driver that does not provide the full Beacon/Probe Response
2140 * frame. Use Beacon frame pointer to avoid indicating that this should
2141 * override the IEs pointer should we have received an earlier
2142 * indication of Probe Response data.
2143 */
2144 ies = kzalloc(sizeof(*ies) + data->ielen, gfp);
2145 if (!ies)
2146 return NULL;
2147 ies->len = data->ielen;
2148 ies->tsf = data->tsf;
2149 ies->from_beacon = false;
2150 memcpy(ies->data, data->ie, data->ielen);
2151
2152 switch (data->ftype) {
2153 case CFG80211_BSS_FTYPE_BEACON:
2154 ies->from_beacon = true;
2155 fallthrough;
2156 case CFG80211_BSS_FTYPE_UNKNOWN:
2157 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2158 break;
2159 case CFG80211_BSS_FTYPE_PRESP:
2160 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2161 break;
2162 }
2163 rcu_assign_pointer(tmp.pub.ies, ies);
2164
2165 signal_valid = drv_data->chan == channel;
2166 spin_lock_bh(&rdev->bss_lock);
2167 res = __cfg80211_bss_update(rdev, &tmp, signal_valid, ts);
2168 if (!res)
2169 goto drop;
2170
2171 rdev_inform_bss(rdev, &res->pub, ies, drv_data->drv_data);
2172
2173 if (data->bss_source == BSS_SOURCE_MBSSID) {
2174 /* this is a nontransmitting bss, we need to add it to
2175 * transmitting bss' list if it is not there
2176 */
2177 if (cfg80211_add_nontrans_list(data->source_bss, &res->pub)) {
2178 if (__cfg80211_unlink_bss(rdev, res)) {
2179 rdev->bss_generation++;
2180 res = NULL;
2181 }
2182 }
2183
2184 if (!res)
2185 goto drop;
2186 }
2187 spin_unlock_bh(&rdev->bss_lock);
2188
2189 trace_cfg80211_return_bss(&res->pub);
2190 /* __cfg80211_bss_update gives us a referenced result */
2191 return &res->pub;
2192
2193drop:
2194 spin_unlock_bh(&rdev->bss_lock);
2195 return NULL;
2196}
2197
2198static const struct element
2199*cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2200 const struct element *mbssid_elem,
2201 const struct element *sub_elem)
2202{
2203 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2204 const struct element *next_mbssid;
2205 const struct element *next_sub;
2206
2207 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2208 mbssid_end,
2209 ielen - (mbssid_end - ie));
2210
2211 /*
2212 * If it is not the last subelement in current MBSSID IE or there isn't
2213 * a next MBSSID IE - profile is complete.
2214 */
2215 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2216 !next_mbssid)
2217 return NULL;
2218
2219 /* For any length error, just return NULL */
2220
2221 if (next_mbssid->datalen < 4)
2222 return NULL;
2223
2224 next_sub = (void *)&next_mbssid->data[1];
2225
2226 if (next_mbssid->data + next_mbssid->datalen <
2227 next_sub->data + next_sub->datalen)
2228 return NULL;
2229
2230 if (next_sub->id != 0 || next_sub->datalen < 2)
2231 return NULL;
2232
2233 /*
2234 * Check if the first element in the next sub element is a start
2235 * of a new profile
2236 */
2237 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2238 NULL : next_mbssid;
2239}
2240
2241size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2242 const struct element *mbssid_elem,
2243 const struct element *sub_elem,
2244 u8 *merged_ie, size_t max_copy_len)
2245{
2246 size_t copied_len = sub_elem->datalen;
2247 const struct element *next_mbssid;
2248
2249 if (sub_elem->datalen > max_copy_len)
2250 return 0;
2251
2252 memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2253
2254 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2255 mbssid_elem,
2256 sub_elem))) {
2257 const struct element *next_sub = (void *)&next_mbssid->data[1];
2258
2259 if (copied_len + next_sub->datalen > max_copy_len)
2260 break;
2261 memcpy(merged_ie + copied_len, next_sub->data,
2262 next_sub->datalen);
2263 copied_len += next_sub->datalen;
2264 }
2265
2266 return copied_len;
2267}
2268EXPORT_SYMBOL(cfg80211_merge_profile);
2269
2270static void
2271cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2272 struct cfg80211_inform_single_bss_data *tx_data,
2273 struct cfg80211_bss *source_bss,
2274 gfp_t gfp)
2275{
2276 struct cfg80211_inform_single_bss_data data = {
2277 .drv_data = tx_data->drv_data,
2278 .ftype = tx_data->ftype,
2279 .tsf = tx_data->tsf,
2280 .beacon_interval = tx_data->beacon_interval,
2281 .source_bss = source_bss,
2282 .bss_source = BSS_SOURCE_MBSSID,
2283 .use_for = tx_data->use_for,
2284 .cannot_use_reasons = tx_data->cannot_use_reasons,
2285 };
2286 const u8 *mbssid_index_ie;
2287 const struct element *elem, *sub;
2288 u8 *new_ie, *profile;
2289 u64 seen_indices = 0;
2290 struct cfg80211_bss *bss;
2291
2292 if (!source_bss)
2293 return;
2294 if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2295 tx_data->ie, tx_data->ielen))
2296 return;
2297 if (!wiphy->support_mbssid)
2298 return;
2299 if (wiphy->support_only_he_mbssid &&
2300 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY,
2301 tx_data->ie, tx_data->ielen))
2302 return;
2303
2304 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2305 if (!new_ie)
2306 return;
2307
2308 profile = kmalloc(tx_data->ielen, gfp);
2309 if (!profile)
2310 goto out;
2311
2312 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID,
2313 tx_data->ie, tx_data->ielen) {
2314 if (elem->datalen < 4)
2315 continue;
2316 if (elem->data[0] < 1 || (int)elem->data[0] > 8)
2317 continue;
2318 for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2319 u8 profile_len;
2320
2321 if (sub->id != 0 || sub->datalen < 4) {
2322 /* not a valid BSS profile */
2323 continue;
2324 }
2325
2326 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2327 sub->data[1] != 2) {
2328 /* The first element within the Nontransmitted
2329 * BSSID Profile is not the Nontransmitted
2330 * BSSID Capability element.
2331 */
2332 continue;
2333 }
2334
2335 memset(profile, 0, tx_data->ielen);
2336 profile_len = cfg80211_merge_profile(tx_data->ie,
2337 tx_data->ielen,
2338 elem,
2339 sub,
2340 profile,
2341 tx_data->ielen);
2342
2343 /* found a Nontransmitted BSSID Profile */
2344 mbssid_index_ie = cfg80211_find_ie
2345 (WLAN_EID_MULTI_BSSID_IDX,
2346 profile, profile_len);
2347 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2348 mbssid_index_ie[2] == 0 ||
2349 mbssid_index_ie[2] > 46) {
2350 /* No valid Multiple BSSID-Index element */
2351 continue;
2352 }
2353
2354 if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2355 /* We don't support legacy split of a profile */
2356 net_dbg_ratelimited("Partial info for BSSID index %d\n",
2357 mbssid_index_ie[2]);
2358
2359 seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2360
2361 data.bssid_index = mbssid_index_ie[2];
2362 data.max_bssid_indicator = elem->data[0];
2363
2364 cfg80211_gen_new_bssid(tx_data->bssid,
2365 data.max_bssid_indicator,
2366 data.bssid_index,
2367 data.bssid);
2368
2369 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2370 data.ie = new_ie;
2371 data.ielen = cfg80211_gen_new_ie(tx_data->ie,
2372 tx_data->ielen,
2373 profile,
2374 profile_len,
2375 new_ie,
2376 IEEE80211_MAX_DATA_LEN);
2377 if (!data.ielen)
2378 continue;
2379
2380 data.capability = get_unaligned_le16(profile + 2);
2381 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
2382 if (!bss)
2383 break;
2384 cfg80211_put_bss(wiphy, bss);
2385 }
2386 }
2387
2388out:
2389 kfree(new_ie);
2390 kfree(profile);
2391}
2392
2393ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies,
2394 size_t ieslen, u8 *data, size_t data_len,
2395 u8 frag_id)
2396{
2397 const struct element *next;
2398 ssize_t copied;
2399 u8 elem_datalen;
2400
2401 if (!elem)
2402 return -EINVAL;
2403
2404 /* elem might be invalid after the memmove */
2405 next = (void *)(elem->data + elem->datalen);
2406 elem_datalen = elem->datalen;
2407
2408 if (elem->id == WLAN_EID_EXTENSION) {
2409 copied = elem->datalen - 1;
2410 if (copied > data_len)
2411 return -ENOSPC;
2412
2413 memmove(data, elem->data + 1, copied);
2414 } else {
2415 copied = elem->datalen;
2416 if (copied > data_len)
2417 return -ENOSPC;
2418
2419 memmove(data, elem->data, copied);
2420 }
2421
2422 /* Fragmented elements must have 255 bytes */
2423 if (elem_datalen < 255)
2424 return copied;
2425
2426 for (elem = next;
2427 elem->data < ies + ieslen &&
2428 elem->data + elem->datalen <= ies + ieslen;
2429 elem = next) {
2430 /* elem might be invalid after the memmove */
2431 next = (void *)(elem->data + elem->datalen);
2432
2433 if (elem->id != frag_id)
2434 break;
2435
2436 elem_datalen = elem->datalen;
2437
2438 if (copied + elem_datalen > data_len)
2439 return -ENOSPC;
2440
2441 memmove(data + copied, elem->data, elem_datalen);
2442 copied += elem_datalen;
2443
2444 /* Only the last fragment may be short */
2445 if (elem_datalen != 255)
2446 break;
2447 }
2448
2449 return copied;
2450}
2451EXPORT_SYMBOL(cfg80211_defragment_element);
2452
2453struct cfg80211_mle {
2454 struct ieee80211_multi_link_elem *mle;
2455 struct ieee80211_mle_per_sta_profile
2456 *sta_prof[IEEE80211_MLD_MAX_NUM_LINKS];
2457 ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS];
2458
2459 u8 data[];
2460};
2461
2462static struct cfg80211_mle *
2463cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen,
2464 gfp_t gfp)
2465{
2466 const struct element *elem;
2467 struct cfg80211_mle *res;
2468 size_t buf_len;
2469 ssize_t mle_len;
2470 u8 common_size, idx;
2471
2472 if (!mle || !ieee80211_mle_size_ok(mle->data + 1, mle->datalen - 1))
2473 return NULL;
2474
2475 /* Required length for first defragmentation */
2476 buf_len = mle->datalen - 1;
2477 for_each_element(elem, mle->data + mle->datalen,
2478 ielen - sizeof(*mle) + mle->datalen) {
2479 if (elem->id != WLAN_EID_FRAGMENT)
2480 break;
2481
2482 buf_len += elem->datalen;
2483 }
2484
2485 res = kzalloc(struct_size(res, data, buf_len), gfp);
2486 if (!res)
2487 return NULL;
2488
2489 mle_len = cfg80211_defragment_element(mle, ie, ielen,
2490 res->data, buf_len,
2491 WLAN_EID_FRAGMENT);
2492 if (mle_len < 0)
2493 goto error;
2494
2495 res->mle = (void *)res->data;
2496
2497 /* Find the sub-element area in the buffer */
2498 common_size = ieee80211_mle_common_size((u8 *)res->mle);
2499 ie = res->data + common_size;
2500 ielen = mle_len - common_size;
2501
2502 idx = 0;
2503 for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE,
2504 ie, ielen) {
2505 res->sta_prof[idx] = (void *)elem->data;
2506 res->sta_prof_len[idx] = elem->datalen;
2507
2508 idx++;
2509 if (idx >= IEEE80211_MLD_MAX_NUM_LINKS)
2510 break;
2511 }
2512 if (!for_each_element_completed(elem, ie, ielen))
2513 goto error;
2514
2515 /* Defragment sta_info in-place */
2516 for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx];
2517 idx++) {
2518 if (res->sta_prof_len[idx] < 255)
2519 continue;
2520
2521 elem = (void *)res->sta_prof[idx] - 2;
2522
2523 if (idx + 1 < ARRAY_SIZE(res->sta_prof) &&
2524 res->sta_prof[idx + 1])
2525 buf_len = (u8 *)res->sta_prof[idx + 1] -
2526 (u8 *)res->sta_prof[idx];
2527 else
2528 buf_len = ielen + ie - (u8 *)elem;
2529
2530 res->sta_prof_len[idx] =
2531 cfg80211_defragment_element(elem,
2532 (u8 *)elem, buf_len,
2533 (u8 *)res->sta_prof[idx],
2534 buf_len,
2535 IEEE80211_MLE_SUBELEM_FRAGMENT);
2536 if (res->sta_prof_len[idx] < 0)
2537 goto error;
2538 }
2539
2540 return res;
2541
2542error:
2543 kfree(res);
2544 return NULL;
2545}
2546
2547static u8
2548cfg80211_tbtt_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id,
2549 const struct ieee80211_neighbor_ap_info **ap_info,
2550 const u8 **tbtt_info)
2551{
2552 const struct ieee80211_neighbor_ap_info *info;
2553 const struct element *rnr;
2554 const u8 *pos, *end;
2555
2556 for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT, ie, ielen) {
2557 pos = rnr->data;
2558 end = rnr->data + rnr->datalen;
2559
2560 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
2561 while (sizeof(*info) <= end - pos) {
2562 const struct ieee80211_rnr_mld_params *mld_params;
2563 u16 params;
2564 u8 length, i, count, mld_params_offset;
2565 u8 type, lid;
2566 u32 use_for;
2567
2568 info = (void *)pos;
2569 count = u8_get_bits(info->tbtt_info_hdr,
2570 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
2571 length = info->tbtt_info_len;
2572
2573 pos += sizeof(*info);
2574
2575 if (count * length > end - pos)
2576 return 0;
2577
2578 type = u8_get_bits(info->tbtt_info_hdr,
2579 IEEE80211_AP_INFO_TBTT_HDR_TYPE);
2580
2581 if (type == IEEE80211_TBTT_INFO_TYPE_TBTT &&
2582 length >=
2583 offsetofend(struct ieee80211_tbtt_info_ge_11,
2584 mld_params)) {
2585 mld_params_offset =
2586 offsetof(struct ieee80211_tbtt_info_ge_11, mld_params);
2587 use_for = NL80211_BSS_USE_FOR_ALL;
2588 } else if (type == IEEE80211_TBTT_INFO_TYPE_MLD &&
2589 length >= sizeof(struct ieee80211_rnr_mld_params)) {
2590 mld_params_offset = 0;
2591 use_for = NL80211_BSS_USE_FOR_MLD_LINK;
2592 } else {
2593 pos += count * length;
2594 continue;
2595 }
2596
2597 for (i = 0; i < count; i++) {
2598 mld_params = (void *)pos + mld_params_offset;
2599 params = le16_to_cpu(mld_params->params);
2600
2601 lid = u16_get_bits(params,
2602 IEEE80211_RNR_MLD_PARAMS_LINK_ID);
2603
2604 if (mld_id == mld_params->mld_id &&
2605 link_id == lid) {
2606 *ap_info = info;
2607 *tbtt_info = pos;
2608
2609 return use_for;
2610 }
2611
2612 pos += length;
2613 }
2614 }
2615 }
2616
2617 return 0;
2618}
2619
2620static void
2621cfg80211_parse_ml_elem_sta_data(struct wiphy *wiphy,
2622 struct cfg80211_inform_single_bss_data *tx_data,
2623 struct cfg80211_bss *source_bss,
2624 const struct element *elem,
2625 gfp_t gfp)
2626{
2627 struct cfg80211_inform_single_bss_data data = {
2628 .drv_data = tx_data->drv_data,
2629 .ftype = tx_data->ftype,
2630 .source_bss = source_bss,
2631 .bss_source = BSS_SOURCE_STA_PROFILE,
2632 };
2633 struct ieee80211_multi_link_elem *ml_elem;
2634 struct cfg80211_mle *mle;
2635 u16 control;
2636 u8 ml_common_len;
2637 u8 *new_ie;
2638 struct cfg80211_bss *bss;
2639 int mld_id;
2640 u16 seen_links = 0;
2641 const u8 *pos;
2642 u8 i;
2643
2644 if (!ieee80211_mle_size_ok(elem->data + 1, elem->datalen - 1))
2645 return;
2646
2647 ml_elem = (void *)elem->data + 1;
2648 control = le16_to_cpu(ml_elem->control);
2649 if (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE) !=
2650 IEEE80211_ML_CONTROL_TYPE_BASIC)
2651 return;
2652
2653 /* Must be present when transmitted by an AP (in a probe response) */
2654 if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) ||
2655 !(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) ||
2656 !(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP))
2657 return;
2658
2659 ml_common_len = ml_elem->variable[0];
2660
2661 /* length + MLD MAC address + link ID info + BSS Params Change Count */
2662 pos = ml_elem->variable + 1 + 6 + 1 + 1;
2663
2664 if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY))
2665 pos += 2;
2666 if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_EML_CAPA))
2667 pos += 2;
2668
2669 /* MLD capabilities and operations */
2670 pos += 2;
2671
2672 /*
2673 * The MLD ID of the reporting AP is always zero. It is set if the AP
2674 * is part of an MBSSID set and will be non-zero for ML Elements
2675 * relating to a nontransmitted BSS (matching the Multi-BSSID Index,
2676 * Draft P802.11be_D3.2, 35.3.4.2)
2677 */
2678 if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_MLD_ID)) {
2679 mld_id = *pos;
2680 pos += 1;
2681 } else {
2682 mld_id = 0;
2683 }
2684
2685 /* Extended MLD capabilities and operations */
2686 pos += 2;
2687
2688 /* Fully defrag the ML element for sta information/profile iteration */
2689 mle = cfg80211_defrag_mle(elem, tx_data->ie, tx_data->ielen, gfp);
2690 if (!mle)
2691 return;
2692
2693 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2694 if (!new_ie)
2695 goto out;
2696
2697 for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) {
2698 const struct ieee80211_neighbor_ap_info *ap_info;
2699 enum nl80211_band band;
2700 u32 freq;
2701 const u8 *profile;
2702 const u8 *tbtt_info;
2703 ssize_t profile_len;
2704 u8 link_id, use_for;
2705
2706 if (!ieee80211_mle_basic_sta_prof_size_ok((u8 *)mle->sta_prof[i],
2707 mle->sta_prof_len[i]))
2708 continue;
2709
2710 control = le16_to_cpu(mle->sta_prof[i]->control);
2711
2712 if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE))
2713 continue;
2714
2715 link_id = u16_get_bits(control,
2716 IEEE80211_MLE_STA_CONTROL_LINK_ID);
2717 if (seen_links & BIT(link_id))
2718 break;
2719 seen_links |= BIT(link_id);
2720
2721 if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) ||
2722 !(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) ||
2723 !(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT))
2724 continue;
2725
2726 memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN);
2727 data.beacon_interval =
2728 get_unaligned_le16(mle->sta_prof[i]->variable + 6);
2729 data.tsf = tx_data->tsf +
2730 get_unaligned_le64(mle->sta_prof[i]->variable + 8);
2731
2732 /* sta_info_len counts itself */
2733 profile = mle->sta_prof[i]->variable +
2734 mle->sta_prof[i]->sta_info_len - 1;
2735 profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] -
2736 profile;
2737
2738 if (profile_len < 2)
2739 continue;
2740
2741 data.capability = get_unaligned_le16(profile);
2742 profile += 2;
2743 profile_len -= 2;
2744
2745 /* Find in RNR to look up channel information */
2746 use_for = cfg80211_tbtt_info_for_mld_ap(tx_data->ie,
2747 tx_data->ielen,
2748 mld_id, link_id,
2749 &ap_info, &tbtt_info);
2750 if (!use_for)
2751 continue;
2752
2753 /* We could sanity check the BSSID is included */
2754
2755 if (!ieee80211_operating_class_to_band(ap_info->op_class,
2756 &band))
2757 continue;
2758
2759 freq = ieee80211_channel_to_freq_khz(ap_info->channel, band);
2760 data.channel = ieee80211_get_channel_khz(wiphy, freq);
2761
2762 if (use_for == NL80211_BSS_USE_FOR_MLD_LINK &&
2763 !(wiphy->flags & WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY)) {
2764 use_for = 0;
2765 data.cannot_use_reasons =
2766 NL80211_BSS_CANNOT_USE_NSTR_NONPRIMARY;
2767 }
2768 data.use_for = use_for;
2769
2770 /* Generate new elements */
2771 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2772 data.ie = new_ie;
2773 data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen,
2774 profile, profile_len,
2775 new_ie,
2776 IEEE80211_MAX_DATA_LEN);
2777 if (!data.ielen)
2778 continue;
2779
2780 /* The generated elements do not contain:
2781 * - Basic ML element
2782 * - A TBTT entry in the RNR for the transmitting AP
2783 *
2784 * This information is needed both internally and in userspace
2785 * as such, we should append it here.
2786 */
2787 if (data.ielen + 3 + sizeof(*ml_elem) + ml_common_len >
2788 IEEE80211_MAX_DATA_LEN)
2789 continue;
2790
2791 /* Copy the Basic Multi-Link element including the common
2792 * information, and then fix up the link ID.
2793 * Note that the ML element length has been verified and we
2794 * also checked that it contains the link ID.
2795 */
2796 new_ie[data.ielen++] = WLAN_EID_EXTENSION;
2797 new_ie[data.ielen++] = 1 + sizeof(*ml_elem) + ml_common_len;
2798 new_ie[data.ielen++] = WLAN_EID_EXT_EHT_MULTI_LINK;
2799 memcpy(new_ie + data.ielen, ml_elem,
2800 sizeof(*ml_elem) + ml_common_len);
2801
2802 new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN] = link_id;
2803
2804 data.ielen += sizeof(*ml_elem) + ml_common_len;
2805
2806 /* TODO: Add an RNR containing only the reporting AP */
2807
2808 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
2809 if (!bss)
2810 break;
2811 cfg80211_put_bss(wiphy, bss);
2812 }
2813
2814out:
2815 kfree(new_ie);
2816 kfree(mle);
2817}
2818
2819static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy,
2820 struct cfg80211_inform_single_bss_data *tx_data,
2821 struct cfg80211_bss *source_bss,
2822 gfp_t gfp)
2823{
2824 const struct element *elem;
2825
2826 if (!source_bss)
2827 return;
2828
2829 if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP)
2830 return;
2831
2832 for_each_element_extid(elem, WLAN_EID_EXT_EHT_MULTI_LINK,
2833 tx_data->ie, tx_data->ielen)
2834 cfg80211_parse_ml_elem_sta_data(wiphy, tx_data, source_bss,
2835 elem, gfp);
2836}
2837
2838struct cfg80211_bss *
2839cfg80211_inform_bss_data(struct wiphy *wiphy,
2840 struct cfg80211_inform_bss *data,
2841 enum cfg80211_bss_frame_type ftype,
2842 const u8 *bssid, u64 tsf, u16 capability,
2843 u16 beacon_interval, const u8 *ie, size_t ielen,
2844 gfp_t gfp)
2845{
2846 struct cfg80211_inform_single_bss_data inform_data = {
2847 .drv_data = data,
2848 .ftype = ftype,
2849 .tsf = tsf,
2850 .capability = capability,
2851 .beacon_interval = beacon_interval,
2852 .ie = ie,
2853 .ielen = ielen,
2854 .use_for = data->restrict_use ?
2855 data->use_for :
2856 NL80211_BSS_USE_FOR_ALL,
2857 .cannot_use_reasons = data->cannot_use_reasons,
2858 };
2859 struct cfg80211_bss *res;
2860
2861 memcpy(inform_data.bssid, bssid, ETH_ALEN);
2862
2863 res = cfg80211_inform_single_bss_data(wiphy, &inform_data, gfp);
2864 if (!res)
2865 return NULL;
2866
2867 cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
2868
2869 cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
2870
2871 return res;
2872}
2873EXPORT_SYMBOL(cfg80211_inform_bss_data);
2874
2875static bool cfg80211_uhb_power_type_valid(const u8 *ie,
2876 size_t ielen,
2877 const u32 flags)
2878{
2879 const struct element *tmp;
2880 struct ieee80211_he_operation *he_oper;
2881
2882 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie, ielen);
2883 if (tmp && tmp->datalen >= sizeof(*he_oper) + 1) {
2884 const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
2885
2886 he_oper = (void *)&tmp->data[1];
2887 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
2888
2889 if (!he_6ghz_oper)
2890 return false;
2891
2892 switch (u8_get_bits(he_6ghz_oper->control,
2893 IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) {
2894 case IEEE80211_6GHZ_CTRL_REG_LPI_AP:
2895 return true;
2896 case IEEE80211_6GHZ_CTRL_REG_SP_AP:
2897 return !(flags & IEEE80211_CHAN_NO_UHB_AFC_CLIENT);
2898 case IEEE80211_6GHZ_CTRL_REG_VLP_AP:
2899 return !(flags & IEEE80211_CHAN_NO_UHB_VLP_CLIENT);
2900 }
2901 }
2902 return false;
2903}
2904
2905/* cfg80211_inform_bss_width_frame helper */
2906static struct cfg80211_bss *
2907cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
2908 struct cfg80211_inform_bss *data,
2909 struct ieee80211_mgmt *mgmt, size_t len,
2910 gfp_t gfp)
2911{
2912 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2913 struct cfg80211_internal_bss tmp = {}, *res;
2914 struct cfg80211_bss_ies *ies;
2915 struct ieee80211_channel *channel;
2916 bool signal_valid;
2917 struct ieee80211_ext *ext = NULL;
2918 u8 *bssid, *variable;
2919 u16 capability, beacon_int;
2920 size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt,
2921 u.probe_resp.variable);
2922 int bss_type;
2923
2924 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
2925 offsetof(struct ieee80211_mgmt, u.beacon.variable));
2926
2927 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
2928
2929 if (WARN_ON(!mgmt))
2930 return NULL;
2931
2932 if (WARN_ON(!wiphy))
2933 return NULL;
2934
2935 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2936 (data->signal < 0 || data->signal > 100)))
2937 return NULL;
2938
2939 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
2940 ext = (void *) mgmt;
2941 min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
2942 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2943 min_hdr_len = offsetof(struct ieee80211_ext,
2944 u.s1g_short_beacon.variable);
2945 }
2946
2947 if (WARN_ON(len < min_hdr_len))
2948 return NULL;
2949
2950 ielen = len - min_hdr_len;
2951 variable = mgmt->u.probe_resp.variable;
2952 if (ext) {
2953 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2954 variable = ext->u.s1g_short_beacon.variable;
2955 else
2956 variable = ext->u.s1g_beacon.variable;
2957 }
2958
2959 channel = cfg80211_get_bss_channel(wiphy, variable, ielen, data->chan);
2960 if (!channel)
2961 return NULL;
2962
2963 if (channel->band == NL80211_BAND_6GHZ &&
2964 !cfg80211_uhb_power_type_valid(variable, ielen, channel->flags)) {
2965 data->restrict_use = 1;
2966 data->use_for = 0;
2967 data->cannot_use_reasons =
2968 NL80211_BSS_CANNOT_USE_UHB_PWR_MISMATCH;
2969 }
2970
2971 if (ext) {
2972 const struct ieee80211_s1g_bcn_compat_ie *compat;
2973 const struct element *elem;
2974
2975 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT,
2976 variable, ielen);
2977 if (!elem)
2978 return NULL;
2979 if (elem->datalen < sizeof(*compat))
2980 return NULL;
2981 compat = (void *)elem->data;
2982 bssid = ext->u.s1g_beacon.sa;
2983 capability = le16_to_cpu(compat->compat_info);
2984 beacon_int = le16_to_cpu(compat->beacon_int);
2985 } else {
2986 bssid = mgmt->bssid;
2987 beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2988 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
2989 }
2990
2991 if (channel->band == NL80211_BAND_60GHZ) {
2992 bss_type = capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2993 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2994 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2995 regulatory_hint_found_beacon(wiphy, channel, gfp);
2996 } else {
2997 if (capability & WLAN_CAPABILITY_ESS)
2998 regulatory_hint_found_beacon(wiphy, channel, gfp);
2999 }
3000
3001 ies = kzalloc(sizeof(*ies) + ielen, gfp);
3002 if (!ies)
3003 return NULL;
3004 ies->len = ielen;
3005 ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
3006 ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) ||
3007 ieee80211_is_s1g_beacon(mgmt->frame_control);
3008 memcpy(ies->data, variable, ielen);
3009
3010 if (ieee80211_is_probe_resp(mgmt->frame_control))
3011 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
3012 else
3013 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
3014 rcu_assign_pointer(tmp.pub.ies, ies);
3015
3016 memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
3017 tmp.pub.beacon_interval = beacon_int;
3018 tmp.pub.capability = capability;
3019 tmp.pub.channel = channel;
3020 tmp.pub.signal = data->signal;
3021 tmp.ts_boottime = data->boottime_ns;
3022 tmp.parent_tsf = data->parent_tsf;
3023 tmp.pub.chains = data->chains;
3024 memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
3025 ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
3026 tmp.pub.use_for = data->restrict_use ?
3027 data->use_for :
3028 NL80211_BSS_USE_FOR_ALL;
3029 tmp.pub.cannot_use_reasons = data->cannot_use_reasons;
3030
3031 signal_valid = data->chan == channel;
3032 spin_lock_bh(&rdev->bss_lock);
3033 res = __cfg80211_bss_update(rdev, &tmp, signal_valid, jiffies);
3034 if (!res)
3035 goto drop;
3036
3037 rdev_inform_bss(rdev, &res->pub, ies, data->drv_data);
3038
3039 spin_unlock_bh(&rdev->bss_lock);
3040
3041 trace_cfg80211_return_bss(&res->pub);
3042 /* __cfg80211_bss_update gives us a referenced result */
3043 return &res->pub;
3044
3045drop:
3046 spin_unlock_bh(&rdev->bss_lock);
3047 return NULL;
3048}
3049
3050struct cfg80211_bss *
3051cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
3052 struct cfg80211_inform_bss *data,
3053 struct ieee80211_mgmt *mgmt, size_t len,
3054 gfp_t gfp)
3055{
3056 struct cfg80211_inform_single_bss_data inform_data = {
3057 .drv_data = data,
3058 .ie = mgmt->u.probe_resp.variable,
3059 .ielen = len - offsetof(struct ieee80211_mgmt,
3060 u.probe_resp.variable),
3061 .use_for = data->restrict_use ?
3062 data->use_for :
3063 NL80211_BSS_USE_FOR_ALL,
3064 .cannot_use_reasons = data->cannot_use_reasons,
3065 };
3066 struct cfg80211_bss *res;
3067
3068 res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
3069 len, gfp);
3070 if (!res)
3071 return NULL;
3072
3073 /* don't do any further MBSSID/ML handling for S1G */
3074 if (ieee80211_is_s1g_beacon(mgmt->frame_control))
3075 return res;
3076
3077 inform_data.ftype = ieee80211_is_beacon(mgmt->frame_control) ?
3078 CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
3079 memcpy(inform_data.bssid, mgmt->bssid, ETH_ALEN);
3080 inform_data.tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
3081 inform_data.beacon_interval =
3082 le16_to_cpu(mgmt->u.probe_resp.beacon_int);
3083
3084 /* process each non-transmitting bss */
3085 cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
3086
3087 cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
3088
3089 return res;
3090}
3091EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
3092
3093void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3094{
3095 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3096
3097 if (!pub)
3098 return;
3099
3100 spin_lock_bh(&rdev->bss_lock);
3101 bss_ref_get(rdev, bss_from_pub(pub));
3102 spin_unlock_bh(&rdev->bss_lock);
3103}
3104EXPORT_SYMBOL(cfg80211_ref_bss);
3105
3106void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3107{
3108 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3109
3110 if (!pub)
3111 return;
3112
3113 spin_lock_bh(&rdev->bss_lock);
3114 bss_ref_put(rdev, bss_from_pub(pub));
3115 spin_unlock_bh(&rdev->bss_lock);
3116}
3117EXPORT_SYMBOL(cfg80211_put_bss);
3118
3119void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3120{
3121 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3122 struct cfg80211_internal_bss *bss, *tmp1;
3123 struct cfg80211_bss *nontrans_bss, *tmp;
3124
3125 if (WARN_ON(!pub))
3126 return;
3127
3128 bss = bss_from_pub(pub);
3129
3130 spin_lock_bh(&rdev->bss_lock);
3131 if (list_empty(&bss->list))
3132 goto out;
3133
3134 list_for_each_entry_safe(nontrans_bss, tmp,
3135 &pub->nontrans_list,
3136 nontrans_list) {
3137 tmp1 = bss_from_pub(nontrans_bss);
3138 if (__cfg80211_unlink_bss(rdev, tmp1))
3139 rdev->bss_generation++;
3140 }
3141
3142 if (__cfg80211_unlink_bss(rdev, bss))
3143 rdev->bss_generation++;
3144out:
3145 spin_unlock_bh(&rdev->bss_lock);
3146}
3147EXPORT_SYMBOL(cfg80211_unlink_bss);
3148
3149void cfg80211_bss_iter(struct wiphy *wiphy,
3150 struct cfg80211_chan_def *chandef,
3151 void (*iter)(struct wiphy *wiphy,
3152 struct cfg80211_bss *bss,
3153 void *data),
3154 void *iter_data)
3155{
3156 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3157 struct cfg80211_internal_bss *bss;
3158
3159 spin_lock_bh(&rdev->bss_lock);
3160
3161 list_for_each_entry(bss, &rdev->bss_list, list) {
3162 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel,
3163 false))
3164 iter(wiphy, &bss->pub, iter_data);
3165 }
3166
3167 spin_unlock_bh(&rdev->bss_lock);
3168}
3169EXPORT_SYMBOL(cfg80211_bss_iter);
3170
3171void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
3172 unsigned int link_id,
3173 struct ieee80211_channel *chan)
3174{
3175 struct wiphy *wiphy = wdev->wiphy;
3176 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3177 struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss;
3178 struct cfg80211_internal_bss *new = NULL;
3179 struct cfg80211_internal_bss *bss;
3180 struct cfg80211_bss *nontrans_bss;
3181 struct cfg80211_bss *tmp;
3182
3183 spin_lock_bh(&rdev->bss_lock);
3184
3185 /*
3186 * Some APs use CSA also for bandwidth changes, i.e., without actually
3187 * changing the control channel, so no need to update in such a case.
3188 */
3189 if (cbss->pub.channel == chan)
3190 goto done;
3191
3192 /* use transmitting bss */
3193 if (cbss->pub.transmitted_bss)
3194 cbss = bss_from_pub(cbss->pub.transmitted_bss);
3195
3196 cbss->pub.channel = chan;
3197
3198 list_for_each_entry(bss, &rdev->bss_list, list) {
3199 if (!cfg80211_bss_type_match(bss->pub.capability,
3200 bss->pub.channel->band,
3201 wdev->conn_bss_type))
3202 continue;
3203
3204 if (bss == cbss)
3205 continue;
3206
3207 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
3208 new = bss;
3209 break;
3210 }
3211 }
3212
3213 if (new) {
3214 /* to save time, update IEs for transmitting bss only */
3215 cfg80211_update_known_bss(rdev, cbss, new, false);
3216 new->pub.proberesp_ies = NULL;
3217 new->pub.beacon_ies = NULL;
3218
3219 list_for_each_entry_safe(nontrans_bss, tmp,
3220 &new->pub.nontrans_list,
3221 nontrans_list) {
3222 bss = bss_from_pub(nontrans_bss);
3223 if (__cfg80211_unlink_bss(rdev, bss))
3224 rdev->bss_generation++;
3225 }
3226
3227 WARN_ON(atomic_read(&new->hold));
3228 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
3229 rdev->bss_generation++;
3230 }
3231
3232 rb_erase(&cbss->rbn, &rdev->bss_tree);
3233 rb_insert_bss(rdev, cbss);
3234 rdev->bss_generation++;
3235
3236 list_for_each_entry_safe(nontrans_bss, tmp,
3237 &cbss->pub.nontrans_list,
3238 nontrans_list) {
3239 bss = bss_from_pub(nontrans_bss);
3240 bss->pub.channel = chan;
3241 rb_erase(&bss->rbn, &rdev->bss_tree);
3242 rb_insert_bss(rdev, bss);
3243 rdev->bss_generation++;
3244 }
3245
3246done:
3247 spin_unlock_bh(&rdev->bss_lock);
3248}
3249
3250#ifdef CONFIG_CFG80211_WEXT
3251static struct cfg80211_registered_device *
3252cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
3253{
3254 struct cfg80211_registered_device *rdev;
3255 struct net_device *dev;
3256
3257 ASSERT_RTNL();
3258
3259 dev = dev_get_by_index(net, ifindex);
3260 if (!dev)
3261 return ERR_PTR(-ENODEV);
3262 if (dev->ieee80211_ptr)
3263 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
3264 else
3265 rdev = ERR_PTR(-ENODEV);
3266 dev_put(dev);
3267 return rdev;
3268}
3269
3270int cfg80211_wext_siwscan(struct net_device *dev,
3271 struct iw_request_info *info,
3272 union iwreq_data *wrqu, char *extra)
3273{
3274 struct cfg80211_registered_device *rdev;
3275 struct wiphy *wiphy;
3276 struct iw_scan_req *wreq = NULL;
3277 struct cfg80211_scan_request *creq;
3278 int i, err, n_channels = 0;
3279 enum nl80211_band band;
3280
3281 if (!netif_running(dev))
3282 return -ENETDOWN;
3283
3284 if (wrqu->data.length == sizeof(struct iw_scan_req))
3285 wreq = (struct iw_scan_req *)extra;
3286
3287 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3288
3289 if (IS_ERR(rdev))
3290 return PTR_ERR(rdev);
3291
3292 if (rdev->scan_req || rdev->scan_msg)
3293 return -EBUSY;
3294
3295 wiphy = &rdev->wiphy;
3296
3297 /* Determine number of channels, needed to allocate creq */
3298 if (wreq && wreq->num_channels)
3299 n_channels = wreq->num_channels;
3300 else
3301 n_channels = ieee80211_get_num_supported_channels(wiphy);
3302
3303 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
3304 n_channels * sizeof(void *),
3305 GFP_ATOMIC);
3306 if (!creq)
3307 return -ENOMEM;
3308
3309 creq->wiphy = wiphy;
3310 creq->wdev = dev->ieee80211_ptr;
3311 /* SSIDs come after channels */
3312 creq->ssids = (void *)&creq->channels[n_channels];
3313 creq->n_channels = n_channels;
3314 creq->n_ssids = 1;
3315 creq->scan_start = jiffies;
3316
3317 /* translate "Scan on frequencies" request */
3318 i = 0;
3319 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3320 int j;
3321
3322 if (!wiphy->bands[band])
3323 continue;
3324
3325 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
3326 /* ignore disabled channels */
3327 if (wiphy->bands[band]->channels[j].flags &
3328 IEEE80211_CHAN_DISABLED)
3329 continue;
3330
3331 /* If we have a wireless request structure and the
3332 * wireless request specifies frequencies, then search
3333 * for the matching hardware channel.
3334 */
3335 if (wreq && wreq->num_channels) {
3336 int k;
3337 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
3338 for (k = 0; k < wreq->num_channels; k++) {
3339 struct iw_freq *freq =
3340 &wreq->channel_list[k];
3341 int wext_freq =
3342 cfg80211_wext_freq(freq);
3343
3344 if (wext_freq == wiphy_freq)
3345 goto wext_freq_found;
3346 }
3347 goto wext_freq_not_found;
3348 }
3349
3350 wext_freq_found:
3351 creq->channels[i] = &wiphy->bands[band]->channels[j];
3352 i++;
3353 wext_freq_not_found: ;
3354 }
3355 }
3356 /* No channels found? */
3357 if (!i) {
3358 err = -EINVAL;
3359 goto out;
3360 }
3361
3362 /* Set real number of channels specified in creq->channels[] */
3363 creq->n_channels = i;
3364
3365 /* translate "Scan for SSID" request */
3366 if (wreq) {
3367 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
3368 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
3369 err = -EINVAL;
3370 goto out;
3371 }
3372 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
3373 creq->ssids[0].ssid_len = wreq->essid_len;
3374 }
3375 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
3376 creq->n_ssids = 0;
3377 }
3378
3379 for (i = 0; i < NUM_NL80211_BANDS; i++)
3380 if (wiphy->bands[i])
3381 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
3382
3383 eth_broadcast_addr(creq->bssid);
3384
3385 wiphy_lock(&rdev->wiphy);
3386
3387 rdev->scan_req = creq;
3388 err = rdev_scan(rdev, creq);
3389 if (err) {
3390 rdev->scan_req = NULL;
3391 /* creq will be freed below */
3392 } else {
3393 nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
3394 /* creq now owned by driver */
3395 creq = NULL;
3396 dev_hold(dev);
3397 }
3398 wiphy_unlock(&rdev->wiphy);
3399 out:
3400 kfree(creq);
3401 return err;
3402}
3403EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
3404
3405static char *ieee80211_scan_add_ies(struct iw_request_info *info,
3406 const struct cfg80211_bss_ies *ies,
3407 char *current_ev, char *end_buf)
3408{
3409 const u8 *pos, *end, *next;
3410 struct iw_event iwe;
3411
3412 if (!ies)
3413 return current_ev;
3414
3415 /*
3416 * If needed, fragment the IEs buffer (at IE boundaries) into short
3417 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
3418 */
3419 pos = ies->data;
3420 end = pos + ies->len;
3421
3422 while (end - pos > IW_GENERIC_IE_MAX) {
3423 next = pos + 2 + pos[1];
3424 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
3425 next = next + 2 + next[1];
3426
3427 memset(&iwe, 0, sizeof(iwe));
3428 iwe.cmd = IWEVGENIE;
3429 iwe.u.data.length = next - pos;
3430 current_ev = iwe_stream_add_point_check(info, current_ev,
3431 end_buf, &iwe,
3432 (void *)pos);
3433 if (IS_ERR(current_ev))
3434 return current_ev;
3435 pos = next;
3436 }
3437
3438 if (end > pos) {
3439 memset(&iwe, 0, sizeof(iwe));
3440 iwe.cmd = IWEVGENIE;
3441 iwe.u.data.length = end - pos;
3442 current_ev = iwe_stream_add_point_check(info, current_ev,
3443 end_buf, &iwe,
3444 (void *)pos);
3445 if (IS_ERR(current_ev))
3446 return current_ev;
3447 }
3448
3449 return current_ev;
3450}
3451
3452static char *
3453ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
3454 struct cfg80211_internal_bss *bss, char *current_ev,
3455 char *end_buf)
3456{
3457 const struct cfg80211_bss_ies *ies;
3458 struct iw_event iwe;
3459 const u8 *ie;
3460 u8 buf[50];
3461 u8 *cfg, *p, *tmp;
3462 int rem, i, sig;
3463 bool ismesh = false;
3464
3465 memset(&iwe, 0, sizeof(iwe));
3466 iwe.cmd = SIOCGIWAP;
3467 iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
3468 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
3469 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3470 IW_EV_ADDR_LEN);
3471 if (IS_ERR(current_ev))
3472 return current_ev;
3473
3474 memset(&iwe, 0, sizeof(iwe));
3475 iwe.cmd = SIOCGIWFREQ;
3476 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
3477 iwe.u.freq.e = 0;
3478 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3479 IW_EV_FREQ_LEN);
3480 if (IS_ERR(current_ev))
3481 return current_ev;
3482
3483 memset(&iwe, 0, sizeof(iwe));
3484 iwe.cmd = SIOCGIWFREQ;
3485 iwe.u.freq.m = bss->pub.channel->center_freq;
3486 iwe.u.freq.e = 6;
3487 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3488 IW_EV_FREQ_LEN);
3489 if (IS_ERR(current_ev))
3490 return current_ev;
3491
3492 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
3493 memset(&iwe, 0, sizeof(iwe));
3494 iwe.cmd = IWEVQUAL;
3495 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
3496 IW_QUAL_NOISE_INVALID |
3497 IW_QUAL_QUAL_UPDATED;
3498 switch (wiphy->signal_type) {
3499 case CFG80211_SIGNAL_TYPE_MBM:
3500 sig = bss->pub.signal / 100;
3501 iwe.u.qual.level = sig;
3502 iwe.u.qual.updated |= IW_QUAL_DBM;
3503 if (sig < -110) /* rather bad */
3504 sig = -110;
3505 else if (sig > -40) /* perfect */
3506 sig = -40;
3507 /* will give a range of 0 .. 70 */
3508 iwe.u.qual.qual = sig + 110;
3509 break;
3510 case CFG80211_SIGNAL_TYPE_UNSPEC:
3511 iwe.u.qual.level = bss->pub.signal;
3512 /* will give range 0 .. 100 */
3513 iwe.u.qual.qual = bss->pub.signal;
3514 break;
3515 default:
3516 /* not reached */
3517 break;
3518 }
3519 current_ev = iwe_stream_add_event_check(info, current_ev,
3520 end_buf, &iwe,
3521 IW_EV_QUAL_LEN);
3522 if (IS_ERR(current_ev))
3523 return current_ev;
3524 }
3525
3526 memset(&iwe, 0, sizeof(iwe));
3527 iwe.cmd = SIOCGIWENCODE;
3528 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
3529 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
3530 else
3531 iwe.u.data.flags = IW_ENCODE_DISABLED;
3532 iwe.u.data.length = 0;
3533 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3534 &iwe, "");
3535 if (IS_ERR(current_ev))
3536 return current_ev;
3537
3538 rcu_read_lock();
3539 ies = rcu_dereference(bss->pub.ies);
3540 rem = ies->len;
3541 ie = ies->data;
3542
3543 while (rem >= 2) {
3544 /* invalid data */
3545 if (ie[1] > rem - 2)
3546 break;
3547
3548 switch (ie[0]) {
3549 case WLAN_EID_SSID:
3550 memset(&iwe, 0, sizeof(iwe));
3551 iwe.cmd = SIOCGIWESSID;
3552 iwe.u.data.length = ie[1];
3553 iwe.u.data.flags = 1;
3554 current_ev = iwe_stream_add_point_check(info,
3555 current_ev,
3556 end_buf, &iwe,
3557 (u8 *)ie + 2);
3558 if (IS_ERR(current_ev))
3559 goto unlock;
3560 break;
3561 case WLAN_EID_MESH_ID:
3562 memset(&iwe, 0, sizeof(iwe));
3563 iwe.cmd = SIOCGIWESSID;
3564 iwe.u.data.length = ie[1];
3565 iwe.u.data.flags = 1;
3566 current_ev = iwe_stream_add_point_check(info,
3567 current_ev,
3568 end_buf, &iwe,
3569 (u8 *)ie + 2);
3570 if (IS_ERR(current_ev))
3571 goto unlock;
3572 break;
3573 case WLAN_EID_MESH_CONFIG:
3574 ismesh = true;
3575 if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
3576 break;
3577 cfg = (u8 *)ie + 2;
3578 memset(&iwe, 0, sizeof(iwe));
3579 iwe.cmd = IWEVCUSTOM;
3580 iwe.u.data.length = sprintf(buf,
3581 "Mesh Network Path Selection Protocol ID: 0x%02X",
3582 cfg[0]);
3583 current_ev = iwe_stream_add_point_check(info,
3584 current_ev,
3585 end_buf,
3586 &iwe, buf);
3587 if (IS_ERR(current_ev))
3588 goto unlock;
3589 iwe.u.data.length = sprintf(buf,
3590 "Path Selection Metric ID: 0x%02X",
3591 cfg[1]);
3592 current_ev = iwe_stream_add_point_check(info,
3593 current_ev,
3594 end_buf,
3595 &iwe, buf);
3596 if (IS_ERR(current_ev))
3597 goto unlock;
3598 iwe.u.data.length = sprintf(buf,
3599 "Congestion Control Mode ID: 0x%02X",
3600 cfg[2]);
3601 current_ev = iwe_stream_add_point_check(info,
3602 current_ev,
3603 end_buf,
3604 &iwe, buf);
3605 if (IS_ERR(current_ev))
3606 goto unlock;
3607 iwe.u.data.length = sprintf(buf,
3608 "Synchronization ID: 0x%02X",
3609 cfg[3]);
3610 current_ev = iwe_stream_add_point_check(info,
3611 current_ev,
3612 end_buf,
3613 &iwe, buf);
3614 if (IS_ERR(current_ev))
3615 goto unlock;
3616 iwe.u.data.length = sprintf(buf,
3617 "Authentication ID: 0x%02X",
3618 cfg[4]);
3619 current_ev = iwe_stream_add_point_check(info,
3620 current_ev,
3621 end_buf,
3622 &iwe, buf);
3623 if (IS_ERR(current_ev))
3624 goto unlock;
3625 iwe.u.data.length = sprintf(buf,
3626 "Formation Info: 0x%02X",
3627 cfg[5]);
3628 current_ev = iwe_stream_add_point_check(info,
3629 current_ev,
3630 end_buf,
3631 &iwe, buf);
3632 if (IS_ERR(current_ev))
3633 goto unlock;
3634 iwe.u.data.length = sprintf(buf,
3635 "Capabilities: 0x%02X",
3636 cfg[6]);
3637 current_ev = iwe_stream_add_point_check(info,
3638 current_ev,
3639 end_buf,
3640 &iwe, buf);
3641 if (IS_ERR(current_ev))
3642 goto unlock;
3643 break;
3644 case WLAN_EID_SUPP_RATES:
3645 case WLAN_EID_EXT_SUPP_RATES:
3646 /* display all supported rates in readable format */
3647 p = current_ev + iwe_stream_lcp_len(info);
3648
3649 memset(&iwe, 0, sizeof(iwe));
3650 iwe.cmd = SIOCGIWRATE;
3651 /* Those two flags are ignored... */
3652 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3653
3654 for (i = 0; i < ie[1]; i++) {
3655 iwe.u.bitrate.value =
3656 ((ie[i + 2] & 0x7f) * 500000);
3657 tmp = p;
3658 p = iwe_stream_add_value(info, current_ev, p,
3659 end_buf, &iwe,
3660 IW_EV_PARAM_LEN);
3661 if (p == tmp) {
3662 current_ev = ERR_PTR(-E2BIG);
3663 goto unlock;
3664 }
3665 }
3666 current_ev = p;
3667 break;
3668 }
3669 rem -= ie[1] + 2;
3670 ie += ie[1] + 2;
3671 }
3672
3673 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3674 ismesh) {
3675 memset(&iwe, 0, sizeof(iwe));
3676 iwe.cmd = SIOCGIWMODE;
3677 if (ismesh)
3678 iwe.u.mode = IW_MODE_MESH;
3679 else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3680 iwe.u.mode = IW_MODE_MASTER;
3681 else
3682 iwe.u.mode = IW_MODE_ADHOC;
3683 current_ev = iwe_stream_add_event_check(info, current_ev,
3684 end_buf, &iwe,
3685 IW_EV_UINT_LEN);
3686 if (IS_ERR(current_ev))
3687 goto unlock;
3688 }
3689
3690 memset(&iwe, 0, sizeof(iwe));
3691 iwe.cmd = IWEVCUSTOM;
3692 iwe.u.data.length = sprintf(buf, "tsf=%016llx",
3693 (unsigned long long)(ies->tsf));
3694 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3695 &iwe, buf);
3696 if (IS_ERR(current_ev))
3697 goto unlock;
3698 memset(&iwe, 0, sizeof(iwe));
3699 iwe.cmd = IWEVCUSTOM;
3700 iwe.u.data.length = sprintf(buf, " Last beacon: %ums ago",
3701 elapsed_jiffies_msecs(bss->ts));
3702 current_ev = iwe_stream_add_point_check(info, current_ev,
3703 end_buf, &iwe, buf);
3704 if (IS_ERR(current_ev))
3705 goto unlock;
3706
3707 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3708
3709 unlock:
3710 rcu_read_unlock();
3711 return current_ev;
3712}
3713
3714
3715static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3716 struct iw_request_info *info,
3717 char *buf, size_t len)
3718{
3719 char *current_ev = buf;
3720 char *end_buf = buf + len;
3721 struct cfg80211_internal_bss *bss;
3722 int err = 0;
3723
3724 spin_lock_bh(&rdev->bss_lock);
3725 cfg80211_bss_expire(rdev);
3726
3727 list_for_each_entry(bss, &rdev->bss_list, list) {
3728 if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3729 err = -E2BIG;
3730 break;
3731 }
3732 current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3733 current_ev, end_buf);
3734 if (IS_ERR(current_ev)) {
3735 err = PTR_ERR(current_ev);
3736 break;
3737 }
3738 }
3739 spin_unlock_bh(&rdev->bss_lock);
3740
3741 if (err)
3742 return err;
3743 return current_ev - buf;
3744}
3745
3746
3747int cfg80211_wext_giwscan(struct net_device *dev,
3748 struct iw_request_info *info,
3749 union iwreq_data *wrqu, char *extra)
3750{
3751 struct iw_point *data = &wrqu->data;
3752 struct cfg80211_registered_device *rdev;
3753 int res;
3754
3755 if (!netif_running(dev))
3756 return -ENETDOWN;
3757
3758 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3759
3760 if (IS_ERR(rdev))
3761 return PTR_ERR(rdev);
3762
3763 if (rdev->scan_req || rdev->scan_msg)
3764 return -EAGAIN;
3765
3766 res = ieee80211_scan_results(rdev, info, extra, data->length);
3767 data->length = 0;
3768 if (res >= 0) {
3769 data->length = res;
3770 res = 0;
3771 }
3772
3773 return res;
3774}
3775EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3776#endif