Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/* memcontrol.h - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 */
10
11#ifndef _LINUX_MEMCONTROL_H
12#define _LINUX_MEMCONTROL_H
13#include <linux/cgroup.h>
14#include <linux/vm_event_item.h>
15#include <linux/hardirq.h>
16#include <linux/jump_label.h>
17#include <linux/page_counter.h>
18#include <linux/vmpressure.h>
19#include <linux/eventfd.h>
20#include <linux/mm.h>
21#include <linux/vmstat.h>
22#include <linux/writeback.h>
23#include <linux/page-flags.h>
24#include <linux/shrinker.h>
25
26struct mem_cgroup;
27struct obj_cgroup;
28struct page;
29struct mm_struct;
30struct kmem_cache;
31
32/* Cgroup-specific page state, on top of universal node page state */
33enum memcg_stat_item {
34 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
35 MEMCG_SOCK,
36 MEMCG_PERCPU_B,
37 MEMCG_VMALLOC,
38 MEMCG_KMEM,
39 MEMCG_ZSWAP_B,
40 MEMCG_ZSWAPPED,
41 MEMCG_NR_STAT,
42};
43
44enum memcg_memory_event {
45 MEMCG_LOW,
46 MEMCG_HIGH,
47 MEMCG_MAX,
48 MEMCG_OOM,
49 MEMCG_OOM_KILL,
50 MEMCG_OOM_GROUP_KILL,
51 MEMCG_SWAP_HIGH,
52 MEMCG_SWAP_MAX,
53 MEMCG_SWAP_FAIL,
54 MEMCG_NR_MEMORY_EVENTS,
55};
56
57struct mem_cgroup_reclaim_cookie {
58 pg_data_t *pgdat;
59 unsigned int generation;
60};
61
62#ifdef CONFIG_MEMCG
63
64#define MEM_CGROUP_ID_SHIFT 16
65
66struct mem_cgroup_id {
67 int id;
68 refcount_t ref;
69};
70
71/*
72 * Per memcg event counter is incremented at every pagein/pageout. With THP,
73 * it will be incremented by the number of pages. This counter is used
74 * to trigger some periodic events. This is straightforward and better
75 * than using jiffies etc. to handle periodic memcg event.
76 */
77enum mem_cgroup_events_target {
78 MEM_CGROUP_TARGET_THRESH,
79 MEM_CGROUP_TARGET_SOFTLIMIT,
80 MEM_CGROUP_NTARGETS,
81};
82
83struct memcg_vmstats_percpu;
84struct memcg_vmstats;
85
86struct mem_cgroup_reclaim_iter {
87 struct mem_cgroup *position;
88 /* scan generation, increased every round-trip */
89 unsigned int generation;
90};
91
92struct lruvec_stats_percpu {
93 /* Local (CPU and cgroup) state */
94 long state[NR_VM_NODE_STAT_ITEMS];
95
96 /* Delta calculation for lockless upward propagation */
97 long state_prev[NR_VM_NODE_STAT_ITEMS];
98};
99
100struct lruvec_stats {
101 /* Aggregated (CPU and subtree) state */
102 long state[NR_VM_NODE_STAT_ITEMS];
103
104 /* Non-hierarchical (CPU aggregated) state */
105 long state_local[NR_VM_NODE_STAT_ITEMS];
106
107 /* Pending child counts during tree propagation */
108 long state_pending[NR_VM_NODE_STAT_ITEMS];
109};
110
111/*
112 * per-node information in memory controller.
113 */
114struct mem_cgroup_per_node {
115 struct lruvec lruvec;
116
117 struct lruvec_stats_percpu __percpu *lruvec_stats_percpu;
118 struct lruvec_stats lruvec_stats;
119
120 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
121
122 struct mem_cgroup_reclaim_iter iter;
123
124 struct shrinker_info __rcu *shrinker_info;
125
126 struct rb_node tree_node; /* RB tree node */
127 unsigned long usage_in_excess;/* Set to the value by which */
128 /* the soft limit is exceeded*/
129 bool on_tree;
130 struct mem_cgroup *memcg; /* Back pointer, we cannot */
131 /* use container_of */
132};
133
134struct mem_cgroup_threshold {
135 struct eventfd_ctx *eventfd;
136 unsigned long threshold;
137};
138
139/* For threshold */
140struct mem_cgroup_threshold_ary {
141 /* An array index points to threshold just below or equal to usage. */
142 int current_threshold;
143 /* Size of entries[] */
144 unsigned int size;
145 /* Array of thresholds */
146 struct mem_cgroup_threshold entries[] __counted_by(size);
147};
148
149struct mem_cgroup_thresholds {
150 /* Primary thresholds array */
151 struct mem_cgroup_threshold_ary *primary;
152 /*
153 * Spare threshold array.
154 * This is needed to make mem_cgroup_unregister_event() "never fail".
155 * It must be able to store at least primary->size - 1 entries.
156 */
157 struct mem_cgroup_threshold_ary *spare;
158};
159
160/*
161 * Remember four most recent foreign writebacks with dirty pages in this
162 * cgroup. Inode sharing is expected to be uncommon and, even if we miss
163 * one in a given round, we're likely to catch it later if it keeps
164 * foreign-dirtying, so a fairly low count should be enough.
165 *
166 * See mem_cgroup_track_foreign_dirty_slowpath() for details.
167 */
168#define MEMCG_CGWB_FRN_CNT 4
169
170struct memcg_cgwb_frn {
171 u64 bdi_id; /* bdi->id of the foreign inode */
172 int memcg_id; /* memcg->css.id of foreign inode */
173 u64 at; /* jiffies_64 at the time of dirtying */
174 struct wb_completion done; /* tracks in-flight foreign writebacks */
175};
176
177/*
178 * Bucket for arbitrarily byte-sized objects charged to a memory
179 * cgroup. The bucket can be reparented in one piece when the cgroup
180 * is destroyed, without having to round up the individual references
181 * of all live memory objects in the wild.
182 */
183struct obj_cgroup {
184 struct percpu_ref refcnt;
185 struct mem_cgroup *memcg;
186 atomic_t nr_charged_bytes;
187 union {
188 struct list_head list; /* protected by objcg_lock */
189 struct rcu_head rcu;
190 };
191};
192
193/*
194 * The memory controller data structure. The memory controller controls both
195 * page cache and RSS per cgroup. We would eventually like to provide
196 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
197 * to help the administrator determine what knobs to tune.
198 */
199struct mem_cgroup {
200 struct cgroup_subsys_state css;
201
202 /* Private memcg ID. Used to ID objects that outlive the cgroup */
203 struct mem_cgroup_id id;
204
205 /* Accounted resources */
206 struct page_counter memory; /* Both v1 & v2 */
207
208 union {
209 struct page_counter swap; /* v2 only */
210 struct page_counter memsw; /* v1 only */
211 };
212
213 /* Legacy consumer-oriented counters */
214 struct page_counter kmem; /* v1 only */
215 struct page_counter tcpmem; /* v1 only */
216
217 /* Range enforcement for interrupt charges */
218 struct work_struct high_work;
219
220#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
221 unsigned long zswap_max;
222
223 /*
224 * Prevent pages from this memcg from being written back from zswap to
225 * swap, and from being swapped out on zswap store failures.
226 */
227 bool zswap_writeback;
228#endif
229
230 unsigned long soft_limit;
231
232 /* vmpressure notifications */
233 struct vmpressure vmpressure;
234
235 /*
236 * Should the OOM killer kill all belonging tasks, had it kill one?
237 */
238 bool oom_group;
239
240 /* protected by memcg_oom_lock */
241 bool oom_lock;
242 int under_oom;
243
244 int swappiness;
245 /* OOM-Killer disable */
246 int oom_kill_disable;
247
248 /* memory.events and memory.events.local */
249 struct cgroup_file events_file;
250 struct cgroup_file events_local_file;
251
252 /* handle for "memory.swap.events" */
253 struct cgroup_file swap_events_file;
254
255 /* protect arrays of thresholds */
256 struct mutex thresholds_lock;
257
258 /* thresholds for memory usage. RCU-protected */
259 struct mem_cgroup_thresholds thresholds;
260
261 /* thresholds for mem+swap usage. RCU-protected */
262 struct mem_cgroup_thresholds memsw_thresholds;
263
264 /* For oom notifier event fd */
265 struct list_head oom_notify;
266
267 /*
268 * Should we move charges of a task when a task is moved into this
269 * mem_cgroup ? And what type of charges should we move ?
270 */
271 unsigned long move_charge_at_immigrate;
272 /* taken only while moving_account > 0 */
273 spinlock_t move_lock;
274 unsigned long move_lock_flags;
275
276 CACHELINE_PADDING(_pad1_);
277
278 /* memory.stat */
279 struct memcg_vmstats *vmstats;
280
281 /* memory.events */
282 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
283 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS];
284
285 /*
286 * Hint of reclaim pressure for socket memroy management. Note
287 * that this indicator should NOT be used in legacy cgroup mode
288 * where socket memory is accounted/charged separately.
289 */
290 unsigned long socket_pressure;
291
292 /* Legacy tcp memory accounting */
293 bool tcpmem_active;
294 int tcpmem_pressure;
295
296#ifdef CONFIG_MEMCG_KMEM
297 int kmemcg_id;
298 /*
299 * memcg->objcg is wiped out as a part of the objcg repaprenting
300 * process. memcg->orig_objcg preserves a pointer (and a reference)
301 * to the original objcg until the end of live of memcg.
302 */
303 struct obj_cgroup __rcu *objcg;
304 struct obj_cgroup *orig_objcg;
305 /* list of inherited objcgs, protected by objcg_lock */
306 struct list_head objcg_list;
307#endif
308
309 CACHELINE_PADDING(_pad2_);
310
311 /*
312 * set > 0 if pages under this cgroup are moving to other cgroup.
313 */
314 atomic_t moving_account;
315 struct task_struct *move_lock_task;
316
317 struct memcg_vmstats_percpu __percpu *vmstats_percpu;
318
319#ifdef CONFIG_CGROUP_WRITEBACK
320 struct list_head cgwb_list;
321 struct wb_domain cgwb_domain;
322 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
323#endif
324
325 /* List of events which userspace want to receive */
326 struct list_head event_list;
327 spinlock_t event_list_lock;
328
329#ifdef CONFIG_TRANSPARENT_HUGEPAGE
330 struct deferred_split deferred_split_queue;
331#endif
332
333#ifdef CONFIG_LRU_GEN_WALKS_MMU
334 /* per-memcg mm_struct list */
335 struct lru_gen_mm_list mm_list;
336#endif
337
338 struct mem_cgroup_per_node *nodeinfo[];
339};
340
341/*
342 * size of first charge trial.
343 * TODO: maybe necessary to use big numbers in big irons or dynamic based of the
344 * workload.
345 */
346#define MEMCG_CHARGE_BATCH 64U
347
348extern struct mem_cgroup *root_mem_cgroup;
349
350enum page_memcg_data_flags {
351 /* page->memcg_data is a pointer to an objcgs vector */
352 MEMCG_DATA_OBJCGS = (1UL << 0),
353 /* page has been accounted as a non-slab kernel page */
354 MEMCG_DATA_KMEM = (1UL << 1),
355 /* the next bit after the last actual flag */
356 __NR_MEMCG_DATA_FLAGS = (1UL << 2),
357};
358
359#define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1)
360
361static inline bool folio_memcg_kmem(struct folio *folio);
362
363/*
364 * After the initialization objcg->memcg is always pointing at
365 * a valid memcg, but can be atomically swapped to the parent memcg.
366 *
367 * The caller must ensure that the returned memcg won't be released:
368 * e.g. acquire the rcu_read_lock or css_set_lock.
369 */
370static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
371{
372 return READ_ONCE(objcg->memcg);
373}
374
375/*
376 * __folio_memcg - Get the memory cgroup associated with a non-kmem folio
377 * @folio: Pointer to the folio.
378 *
379 * Returns a pointer to the memory cgroup associated with the folio,
380 * or NULL. This function assumes that the folio is known to have a
381 * proper memory cgroup pointer. It's not safe to call this function
382 * against some type of folios, e.g. slab folios or ex-slab folios or
383 * kmem folios.
384 */
385static inline struct mem_cgroup *__folio_memcg(struct folio *folio)
386{
387 unsigned long memcg_data = folio->memcg_data;
388
389 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
390 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
391 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio);
392
393 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
394}
395
396/*
397 * __folio_objcg - get the object cgroup associated with a kmem folio.
398 * @folio: Pointer to the folio.
399 *
400 * Returns a pointer to the object cgroup associated with the folio,
401 * or NULL. This function assumes that the folio is known to have a
402 * proper object cgroup pointer. It's not safe to call this function
403 * against some type of folios, e.g. slab folios or ex-slab folios or
404 * LRU folios.
405 */
406static inline struct obj_cgroup *__folio_objcg(struct folio *folio)
407{
408 unsigned long memcg_data = folio->memcg_data;
409
410 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
411 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
412 VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio);
413
414 return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
415}
416
417/*
418 * folio_memcg - Get the memory cgroup associated with a folio.
419 * @folio: Pointer to the folio.
420 *
421 * Returns a pointer to the memory cgroup associated with the folio,
422 * or NULL. This function assumes that the folio is known to have a
423 * proper memory cgroup pointer. It's not safe to call this function
424 * against some type of folios, e.g. slab folios or ex-slab folios.
425 *
426 * For a non-kmem folio any of the following ensures folio and memcg binding
427 * stability:
428 *
429 * - the folio lock
430 * - LRU isolation
431 * - folio_memcg_lock()
432 * - exclusive reference
433 * - mem_cgroup_trylock_pages()
434 *
435 * For a kmem folio a caller should hold an rcu read lock to protect memcg
436 * associated with a kmem folio from being released.
437 */
438static inline struct mem_cgroup *folio_memcg(struct folio *folio)
439{
440 if (folio_memcg_kmem(folio))
441 return obj_cgroup_memcg(__folio_objcg(folio));
442 return __folio_memcg(folio);
443}
444
445static inline struct mem_cgroup *page_memcg(struct page *page)
446{
447 return folio_memcg(page_folio(page));
448}
449
450/**
451 * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio.
452 * @folio: Pointer to the folio.
453 *
454 * This function assumes that the folio is known to have a
455 * proper memory cgroup pointer. It's not safe to call this function
456 * against some type of folios, e.g. slab folios or ex-slab folios.
457 *
458 * Return: A pointer to the memory cgroup associated with the folio,
459 * or NULL.
460 */
461static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
462{
463 unsigned long memcg_data = READ_ONCE(folio->memcg_data);
464
465 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
466 WARN_ON_ONCE(!rcu_read_lock_held());
467
468 if (memcg_data & MEMCG_DATA_KMEM) {
469 struct obj_cgroup *objcg;
470
471 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
472 return obj_cgroup_memcg(objcg);
473 }
474
475 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
476}
477
478/*
479 * folio_memcg_check - Get the memory cgroup associated with a folio.
480 * @folio: Pointer to the folio.
481 *
482 * Returns a pointer to the memory cgroup associated with the folio,
483 * or NULL. This function unlike folio_memcg() can take any folio
484 * as an argument. It has to be used in cases when it's not known if a folio
485 * has an associated memory cgroup pointer or an object cgroups vector or
486 * an object cgroup.
487 *
488 * For a non-kmem folio any of the following ensures folio and memcg binding
489 * stability:
490 *
491 * - the folio lock
492 * - LRU isolation
493 * - lock_folio_memcg()
494 * - exclusive reference
495 * - mem_cgroup_trylock_pages()
496 *
497 * For a kmem folio a caller should hold an rcu read lock to protect memcg
498 * associated with a kmem folio from being released.
499 */
500static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
501{
502 /*
503 * Because folio->memcg_data might be changed asynchronously
504 * for slabs, READ_ONCE() should be used here.
505 */
506 unsigned long memcg_data = READ_ONCE(folio->memcg_data);
507
508 if (memcg_data & MEMCG_DATA_OBJCGS)
509 return NULL;
510
511 if (memcg_data & MEMCG_DATA_KMEM) {
512 struct obj_cgroup *objcg;
513
514 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
515 return obj_cgroup_memcg(objcg);
516 }
517
518 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
519}
520
521static inline struct mem_cgroup *page_memcg_check(struct page *page)
522{
523 if (PageTail(page))
524 return NULL;
525 return folio_memcg_check((struct folio *)page);
526}
527
528static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
529{
530 struct mem_cgroup *memcg;
531
532 rcu_read_lock();
533retry:
534 memcg = obj_cgroup_memcg(objcg);
535 if (unlikely(!css_tryget(&memcg->css)))
536 goto retry;
537 rcu_read_unlock();
538
539 return memcg;
540}
541
542#ifdef CONFIG_MEMCG_KMEM
543/*
544 * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set.
545 * @folio: Pointer to the folio.
546 *
547 * Checks if the folio has MemcgKmem flag set. The caller must ensure
548 * that the folio has an associated memory cgroup. It's not safe to call
549 * this function against some types of folios, e.g. slab folios.
550 */
551static inline bool folio_memcg_kmem(struct folio *folio)
552{
553 VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page);
554 VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJCGS, folio);
555 return folio->memcg_data & MEMCG_DATA_KMEM;
556}
557
558
559#else
560static inline bool folio_memcg_kmem(struct folio *folio)
561{
562 return false;
563}
564
565#endif
566
567static inline bool PageMemcgKmem(struct page *page)
568{
569 return folio_memcg_kmem(page_folio(page));
570}
571
572static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
573{
574 return (memcg == root_mem_cgroup);
575}
576
577static inline bool mem_cgroup_disabled(void)
578{
579 return !cgroup_subsys_enabled(memory_cgrp_subsys);
580}
581
582static inline void mem_cgroup_protection(struct mem_cgroup *root,
583 struct mem_cgroup *memcg,
584 unsigned long *min,
585 unsigned long *low)
586{
587 *min = *low = 0;
588
589 if (mem_cgroup_disabled())
590 return;
591
592 /*
593 * There is no reclaim protection applied to a targeted reclaim.
594 * We are special casing this specific case here because
595 * mem_cgroup_calculate_protection is not robust enough to keep
596 * the protection invariant for calculated effective values for
597 * parallel reclaimers with different reclaim target. This is
598 * especially a problem for tail memcgs (as they have pages on LRU)
599 * which would want to have effective values 0 for targeted reclaim
600 * but a different value for external reclaim.
601 *
602 * Example
603 * Let's have global and A's reclaim in parallel:
604 * |
605 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
606 * |\
607 * | C (low = 1G, usage = 2.5G)
608 * B (low = 1G, usage = 0.5G)
609 *
610 * For the global reclaim
611 * A.elow = A.low
612 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
613 * C.elow = min(C.usage, C.low)
614 *
615 * With the effective values resetting we have A reclaim
616 * A.elow = 0
617 * B.elow = B.low
618 * C.elow = C.low
619 *
620 * If the global reclaim races with A's reclaim then
621 * B.elow = C.elow = 0 because children_low_usage > A.elow)
622 * is possible and reclaiming B would be violating the protection.
623 *
624 */
625 if (root == memcg)
626 return;
627
628 *min = READ_ONCE(memcg->memory.emin);
629 *low = READ_ONCE(memcg->memory.elow);
630}
631
632void mem_cgroup_calculate_protection(struct mem_cgroup *root,
633 struct mem_cgroup *memcg);
634
635static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
636 struct mem_cgroup *memcg)
637{
638 /*
639 * The root memcg doesn't account charges, and doesn't support
640 * protection. The target memcg's protection is ignored, see
641 * mem_cgroup_calculate_protection() and mem_cgroup_protection()
642 */
643 return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) ||
644 memcg == target;
645}
646
647static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
648 struct mem_cgroup *memcg)
649{
650 if (mem_cgroup_unprotected(target, memcg))
651 return false;
652
653 return READ_ONCE(memcg->memory.elow) >=
654 page_counter_read(&memcg->memory);
655}
656
657static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
658 struct mem_cgroup *memcg)
659{
660 if (mem_cgroup_unprotected(target, memcg))
661 return false;
662
663 return READ_ONCE(memcg->memory.emin) >=
664 page_counter_read(&memcg->memory);
665}
666
667void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg);
668
669int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp);
670
671/**
672 * mem_cgroup_charge - Charge a newly allocated folio to a cgroup.
673 * @folio: Folio to charge.
674 * @mm: mm context of the allocating task.
675 * @gfp: Reclaim mode.
676 *
677 * Try to charge @folio to the memcg that @mm belongs to, reclaiming
678 * pages according to @gfp if necessary. If @mm is NULL, try to
679 * charge to the active memcg.
680 *
681 * Do not use this for folios allocated for swapin.
682 *
683 * Return: 0 on success. Otherwise, an error code is returned.
684 */
685static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm,
686 gfp_t gfp)
687{
688 if (mem_cgroup_disabled())
689 return 0;
690 return __mem_cgroup_charge(folio, mm, gfp);
691}
692
693int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp,
694 long nr_pages);
695
696int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
697 gfp_t gfp, swp_entry_t entry);
698void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry);
699
700void __mem_cgroup_uncharge(struct folio *folio);
701
702/**
703 * mem_cgroup_uncharge - Uncharge a folio.
704 * @folio: Folio to uncharge.
705 *
706 * Uncharge a folio previously charged with mem_cgroup_charge().
707 */
708static inline void mem_cgroup_uncharge(struct folio *folio)
709{
710 if (mem_cgroup_disabled())
711 return;
712 __mem_cgroup_uncharge(folio);
713}
714
715void __mem_cgroup_uncharge_list(struct list_head *page_list);
716static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
717{
718 if (mem_cgroup_disabled())
719 return;
720 __mem_cgroup_uncharge_list(page_list);
721}
722
723void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages);
724
725void mem_cgroup_replace_folio(struct folio *old, struct folio *new);
726
727void mem_cgroup_migrate(struct folio *old, struct folio *new);
728
729/**
730 * mem_cgroup_lruvec - get the lru list vector for a memcg & node
731 * @memcg: memcg of the wanted lruvec
732 * @pgdat: pglist_data
733 *
734 * Returns the lru list vector holding pages for a given @memcg &
735 * @pgdat combination. This can be the node lruvec, if the memory
736 * controller is disabled.
737 */
738static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
739 struct pglist_data *pgdat)
740{
741 struct mem_cgroup_per_node *mz;
742 struct lruvec *lruvec;
743
744 if (mem_cgroup_disabled()) {
745 lruvec = &pgdat->__lruvec;
746 goto out;
747 }
748
749 if (!memcg)
750 memcg = root_mem_cgroup;
751
752 mz = memcg->nodeinfo[pgdat->node_id];
753 lruvec = &mz->lruvec;
754out:
755 /*
756 * Since a node can be onlined after the mem_cgroup was created,
757 * we have to be prepared to initialize lruvec->pgdat here;
758 * and if offlined then reonlined, we need to reinitialize it.
759 */
760 if (unlikely(lruvec->pgdat != pgdat))
761 lruvec->pgdat = pgdat;
762 return lruvec;
763}
764
765/**
766 * folio_lruvec - return lruvec for isolating/putting an LRU folio
767 * @folio: Pointer to the folio.
768 *
769 * This function relies on folio->mem_cgroup being stable.
770 */
771static inline struct lruvec *folio_lruvec(struct folio *folio)
772{
773 struct mem_cgroup *memcg = folio_memcg(folio);
774
775 VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio);
776 return mem_cgroup_lruvec(memcg, folio_pgdat(folio));
777}
778
779struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
780
781struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
782
783struct mem_cgroup *get_mem_cgroup_from_current(void);
784
785struct lruvec *folio_lruvec_lock(struct folio *folio);
786struct lruvec *folio_lruvec_lock_irq(struct folio *folio);
787struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
788 unsigned long *flags);
789
790#ifdef CONFIG_DEBUG_VM
791void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio);
792#else
793static inline
794void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
795{
796}
797#endif
798
799static inline
800struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
801 return css ? container_of(css, struct mem_cgroup, css) : NULL;
802}
803
804static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
805{
806 return percpu_ref_tryget(&objcg->refcnt);
807}
808
809static inline void obj_cgroup_get(struct obj_cgroup *objcg)
810{
811 percpu_ref_get(&objcg->refcnt);
812}
813
814static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
815 unsigned long nr)
816{
817 percpu_ref_get_many(&objcg->refcnt, nr);
818}
819
820static inline void obj_cgroup_put(struct obj_cgroup *objcg)
821{
822 percpu_ref_put(&objcg->refcnt);
823}
824
825static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
826{
827 return !memcg || css_tryget(&memcg->css);
828}
829
830static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg)
831{
832 return !memcg || css_tryget_online(&memcg->css);
833}
834
835static inline void mem_cgroup_put(struct mem_cgroup *memcg)
836{
837 if (memcg)
838 css_put(&memcg->css);
839}
840
841#define mem_cgroup_from_counter(counter, member) \
842 container_of(counter, struct mem_cgroup, member)
843
844struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
845 struct mem_cgroup *,
846 struct mem_cgroup_reclaim_cookie *);
847void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
848void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
849 int (*)(struct task_struct *, void *), void *arg);
850
851static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
852{
853 if (mem_cgroup_disabled())
854 return 0;
855
856 return memcg->id.id;
857}
858struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
859
860#ifdef CONFIG_SHRINKER_DEBUG
861static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
862{
863 return memcg ? cgroup_ino(memcg->css.cgroup) : 0;
864}
865
866struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino);
867#endif
868
869static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
870{
871 return mem_cgroup_from_css(seq_css(m));
872}
873
874static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
875{
876 struct mem_cgroup_per_node *mz;
877
878 if (mem_cgroup_disabled())
879 return NULL;
880
881 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
882 return mz->memcg;
883}
884
885/**
886 * parent_mem_cgroup - find the accounting parent of a memcg
887 * @memcg: memcg whose parent to find
888 *
889 * Returns the parent memcg, or NULL if this is the root.
890 */
891static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
892{
893 return mem_cgroup_from_css(memcg->css.parent);
894}
895
896static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
897 struct mem_cgroup *root)
898{
899 if (root == memcg)
900 return true;
901 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
902}
903
904static inline bool mm_match_cgroup(struct mm_struct *mm,
905 struct mem_cgroup *memcg)
906{
907 struct mem_cgroup *task_memcg;
908 bool match = false;
909
910 rcu_read_lock();
911 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
912 if (task_memcg)
913 match = mem_cgroup_is_descendant(task_memcg, memcg);
914 rcu_read_unlock();
915 return match;
916}
917
918struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio);
919ino_t page_cgroup_ino(struct page *page);
920
921static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
922{
923 if (mem_cgroup_disabled())
924 return true;
925 return !!(memcg->css.flags & CSS_ONLINE);
926}
927
928void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
929 int zid, int nr_pages);
930
931static inline
932unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
933 enum lru_list lru, int zone_idx)
934{
935 struct mem_cgroup_per_node *mz;
936
937 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
938 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
939}
940
941void mem_cgroup_handle_over_high(gfp_t gfp_mask);
942
943unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
944
945unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
946
947void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
948 struct task_struct *p);
949
950void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
951
952static inline void mem_cgroup_enter_user_fault(void)
953{
954 WARN_ON(current->in_user_fault);
955 current->in_user_fault = 1;
956}
957
958static inline void mem_cgroup_exit_user_fault(void)
959{
960 WARN_ON(!current->in_user_fault);
961 current->in_user_fault = 0;
962}
963
964static inline bool task_in_memcg_oom(struct task_struct *p)
965{
966 return p->memcg_in_oom;
967}
968
969bool mem_cgroup_oom_synchronize(bool wait);
970struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
971 struct mem_cgroup *oom_domain);
972void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
973
974void folio_memcg_lock(struct folio *folio);
975void folio_memcg_unlock(struct folio *folio);
976
977void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
978
979/* try to stablize folio_memcg() for all the pages in a memcg */
980static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
981{
982 rcu_read_lock();
983
984 if (mem_cgroup_disabled() || !atomic_read(&memcg->moving_account))
985 return true;
986
987 rcu_read_unlock();
988 return false;
989}
990
991static inline void mem_cgroup_unlock_pages(void)
992{
993 rcu_read_unlock();
994}
995
996/* idx can be of type enum memcg_stat_item or node_stat_item */
997static inline void mod_memcg_state(struct mem_cgroup *memcg,
998 int idx, int val)
999{
1000 unsigned long flags;
1001
1002 local_irq_save(flags);
1003 __mod_memcg_state(memcg, idx, val);
1004 local_irq_restore(flags);
1005}
1006
1007static inline void mod_memcg_page_state(struct page *page,
1008 int idx, int val)
1009{
1010 struct mem_cgroup *memcg;
1011
1012 if (mem_cgroup_disabled())
1013 return;
1014
1015 rcu_read_lock();
1016 memcg = page_memcg(page);
1017 if (memcg)
1018 mod_memcg_state(memcg, idx, val);
1019 rcu_read_unlock();
1020}
1021
1022unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx);
1023
1024static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1025 enum node_stat_item idx)
1026{
1027 struct mem_cgroup_per_node *pn;
1028 long x;
1029
1030 if (mem_cgroup_disabled())
1031 return node_page_state(lruvec_pgdat(lruvec), idx);
1032
1033 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1034 x = READ_ONCE(pn->lruvec_stats.state[idx]);
1035#ifdef CONFIG_SMP
1036 if (x < 0)
1037 x = 0;
1038#endif
1039 return x;
1040}
1041
1042static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1043 enum node_stat_item idx)
1044{
1045 struct mem_cgroup_per_node *pn;
1046 long x = 0;
1047
1048 if (mem_cgroup_disabled())
1049 return node_page_state(lruvec_pgdat(lruvec), idx);
1050
1051 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1052 x = READ_ONCE(pn->lruvec_stats.state_local[idx]);
1053#ifdef CONFIG_SMP
1054 if (x < 0)
1055 x = 0;
1056#endif
1057 return x;
1058}
1059
1060void mem_cgroup_flush_stats(struct mem_cgroup *memcg);
1061void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg);
1062
1063void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
1064 int val);
1065void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
1066
1067static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1068 int val)
1069{
1070 unsigned long flags;
1071
1072 local_irq_save(flags);
1073 __mod_lruvec_kmem_state(p, idx, val);
1074 local_irq_restore(flags);
1075}
1076
1077static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
1078 enum node_stat_item idx, int val)
1079{
1080 unsigned long flags;
1081
1082 local_irq_save(flags);
1083 __mod_memcg_lruvec_state(lruvec, idx, val);
1084 local_irq_restore(flags);
1085}
1086
1087void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
1088 unsigned long count);
1089
1090static inline void count_memcg_events(struct mem_cgroup *memcg,
1091 enum vm_event_item idx,
1092 unsigned long count)
1093{
1094 unsigned long flags;
1095
1096 local_irq_save(flags);
1097 __count_memcg_events(memcg, idx, count);
1098 local_irq_restore(flags);
1099}
1100
1101static inline void count_memcg_folio_events(struct folio *folio,
1102 enum vm_event_item idx, unsigned long nr)
1103{
1104 struct mem_cgroup *memcg = folio_memcg(folio);
1105
1106 if (memcg)
1107 count_memcg_events(memcg, idx, nr);
1108}
1109
1110static inline void count_memcg_event_mm(struct mm_struct *mm,
1111 enum vm_event_item idx)
1112{
1113 struct mem_cgroup *memcg;
1114
1115 if (mem_cgroup_disabled())
1116 return;
1117
1118 rcu_read_lock();
1119 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1120 if (likely(memcg))
1121 count_memcg_events(memcg, idx, 1);
1122 rcu_read_unlock();
1123}
1124
1125static inline void memcg_memory_event(struct mem_cgroup *memcg,
1126 enum memcg_memory_event event)
1127{
1128 bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1129 event == MEMCG_SWAP_FAIL;
1130
1131 atomic_long_inc(&memcg->memory_events_local[event]);
1132 if (!swap_event)
1133 cgroup_file_notify(&memcg->events_local_file);
1134
1135 do {
1136 atomic_long_inc(&memcg->memory_events[event]);
1137 if (swap_event)
1138 cgroup_file_notify(&memcg->swap_events_file);
1139 else
1140 cgroup_file_notify(&memcg->events_file);
1141
1142 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1143 break;
1144 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1145 break;
1146 } while ((memcg = parent_mem_cgroup(memcg)) &&
1147 !mem_cgroup_is_root(memcg));
1148}
1149
1150static inline void memcg_memory_event_mm(struct mm_struct *mm,
1151 enum memcg_memory_event event)
1152{
1153 struct mem_cgroup *memcg;
1154
1155 if (mem_cgroup_disabled())
1156 return;
1157
1158 rcu_read_lock();
1159 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1160 if (likely(memcg))
1161 memcg_memory_event(memcg, event);
1162 rcu_read_unlock();
1163}
1164
1165void split_page_memcg(struct page *head, unsigned int nr);
1166
1167unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1168 gfp_t gfp_mask,
1169 unsigned long *total_scanned);
1170
1171#else /* CONFIG_MEMCG */
1172
1173#define MEM_CGROUP_ID_SHIFT 0
1174
1175static inline struct mem_cgroup *folio_memcg(struct folio *folio)
1176{
1177 return NULL;
1178}
1179
1180static inline struct mem_cgroup *page_memcg(struct page *page)
1181{
1182 return NULL;
1183}
1184
1185static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
1186{
1187 WARN_ON_ONCE(!rcu_read_lock_held());
1188 return NULL;
1189}
1190
1191static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
1192{
1193 return NULL;
1194}
1195
1196static inline struct mem_cgroup *page_memcg_check(struct page *page)
1197{
1198 return NULL;
1199}
1200
1201static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
1202{
1203 return NULL;
1204}
1205
1206static inline bool folio_memcg_kmem(struct folio *folio)
1207{
1208 return false;
1209}
1210
1211static inline bool PageMemcgKmem(struct page *page)
1212{
1213 return false;
1214}
1215
1216static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1217{
1218 return true;
1219}
1220
1221static inline bool mem_cgroup_disabled(void)
1222{
1223 return true;
1224}
1225
1226static inline void memcg_memory_event(struct mem_cgroup *memcg,
1227 enum memcg_memory_event event)
1228{
1229}
1230
1231static inline void memcg_memory_event_mm(struct mm_struct *mm,
1232 enum memcg_memory_event event)
1233{
1234}
1235
1236static inline void mem_cgroup_protection(struct mem_cgroup *root,
1237 struct mem_cgroup *memcg,
1238 unsigned long *min,
1239 unsigned long *low)
1240{
1241 *min = *low = 0;
1242}
1243
1244static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1245 struct mem_cgroup *memcg)
1246{
1247}
1248
1249static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
1250 struct mem_cgroup *memcg)
1251{
1252 return true;
1253}
1254static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
1255 struct mem_cgroup *memcg)
1256{
1257 return false;
1258}
1259
1260static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
1261 struct mem_cgroup *memcg)
1262{
1263 return false;
1264}
1265
1266static inline void mem_cgroup_commit_charge(struct folio *folio,
1267 struct mem_cgroup *memcg)
1268{
1269}
1270
1271static inline int mem_cgroup_charge(struct folio *folio,
1272 struct mm_struct *mm, gfp_t gfp)
1273{
1274 return 0;
1275}
1276
1277static inline int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg,
1278 gfp_t gfp, long nr_pages)
1279{
1280 return 0;
1281}
1282
1283static inline int mem_cgroup_swapin_charge_folio(struct folio *folio,
1284 struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1285{
1286 return 0;
1287}
1288
1289static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
1290{
1291}
1292
1293static inline void mem_cgroup_uncharge(struct folio *folio)
1294{
1295}
1296
1297static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
1298{
1299}
1300
1301static inline void mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
1302 unsigned int nr_pages)
1303{
1304}
1305
1306static inline void mem_cgroup_replace_folio(struct folio *old,
1307 struct folio *new)
1308{
1309}
1310
1311static inline void mem_cgroup_migrate(struct folio *old, struct folio *new)
1312{
1313}
1314
1315static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1316 struct pglist_data *pgdat)
1317{
1318 return &pgdat->__lruvec;
1319}
1320
1321static inline struct lruvec *folio_lruvec(struct folio *folio)
1322{
1323 struct pglist_data *pgdat = folio_pgdat(folio);
1324 return &pgdat->__lruvec;
1325}
1326
1327static inline
1328void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1329{
1330}
1331
1332static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1333{
1334 return NULL;
1335}
1336
1337static inline bool mm_match_cgroup(struct mm_struct *mm,
1338 struct mem_cgroup *memcg)
1339{
1340 return true;
1341}
1342
1343static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1344{
1345 return NULL;
1346}
1347
1348static inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1349{
1350 return NULL;
1351}
1352
1353static inline
1354struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1355{
1356 return NULL;
1357}
1358
1359static inline void obj_cgroup_put(struct obj_cgroup *objcg)
1360{
1361}
1362
1363static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
1364{
1365 return true;
1366}
1367
1368static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg)
1369{
1370 return true;
1371}
1372
1373static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1374{
1375}
1376
1377static inline struct lruvec *folio_lruvec_lock(struct folio *folio)
1378{
1379 struct pglist_data *pgdat = folio_pgdat(folio);
1380
1381 spin_lock(&pgdat->__lruvec.lru_lock);
1382 return &pgdat->__lruvec;
1383}
1384
1385static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1386{
1387 struct pglist_data *pgdat = folio_pgdat(folio);
1388
1389 spin_lock_irq(&pgdat->__lruvec.lru_lock);
1390 return &pgdat->__lruvec;
1391}
1392
1393static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1394 unsigned long *flagsp)
1395{
1396 struct pglist_data *pgdat = folio_pgdat(folio);
1397
1398 spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1399 return &pgdat->__lruvec;
1400}
1401
1402static inline struct mem_cgroup *
1403mem_cgroup_iter(struct mem_cgroup *root,
1404 struct mem_cgroup *prev,
1405 struct mem_cgroup_reclaim_cookie *reclaim)
1406{
1407 return NULL;
1408}
1409
1410static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1411 struct mem_cgroup *prev)
1412{
1413}
1414
1415static inline void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1416 int (*fn)(struct task_struct *, void *), void *arg)
1417{
1418}
1419
1420static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1421{
1422 return 0;
1423}
1424
1425static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1426{
1427 WARN_ON_ONCE(id);
1428 /* XXX: This should always return root_mem_cgroup */
1429 return NULL;
1430}
1431
1432#ifdef CONFIG_SHRINKER_DEBUG
1433static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
1434{
1435 return 0;
1436}
1437
1438static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
1439{
1440 return NULL;
1441}
1442#endif
1443
1444static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1445{
1446 return NULL;
1447}
1448
1449static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1450{
1451 return NULL;
1452}
1453
1454static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1455{
1456 return true;
1457}
1458
1459static inline
1460unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1461 enum lru_list lru, int zone_idx)
1462{
1463 return 0;
1464}
1465
1466static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1467{
1468 return 0;
1469}
1470
1471static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1472{
1473 return 0;
1474}
1475
1476static inline void
1477mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1478{
1479}
1480
1481static inline void
1482mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1483{
1484}
1485
1486static inline void folio_memcg_lock(struct folio *folio)
1487{
1488}
1489
1490static inline void folio_memcg_unlock(struct folio *folio)
1491{
1492}
1493
1494static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
1495{
1496 /* to match folio_memcg_rcu() */
1497 rcu_read_lock();
1498 return true;
1499}
1500
1501static inline void mem_cgroup_unlock_pages(void)
1502{
1503 rcu_read_unlock();
1504}
1505
1506static inline void mem_cgroup_handle_over_high(gfp_t gfp_mask)
1507{
1508}
1509
1510static inline void mem_cgroup_enter_user_fault(void)
1511{
1512}
1513
1514static inline void mem_cgroup_exit_user_fault(void)
1515{
1516}
1517
1518static inline bool task_in_memcg_oom(struct task_struct *p)
1519{
1520 return false;
1521}
1522
1523static inline bool mem_cgroup_oom_synchronize(bool wait)
1524{
1525 return false;
1526}
1527
1528static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1529 struct task_struct *victim, struct mem_cgroup *oom_domain)
1530{
1531 return NULL;
1532}
1533
1534static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1535{
1536}
1537
1538static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1539 int idx,
1540 int nr)
1541{
1542}
1543
1544static inline void mod_memcg_state(struct mem_cgroup *memcg,
1545 int idx,
1546 int nr)
1547{
1548}
1549
1550static inline void mod_memcg_page_state(struct page *page,
1551 int idx, int val)
1552{
1553}
1554
1555static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1556{
1557 return 0;
1558}
1559
1560static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1561 enum node_stat_item idx)
1562{
1563 return node_page_state(lruvec_pgdat(lruvec), idx);
1564}
1565
1566static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1567 enum node_stat_item idx)
1568{
1569 return node_page_state(lruvec_pgdat(lruvec), idx);
1570}
1571
1572static inline void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
1573{
1574}
1575
1576static inline void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
1577{
1578}
1579
1580static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1581 enum node_stat_item idx, int val)
1582{
1583}
1584
1585static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1586 int val)
1587{
1588 struct page *page = virt_to_head_page(p);
1589
1590 __mod_node_page_state(page_pgdat(page), idx, val);
1591}
1592
1593static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1594 int val)
1595{
1596 struct page *page = virt_to_head_page(p);
1597
1598 mod_node_page_state(page_pgdat(page), idx, val);
1599}
1600
1601static inline void count_memcg_events(struct mem_cgroup *memcg,
1602 enum vm_event_item idx,
1603 unsigned long count)
1604{
1605}
1606
1607static inline void __count_memcg_events(struct mem_cgroup *memcg,
1608 enum vm_event_item idx,
1609 unsigned long count)
1610{
1611}
1612
1613static inline void count_memcg_folio_events(struct folio *folio,
1614 enum vm_event_item idx, unsigned long nr)
1615{
1616}
1617
1618static inline
1619void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1620{
1621}
1622
1623static inline void split_page_memcg(struct page *head, unsigned int nr)
1624{
1625}
1626
1627static inline
1628unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1629 gfp_t gfp_mask,
1630 unsigned long *total_scanned)
1631{
1632 return 0;
1633}
1634#endif /* CONFIG_MEMCG */
1635
1636static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1637{
1638 __mod_lruvec_kmem_state(p, idx, 1);
1639}
1640
1641static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1642{
1643 __mod_lruvec_kmem_state(p, idx, -1);
1644}
1645
1646static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1647{
1648 struct mem_cgroup *memcg;
1649
1650 memcg = lruvec_memcg(lruvec);
1651 if (!memcg)
1652 return NULL;
1653 memcg = parent_mem_cgroup(memcg);
1654 if (!memcg)
1655 return NULL;
1656 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1657}
1658
1659static inline void unlock_page_lruvec(struct lruvec *lruvec)
1660{
1661 spin_unlock(&lruvec->lru_lock);
1662}
1663
1664static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1665{
1666 spin_unlock_irq(&lruvec->lru_lock);
1667}
1668
1669static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1670 unsigned long flags)
1671{
1672 spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1673}
1674
1675/* Test requires a stable page->memcg binding, see page_memcg() */
1676static inline bool folio_matches_lruvec(struct folio *folio,
1677 struct lruvec *lruvec)
1678{
1679 return lruvec_pgdat(lruvec) == folio_pgdat(folio) &&
1680 lruvec_memcg(lruvec) == folio_memcg(folio);
1681}
1682
1683/* Don't lock again iff page's lruvec locked */
1684static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio,
1685 struct lruvec *locked_lruvec)
1686{
1687 if (locked_lruvec) {
1688 if (folio_matches_lruvec(folio, locked_lruvec))
1689 return locked_lruvec;
1690
1691 unlock_page_lruvec_irq(locked_lruvec);
1692 }
1693
1694 return folio_lruvec_lock_irq(folio);
1695}
1696
1697/* Don't lock again iff page's lruvec locked */
1698static inline struct lruvec *folio_lruvec_relock_irqsave(struct folio *folio,
1699 struct lruvec *locked_lruvec, unsigned long *flags)
1700{
1701 if (locked_lruvec) {
1702 if (folio_matches_lruvec(folio, locked_lruvec))
1703 return locked_lruvec;
1704
1705 unlock_page_lruvec_irqrestore(locked_lruvec, *flags);
1706 }
1707
1708 return folio_lruvec_lock_irqsave(folio, flags);
1709}
1710
1711#ifdef CONFIG_CGROUP_WRITEBACK
1712
1713struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1714void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1715 unsigned long *pheadroom, unsigned long *pdirty,
1716 unsigned long *pwriteback);
1717
1718void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
1719 struct bdi_writeback *wb);
1720
1721static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1722 struct bdi_writeback *wb)
1723{
1724 struct mem_cgroup *memcg;
1725
1726 if (mem_cgroup_disabled())
1727 return;
1728
1729 memcg = folio_memcg(folio);
1730 if (unlikely(memcg && &memcg->css != wb->memcg_css))
1731 mem_cgroup_track_foreign_dirty_slowpath(folio, wb);
1732}
1733
1734void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1735
1736#else /* CONFIG_CGROUP_WRITEBACK */
1737
1738static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1739{
1740 return NULL;
1741}
1742
1743static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1744 unsigned long *pfilepages,
1745 unsigned long *pheadroom,
1746 unsigned long *pdirty,
1747 unsigned long *pwriteback)
1748{
1749}
1750
1751static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1752 struct bdi_writeback *wb)
1753{
1754}
1755
1756static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1757{
1758}
1759
1760#endif /* CONFIG_CGROUP_WRITEBACK */
1761
1762struct sock;
1763bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
1764 gfp_t gfp_mask);
1765void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1766#ifdef CONFIG_MEMCG
1767extern struct static_key_false memcg_sockets_enabled_key;
1768#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1769void mem_cgroup_sk_alloc(struct sock *sk);
1770void mem_cgroup_sk_free(struct sock *sk);
1771static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1772{
1773 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1774 return !!memcg->tcpmem_pressure;
1775 do {
1776 if (time_before(jiffies, READ_ONCE(memcg->socket_pressure)))
1777 return true;
1778 } while ((memcg = parent_mem_cgroup(memcg)));
1779 return false;
1780}
1781
1782int alloc_shrinker_info(struct mem_cgroup *memcg);
1783void free_shrinker_info(struct mem_cgroup *memcg);
1784void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1785void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1786#else
1787#define mem_cgroup_sockets_enabled 0
1788static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1789static inline void mem_cgroup_sk_free(struct sock *sk) { };
1790static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1791{
1792 return false;
1793}
1794
1795static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1796 int nid, int shrinker_id)
1797{
1798}
1799#endif
1800
1801#ifdef CONFIG_MEMCG_KMEM
1802bool mem_cgroup_kmem_disabled(void);
1803int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1804void __memcg_kmem_uncharge_page(struct page *page, int order);
1805
1806/*
1807 * The returned objcg pointer is safe to use without additional
1808 * protection within a scope. The scope is defined either by
1809 * the current task (similar to the "current" global variable)
1810 * or by set_active_memcg() pair.
1811 * Please, use obj_cgroup_get() to get a reference if the pointer
1812 * needs to be used outside of the local scope.
1813 */
1814struct obj_cgroup *current_obj_cgroup(void);
1815struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio);
1816
1817static inline struct obj_cgroup *get_obj_cgroup_from_current(void)
1818{
1819 struct obj_cgroup *objcg = current_obj_cgroup();
1820
1821 if (objcg)
1822 obj_cgroup_get(objcg);
1823
1824 return objcg;
1825}
1826
1827int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1828void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1829
1830extern struct static_key_false memcg_bpf_enabled_key;
1831static inline bool memcg_bpf_enabled(void)
1832{
1833 return static_branch_likely(&memcg_bpf_enabled_key);
1834}
1835
1836extern struct static_key_false memcg_kmem_online_key;
1837
1838static inline bool memcg_kmem_online(void)
1839{
1840 return static_branch_likely(&memcg_kmem_online_key);
1841}
1842
1843static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1844 int order)
1845{
1846 if (memcg_kmem_online())
1847 return __memcg_kmem_charge_page(page, gfp, order);
1848 return 0;
1849}
1850
1851static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1852{
1853 if (memcg_kmem_online())
1854 __memcg_kmem_uncharge_page(page, order);
1855}
1856
1857/*
1858 * A helper for accessing memcg's kmem_id, used for getting
1859 * corresponding LRU lists.
1860 */
1861static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1862{
1863 return memcg ? memcg->kmemcg_id : -1;
1864}
1865
1866struct mem_cgroup *mem_cgroup_from_obj(void *p);
1867struct mem_cgroup *mem_cgroup_from_slab_obj(void *p);
1868
1869static inline void count_objcg_event(struct obj_cgroup *objcg,
1870 enum vm_event_item idx)
1871{
1872 struct mem_cgroup *memcg;
1873
1874 if (!memcg_kmem_online())
1875 return;
1876
1877 rcu_read_lock();
1878 memcg = obj_cgroup_memcg(objcg);
1879 count_memcg_events(memcg, idx, 1);
1880 rcu_read_unlock();
1881}
1882
1883#else
1884static inline bool mem_cgroup_kmem_disabled(void)
1885{
1886 return true;
1887}
1888
1889static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1890 int order)
1891{
1892 return 0;
1893}
1894
1895static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1896{
1897}
1898
1899static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1900 int order)
1901{
1902 return 0;
1903}
1904
1905static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1906{
1907}
1908
1909static inline struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
1910{
1911 return NULL;
1912}
1913
1914static inline bool memcg_bpf_enabled(void)
1915{
1916 return false;
1917}
1918
1919static inline bool memcg_kmem_online(void)
1920{
1921 return false;
1922}
1923
1924static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1925{
1926 return -1;
1927}
1928
1929static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1930{
1931 return NULL;
1932}
1933
1934static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
1935{
1936 return NULL;
1937}
1938
1939static inline void count_objcg_event(struct obj_cgroup *objcg,
1940 enum vm_event_item idx)
1941{
1942}
1943
1944#endif /* CONFIG_MEMCG_KMEM */
1945
1946#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1947bool obj_cgroup_may_zswap(struct obj_cgroup *objcg);
1948void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size);
1949void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size);
1950bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg);
1951#else
1952static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
1953{
1954 return true;
1955}
1956static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg,
1957 size_t size)
1958{
1959}
1960static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg,
1961 size_t size)
1962{
1963}
1964static inline bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
1965{
1966 /* if zswap is disabled, do not block pages going to the swapping device */
1967 return true;
1968}
1969#endif
1970
1971#endif /* _LINUX_MEMCONTROL_H */