at v6.8-rc2 170 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the Interfaces handler. 8 * 9 * Version: @(#)dev.h 1.0.10 08/12/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 15 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 16 * Bjorn Ekwall. <bj0rn@blox.se> 17 * Pekka Riikonen <priikone@poseidon.pspt.fi> 18 * 19 * Moved to /usr/include/linux for NET3 20 */ 21#ifndef _LINUX_NETDEVICE_H 22#define _LINUX_NETDEVICE_H 23 24#include <linux/timer.h> 25#include <linux/bug.h> 26#include <linux/delay.h> 27#include <linux/atomic.h> 28#include <linux/prefetch.h> 29#include <asm/cache.h> 30#include <asm/byteorder.h> 31#include <asm/local.h> 32 33#include <linux/percpu.h> 34#include <linux/rculist.h> 35#include <linux/workqueue.h> 36#include <linux/dynamic_queue_limits.h> 37 38#include <net/net_namespace.h> 39#ifdef CONFIG_DCB 40#include <net/dcbnl.h> 41#endif 42#include <net/netprio_cgroup.h> 43 44#include <linux/netdev_features.h> 45#include <linux/neighbour.h> 46#include <uapi/linux/netdevice.h> 47#include <uapi/linux/if_bonding.h> 48#include <uapi/linux/pkt_cls.h> 49#include <uapi/linux/netdev.h> 50#include <linux/hashtable.h> 51#include <linux/rbtree.h> 52#include <net/net_trackers.h> 53#include <net/net_debug.h> 54#include <net/dropreason-core.h> 55 56struct netpoll_info; 57struct device; 58struct ethtool_ops; 59struct kernel_hwtstamp_config; 60struct phy_device; 61struct dsa_port; 62struct ip_tunnel_parm; 63struct macsec_context; 64struct macsec_ops; 65struct netdev_name_node; 66struct sd_flow_limit; 67struct sfp_bus; 68/* 802.11 specific */ 69struct wireless_dev; 70/* 802.15.4 specific */ 71struct wpan_dev; 72struct mpls_dev; 73/* UDP Tunnel offloads */ 74struct udp_tunnel_info; 75struct udp_tunnel_nic_info; 76struct udp_tunnel_nic; 77struct bpf_prog; 78struct xdp_buff; 79struct xdp_frame; 80struct xdp_metadata_ops; 81struct xdp_md; 82/* DPLL specific */ 83struct dpll_pin; 84 85typedef u32 xdp_features_t; 86 87void synchronize_net(void); 88void netdev_set_default_ethtool_ops(struct net_device *dev, 89 const struct ethtool_ops *ops); 90void netdev_sw_irq_coalesce_default_on(struct net_device *dev); 91 92/* Backlog congestion levels */ 93#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 94#define NET_RX_DROP 1 /* packet dropped */ 95 96#define MAX_NEST_DEV 8 97 98/* 99 * Transmit return codes: transmit return codes originate from three different 100 * namespaces: 101 * 102 * - qdisc return codes 103 * - driver transmit return codes 104 * - errno values 105 * 106 * Drivers are allowed to return any one of those in their hard_start_xmit() 107 * function. Real network devices commonly used with qdiscs should only return 108 * the driver transmit return codes though - when qdiscs are used, the actual 109 * transmission happens asynchronously, so the value is not propagated to 110 * higher layers. Virtual network devices transmit synchronously; in this case 111 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 112 * others are propagated to higher layers. 113 */ 114 115/* qdisc ->enqueue() return codes. */ 116#define NET_XMIT_SUCCESS 0x00 117#define NET_XMIT_DROP 0x01 /* skb dropped */ 118#define NET_XMIT_CN 0x02 /* congestion notification */ 119#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 120 121/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 122 * indicates that the device will soon be dropping packets, or already drops 123 * some packets of the same priority; prompting us to send less aggressively. */ 124#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 125#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 126 127/* Driver transmit return codes */ 128#define NETDEV_TX_MASK 0xf0 129 130enum netdev_tx { 131 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 132 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 133 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 134}; 135typedef enum netdev_tx netdev_tx_t; 136 137/* 138 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 139 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 140 */ 141static inline bool dev_xmit_complete(int rc) 142{ 143 /* 144 * Positive cases with an skb consumed by a driver: 145 * - successful transmission (rc == NETDEV_TX_OK) 146 * - error while transmitting (rc < 0) 147 * - error while queueing to a different device (rc & NET_XMIT_MASK) 148 */ 149 if (likely(rc < NET_XMIT_MASK)) 150 return true; 151 152 return false; 153} 154 155/* 156 * Compute the worst-case header length according to the protocols 157 * used. 158 */ 159 160#if defined(CONFIG_HYPERV_NET) 161# define LL_MAX_HEADER 128 162#elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 163# if defined(CONFIG_MAC80211_MESH) 164# define LL_MAX_HEADER 128 165# else 166# define LL_MAX_HEADER 96 167# endif 168#else 169# define LL_MAX_HEADER 32 170#endif 171 172#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 173 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 174#define MAX_HEADER LL_MAX_HEADER 175#else 176#define MAX_HEADER (LL_MAX_HEADER + 48) 177#endif 178 179/* 180 * Old network device statistics. Fields are native words 181 * (unsigned long) so they can be read and written atomically. 182 */ 183 184#define NET_DEV_STAT(FIELD) \ 185 union { \ 186 unsigned long FIELD; \ 187 atomic_long_t __##FIELD; \ 188 } 189 190struct net_device_stats { 191 NET_DEV_STAT(rx_packets); 192 NET_DEV_STAT(tx_packets); 193 NET_DEV_STAT(rx_bytes); 194 NET_DEV_STAT(tx_bytes); 195 NET_DEV_STAT(rx_errors); 196 NET_DEV_STAT(tx_errors); 197 NET_DEV_STAT(rx_dropped); 198 NET_DEV_STAT(tx_dropped); 199 NET_DEV_STAT(multicast); 200 NET_DEV_STAT(collisions); 201 NET_DEV_STAT(rx_length_errors); 202 NET_DEV_STAT(rx_over_errors); 203 NET_DEV_STAT(rx_crc_errors); 204 NET_DEV_STAT(rx_frame_errors); 205 NET_DEV_STAT(rx_fifo_errors); 206 NET_DEV_STAT(rx_missed_errors); 207 NET_DEV_STAT(tx_aborted_errors); 208 NET_DEV_STAT(tx_carrier_errors); 209 NET_DEV_STAT(tx_fifo_errors); 210 NET_DEV_STAT(tx_heartbeat_errors); 211 NET_DEV_STAT(tx_window_errors); 212 NET_DEV_STAT(rx_compressed); 213 NET_DEV_STAT(tx_compressed); 214}; 215#undef NET_DEV_STAT 216 217/* per-cpu stats, allocated on demand. 218 * Try to fit them in a single cache line, for dev_get_stats() sake. 219 */ 220struct net_device_core_stats { 221 unsigned long rx_dropped; 222 unsigned long tx_dropped; 223 unsigned long rx_nohandler; 224 unsigned long rx_otherhost_dropped; 225} __aligned(4 * sizeof(unsigned long)); 226 227#include <linux/cache.h> 228#include <linux/skbuff.h> 229 230#ifdef CONFIG_RPS 231#include <linux/static_key.h> 232extern struct static_key_false rps_needed; 233extern struct static_key_false rfs_needed; 234#endif 235 236struct neighbour; 237struct neigh_parms; 238struct sk_buff; 239 240struct netdev_hw_addr { 241 struct list_head list; 242 struct rb_node node; 243 unsigned char addr[MAX_ADDR_LEN]; 244 unsigned char type; 245#define NETDEV_HW_ADDR_T_LAN 1 246#define NETDEV_HW_ADDR_T_SAN 2 247#define NETDEV_HW_ADDR_T_UNICAST 3 248#define NETDEV_HW_ADDR_T_MULTICAST 4 249 bool global_use; 250 int sync_cnt; 251 int refcount; 252 int synced; 253 struct rcu_head rcu_head; 254}; 255 256struct netdev_hw_addr_list { 257 struct list_head list; 258 int count; 259 260 /* Auxiliary tree for faster lookup on addition and deletion */ 261 struct rb_root tree; 262}; 263 264#define netdev_hw_addr_list_count(l) ((l)->count) 265#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 266#define netdev_hw_addr_list_for_each(ha, l) \ 267 list_for_each_entry(ha, &(l)->list, list) 268 269#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 270#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 271#define netdev_for_each_uc_addr(ha, dev) \ 272 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 273#define netdev_for_each_synced_uc_addr(_ha, _dev) \ 274 netdev_for_each_uc_addr((_ha), (_dev)) \ 275 if ((_ha)->sync_cnt) 276 277#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 278#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 279#define netdev_for_each_mc_addr(ha, dev) \ 280 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 281#define netdev_for_each_synced_mc_addr(_ha, _dev) \ 282 netdev_for_each_mc_addr((_ha), (_dev)) \ 283 if ((_ha)->sync_cnt) 284 285struct hh_cache { 286 unsigned int hh_len; 287 seqlock_t hh_lock; 288 289 /* cached hardware header; allow for machine alignment needs. */ 290#define HH_DATA_MOD 16 291#define HH_DATA_OFF(__len) \ 292 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 293#define HH_DATA_ALIGN(__len) \ 294 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 295 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 296}; 297 298/* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 299 * Alternative is: 300 * dev->hard_header_len ? (dev->hard_header_len + 301 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 302 * 303 * We could use other alignment values, but we must maintain the 304 * relationship HH alignment <= LL alignment. 305 */ 306#define LL_RESERVED_SPACE(dev) \ 307 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \ 308 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 309#define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 310 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \ 311 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 312 313struct header_ops { 314 int (*create) (struct sk_buff *skb, struct net_device *dev, 315 unsigned short type, const void *daddr, 316 const void *saddr, unsigned int len); 317 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 318 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 319 void (*cache_update)(struct hh_cache *hh, 320 const struct net_device *dev, 321 const unsigned char *haddr); 322 bool (*validate)(const char *ll_header, unsigned int len); 323 __be16 (*parse_protocol)(const struct sk_buff *skb); 324}; 325 326/* These flag bits are private to the generic network queueing 327 * layer; they may not be explicitly referenced by any other 328 * code. 329 */ 330 331enum netdev_state_t { 332 __LINK_STATE_START, 333 __LINK_STATE_PRESENT, 334 __LINK_STATE_NOCARRIER, 335 __LINK_STATE_LINKWATCH_PENDING, 336 __LINK_STATE_DORMANT, 337 __LINK_STATE_TESTING, 338}; 339 340struct gro_list { 341 struct list_head list; 342 int count; 343}; 344 345/* 346 * size of gro hash buckets, must less than bit number of 347 * napi_struct::gro_bitmask 348 */ 349#define GRO_HASH_BUCKETS 8 350 351/* 352 * Structure for NAPI scheduling similar to tasklet but with weighting 353 */ 354struct napi_struct { 355 /* The poll_list must only be managed by the entity which 356 * changes the state of the NAPI_STATE_SCHED bit. This means 357 * whoever atomically sets that bit can add this napi_struct 358 * to the per-CPU poll_list, and whoever clears that bit 359 * can remove from the list right before clearing the bit. 360 */ 361 struct list_head poll_list; 362 363 unsigned long state; 364 int weight; 365 int defer_hard_irqs_count; 366 unsigned long gro_bitmask; 367 int (*poll)(struct napi_struct *, int); 368#ifdef CONFIG_NETPOLL 369 /* CPU actively polling if netpoll is configured */ 370 int poll_owner; 371#endif 372 /* CPU on which NAPI has been scheduled for processing */ 373 int list_owner; 374 struct net_device *dev; 375 struct gro_list gro_hash[GRO_HASH_BUCKETS]; 376 struct sk_buff *skb; 377 struct list_head rx_list; /* Pending GRO_NORMAL skbs */ 378 int rx_count; /* length of rx_list */ 379 unsigned int napi_id; 380 struct hrtimer timer; 381 struct task_struct *thread; 382 /* control-path-only fields follow */ 383 struct list_head dev_list; 384 struct hlist_node napi_hash_node; 385 int irq; 386}; 387 388enum { 389 NAPI_STATE_SCHED, /* Poll is scheduled */ 390 NAPI_STATE_MISSED, /* reschedule a napi */ 391 NAPI_STATE_DISABLE, /* Disable pending */ 392 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 393 NAPI_STATE_LISTED, /* NAPI added to system lists */ 394 NAPI_STATE_NO_BUSY_POLL, /* Do not add in napi_hash, no busy polling */ 395 NAPI_STATE_IN_BUSY_POLL, /* sk_busy_loop() owns this NAPI */ 396 NAPI_STATE_PREFER_BUSY_POLL, /* prefer busy-polling over softirq processing*/ 397 NAPI_STATE_THREADED, /* The poll is performed inside its own thread*/ 398 NAPI_STATE_SCHED_THREADED, /* Napi is currently scheduled in threaded mode */ 399}; 400 401enum { 402 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 403 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 404 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 405 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 406 NAPIF_STATE_LISTED = BIT(NAPI_STATE_LISTED), 407 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 408 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 409 NAPIF_STATE_PREFER_BUSY_POLL = BIT(NAPI_STATE_PREFER_BUSY_POLL), 410 NAPIF_STATE_THREADED = BIT(NAPI_STATE_THREADED), 411 NAPIF_STATE_SCHED_THREADED = BIT(NAPI_STATE_SCHED_THREADED), 412}; 413 414enum gro_result { 415 GRO_MERGED, 416 GRO_MERGED_FREE, 417 GRO_HELD, 418 GRO_NORMAL, 419 GRO_CONSUMED, 420}; 421typedef enum gro_result gro_result_t; 422 423/* 424 * enum rx_handler_result - Possible return values for rx_handlers. 425 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 426 * further. 427 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 428 * case skb->dev was changed by rx_handler. 429 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 430 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 431 * 432 * rx_handlers are functions called from inside __netif_receive_skb(), to do 433 * special processing of the skb, prior to delivery to protocol handlers. 434 * 435 * Currently, a net_device can only have a single rx_handler registered. Trying 436 * to register a second rx_handler will return -EBUSY. 437 * 438 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 439 * To unregister a rx_handler on a net_device, use 440 * netdev_rx_handler_unregister(). 441 * 442 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 443 * do with the skb. 444 * 445 * If the rx_handler consumed the skb in some way, it should return 446 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 447 * the skb to be delivered in some other way. 448 * 449 * If the rx_handler changed skb->dev, to divert the skb to another 450 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 451 * new device will be called if it exists. 452 * 453 * If the rx_handler decides the skb should be ignored, it should return 454 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 455 * are registered on exact device (ptype->dev == skb->dev). 456 * 457 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 458 * delivered, it should return RX_HANDLER_PASS. 459 * 460 * A device without a registered rx_handler will behave as if rx_handler 461 * returned RX_HANDLER_PASS. 462 */ 463 464enum rx_handler_result { 465 RX_HANDLER_CONSUMED, 466 RX_HANDLER_ANOTHER, 467 RX_HANDLER_EXACT, 468 RX_HANDLER_PASS, 469}; 470typedef enum rx_handler_result rx_handler_result_t; 471typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 472 473void __napi_schedule(struct napi_struct *n); 474void __napi_schedule_irqoff(struct napi_struct *n); 475 476static inline bool napi_disable_pending(struct napi_struct *n) 477{ 478 return test_bit(NAPI_STATE_DISABLE, &n->state); 479} 480 481static inline bool napi_prefer_busy_poll(struct napi_struct *n) 482{ 483 return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state); 484} 485 486/** 487 * napi_is_scheduled - test if NAPI is scheduled 488 * @n: NAPI context 489 * 490 * This check is "best-effort". With no locking implemented, 491 * a NAPI can be scheduled or terminate right after this check 492 * and produce not precise results. 493 * 494 * NAPI_STATE_SCHED is an internal state, napi_is_scheduled 495 * should not be used normally and napi_schedule should be 496 * used instead. 497 * 498 * Use only if the driver really needs to check if a NAPI 499 * is scheduled for example in the context of delayed timer 500 * that can be skipped if a NAPI is already scheduled. 501 * 502 * Return True if NAPI is scheduled, False otherwise. 503 */ 504static inline bool napi_is_scheduled(struct napi_struct *n) 505{ 506 return test_bit(NAPI_STATE_SCHED, &n->state); 507} 508 509bool napi_schedule_prep(struct napi_struct *n); 510 511/** 512 * napi_schedule - schedule NAPI poll 513 * @n: NAPI context 514 * 515 * Schedule NAPI poll routine to be called if it is not already 516 * running. 517 * Return true if we schedule a NAPI or false if not. 518 * Refer to napi_schedule_prep() for additional reason on why 519 * a NAPI might not be scheduled. 520 */ 521static inline bool napi_schedule(struct napi_struct *n) 522{ 523 if (napi_schedule_prep(n)) { 524 __napi_schedule(n); 525 return true; 526 } 527 528 return false; 529} 530 531/** 532 * napi_schedule_irqoff - schedule NAPI poll 533 * @n: NAPI context 534 * 535 * Variant of napi_schedule(), assuming hard irqs are masked. 536 */ 537static inline void napi_schedule_irqoff(struct napi_struct *n) 538{ 539 if (napi_schedule_prep(n)) 540 __napi_schedule_irqoff(n); 541} 542 543/** 544 * napi_complete_done - NAPI processing complete 545 * @n: NAPI context 546 * @work_done: number of packets processed 547 * 548 * Mark NAPI processing as complete. Should only be called if poll budget 549 * has not been completely consumed. 550 * Prefer over napi_complete(). 551 * Return false if device should avoid rearming interrupts. 552 */ 553bool napi_complete_done(struct napi_struct *n, int work_done); 554 555static inline bool napi_complete(struct napi_struct *n) 556{ 557 return napi_complete_done(n, 0); 558} 559 560int dev_set_threaded(struct net_device *dev, bool threaded); 561 562/** 563 * napi_disable - prevent NAPI from scheduling 564 * @n: NAPI context 565 * 566 * Stop NAPI from being scheduled on this context. 567 * Waits till any outstanding processing completes. 568 */ 569void napi_disable(struct napi_struct *n); 570 571void napi_enable(struct napi_struct *n); 572 573/** 574 * napi_synchronize - wait until NAPI is not running 575 * @n: NAPI context 576 * 577 * Wait until NAPI is done being scheduled on this context. 578 * Waits till any outstanding processing completes but 579 * does not disable future activations. 580 */ 581static inline void napi_synchronize(const struct napi_struct *n) 582{ 583 if (IS_ENABLED(CONFIG_SMP)) 584 while (test_bit(NAPI_STATE_SCHED, &n->state)) 585 msleep(1); 586 else 587 barrier(); 588} 589 590/** 591 * napi_if_scheduled_mark_missed - if napi is running, set the 592 * NAPIF_STATE_MISSED 593 * @n: NAPI context 594 * 595 * If napi is running, set the NAPIF_STATE_MISSED, and return true if 596 * NAPI is scheduled. 597 **/ 598static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) 599{ 600 unsigned long val, new; 601 602 val = READ_ONCE(n->state); 603 do { 604 if (val & NAPIF_STATE_DISABLE) 605 return true; 606 607 if (!(val & NAPIF_STATE_SCHED)) 608 return false; 609 610 new = val | NAPIF_STATE_MISSED; 611 } while (!try_cmpxchg(&n->state, &val, new)); 612 613 return true; 614} 615 616enum netdev_queue_state_t { 617 __QUEUE_STATE_DRV_XOFF, 618 __QUEUE_STATE_STACK_XOFF, 619 __QUEUE_STATE_FROZEN, 620}; 621 622#define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 623#define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 624#define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 625 626#define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 627#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 628 QUEUE_STATE_FROZEN) 629#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 630 QUEUE_STATE_FROZEN) 631 632/* 633 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 634 * netif_tx_* functions below are used to manipulate this flag. The 635 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 636 * queue independently. The netif_xmit_*stopped functions below are called 637 * to check if the queue has been stopped by the driver or stack (either 638 * of the XOFF bits are set in the state). Drivers should not need to call 639 * netif_xmit*stopped functions, they should only be using netif_tx_*. 640 */ 641 642struct netdev_queue { 643/* 644 * read-mostly part 645 */ 646 struct net_device *dev; 647 netdevice_tracker dev_tracker; 648 649 struct Qdisc __rcu *qdisc; 650 struct Qdisc __rcu *qdisc_sleeping; 651#ifdef CONFIG_SYSFS 652 struct kobject kobj; 653#endif 654#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 655 int numa_node; 656#endif 657 unsigned long tx_maxrate; 658 /* 659 * Number of TX timeouts for this queue 660 * (/sys/class/net/DEV/Q/trans_timeout) 661 */ 662 atomic_long_t trans_timeout; 663 664 /* Subordinate device that the queue has been assigned to */ 665 struct net_device *sb_dev; 666#ifdef CONFIG_XDP_SOCKETS 667 struct xsk_buff_pool *pool; 668#endif 669 /* NAPI instance for the queue 670 * Readers and writers must hold RTNL 671 */ 672 struct napi_struct *napi; 673/* 674 * write-mostly part 675 */ 676 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 677 int xmit_lock_owner; 678 /* 679 * Time (in jiffies) of last Tx 680 */ 681 unsigned long trans_start; 682 683 unsigned long state; 684 685#ifdef CONFIG_BQL 686 struct dql dql; 687#endif 688} ____cacheline_aligned_in_smp; 689 690extern int sysctl_fb_tunnels_only_for_init_net; 691extern int sysctl_devconf_inherit_init_net; 692 693/* 694 * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns 695 * == 1 : For initns only 696 * == 2 : For none. 697 */ 698static inline bool net_has_fallback_tunnels(const struct net *net) 699{ 700#if IS_ENABLED(CONFIG_SYSCTL) 701 int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net); 702 703 return !fb_tunnels_only_for_init_net || 704 (net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1); 705#else 706 return true; 707#endif 708} 709 710static inline int net_inherit_devconf(void) 711{ 712#if IS_ENABLED(CONFIG_SYSCTL) 713 return READ_ONCE(sysctl_devconf_inherit_init_net); 714#else 715 return 0; 716#endif 717} 718 719static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 720{ 721#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 722 return q->numa_node; 723#else 724 return NUMA_NO_NODE; 725#endif 726} 727 728static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 729{ 730#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 731 q->numa_node = node; 732#endif 733} 734 735#ifdef CONFIG_RPS 736/* 737 * This structure holds an RPS map which can be of variable length. The 738 * map is an array of CPUs. 739 */ 740struct rps_map { 741 unsigned int len; 742 struct rcu_head rcu; 743 u16 cpus[]; 744}; 745#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 746 747/* 748 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 749 * tail pointer for that CPU's input queue at the time of last enqueue, and 750 * a hardware filter index. 751 */ 752struct rps_dev_flow { 753 u16 cpu; 754 u16 filter; 755 unsigned int last_qtail; 756}; 757#define RPS_NO_FILTER 0xffff 758 759/* 760 * The rps_dev_flow_table structure contains a table of flow mappings. 761 */ 762struct rps_dev_flow_table { 763 unsigned int mask; 764 struct rcu_head rcu; 765 struct rps_dev_flow flows[]; 766}; 767#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 768 ((_num) * sizeof(struct rps_dev_flow))) 769 770/* 771 * The rps_sock_flow_table contains mappings of flows to the last CPU 772 * on which they were processed by the application (set in recvmsg). 773 * Each entry is a 32bit value. Upper part is the high-order bits 774 * of flow hash, lower part is CPU number. 775 * rps_cpu_mask is used to partition the space, depending on number of 776 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 777 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 778 * meaning we use 32-6=26 bits for the hash. 779 */ 780struct rps_sock_flow_table { 781 u32 mask; 782 783 u32 ents[] ____cacheline_aligned_in_smp; 784}; 785#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 786 787#define RPS_NO_CPU 0xffff 788 789extern u32 rps_cpu_mask; 790extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 791 792static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 793 u32 hash) 794{ 795 if (table && hash) { 796 unsigned int index = hash & table->mask; 797 u32 val = hash & ~rps_cpu_mask; 798 799 /* We only give a hint, preemption can change CPU under us */ 800 val |= raw_smp_processor_id(); 801 802 /* The following WRITE_ONCE() is paired with the READ_ONCE() 803 * here, and another one in get_rps_cpu(). 804 */ 805 if (READ_ONCE(table->ents[index]) != val) 806 WRITE_ONCE(table->ents[index], val); 807 } 808} 809 810#ifdef CONFIG_RFS_ACCEL 811bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 812 u16 filter_id); 813#endif 814#endif /* CONFIG_RPS */ 815 816/* XPS map type and offset of the xps map within net_device->xps_maps[]. */ 817enum xps_map_type { 818 XPS_CPUS = 0, 819 XPS_RXQS, 820 XPS_MAPS_MAX, 821}; 822 823#ifdef CONFIG_XPS 824/* 825 * This structure holds an XPS map which can be of variable length. The 826 * map is an array of queues. 827 */ 828struct xps_map { 829 unsigned int len; 830 unsigned int alloc_len; 831 struct rcu_head rcu; 832 u16 queues[]; 833}; 834#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 835#define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 836 - sizeof(struct xps_map)) / sizeof(u16)) 837 838/* 839 * This structure holds all XPS maps for device. Maps are indexed by CPU. 840 * 841 * We keep track of the number of cpus/rxqs used when the struct is allocated, 842 * in nr_ids. This will help not accessing out-of-bound memory. 843 * 844 * We keep track of the number of traffic classes used when the struct is 845 * allocated, in num_tc. This will be used to navigate the maps, to ensure we're 846 * not crossing its upper bound, as the original dev->num_tc can be updated in 847 * the meantime. 848 */ 849struct xps_dev_maps { 850 struct rcu_head rcu; 851 unsigned int nr_ids; 852 s16 num_tc; 853 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */ 854}; 855 856#define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 857 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 858 859#define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 860 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 861 862#endif /* CONFIG_XPS */ 863 864#define TC_MAX_QUEUE 16 865#define TC_BITMASK 15 866/* HW offloaded queuing disciplines txq count and offset maps */ 867struct netdev_tc_txq { 868 u16 count; 869 u16 offset; 870}; 871 872#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 873/* 874 * This structure is to hold information about the device 875 * configured to run FCoE protocol stack. 876 */ 877struct netdev_fcoe_hbainfo { 878 char manufacturer[64]; 879 char serial_number[64]; 880 char hardware_version[64]; 881 char driver_version[64]; 882 char optionrom_version[64]; 883 char firmware_version[64]; 884 char model[256]; 885 char model_description[256]; 886}; 887#endif 888 889#define MAX_PHYS_ITEM_ID_LEN 32 890 891/* This structure holds a unique identifier to identify some 892 * physical item (port for example) used by a netdevice. 893 */ 894struct netdev_phys_item_id { 895 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 896 unsigned char id_len; 897}; 898 899static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 900 struct netdev_phys_item_id *b) 901{ 902 return a->id_len == b->id_len && 903 memcmp(a->id, b->id, a->id_len) == 0; 904} 905 906typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 907 struct sk_buff *skb, 908 struct net_device *sb_dev); 909 910enum net_device_path_type { 911 DEV_PATH_ETHERNET = 0, 912 DEV_PATH_VLAN, 913 DEV_PATH_BRIDGE, 914 DEV_PATH_PPPOE, 915 DEV_PATH_DSA, 916 DEV_PATH_MTK_WDMA, 917}; 918 919struct net_device_path { 920 enum net_device_path_type type; 921 const struct net_device *dev; 922 union { 923 struct { 924 u16 id; 925 __be16 proto; 926 u8 h_dest[ETH_ALEN]; 927 } encap; 928 struct { 929 enum { 930 DEV_PATH_BR_VLAN_KEEP, 931 DEV_PATH_BR_VLAN_TAG, 932 DEV_PATH_BR_VLAN_UNTAG, 933 DEV_PATH_BR_VLAN_UNTAG_HW, 934 } vlan_mode; 935 u16 vlan_id; 936 __be16 vlan_proto; 937 } bridge; 938 struct { 939 int port; 940 u16 proto; 941 } dsa; 942 struct { 943 u8 wdma_idx; 944 u8 queue; 945 u16 wcid; 946 u8 bss; 947 u8 amsdu; 948 } mtk_wdma; 949 }; 950}; 951 952#define NET_DEVICE_PATH_STACK_MAX 5 953#define NET_DEVICE_PATH_VLAN_MAX 2 954 955struct net_device_path_stack { 956 int num_paths; 957 struct net_device_path path[NET_DEVICE_PATH_STACK_MAX]; 958}; 959 960struct net_device_path_ctx { 961 const struct net_device *dev; 962 u8 daddr[ETH_ALEN]; 963 964 int num_vlans; 965 struct { 966 u16 id; 967 __be16 proto; 968 } vlan[NET_DEVICE_PATH_VLAN_MAX]; 969}; 970 971enum tc_setup_type { 972 TC_QUERY_CAPS, 973 TC_SETUP_QDISC_MQPRIO, 974 TC_SETUP_CLSU32, 975 TC_SETUP_CLSFLOWER, 976 TC_SETUP_CLSMATCHALL, 977 TC_SETUP_CLSBPF, 978 TC_SETUP_BLOCK, 979 TC_SETUP_QDISC_CBS, 980 TC_SETUP_QDISC_RED, 981 TC_SETUP_QDISC_PRIO, 982 TC_SETUP_QDISC_MQ, 983 TC_SETUP_QDISC_ETF, 984 TC_SETUP_ROOT_QDISC, 985 TC_SETUP_QDISC_GRED, 986 TC_SETUP_QDISC_TAPRIO, 987 TC_SETUP_FT, 988 TC_SETUP_QDISC_ETS, 989 TC_SETUP_QDISC_TBF, 990 TC_SETUP_QDISC_FIFO, 991 TC_SETUP_QDISC_HTB, 992 TC_SETUP_ACT, 993}; 994 995/* These structures hold the attributes of bpf state that are being passed 996 * to the netdevice through the bpf op. 997 */ 998enum bpf_netdev_command { 999 /* Set or clear a bpf program used in the earliest stages of packet 1000 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 1001 * is responsible for calling bpf_prog_put on any old progs that are 1002 * stored. In case of error, the callee need not release the new prog 1003 * reference, but on success it takes ownership and must bpf_prog_put 1004 * when it is no longer used. 1005 */ 1006 XDP_SETUP_PROG, 1007 XDP_SETUP_PROG_HW, 1008 /* BPF program for offload callbacks, invoked at program load time. */ 1009 BPF_OFFLOAD_MAP_ALLOC, 1010 BPF_OFFLOAD_MAP_FREE, 1011 XDP_SETUP_XSK_POOL, 1012}; 1013 1014struct bpf_prog_offload_ops; 1015struct netlink_ext_ack; 1016struct xdp_umem; 1017struct xdp_dev_bulk_queue; 1018struct bpf_xdp_link; 1019 1020enum bpf_xdp_mode { 1021 XDP_MODE_SKB = 0, 1022 XDP_MODE_DRV = 1, 1023 XDP_MODE_HW = 2, 1024 __MAX_XDP_MODE 1025}; 1026 1027struct bpf_xdp_entity { 1028 struct bpf_prog *prog; 1029 struct bpf_xdp_link *link; 1030}; 1031 1032struct netdev_bpf { 1033 enum bpf_netdev_command command; 1034 union { 1035 /* XDP_SETUP_PROG */ 1036 struct { 1037 u32 flags; 1038 struct bpf_prog *prog; 1039 struct netlink_ext_ack *extack; 1040 }; 1041 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 1042 struct { 1043 struct bpf_offloaded_map *offmap; 1044 }; 1045 /* XDP_SETUP_XSK_POOL */ 1046 struct { 1047 struct xsk_buff_pool *pool; 1048 u16 queue_id; 1049 } xsk; 1050 }; 1051}; 1052 1053/* Flags for ndo_xsk_wakeup. */ 1054#define XDP_WAKEUP_RX (1 << 0) 1055#define XDP_WAKEUP_TX (1 << 1) 1056 1057#ifdef CONFIG_XFRM_OFFLOAD 1058struct xfrmdev_ops { 1059 int (*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack); 1060 void (*xdo_dev_state_delete) (struct xfrm_state *x); 1061 void (*xdo_dev_state_free) (struct xfrm_state *x); 1062 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 1063 struct xfrm_state *x); 1064 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 1065 void (*xdo_dev_state_update_curlft) (struct xfrm_state *x); 1066 int (*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack); 1067 void (*xdo_dev_policy_delete) (struct xfrm_policy *x); 1068 void (*xdo_dev_policy_free) (struct xfrm_policy *x); 1069}; 1070#endif 1071 1072struct dev_ifalias { 1073 struct rcu_head rcuhead; 1074 char ifalias[]; 1075}; 1076 1077struct devlink; 1078struct tlsdev_ops; 1079 1080struct netdev_net_notifier { 1081 struct list_head list; 1082 struct notifier_block *nb; 1083}; 1084 1085/* 1086 * This structure defines the management hooks for network devices. 1087 * The following hooks can be defined; unless noted otherwise, they are 1088 * optional and can be filled with a null pointer. 1089 * 1090 * int (*ndo_init)(struct net_device *dev); 1091 * This function is called once when a network device is registered. 1092 * The network device can use this for any late stage initialization 1093 * or semantic validation. It can fail with an error code which will 1094 * be propagated back to register_netdev. 1095 * 1096 * void (*ndo_uninit)(struct net_device *dev); 1097 * This function is called when device is unregistered or when registration 1098 * fails. It is not called if init fails. 1099 * 1100 * int (*ndo_open)(struct net_device *dev); 1101 * This function is called when a network device transitions to the up 1102 * state. 1103 * 1104 * int (*ndo_stop)(struct net_device *dev); 1105 * This function is called when a network device transitions to the down 1106 * state. 1107 * 1108 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1109 * struct net_device *dev); 1110 * Called when a packet needs to be transmitted. 1111 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 1112 * the queue before that can happen; it's for obsolete devices and weird 1113 * corner cases, but the stack really does a non-trivial amount 1114 * of useless work if you return NETDEV_TX_BUSY. 1115 * Required; cannot be NULL. 1116 * 1117 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1118 * struct net_device *dev 1119 * netdev_features_t features); 1120 * Called by core transmit path to determine if device is capable of 1121 * performing offload operations on a given packet. This is to give 1122 * the device an opportunity to implement any restrictions that cannot 1123 * be otherwise expressed by feature flags. The check is called with 1124 * the set of features that the stack has calculated and it returns 1125 * those the driver believes to be appropriate. 1126 * 1127 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 1128 * struct net_device *sb_dev); 1129 * Called to decide which queue to use when device supports multiple 1130 * transmit queues. 1131 * 1132 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 1133 * This function is called to allow device receiver to make 1134 * changes to configuration when multicast or promiscuous is enabled. 1135 * 1136 * void (*ndo_set_rx_mode)(struct net_device *dev); 1137 * This function is called device changes address list filtering. 1138 * If driver handles unicast address filtering, it should set 1139 * IFF_UNICAST_FLT in its priv_flags. 1140 * 1141 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 1142 * This function is called when the Media Access Control address 1143 * needs to be changed. If this interface is not defined, the 1144 * MAC address can not be changed. 1145 * 1146 * int (*ndo_validate_addr)(struct net_device *dev); 1147 * Test if Media Access Control address is valid for the device. 1148 * 1149 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1150 * Old-style ioctl entry point. This is used internally by the 1151 * appletalk and ieee802154 subsystems but is no longer called by 1152 * the device ioctl handler. 1153 * 1154 * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd); 1155 * Used by the bonding driver for its device specific ioctls: 1156 * SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE, 1157 * SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY 1158 * 1159 * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1160 * Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG, 1161 * SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP. 1162 * 1163 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 1164 * Used to set network devices bus interface parameters. This interface 1165 * is retained for legacy reasons; new devices should use the bus 1166 * interface (PCI) for low level management. 1167 * 1168 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 1169 * Called when a user wants to change the Maximum Transfer Unit 1170 * of a device. 1171 * 1172 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue); 1173 * Callback used when the transmitter has not made any progress 1174 * for dev->watchdog ticks. 1175 * 1176 * void (*ndo_get_stats64)(struct net_device *dev, 1177 * struct rtnl_link_stats64 *storage); 1178 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1179 * Called when a user wants to get the network device usage 1180 * statistics. Drivers must do one of the following: 1181 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1182 * rtnl_link_stats64 structure passed by the caller. 1183 * 2. Define @ndo_get_stats to update a net_device_stats structure 1184 * (which should normally be dev->stats) and return a pointer to 1185 * it. The structure may be changed asynchronously only if each 1186 * field is written atomically. 1187 * 3. Update dev->stats asynchronously and atomically, and define 1188 * neither operation. 1189 * 1190 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1191 * Return true if this device supports offload stats of this attr_id. 1192 * 1193 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1194 * void *attr_data) 1195 * Get statistics for offload operations by attr_id. Write it into the 1196 * attr_data pointer. 1197 * 1198 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1199 * If device supports VLAN filtering this function is called when a 1200 * VLAN id is registered. 1201 * 1202 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1203 * If device supports VLAN filtering this function is called when a 1204 * VLAN id is unregistered. 1205 * 1206 * void (*ndo_poll_controller)(struct net_device *dev); 1207 * 1208 * SR-IOV management functions. 1209 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1210 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1211 * u8 qos, __be16 proto); 1212 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1213 * int max_tx_rate); 1214 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1215 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1216 * int (*ndo_get_vf_config)(struct net_device *dev, 1217 * int vf, struct ifla_vf_info *ivf); 1218 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1219 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1220 * struct nlattr *port[]); 1221 * 1222 * Enable or disable the VF ability to query its RSS Redirection Table and 1223 * Hash Key. This is needed since on some devices VF share this information 1224 * with PF and querying it may introduce a theoretical security risk. 1225 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1226 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1227 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1228 * void *type_data); 1229 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1230 * This is always called from the stack with the rtnl lock held and netif 1231 * tx queues stopped. This allows the netdevice to perform queue 1232 * management safely. 1233 * 1234 * Fiber Channel over Ethernet (FCoE) offload functions. 1235 * int (*ndo_fcoe_enable)(struct net_device *dev); 1236 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1237 * so the underlying device can perform whatever needed configuration or 1238 * initialization to support acceleration of FCoE traffic. 1239 * 1240 * int (*ndo_fcoe_disable)(struct net_device *dev); 1241 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1242 * so the underlying device can perform whatever needed clean-ups to 1243 * stop supporting acceleration of FCoE traffic. 1244 * 1245 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1246 * struct scatterlist *sgl, unsigned int sgc); 1247 * Called when the FCoE Initiator wants to initialize an I/O that 1248 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1249 * perform necessary setup and returns 1 to indicate the device is set up 1250 * successfully to perform DDP on this I/O, otherwise this returns 0. 1251 * 1252 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1253 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1254 * indicated by the FC exchange id 'xid', so the underlying device can 1255 * clean up and reuse resources for later DDP requests. 1256 * 1257 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1258 * struct scatterlist *sgl, unsigned int sgc); 1259 * Called when the FCoE Target wants to initialize an I/O that 1260 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1261 * perform necessary setup and returns 1 to indicate the device is set up 1262 * successfully to perform DDP on this I/O, otherwise this returns 0. 1263 * 1264 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1265 * struct netdev_fcoe_hbainfo *hbainfo); 1266 * Called when the FCoE Protocol stack wants information on the underlying 1267 * device. This information is utilized by the FCoE protocol stack to 1268 * register attributes with Fiber Channel management service as per the 1269 * FC-GS Fabric Device Management Information(FDMI) specification. 1270 * 1271 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1272 * Called when the underlying device wants to override default World Wide 1273 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1274 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1275 * protocol stack to use. 1276 * 1277 * RFS acceleration. 1278 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1279 * u16 rxq_index, u32 flow_id); 1280 * Set hardware filter for RFS. rxq_index is the target queue index; 1281 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1282 * Return the filter ID on success, or a negative error code. 1283 * 1284 * Slave management functions (for bridge, bonding, etc). 1285 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1286 * Called to make another netdev an underling. 1287 * 1288 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1289 * Called to release previously enslaved netdev. 1290 * 1291 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev, 1292 * struct sk_buff *skb, 1293 * bool all_slaves); 1294 * Get the xmit slave of master device. If all_slaves is true, function 1295 * assume all the slaves can transmit. 1296 * 1297 * Feature/offload setting functions. 1298 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1299 * netdev_features_t features); 1300 * Adjusts the requested feature flags according to device-specific 1301 * constraints, and returns the resulting flags. Must not modify 1302 * the device state. 1303 * 1304 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1305 * Called to update device configuration to new features. Passed 1306 * feature set might be less than what was returned by ndo_fix_features()). 1307 * Must return >0 or -errno if it changed dev->features itself. 1308 * 1309 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1310 * struct net_device *dev, 1311 * const unsigned char *addr, u16 vid, u16 flags, 1312 * struct netlink_ext_ack *extack); 1313 * Adds an FDB entry to dev for addr. 1314 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1315 * struct net_device *dev, 1316 * const unsigned char *addr, u16 vid) 1317 * Deletes the FDB entry from dev coresponding to addr. 1318 * int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, struct net_device *dev, 1319 * struct netlink_ext_ack *extack); 1320 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1321 * struct net_device *dev, struct net_device *filter_dev, 1322 * int *idx) 1323 * Used to add FDB entries to dump requests. Implementers should add 1324 * entries to skb and update idx with the number of entries. 1325 * 1326 * int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[], 1327 * u16 nlmsg_flags, struct netlink_ext_ack *extack); 1328 * Adds an MDB entry to dev. 1329 * int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[], 1330 * struct netlink_ext_ack *extack); 1331 * Deletes the MDB entry from dev. 1332 * int (*ndo_mdb_del_bulk)(struct net_device *dev, struct nlattr *tb[], 1333 * struct netlink_ext_ack *extack); 1334 * Bulk deletes MDB entries from dev. 1335 * int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb, 1336 * struct netlink_callback *cb); 1337 * Dumps MDB entries from dev. The first argument (marker) in the netlink 1338 * callback is used by core rtnetlink code. 1339 * 1340 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1341 * u16 flags, struct netlink_ext_ack *extack) 1342 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1343 * struct net_device *dev, u32 filter_mask, 1344 * int nlflags) 1345 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1346 * u16 flags); 1347 * 1348 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1349 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1350 * which do not represent real hardware may define this to allow their 1351 * userspace components to manage their virtual carrier state. Devices 1352 * that determine carrier state from physical hardware properties (eg 1353 * network cables) or protocol-dependent mechanisms (eg 1354 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1355 * 1356 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1357 * struct netdev_phys_item_id *ppid); 1358 * Called to get ID of physical port of this device. If driver does 1359 * not implement this, it is assumed that the hw is not able to have 1360 * multiple net devices on single physical port. 1361 * 1362 * int (*ndo_get_port_parent_id)(struct net_device *dev, 1363 * struct netdev_phys_item_id *ppid) 1364 * Called to get the parent ID of the physical port of this device. 1365 * 1366 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1367 * struct net_device *dev) 1368 * Called by upper layer devices to accelerate switching or other 1369 * station functionality into hardware. 'pdev is the lowerdev 1370 * to use for the offload and 'dev' is the net device that will 1371 * back the offload. Returns a pointer to the private structure 1372 * the upper layer will maintain. 1373 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1374 * Called by upper layer device to delete the station created 1375 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1376 * the station and priv is the structure returned by the add 1377 * operation. 1378 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1379 * int queue_index, u32 maxrate); 1380 * Called when a user wants to set a max-rate limitation of specific 1381 * TX queue. 1382 * int (*ndo_get_iflink)(const struct net_device *dev); 1383 * Called to get the iflink value of this device. 1384 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1385 * This function is used to get egress tunnel information for given skb. 1386 * This is useful for retrieving outer tunnel header parameters while 1387 * sampling packet. 1388 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1389 * This function is used to specify the headroom that the skb must 1390 * consider when allocation skb during packet reception. Setting 1391 * appropriate rx headroom value allows avoiding skb head copy on 1392 * forward. Setting a negative value resets the rx headroom to the 1393 * default value. 1394 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1395 * This function is used to set or query state related to XDP on the 1396 * netdevice and manage BPF offload. See definition of 1397 * enum bpf_netdev_command for details. 1398 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1399 * u32 flags); 1400 * This function is used to submit @n XDP packets for transmit on a 1401 * netdevice. Returns number of frames successfully transmitted, frames 1402 * that got dropped are freed/returned via xdp_return_frame(). 1403 * Returns negative number, means general error invoking ndo, meaning 1404 * no frames were xmit'ed and core-caller will free all frames. 1405 * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1406 * struct xdp_buff *xdp); 1407 * Get the xmit slave of master device based on the xdp_buff. 1408 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags); 1409 * This function is used to wake up the softirq, ksoftirqd or kthread 1410 * responsible for sending and/or receiving packets on a specific 1411 * queue id bound to an AF_XDP socket. The flags field specifies if 1412 * only RX, only Tx, or both should be woken up using the flags 1413 * XDP_WAKEUP_RX and XDP_WAKEUP_TX. 1414 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p, 1415 * int cmd); 1416 * Add, change, delete or get information on an IPv4 tunnel. 1417 * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev); 1418 * If a device is paired with a peer device, return the peer instance. 1419 * The caller must be under RCU read context. 1420 * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path); 1421 * Get the forwarding path to reach the real device from the HW destination address 1422 * ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1423 * const struct skb_shared_hwtstamps *hwtstamps, 1424 * bool cycles); 1425 * Get hardware timestamp based on normal/adjustable time or free running 1426 * cycle counter. This function is required if physical clock supports a 1427 * free running cycle counter. 1428 * 1429 * int (*ndo_hwtstamp_get)(struct net_device *dev, 1430 * struct kernel_hwtstamp_config *kernel_config); 1431 * Get the currently configured hardware timestamping parameters for the 1432 * NIC device. 1433 * 1434 * int (*ndo_hwtstamp_set)(struct net_device *dev, 1435 * struct kernel_hwtstamp_config *kernel_config, 1436 * struct netlink_ext_ack *extack); 1437 * Change the hardware timestamping parameters for NIC device. 1438 */ 1439struct net_device_ops { 1440 int (*ndo_init)(struct net_device *dev); 1441 void (*ndo_uninit)(struct net_device *dev); 1442 int (*ndo_open)(struct net_device *dev); 1443 int (*ndo_stop)(struct net_device *dev); 1444 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1445 struct net_device *dev); 1446 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1447 struct net_device *dev, 1448 netdev_features_t features); 1449 u16 (*ndo_select_queue)(struct net_device *dev, 1450 struct sk_buff *skb, 1451 struct net_device *sb_dev); 1452 void (*ndo_change_rx_flags)(struct net_device *dev, 1453 int flags); 1454 void (*ndo_set_rx_mode)(struct net_device *dev); 1455 int (*ndo_set_mac_address)(struct net_device *dev, 1456 void *addr); 1457 int (*ndo_validate_addr)(struct net_device *dev); 1458 int (*ndo_do_ioctl)(struct net_device *dev, 1459 struct ifreq *ifr, int cmd); 1460 int (*ndo_eth_ioctl)(struct net_device *dev, 1461 struct ifreq *ifr, int cmd); 1462 int (*ndo_siocbond)(struct net_device *dev, 1463 struct ifreq *ifr, int cmd); 1464 int (*ndo_siocwandev)(struct net_device *dev, 1465 struct if_settings *ifs); 1466 int (*ndo_siocdevprivate)(struct net_device *dev, 1467 struct ifreq *ifr, 1468 void __user *data, int cmd); 1469 int (*ndo_set_config)(struct net_device *dev, 1470 struct ifmap *map); 1471 int (*ndo_change_mtu)(struct net_device *dev, 1472 int new_mtu); 1473 int (*ndo_neigh_setup)(struct net_device *dev, 1474 struct neigh_parms *); 1475 void (*ndo_tx_timeout) (struct net_device *dev, 1476 unsigned int txqueue); 1477 1478 void (*ndo_get_stats64)(struct net_device *dev, 1479 struct rtnl_link_stats64 *storage); 1480 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1481 int (*ndo_get_offload_stats)(int attr_id, 1482 const struct net_device *dev, 1483 void *attr_data); 1484 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1485 1486 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1487 __be16 proto, u16 vid); 1488 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1489 __be16 proto, u16 vid); 1490#ifdef CONFIG_NET_POLL_CONTROLLER 1491 void (*ndo_poll_controller)(struct net_device *dev); 1492 int (*ndo_netpoll_setup)(struct net_device *dev, 1493 struct netpoll_info *info); 1494 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1495#endif 1496 int (*ndo_set_vf_mac)(struct net_device *dev, 1497 int queue, u8 *mac); 1498 int (*ndo_set_vf_vlan)(struct net_device *dev, 1499 int queue, u16 vlan, 1500 u8 qos, __be16 proto); 1501 int (*ndo_set_vf_rate)(struct net_device *dev, 1502 int vf, int min_tx_rate, 1503 int max_tx_rate); 1504 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1505 int vf, bool setting); 1506 int (*ndo_set_vf_trust)(struct net_device *dev, 1507 int vf, bool setting); 1508 int (*ndo_get_vf_config)(struct net_device *dev, 1509 int vf, 1510 struct ifla_vf_info *ivf); 1511 int (*ndo_set_vf_link_state)(struct net_device *dev, 1512 int vf, int link_state); 1513 int (*ndo_get_vf_stats)(struct net_device *dev, 1514 int vf, 1515 struct ifla_vf_stats 1516 *vf_stats); 1517 int (*ndo_set_vf_port)(struct net_device *dev, 1518 int vf, 1519 struct nlattr *port[]); 1520 int (*ndo_get_vf_port)(struct net_device *dev, 1521 int vf, struct sk_buff *skb); 1522 int (*ndo_get_vf_guid)(struct net_device *dev, 1523 int vf, 1524 struct ifla_vf_guid *node_guid, 1525 struct ifla_vf_guid *port_guid); 1526 int (*ndo_set_vf_guid)(struct net_device *dev, 1527 int vf, u64 guid, 1528 int guid_type); 1529 int (*ndo_set_vf_rss_query_en)( 1530 struct net_device *dev, 1531 int vf, bool setting); 1532 int (*ndo_setup_tc)(struct net_device *dev, 1533 enum tc_setup_type type, 1534 void *type_data); 1535#if IS_ENABLED(CONFIG_FCOE) 1536 int (*ndo_fcoe_enable)(struct net_device *dev); 1537 int (*ndo_fcoe_disable)(struct net_device *dev); 1538 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1539 u16 xid, 1540 struct scatterlist *sgl, 1541 unsigned int sgc); 1542 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1543 u16 xid); 1544 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1545 u16 xid, 1546 struct scatterlist *sgl, 1547 unsigned int sgc); 1548 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1549 struct netdev_fcoe_hbainfo *hbainfo); 1550#endif 1551 1552#if IS_ENABLED(CONFIG_LIBFCOE) 1553#define NETDEV_FCOE_WWNN 0 1554#define NETDEV_FCOE_WWPN 1 1555 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1556 u64 *wwn, int type); 1557#endif 1558 1559#ifdef CONFIG_RFS_ACCEL 1560 int (*ndo_rx_flow_steer)(struct net_device *dev, 1561 const struct sk_buff *skb, 1562 u16 rxq_index, 1563 u32 flow_id); 1564#endif 1565 int (*ndo_add_slave)(struct net_device *dev, 1566 struct net_device *slave_dev, 1567 struct netlink_ext_ack *extack); 1568 int (*ndo_del_slave)(struct net_device *dev, 1569 struct net_device *slave_dev); 1570 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev, 1571 struct sk_buff *skb, 1572 bool all_slaves); 1573 struct net_device* (*ndo_sk_get_lower_dev)(struct net_device *dev, 1574 struct sock *sk); 1575 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1576 netdev_features_t features); 1577 int (*ndo_set_features)(struct net_device *dev, 1578 netdev_features_t features); 1579 int (*ndo_neigh_construct)(struct net_device *dev, 1580 struct neighbour *n); 1581 void (*ndo_neigh_destroy)(struct net_device *dev, 1582 struct neighbour *n); 1583 1584 int (*ndo_fdb_add)(struct ndmsg *ndm, 1585 struct nlattr *tb[], 1586 struct net_device *dev, 1587 const unsigned char *addr, 1588 u16 vid, 1589 u16 flags, 1590 struct netlink_ext_ack *extack); 1591 int (*ndo_fdb_del)(struct ndmsg *ndm, 1592 struct nlattr *tb[], 1593 struct net_device *dev, 1594 const unsigned char *addr, 1595 u16 vid, struct netlink_ext_ack *extack); 1596 int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, 1597 struct net_device *dev, 1598 struct netlink_ext_ack *extack); 1599 int (*ndo_fdb_dump)(struct sk_buff *skb, 1600 struct netlink_callback *cb, 1601 struct net_device *dev, 1602 struct net_device *filter_dev, 1603 int *idx); 1604 int (*ndo_fdb_get)(struct sk_buff *skb, 1605 struct nlattr *tb[], 1606 struct net_device *dev, 1607 const unsigned char *addr, 1608 u16 vid, u32 portid, u32 seq, 1609 struct netlink_ext_ack *extack); 1610 int (*ndo_mdb_add)(struct net_device *dev, 1611 struct nlattr *tb[], 1612 u16 nlmsg_flags, 1613 struct netlink_ext_ack *extack); 1614 int (*ndo_mdb_del)(struct net_device *dev, 1615 struct nlattr *tb[], 1616 struct netlink_ext_ack *extack); 1617 int (*ndo_mdb_del_bulk)(struct net_device *dev, 1618 struct nlattr *tb[], 1619 struct netlink_ext_ack *extack); 1620 int (*ndo_mdb_dump)(struct net_device *dev, 1621 struct sk_buff *skb, 1622 struct netlink_callback *cb); 1623 int (*ndo_mdb_get)(struct net_device *dev, 1624 struct nlattr *tb[], u32 portid, 1625 u32 seq, 1626 struct netlink_ext_ack *extack); 1627 int (*ndo_bridge_setlink)(struct net_device *dev, 1628 struct nlmsghdr *nlh, 1629 u16 flags, 1630 struct netlink_ext_ack *extack); 1631 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1632 u32 pid, u32 seq, 1633 struct net_device *dev, 1634 u32 filter_mask, 1635 int nlflags); 1636 int (*ndo_bridge_dellink)(struct net_device *dev, 1637 struct nlmsghdr *nlh, 1638 u16 flags); 1639 int (*ndo_change_carrier)(struct net_device *dev, 1640 bool new_carrier); 1641 int (*ndo_get_phys_port_id)(struct net_device *dev, 1642 struct netdev_phys_item_id *ppid); 1643 int (*ndo_get_port_parent_id)(struct net_device *dev, 1644 struct netdev_phys_item_id *ppid); 1645 int (*ndo_get_phys_port_name)(struct net_device *dev, 1646 char *name, size_t len); 1647 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1648 struct net_device *dev); 1649 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1650 void *priv); 1651 1652 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1653 int queue_index, 1654 u32 maxrate); 1655 int (*ndo_get_iflink)(const struct net_device *dev); 1656 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1657 struct sk_buff *skb); 1658 void (*ndo_set_rx_headroom)(struct net_device *dev, 1659 int needed_headroom); 1660 int (*ndo_bpf)(struct net_device *dev, 1661 struct netdev_bpf *bpf); 1662 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1663 struct xdp_frame **xdp, 1664 u32 flags); 1665 struct net_device * (*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1666 struct xdp_buff *xdp); 1667 int (*ndo_xsk_wakeup)(struct net_device *dev, 1668 u32 queue_id, u32 flags); 1669 int (*ndo_tunnel_ctl)(struct net_device *dev, 1670 struct ip_tunnel_parm *p, int cmd); 1671 struct net_device * (*ndo_get_peer_dev)(struct net_device *dev); 1672 int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, 1673 struct net_device_path *path); 1674 ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1675 const struct skb_shared_hwtstamps *hwtstamps, 1676 bool cycles); 1677 int (*ndo_hwtstamp_get)(struct net_device *dev, 1678 struct kernel_hwtstamp_config *kernel_config); 1679 int (*ndo_hwtstamp_set)(struct net_device *dev, 1680 struct kernel_hwtstamp_config *kernel_config, 1681 struct netlink_ext_ack *extack); 1682}; 1683 1684/** 1685 * enum netdev_priv_flags - &struct net_device priv_flags 1686 * 1687 * These are the &struct net_device, they are only set internally 1688 * by drivers and used in the kernel. These flags are invisible to 1689 * userspace; this means that the order of these flags can change 1690 * during any kernel release. 1691 * 1692 * You should have a pretty good reason to be extending these flags. 1693 * 1694 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1695 * @IFF_EBRIDGE: Ethernet bridging device 1696 * @IFF_BONDING: bonding master or slave 1697 * @IFF_ISATAP: ISATAP interface (RFC4214) 1698 * @IFF_WAN_HDLC: WAN HDLC device 1699 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1700 * release skb->dst 1701 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1702 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1703 * @IFF_MACVLAN_PORT: device used as macvlan port 1704 * @IFF_BRIDGE_PORT: device used as bridge port 1705 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1706 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1707 * @IFF_UNICAST_FLT: Supports unicast filtering 1708 * @IFF_TEAM_PORT: device used as team port 1709 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1710 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1711 * change when it's running 1712 * @IFF_MACVLAN: Macvlan device 1713 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1714 * underlying stacked devices 1715 * @IFF_L3MDEV_MASTER: device is an L3 master device 1716 * @IFF_NO_QUEUE: device can run without qdisc attached 1717 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1718 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1719 * @IFF_TEAM: device is a team device 1720 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1721 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1722 * entity (i.e. the master device for bridged veth) 1723 * @IFF_MACSEC: device is a MACsec device 1724 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1725 * @IFF_FAILOVER: device is a failover master device 1726 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1727 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device 1728 * @IFF_NO_ADDRCONF: prevent ipv6 addrconf 1729 * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with 1730 * skb_headlen(skb) == 0 (data starts from frag0) 1731 * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN 1732 * @IFF_SEE_ALL_HWTSTAMP_REQUESTS: device wants to see calls to 1733 * ndo_hwtstamp_set() for all timestamp requests regardless of source, 1734 * even if those aren't HWTSTAMP_SOURCE_NETDEV. 1735 */ 1736enum netdev_priv_flags { 1737 IFF_802_1Q_VLAN = 1<<0, 1738 IFF_EBRIDGE = 1<<1, 1739 IFF_BONDING = 1<<2, 1740 IFF_ISATAP = 1<<3, 1741 IFF_WAN_HDLC = 1<<4, 1742 IFF_XMIT_DST_RELEASE = 1<<5, 1743 IFF_DONT_BRIDGE = 1<<6, 1744 IFF_DISABLE_NETPOLL = 1<<7, 1745 IFF_MACVLAN_PORT = 1<<8, 1746 IFF_BRIDGE_PORT = 1<<9, 1747 IFF_OVS_DATAPATH = 1<<10, 1748 IFF_TX_SKB_SHARING = 1<<11, 1749 IFF_UNICAST_FLT = 1<<12, 1750 IFF_TEAM_PORT = 1<<13, 1751 IFF_SUPP_NOFCS = 1<<14, 1752 IFF_LIVE_ADDR_CHANGE = 1<<15, 1753 IFF_MACVLAN = 1<<16, 1754 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1755 IFF_L3MDEV_MASTER = 1<<18, 1756 IFF_NO_QUEUE = 1<<19, 1757 IFF_OPENVSWITCH = 1<<20, 1758 IFF_L3MDEV_SLAVE = 1<<21, 1759 IFF_TEAM = 1<<22, 1760 IFF_RXFH_CONFIGURED = 1<<23, 1761 IFF_PHONY_HEADROOM = 1<<24, 1762 IFF_MACSEC = 1<<25, 1763 IFF_NO_RX_HANDLER = 1<<26, 1764 IFF_FAILOVER = 1<<27, 1765 IFF_FAILOVER_SLAVE = 1<<28, 1766 IFF_L3MDEV_RX_HANDLER = 1<<29, 1767 IFF_NO_ADDRCONF = BIT_ULL(30), 1768 IFF_TX_SKB_NO_LINEAR = BIT_ULL(31), 1769 IFF_CHANGE_PROTO_DOWN = BIT_ULL(32), 1770 IFF_SEE_ALL_HWTSTAMP_REQUESTS = BIT_ULL(33), 1771}; 1772 1773#define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1774#define IFF_EBRIDGE IFF_EBRIDGE 1775#define IFF_BONDING IFF_BONDING 1776#define IFF_ISATAP IFF_ISATAP 1777#define IFF_WAN_HDLC IFF_WAN_HDLC 1778#define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1779#define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1780#define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1781#define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1782#define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1783#define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1784#define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1785#define IFF_UNICAST_FLT IFF_UNICAST_FLT 1786#define IFF_TEAM_PORT IFF_TEAM_PORT 1787#define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1788#define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1789#define IFF_MACVLAN IFF_MACVLAN 1790#define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1791#define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1792#define IFF_NO_QUEUE IFF_NO_QUEUE 1793#define IFF_OPENVSWITCH IFF_OPENVSWITCH 1794#define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1795#define IFF_TEAM IFF_TEAM 1796#define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1797#define IFF_PHONY_HEADROOM IFF_PHONY_HEADROOM 1798#define IFF_MACSEC IFF_MACSEC 1799#define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER 1800#define IFF_FAILOVER IFF_FAILOVER 1801#define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE 1802#define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER 1803#define IFF_TX_SKB_NO_LINEAR IFF_TX_SKB_NO_LINEAR 1804 1805/* Specifies the type of the struct net_device::ml_priv pointer */ 1806enum netdev_ml_priv_type { 1807 ML_PRIV_NONE, 1808 ML_PRIV_CAN, 1809}; 1810 1811enum netdev_stat_type { 1812 NETDEV_PCPU_STAT_NONE, 1813 NETDEV_PCPU_STAT_LSTATS, /* struct pcpu_lstats */ 1814 NETDEV_PCPU_STAT_TSTATS, /* struct pcpu_sw_netstats */ 1815 NETDEV_PCPU_STAT_DSTATS, /* struct pcpu_dstats */ 1816}; 1817 1818/** 1819 * struct net_device - The DEVICE structure. 1820 * 1821 * Actually, this whole structure is a big mistake. It mixes I/O 1822 * data with strictly "high-level" data, and it has to know about 1823 * almost every data structure used in the INET module. 1824 * 1825 * @name: This is the first field of the "visible" part of this structure 1826 * (i.e. as seen by users in the "Space.c" file). It is the name 1827 * of the interface. 1828 * 1829 * @name_node: Name hashlist node 1830 * @ifalias: SNMP alias 1831 * @mem_end: Shared memory end 1832 * @mem_start: Shared memory start 1833 * @base_addr: Device I/O address 1834 * @irq: Device IRQ number 1835 * 1836 * @state: Generic network queuing layer state, see netdev_state_t 1837 * @dev_list: The global list of network devices 1838 * @napi_list: List entry used for polling NAPI devices 1839 * @unreg_list: List entry when we are unregistering the 1840 * device; see the function unregister_netdev 1841 * @close_list: List entry used when we are closing the device 1842 * @ptype_all: Device-specific packet handlers for all protocols 1843 * @ptype_specific: Device-specific, protocol-specific packet handlers 1844 * 1845 * @adj_list: Directly linked devices, like slaves for bonding 1846 * @features: Currently active device features 1847 * @hw_features: User-changeable features 1848 * 1849 * @wanted_features: User-requested features 1850 * @vlan_features: Mask of features inheritable by VLAN devices 1851 * 1852 * @hw_enc_features: Mask of features inherited by encapsulating devices 1853 * This field indicates what encapsulation 1854 * offloads the hardware is capable of doing, 1855 * and drivers will need to set them appropriately. 1856 * 1857 * @mpls_features: Mask of features inheritable by MPLS 1858 * @gso_partial_features: value(s) from NETIF_F_GSO\* 1859 * 1860 * @ifindex: interface index 1861 * @group: The group the device belongs to 1862 * 1863 * @stats: Statistics struct, which was left as a legacy, use 1864 * rtnl_link_stats64 instead 1865 * 1866 * @core_stats: core networking counters, 1867 * do not use this in drivers 1868 * @carrier_up_count: Number of times the carrier has been up 1869 * @carrier_down_count: Number of times the carrier has been down 1870 * 1871 * @wireless_handlers: List of functions to handle Wireless Extensions, 1872 * instead of ioctl, 1873 * see <net/iw_handler.h> for details. 1874 * @wireless_data: Instance data managed by the core of wireless extensions 1875 * 1876 * @netdev_ops: Includes several pointers to callbacks, 1877 * if one wants to override the ndo_*() functions 1878 * @xdp_metadata_ops: Includes pointers to XDP metadata callbacks. 1879 * @xsk_tx_metadata_ops: Includes pointers to AF_XDP TX metadata callbacks. 1880 * @ethtool_ops: Management operations 1881 * @l3mdev_ops: Layer 3 master device operations 1882 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1883 * discovery handling. Necessary for e.g. 6LoWPAN. 1884 * @xfrmdev_ops: Transformation offload operations 1885 * @tlsdev_ops: Transport Layer Security offload operations 1886 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1887 * of Layer 2 headers. 1888 * 1889 * @flags: Interface flags (a la BSD) 1890 * @xdp_features: XDP capability supported by the device 1891 * @priv_flags: Like 'flags' but invisible to userspace, 1892 * see if.h for the definitions 1893 * @gflags: Global flags ( kept as legacy ) 1894 * @padded: How much padding added by alloc_netdev() 1895 * @operstate: RFC2863 operstate 1896 * @link_mode: Mapping policy to operstate 1897 * @if_port: Selectable AUI, TP, ... 1898 * @dma: DMA channel 1899 * @mtu: Interface MTU value 1900 * @min_mtu: Interface Minimum MTU value 1901 * @max_mtu: Interface Maximum MTU value 1902 * @type: Interface hardware type 1903 * @hard_header_len: Maximum hardware header length. 1904 * @min_header_len: Minimum hardware header length 1905 * 1906 * @needed_headroom: Extra headroom the hardware may need, but not in all 1907 * cases can this be guaranteed 1908 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1909 * cases can this be guaranteed. Some cases also use 1910 * LL_MAX_HEADER instead to allocate the skb 1911 * 1912 * interface address info: 1913 * 1914 * @perm_addr: Permanent hw address 1915 * @addr_assign_type: Hw address assignment type 1916 * @addr_len: Hardware address length 1917 * @upper_level: Maximum depth level of upper devices. 1918 * @lower_level: Maximum depth level of lower devices. 1919 * @neigh_priv_len: Used in neigh_alloc() 1920 * @dev_id: Used to differentiate devices that share 1921 * the same link layer address 1922 * @dev_port: Used to differentiate devices that share 1923 * the same function 1924 * @addr_list_lock: XXX: need comments on this one 1925 * @name_assign_type: network interface name assignment type 1926 * @uc_promisc: Counter that indicates promiscuous mode 1927 * has been enabled due to the need to listen to 1928 * additional unicast addresses in a device that 1929 * does not implement ndo_set_rx_mode() 1930 * @uc: unicast mac addresses 1931 * @mc: multicast mac addresses 1932 * @dev_addrs: list of device hw addresses 1933 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1934 * @promiscuity: Number of times the NIC is told to work in 1935 * promiscuous mode; if it becomes 0 the NIC will 1936 * exit promiscuous mode 1937 * @allmulti: Counter, enables or disables allmulticast mode 1938 * 1939 * @vlan_info: VLAN info 1940 * @dsa_ptr: dsa specific data 1941 * @tipc_ptr: TIPC specific data 1942 * @atalk_ptr: AppleTalk link 1943 * @ip_ptr: IPv4 specific data 1944 * @ip6_ptr: IPv6 specific data 1945 * @ax25_ptr: AX.25 specific data 1946 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1947 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network 1948 * device struct 1949 * @mpls_ptr: mpls_dev struct pointer 1950 * @mctp_ptr: MCTP specific data 1951 * 1952 * @dev_addr: Hw address (before bcast, 1953 * because most packets are unicast) 1954 * 1955 * @_rx: Array of RX queues 1956 * @num_rx_queues: Number of RX queues 1957 * allocated at register_netdev() time 1958 * @real_num_rx_queues: Number of RX queues currently active in device 1959 * @xdp_prog: XDP sockets filter program pointer 1960 * @gro_flush_timeout: timeout for GRO layer in NAPI 1961 * @napi_defer_hard_irqs: If not zero, provides a counter that would 1962 * allow to avoid NIC hard IRQ, on busy queues. 1963 * 1964 * @rx_handler: handler for received packets 1965 * @rx_handler_data: XXX: need comments on this one 1966 * @tcx_ingress: BPF & clsact qdisc specific data for ingress processing 1967 * @ingress_queue: XXX: need comments on this one 1968 * @nf_hooks_ingress: netfilter hooks executed for ingress packets 1969 * @broadcast: hw bcast address 1970 * 1971 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1972 * indexed by RX queue number. Assigned by driver. 1973 * This must only be set if the ndo_rx_flow_steer 1974 * operation is defined 1975 * @index_hlist: Device index hash chain 1976 * 1977 * @_tx: Array of TX queues 1978 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1979 * @real_num_tx_queues: Number of TX queues currently active in device 1980 * @qdisc: Root qdisc from userspace point of view 1981 * @tx_queue_len: Max frames per queue allowed 1982 * @tx_global_lock: XXX: need comments on this one 1983 * @xdp_bulkq: XDP device bulk queue 1984 * @xps_maps: all CPUs/RXQs maps for XPS device 1985 * 1986 * @xps_maps: XXX: need comments on this one 1987 * @tcx_egress: BPF & clsact qdisc specific data for egress processing 1988 * @nf_hooks_egress: netfilter hooks executed for egress packets 1989 * @qdisc_hash: qdisc hash table 1990 * @watchdog_timeo: Represents the timeout that is used by 1991 * the watchdog (see dev_watchdog()) 1992 * @watchdog_timer: List of timers 1993 * 1994 * @proto_down_reason: reason a netdev interface is held down 1995 * @pcpu_refcnt: Number of references to this device 1996 * @dev_refcnt: Number of references to this device 1997 * @refcnt_tracker: Tracker directory for tracked references to this device 1998 * @todo_list: Delayed register/unregister 1999 * @link_watch_list: XXX: need comments on this one 2000 * 2001 * @reg_state: Register/unregister state machine 2002 * @dismantle: Device is going to be freed 2003 * @rtnl_link_state: This enum represents the phases of creating 2004 * a new link 2005 * 2006 * @needs_free_netdev: Should unregister perform free_netdev? 2007 * @priv_destructor: Called from unregister 2008 * @npinfo: XXX: need comments on this one 2009 * @nd_net: Network namespace this network device is inside 2010 * 2011 * @ml_priv: Mid-layer private 2012 * @ml_priv_type: Mid-layer private type 2013 * 2014 * @pcpu_stat_type: Type of device statistics which the core should 2015 * allocate/free: none, lstats, tstats, dstats. none 2016 * means the driver is handling statistics allocation/ 2017 * freeing internally. 2018 * @lstats: Loopback statistics: packets, bytes 2019 * @tstats: Tunnel statistics: RX/TX packets, RX/TX bytes 2020 * @dstats: Dummy statistics: RX/TX/drop packets, RX/TX bytes 2021 * 2022 * @garp_port: GARP 2023 * @mrp_port: MRP 2024 * 2025 * @dm_private: Drop monitor private 2026 * 2027 * @dev: Class/net/name entry 2028 * @sysfs_groups: Space for optional device, statistics and wireless 2029 * sysfs groups 2030 * 2031 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 2032 * @rtnl_link_ops: Rtnl_link_ops 2033 * 2034 * @gso_max_size: Maximum size of generic segmentation offload 2035 * @tso_max_size: Device (as in HW) limit on the max TSO request size 2036 * @gso_max_segs: Maximum number of segments that can be passed to the 2037 * NIC for GSO 2038 * @tso_max_segs: Device (as in HW) limit on the max TSO segment count 2039 * @gso_ipv4_max_size: Maximum size of generic segmentation offload, 2040 * for IPv4. 2041 * 2042 * @dcbnl_ops: Data Center Bridging netlink ops 2043 * @num_tc: Number of traffic classes in the net device 2044 * @tc_to_txq: XXX: need comments on this one 2045 * @prio_tc_map: XXX: need comments on this one 2046 * 2047 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 2048 * 2049 * @priomap: XXX: need comments on this one 2050 * @phydev: Physical device may attach itself 2051 * for hardware timestamping 2052 * @sfp_bus: attached &struct sfp_bus structure. 2053 * 2054 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 2055 * 2056 * @proto_down: protocol port state information can be sent to the 2057 * switch driver and used to set the phys state of the 2058 * switch port. 2059 * 2060 * @wol_enabled: Wake-on-LAN is enabled 2061 * 2062 * @threaded: napi threaded mode is enabled 2063 * 2064 * @net_notifier_list: List of per-net netdev notifier block 2065 * that follow this device when it is moved 2066 * to another network namespace. 2067 * 2068 * @macsec_ops: MACsec offloading ops 2069 * 2070 * @udp_tunnel_nic_info: static structure describing the UDP tunnel 2071 * offload capabilities of the device 2072 * @udp_tunnel_nic: UDP tunnel offload state 2073 * @xdp_state: stores info on attached XDP BPF programs 2074 * 2075 * @nested_level: Used as a parameter of spin_lock_nested() of 2076 * dev->addr_list_lock. 2077 * @unlink_list: As netif_addr_lock() can be called recursively, 2078 * keep a list of interfaces to be deleted. 2079 * @gro_max_size: Maximum size of aggregated packet in generic 2080 * receive offload (GRO) 2081 * @gro_ipv4_max_size: Maximum size of aggregated packet in generic 2082 * receive offload (GRO), for IPv4. 2083 * @xdp_zc_max_segs: Maximum number of segments supported by AF_XDP 2084 * zero copy driver 2085 * 2086 * @dev_addr_shadow: Copy of @dev_addr to catch direct writes. 2087 * @linkwatch_dev_tracker: refcount tracker used by linkwatch. 2088 * @watchdog_dev_tracker: refcount tracker used by watchdog. 2089 * @dev_registered_tracker: tracker for reference held while 2090 * registered 2091 * @offload_xstats_l3: L3 HW stats for this netdevice. 2092 * 2093 * @devlink_port: Pointer to related devlink port structure. 2094 * Assigned by a driver before netdev registration using 2095 * SET_NETDEV_DEVLINK_PORT macro. This pointer is static 2096 * during the time netdevice is registered. 2097 * 2098 * @dpll_pin: Pointer to the SyncE source pin of a DPLL subsystem, 2099 * where the clock is recovered. 2100 * 2101 * FIXME: cleanup struct net_device such that network protocol info 2102 * moves out. 2103 */ 2104 2105struct net_device { 2106 /* Cacheline organization can be found documented in 2107 * Documentation/networking/net_cachelines/net_device.rst. 2108 * Please update the document when adding new fields. 2109 */ 2110 2111 /* TX read-mostly hotpath */ 2112 __cacheline_group_begin(net_device_read_tx); 2113 unsigned long long priv_flags; 2114 const struct net_device_ops *netdev_ops; 2115 const struct header_ops *header_ops; 2116 struct netdev_queue *_tx; 2117 netdev_features_t gso_partial_features; 2118 unsigned int real_num_tx_queues; 2119 unsigned int gso_max_size; 2120 unsigned int gso_ipv4_max_size; 2121 u16 gso_max_segs; 2122 s16 num_tc; 2123 /* Note : dev->mtu is often read without holding a lock. 2124 * Writers usually hold RTNL. 2125 * It is recommended to use READ_ONCE() to annotate the reads, 2126 * and to use WRITE_ONCE() to annotate the writes. 2127 */ 2128 unsigned int mtu; 2129 unsigned short needed_headroom; 2130 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2131#ifdef CONFIG_XPS 2132 struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX]; 2133#endif 2134#ifdef CONFIG_NETFILTER_EGRESS 2135 struct nf_hook_entries __rcu *nf_hooks_egress; 2136#endif 2137#ifdef CONFIG_NET_XGRESS 2138 struct bpf_mprog_entry __rcu *tcx_egress; 2139#endif 2140 __cacheline_group_end(net_device_read_tx); 2141 2142 /* TXRX read-mostly hotpath */ 2143 __cacheline_group_begin(net_device_read_txrx); 2144 unsigned int flags; 2145 unsigned short hard_header_len; 2146 netdev_features_t features; 2147 struct inet6_dev __rcu *ip6_ptr; 2148 __cacheline_group_end(net_device_read_txrx); 2149 2150 /* RX read-mostly hotpath */ 2151 __cacheline_group_begin(net_device_read_rx); 2152 struct bpf_prog __rcu *xdp_prog; 2153 struct list_head ptype_specific; 2154 int ifindex; 2155 unsigned int real_num_rx_queues; 2156 struct netdev_rx_queue *_rx; 2157 unsigned long gro_flush_timeout; 2158 int napi_defer_hard_irqs; 2159 unsigned int gro_max_size; 2160 unsigned int gro_ipv4_max_size; 2161 rx_handler_func_t __rcu *rx_handler; 2162 void __rcu *rx_handler_data; 2163 possible_net_t nd_net; 2164#ifdef CONFIG_NETPOLL 2165 struct netpoll_info __rcu *npinfo; 2166#endif 2167#ifdef CONFIG_NET_XGRESS 2168 struct bpf_mprog_entry __rcu *tcx_ingress; 2169#endif 2170 __cacheline_group_end(net_device_read_rx); 2171 2172 char name[IFNAMSIZ]; 2173 struct netdev_name_node *name_node; 2174 struct dev_ifalias __rcu *ifalias; 2175 /* 2176 * I/O specific fields 2177 * FIXME: Merge these and struct ifmap into one 2178 */ 2179 unsigned long mem_end; 2180 unsigned long mem_start; 2181 unsigned long base_addr; 2182 2183 /* 2184 * Some hardware also needs these fields (state,dev_list, 2185 * napi_list,unreg_list,close_list) but they are not 2186 * part of the usual set specified in Space.c. 2187 */ 2188 2189 unsigned long state; 2190 2191 struct list_head dev_list; 2192 struct list_head napi_list; 2193 struct list_head unreg_list; 2194 struct list_head close_list; 2195 struct list_head ptype_all; 2196 2197 struct { 2198 struct list_head upper; 2199 struct list_head lower; 2200 } adj_list; 2201 2202 /* Read-mostly cache-line for fast-path access */ 2203 xdp_features_t xdp_features; 2204 const struct xdp_metadata_ops *xdp_metadata_ops; 2205 const struct xsk_tx_metadata_ops *xsk_tx_metadata_ops; 2206 unsigned short gflags; 2207 2208 unsigned short needed_tailroom; 2209 2210 netdev_features_t hw_features; 2211 netdev_features_t wanted_features; 2212 netdev_features_t vlan_features; 2213 netdev_features_t hw_enc_features; 2214 netdev_features_t mpls_features; 2215 2216 unsigned int min_mtu; 2217 unsigned int max_mtu; 2218 unsigned short type; 2219 unsigned char min_header_len; 2220 unsigned char name_assign_type; 2221 2222 int group; 2223 2224 struct net_device_stats stats; /* not used by modern drivers */ 2225 2226 struct net_device_core_stats __percpu *core_stats; 2227 2228 /* Stats to monitor link on/off, flapping */ 2229 atomic_t carrier_up_count; 2230 atomic_t carrier_down_count; 2231 2232#ifdef CONFIG_WIRELESS_EXT 2233 const struct iw_handler_def *wireless_handlers; 2234 struct iw_public_data *wireless_data; 2235#endif 2236 const struct ethtool_ops *ethtool_ops; 2237#ifdef CONFIG_NET_L3_MASTER_DEV 2238 const struct l3mdev_ops *l3mdev_ops; 2239#endif 2240#if IS_ENABLED(CONFIG_IPV6) 2241 const struct ndisc_ops *ndisc_ops; 2242#endif 2243 2244#ifdef CONFIG_XFRM_OFFLOAD 2245 const struct xfrmdev_ops *xfrmdev_ops; 2246#endif 2247 2248#if IS_ENABLED(CONFIG_TLS_DEVICE) 2249 const struct tlsdev_ops *tlsdev_ops; 2250#endif 2251 2252 unsigned char operstate; 2253 unsigned char link_mode; 2254 2255 unsigned char if_port; 2256 unsigned char dma; 2257 2258 /* Interface address info. */ 2259 unsigned char perm_addr[MAX_ADDR_LEN]; 2260 unsigned char addr_assign_type; 2261 unsigned char addr_len; 2262 unsigned char upper_level; 2263 unsigned char lower_level; 2264 2265 unsigned short neigh_priv_len; 2266 unsigned short dev_id; 2267 unsigned short dev_port; 2268 unsigned short padded; 2269 2270 spinlock_t addr_list_lock; 2271 int irq; 2272 2273 struct netdev_hw_addr_list uc; 2274 struct netdev_hw_addr_list mc; 2275 struct netdev_hw_addr_list dev_addrs; 2276 2277#ifdef CONFIG_SYSFS 2278 struct kset *queues_kset; 2279#endif 2280#ifdef CONFIG_LOCKDEP 2281 struct list_head unlink_list; 2282#endif 2283 unsigned int promiscuity; 2284 unsigned int allmulti; 2285 bool uc_promisc; 2286#ifdef CONFIG_LOCKDEP 2287 unsigned char nested_level; 2288#endif 2289 2290 2291 /* Protocol-specific pointers */ 2292 struct in_device __rcu *ip_ptr; 2293#if IS_ENABLED(CONFIG_VLAN_8021Q) 2294 struct vlan_info __rcu *vlan_info; 2295#endif 2296#if IS_ENABLED(CONFIG_NET_DSA) 2297 struct dsa_port *dsa_ptr; 2298#endif 2299#if IS_ENABLED(CONFIG_TIPC) 2300 struct tipc_bearer __rcu *tipc_ptr; 2301#endif 2302#if IS_ENABLED(CONFIG_ATALK) 2303 void *atalk_ptr; 2304#endif 2305#if IS_ENABLED(CONFIG_AX25) 2306 void *ax25_ptr; 2307#endif 2308#if IS_ENABLED(CONFIG_CFG80211) 2309 struct wireless_dev *ieee80211_ptr; 2310#endif 2311#if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN) 2312 struct wpan_dev *ieee802154_ptr; 2313#endif 2314#if IS_ENABLED(CONFIG_MPLS_ROUTING) 2315 struct mpls_dev __rcu *mpls_ptr; 2316#endif 2317#if IS_ENABLED(CONFIG_MCTP) 2318 struct mctp_dev __rcu *mctp_ptr; 2319#endif 2320 2321/* 2322 * Cache lines mostly used on receive path (including eth_type_trans()) 2323 */ 2324 /* Interface address info used in eth_type_trans() */ 2325 const unsigned char *dev_addr; 2326 2327 unsigned int num_rx_queues; 2328#define GRO_LEGACY_MAX_SIZE 65536u 2329/* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2330 * and shinfo->gso_segs is a 16bit field. 2331 */ 2332#define GRO_MAX_SIZE (8 * 65535u) 2333 unsigned int xdp_zc_max_segs; 2334 struct netdev_queue __rcu *ingress_queue; 2335#ifdef CONFIG_NETFILTER_INGRESS 2336 struct nf_hook_entries __rcu *nf_hooks_ingress; 2337#endif 2338 2339 unsigned char broadcast[MAX_ADDR_LEN]; 2340#ifdef CONFIG_RFS_ACCEL 2341 struct cpu_rmap *rx_cpu_rmap; 2342#endif 2343 struct hlist_node index_hlist; 2344 2345/* 2346 * Cache lines mostly used on transmit path 2347 */ 2348 unsigned int num_tx_queues; 2349 struct Qdisc __rcu *qdisc; 2350 unsigned int tx_queue_len; 2351 spinlock_t tx_global_lock; 2352 2353 struct xdp_dev_bulk_queue __percpu *xdp_bulkq; 2354 2355#ifdef CONFIG_NET_SCHED 2356 DECLARE_HASHTABLE (qdisc_hash, 4); 2357#endif 2358 /* These may be needed for future network-power-down code. */ 2359 struct timer_list watchdog_timer; 2360 int watchdog_timeo; 2361 2362 u32 proto_down_reason; 2363 2364 struct list_head todo_list; 2365 2366#ifdef CONFIG_PCPU_DEV_REFCNT 2367 int __percpu *pcpu_refcnt; 2368#else 2369 refcount_t dev_refcnt; 2370#endif 2371 struct ref_tracker_dir refcnt_tracker; 2372 2373 struct list_head link_watch_list; 2374 2375 enum { NETREG_UNINITIALIZED=0, 2376 NETREG_REGISTERED, /* completed register_netdevice */ 2377 NETREG_UNREGISTERING, /* called unregister_netdevice */ 2378 NETREG_UNREGISTERED, /* completed unregister todo */ 2379 NETREG_RELEASED, /* called free_netdev */ 2380 NETREG_DUMMY, /* dummy device for NAPI poll */ 2381 } reg_state:8; 2382 2383 bool dismantle; 2384 2385 enum { 2386 RTNL_LINK_INITIALIZED, 2387 RTNL_LINK_INITIALIZING, 2388 } rtnl_link_state:16; 2389 2390 bool needs_free_netdev; 2391 void (*priv_destructor)(struct net_device *dev); 2392 2393 /* mid-layer private */ 2394 void *ml_priv; 2395 enum netdev_ml_priv_type ml_priv_type; 2396 2397 enum netdev_stat_type pcpu_stat_type:8; 2398 union { 2399 struct pcpu_lstats __percpu *lstats; 2400 struct pcpu_sw_netstats __percpu *tstats; 2401 struct pcpu_dstats __percpu *dstats; 2402 }; 2403 2404#if IS_ENABLED(CONFIG_GARP) 2405 struct garp_port __rcu *garp_port; 2406#endif 2407#if IS_ENABLED(CONFIG_MRP) 2408 struct mrp_port __rcu *mrp_port; 2409#endif 2410#if IS_ENABLED(CONFIG_NET_DROP_MONITOR) 2411 struct dm_hw_stat_delta __rcu *dm_private; 2412#endif 2413 struct device dev; 2414 const struct attribute_group *sysfs_groups[4]; 2415 const struct attribute_group *sysfs_rx_queue_group; 2416 2417 const struct rtnl_link_ops *rtnl_link_ops; 2418 2419 /* for setting kernel sock attribute on TCP connection setup */ 2420#define GSO_MAX_SEGS 65535u 2421#define GSO_LEGACY_MAX_SIZE 65536u 2422/* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2423 * and shinfo->gso_segs is a 16bit field. 2424 */ 2425#define GSO_MAX_SIZE (8 * GSO_MAX_SEGS) 2426 2427#define TSO_LEGACY_MAX_SIZE 65536 2428#define TSO_MAX_SIZE UINT_MAX 2429 unsigned int tso_max_size; 2430#define TSO_MAX_SEGS U16_MAX 2431 u16 tso_max_segs; 2432 2433#ifdef CONFIG_DCB 2434 const struct dcbnl_rtnl_ops *dcbnl_ops; 2435#endif 2436 u8 prio_tc_map[TC_BITMASK + 1]; 2437 2438#if IS_ENABLED(CONFIG_FCOE) 2439 unsigned int fcoe_ddp_xid; 2440#endif 2441#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2442 struct netprio_map __rcu *priomap; 2443#endif 2444 struct phy_device *phydev; 2445 struct sfp_bus *sfp_bus; 2446 struct lock_class_key *qdisc_tx_busylock; 2447 bool proto_down; 2448 unsigned wol_enabled:1; 2449 unsigned threaded:1; 2450 2451 struct list_head net_notifier_list; 2452 2453#if IS_ENABLED(CONFIG_MACSEC) 2454 /* MACsec management functions */ 2455 const struct macsec_ops *macsec_ops; 2456#endif 2457 const struct udp_tunnel_nic_info *udp_tunnel_nic_info; 2458 struct udp_tunnel_nic *udp_tunnel_nic; 2459 2460 /* protected by rtnl_lock */ 2461 struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE]; 2462 2463 u8 dev_addr_shadow[MAX_ADDR_LEN]; 2464 netdevice_tracker linkwatch_dev_tracker; 2465 netdevice_tracker watchdog_dev_tracker; 2466 netdevice_tracker dev_registered_tracker; 2467 struct rtnl_hw_stats64 *offload_xstats_l3; 2468 2469 struct devlink_port *devlink_port; 2470 2471#if IS_ENABLED(CONFIG_DPLL) 2472 struct dpll_pin *dpll_pin; 2473#endif 2474#if IS_ENABLED(CONFIG_PAGE_POOL) 2475 /** @page_pools: page pools created for this netdevice */ 2476 struct hlist_head page_pools; 2477#endif 2478}; 2479#define to_net_dev(d) container_of(d, struct net_device, dev) 2480 2481/* 2482 * Driver should use this to assign devlink port instance to a netdevice 2483 * before it registers the netdevice. Therefore devlink_port is static 2484 * during the netdev lifetime after it is registered. 2485 */ 2486#define SET_NETDEV_DEVLINK_PORT(dev, port) \ 2487({ \ 2488 WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED); \ 2489 ((dev)->devlink_port = (port)); \ 2490}) 2491 2492static inline bool netif_elide_gro(const struct net_device *dev) 2493{ 2494 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2495 return true; 2496 return false; 2497} 2498 2499#define NETDEV_ALIGN 32 2500 2501static inline 2502int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2503{ 2504 return dev->prio_tc_map[prio & TC_BITMASK]; 2505} 2506 2507static inline 2508int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2509{ 2510 if (tc >= dev->num_tc) 2511 return -EINVAL; 2512 2513 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2514 return 0; 2515} 2516 2517int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2518void netdev_reset_tc(struct net_device *dev); 2519int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2520int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2521 2522static inline 2523int netdev_get_num_tc(struct net_device *dev) 2524{ 2525 return dev->num_tc; 2526} 2527 2528static inline void net_prefetch(void *p) 2529{ 2530 prefetch(p); 2531#if L1_CACHE_BYTES < 128 2532 prefetch((u8 *)p + L1_CACHE_BYTES); 2533#endif 2534} 2535 2536static inline void net_prefetchw(void *p) 2537{ 2538 prefetchw(p); 2539#if L1_CACHE_BYTES < 128 2540 prefetchw((u8 *)p + L1_CACHE_BYTES); 2541#endif 2542} 2543 2544void netdev_unbind_sb_channel(struct net_device *dev, 2545 struct net_device *sb_dev); 2546int netdev_bind_sb_channel_queue(struct net_device *dev, 2547 struct net_device *sb_dev, 2548 u8 tc, u16 count, u16 offset); 2549int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2550static inline int netdev_get_sb_channel(struct net_device *dev) 2551{ 2552 return max_t(int, -dev->num_tc, 0); 2553} 2554 2555static inline 2556struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2557 unsigned int index) 2558{ 2559 DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues); 2560 return &dev->_tx[index]; 2561} 2562 2563static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2564 const struct sk_buff *skb) 2565{ 2566 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2567} 2568 2569static inline void netdev_for_each_tx_queue(struct net_device *dev, 2570 void (*f)(struct net_device *, 2571 struct netdev_queue *, 2572 void *), 2573 void *arg) 2574{ 2575 unsigned int i; 2576 2577 for (i = 0; i < dev->num_tx_queues; i++) 2578 f(dev, &dev->_tx[i], arg); 2579} 2580 2581#define netdev_lockdep_set_classes(dev) \ 2582{ \ 2583 static struct lock_class_key qdisc_tx_busylock_key; \ 2584 static struct lock_class_key qdisc_xmit_lock_key; \ 2585 static struct lock_class_key dev_addr_list_lock_key; \ 2586 unsigned int i; \ 2587 \ 2588 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 2589 lockdep_set_class(&(dev)->addr_list_lock, \ 2590 &dev_addr_list_lock_key); \ 2591 for (i = 0; i < (dev)->num_tx_queues; i++) \ 2592 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 2593 &qdisc_xmit_lock_key); \ 2594} 2595 2596u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 2597 struct net_device *sb_dev); 2598struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 2599 struct sk_buff *skb, 2600 struct net_device *sb_dev); 2601 2602/* returns the headroom that the master device needs to take in account 2603 * when forwarding to this dev 2604 */ 2605static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2606{ 2607 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2608} 2609 2610static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2611{ 2612 if (dev->netdev_ops->ndo_set_rx_headroom) 2613 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2614} 2615 2616/* set the device rx headroom to the dev's default */ 2617static inline void netdev_reset_rx_headroom(struct net_device *dev) 2618{ 2619 netdev_set_rx_headroom(dev, -1); 2620} 2621 2622static inline void *netdev_get_ml_priv(struct net_device *dev, 2623 enum netdev_ml_priv_type type) 2624{ 2625 if (dev->ml_priv_type != type) 2626 return NULL; 2627 2628 return dev->ml_priv; 2629} 2630 2631static inline void netdev_set_ml_priv(struct net_device *dev, 2632 void *ml_priv, 2633 enum netdev_ml_priv_type type) 2634{ 2635 WARN(dev->ml_priv_type && dev->ml_priv_type != type, 2636 "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n", 2637 dev->ml_priv_type, type); 2638 WARN(!dev->ml_priv_type && dev->ml_priv, 2639 "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n"); 2640 2641 dev->ml_priv = ml_priv; 2642 dev->ml_priv_type = type; 2643} 2644 2645/* 2646 * Net namespace inlines 2647 */ 2648static inline 2649struct net *dev_net(const struct net_device *dev) 2650{ 2651 return read_pnet(&dev->nd_net); 2652} 2653 2654static inline 2655void dev_net_set(struct net_device *dev, struct net *net) 2656{ 2657 write_pnet(&dev->nd_net, net); 2658} 2659 2660/** 2661 * netdev_priv - access network device private data 2662 * @dev: network device 2663 * 2664 * Get network device private data 2665 */ 2666static inline void *netdev_priv(const struct net_device *dev) 2667{ 2668 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2669} 2670 2671/* Set the sysfs physical device reference for the network logical device 2672 * if set prior to registration will cause a symlink during initialization. 2673 */ 2674#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2675 2676/* Set the sysfs device type for the network logical device to allow 2677 * fine-grained identification of different network device types. For 2678 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2679 */ 2680#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2681 2682void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index, 2683 enum netdev_queue_type type, 2684 struct napi_struct *napi); 2685 2686static inline void netif_napi_set_irq(struct napi_struct *napi, int irq) 2687{ 2688 napi->irq = irq; 2689} 2690 2691/* Default NAPI poll() weight 2692 * Device drivers are strongly advised to not use bigger value 2693 */ 2694#define NAPI_POLL_WEIGHT 64 2695 2696void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi, 2697 int (*poll)(struct napi_struct *, int), int weight); 2698 2699/** 2700 * netif_napi_add() - initialize a NAPI context 2701 * @dev: network device 2702 * @napi: NAPI context 2703 * @poll: polling function 2704 * 2705 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2706 * *any* of the other NAPI-related functions. 2707 */ 2708static inline void 2709netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2710 int (*poll)(struct napi_struct *, int)) 2711{ 2712 netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2713} 2714 2715static inline void 2716netif_napi_add_tx_weight(struct net_device *dev, 2717 struct napi_struct *napi, 2718 int (*poll)(struct napi_struct *, int), 2719 int weight) 2720{ 2721 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2722 netif_napi_add_weight(dev, napi, poll, weight); 2723} 2724 2725/** 2726 * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only 2727 * @dev: network device 2728 * @napi: NAPI context 2729 * @poll: polling function 2730 * 2731 * This variant of netif_napi_add() should be used from drivers using NAPI 2732 * to exclusively poll a TX queue. 2733 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2734 */ 2735static inline void netif_napi_add_tx(struct net_device *dev, 2736 struct napi_struct *napi, 2737 int (*poll)(struct napi_struct *, int)) 2738{ 2739 netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2740} 2741 2742/** 2743 * __netif_napi_del - remove a NAPI context 2744 * @napi: NAPI context 2745 * 2746 * Warning: caller must observe RCU grace period before freeing memory 2747 * containing @napi. Drivers might want to call this helper to combine 2748 * all the needed RCU grace periods into a single one. 2749 */ 2750void __netif_napi_del(struct napi_struct *napi); 2751 2752/** 2753 * netif_napi_del - remove a NAPI context 2754 * @napi: NAPI context 2755 * 2756 * netif_napi_del() removes a NAPI context from the network device NAPI list 2757 */ 2758static inline void netif_napi_del(struct napi_struct *napi) 2759{ 2760 __netif_napi_del(napi); 2761 synchronize_net(); 2762} 2763 2764struct packet_type { 2765 __be16 type; /* This is really htons(ether_type). */ 2766 bool ignore_outgoing; 2767 struct net_device *dev; /* NULL is wildcarded here */ 2768 netdevice_tracker dev_tracker; 2769 int (*func) (struct sk_buff *, 2770 struct net_device *, 2771 struct packet_type *, 2772 struct net_device *); 2773 void (*list_func) (struct list_head *, 2774 struct packet_type *, 2775 struct net_device *); 2776 bool (*id_match)(struct packet_type *ptype, 2777 struct sock *sk); 2778 struct net *af_packet_net; 2779 void *af_packet_priv; 2780 struct list_head list; 2781}; 2782 2783struct offload_callbacks { 2784 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2785 netdev_features_t features); 2786 struct sk_buff *(*gro_receive)(struct list_head *head, 2787 struct sk_buff *skb); 2788 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2789}; 2790 2791struct packet_offload { 2792 __be16 type; /* This is really htons(ether_type). */ 2793 u16 priority; 2794 struct offload_callbacks callbacks; 2795 struct list_head list; 2796}; 2797 2798/* often modified stats are per-CPU, other are shared (netdev->stats) */ 2799struct pcpu_sw_netstats { 2800 u64_stats_t rx_packets; 2801 u64_stats_t rx_bytes; 2802 u64_stats_t tx_packets; 2803 u64_stats_t tx_bytes; 2804 struct u64_stats_sync syncp; 2805} __aligned(4 * sizeof(u64)); 2806 2807struct pcpu_dstats { 2808 u64 rx_packets; 2809 u64 rx_bytes; 2810 u64 rx_drops; 2811 u64 tx_packets; 2812 u64 tx_bytes; 2813 u64 tx_drops; 2814 struct u64_stats_sync syncp; 2815} __aligned(8 * sizeof(u64)); 2816 2817struct pcpu_lstats { 2818 u64_stats_t packets; 2819 u64_stats_t bytes; 2820 struct u64_stats_sync syncp; 2821} __aligned(2 * sizeof(u64)); 2822 2823void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes); 2824 2825static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len) 2826{ 2827 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2828 2829 u64_stats_update_begin(&tstats->syncp); 2830 u64_stats_add(&tstats->rx_bytes, len); 2831 u64_stats_inc(&tstats->rx_packets); 2832 u64_stats_update_end(&tstats->syncp); 2833} 2834 2835static inline void dev_sw_netstats_tx_add(struct net_device *dev, 2836 unsigned int packets, 2837 unsigned int len) 2838{ 2839 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2840 2841 u64_stats_update_begin(&tstats->syncp); 2842 u64_stats_add(&tstats->tx_bytes, len); 2843 u64_stats_add(&tstats->tx_packets, packets); 2844 u64_stats_update_end(&tstats->syncp); 2845} 2846 2847static inline void dev_lstats_add(struct net_device *dev, unsigned int len) 2848{ 2849 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats); 2850 2851 u64_stats_update_begin(&lstats->syncp); 2852 u64_stats_add(&lstats->bytes, len); 2853 u64_stats_inc(&lstats->packets); 2854 u64_stats_update_end(&lstats->syncp); 2855} 2856 2857#define __netdev_alloc_pcpu_stats(type, gfp) \ 2858({ \ 2859 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2860 if (pcpu_stats) { \ 2861 int __cpu; \ 2862 for_each_possible_cpu(__cpu) { \ 2863 typeof(type) *stat; \ 2864 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2865 u64_stats_init(&stat->syncp); \ 2866 } \ 2867 } \ 2868 pcpu_stats; \ 2869}) 2870 2871#define netdev_alloc_pcpu_stats(type) \ 2872 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2873 2874#define devm_netdev_alloc_pcpu_stats(dev, type) \ 2875({ \ 2876 typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\ 2877 if (pcpu_stats) { \ 2878 int __cpu; \ 2879 for_each_possible_cpu(__cpu) { \ 2880 typeof(type) *stat; \ 2881 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2882 u64_stats_init(&stat->syncp); \ 2883 } \ 2884 } \ 2885 pcpu_stats; \ 2886}) 2887 2888enum netdev_lag_tx_type { 2889 NETDEV_LAG_TX_TYPE_UNKNOWN, 2890 NETDEV_LAG_TX_TYPE_RANDOM, 2891 NETDEV_LAG_TX_TYPE_BROADCAST, 2892 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2893 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2894 NETDEV_LAG_TX_TYPE_HASH, 2895}; 2896 2897enum netdev_lag_hash { 2898 NETDEV_LAG_HASH_NONE, 2899 NETDEV_LAG_HASH_L2, 2900 NETDEV_LAG_HASH_L34, 2901 NETDEV_LAG_HASH_L23, 2902 NETDEV_LAG_HASH_E23, 2903 NETDEV_LAG_HASH_E34, 2904 NETDEV_LAG_HASH_VLAN_SRCMAC, 2905 NETDEV_LAG_HASH_UNKNOWN, 2906}; 2907 2908struct netdev_lag_upper_info { 2909 enum netdev_lag_tx_type tx_type; 2910 enum netdev_lag_hash hash_type; 2911}; 2912 2913struct netdev_lag_lower_state_info { 2914 u8 link_up : 1, 2915 tx_enabled : 1; 2916}; 2917 2918#include <linux/notifier.h> 2919 2920/* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2921 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2922 * adding new types. 2923 */ 2924enum netdev_cmd { 2925 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2926 NETDEV_DOWN, 2927 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2928 detected a hardware crash and restarted 2929 - we can use this eg to kick tcp sessions 2930 once done */ 2931 NETDEV_CHANGE, /* Notify device state change */ 2932 NETDEV_REGISTER, 2933 NETDEV_UNREGISTER, 2934 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2935 NETDEV_CHANGEADDR, /* notify after the address change */ 2936 NETDEV_PRE_CHANGEADDR, /* notify before the address change */ 2937 NETDEV_GOING_DOWN, 2938 NETDEV_CHANGENAME, 2939 NETDEV_FEAT_CHANGE, 2940 NETDEV_BONDING_FAILOVER, 2941 NETDEV_PRE_UP, 2942 NETDEV_PRE_TYPE_CHANGE, 2943 NETDEV_POST_TYPE_CHANGE, 2944 NETDEV_POST_INIT, 2945 NETDEV_PRE_UNINIT, 2946 NETDEV_RELEASE, 2947 NETDEV_NOTIFY_PEERS, 2948 NETDEV_JOIN, 2949 NETDEV_CHANGEUPPER, 2950 NETDEV_RESEND_IGMP, 2951 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2952 NETDEV_CHANGEINFODATA, 2953 NETDEV_BONDING_INFO, 2954 NETDEV_PRECHANGEUPPER, 2955 NETDEV_CHANGELOWERSTATE, 2956 NETDEV_UDP_TUNNEL_PUSH_INFO, 2957 NETDEV_UDP_TUNNEL_DROP_INFO, 2958 NETDEV_CHANGE_TX_QUEUE_LEN, 2959 NETDEV_CVLAN_FILTER_PUSH_INFO, 2960 NETDEV_CVLAN_FILTER_DROP_INFO, 2961 NETDEV_SVLAN_FILTER_PUSH_INFO, 2962 NETDEV_SVLAN_FILTER_DROP_INFO, 2963 NETDEV_OFFLOAD_XSTATS_ENABLE, 2964 NETDEV_OFFLOAD_XSTATS_DISABLE, 2965 NETDEV_OFFLOAD_XSTATS_REPORT_USED, 2966 NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 2967 NETDEV_XDP_FEAT_CHANGE, 2968}; 2969const char *netdev_cmd_to_name(enum netdev_cmd cmd); 2970 2971int register_netdevice_notifier(struct notifier_block *nb); 2972int unregister_netdevice_notifier(struct notifier_block *nb); 2973int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb); 2974int unregister_netdevice_notifier_net(struct net *net, 2975 struct notifier_block *nb); 2976int register_netdevice_notifier_dev_net(struct net_device *dev, 2977 struct notifier_block *nb, 2978 struct netdev_net_notifier *nn); 2979int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2980 struct notifier_block *nb, 2981 struct netdev_net_notifier *nn); 2982 2983struct netdev_notifier_info { 2984 struct net_device *dev; 2985 struct netlink_ext_ack *extack; 2986}; 2987 2988struct netdev_notifier_info_ext { 2989 struct netdev_notifier_info info; /* must be first */ 2990 union { 2991 u32 mtu; 2992 } ext; 2993}; 2994 2995struct netdev_notifier_change_info { 2996 struct netdev_notifier_info info; /* must be first */ 2997 unsigned int flags_changed; 2998}; 2999 3000struct netdev_notifier_changeupper_info { 3001 struct netdev_notifier_info info; /* must be first */ 3002 struct net_device *upper_dev; /* new upper dev */ 3003 bool master; /* is upper dev master */ 3004 bool linking; /* is the notification for link or unlink */ 3005 void *upper_info; /* upper dev info */ 3006}; 3007 3008struct netdev_notifier_changelowerstate_info { 3009 struct netdev_notifier_info info; /* must be first */ 3010 void *lower_state_info; /* is lower dev state */ 3011}; 3012 3013struct netdev_notifier_pre_changeaddr_info { 3014 struct netdev_notifier_info info; /* must be first */ 3015 const unsigned char *dev_addr; 3016}; 3017 3018enum netdev_offload_xstats_type { 3019 NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1, 3020}; 3021 3022struct netdev_notifier_offload_xstats_info { 3023 struct netdev_notifier_info info; /* must be first */ 3024 enum netdev_offload_xstats_type type; 3025 3026 union { 3027 /* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */ 3028 struct netdev_notifier_offload_xstats_rd *report_delta; 3029 /* NETDEV_OFFLOAD_XSTATS_REPORT_USED */ 3030 struct netdev_notifier_offload_xstats_ru *report_used; 3031 }; 3032}; 3033 3034int netdev_offload_xstats_enable(struct net_device *dev, 3035 enum netdev_offload_xstats_type type, 3036 struct netlink_ext_ack *extack); 3037int netdev_offload_xstats_disable(struct net_device *dev, 3038 enum netdev_offload_xstats_type type); 3039bool netdev_offload_xstats_enabled(const struct net_device *dev, 3040 enum netdev_offload_xstats_type type); 3041int netdev_offload_xstats_get(struct net_device *dev, 3042 enum netdev_offload_xstats_type type, 3043 struct rtnl_hw_stats64 *stats, bool *used, 3044 struct netlink_ext_ack *extack); 3045void 3046netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd, 3047 const struct rtnl_hw_stats64 *stats); 3048void 3049netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru); 3050void netdev_offload_xstats_push_delta(struct net_device *dev, 3051 enum netdev_offload_xstats_type type, 3052 const struct rtnl_hw_stats64 *stats); 3053 3054static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 3055 struct net_device *dev) 3056{ 3057 info->dev = dev; 3058 info->extack = NULL; 3059} 3060 3061static inline struct net_device * 3062netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 3063{ 3064 return info->dev; 3065} 3066 3067static inline struct netlink_ext_ack * 3068netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 3069{ 3070 return info->extack; 3071} 3072 3073int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 3074int call_netdevice_notifiers_info(unsigned long val, 3075 struct netdev_notifier_info *info); 3076 3077extern rwlock_t dev_base_lock; /* Device list lock */ 3078 3079#define for_each_netdev(net, d) \ 3080 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 3081#define for_each_netdev_reverse(net, d) \ 3082 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 3083#define for_each_netdev_rcu(net, d) \ 3084 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 3085#define for_each_netdev_safe(net, d, n) \ 3086 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 3087#define for_each_netdev_continue(net, d) \ 3088 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 3089#define for_each_netdev_continue_reverse(net, d) \ 3090 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \ 3091 dev_list) 3092#define for_each_netdev_continue_rcu(net, d) \ 3093 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 3094#define for_each_netdev_in_bond_rcu(bond, slave) \ 3095 for_each_netdev_rcu(&init_net, slave) \ 3096 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 3097#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 3098 3099#define for_each_netdev_dump(net, d, ifindex) \ 3100 xa_for_each_start(&(net)->dev_by_index, (ifindex), (d), (ifindex)) 3101 3102static inline struct net_device *next_net_device(struct net_device *dev) 3103{ 3104 struct list_head *lh; 3105 struct net *net; 3106 3107 net = dev_net(dev); 3108 lh = dev->dev_list.next; 3109 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3110} 3111 3112static inline struct net_device *next_net_device_rcu(struct net_device *dev) 3113{ 3114 struct list_head *lh; 3115 struct net *net; 3116 3117 net = dev_net(dev); 3118 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 3119 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3120} 3121 3122static inline struct net_device *first_net_device(struct net *net) 3123{ 3124 return list_empty(&net->dev_base_head) ? NULL : 3125 net_device_entry(net->dev_base_head.next); 3126} 3127 3128static inline struct net_device *first_net_device_rcu(struct net *net) 3129{ 3130 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 3131 3132 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3133} 3134 3135int netdev_boot_setup_check(struct net_device *dev); 3136struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 3137 const char *hwaddr); 3138struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 3139void dev_add_pack(struct packet_type *pt); 3140void dev_remove_pack(struct packet_type *pt); 3141void __dev_remove_pack(struct packet_type *pt); 3142void dev_add_offload(struct packet_offload *po); 3143void dev_remove_offload(struct packet_offload *po); 3144 3145int dev_get_iflink(const struct net_device *dev); 3146int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 3147int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 3148 struct net_device_path_stack *stack); 3149struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 3150 unsigned short mask); 3151struct net_device *dev_get_by_name(struct net *net, const char *name); 3152struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 3153struct net_device *__dev_get_by_name(struct net *net, const char *name); 3154bool netdev_name_in_use(struct net *net, const char *name); 3155int dev_alloc_name(struct net_device *dev, const char *name); 3156int dev_open(struct net_device *dev, struct netlink_ext_ack *extack); 3157void dev_close(struct net_device *dev); 3158void dev_close_many(struct list_head *head, bool unlink); 3159void dev_disable_lro(struct net_device *dev); 3160int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 3161u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3162 struct net_device *sb_dev); 3163u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 3164 struct net_device *sb_dev); 3165 3166int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev); 3167int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 3168 3169static inline int dev_queue_xmit(struct sk_buff *skb) 3170{ 3171 return __dev_queue_xmit(skb, NULL); 3172} 3173 3174static inline int dev_queue_xmit_accel(struct sk_buff *skb, 3175 struct net_device *sb_dev) 3176{ 3177 return __dev_queue_xmit(skb, sb_dev); 3178} 3179 3180static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 3181{ 3182 int ret; 3183 3184 ret = __dev_direct_xmit(skb, queue_id); 3185 if (!dev_xmit_complete(ret)) 3186 kfree_skb(skb); 3187 return ret; 3188} 3189 3190int register_netdevice(struct net_device *dev); 3191void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 3192void unregister_netdevice_many(struct list_head *head); 3193static inline void unregister_netdevice(struct net_device *dev) 3194{ 3195 unregister_netdevice_queue(dev, NULL); 3196} 3197 3198int netdev_refcnt_read(const struct net_device *dev); 3199void free_netdev(struct net_device *dev); 3200void netdev_freemem(struct net_device *dev); 3201int init_dummy_netdev(struct net_device *dev); 3202 3203struct net_device *netdev_get_xmit_slave(struct net_device *dev, 3204 struct sk_buff *skb, 3205 bool all_slaves); 3206struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 3207 struct sock *sk); 3208struct net_device *dev_get_by_index(struct net *net, int ifindex); 3209struct net_device *__dev_get_by_index(struct net *net, int ifindex); 3210struct net_device *netdev_get_by_index(struct net *net, int ifindex, 3211 netdevice_tracker *tracker, gfp_t gfp); 3212struct net_device *netdev_get_by_name(struct net *net, const char *name, 3213 netdevice_tracker *tracker, gfp_t gfp); 3214struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 3215struct net_device *dev_get_by_napi_id(unsigned int napi_id); 3216 3217static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 3218 unsigned short type, 3219 const void *daddr, const void *saddr, 3220 unsigned int len) 3221{ 3222 if (!dev->header_ops || !dev->header_ops->create) 3223 return 0; 3224 3225 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 3226} 3227 3228static inline int dev_parse_header(const struct sk_buff *skb, 3229 unsigned char *haddr) 3230{ 3231 const struct net_device *dev = skb->dev; 3232 3233 if (!dev->header_ops || !dev->header_ops->parse) 3234 return 0; 3235 return dev->header_ops->parse(skb, haddr); 3236} 3237 3238static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb) 3239{ 3240 const struct net_device *dev = skb->dev; 3241 3242 if (!dev->header_ops || !dev->header_ops->parse_protocol) 3243 return 0; 3244 return dev->header_ops->parse_protocol(skb); 3245} 3246 3247/* ll_header must have at least hard_header_len allocated */ 3248static inline bool dev_validate_header(const struct net_device *dev, 3249 char *ll_header, int len) 3250{ 3251 if (likely(len >= dev->hard_header_len)) 3252 return true; 3253 if (len < dev->min_header_len) 3254 return false; 3255 3256 if (capable(CAP_SYS_RAWIO)) { 3257 memset(ll_header + len, 0, dev->hard_header_len - len); 3258 return true; 3259 } 3260 3261 if (dev->header_ops && dev->header_ops->validate) 3262 return dev->header_ops->validate(ll_header, len); 3263 3264 return false; 3265} 3266 3267static inline bool dev_has_header(const struct net_device *dev) 3268{ 3269 return dev->header_ops && dev->header_ops->create; 3270} 3271 3272/* 3273 * Incoming packets are placed on per-CPU queues 3274 */ 3275struct softnet_data { 3276 struct list_head poll_list; 3277 struct sk_buff_head process_queue; 3278 3279 /* stats */ 3280 unsigned int processed; 3281 unsigned int time_squeeze; 3282#ifdef CONFIG_RPS 3283 struct softnet_data *rps_ipi_list; 3284#endif 3285 3286 bool in_net_rx_action; 3287 bool in_napi_threaded_poll; 3288 3289#ifdef CONFIG_NET_FLOW_LIMIT 3290 struct sd_flow_limit __rcu *flow_limit; 3291#endif 3292 struct Qdisc *output_queue; 3293 struct Qdisc **output_queue_tailp; 3294 struct sk_buff *completion_queue; 3295#ifdef CONFIG_XFRM_OFFLOAD 3296 struct sk_buff_head xfrm_backlog; 3297#endif 3298 /* written and read only by owning cpu: */ 3299 struct { 3300 u16 recursion; 3301 u8 more; 3302#ifdef CONFIG_NET_EGRESS 3303 u8 skip_txqueue; 3304#endif 3305 } xmit; 3306#ifdef CONFIG_RPS 3307 /* input_queue_head should be written by cpu owning this struct, 3308 * and only read by other cpus. Worth using a cache line. 3309 */ 3310 unsigned int input_queue_head ____cacheline_aligned_in_smp; 3311 3312 /* Elements below can be accessed between CPUs for RPS/RFS */ 3313 call_single_data_t csd ____cacheline_aligned_in_smp; 3314 struct softnet_data *rps_ipi_next; 3315 unsigned int cpu; 3316 unsigned int input_queue_tail; 3317#endif 3318 unsigned int received_rps; 3319 unsigned int dropped; 3320 struct sk_buff_head input_pkt_queue; 3321 struct napi_struct backlog; 3322 3323 /* Another possibly contended cache line */ 3324 spinlock_t defer_lock ____cacheline_aligned_in_smp; 3325 int defer_count; 3326 int defer_ipi_scheduled; 3327 struct sk_buff *defer_list; 3328 call_single_data_t defer_csd; 3329}; 3330 3331static inline void input_queue_head_incr(struct softnet_data *sd) 3332{ 3333#ifdef CONFIG_RPS 3334 sd->input_queue_head++; 3335#endif 3336} 3337 3338static inline void input_queue_tail_incr_save(struct softnet_data *sd, 3339 unsigned int *qtail) 3340{ 3341#ifdef CONFIG_RPS 3342 *qtail = ++sd->input_queue_tail; 3343#endif 3344} 3345 3346DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 3347 3348static inline int dev_recursion_level(void) 3349{ 3350 return this_cpu_read(softnet_data.xmit.recursion); 3351} 3352 3353#define XMIT_RECURSION_LIMIT 8 3354static inline bool dev_xmit_recursion(void) 3355{ 3356 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) > 3357 XMIT_RECURSION_LIMIT); 3358} 3359 3360static inline void dev_xmit_recursion_inc(void) 3361{ 3362 __this_cpu_inc(softnet_data.xmit.recursion); 3363} 3364 3365static inline void dev_xmit_recursion_dec(void) 3366{ 3367 __this_cpu_dec(softnet_data.xmit.recursion); 3368} 3369 3370void __netif_schedule(struct Qdisc *q); 3371void netif_schedule_queue(struct netdev_queue *txq); 3372 3373static inline void netif_tx_schedule_all(struct net_device *dev) 3374{ 3375 unsigned int i; 3376 3377 for (i = 0; i < dev->num_tx_queues; i++) 3378 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 3379} 3380 3381static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3382{ 3383 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3384} 3385 3386/** 3387 * netif_start_queue - allow transmit 3388 * @dev: network device 3389 * 3390 * Allow upper layers to call the device hard_start_xmit routine. 3391 */ 3392static inline void netif_start_queue(struct net_device *dev) 3393{ 3394 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3395} 3396 3397static inline void netif_tx_start_all_queues(struct net_device *dev) 3398{ 3399 unsigned int i; 3400 3401 for (i = 0; i < dev->num_tx_queues; i++) { 3402 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3403 netif_tx_start_queue(txq); 3404 } 3405} 3406 3407void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3408 3409/** 3410 * netif_wake_queue - restart transmit 3411 * @dev: network device 3412 * 3413 * Allow upper layers to call the device hard_start_xmit routine. 3414 * Used for flow control when transmit resources are available. 3415 */ 3416static inline void netif_wake_queue(struct net_device *dev) 3417{ 3418 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3419} 3420 3421static inline void netif_tx_wake_all_queues(struct net_device *dev) 3422{ 3423 unsigned int i; 3424 3425 for (i = 0; i < dev->num_tx_queues; i++) { 3426 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3427 netif_tx_wake_queue(txq); 3428 } 3429} 3430 3431static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3432{ 3433 /* Must be an atomic op see netif_txq_try_stop() */ 3434 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3435} 3436 3437/** 3438 * netif_stop_queue - stop transmitted packets 3439 * @dev: network device 3440 * 3441 * Stop upper layers calling the device hard_start_xmit routine. 3442 * Used for flow control when transmit resources are unavailable. 3443 */ 3444static inline void netif_stop_queue(struct net_device *dev) 3445{ 3446 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3447} 3448 3449void netif_tx_stop_all_queues(struct net_device *dev); 3450 3451static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3452{ 3453 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3454} 3455 3456/** 3457 * netif_queue_stopped - test if transmit queue is flowblocked 3458 * @dev: network device 3459 * 3460 * Test if transmit queue on device is currently unable to send. 3461 */ 3462static inline bool netif_queue_stopped(const struct net_device *dev) 3463{ 3464 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3465} 3466 3467static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3468{ 3469 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3470} 3471 3472static inline bool 3473netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3474{ 3475 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3476} 3477 3478static inline bool 3479netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3480{ 3481 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3482} 3483 3484/** 3485 * netdev_queue_set_dql_min_limit - set dql minimum limit 3486 * @dev_queue: pointer to transmit queue 3487 * @min_limit: dql minimum limit 3488 * 3489 * Forces xmit_more() to return true until the minimum threshold 3490 * defined by @min_limit is reached (or until the tx queue is 3491 * empty). Warning: to be use with care, misuse will impact the 3492 * latency. 3493 */ 3494static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue, 3495 unsigned int min_limit) 3496{ 3497#ifdef CONFIG_BQL 3498 dev_queue->dql.min_limit = min_limit; 3499#endif 3500} 3501 3502/** 3503 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3504 * @dev_queue: pointer to transmit queue 3505 * 3506 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3507 * to give appropriate hint to the CPU. 3508 */ 3509static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3510{ 3511#ifdef CONFIG_BQL 3512 prefetchw(&dev_queue->dql.num_queued); 3513#endif 3514} 3515 3516/** 3517 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3518 * @dev_queue: pointer to transmit queue 3519 * 3520 * BQL enabled drivers might use this helper in their TX completion path, 3521 * to give appropriate hint to the CPU. 3522 */ 3523static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3524{ 3525#ifdef CONFIG_BQL 3526 prefetchw(&dev_queue->dql.limit); 3527#endif 3528} 3529 3530/** 3531 * netdev_tx_sent_queue - report the number of bytes queued to a given tx queue 3532 * @dev_queue: network device queue 3533 * @bytes: number of bytes queued to the device queue 3534 * 3535 * Report the number of bytes queued for sending/completion to the network 3536 * device hardware queue. @bytes should be a good approximation and should 3537 * exactly match netdev_completed_queue() @bytes. 3538 * This is typically called once per packet, from ndo_start_xmit(). 3539 */ 3540static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3541 unsigned int bytes) 3542{ 3543#ifdef CONFIG_BQL 3544 dql_queued(&dev_queue->dql, bytes); 3545 3546 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3547 return; 3548 3549 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3550 3551 /* 3552 * The XOFF flag must be set before checking the dql_avail below, 3553 * because in netdev_tx_completed_queue we update the dql_completed 3554 * before checking the XOFF flag. 3555 */ 3556 smp_mb(); 3557 3558 /* check again in case another CPU has just made room avail */ 3559 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3560 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3561#endif 3562} 3563 3564/* Variant of netdev_tx_sent_queue() for drivers that are aware 3565 * that they should not test BQL status themselves. 3566 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last 3567 * skb of a batch. 3568 * Returns true if the doorbell must be used to kick the NIC. 3569 */ 3570static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3571 unsigned int bytes, 3572 bool xmit_more) 3573{ 3574 if (xmit_more) { 3575#ifdef CONFIG_BQL 3576 dql_queued(&dev_queue->dql, bytes); 3577#endif 3578 return netif_tx_queue_stopped(dev_queue); 3579 } 3580 netdev_tx_sent_queue(dev_queue, bytes); 3581 return true; 3582} 3583 3584/** 3585 * netdev_sent_queue - report the number of bytes queued to hardware 3586 * @dev: network device 3587 * @bytes: number of bytes queued to the hardware device queue 3588 * 3589 * Report the number of bytes queued for sending/completion to the network 3590 * device hardware queue#0. @bytes should be a good approximation and should 3591 * exactly match netdev_completed_queue() @bytes. 3592 * This is typically called once per packet, from ndo_start_xmit(). 3593 */ 3594static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3595{ 3596 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3597} 3598 3599static inline bool __netdev_sent_queue(struct net_device *dev, 3600 unsigned int bytes, 3601 bool xmit_more) 3602{ 3603 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes, 3604 xmit_more); 3605} 3606 3607/** 3608 * netdev_tx_completed_queue - report number of packets/bytes at TX completion. 3609 * @dev_queue: network device queue 3610 * @pkts: number of packets (currently ignored) 3611 * @bytes: number of bytes dequeued from the device queue 3612 * 3613 * Must be called at most once per TX completion round (and not per 3614 * individual packet), so that BQL can adjust its limits appropriately. 3615 */ 3616static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3617 unsigned int pkts, unsigned int bytes) 3618{ 3619#ifdef CONFIG_BQL 3620 if (unlikely(!bytes)) 3621 return; 3622 3623 dql_completed(&dev_queue->dql, bytes); 3624 3625 /* 3626 * Without the memory barrier there is a small possiblity that 3627 * netdev_tx_sent_queue will miss the update and cause the queue to 3628 * be stopped forever 3629 */ 3630 smp_mb(); /* NOTE: netdev_txq_completed_mb() assumes this exists */ 3631 3632 if (unlikely(dql_avail(&dev_queue->dql) < 0)) 3633 return; 3634 3635 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3636 netif_schedule_queue(dev_queue); 3637#endif 3638} 3639 3640/** 3641 * netdev_completed_queue - report bytes and packets completed by device 3642 * @dev: network device 3643 * @pkts: actual number of packets sent over the medium 3644 * @bytes: actual number of bytes sent over the medium 3645 * 3646 * Report the number of bytes and packets transmitted by the network device 3647 * hardware queue over the physical medium, @bytes must exactly match the 3648 * @bytes amount passed to netdev_sent_queue() 3649 */ 3650static inline void netdev_completed_queue(struct net_device *dev, 3651 unsigned int pkts, unsigned int bytes) 3652{ 3653 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3654} 3655 3656static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3657{ 3658#ifdef CONFIG_BQL 3659 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3660 dql_reset(&q->dql); 3661#endif 3662} 3663 3664/** 3665 * netdev_reset_queue - reset the packets and bytes count of a network device 3666 * @dev_queue: network device 3667 * 3668 * Reset the bytes and packet count of a network device and clear the 3669 * software flow control OFF bit for this network device 3670 */ 3671static inline void netdev_reset_queue(struct net_device *dev_queue) 3672{ 3673 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3674} 3675 3676/** 3677 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3678 * @dev: network device 3679 * @queue_index: given tx queue index 3680 * 3681 * Returns 0 if given tx queue index >= number of device tx queues, 3682 * otherwise returns the originally passed tx queue index. 3683 */ 3684static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3685{ 3686 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3687 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3688 dev->name, queue_index, 3689 dev->real_num_tx_queues); 3690 return 0; 3691 } 3692 3693 return queue_index; 3694} 3695 3696/** 3697 * netif_running - test if up 3698 * @dev: network device 3699 * 3700 * Test if the device has been brought up. 3701 */ 3702static inline bool netif_running(const struct net_device *dev) 3703{ 3704 return test_bit(__LINK_STATE_START, &dev->state); 3705} 3706 3707/* 3708 * Routines to manage the subqueues on a device. We only need start, 3709 * stop, and a check if it's stopped. All other device management is 3710 * done at the overall netdevice level. 3711 * Also test the device if we're multiqueue. 3712 */ 3713 3714/** 3715 * netif_start_subqueue - allow sending packets on subqueue 3716 * @dev: network device 3717 * @queue_index: sub queue index 3718 * 3719 * Start individual transmit queue of a device with multiple transmit queues. 3720 */ 3721static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3722{ 3723 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3724 3725 netif_tx_start_queue(txq); 3726} 3727 3728/** 3729 * netif_stop_subqueue - stop sending packets on subqueue 3730 * @dev: network device 3731 * @queue_index: sub queue index 3732 * 3733 * Stop individual transmit queue of a device with multiple transmit queues. 3734 */ 3735static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3736{ 3737 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3738 netif_tx_stop_queue(txq); 3739} 3740 3741/** 3742 * __netif_subqueue_stopped - test status of subqueue 3743 * @dev: network device 3744 * @queue_index: sub queue index 3745 * 3746 * Check individual transmit queue of a device with multiple transmit queues. 3747 */ 3748static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3749 u16 queue_index) 3750{ 3751 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3752 3753 return netif_tx_queue_stopped(txq); 3754} 3755 3756/** 3757 * netif_subqueue_stopped - test status of subqueue 3758 * @dev: network device 3759 * @skb: sub queue buffer pointer 3760 * 3761 * Check individual transmit queue of a device with multiple transmit queues. 3762 */ 3763static inline bool netif_subqueue_stopped(const struct net_device *dev, 3764 struct sk_buff *skb) 3765{ 3766 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3767} 3768 3769/** 3770 * netif_wake_subqueue - allow sending packets on subqueue 3771 * @dev: network device 3772 * @queue_index: sub queue index 3773 * 3774 * Resume individual transmit queue of a device with multiple transmit queues. 3775 */ 3776static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3777{ 3778 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3779 3780 netif_tx_wake_queue(txq); 3781} 3782 3783#ifdef CONFIG_XPS 3784int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3785 u16 index); 3786int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 3787 u16 index, enum xps_map_type type); 3788 3789/** 3790 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 3791 * @j: CPU/Rx queue index 3792 * @mask: bitmask of all cpus/rx queues 3793 * @nr_bits: number of bits in the bitmask 3794 * 3795 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 3796 */ 3797static inline bool netif_attr_test_mask(unsigned long j, 3798 const unsigned long *mask, 3799 unsigned int nr_bits) 3800{ 3801 cpu_max_bits_warn(j, nr_bits); 3802 return test_bit(j, mask); 3803} 3804 3805/** 3806 * netif_attr_test_online - Test for online CPU/Rx queue 3807 * @j: CPU/Rx queue index 3808 * @online_mask: bitmask for CPUs/Rx queues that are online 3809 * @nr_bits: number of bits in the bitmask 3810 * 3811 * Returns true if a CPU/Rx queue is online. 3812 */ 3813static inline bool netif_attr_test_online(unsigned long j, 3814 const unsigned long *online_mask, 3815 unsigned int nr_bits) 3816{ 3817 cpu_max_bits_warn(j, nr_bits); 3818 3819 if (online_mask) 3820 return test_bit(j, online_mask); 3821 3822 return (j < nr_bits); 3823} 3824 3825/** 3826 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 3827 * @n: CPU/Rx queue index 3828 * @srcp: the cpumask/Rx queue mask pointer 3829 * @nr_bits: number of bits in the bitmask 3830 * 3831 * Returns >= nr_bits if no further CPUs/Rx queues set. 3832 */ 3833static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 3834 unsigned int nr_bits) 3835{ 3836 /* -1 is a legal arg here. */ 3837 if (n != -1) 3838 cpu_max_bits_warn(n, nr_bits); 3839 3840 if (srcp) 3841 return find_next_bit(srcp, nr_bits, n + 1); 3842 3843 return n + 1; 3844} 3845 3846/** 3847 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p 3848 * @n: CPU/Rx queue index 3849 * @src1p: the first CPUs/Rx queues mask pointer 3850 * @src2p: the second CPUs/Rx queues mask pointer 3851 * @nr_bits: number of bits in the bitmask 3852 * 3853 * Returns >= nr_bits if no further CPUs/Rx queues set in both. 3854 */ 3855static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 3856 const unsigned long *src2p, 3857 unsigned int nr_bits) 3858{ 3859 /* -1 is a legal arg here. */ 3860 if (n != -1) 3861 cpu_max_bits_warn(n, nr_bits); 3862 3863 if (src1p && src2p) 3864 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 3865 else if (src1p) 3866 return find_next_bit(src1p, nr_bits, n + 1); 3867 else if (src2p) 3868 return find_next_bit(src2p, nr_bits, n + 1); 3869 3870 return n + 1; 3871} 3872#else 3873static inline int netif_set_xps_queue(struct net_device *dev, 3874 const struct cpumask *mask, 3875 u16 index) 3876{ 3877 return 0; 3878} 3879 3880static inline int __netif_set_xps_queue(struct net_device *dev, 3881 const unsigned long *mask, 3882 u16 index, enum xps_map_type type) 3883{ 3884 return 0; 3885} 3886#endif 3887 3888/** 3889 * netif_is_multiqueue - test if device has multiple transmit queues 3890 * @dev: network device 3891 * 3892 * Check if device has multiple transmit queues 3893 */ 3894static inline bool netif_is_multiqueue(const struct net_device *dev) 3895{ 3896 return dev->num_tx_queues > 1; 3897} 3898 3899int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3900 3901#ifdef CONFIG_SYSFS 3902int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3903#else 3904static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3905 unsigned int rxqs) 3906{ 3907 dev->real_num_rx_queues = rxqs; 3908 return 0; 3909} 3910#endif 3911int netif_set_real_num_queues(struct net_device *dev, 3912 unsigned int txq, unsigned int rxq); 3913 3914int netif_get_num_default_rss_queues(void); 3915 3916void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason); 3917void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason); 3918 3919/* 3920 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3921 * interrupt context or with hardware interrupts being disabled. 3922 * (in_hardirq() || irqs_disabled()) 3923 * 3924 * We provide four helpers that can be used in following contexts : 3925 * 3926 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3927 * replacing kfree_skb(skb) 3928 * 3929 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3930 * Typically used in place of consume_skb(skb) in TX completion path 3931 * 3932 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3933 * replacing kfree_skb(skb) 3934 * 3935 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3936 * and consumed a packet. Used in place of consume_skb(skb) 3937 */ 3938static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3939{ 3940 dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 3941} 3942 3943static inline void dev_consume_skb_irq(struct sk_buff *skb) 3944{ 3945 dev_kfree_skb_irq_reason(skb, SKB_CONSUMED); 3946} 3947 3948static inline void dev_kfree_skb_any(struct sk_buff *skb) 3949{ 3950 dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 3951} 3952 3953static inline void dev_consume_skb_any(struct sk_buff *skb) 3954{ 3955 dev_kfree_skb_any_reason(skb, SKB_CONSUMED); 3956} 3957 3958u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 3959 struct bpf_prog *xdp_prog); 3960void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3961int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb); 3962int netif_rx(struct sk_buff *skb); 3963int __netif_rx(struct sk_buff *skb); 3964 3965int netif_receive_skb(struct sk_buff *skb); 3966int netif_receive_skb_core(struct sk_buff *skb); 3967void netif_receive_skb_list_internal(struct list_head *head); 3968void netif_receive_skb_list(struct list_head *head); 3969gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3970void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3971struct sk_buff *napi_get_frags(struct napi_struct *napi); 3972void napi_get_frags_check(struct napi_struct *napi); 3973gro_result_t napi_gro_frags(struct napi_struct *napi); 3974struct packet_offload *gro_find_receive_by_type(__be16 type); 3975struct packet_offload *gro_find_complete_by_type(__be16 type); 3976 3977static inline void napi_free_frags(struct napi_struct *napi) 3978{ 3979 kfree_skb(napi->skb); 3980 napi->skb = NULL; 3981} 3982 3983bool netdev_is_rx_handler_busy(struct net_device *dev); 3984int netdev_rx_handler_register(struct net_device *dev, 3985 rx_handler_func_t *rx_handler, 3986 void *rx_handler_data); 3987void netdev_rx_handler_unregister(struct net_device *dev); 3988 3989bool dev_valid_name(const char *name); 3990static inline bool is_socket_ioctl_cmd(unsigned int cmd) 3991{ 3992 return _IOC_TYPE(cmd) == SOCK_IOC_TYPE; 3993} 3994int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg); 3995int put_user_ifreq(struct ifreq *ifr, void __user *arg); 3996int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 3997 void __user *data, bool *need_copyout); 3998int dev_ifconf(struct net *net, struct ifconf __user *ifc); 3999int generic_hwtstamp_get_lower(struct net_device *dev, 4000 struct kernel_hwtstamp_config *kernel_cfg); 4001int generic_hwtstamp_set_lower(struct net_device *dev, 4002 struct kernel_hwtstamp_config *kernel_cfg, 4003 struct netlink_ext_ack *extack); 4004int dev_set_hwtstamp_phylib(struct net_device *dev, 4005 struct kernel_hwtstamp_config *cfg, 4006 struct netlink_ext_ack *extack); 4007int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata); 4008unsigned int dev_get_flags(const struct net_device *); 4009int __dev_change_flags(struct net_device *dev, unsigned int flags, 4010 struct netlink_ext_ack *extack); 4011int dev_change_flags(struct net_device *dev, unsigned int flags, 4012 struct netlink_ext_ack *extack); 4013int dev_set_alias(struct net_device *, const char *, size_t); 4014int dev_get_alias(const struct net_device *, char *, size_t); 4015int __dev_change_net_namespace(struct net_device *dev, struct net *net, 4016 const char *pat, int new_ifindex); 4017static inline 4018int dev_change_net_namespace(struct net_device *dev, struct net *net, 4019 const char *pat) 4020{ 4021 return __dev_change_net_namespace(dev, net, pat, 0); 4022} 4023int __dev_set_mtu(struct net_device *, int); 4024int dev_set_mtu(struct net_device *, int); 4025int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 4026 struct netlink_ext_ack *extack); 4027int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 4028 struct netlink_ext_ack *extack); 4029int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 4030 struct netlink_ext_ack *extack); 4031int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name); 4032int dev_get_port_parent_id(struct net_device *dev, 4033 struct netdev_phys_item_id *ppid, bool recurse); 4034bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b); 4035void netdev_dpll_pin_set(struct net_device *dev, struct dpll_pin *dpll_pin); 4036void netdev_dpll_pin_clear(struct net_device *dev); 4037 4038static inline struct dpll_pin *netdev_dpll_pin(const struct net_device *dev) 4039{ 4040#if IS_ENABLED(CONFIG_DPLL) 4041 return dev->dpll_pin; 4042#else 4043 return NULL; 4044#endif 4045} 4046 4047struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 4048struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 4049 struct netdev_queue *txq, int *ret); 4050 4051int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog); 4052u8 dev_xdp_prog_count(struct net_device *dev); 4053u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode); 4054 4055int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 4056int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 4057int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb); 4058bool is_skb_forwardable(const struct net_device *dev, 4059 const struct sk_buff *skb); 4060 4061static __always_inline bool __is_skb_forwardable(const struct net_device *dev, 4062 const struct sk_buff *skb, 4063 const bool check_mtu) 4064{ 4065 const u32 vlan_hdr_len = 4; /* VLAN_HLEN */ 4066 unsigned int len; 4067 4068 if (!(dev->flags & IFF_UP)) 4069 return false; 4070 4071 if (!check_mtu) 4072 return true; 4073 4074 len = dev->mtu + dev->hard_header_len + vlan_hdr_len; 4075 if (skb->len <= len) 4076 return true; 4077 4078 /* if TSO is enabled, we don't care about the length as the packet 4079 * could be forwarded without being segmented before 4080 */ 4081 if (skb_is_gso(skb)) 4082 return true; 4083 4084 return false; 4085} 4086 4087void netdev_core_stats_inc(struct net_device *dev, u32 offset); 4088 4089#define DEV_CORE_STATS_INC(FIELD) \ 4090static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev) \ 4091{ \ 4092 netdev_core_stats_inc(dev, \ 4093 offsetof(struct net_device_core_stats, FIELD)); \ 4094} 4095DEV_CORE_STATS_INC(rx_dropped) 4096DEV_CORE_STATS_INC(tx_dropped) 4097DEV_CORE_STATS_INC(rx_nohandler) 4098DEV_CORE_STATS_INC(rx_otherhost_dropped) 4099#undef DEV_CORE_STATS_INC 4100 4101static __always_inline int ____dev_forward_skb(struct net_device *dev, 4102 struct sk_buff *skb, 4103 const bool check_mtu) 4104{ 4105 if (skb_orphan_frags(skb, GFP_ATOMIC) || 4106 unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) { 4107 dev_core_stats_rx_dropped_inc(dev); 4108 kfree_skb(skb); 4109 return NET_RX_DROP; 4110 } 4111 4112 skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev))); 4113 skb->priority = 0; 4114 return 0; 4115} 4116 4117bool dev_nit_active(struct net_device *dev); 4118void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 4119 4120static inline void __dev_put(struct net_device *dev) 4121{ 4122 if (dev) { 4123#ifdef CONFIG_PCPU_DEV_REFCNT 4124 this_cpu_dec(*dev->pcpu_refcnt); 4125#else 4126 refcount_dec(&dev->dev_refcnt); 4127#endif 4128 } 4129} 4130 4131static inline void __dev_hold(struct net_device *dev) 4132{ 4133 if (dev) { 4134#ifdef CONFIG_PCPU_DEV_REFCNT 4135 this_cpu_inc(*dev->pcpu_refcnt); 4136#else 4137 refcount_inc(&dev->dev_refcnt); 4138#endif 4139 } 4140} 4141 4142static inline void __netdev_tracker_alloc(struct net_device *dev, 4143 netdevice_tracker *tracker, 4144 gfp_t gfp) 4145{ 4146#ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4147 ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp); 4148#endif 4149} 4150 4151/* netdev_tracker_alloc() can upgrade a prior untracked reference 4152 * taken by dev_get_by_name()/dev_get_by_index() to a tracked one. 4153 */ 4154static inline void netdev_tracker_alloc(struct net_device *dev, 4155 netdevice_tracker *tracker, gfp_t gfp) 4156{ 4157#ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4158 refcount_dec(&dev->refcnt_tracker.no_tracker); 4159 __netdev_tracker_alloc(dev, tracker, gfp); 4160#endif 4161} 4162 4163static inline void netdev_tracker_free(struct net_device *dev, 4164 netdevice_tracker *tracker) 4165{ 4166#ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4167 ref_tracker_free(&dev->refcnt_tracker, tracker); 4168#endif 4169} 4170 4171static inline void netdev_hold(struct net_device *dev, 4172 netdevice_tracker *tracker, gfp_t gfp) 4173{ 4174 if (dev) { 4175 __dev_hold(dev); 4176 __netdev_tracker_alloc(dev, tracker, gfp); 4177 } 4178} 4179 4180static inline void netdev_put(struct net_device *dev, 4181 netdevice_tracker *tracker) 4182{ 4183 if (dev) { 4184 netdev_tracker_free(dev, tracker); 4185 __dev_put(dev); 4186 } 4187} 4188 4189/** 4190 * dev_hold - get reference to device 4191 * @dev: network device 4192 * 4193 * Hold reference to device to keep it from being freed. 4194 * Try using netdev_hold() instead. 4195 */ 4196static inline void dev_hold(struct net_device *dev) 4197{ 4198 netdev_hold(dev, NULL, GFP_ATOMIC); 4199} 4200 4201/** 4202 * dev_put - release reference to device 4203 * @dev: network device 4204 * 4205 * Release reference to device to allow it to be freed. 4206 * Try using netdev_put() instead. 4207 */ 4208static inline void dev_put(struct net_device *dev) 4209{ 4210 netdev_put(dev, NULL); 4211} 4212 4213static inline void netdev_ref_replace(struct net_device *odev, 4214 struct net_device *ndev, 4215 netdevice_tracker *tracker, 4216 gfp_t gfp) 4217{ 4218 if (odev) 4219 netdev_tracker_free(odev, tracker); 4220 4221 __dev_hold(ndev); 4222 __dev_put(odev); 4223 4224 if (ndev) 4225 __netdev_tracker_alloc(ndev, tracker, gfp); 4226} 4227 4228/* Carrier loss detection, dial on demand. The functions netif_carrier_on 4229 * and _off may be called from IRQ context, but it is caller 4230 * who is responsible for serialization of these calls. 4231 * 4232 * The name carrier is inappropriate, these functions should really be 4233 * called netif_lowerlayer_*() because they represent the state of any 4234 * kind of lower layer not just hardware media. 4235 */ 4236void linkwatch_fire_event(struct net_device *dev); 4237 4238/** 4239 * linkwatch_sync_dev - sync linkwatch for the given device 4240 * @dev: network device to sync linkwatch for 4241 * 4242 * Sync linkwatch for the given device, removing it from the 4243 * pending work list (if queued). 4244 */ 4245void linkwatch_sync_dev(struct net_device *dev); 4246 4247/** 4248 * netif_carrier_ok - test if carrier present 4249 * @dev: network device 4250 * 4251 * Check if carrier is present on device 4252 */ 4253static inline bool netif_carrier_ok(const struct net_device *dev) 4254{ 4255 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 4256} 4257 4258unsigned long dev_trans_start(struct net_device *dev); 4259 4260void __netdev_watchdog_up(struct net_device *dev); 4261 4262void netif_carrier_on(struct net_device *dev); 4263void netif_carrier_off(struct net_device *dev); 4264void netif_carrier_event(struct net_device *dev); 4265 4266/** 4267 * netif_dormant_on - mark device as dormant. 4268 * @dev: network device 4269 * 4270 * Mark device as dormant (as per RFC2863). 4271 * 4272 * The dormant state indicates that the relevant interface is not 4273 * actually in a condition to pass packets (i.e., it is not 'up') but is 4274 * in a "pending" state, waiting for some external event. For "on- 4275 * demand" interfaces, this new state identifies the situation where the 4276 * interface is waiting for events to place it in the up state. 4277 */ 4278static inline void netif_dormant_on(struct net_device *dev) 4279{ 4280 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 4281 linkwatch_fire_event(dev); 4282} 4283 4284/** 4285 * netif_dormant_off - set device as not dormant. 4286 * @dev: network device 4287 * 4288 * Device is not in dormant state. 4289 */ 4290static inline void netif_dormant_off(struct net_device *dev) 4291{ 4292 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 4293 linkwatch_fire_event(dev); 4294} 4295 4296/** 4297 * netif_dormant - test if device is dormant 4298 * @dev: network device 4299 * 4300 * Check if device is dormant. 4301 */ 4302static inline bool netif_dormant(const struct net_device *dev) 4303{ 4304 return test_bit(__LINK_STATE_DORMANT, &dev->state); 4305} 4306 4307 4308/** 4309 * netif_testing_on - mark device as under test. 4310 * @dev: network device 4311 * 4312 * Mark device as under test (as per RFC2863). 4313 * 4314 * The testing state indicates that some test(s) must be performed on 4315 * the interface. After completion, of the test, the interface state 4316 * will change to up, dormant, or down, as appropriate. 4317 */ 4318static inline void netif_testing_on(struct net_device *dev) 4319{ 4320 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state)) 4321 linkwatch_fire_event(dev); 4322} 4323 4324/** 4325 * netif_testing_off - set device as not under test. 4326 * @dev: network device 4327 * 4328 * Device is not in testing state. 4329 */ 4330static inline void netif_testing_off(struct net_device *dev) 4331{ 4332 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state)) 4333 linkwatch_fire_event(dev); 4334} 4335 4336/** 4337 * netif_testing - test if device is under test 4338 * @dev: network device 4339 * 4340 * Check if device is under test 4341 */ 4342static inline bool netif_testing(const struct net_device *dev) 4343{ 4344 return test_bit(__LINK_STATE_TESTING, &dev->state); 4345} 4346 4347 4348/** 4349 * netif_oper_up - test if device is operational 4350 * @dev: network device 4351 * 4352 * Check if carrier is operational 4353 */ 4354static inline bool netif_oper_up(const struct net_device *dev) 4355{ 4356 return (dev->operstate == IF_OPER_UP || 4357 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 4358} 4359 4360/** 4361 * netif_device_present - is device available or removed 4362 * @dev: network device 4363 * 4364 * Check if device has not been removed from system. 4365 */ 4366static inline bool netif_device_present(const struct net_device *dev) 4367{ 4368 return test_bit(__LINK_STATE_PRESENT, &dev->state); 4369} 4370 4371void netif_device_detach(struct net_device *dev); 4372 4373void netif_device_attach(struct net_device *dev); 4374 4375/* 4376 * Network interface message level settings 4377 */ 4378 4379enum { 4380 NETIF_MSG_DRV_BIT, 4381 NETIF_MSG_PROBE_BIT, 4382 NETIF_MSG_LINK_BIT, 4383 NETIF_MSG_TIMER_BIT, 4384 NETIF_MSG_IFDOWN_BIT, 4385 NETIF_MSG_IFUP_BIT, 4386 NETIF_MSG_RX_ERR_BIT, 4387 NETIF_MSG_TX_ERR_BIT, 4388 NETIF_MSG_TX_QUEUED_BIT, 4389 NETIF_MSG_INTR_BIT, 4390 NETIF_MSG_TX_DONE_BIT, 4391 NETIF_MSG_RX_STATUS_BIT, 4392 NETIF_MSG_PKTDATA_BIT, 4393 NETIF_MSG_HW_BIT, 4394 NETIF_MSG_WOL_BIT, 4395 4396 /* When you add a new bit above, update netif_msg_class_names array 4397 * in net/ethtool/common.c 4398 */ 4399 NETIF_MSG_CLASS_COUNT, 4400}; 4401/* Both ethtool_ops interface and internal driver implementation use u32 */ 4402static_assert(NETIF_MSG_CLASS_COUNT <= 32); 4403 4404#define __NETIF_MSG_BIT(bit) ((u32)1 << (bit)) 4405#define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT) 4406 4407#define NETIF_MSG_DRV __NETIF_MSG(DRV) 4408#define NETIF_MSG_PROBE __NETIF_MSG(PROBE) 4409#define NETIF_MSG_LINK __NETIF_MSG(LINK) 4410#define NETIF_MSG_TIMER __NETIF_MSG(TIMER) 4411#define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN) 4412#define NETIF_MSG_IFUP __NETIF_MSG(IFUP) 4413#define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR) 4414#define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR) 4415#define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED) 4416#define NETIF_MSG_INTR __NETIF_MSG(INTR) 4417#define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE) 4418#define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS) 4419#define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA) 4420#define NETIF_MSG_HW __NETIF_MSG(HW) 4421#define NETIF_MSG_WOL __NETIF_MSG(WOL) 4422 4423#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 4424#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 4425#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 4426#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 4427#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 4428#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 4429#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 4430#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 4431#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 4432#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 4433#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 4434#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 4435#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 4436#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 4437#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 4438 4439static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 4440{ 4441 /* use default */ 4442 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 4443 return default_msg_enable_bits; 4444 if (debug_value == 0) /* no output */ 4445 return 0; 4446 /* set low N bits */ 4447 return (1U << debug_value) - 1; 4448} 4449 4450static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 4451{ 4452 spin_lock(&txq->_xmit_lock); 4453 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4454 WRITE_ONCE(txq->xmit_lock_owner, cpu); 4455} 4456 4457static inline bool __netif_tx_acquire(struct netdev_queue *txq) 4458{ 4459 __acquire(&txq->_xmit_lock); 4460 return true; 4461} 4462 4463static inline void __netif_tx_release(struct netdev_queue *txq) 4464{ 4465 __release(&txq->_xmit_lock); 4466} 4467 4468static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 4469{ 4470 spin_lock_bh(&txq->_xmit_lock); 4471 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4472 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4473} 4474 4475static inline bool __netif_tx_trylock(struct netdev_queue *txq) 4476{ 4477 bool ok = spin_trylock(&txq->_xmit_lock); 4478 4479 if (likely(ok)) { 4480 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4481 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4482 } 4483 return ok; 4484} 4485 4486static inline void __netif_tx_unlock(struct netdev_queue *txq) 4487{ 4488 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4489 WRITE_ONCE(txq->xmit_lock_owner, -1); 4490 spin_unlock(&txq->_xmit_lock); 4491} 4492 4493static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 4494{ 4495 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4496 WRITE_ONCE(txq->xmit_lock_owner, -1); 4497 spin_unlock_bh(&txq->_xmit_lock); 4498} 4499 4500/* 4501 * txq->trans_start can be read locklessly from dev_watchdog() 4502 */ 4503static inline void txq_trans_update(struct netdev_queue *txq) 4504{ 4505 if (txq->xmit_lock_owner != -1) 4506 WRITE_ONCE(txq->trans_start, jiffies); 4507} 4508 4509static inline void txq_trans_cond_update(struct netdev_queue *txq) 4510{ 4511 unsigned long now = jiffies; 4512 4513 if (READ_ONCE(txq->trans_start) != now) 4514 WRITE_ONCE(txq->trans_start, now); 4515} 4516 4517/* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 4518static inline void netif_trans_update(struct net_device *dev) 4519{ 4520 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 4521 4522 txq_trans_cond_update(txq); 4523} 4524 4525/** 4526 * netif_tx_lock - grab network device transmit lock 4527 * @dev: network device 4528 * 4529 * Get network device transmit lock 4530 */ 4531void netif_tx_lock(struct net_device *dev); 4532 4533static inline void netif_tx_lock_bh(struct net_device *dev) 4534{ 4535 local_bh_disable(); 4536 netif_tx_lock(dev); 4537} 4538 4539void netif_tx_unlock(struct net_device *dev); 4540 4541static inline void netif_tx_unlock_bh(struct net_device *dev) 4542{ 4543 netif_tx_unlock(dev); 4544 local_bh_enable(); 4545} 4546 4547#define HARD_TX_LOCK(dev, txq, cpu) { \ 4548 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4549 __netif_tx_lock(txq, cpu); \ 4550 } else { \ 4551 __netif_tx_acquire(txq); \ 4552 } \ 4553} 4554 4555#define HARD_TX_TRYLOCK(dev, txq) \ 4556 (((dev->features & NETIF_F_LLTX) == 0) ? \ 4557 __netif_tx_trylock(txq) : \ 4558 __netif_tx_acquire(txq)) 4559 4560#define HARD_TX_UNLOCK(dev, txq) { \ 4561 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4562 __netif_tx_unlock(txq); \ 4563 } else { \ 4564 __netif_tx_release(txq); \ 4565 } \ 4566} 4567 4568static inline void netif_tx_disable(struct net_device *dev) 4569{ 4570 unsigned int i; 4571 int cpu; 4572 4573 local_bh_disable(); 4574 cpu = smp_processor_id(); 4575 spin_lock(&dev->tx_global_lock); 4576 for (i = 0; i < dev->num_tx_queues; i++) { 4577 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4578 4579 __netif_tx_lock(txq, cpu); 4580 netif_tx_stop_queue(txq); 4581 __netif_tx_unlock(txq); 4582 } 4583 spin_unlock(&dev->tx_global_lock); 4584 local_bh_enable(); 4585} 4586 4587static inline void netif_addr_lock(struct net_device *dev) 4588{ 4589 unsigned char nest_level = 0; 4590 4591#ifdef CONFIG_LOCKDEP 4592 nest_level = dev->nested_level; 4593#endif 4594 spin_lock_nested(&dev->addr_list_lock, nest_level); 4595} 4596 4597static inline void netif_addr_lock_bh(struct net_device *dev) 4598{ 4599 unsigned char nest_level = 0; 4600 4601#ifdef CONFIG_LOCKDEP 4602 nest_level = dev->nested_level; 4603#endif 4604 local_bh_disable(); 4605 spin_lock_nested(&dev->addr_list_lock, nest_level); 4606} 4607 4608static inline void netif_addr_unlock(struct net_device *dev) 4609{ 4610 spin_unlock(&dev->addr_list_lock); 4611} 4612 4613static inline void netif_addr_unlock_bh(struct net_device *dev) 4614{ 4615 spin_unlock_bh(&dev->addr_list_lock); 4616} 4617 4618/* 4619 * dev_addrs walker. Should be used only for read access. Call with 4620 * rcu_read_lock held. 4621 */ 4622#define for_each_dev_addr(dev, ha) \ 4623 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 4624 4625/* These functions live elsewhere (drivers/net/net_init.c, but related) */ 4626 4627void ether_setup(struct net_device *dev); 4628 4629/* Support for loadable net-drivers */ 4630struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 4631 unsigned char name_assign_type, 4632 void (*setup)(struct net_device *), 4633 unsigned int txqs, unsigned int rxqs); 4634#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 4635 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 4636 4637#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 4638 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 4639 count) 4640 4641int register_netdev(struct net_device *dev); 4642void unregister_netdev(struct net_device *dev); 4643 4644int devm_register_netdev(struct device *dev, struct net_device *ndev); 4645 4646/* General hardware address lists handling functions */ 4647int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4648 struct netdev_hw_addr_list *from_list, int addr_len); 4649void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4650 struct netdev_hw_addr_list *from_list, int addr_len); 4651int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4652 struct net_device *dev, 4653 int (*sync)(struct net_device *, const unsigned char *), 4654 int (*unsync)(struct net_device *, 4655 const unsigned char *)); 4656int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list, 4657 struct net_device *dev, 4658 int (*sync)(struct net_device *, 4659 const unsigned char *, int), 4660 int (*unsync)(struct net_device *, 4661 const unsigned char *, int)); 4662void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list, 4663 struct net_device *dev, 4664 int (*unsync)(struct net_device *, 4665 const unsigned char *, int)); 4666void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4667 struct net_device *dev, 4668 int (*unsync)(struct net_device *, 4669 const unsigned char *)); 4670void __hw_addr_init(struct netdev_hw_addr_list *list); 4671 4672/* Functions used for device addresses handling */ 4673void dev_addr_mod(struct net_device *dev, unsigned int offset, 4674 const void *addr, size_t len); 4675 4676static inline void 4677__dev_addr_set(struct net_device *dev, const void *addr, size_t len) 4678{ 4679 dev_addr_mod(dev, 0, addr, len); 4680} 4681 4682static inline void dev_addr_set(struct net_device *dev, const u8 *addr) 4683{ 4684 __dev_addr_set(dev, addr, dev->addr_len); 4685} 4686 4687int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4688 unsigned char addr_type); 4689int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4690 unsigned char addr_type); 4691 4692/* Functions used for unicast addresses handling */ 4693int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4694int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4695int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4696int dev_uc_sync(struct net_device *to, struct net_device *from); 4697int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4698void dev_uc_unsync(struct net_device *to, struct net_device *from); 4699void dev_uc_flush(struct net_device *dev); 4700void dev_uc_init(struct net_device *dev); 4701 4702/** 4703 * __dev_uc_sync - Synchonize device's unicast list 4704 * @dev: device to sync 4705 * @sync: function to call if address should be added 4706 * @unsync: function to call if address should be removed 4707 * 4708 * Add newly added addresses to the interface, and release 4709 * addresses that have been deleted. 4710 */ 4711static inline int __dev_uc_sync(struct net_device *dev, 4712 int (*sync)(struct net_device *, 4713 const unsigned char *), 4714 int (*unsync)(struct net_device *, 4715 const unsigned char *)) 4716{ 4717 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4718} 4719 4720/** 4721 * __dev_uc_unsync - Remove synchronized addresses from device 4722 * @dev: device to sync 4723 * @unsync: function to call if address should be removed 4724 * 4725 * Remove all addresses that were added to the device by dev_uc_sync(). 4726 */ 4727static inline void __dev_uc_unsync(struct net_device *dev, 4728 int (*unsync)(struct net_device *, 4729 const unsigned char *)) 4730{ 4731 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 4732} 4733 4734/* Functions used for multicast addresses handling */ 4735int dev_mc_add(struct net_device *dev, const unsigned char *addr); 4736int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 4737int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 4738int dev_mc_del(struct net_device *dev, const unsigned char *addr); 4739int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 4740int dev_mc_sync(struct net_device *to, struct net_device *from); 4741int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 4742void dev_mc_unsync(struct net_device *to, struct net_device *from); 4743void dev_mc_flush(struct net_device *dev); 4744void dev_mc_init(struct net_device *dev); 4745 4746/** 4747 * __dev_mc_sync - Synchonize device's multicast list 4748 * @dev: device to sync 4749 * @sync: function to call if address should be added 4750 * @unsync: function to call if address should be removed 4751 * 4752 * Add newly added addresses to the interface, and release 4753 * addresses that have been deleted. 4754 */ 4755static inline int __dev_mc_sync(struct net_device *dev, 4756 int (*sync)(struct net_device *, 4757 const unsigned char *), 4758 int (*unsync)(struct net_device *, 4759 const unsigned char *)) 4760{ 4761 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 4762} 4763 4764/** 4765 * __dev_mc_unsync - Remove synchronized addresses from device 4766 * @dev: device to sync 4767 * @unsync: function to call if address should be removed 4768 * 4769 * Remove all addresses that were added to the device by dev_mc_sync(). 4770 */ 4771static inline void __dev_mc_unsync(struct net_device *dev, 4772 int (*unsync)(struct net_device *, 4773 const unsigned char *)) 4774{ 4775 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 4776} 4777 4778/* Functions used for secondary unicast and multicast support */ 4779void dev_set_rx_mode(struct net_device *dev); 4780int dev_set_promiscuity(struct net_device *dev, int inc); 4781int dev_set_allmulti(struct net_device *dev, int inc); 4782void netdev_state_change(struct net_device *dev); 4783void __netdev_notify_peers(struct net_device *dev); 4784void netdev_notify_peers(struct net_device *dev); 4785void netdev_features_change(struct net_device *dev); 4786/* Load a device via the kmod */ 4787void dev_load(struct net *net, const char *name); 4788struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 4789 struct rtnl_link_stats64 *storage); 4790void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 4791 const struct net_device_stats *netdev_stats); 4792void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 4793 const struct pcpu_sw_netstats __percpu *netstats); 4794void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s); 4795 4796extern int netdev_max_backlog; 4797extern int dev_rx_weight; 4798extern int dev_tx_weight; 4799extern int gro_normal_batch; 4800 4801enum { 4802 NESTED_SYNC_IMM_BIT, 4803 NESTED_SYNC_TODO_BIT, 4804}; 4805 4806#define __NESTED_SYNC_BIT(bit) ((u32)1 << (bit)) 4807#define __NESTED_SYNC(name) __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT) 4808 4809#define NESTED_SYNC_IMM __NESTED_SYNC(IMM) 4810#define NESTED_SYNC_TODO __NESTED_SYNC(TODO) 4811 4812struct netdev_nested_priv { 4813 unsigned char flags; 4814 void *data; 4815}; 4816 4817bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 4818struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4819 struct list_head **iter); 4820 4821/* iterate through upper list, must be called under RCU read lock */ 4822#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 4823 for (iter = &(dev)->adj_list.upper, \ 4824 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 4825 updev; \ 4826 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 4827 4828int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 4829 int (*fn)(struct net_device *upper_dev, 4830 struct netdev_nested_priv *priv), 4831 struct netdev_nested_priv *priv); 4832 4833bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 4834 struct net_device *upper_dev); 4835 4836bool netdev_has_any_upper_dev(struct net_device *dev); 4837 4838void *netdev_lower_get_next_private(struct net_device *dev, 4839 struct list_head **iter); 4840void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4841 struct list_head **iter); 4842 4843#define netdev_for_each_lower_private(dev, priv, iter) \ 4844 for (iter = (dev)->adj_list.lower.next, \ 4845 priv = netdev_lower_get_next_private(dev, &(iter)); \ 4846 priv; \ 4847 priv = netdev_lower_get_next_private(dev, &(iter))) 4848 4849#define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 4850 for (iter = &(dev)->adj_list.lower, \ 4851 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 4852 priv; \ 4853 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 4854 4855void *netdev_lower_get_next(struct net_device *dev, 4856 struct list_head **iter); 4857 4858#define netdev_for_each_lower_dev(dev, ldev, iter) \ 4859 for (iter = (dev)->adj_list.lower.next, \ 4860 ldev = netdev_lower_get_next(dev, &(iter)); \ 4861 ldev; \ 4862 ldev = netdev_lower_get_next(dev, &(iter))) 4863 4864struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 4865 struct list_head **iter); 4866int netdev_walk_all_lower_dev(struct net_device *dev, 4867 int (*fn)(struct net_device *lower_dev, 4868 struct netdev_nested_priv *priv), 4869 struct netdev_nested_priv *priv); 4870int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 4871 int (*fn)(struct net_device *lower_dev, 4872 struct netdev_nested_priv *priv), 4873 struct netdev_nested_priv *priv); 4874 4875void *netdev_adjacent_get_private(struct list_head *adj_list); 4876void *netdev_lower_get_first_private_rcu(struct net_device *dev); 4877struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 4878struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 4879int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 4880 struct netlink_ext_ack *extack); 4881int netdev_master_upper_dev_link(struct net_device *dev, 4882 struct net_device *upper_dev, 4883 void *upper_priv, void *upper_info, 4884 struct netlink_ext_ack *extack); 4885void netdev_upper_dev_unlink(struct net_device *dev, 4886 struct net_device *upper_dev); 4887int netdev_adjacent_change_prepare(struct net_device *old_dev, 4888 struct net_device *new_dev, 4889 struct net_device *dev, 4890 struct netlink_ext_ack *extack); 4891void netdev_adjacent_change_commit(struct net_device *old_dev, 4892 struct net_device *new_dev, 4893 struct net_device *dev); 4894void netdev_adjacent_change_abort(struct net_device *old_dev, 4895 struct net_device *new_dev, 4896 struct net_device *dev); 4897void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4898void *netdev_lower_dev_get_private(struct net_device *dev, 4899 struct net_device *lower_dev); 4900void netdev_lower_state_changed(struct net_device *lower_dev, 4901 void *lower_state_info); 4902 4903/* RSS keys are 40 or 52 bytes long */ 4904#define NETDEV_RSS_KEY_LEN 52 4905extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4906void netdev_rss_key_fill(void *buffer, size_t len); 4907 4908int skb_checksum_help(struct sk_buff *skb); 4909int skb_crc32c_csum_help(struct sk_buff *skb); 4910int skb_csum_hwoffload_help(struct sk_buff *skb, 4911 const netdev_features_t features); 4912 4913struct netdev_bonding_info { 4914 ifslave slave; 4915 ifbond master; 4916}; 4917 4918struct netdev_notifier_bonding_info { 4919 struct netdev_notifier_info info; /* must be first */ 4920 struct netdev_bonding_info bonding_info; 4921}; 4922 4923void netdev_bonding_info_change(struct net_device *dev, 4924 struct netdev_bonding_info *bonding_info); 4925 4926#if IS_ENABLED(CONFIG_ETHTOOL_NETLINK) 4927void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data); 4928#else 4929static inline void ethtool_notify(struct net_device *dev, unsigned int cmd, 4930 const void *data) 4931{ 4932} 4933#endif 4934 4935__be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4936 4937static inline bool can_checksum_protocol(netdev_features_t features, 4938 __be16 protocol) 4939{ 4940 if (protocol == htons(ETH_P_FCOE)) 4941 return !!(features & NETIF_F_FCOE_CRC); 4942 4943 /* Assume this is an IP checksum (not SCTP CRC) */ 4944 4945 if (features & NETIF_F_HW_CSUM) { 4946 /* Can checksum everything */ 4947 return true; 4948 } 4949 4950 switch (protocol) { 4951 case htons(ETH_P_IP): 4952 return !!(features & NETIF_F_IP_CSUM); 4953 case htons(ETH_P_IPV6): 4954 return !!(features & NETIF_F_IPV6_CSUM); 4955 default: 4956 return false; 4957 } 4958} 4959 4960#ifdef CONFIG_BUG 4961void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb); 4962#else 4963static inline void netdev_rx_csum_fault(struct net_device *dev, 4964 struct sk_buff *skb) 4965{ 4966} 4967#endif 4968/* rx skb timestamps */ 4969void net_enable_timestamp(void); 4970void net_disable_timestamp(void); 4971 4972static inline ktime_t netdev_get_tstamp(struct net_device *dev, 4973 const struct skb_shared_hwtstamps *hwtstamps, 4974 bool cycles) 4975{ 4976 const struct net_device_ops *ops = dev->netdev_ops; 4977 4978 if (ops->ndo_get_tstamp) 4979 return ops->ndo_get_tstamp(dev, hwtstamps, cycles); 4980 4981 return hwtstamps->hwtstamp; 4982} 4983 4984static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4985 struct sk_buff *skb, struct net_device *dev, 4986 bool more) 4987{ 4988 __this_cpu_write(softnet_data.xmit.more, more); 4989 return ops->ndo_start_xmit(skb, dev); 4990} 4991 4992static inline bool netdev_xmit_more(void) 4993{ 4994 return __this_cpu_read(softnet_data.xmit.more); 4995} 4996 4997static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4998 struct netdev_queue *txq, bool more) 4999{ 5000 const struct net_device_ops *ops = dev->netdev_ops; 5001 netdev_tx_t rc; 5002 5003 rc = __netdev_start_xmit(ops, skb, dev, more); 5004 if (rc == NETDEV_TX_OK) 5005 txq_trans_update(txq); 5006 5007 return rc; 5008} 5009 5010int netdev_class_create_file_ns(const struct class_attribute *class_attr, 5011 const void *ns); 5012void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 5013 const void *ns); 5014 5015extern const struct kobj_ns_type_operations net_ns_type_operations; 5016 5017const char *netdev_drivername(const struct net_device *dev); 5018 5019static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 5020 netdev_features_t f2) 5021{ 5022 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 5023 if (f1 & NETIF_F_HW_CSUM) 5024 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5025 else 5026 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5027 } 5028 5029 return f1 & f2; 5030} 5031 5032static inline netdev_features_t netdev_get_wanted_features( 5033 struct net_device *dev) 5034{ 5035 return (dev->features & ~dev->hw_features) | dev->wanted_features; 5036} 5037netdev_features_t netdev_increment_features(netdev_features_t all, 5038 netdev_features_t one, netdev_features_t mask); 5039 5040/* Allow TSO being used on stacked device : 5041 * Performing the GSO segmentation before last device 5042 * is a performance improvement. 5043 */ 5044static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 5045 netdev_features_t mask) 5046{ 5047 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 5048} 5049 5050int __netdev_update_features(struct net_device *dev); 5051void netdev_update_features(struct net_device *dev); 5052void netdev_change_features(struct net_device *dev); 5053 5054void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5055 struct net_device *dev); 5056 5057netdev_features_t passthru_features_check(struct sk_buff *skb, 5058 struct net_device *dev, 5059 netdev_features_t features); 5060netdev_features_t netif_skb_features(struct sk_buff *skb); 5061void skb_warn_bad_offload(const struct sk_buff *skb); 5062 5063static inline bool net_gso_ok(netdev_features_t features, int gso_type) 5064{ 5065 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 5066 5067 /* check flags correspondence */ 5068 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 5069 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 5070 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 5071 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 5072 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 5073 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 5074 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 5075 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 5076 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 5077 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 5078 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 5079 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 5080 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 5081 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 5082 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 5083 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 5084 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 5085 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 5086 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT)); 5087 5088 return (features & feature) == feature; 5089} 5090 5091static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 5092{ 5093 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 5094 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 5095} 5096 5097static inline bool netif_needs_gso(struct sk_buff *skb, 5098 netdev_features_t features) 5099{ 5100 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 5101 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 5102 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 5103} 5104 5105void netif_set_tso_max_size(struct net_device *dev, unsigned int size); 5106void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs); 5107void netif_inherit_tso_max(struct net_device *to, 5108 const struct net_device *from); 5109 5110static inline bool netif_is_macsec(const struct net_device *dev) 5111{ 5112 return dev->priv_flags & IFF_MACSEC; 5113} 5114 5115static inline bool netif_is_macvlan(const struct net_device *dev) 5116{ 5117 return dev->priv_flags & IFF_MACVLAN; 5118} 5119 5120static inline bool netif_is_macvlan_port(const struct net_device *dev) 5121{ 5122 return dev->priv_flags & IFF_MACVLAN_PORT; 5123} 5124 5125static inline bool netif_is_bond_master(const struct net_device *dev) 5126{ 5127 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 5128} 5129 5130static inline bool netif_is_bond_slave(const struct net_device *dev) 5131{ 5132 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 5133} 5134 5135static inline bool netif_supports_nofcs(struct net_device *dev) 5136{ 5137 return dev->priv_flags & IFF_SUPP_NOFCS; 5138} 5139 5140static inline bool netif_has_l3_rx_handler(const struct net_device *dev) 5141{ 5142 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER; 5143} 5144 5145static inline bool netif_is_l3_master(const struct net_device *dev) 5146{ 5147 return dev->priv_flags & IFF_L3MDEV_MASTER; 5148} 5149 5150static inline bool netif_is_l3_slave(const struct net_device *dev) 5151{ 5152 return dev->priv_flags & IFF_L3MDEV_SLAVE; 5153} 5154 5155static inline int dev_sdif(const struct net_device *dev) 5156{ 5157#ifdef CONFIG_NET_L3_MASTER_DEV 5158 if (netif_is_l3_slave(dev)) 5159 return dev->ifindex; 5160#endif 5161 return 0; 5162} 5163 5164static inline bool netif_is_bridge_master(const struct net_device *dev) 5165{ 5166 return dev->priv_flags & IFF_EBRIDGE; 5167} 5168 5169static inline bool netif_is_bridge_port(const struct net_device *dev) 5170{ 5171 return dev->priv_flags & IFF_BRIDGE_PORT; 5172} 5173 5174static inline bool netif_is_ovs_master(const struct net_device *dev) 5175{ 5176 return dev->priv_flags & IFF_OPENVSWITCH; 5177} 5178 5179static inline bool netif_is_ovs_port(const struct net_device *dev) 5180{ 5181 return dev->priv_flags & IFF_OVS_DATAPATH; 5182} 5183 5184static inline bool netif_is_any_bridge_master(const struct net_device *dev) 5185{ 5186 return netif_is_bridge_master(dev) || netif_is_ovs_master(dev); 5187} 5188 5189static inline bool netif_is_any_bridge_port(const struct net_device *dev) 5190{ 5191 return netif_is_bridge_port(dev) || netif_is_ovs_port(dev); 5192} 5193 5194static inline bool netif_is_team_master(const struct net_device *dev) 5195{ 5196 return dev->priv_flags & IFF_TEAM; 5197} 5198 5199static inline bool netif_is_team_port(const struct net_device *dev) 5200{ 5201 return dev->priv_flags & IFF_TEAM_PORT; 5202} 5203 5204static inline bool netif_is_lag_master(const struct net_device *dev) 5205{ 5206 return netif_is_bond_master(dev) || netif_is_team_master(dev); 5207} 5208 5209static inline bool netif_is_lag_port(const struct net_device *dev) 5210{ 5211 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 5212} 5213 5214static inline bool netif_is_rxfh_configured(const struct net_device *dev) 5215{ 5216 return dev->priv_flags & IFF_RXFH_CONFIGURED; 5217} 5218 5219static inline bool netif_is_failover(const struct net_device *dev) 5220{ 5221 return dev->priv_flags & IFF_FAILOVER; 5222} 5223 5224static inline bool netif_is_failover_slave(const struct net_device *dev) 5225{ 5226 return dev->priv_flags & IFF_FAILOVER_SLAVE; 5227} 5228 5229/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 5230static inline void netif_keep_dst(struct net_device *dev) 5231{ 5232 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 5233} 5234 5235/* return true if dev can't cope with mtu frames that need vlan tag insertion */ 5236static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 5237{ 5238 /* TODO: reserve and use an additional IFF bit, if we get more users */ 5239 return netif_is_macsec(dev); 5240} 5241 5242extern struct pernet_operations __net_initdata loopback_net_ops; 5243 5244/* Logging, debugging and troubleshooting/diagnostic helpers. */ 5245 5246/* netdev_printk helpers, similar to dev_printk */ 5247 5248static inline const char *netdev_name(const struct net_device *dev) 5249{ 5250 if (!dev->name[0] || strchr(dev->name, '%')) 5251 return "(unnamed net_device)"; 5252 return dev->name; 5253} 5254 5255static inline const char *netdev_reg_state(const struct net_device *dev) 5256{ 5257 switch (dev->reg_state) { 5258 case NETREG_UNINITIALIZED: return " (uninitialized)"; 5259 case NETREG_REGISTERED: return ""; 5260 case NETREG_UNREGISTERING: return " (unregistering)"; 5261 case NETREG_UNREGISTERED: return " (unregistered)"; 5262 case NETREG_RELEASED: return " (released)"; 5263 case NETREG_DUMMY: return " (dummy)"; 5264 } 5265 5266 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 5267 return " (unknown)"; 5268} 5269 5270#define MODULE_ALIAS_NETDEV(device) \ 5271 MODULE_ALIAS("netdev-" device) 5272 5273/* 5274 * netdev_WARN() acts like dev_printk(), but with the key difference 5275 * of using a WARN/WARN_ON to get the message out, including the 5276 * file/line information and a backtrace. 5277 */ 5278#define netdev_WARN(dev, format, args...) \ 5279 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5280 netdev_reg_state(dev), ##args) 5281 5282#define netdev_WARN_ONCE(dev, format, args...) \ 5283 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5284 netdev_reg_state(dev), ##args) 5285 5286/* 5287 * The list of packet types we will receive (as opposed to discard) 5288 * and the routines to invoke. 5289 * 5290 * Why 16. Because with 16 the only overlap we get on a hash of the 5291 * low nibble of the protocol value is RARP/SNAP/X.25. 5292 * 5293 * 0800 IP 5294 * 0001 802.3 5295 * 0002 AX.25 5296 * 0004 802.2 5297 * 8035 RARP 5298 * 0005 SNAP 5299 * 0805 X.25 5300 * 0806 ARP 5301 * 8137 IPX 5302 * 0009 Localtalk 5303 * 86DD IPv6 5304 */ 5305#define PTYPE_HASH_SIZE (16) 5306#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 5307 5308extern struct list_head ptype_all __read_mostly; 5309extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 5310 5311extern struct net_device *blackhole_netdev; 5312 5313/* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */ 5314#define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD) 5315#define DEV_STATS_ADD(DEV, FIELD, VAL) \ 5316 atomic_long_add((VAL), &(DEV)->stats.__##FIELD) 5317#define DEV_STATS_READ(DEV, FIELD) atomic_long_read(&(DEV)->stats.__##FIELD) 5318 5319#endif /* _LINUX_NETDEVICE_H */