at v6.8-rc2 119 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_FS_H 3#define _LINUX_FS_H 4 5#include <linux/linkage.h> 6#include <linux/wait_bit.h> 7#include <linux/kdev_t.h> 8#include <linux/dcache.h> 9#include <linux/path.h> 10#include <linux/stat.h> 11#include <linux/cache.h> 12#include <linux/list.h> 13#include <linux/list_lru.h> 14#include <linux/llist.h> 15#include <linux/radix-tree.h> 16#include <linux/xarray.h> 17#include <linux/rbtree.h> 18#include <linux/init.h> 19#include <linux/pid.h> 20#include <linux/bug.h> 21#include <linux/mutex.h> 22#include <linux/rwsem.h> 23#include <linux/mm_types.h> 24#include <linux/capability.h> 25#include <linux/semaphore.h> 26#include <linux/fcntl.h> 27#include <linux/rculist_bl.h> 28#include <linux/atomic.h> 29#include <linux/shrinker.h> 30#include <linux/migrate_mode.h> 31#include <linux/uidgid.h> 32#include <linux/lockdep.h> 33#include <linux/percpu-rwsem.h> 34#include <linux/workqueue.h> 35#include <linux/delayed_call.h> 36#include <linux/uuid.h> 37#include <linux/errseq.h> 38#include <linux/ioprio.h> 39#include <linux/fs_types.h> 40#include <linux/build_bug.h> 41#include <linux/stddef.h> 42#include <linux/mount.h> 43#include <linux/cred.h> 44#include <linux/mnt_idmapping.h> 45#include <linux/slab.h> 46 47#include <asm/byteorder.h> 48#include <uapi/linux/fs.h> 49 50struct backing_dev_info; 51struct bdi_writeback; 52struct bio; 53struct io_comp_batch; 54struct export_operations; 55struct fiemap_extent_info; 56struct hd_geometry; 57struct iovec; 58struct kiocb; 59struct kobject; 60struct pipe_inode_info; 61struct poll_table_struct; 62struct kstatfs; 63struct vm_area_struct; 64struct vfsmount; 65struct cred; 66struct swap_info_struct; 67struct seq_file; 68struct workqueue_struct; 69struct iov_iter; 70struct fscrypt_inode_info; 71struct fscrypt_operations; 72struct fsverity_info; 73struct fsverity_operations; 74struct fs_context; 75struct fs_parameter_spec; 76struct fileattr; 77struct iomap_ops; 78 79extern void __init inode_init(void); 80extern void __init inode_init_early(void); 81extern void __init files_init(void); 82extern void __init files_maxfiles_init(void); 83 84extern unsigned long get_max_files(void); 85extern unsigned int sysctl_nr_open; 86 87typedef __kernel_rwf_t rwf_t; 88 89struct buffer_head; 90typedef int (get_block_t)(struct inode *inode, sector_t iblock, 91 struct buffer_head *bh_result, int create); 92typedef int (dio_iodone_t)(struct kiocb *iocb, loff_t offset, 93 ssize_t bytes, void *private); 94 95#define MAY_EXEC 0x00000001 96#define MAY_WRITE 0x00000002 97#define MAY_READ 0x00000004 98#define MAY_APPEND 0x00000008 99#define MAY_ACCESS 0x00000010 100#define MAY_OPEN 0x00000020 101#define MAY_CHDIR 0x00000040 102/* called from RCU mode, don't block */ 103#define MAY_NOT_BLOCK 0x00000080 104 105/* 106 * flags in file.f_mode. Note that FMODE_READ and FMODE_WRITE must correspond 107 * to O_WRONLY and O_RDWR via the strange trick in do_dentry_open() 108 */ 109 110/* file is open for reading */ 111#define FMODE_READ ((__force fmode_t)0x1) 112/* file is open for writing */ 113#define FMODE_WRITE ((__force fmode_t)0x2) 114/* file is seekable */ 115#define FMODE_LSEEK ((__force fmode_t)0x4) 116/* file can be accessed using pread */ 117#define FMODE_PREAD ((__force fmode_t)0x8) 118/* file can be accessed using pwrite */ 119#define FMODE_PWRITE ((__force fmode_t)0x10) 120/* File is opened for execution with sys_execve / sys_uselib */ 121#define FMODE_EXEC ((__force fmode_t)0x20) 122/* 32bit hashes as llseek() offset (for directories) */ 123#define FMODE_32BITHASH ((__force fmode_t)0x200) 124/* 64bit hashes as llseek() offset (for directories) */ 125#define FMODE_64BITHASH ((__force fmode_t)0x400) 126 127/* 128 * Don't update ctime and mtime. 129 * 130 * Currently a special hack for the XFS open_by_handle ioctl, but we'll 131 * hopefully graduate it to a proper O_CMTIME flag supported by open(2) soon. 132 */ 133#define FMODE_NOCMTIME ((__force fmode_t)0x800) 134 135/* Expect random access pattern */ 136#define FMODE_RANDOM ((__force fmode_t)0x1000) 137 138/* File is huge (eg. /dev/mem): treat loff_t as unsigned */ 139#define FMODE_UNSIGNED_OFFSET ((__force fmode_t)0x2000) 140 141/* File is opened with O_PATH; almost nothing can be done with it */ 142#define FMODE_PATH ((__force fmode_t)0x4000) 143 144/* File needs atomic accesses to f_pos */ 145#define FMODE_ATOMIC_POS ((__force fmode_t)0x8000) 146/* Write access to underlying fs */ 147#define FMODE_WRITER ((__force fmode_t)0x10000) 148/* Has read method(s) */ 149#define FMODE_CAN_READ ((__force fmode_t)0x20000) 150/* Has write method(s) */ 151#define FMODE_CAN_WRITE ((__force fmode_t)0x40000) 152 153#define FMODE_OPENED ((__force fmode_t)0x80000) 154#define FMODE_CREATED ((__force fmode_t)0x100000) 155 156/* File is stream-like */ 157#define FMODE_STREAM ((__force fmode_t)0x200000) 158 159/* File supports DIRECT IO */ 160#define FMODE_CAN_ODIRECT ((__force fmode_t)0x400000) 161 162#define FMODE_NOREUSE ((__force fmode_t)0x800000) 163 164/* File supports non-exclusive O_DIRECT writes from multiple threads */ 165#define FMODE_DIO_PARALLEL_WRITE ((__force fmode_t)0x1000000) 166 167/* File is embedded in backing_file object */ 168#define FMODE_BACKING ((__force fmode_t)0x2000000) 169 170/* File was opened by fanotify and shouldn't generate fanotify events */ 171#define FMODE_NONOTIFY ((__force fmode_t)0x4000000) 172 173/* File is capable of returning -EAGAIN if I/O will block */ 174#define FMODE_NOWAIT ((__force fmode_t)0x8000000) 175 176/* File represents mount that needs unmounting */ 177#define FMODE_NEED_UNMOUNT ((__force fmode_t)0x10000000) 178 179/* File does not contribute to nr_files count */ 180#define FMODE_NOACCOUNT ((__force fmode_t)0x20000000) 181 182/* File supports async buffered reads */ 183#define FMODE_BUF_RASYNC ((__force fmode_t)0x40000000) 184 185/* File supports async nowait buffered writes */ 186#define FMODE_BUF_WASYNC ((__force fmode_t)0x80000000) 187 188/* 189 * Attribute flags. These should be or-ed together to figure out what 190 * has been changed! 191 */ 192#define ATTR_MODE (1 << 0) 193#define ATTR_UID (1 << 1) 194#define ATTR_GID (1 << 2) 195#define ATTR_SIZE (1 << 3) 196#define ATTR_ATIME (1 << 4) 197#define ATTR_MTIME (1 << 5) 198#define ATTR_CTIME (1 << 6) 199#define ATTR_ATIME_SET (1 << 7) 200#define ATTR_MTIME_SET (1 << 8) 201#define ATTR_FORCE (1 << 9) /* Not a change, but a change it */ 202#define ATTR_KILL_SUID (1 << 11) 203#define ATTR_KILL_SGID (1 << 12) 204#define ATTR_FILE (1 << 13) 205#define ATTR_KILL_PRIV (1 << 14) 206#define ATTR_OPEN (1 << 15) /* Truncating from open(O_TRUNC) */ 207#define ATTR_TIMES_SET (1 << 16) 208#define ATTR_TOUCH (1 << 17) 209 210/* 211 * Whiteout is represented by a char device. The following constants define the 212 * mode and device number to use. 213 */ 214#define WHITEOUT_MODE 0 215#define WHITEOUT_DEV 0 216 217/* 218 * This is the Inode Attributes structure, used for notify_change(). It 219 * uses the above definitions as flags, to know which values have changed. 220 * Also, in this manner, a Filesystem can look at only the values it cares 221 * about. Basically, these are the attributes that the VFS layer can 222 * request to change from the FS layer. 223 * 224 * Derek Atkins <warlord@MIT.EDU> 94-10-20 225 */ 226struct iattr { 227 unsigned int ia_valid; 228 umode_t ia_mode; 229 /* 230 * The two anonymous unions wrap structures with the same member. 231 * 232 * Filesystems raising FS_ALLOW_IDMAP need to use ia_vfs{g,u}id which 233 * are a dedicated type requiring the filesystem to use the dedicated 234 * helpers. Other filesystem can continue to use ia_{g,u}id until they 235 * have been ported. 236 * 237 * They always contain the same value. In other words FS_ALLOW_IDMAP 238 * pass down the same value on idmapped mounts as they would on regular 239 * mounts. 240 */ 241 union { 242 kuid_t ia_uid; 243 vfsuid_t ia_vfsuid; 244 }; 245 union { 246 kgid_t ia_gid; 247 vfsgid_t ia_vfsgid; 248 }; 249 loff_t ia_size; 250 struct timespec64 ia_atime; 251 struct timespec64 ia_mtime; 252 struct timespec64 ia_ctime; 253 254 /* 255 * Not an attribute, but an auxiliary info for filesystems wanting to 256 * implement an ftruncate() like method. NOTE: filesystem should 257 * check for (ia_valid & ATTR_FILE), and not for (ia_file != NULL). 258 */ 259 struct file *ia_file; 260}; 261 262/* 263 * Includes for diskquotas. 264 */ 265#include <linux/quota.h> 266 267/* 268 * Maximum number of layers of fs stack. Needs to be limited to 269 * prevent kernel stack overflow 270 */ 271#define FILESYSTEM_MAX_STACK_DEPTH 2 272 273/** 274 * enum positive_aop_returns - aop return codes with specific semantics 275 * 276 * @AOP_WRITEPAGE_ACTIVATE: Informs the caller that page writeback has 277 * completed, that the page is still locked, and 278 * should be considered active. The VM uses this hint 279 * to return the page to the active list -- it won't 280 * be a candidate for writeback again in the near 281 * future. Other callers must be careful to unlock 282 * the page if they get this return. Returned by 283 * writepage(); 284 * 285 * @AOP_TRUNCATED_PAGE: The AOP method that was handed a locked page has 286 * unlocked it and the page might have been truncated. 287 * The caller should back up to acquiring a new page and 288 * trying again. The aop will be taking reasonable 289 * precautions not to livelock. If the caller held a page 290 * reference, it should drop it before retrying. Returned 291 * by read_folio(). 292 * 293 * address_space_operation functions return these large constants to indicate 294 * special semantics to the caller. These are much larger than the bytes in a 295 * page to allow for functions that return the number of bytes operated on in a 296 * given page. 297 */ 298 299enum positive_aop_returns { 300 AOP_WRITEPAGE_ACTIVATE = 0x80000, 301 AOP_TRUNCATED_PAGE = 0x80001, 302}; 303 304/* 305 * oh the beauties of C type declarations. 306 */ 307struct page; 308struct address_space; 309struct writeback_control; 310struct readahead_control; 311 312/* 313 * Write life time hint values. 314 * Stored in struct inode as u8. 315 */ 316enum rw_hint { 317 WRITE_LIFE_NOT_SET = 0, 318 WRITE_LIFE_NONE = RWH_WRITE_LIFE_NONE, 319 WRITE_LIFE_SHORT = RWH_WRITE_LIFE_SHORT, 320 WRITE_LIFE_MEDIUM = RWH_WRITE_LIFE_MEDIUM, 321 WRITE_LIFE_LONG = RWH_WRITE_LIFE_LONG, 322 WRITE_LIFE_EXTREME = RWH_WRITE_LIFE_EXTREME, 323}; 324 325/* Match RWF_* bits to IOCB bits */ 326#define IOCB_HIPRI (__force int) RWF_HIPRI 327#define IOCB_DSYNC (__force int) RWF_DSYNC 328#define IOCB_SYNC (__force int) RWF_SYNC 329#define IOCB_NOWAIT (__force int) RWF_NOWAIT 330#define IOCB_APPEND (__force int) RWF_APPEND 331 332/* non-RWF related bits - start at 16 */ 333#define IOCB_EVENTFD (1 << 16) 334#define IOCB_DIRECT (1 << 17) 335#define IOCB_WRITE (1 << 18) 336/* iocb->ki_waitq is valid */ 337#define IOCB_WAITQ (1 << 19) 338#define IOCB_NOIO (1 << 20) 339/* can use bio alloc cache */ 340#define IOCB_ALLOC_CACHE (1 << 21) 341/* 342 * IOCB_DIO_CALLER_COMP can be set by the iocb owner, to indicate that the 343 * iocb completion can be passed back to the owner for execution from a safe 344 * context rather than needing to be punted through a workqueue. If this 345 * flag is set, the bio completion handling may set iocb->dio_complete to a 346 * handler function and iocb->private to context information for that handler. 347 * The issuer should call the handler with that context information from task 348 * context to complete the processing of the iocb. Note that while this 349 * provides a task context for the dio_complete() callback, it should only be 350 * used on the completion side for non-IO generating completions. It's fine to 351 * call blocking functions from this callback, but they should not wait for 352 * unrelated IO (like cache flushing, new IO generation, etc). 353 */ 354#define IOCB_DIO_CALLER_COMP (1 << 22) 355 356/* for use in trace events */ 357#define TRACE_IOCB_STRINGS \ 358 { IOCB_HIPRI, "HIPRI" }, \ 359 { IOCB_DSYNC, "DSYNC" }, \ 360 { IOCB_SYNC, "SYNC" }, \ 361 { IOCB_NOWAIT, "NOWAIT" }, \ 362 { IOCB_APPEND, "APPEND" }, \ 363 { IOCB_EVENTFD, "EVENTFD"}, \ 364 { IOCB_DIRECT, "DIRECT" }, \ 365 { IOCB_WRITE, "WRITE" }, \ 366 { IOCB_WAITQ, "WAITQ" }, \ 367 { IOCB_NOIO, "NOIO" }, \ 368 { IOCB_ALLOC_CACHE, "ALLOC_CACHE" }, \ 369 { IOCB_DIO_CALLER_COMP, "CALLER_COMP" } 370 371struct kiocb { 372 struct file *ki_filp; 373 loff_t ki_pos; 374 void (*ki_complete)(struct kiocb *iocb, long ret); 375 void *private; 376 int ki_flags; 377 u16 ki_ioprio; /* See linux/ioprio.h */ 378 union { 379 /* 380 * Only used for async buffered reads, where it denotes the 381 * page waitqueue associated with completing the read. Valid 382 * IFF IOCB_WAITQ is set. 383 */ 384 struct wait_page_queue *ki_waitq; 385 /* 386 * Can be used for O_DIRECT IO, where the completion handling 387 * is punted back to the issuer of the IO. May only be set 388 * if IOCB_DIO_CALLER_COMP is set by the issuer, and the issuer 389 * must then check for presence of this handler when ki_complete 390 * is invoked. The data passed in to this handler must be 391 * assigned to ->private when dio_complete is assigned. 392 */ 393 ssize_t (*dio_complete)(void *data); 394 }; 395}; 396 397static inline bool is_sync_kiocb(struct kiocb *kiocb) 398{ 399 return kiocb->ki_complete == NULL; 400} 401 402struct address_space_operations { 403 int (*writepage)(struct page *page, struct writeback_control *wbc); 404 int (*read_folio)(struct file *, struct folio *); 405 406 /* Write back some dirty pages from this mapping. */ 407 int (*writepages)(struct address_space *, struct writeback_control *); 408 409 /* Mark a folio dirty. Return true if this dirtied it */ 410 bool (*dirty_folio)(struct address_space *, struct folio *); 411 412 void (*readahead)(struct readahead_control *); 413 414 int (*write_begin)(struct file *, struct address_space *mapping, 415 loff_t pos, unsigned len, 416 struct page **pagep, void **fsdata); 417 int (*write_end)(struct file *, struct address_space *mapping, 418 loff_t pos, unsigned len, unsigned copied, 419 struct page *page, void *fsdata); 420 421 /* Unfortunately this kludge is needed for FIBMAP. Don't use it */ 422 sector_t (*bmap)(struct address_space *, sector_t); 423 void (*invalidate_folio) (struct folio *, size_t offset, size_t len); 424 bool (*release_folio)(struct folio *, gfp_t); 425 void (*free_folio)(struct folio *folio); 426 ssize_t (*direct_IO)(struct kiocb *, struct iov_iter *iter); 427 /* 428 * migrate the contents of a folio to the specified target. If 429 * migrate_mode is MIGRATE_ASYNC, it must not block. 430 */ 431 int (*migrate_folio)(struct address_space *, struct folio *dst, 432 struct folio *src, enum migrate_mode); 433 int (*launder_folio)(struct folio *); 434 bool (*is_partially_uptodate) (struct folio *, size_t from, 435 size_t count); 436 void (*is_dirty_writeback) (struct folio *, bool *dirty, bool *wb); 437 int (*error_remove_folio)(struct address_space *, struct folio *); 438 439 /* swapfile support */ 440 int (*swap_activate)(struct swap_info_struct *sis, struct file *file, 441 sector_t *span); 442 void (*swap_deactivate)(struct file *file); 443 int (*swap_rw)(struct kiocb *iocb, struct iov_iter *iter); 444}; 445 446extern const struct address_space_operations empty_aops; 447 448/** 449 * struct address_space - Contents of a cacheable, mappable object. 450 * @host: Owner, either the inode or the block_device. 451 * @i_pages: Cached pages. 452 * @invalidate_lock: Guards coherency between page cache contents and 453 * file offset->disk block mappings in the filesystem during invalidates. 454 * It is also used to block modification of page cache contents through 455 * memory mappings. 456 * @gfp_mask: Memory allocation flags to use for allocating pages. 457 * @i_mmap_writable: Number of VM_SHARED, VM_MAYWRITE mappings. 458 * @nr_thps: Number of THPs in the pagecache (non-shmem only). 459 * @i_mmap: Tree of private and shared mappings. 460 * @i_mmap_rwsem: Protects @i_mmap and @i_mmap_writable. 461 * @nrpages: Number of page entries, protected by the i_pages lock. 462 * @writeback_index: Writeback starts here. 463 * @a_ops: Methods. 464 * @flags: Error bits and flags (AS_*). 465 * @wb_err: The most recent error which has occurred. 466 * @i_private_lock: For use by the owner of the address_space. 467 * @i_private_list: For use by the owner of the address_space. 468 * @i_private_data: For use by the owner of the address_space. 469 */ 470struct address_space { 471 struct inode *host; 472 struct xarray i_pages; 473 struct rw_semaphore invalidate_lock; 474 gfp_t gfp_mask; 475 atomic_t i_mmap_writable; 476#ifdef CONFIG_READ_ONLY_THP_FOR_FS 477 /* number of thp, only for non-shmem files */ 478 atomic_t nr_thps; 479#endif 480 struct rb_root_cached i_mmap; 481 unsigned long nrpages; 482 pgoff_t writeback_index; 483 const struct address_space_operations *a_ops; 484 unsigned long flags; 485 struct rw_semaphore i_mmap_rwsem; 486 errseq_t wb_err; 487 spinlock_t i_private_lock; 488 struct list_head i_private_list; 489 void * i_private_data; 490} __attribute__((aligned(sizeof(long)))) __randomize_layout; 491 /* 492 * On most architectures that alignment is already the case; but 493 * must be enforced here for CRIS, to let the least significant bit 494 * of struct page's "mapping" pointer be used for PAGE_MAPPING_ANON. 495 */ 496 497/* XArray tags, for tagging dirty and writeback pages in the pagecache. */ 498#define PAGECACHE_TAG_DIRTY XA_MARK_0 499#define PAGECACHE_TAG_WRITEBACK XA_MARK_1 500#define PAGECACHE_TAG_TOWRITE XA_MARK_2 501 502/* 503 * Returns true if any of the pages in the mapping are marked with the tag. 504 */ 505static inline bool mapping_tagged(struct address_space *mapping, xa_mark_t tag) 506{ 507 return xa_marked(&mapping->i_pages, tag); 508} 509 510static inline void i_mmap_lock_write(struct address_space *mapping) 511{ 512 down_write(&mapping->i_mmap_rwsem); 513} 514 515static inline int i_mmap_trylock_write(struct address_space *mapping) 516{ 517 return down_write_trylock(&mapping->i_mmap_rwsem); 518} 519 520static inline void i_mmap_unlock_write(struct address_space *mapping) 521{ 522 up_write(&mapping->i_mmap_rwsem); 523} 524 525static inline int i_mmap_trylock_read(struct address_space *mapping) 526{ 527 return down_read_trylock(&mapping->i_mmap_rwsem); 528} 529 530static inline void i_mmap_lock_read(struct address_space *mapping) 531{ 532 down_read(&mapping->i_mmap_rwsem); 533} 534 535static inline void i_mmap_unlock_read(struct address_space *mapping) 536{ 537 up_read(&mapping->i_mmap_rwsem); 538} 539 540static inline void i_mmap_assert_locked(struct address_space *mapping) 541{ 542 lockdep_assert_held(&mapping->i_mmap_rwsem); 543} 544 545static inline void i_mmap_assert_write_locked(struct address_space *mapping) 546{ 547 lockdep_assert_held_write(&mapping->i_mmap_rwsem); 548} 549 550/* 551 * Might pages of this file be mapped into userspace? 552 */ 553static inline int mapping_mapped(struct address_space *mapping) 554{ 555 return !RB_EMPTY_ROOT(&mapping->i_mmap.rb_root); 556} 557 558/* 559 * Might pages of this file have been modified in userspace? 560 * Note that i_mmap_writable counts all VM_SHARED, VM_MAYWRITE vmas: do_mmap 561 * marks vma as VM_SHARED if it is shared, and the file was opened for 562 * writing i.e. vma may be mprotected writable even if now readonly. 563 * 564 * If i_mmap_writable is negative, no new writable mappings are allowed. You 565 * can only deny writable mappings, if none exists right now. 566 */ 567static inline int mapping_writably_mapped(struct address_space *mapping) 568{ 569 return atomic_read(&mapping->i_mmap_writable) > 0; 570} 571 572static inline int mapping_map_writable(struct address_space *mapping) 573{ 574 return atomic_inc_unless_negative(&mapping->i_mmap_writable) ? 575 0 : -EPERM; 576} 577 578static inline void mapping_unmap_writable(struct address_space *mapping) 579{ 580 atomic_dec(&mapping->i_mmap_writable); 581} 582 583static inline int mapping_deny_writable(struct address_space *mapping) 584{ 585 return atomic_dec_unless_positive(&mapping->i_mmap_writable) ? 586 0 : -EBUSY; 587} 588 589static inline void mapping_allow_writable(struct address_space *mapping) 590{ 591 atomic_inc(&mapping->i_mmap_writable); 592} 593 594/* 595 * Use sequence counter to get consistent i_size on 32-bit processors. 596 */ 597#if BITS_PER_LONG==32 && defined(CONFIG_SMP) 598#include <linux/seqlock.h> 599#define __NEED_I_SIZE_ORDERED 600#define i_size_ordered_init(inode) seqcount_init(&inode->i_size_seqcount) 601#else 602#define i_size_ordered_init(inode) do { } while (0) 603#endif 604 605struct posix_acl; 606#define ACL_NOT_CACHED ((void *)(-1)) 607/* 608 * ACL_DONT_CACHE is for stacked filesystems, that rely on underlying fs to 609 * cache the ACL. This also means that ->get_inode_acl() can be called in RCU 610 * mode with the LOOKUP_RCU flag. 611 */ 612#define ACL_DONT_CACHE ((void *)(-3)) 613 614static inline struct posix_acl * 615uncached_acl_sentinel(struct task_struct *task) 616{ 617 return (void *)task + 1; 618} 619 620static inline bool 621is_uncached_acl(struct posix_acl *acl) 622{ 623 return (long)acl & 1; 624} 625 626#define IOP_FASTPERM 0x0001 627#define IOP_LOOKUP 0x0002 628#define IOP_NOFOLLOW 0x0004 629#define IOP_XATTR 0x0008 630#define IOP_DEFAULT_READLINK 0x0010 631 632struct fsnotify_mark_connector; 633 634/* 635 * Keep mostly read-only and often accessed (especially for 636 * the RCU path lookup and 'stat' data) fields at the beginning 637 * of the 'struct inode' 638 */ 639struct inode { 640 umode_t i_mode; 641 unsigned short i_opflags; 642 kuid_t i_uid; 643 kgid_t i_gid; 644 unsigned int i_flags; 645 646#ifdef CONFIG_FS_POSIX_ACL 647 struct posix_acl *i_acl; 648 struct posix_acl *i_default_acl; 649#endif 650 651 const struct inode_operations *i_op; 652 struct super_block *i_sb; 653 struct address_space *i_mapping; 654 655#ifdef CONFIG_SECURITY 656 void *i_security; 657#endif 658 659 /* Stat data, not accessed from path walking */ 660 unsigned long i_ino; 661 /* 662 * Filesystems may only read i_nlink directly. They shall use the 663 * following functions for modification: 664 * 665 * (set|clear|inc|drop)_nlink 666 * inode_(inc|dec)_link_count 667 */ 668 union { 669 const unsigned int i_nlink; 670 unsigned int __i_nlink; 671 }; 672 dev_t i_rdev; 673 loff_t i_size; 674 struct timespec64 __i_atime; 675 struct timespec64 __i_mtime; 676 struct timespec64 __i_ctime; /* use inode_*_ctime accessors! */ 677 spinlock_t i_lock; /* i_blocks, i_bytes, maybe i_size */ 678 unsigned short i_bytes; 679 u8 i_blkbits; 680 u8 i_write_hint; 681 blkcnt_t i_blocks; 682 683#ifdef __NEED_I_SIZE_ORDERED 684 seqcount_t i_size_seqcount; 685#endif 686 687 /* Misc */ 688 unsigned long i_state; 689 struct rw_semaphore i_rwsem; 690 691 unsigned long dirtied_when; /* jiffies of first dirtying */ 692 unsigned long dirtied_time_when; 693 694 struct hlist_node i_hash; 695 struct list_head i_io_list; /* backing dev IO list */ 696#ifdef CONFIG_CGROUP_WRITEBACK 697 struct bdi_writeback *i_wb; /* the associated cgroup wb */ 698 699 /* foreign inode detection, see wbc_detach_inode() */ 700 int i_wb_frn_winner; 701 u16 i_wb_frn_avg_time; 702 u16 i_wb_frn_history; 703#endif 704 struct list_head i_lru; /* inode LRU list */ 705 struct list_head i_sb_list; 706 struct list_head i_wb_list; /* backing dev writeback list */ 707 union { 708 struct hlist_head i_dentry; 709 struct rcu_head i_rcu; 710 }; 711 atomic64_t i_version; 712 atomic64_t i_sequence; /* see futex */ 713 atomic_t i_count; 714 atomic_t i_dio_count; 715 atomic_t i_writecount; 716#if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING) 717 atomic_t i_readcount; /* struct files open RO */ 718#endif 719 union { 720 const struct file_operations *i_fop; /* former ->i_op->default_file_ops */ 721 void (*free_inode)(struct inode *); 722 }; 723 struct file_lock_context *i_flctx; 724 struct address_space i_data; 725 struct list_head i_devices; 726 union { 727 struct pipe_inode_info *i_pipe; 728 struct cdev *i_cdev; 729 char *i_link; 730 unsigned i_dir_seq; 731 }; 732 733 __u32 i_generation; 734 735#ifdef CONFIG_FSNOTIFY 736 __u32 i_fsnotify_mask; /* all events this inode cares about */ 737 struct fsnotify_mark_connector __rcu *i_fsnotify_marks; 738#endif 739 740#ifdef CONFIG_FS_ENCRYPTION 741 struct fscrypt_inode_info *i_crypt_info; 742#endif 743 744#ifdef CONFIG_FS_VERITY 745 struct fsverity_info *i_verity_info; 746#endif 747 748 void *i_private; /* fs or device private pointer */ 749} __randomize_layout; 750 751struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode); 752 753static inline unsigned int i_blocksize(const struct inode *node) 754{ 755 return (1 << node->i_blkbits); 756} 757 758static inline int inode_unhashed(struct inode *inode) 759{ 760 return hlist_unhashed(&inode->i_hash); 761} 762 763/* 764 * __mark_inode_dirty expects inodes to be hashed. Since we don't 765 * want special inodes in the fileset inode space, we make them 766 * appear hashed, but do not put on any lists. hlist_del() 767 * will work fine and require no locking. 768 */ 769static inline void inode_fake_hash(struct inode *inode) 770{ 771 hlist_add_fake(&inode->i_hash); 772} 773 774/* 775 * inode->i_mutex nesting subclasses for the lock validator: 776 * 777 * 0: the object of the current VFS operation 778 * 1: parent 779 * 2: child/target 780 * 3: xattr 781 * 4: second non-directory 782 * 5: second parent (when locking independent directories in rename) 783 * 784 * I_MUTEX_NONDIR2 is for certain operations (such as rename) which lock two 785 * non-directories at once. 786 * 787 * The locking order between these classes is 788 * parent[2] -> child -> grandchild -> normal -> xattr -> second non-directory 789 */ 790enum inode_i_mutex_lock_class 791{ 792 I_MUTEX_NORMAL, 793 I_MUTEX_PARENT, 794 I_MUTEX_CHILD, 795 I_MUTEX_XATTR, 796 I_MUTEX_NONDIR2, 797 I_MUTEX_PARENT2, 798}; 799 800static inline void inode_lock(struct inode *inode) 801{ 802 down_write(&inode->i_rwsem); 803} 804 805static inline void inode_unlock(struct inode *inode) 806{ 807 up_write(&inode->i_rwsem); 808} 809 810static inline void inode_lock_shared(struct inode *inode) 811{ 812 down_read(&inode->i_rwsem); 813} 814 815static inline void inode_unlock_shared(struct inode *inode) 816{ 817 up_read(&inode->i_rwsem); 818} 819 820static inline int inode_trylock(struct inode *inode) 821{ 822 return down_write_trylock(&inode->i_rwsem); 823} 824 825static inline int inode_trylock_shared(struct inode *inode) 826{ 827 return down_read_trylock(&inode->i_rwsem); 828} 829 830static inline int inode_is_locked(struct inode *inode) 831{ 832 return rwsem_is_locked(&inode->i_rwsem); 833} 834 835static inline void inode_lock_nested(struct inode *inode, unsigned subclass) 836{ 837 down_write_nested(&inode->i_rwsem, subclass); 838} 839 840static inline void inode_lock_shared_nested(struct inode *inode, unsigned subclass) 841{ 842 down_read_nested(&inode->i_rwsem, subclass); 843} 844 845static inline void filemap_invalidate_lock(struct address_space *mapping) 846{ 847 down_write(&mapping->invalidate_lock); 848} 849 850static inline void filemap_invalidate_unlock(struct address_space *mapping) 851{ 852 up_write(&mapping->invalidate_lock); 853} 854 855static inline void filemap_invalidate_lock_shared(struct address_space *mapping) 856{ 857 down_read(&mapping->invalidate_lock); 858} 859 860static inline int filemap_invalidate_trylock_shared( 861 struct address_space *mapping) 862{ 863 return down_read_trylock(&mapping->invalidate_lock); 864} 865 866static inline void filemap_invalidate_unlock_shared( 867 struct address_space *mapping) 868{ 869 up_read(&mapping->invalidate_lock); 870} 871 872void lock_two_nondirectories(struct inode *, struct inode*); 873void unlock_two_nondirectories(struct inode *, struct inode*); 874 875void filemap_invalidate_lock_two(struct address_space *mapping1, 876 struct address_space *mapping2); 877void filemap_invalidate_unlock_two(struct address_space *mapping1, 878 struct address_space *mapping2); 879 880 881/* 882 * NOTE: in a 32bit arch with a preemptable kernel and 883 * an UP compile the i_size_read/write must be atomic 884 * with respect to the local cpu (unlike with preempt disabled), 885 * but they don't need to be atomic with respect to other cpus like in 886 * true SMP (so they need either to either locally disable irq around 887 * the read or for example on x86 they can be still implemented as a 888 * cmpxchg8b without the need of the lock prefix). For SMP compiles 889 * and 64bit archs it makes no difference if preempt is enabled or not. 890 */ 891static inline loff_t i_size_read(const struct inode *inode) 892{ 893#if BITS_PER_LONG==32 && defined(CONFIG_SMP) 894 loff_t i_size; 895 unsigned int seq; 896 897 do { 898 seq = read_seqcount_begin(&inode->i_size_seqcount); 899 i_size = inode->i_size; 900 } while (read_seqcount_retry(&inode->i_size_seqcount, seq)); 901 return i_size; 902#elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) 903 loff_t i_size; 904 905 preempt_disable(); 906 i_size = inode->i_size; 907 preempt_enable(); 908 return i_size; 909#else 910 return inode->i_size; 911#endif 912} 913 914/* 915 * NOTE: unlike i_size_read(), i_size_write() does need locking around it 916 * (normally i_mutex), otherwise on 32bit/SMP an update of i_size_seqcount 917 * can be lost, resulting in subsequent i_size_read() calls spinning forever. 918 */ 919static inline void i_size_write(struct inode *inode, loff_t i_size) 920{ 921#if BITS_PER_LONG==32 && defined(CONFIG_SMP) 922 preempt_disable(); 923 write_seqcount_begin(&inode->i_size_seqcount); 924 inode->i_size = i_size; 925 write_seqcount_end(&inode->i_size_seqcount); 926 preempt_enable(); 927#elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) 928 preempt_disable(); 929 inode->i_size = i_size; 930 preempt_enable(); 931#else 932 inode->i_size = i_size; 933#endif 934} 935 936static inline unsigned iminor(const struct inode *inode) 937{ 938 return MINOR(inode->i_rdev); 939} 940 941static inline unsigned imajor(const struct inode *inode) 942{ 943 return MAJOR(inode->i_rdev); 944} 945 946struct fown_struct { 947 rwlock_t lock; /* protects pid, uid, euid fields */ 948 struct pid *pid; /* pid or -pgrp where SIGIO should be sent */ 949 enum pid_type pid_type; /* Kind of process group SIGIO should be sent to */ 950 kuid_t uid, euid; /* uid/euid of process setting the owner */ 951 int signum; /* posix.1b rt signal to be delivered on IO */ 952}; 953 954/** 955 * struct file_ra_state - Track a file's readahead state. 956 * @start: Where the most recent readahead started. 957 * @size: Number of pages read in the most recent readahead. 958 * @async_size: Numer of pages that were/are not needed immediately 959 * and so were/are genuinely "ahead". Start next readahead when 960 * the first of these pages is accessed. 961 * @ra_pages: Maximum size of a readahead request, copied from the bdi. 962 * @mmap_miss: How many mmap accesses missed in the page cache. 963 * @prev_pos: The last byte in the most recent read request. 964 * 965 * When this structure is passed to ->readahead(), the "most recent" 966 * readahead means the current readahead. 967 */ 968struct file_ra_state { 969 pgoff_t start; 970 unsigned int size; 971 unsigned int async_size; 972 unsigned int ra_pages; 973 unsigned int mmap_miss; 974 loff_t prev_pos; 975}; 976 977/* 978 * Check if @index falls in the readahead windows. 979 */ 980static inline int ra_has_index(struct file_ra_state *ra, pgoff_t index) 981{ 982 return (index >= ra->start && 983 index < ra->start + ra->size); 984} 985 986/* 987 * f_{lock,count,pos_lock} members can be highly contended and share 988 * the same cacheline. f_{lock,mode} are very frequently used together 989 * and so share the same cacheline as well. The read-mostly 990 * f_{path,inode,op} are kept on a separate cacheline. 991 */ 992struct file { 993 union { 994 /* fput() uses task work when closing and freeing file (default). */ 995 struct callback_head f_task_work; 996 /* fput() must use workqueue (most kernel threads). */ 997 struct llist_node f_llist; 998 unsigned int f_iocb_flags; 999 }; 1000 1001 /* 1002 * Protects f_ep, f_flags. 1003 * Must not be taken from IRQ context. 1004 */ 1005 spinlock_t f_lock; 1006 fmode_t f_mode; 1007 atomic_long_t f_count; 1008 struct mutex f_pos_lock; 1009 loff_t f_pos; 1010 unsigned int f_flags; 1011 struct fown_struct f_owner; 1012 const struct cred *f_cred; 1013 struct file_ra_state f_ra; 1014 struct path f_path; 1015 struct inode *f_inode; /* cached value */ 1016 const struct file_operations *f_op; 1017 1018 u64 f_version; 1019#ifdef CONFIG_SECURITY 1020 void *f_security; 1021#endif 1022 /* needed for tty driver, and maybe others */ 1023 void *private_data; 1024 1025#ifdef CONFIG_EPOLL 1026 /* Used by fs/eventpoll.c to link all the hooks to this file */ 1027 struct hlist_head *f_ep; 1028#endif /* #ifdef CONFIG_EPOLL */ 1029 struct address_space *f_mapping; 1030 errseq_t f_wb_err; 1031 errseq_t f_sb_err; /* for syncfs */ 1032} __randomize_layout 1033 __attribute__((aligned(4))); /* lest something weird decides that 2 is OK */ 1034 1035struct file_handle { 1036 __u32 handle_bytes; 1037 int handle_type; 1038 /* file identifier */ 1039 unsigned char f_handle[]; 1040}; 1041 1042static inline struct file *get_file(struct file *f) 1043{ 1044 atomic_long_inc(&f->f_count); 1045 return f; 1046} 1047 1048struct file *get_file_rcu(struct file __rcu **f); 1049struct file *get_file_active(struct file **f); 1050 1051#define file_count(x) atomic_long_read(&(x)->f_count) 1052 1053#define MAX_NON_LFS ((1UL<<31) - 1) 1054 1055/* Page cache limit. The filesystems should put that into their s_maxbytes 1056 limits, otherwise bad things can happen in VM. */ 1057#if BITS_PER_LONG==32 1058#define MAX_LFS_FILESIZE ((loff_t)ULONG_MAX << PAGE_SHIFT) 1059#elif BITS_PER_LONG==64 1060#define MAX_LFS_FILESIZE ((loff_t)LLONG_MAX) 1061#endif 1062 1063/* legacy typedef, should eventually be removed */ 1064typedef void *fl_owner_t; 1065 1066struct file_lock; 1067 1068/* The following constant reflects the upper bound of the file/locking space */ 1069#ifndef OFFSET_MAX 1070#define OFFSET_MAX type_max(loff_t) 1071#define OFFT_OFFSET_MAX type_max(off_t) 1072#endif 1073 1074extern void send_sigio(struct fown_struct *fown, int fd, int band); 1075 1076static inline struct inode *file_inode(const struct file *f) 1077{ 1078 return f->f_inode; 1079} 1080 1081static inline struct dentry *file_dentry(const struct file *file) 1082{ 1083 return d_real(file->f_path.dentry, file_inode(file)); 1084} 1085 1086struct fasync_struct { 1087 rwlock_t fa_lock; 1088 int magic; 1089 int fa_fd; 1090 struct fasync_struct *fa_next; /* singly linked list */ 1091 struct file *fa_file; 1092 struct rcu_head fa_rcu; 1093}; 1094 1095#define FASYNC_MAGIC 0x4601 1096 1097/* SMP safe fasync helpers: */ 1098extern int fasync_helper(int, struct file *, int, struct fasync_struct **); 1099extern struct fasync_struct *fasync_insert_entry(int, struct file *, struct fasync_struct **, struct fasync_struct *); 1100extern int fasync_remove_entry(struct file *, struct fasync_struct **); 1101extern struct fasync_struct *fasync_alloc(void); 1102extern void fasync_free(struct fasync_struct *); 1103 1104/* can be called from interrupts */ 1105extern void kill_fasync(struct fasync_struct **, int, int); 1106 1107extern void __f_setown(struct file *filp, struct pid *, enum pid_type, int force); 1108extern int f_setown(struct file *filp, int who, int force); 1109extern void f_delown(struct file *filp); 1110extern pid_t f_getown(struct file *filp); 1111extern int send_sigurg(struct fown_struct *fown); 1112 1113/* 1114 * sb->s_flags. Note that these mirror the equivalent MS_* flags where 1115 * represented in both. 1116 */ 1117#define SB_RDONLY BIT(0) /* Mount read-only */ 1118#define SB_NOSUID BIT(1) /* Ignore suid and sgid bits */ 1119#define SB_NODEV BIT(2) /* Disallow access to device special files */ 1120#define SB_NOEXEC BIT(3) /* Disallow program execution */ 1121#define SB_SYNCHRONOUS BIT(4) /* Writes are synced at once */ 1122#define SB_MANDLOCK BIT(6) /* Allow mandatory locks on an FS */ 1123#define SB_DIRSYNC BIT(7) /* Directory modifications are synchronous */ 1124#define SB_NOATIME BIT(10) /* Do not update access times. */ 1125#define SB_NODIRATIME BIT(11) /* Do not update directory access times */ 1126#define SB_SILENT BIT(15) 1127#define SB_POSIXACL BIT(16) /* Supports POSIX ACLs */ 1128#define SB_INLINECRYPT BIT(17) /* Use blk-crypto for encrypted files */ 1129#define SB_KERNMOUNT BIT(22) /* this is a kern_mount call */ 1130#define SB_I_VERSION BIT(23) /* Update inode I_version field */ 1131#define SB_LAZYTIME BIT(25) /* Update the on-disk [acm]times lazily */ 1132 1133/* These sb flags are internal to the kernel */ 1134#define SB_DEAD BIT(21) 1135#define SB_DYING BIT(24) 1136#define SB_SUBMOUNT BIT(26) 1137#define SB_FORCE BIT(27) 1138#define SB_NOSEC BIT(28) 1139#define SB_BORN BIT(29) 1140#define SB_ACTIVE BIT(30) 1141#define SB_NOUSER BIT(31) 1142 1143/* These flags relate to encoding and casefolding */ 1144#define SB_ENC_STRICT_MODE_FL (1 << 0) 1145 1146#define sb_has_strict_encoding(sb) \ 1147 (sb->s_encoding_flags & SB_ENC_STRICT_MODE_FL) 1148 1149/* 1150 * Umount options 1151 */ 1152 1153#define MNT_FORCE 0x00000001 /* Attempt to forcibily umount */ 1154#define MNT_DETACH 0x00000002 /* Just detach from the tree */ 1155#define MNT_EXPIRE 0x00000004 /* Mark for expiry */ 1156#define UMOUNT_NOFOLLOW 0x00000008 /* Don't follow symlink on umount */ 1157#define UMOUNT_UNUSED 0x80000000 /* Flag guaranteed to be unused */ 1158 1159/* sb->s_iflags */ 1160#define SB_I_CGROUPWB 0x00000001 /* cgroup-aware writeback enabled */ 1161#define SB_I_NOEXEC 0x00000002 /* Ignore executables on this fs */ 1162#define SB_I_NODEV 0x00000004 /* Ignore devices on this fs */ 1163#define SB_I_STABLE_WRITES 0x00000008 /* don't modify blks until WB is done */ 1164 1165/* sb->s_iflags to limit user namespace mounts */ 1166#define SB_I_USERNS_VISIBLE 0x00000010 /* fstype already mounted */ 1167#define SB_I_IMA_UNVERIFIABLE_SIGNATURE 0x00000020 1168#define SB_I_UNTRUSTED_MOUNTER 0x00000040 1169#define SB_I_EVM_UNSUPPORTED 0x00000080 1170 1171#define SB_I_SKIP_SYNC 0x00000100 /* Skip superblock at global sync */ 1172#define SB_I_PERSB_BDI 0x00000200 /* has a per-sb bdi */ 1173#define SB_I_TS_EXPIRY_WARNED 0x00000400 /* warned about timestamp range expiry */ 1174#define SB_I_RETIRED 0x00000800 /* superblock shouldn't be reused */ 1175#define SB_I_NOUMASK 0x00001000 /* VFS does not apply umask */ 1176 1177/* Possible states of 'frozen' field */ 1178enum { 1179 SB_UNFROZEN = 0, /* FS is unfrozen */ 1180 SB_FREEZE_WRITE = 1, /* Writes, dir ops, ioctls frozen */ 1181 SB_FREEZE_PAGEFAULT = 2, /* Page faults stopped as well */ 1182 SB_FREEZE_FS = 3, /* For internal FS use (e.g. to stop 1183 * internal threads if needed) */ 1184 SB_FREEZE_COMPLETE = 4, /* ->freeze_fs finished successfully */ 1185}; 1186 1187#define SB_FREEZE_LEVELS (SB_FREEZE_COMPLETE - 1) 1188 1189struct sb_writers { 1190 unsigned short frozen; /* Is sb frozen? */ 1191 int freeze_kcount; /* How many kernel freeze requests? */ 1192 int freeze_ucount; /* How many userspace freeze requests? */ 1193 struct percpu_rw_semaphore rw_sem[SB_FREEZE_LEVELS]; 1194}; 1195 1196struct super_block { 1197 struct list_head s_list; /* Keep this first */ 1198 dev_t s_dev; /* search index; _not_ kdev_t */ 1199 unsigned char s_blocksize_bits; 1200 unsigned long s_blocksize; 1201 loff_t s_maxbytes; /* Max file size */ 1202 struct file_system_type *s_type; 1203 const struct super_operations *s_op; 1204 const struct dquot_operations *dq_op; 1205 const struct quotactl_ops *s_qcop; 1206 const struct export_operations *s_export_op; 1207 unsigned long s_flags; 1208 unsigned long s_iflags; /* internal SB_I_* flags */ 1209 unsigned long s_magic; 1210 struct dentry *s_root; 1211 struct rw_semaphore s_umount; 1212 int s_count; 1213 atomic_t s_active; 1214#ifdef CONFIG_SECURITY 1215 void *s_security; 1216#endif 1217 const struct xattr_handler * const *s_xattr; 1218#ifdef CONFIG_FS_ENCRYPTION 1219 const struct fscrypt_operations *s_cop; 1220 struct fscrypt_keyring *s_master_keys; /* master crypto keys in use */ 1221#endif 1222#ifdef CONFIG_FS_VERITY 1223 const struct fsverity_operations *s_vop; 1224#endif 1225#if IS_ENABLED(CONFIG_UNICODE) 1226 struct unicode_map *s_encoding; 1227 __u16 s_encoding_flags; 1228#endif 1229 struct hlist_bl_head s_roots; /* alternate root dentries for NFS */ 1230 struct list_head s_mounts; /* list of mounts; _not_ for fs use */ 1231 struct block_device *s_bdev; 1232 struct bdev_handle *s_bdev_handle; 1233 struct backing_dev_info *s_bdi; 1234 struct mtd_info *s_mtd; 1235 struct hlist_node s_instances; 1236 unsigned int s_quota_types; /* Bitmask of supported quota types */ 1237 struct quota_info s_dquot; /* Diskquota specific options */ 1238 1239 struct sb_writers s_writers; 1240 1241 /* 1242 * Keep s_fs_info, s_time_gran, s_fsnotify_mask, and 1243 * s_fsnotify_marks together for cache efficiency. They are frequently 1244 * accessed and rarely modified. 1245 */ 1246 void *s_fs_info; /* Filesystem private info */ 1247 1248 /* Granularity of c/m/atime in ns (cannot be worse than a second) */ 1249 u32 s_time_gran; 1250 /* Time limits for c/m/atime in seconds */ 1251 time64_t s_time_min; 1252 time64_t s_time_max; 1253#ifdef CONFIG_FSNOTIFY 1254 __u32 s_fsnotify_mask; 1255 struct fsnotify_mark_connector __rcu *s_fsnotify_marks; 1256#endif 1257 1258 char s_id[32]; /* Informational name */ 1259 uuid_t s_uuid; /* UUID */ 1260 1261 unsigned int s_max_links; 1262 1263 /* 1264 * The next field is for VFS *only*. No filesystems have any business 1265 * even looking at it. You had been warned. 1266 */ 1267 struct mutex s_vfs_rename_mutex; /* Kludge */ 1268 1269 /* 1270 * Filesystem subtype. If non-empty the filesystem type field 1271 * in /proc/mounts will be "type.subtype" 1272 */ 1273 const char *s_subtype; 1274 1275 const struct dentry_operations *s_d_op; /* default d_op for dentries */ 1276 1277 struct shrinker *s_shrink; /* per-sb shrinker handle */ 1278 1279 /* Number of inodes with nlink == 0 but still referenced */ 1280 atomic_long_t s_remove_count; 1281 1282 /* 1283 * Number of inode/mount/sb objects that are being watched, note that 1284 * inodes objects are currently double-accounted. 1285 */ 1286 atomic_long_t s_fsnotify_connectors; 1287 1288 /* Read-only state of the superblock is being changed */ 1289 int s_readonly_remount; 1290 1291 /* per-sb errseq_t for reporting writeback errors via syncfs */ 1292 errseq_t s_wb_err; 1293 1294 /* AIO completions deferred from interrupt context */ 1295 struct workqueue_struct *s_dio_done_wq; 1296 struct hlist_head s_pins; 1297 1298 /* 1299 * Owning user namespace and default context in which to 1300 * interpret filesystem uids, gids, quotas, device nodes, 1301 * xattrs and security labels. 1302 */ 1303 struct user_namespace *s_user_ns; 1304 1305 /* 1306 * The list_lru structure is essentially just a pointer to a table 1307 * of per-node lru lists, each of which has its own spinlock. 1308 * There is no need to put them into separate cachelines. 1309 */ 1310 struct list_lru s_dentry_lru; 1311 struct list_lru s_inode_lru; 1312 struct rcu_head rcu; 1313 struct work_struct destroy_work; 1314 1315 struct mutex s_sync_lock; /* sync serialisation lock */ 1316 1317 /* 1318 * Indicates how deep in a filesystem stack this SB is 1319 */ 1320 int s_stack_depth; 1321 1322 /* s_inode_list_lock protects s_inodes */ 1323 spinlock_t s_inode_list_lock ____cacheline_aligned_in_smp; 1324 struct list_head s_inodes; /* all inodes */ 1325 1326 spinlock_t s_inode_wblist_lock; 1327 struct list_head s_inodes_wb; /* writeback inodes */ 1328} __randomize_layout; 1329 1330static inline struct user_namespace *i_user_ns(const struct inode *inode) 1331{ 1332 return inode->i_sb->s_user_ns; 1333} 1334 1335/* Helper functions so that in most cases filesystems will 1336 * not need to deal directly with kuid_t and kgid_t and can 1337 * instead deal with the raw numeric values that are stored 1338 * in the filesystem. 1339 */ 1340static inline uid_t i_uid_read(const struct inode *inode) 1341{ 1342 return from_kuid(i_user_ns(inode), inode->i_uid); 1343} 1344 1345static inline gid_t i_gid_read(const struct inode *inode) 1346{ 1347 return from_kgid(i_user_ns(inode), inode->i_gid); 1348} 1349 1350static inline void i_uid_write(struct inode *inode, uid_t uid) 1351{ 1352 inode->i_uid = make_kuid(i_user_ns(inode), uid); 1353} 1354 1355static inline void i_gid_write(struct inode *inode, gid_t gid) 1356{ 1357 inode->i_gid = make_kgid(i_user_ns(inode), gid); 1358} 1359 1360/** 1361 * i_uid_into_vfsuid - map an inode's i_uid down according to an idmapping 1362 * @idmap: idmap of the mount the inode was found from 1363 * @inode: inode to map 1364 * 1365 * Return: whe inode's i_uid mapped down according to @idmap. 1366 * If the inode's i_uid has no mapping INVALID_VFSUID is returned. 1367 */ 1368static inline vfsuid_t i_uid_into_vfsuid(struct mnt_idmap *idmap, 1369 const struct inode *inode) 1370{ 1371 return make_vfsuid(idmap, i_user_ns(inode), inode->i_uid); 1372} 1373 1374/** 1375 * i_uid_needs_update - check whether inode's i_uid needs to be updated 1376 * @idmap: idmap of the mount the inode was found from 1377 * @attr: the new attributes of @inode 1378 * @inode: the inode to update 1379 * 1380 * Check whether the $inode's i_uid field needs to be updated taking idmapped 1381 * mounts into account if the filesystem supports it. 1382 * 1383 * Return: true if @inode's i_uid field needs to be updated, false if not. 1384 */ 1385static inline bool i_uid_needs_update(struct mnt_idmap *idmap, 1386 const struct iattr *attr, 1387 const struct inode *inode) 1388{ 1389 return ((attr->ia_valid & ATTR_UID) && 1390 !vfsuid_eq(attr->ia_vfsuid, 1391 i_uid_into_vfsuid(idmap, inode))); 1392} 1393 1394/** 1395 * i_uid_update - update @inode's i_uid field 1396 * @idmap: idmap of the mount the inode was found from 1397 * @attr: the new attributes of @inode 1398 * @inode: the inode to update 1399 * 1400 * Safely update @inode's i_uid field translating the vfsuid of any idmapped 1401 * mount into the filesystem kuid. 1402 */ 1403static inline void i_uid_update(struct mnt_idmap *idmap, 1404 const struct iattr *attr, 1405 struct inode *inode) 1406{ 1407 if (attr->ia_valid & ATTR_UID) 1408 inode->i_uid = from_vfsuid(idmap, i_user_ns(inode), 1409 attr->ia_vfsuid); 1410} 1411 1412/** 1413 * i_gid_into_vfsgid - map an inode's i_gid down according to an idmapping 1414 * @idmap: idmap of the mount the inode was found from 1415 * @inode: inode to map 1416 * 1417 * Return: the inode's i_gid mapped down according to @idmap. 1418 * If the inode's i_gid has no mapping INVALID_VFSGID is returned. 1419 */ 1420static inline vfsgid_t i_gid_into_vfsgid(struct mnt_idmap *idmap, 1421 const struct inode *inode) 1422{ 1423 return make_vfsgid(idmap, i_user_ns(inode), inode->i_gid); 1424} 1425 1426/** 1427 * i_gid_needs_update - check whether inode's i_gid needs to be updated 1428 * @idmap: idmap of the mount the inode was found from 1429 * @attr: the new attributes of @inode 1430 * @inode: the inode to update 1431 * 1432 * Check whether the $inode's i_gid field needs to be updated taking idmapped 1433 * mounts into account if the filesystem supports it. 1434 * 1435 * Return: true if @inode's i_gid field needs to be updated, false if not. 1436 */ 1437static inline bool i_gid_needs_update(struct mnt_idmap *idmap, 1438 const struct iattr *attr, 1439 const struct inode *inode) 1440{ 1441 return ((attr->ia_valid & ATTR_GID) && 1442 !vfsgid_eq(attr->ia_vfsgid, 1443 i_gid_into_vfsgid(idmap, inode))); 1444} 1445 1446/** 1447 * i_gid_update - update @inode's i_gid field 1448 * @idmap: idmap of the mount the inode was found from 1449 * @attr: the new attributes of @inode 1450 * @inode: the inode to update 1451 * 1452 * Safely update @inode's i_gid field translating the vfsgid of any idmapped 1453 * mount into the filesystem kgid. 1454 */ 1455static inline void i_gid_update(struct mnt_idmap *idmap, 1456 const struct iattr *attr, 1457 struct inode *inode) 1458{ 1459 if (attr->ia_valid & ATTR_GID) 1460 inode->i_gid = from_vfsgid(idmap, i_user_ns(inode), 1461 attr->ia_vfsgid); 1462} 1463 1464/** 1465 * inode_fsuid_set - initialize inode's i_uid field with callers fsuid 1466 * @inode: inode to initialize 1467 * @idmap: idmap of the mount the inode was found from 1468 * 1469 * Initialize the i_uid field of @inode. If the inode was found/created via 1470 * an idmapped mount map the caller's fsuid according to @idmap. 1471 */ 1472static inline void inode_fsuid_set(struct inode *inode, 1473 struct mnt_idmap *idmap) 1474{ 1475 inode->i_uid = mapped_fsuid(idmap, i_user_ns(inode)); 1476} 1477 1478/** 1479 * inode_fsgid_set - initialize inode's i_gid field with callers fsgid 1480 * @inode: inode to initialize 1481 * @idmap: idmap of the mount the inode was found from 1482 * 1483 * Initialize the i_gid field of @inode. If the inode was found/created via 1484 * an idmapped mount map the caller's fsgid according to @idmap. 1485 */ 1486static inline void inode_fsgid_set(struct inode *inode, 1487 struct mnt_idmap *idmap) 1488{ 1489 inode->i_gid = mapped_fsgid(idmap, i_user_ns(inode)); 1490} 1491 1492/** 1493 * fsuidgid_has_mapping() - check whether caller's fsuid/fsgid is mapped 1494 * @sb: the superblock we want a mapping in 1495 * @idmap: idmap of the relevant mount 1496 * 1497 * Check whether the caller's fsuid and fsgid have a valid mapping in the 1498 * s_user_ns of the superblock @sb. If the caller is on an idmapped mount map 1499 * the caller's fsuid and fsgid according to the @idmap first. 1500 * 1501 * Return: true if fsuid and fsgid is mapped, false if not. 1502 */ 1503static inline bool fsuidgid_has_mapping(struct super_block *sb, 1504 struct mnt_idmap *idmap) 1505{ 1506 struct user_namespace *fs_userns = sb->s_user_ns; 1507 kuid_t kuid; 1508 kgid_t kgid; 1509 1510 kuid = mapped_fsuid(idmap, fs_userns); 1511 if (!uid_valid(kuid)) 1512 return false; 1513 kgid = mapped_fsgid(idmap, fs_userns); 1514 if (!gid_valid(kgid)) 1515 return false; 1516 return kuid_has_mapping(fs_userns, kuid) && 1517 kgid_has_mapping(fs_userns, kgid); 1518} 1519 1520struct timespec64 current_time(struct inode *inode); 1521struct timespec64 inode_set_ctime_current(struct inode *inode); 1522 1523static inline time64_t inode_get_atime_sec(const struct inode *inode) 1524{ 1525 return inode->__i_atime.tv_sec; 1526} 1527 1528static inline long inode_get_atime_nsec(const struct inode *inode) 1529{ 1530 return inode->__i_atime.tv_nsec; 1531} 1532 1533static inline struct timespec64 inode_get_atime(const struct inode *inode) 1534{ 1535 return inode->__i_atime; 1536} 1537 1538static inline struct timespec64 inode_set_atime_to_ts(struct inode *inode, 1539 struct timespec64 ts) 1540{ 1541 inode->__i_atime = ts; 1542 return ts; 1543} 1544 1545static inline struct timespec64 inode_set_atime(struct inode *inode, 1546 time64_t sec, long nsec) 1547{ 1548 struct timespec64 ts = { .tv_sec = sec, 1549 .tv_nsec = nsec }; 1550 return inode_set_atime_to_ts(inode, ts); 1551} 1552 1553static inline time64_t inode_get_mtime_sec(const struct inode *inode) 1554{ 1555 return inode->__i_mtime.tv_sec; 1556} 1557 1558static inline long inode_get_mtime_nsec(const struct inode *inode) 1559{ 1560 return inode->__i_mtime.tv_nsec; 1561} 1562 1563static inline struct timespec64 inode_get_mtime(const struct inode *inode) 1564{ 1565 return inode->__i_mtime; 1566} 1567 1568static inline struct timespec64 inode_set_mtime_to_ts(struct inode *inode, 1569 struct timespec64 ts) 1570{ 1571 inode->__i_mtime = ts; 1572 return ts; 1573} 1574 1575static inline struct timespec64 inode_set_mtime(struct inode *inode, 1576 time64_t sec, long nsec) 1577{ 1578 struct timespec64 ts = { .tv_sec = sec, 1579 .tv_nsec = nsec }; 1580 return inode_set_mtime_to_ts(inode, ts); 1581} 1582 1583static inline time64_t inode_get_ctime_sec(const struct inode *inode) 1584{ 1585 return inode->__i_ctime.tv_sec; 1586} 1587 1588static inline long inode_get_ctime_nsec(const struct inode *inode) 1589{ 1590 return inode->__i_ctime.tv_nsec; 1591} 1592 1593static inline struct timespec64 inode_get_ctime(const struct inode *inode) 1594{ 1595 return inode->__i_ctime; 1596} 1597 1598static inline struct timespec64 inode_set_ctime_to_ts(struct inode *inode, 1599 struct timespec64 ts) 1600{ 1601 inode->__i_ctime = ts; 1602 return ts; 1603} 1604 1605/** 1606 * inode_set_ctime - set the ctime in the inode 1607 * @inode: inode in which to set the ctime 1608 * @sec: tv_sec value to set 1609 * @nsec: tv_nsec value to set 1610 * 1611 * Set the ctime in @inode to { @sec, @nsec } 1612 */ 1613static inline struct timespec64 inode_set_ctime(struct inode *inode, 1614 time64_t sec, long nsec) 1615{ 1616 struct timespec64 ts = { .tv_sec = sec, 1617 .tv_nsec = nsec }; 1618 1619 return inode_set_ctime_to_ts(inode, ts); 1620} 1621 1622struct timespec64 simple_inode_init_ts(struct inode *inode); 1623 1624/* 1625 * Snapshotting support. 1626 */ 1627 1628/* 1629 * These are internal functions, please use sb_start_{write,pagefault,intwrite} 1630 * instead. 1631 */ 1632static inline void __sb_end_write(struct super_block *sb, int level) 1633{ 1634 percpu_up_read(sb->s_writers.rw_sem + level-1); 1635} 1636 1637static inline void __sb_start_write(struct super_block *sb, int level) 1638{ 1639 percpu_down_read(sb->s_writers.rw_sem + level - 1); 1640} 1641 1642static inline bool __sb_start_write_trylock(struct super_block *sb, int level) 1643{ 1644 return percpu_down_read_trylock(sb->s_writers.rw_sem + level - 1); 1645} 1646 1647#define __sb_writers_acquired(sb, lev) \ 1648 percpu_rwsem_acquire(&(sb)->s_writers.rw_sem[(lev)-1], 1, _THIS_IP_) 1649#define __sb_writers_release(sb, lev) \ 1650 percpu_rwsem_release(&(sb)->s_writers.rw_sem[(lev)-1], 1, _THIS_IP_) 1651 1652/** 1653 * __sb_write_started - check if sb freeze level is held 1654 * @sb: the super we write to 1655 * @level: the freeze level 1656 * 1657 * * > 0 - sb freeze level is held 1658 * * 0 - sb freeze level is not held 1659 * * < 0 - !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN 1660 */ 1661static inline int __sb_write_started(const struct super_block *sb, int level) 1662{ 1663 return lockdep_is_held_type(sb->s_writers.rw_sem + level - 1, 1); 1664} 1665 1666/** 1667 * sb_write_started - check if SB_FREEZE_WRITE is held 1668 * @sb: the super we write to 1669 * 1670 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN. 1671 */ 1672static inline bool sb_write_started(const struct super_block *sb) 1673{ 1674 return __sb_write_started(sb, SB_FREEZE_WRITE); 1675} 1676 1677/** 1678 * sb_write_not_started - check if SB_FREEZE_WRITE is not held 1679 * @sb: the super we write to 1680 * 1681 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN. 1682 */ 1683static inline bool sb_write_not_started(const struct super_block *sb) 1684{ 1685 return __sb_write_started(sb, SB_FREEZE_WRITE) <= 0; 1686} 1687 1688/** 1689 * file_write_started - check if SB_FREEZE_WRITE is held 1690 * @file: the file we write to 1691 * 1692 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN. 1693 * May be false positive with !S_ISREG, because file_start_write() has 1694 * no effect on !S_ISREG. 1695 */ 1696static inline bool file_write_started(const struct file *file) 1697{ 1698 if (!S_ISREG(file_inode(file)->i_mode)) 1699 return true; 1700 return sb_write_started(file_inode(file)->i_sb); 1701} 1702 1703/** 1704 * file_write_not_started - check if SB_FREEZE_WRITE is not held 1705 * @file: the file we write to 1706 * 1707 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN. 1708 * May be false positive with !S_ISREG, because file_start_write() has 1709 * no effect on !S_ISREG. 1710 */ 1711static inline bool file_write_not_started(const struct file *file) 1712{ 1713 if (!S_ISREG(file_inode(file)->i_mode)) 1714 return true; 1715 return sb_write_not_started(file_inode(file)->i_sb); 1716} 1717 1718/** 1719 * sb_end_write - drop write access to a superblock 1720 * @sb: the super we wrote to 1721 * 1722 * Decrement number of writers to the filesystem. Wake up possible waiters 1723 * wanting to freeze the filesystem. 1724 */ 1725static inline void sb_end_write(struct super_block *sb) 1726{ 1727 __sb_end_write(sb, SB_FREEZE_WRITE); 1728} 1729 1730/** 1731 * sb_end_pagefault - drop write access to a superblock from a page fault 1732 * @sb: the super we wrote to 1733 * 1734 * Decrement number of processes handling write page fault to the filesystem. 1735 * Wake up possible waiters wanting to freeze the filesystem. 1736 */ 1737static inline void sb_end_pagefault(struct super_block *sb) 1738{ 1739 __sb_end_write(sb, SB_FREEZE_PAGEFAULT); 1740} 1741 1742/** 1743 * sb_end_intwrite - drop write access to a superblock for internal fs purposes 1744 * @sb: the super we wrote to 1745 * 1746 * Decrement fs-internal number of writers to the filesystem. Wake up possible 1747 * waiters wanting to freeze the filesystem. 1748 */ 1749static inline void sb_end_intwrite(struct super_block *sb) 1750{ 1751 __sb_end_write(sb, SB_FREEZE_FS); 1752} 1753 1754/** 1755 * sb_start_write - get write access to a superblock 1756 * @sb: the super we write to 1757 * 1758 * When a process wants to write data or metadata to a file system (i.e. dirty 1759 * a page or an inode), it should embed the operation in a sb_start_write() - 1760 * sb_end_write() pair to get exclusion against file system freezing. This 1761 * function increments number of writers preventing freezing. If the file 1762 * system is already frozen, the function waits until the file system is 1763 * thawed. 1764 * 1765 * Since freeze protection behaves as a lock, users have to preserve 1766 * ordering of freeze protection and other filesystem locks. Generally, 1767 * freeze protection should be the outermost lock. In particular, we have: 1768 * 1769 * sb_start_write 1770 * -> i_mutex (write path, truncate, directory ops, ...) 1771 * -> s_umount (freeze_super, thaw_super) 1772 */ 1773static inline void sb_start_write(struct super_block *sb) 1774{ 1775 __sb_start_write(sb, SB_FREEZE_WRITE); 1776} 1777 1778static inline bool sb_start_write_trylock(struct super_block *sb) 1779{ 1780 return __sb_start_write_trylock(sb, SB_FREEZE_WRITE); 1781} 1782 1783/** 1784 * sb_start_pagefault - get write access to a superblock from a page fault 1785 * @sb: the super we write to 1786 * 1787 * When a process starts handling write page fault, it should embed the 1788 * operation into sb_start_pagefault() - sb_end_pagefault() pair to get 1789 * exclusion against file system freezing. This is needed since the page fault 1790 * is going to dirty a page. This function increments number of running page 1791 * faults preventing freezing. If the file system is already frozen, the 1792 * function waits until the file system is thawed. 1793 * 1794 * Since page fault freeze protection behaves as a lock, users have to preserve 1795 * ordering of freeze protection and other filesystem locks. It is advised to 1796 * put sb_start_pagefault() close to mmap_lock in lock ordering. Page fault 1797 * handling code implies lock dependency: 1798 * 1799 * mmap_lock 1800 * -> sb_start_pagefault 1801 */ 1802static inline void sb_start_pagefault(struct super_block *sb) 1803{ 1804 __sb_start_write(sb, SB_FREEZE_PAGEFAULT); 1805} 1806 1807/** 1808 * sb_start_intwrite - get write access to a superblock for internal fs purposes 1809 * @sb: the super we write to 1810 * 1811 * This is the third level of protection against filesystem freezing. It is 1812 * free for use by a filesystem. The only requirement is that it must rank 1813 * below sb_start_pagefault. 1814 * 1815 * For example filesystem can call sb_start_intwrite() when starting a 1816 * transaction which somewhat eases handling of freezing for internal sources 1817 * of filesystem changes (internal fs threads, discarding preallocation on file 1818 * close, etc.). 1819 */ 1820static inline void sb_start_intwrite(struct super_block *sb) 1821{ 1822 __sb_start_write(sb, SB_FREEZE_FS); 1823} 1824 1825static inline bool sb_start_intwrite_trylock(struct super_block *sb) 1826{ 1827 return __sb_start_write_trylock(sb, SB_FREEZE_FS); 1828} 1829 1830bool inode_owner_or_capable(struct mnt_idmap *idmap, 1831 const struct inode *inode); 1832 1833/* 1834 * VFS helper functions.. 1835 */ 1836int vfs_create(struct mnt_idmap *, struct inode *, 1837 struct dentry *, umode_t, bool); 1838int vfs_mkdir(struct mnt_idmap *, struct inode *, 1839 struct dentry *, umode_t); 1840int vfs_mknod(struct mnt_idmap *, struct inode *, struct dentry *, 1841 umode_t, dev_t); 1842int vfs_symlink(struct mnt_idmap *, struct inode *, 1843 struct dentry *, const char *); 1844int vfs_link(struct dentry *, struct mnt_idmap *, struct inode *, 1845 struct dentry *, struct inode **); 1846int vfs_rmdir(struct mnt_idmap *, struct inode *, struct dentry *); 1847int vfs_unlink(struct mnt_idmap *, struct inode *, struct dentry *, 1848 struct inode **); 1849 1850/** 1851 * struct renamedata - contains all information required for renaming 1852 * @old_mnt_idmap: idmap of the old mount the inode was found from 1853 * @old_dir: parent of source 1854 * @old_dentry: source 1855 * @new_mnt_idmap: idmap of the new mount the inode was found from 1856 * @new_dir: parent of destination 1857 * @new_dentry: destination 1858 * @delegated_inode: returns an inode needing a delegation break 1859 * @flags: rename flags 1860 */ 1861struct renamedata { 1862 struct mnt_idmap *old_mnt_idmap; 1863 struct inode *old_dir; 1864 struct dentry *old_dentry; 1865 struct mnt_idmap *new_mnt_idmap; 1866 struct inode *new_dir; 1867 struct dentry *new_dentry; 1868 struct inode **delegated_inode; 1869 unsigned int flags; 1870} __randomize_layout; 1871 1872int vfs_rename(struct renamedata *); 1873 1874static inline int vfs_whiteout(struct mnt_idmap *idmap, 1875 struct inode *dir, struct dentry *dentry) 1876{ 1877 return vfs_mknod(idmap, dir, dentry, S_IFCHR | WHITEOUT_MODE, 1878 WHITEOUT_DEV); 1879} 1880 1881struct file *kernel_tmpfile_open(struct mnt_idmap *idmap, 1882 const struct path *parentpath, 1883 umode_t mode, int open_flag, 1884 const struct cred *cred); 1885struct file *kernel_file_open(const struct path *path, int flags, 1886 struct inode *inode, const struct cred *cred); 1887 1888int vfs_mkobj(struct dentry *, umode_t, 1889 int (*f)(struct dentry *, umode_t, void *), 1890 void *); 1891 1892int vfs_fchown(struct file *file, uid_t user, gid_t group); 1893int vfs_fchmod(struct file *file, umode_t mode); 1894int vfs_utimes(const struct path *path, struct timespec64 *times); 1895 1896extern long vfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 1897 1898#ifdef CONFIG_COMPAT 1899extern long compat_ptr_ioctl(struct file *file, unsigned int cmd, 1900 unsigned long arg); 1901#else 1902#define compat_ptr_ioctl NULL 1903#endif 1904 1905/* 1906 * VFS file helper functions. 1907 */ 1908void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode, 1909 const struct inode *dir, umode_t mode); 1910extern bool may_open_dev(const struct path *path); 1911umode_t mode_strip_sgid(struct mnt_idmap *idmap, 1912 const struct inode *dir, umode_t mode); 1913 1914/* 1915 * This is the "filldir" function type, used by readdir() to let 1916 * the kernel specify what kind of dirent layout it wants to have. 1917 * This allows the kernel to read directories into kernel space or 1918 * to have different dirent layouts depending on the binary type. 1919 * Return 'true' to keep going and 'false' if there are no more entries. 1920 */ 1921struct dir_context; 1922typedef bool (*filldir_t)(struct dir_context *, const char *, int, loff_t, u64, 1923 unsigned); 1924 1925struct dir_context { 1926 filldir_t actor; 1927 loff_t pos; 1928}; 1929 1930/* 1931 * These flags let !MMU mmap() govern direct device mapping vs immediate 1932 * copying more easily for MAP_PRIVATE, especially for ROM filesystems. 1933 * 1934 * NOMMU_MAP_COPY: Copy can be mapped (MAP_PRIVATE) 1935 * NOMMU_MAP_DIRECT: Can be mapped directly (MAP_SHARED) 1936 * NOMMU_MAP_READ: Can be mapped for reading 1937 * NOMMU_MAP_WRITE: Can be mapped for writing 1938 * NOMMU_MAP_EXEC: Can be mapped for execution 1939 */ 1940#define NOMMU_MAP_COPY 0x00000001 1941#define NOMMU_MAP_DIRECT 0x00000008 1942#define NOMMU_MAP_READ VM_MAYREAD 1943#define NOMMU_MAP_WRITE VM_MAYWRITE 1944#define NOMMU_MAP_EXEC VM_MAYEXEC 1945 1946#define NOMMU_VMFLAGS \ 1947 (NOMMU_MAP_READ | NOMMU_MAP_WRITE | NOMMU_MAP_EXEC) 1948 1949/* 1950 * These flags control the behavior of the remap_file_range function pointer. 1951 * If it is called with len == 0 that means "remap to end of source file". 1952 * See Documentation/filesystems/vfs.rst for more details about this call. 1953 * 1954 * REMAP_FILE_DEDUP: only remap if contents identical (i.e. deduplicate) 1955 * REMAP_FILE_CAN_SHORTEN: caller can handle a shortened request 1956 */ 1957#define REMAP_FILE_DEDUP (1 << 0) 1958#define REMAP_FILE_CAN_SHORTEN (1 << 1) 1959 1960/* 1961 * These flags signal that the caller is ok with altering various aspects of 1962 * the behavior of the remap operation. The changes must be made by the 1963 * implementation; the vfs remap helper functions can take advantage of them. 1964 * Flags in this category exist to preserve the quirky behavior of the hoisted 1965 * btrfs clone/dedupe ioctls. 1966 */ 1967#define REMAP_FILE_ADVISORY (REMAP_FILE_CAN_SHORTEN) 1968 1969/* 1970 * These flags control the behavior of vfs_copy_file_range(). 1971 * They are not available to the user via syscall. 1972 * 1973 * COPY_FILE_SPLICE: call splice direct instead of fs clone/copy ops 1974 */ 1975#define COPY_FILE_SPLICE (1 << 0) 1976 1977struct iov_iter; 1978struct io_uring_cmd; 1979struct offset_ctx; 1980 1981struct file_operations { 1982 struct module *owner; 1983 loff_t (*llseek) (struct file *, loff_t, int); 1984 ssize_t (*read) (struct file *, char __user *, size_t, loff_t *); 1985 ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *); 1986 ssize_t (*read_iter) (struct kiocb *, struct iov_iter *); 1987 ssize_t (*write_iter) (struct kiocb *, struct iov_iter *); 1988 int (*iopoll)(struct kiocb *kiocb, struct io_comp_batch *, 1989 unsigned int flags); 1990 int (*iterate_shared) (struct file *, struct dir_context *); 1991 __poll_t (*poll) (struct file *, struct poll_table_struct *); 1992 long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long); 1993 long (*compat_ioctl) (struct file *, unsigned int, unsigned long); 1994 int (*mmap) (struct file *, struct vm_area_struct *); 1995 unsigned long mmap_supported_flags; 1996 int (*open) (struct inode *, struct file *); 1997 int (*flush) (struct file *, fl_owner_t id); 1998 int (*release) (struct inode *, struct file *); 1999 int (*fsync) (struct file *, loff_t, loff_t, int datasync); 2000 int (*fasync) (int, struct file *, int); 2001 int (*lock) (struct file *, int, struct file_lock *); 2002 unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2003 int (*check_flags)(int); 2004 int (*flock) (struct file *, int, struct file_lock *); 2005 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int); 2006 ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int); 2007 void (*splice_eof)(struct file *file); 2008 int (*setlease)(struct file *, int, struct file_lock **, void **); 2009 long (*fallocate)(struct file *file, int mode, loff_t offset, 2010 loff_t len); 2011 void (*show_fdinfo)(struct seq_file *m, struct file *f); 2012#ifndef CONFIG_MMU 2013 unsigned (*mmap_capabilities)(struct file *); 2014#endif 2015 ssize_t (*copy_file_range)(struct file *, loff_t, struct file *, 2016 loff_t, size_t, unsigned int); 2017 loff_t (*remap_file_range)(struct file *file_in, loff_t pos_in, 2018 struct file *file_out, loff_t pos_out, 2019 loff_t len, unsigned int remap_flags); 2020 int (*fadvise)(struct file *, loff_t, loff_t, int); 2021 int (*uring_cmd)(struct io_uring_cmd *ioucmd, unsigned int issue_flags); 2022 int (*uring_cmd_iopoll)(struct io_uring_cmd *, struct io_comp_batch *, 2023 unsigned int poll_flags); 2024} __randomize_layout; 2025 2026/* Wrap a directory iterator that needs exclusive inode access */ 2027int wrap_directory_iterator(struct file *, struct dir_context *, 2028 int (*) (struct file *, struct dir_context *)); 2029#define WRAP_DIR_ITER(x) \ 2030 static int shared_##x(struct file *file , struct dir_context *ctx) \ 2031 { return wrap_directory_iterator(file, ctx, x); } 2032 2033struct inode_operations { 2034 struct dentry * (*lookup) (struct inode *,struct dentry *, unsigned int); 2035 const char * (*get_link) (struct dentry *, struct inode *, struct delayed_call *); 2036 int (*permission) (struct mnt_idmap *, struct inode *, int); 2037 struct posix_acl * (*get_inode_acl)(struct inode *, int, bool); 2038 2039 int (*readlink) (struct dentry *, char __user *,int); 2040 2041 int (*create) (struct mnt_idmap *, struct inode *,struct dentry *, 2042 umode_t, bool); 2043 int (*link) (struct dentry *,struct inode *,struct dentry *); 2044 int (*unlink) (struct inode *,struct dentry *); 2045 int (*symlink) (struct mnt_idmap *, struct inode *,struct dentry *, 2046 const char *); 2047 int (*mkdir) (struct mnt_idmap *, struct inode *,struct dentry *, 2048 umode_t); 2049 int (*rmdir) (struct inode *,struct dentry *); 2050 int (*mknod) (struct mnt_idmap *, struct inode *,struct dentry *, 2051 umode_t,dev_t); 2052 int (*rename) (struct mnt_idmap *, struct inode *, struct dentry *, 2053 struct inode *, struct dentry *, unsigned int); 2054 int (*setattr) (struct mnt_idmap *, struct dentry *, struct iattr *); 2055 int (*getattr) (struct mnt_idmap *, const struct path *, 2056 struct kstat *, u32, unsigned int); 2057 ssize_t (*listxattr) (struct dentry *, char *, size_t); 2058 int (*fiemap)(struct inode *, struct fiemap_extent_info *, u64 start, 2059 u64 len); 2060 int (*update_time)(struct inode *, int); 2061 int (*atomic_open)(struct inode *, struct dentry *, 2062 struct file *, unsigned open_flag, 2063 umode_t create_mode); 2064 int (*tmpfile) (struct mnt_idmap *, struct inode *, 2065 struct file *, umode_t); 2066 struct posix_acl *(*get_acl)(struct mnt_idmap *, struct dentry *, 2067 int); 2068 int (*set_acl)(struct mnt_idmap *, struct dentry *, 2069 struct posix_acl *, int); 2070 int (*fileattr_set)(struct mnt_idmap *idmap, 2071 struct dentry *dentry, struct fileattr *fa); 2072 int (*fileattr_get)(struct dentry *dentry, struct fileattr *fa); 2073 struct offset_ctx *(*get_offset_ctx)(struct inode *inode); 2074} ____cacheline_aligned; 2075 2076static inline ssize_t call_read_iter(struct file *file, struct kiocb *kio, 2077 struct iov_iter *iter) 2078{ 2079 return file->f_op->read_iter(kio, iter); 2080} 2081 2082static inline ssize_t call_write_iter(struct file *file, struct kiocb *kio, 2083 struct iov_iter *iter) 2084{ 2085 return file->f_op->write_iter(kio, iter); 2086} 2087 2088static inline int call_mmap(struct file *file, struct vm_area_struct *vma) 2089{ 2090 return file->f_op->mmap(file, vma); 2091} 2092 2093extern ssize_t vfs_read(struct file *, char __user *, size_t, loff_t *); 2094extern ssize_t vfs_write(struct file *, const char __user *, size_t, loff_t *); 2095extern ssize_t vfs_copy_file_range(struct file *, loff_t , struct file *, 2096 loff_t, size_t, unsigned int); 2097int __generic_remap_file_range_prep(struct file *file_in, loff_t pos_in, 2098 struct file *file_out, loff_t pos_out, 2099 loff_t *len, unsigned int remap_flags, 2100 const struct iomap_ops *dax_read_ops); 2101int generic_remap_file_range_prep(struct file *file_in, loff_t pos_in, 2102 struct file *file_out, loff_t pos_out, 2103 loff_t *count, unsigned int remap_flags); 2104extern loff_t do_clone_file_range(struct file *file_in, loff_t pos_in, 2105 struct file *file_out, loff_t pos_out, 2106 loff_t len, unsigned int remap_flags); 2107extern loff_t vfs_clone_file_range(struct file *file_in, loff_t pos_in, 2108 struct file *file_out, loff_t pos_out, 2109 loff_t len, unsigned int remap_flags); 2110extern int vfs_dedupe_file_range(struct file *file, 2111 struct file_dedupe_range *same); 2112extern loff_t vfs_dedupe_file_range_one(struct file *src_file, loff_t src_pos, 2113 struct file *dst_file, loff_t dst_pos, 2114 loff_t len, unsigned int remap_flags); 2115 2116/** 2117 * enum freeze_holder - holder of the freeze 2118 * @FREEZE_HOLDER_KERNEL: kernel wants to freeze or thaw filesystem 2119 * @FREEZE_HOLDER_USERSPACE: userspace wants to freeze or thaw filesystem 2120 * @FREEZE_MAY_NEST: whether nesting freeze and thaw requests is allowed 2121 * 2122 * Indicate who the owner of the freeze or thaw request is and whether 2123 * the freeze needs to be exclusive or can nest. 2124 * Without @FREEZE_MAY_NEST, multiple freeze and thaw requests from the 2125 * same holder aren't allowed. It is however allowed to hold a single 2126 * @FREEZE_HOLDER_USERSPACE and a single @FREEZE_HOLDER_KERNEL freeze at 2127 * the same time. This is relied upon by some filesystems during online 2128 * repair or similar. 2129 */ 2130enum freeze_holder { 2131 FREEZE_HOLDER_KERNEL = (1U << 0), 2132 FREEZE_HOLDER_USERSPACE = (1U << 1), 2133 FREEZE_MAY_NEST = (1U << 2), 2134}; 2135 2136struct super_operations { 2137 struct inode *(*alloc_inode)(struct super_block *sb); 2138 void (*destroy_inode)(struct inode *); 2139 void (*free_inode)(struct inode *); 2140 2141 void (*dirty_inode) (struct inode *, int flags); 2142 int (*write_inode) (struct inode *, struct writeback_control *wbc); 2143 int (*drop_inode) (struct inode *); 2144 void (*evict_inode) (struct inode *); 2145 void (*put_super) (struct super_block *); 2146 int (*sync_fs)(struct super_block *sb, int wait); 2147 int (*freeze_super) (struct super_block *, enum freeze_holder who); 2148 int (*freeze_fs) (struct super_block *); 2149 int (*thaw_super) (struct super_block *, enum freeze_holder who); 2150 int (*unfreeze_fs) (struct super_block *); 2151 int (*statfs) (struct dentry *, struct kstatfs *); 2152 int (*remount_fs) (struct super_block *, int *, char *); 2153 void (*umount_begin) (struct super_block *); 2154 2155 int (*show_options)(struct seq_file *, struct dentry *); 2156 int (*show_devname)(struct seq_file *, struct dentry *); 2157 int (*show_path)(struct seq_file *, struct dentry *); 2158 int (*show_stats)(struct seq_file *, struct dentry *); 2159#ifdef CONFIG_QUOTA 2160 ssize_t (*quota_read)(struct super_block *, int, char *, size_t, loff_t); 2161 ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t); 2162 struct dquot **(*get_dquots)(struct inode *); 2163#endif 2164 long (*nr_cached_objects)(struct super_block *, 2165 struct shrink_control *); 2166 long (*free_cached_objects)(struct super_block *, 2167 struct shrink_control *); 2168 void (*shutdown)(struct super_block *sb); 2169}; 2170 2171/* 2172 * Inode flags - they have no relation to superblock flags now 2173 */ 2174#define S_SYNC (1 << 0) /* Writes are synced at once */ 2175#define S_NOATIME (1 << 1) /* Do not update access times */ 2176#define S_APPEND (1 << 2) /* Append-only file */ 2177#define S_IMMUTABLE (1 << 3) /* Immutable file */ 2178#define S_DEAD (1 << 4) /* removed, but still open directory */ 2179#define S_NOQUOTA (1 << 5) /* Inode is not counted to quota */ 2180#define S_DIRSYNC (1 << 6) /* Directory modifications are synchronous */ 2181#define S_NOCMTIME (1 << 7) /* Do not update file c/mtime */ 2182#define S_SWAPFILE (1 << 8) /* Do not truncate: swapon got its bmaps */ 2183#define S_PRIVATE (1 << 9) /* Inode is fs-internal */ 2184#define S_IMA (1 << 10) /* Inode has an associated IMA struct */ 2185#define S_AUTOMOUNT (1 << 11) /* Automount/referral quasi-directory */ 2186#define S_NOSEC (1 << 12) /* no suid or xattr security attributes */ 2187#ifdef CONFIG_FS_DAX 2188#define S_DAX (1 << 13) /* Direct Access, avoiding the page cache */ 2189#else 2190#define S_DAX 0 /* Make all the DAX code disappear */ 2191#endif 2192#define S_ENCRYPTED (1 << 14) /* Encrypted file (using fs/crypto/) */ 2193#define S_CASEFOLD (1 << 15) /* Casefolded file */ 2194#define S_VERITY (1 << 16) /* Verity file (using fs/verity/) */ 2195#define S_KERNEL_FILE (1 << 17) /* File is in use by the kernel (eg. fs/cachefiles) */ 2196 2197/* 2198 * Note that nosuid etc flags are inode-specific: setting some file-system 2199 * flags just means all the inodes inherit those flags by default. It might be 2200 * possible to override it selectively if you really wanted to with some 2201 * ioctl() that is not currently implemented. 2202 * 2203 * Exception: SB_RDONLY is always applied to the entire file system. 2204 * 2205 * Unfortunately, it is possible to change a filesystems flags with it mounted 2206 * with files in use. This means that all of the inodes will not have their 2207 * i_flags updated. Hence, i_flags no longer inherit the superblock mount 2208 * flags, so these have to be checked separately. -- rmk@arm.uk.linux.org 2209 */ 2210#define __IS_FLG(inode, flg) ((inode)->i_sb->s_flags & (flg)) 2211 2212static inline bool sb_rdonly(const struct super_block *sb) { return sb->s_flags & SB_RDONLY; } 2213#define IS_RDONLY(inode) sb_rdonly((inode)->i_sb) 2214#define IS_SYNC(inode) (__IS_FLG(inode, SB_SYNCHRONOUS) || \ 2215 ((inode)->i_flags & S_SYNC)) 2216#define IS_DIRSYNC(inode) (__IS_FLG(inode, SB_SYNCHRONOUS|SB_DIRSYNC) || \ 2217 ((inode)->i_flags & (S_SYNC|S_DIRSYNC))) 2218#define IS_MANDLOCK(inode) __IS_FLG(inode, SB_MANDLOCK) 2219#define IS_NOATIME(inode) __IS_FLG(inode, SB_RDONLY|SB_NOATIME) 2220#define IS_I_VERSION(inode) __IS_FLG(inode, SB_I_VERSION) 2221 2222#define IS_NOQUOTA(inode) ((inode)->i_flags & S_NOQUOTA) 2223#define IS_APPEND(inode) ((inode)->i_flags & S_APPEND) 2224#define IS_IMMUTABLE(inode) ((inode)->i_flags & S_IMMUTABLE) 2225 2226#ifdef CONFIG_FS_POSIX_ACL 2227#define IS_POSIXACL(inode) __IS_FLG(inode, SB_POSIXACL) 2228#else 2229#define IS_POSIXACL(inode) 0 2230#endif 2231 2232#define IS_DEADDIR(inode) ((inode)->i_flags & S_DEAD) 2233#define IS_NOCMTIME(inode) ((inode)->i_flags & S_NOCMTIME) 2234#define IS_SWAPFILE(inode) ((inode)->i_flags & S_SWAPFILE) 2235#define IS_PRIVATE(inode) ((inode)->i_flags & S_PRIVATE) 2236#define IS_IMA(inode) ((inode)->i_flags & S_IMA) 2237#define IS_AUTOMOUNT(inode) ((inode)->i_flags & S_AUTOMOUNT) 2238#define IS_NOSEC(inode) ((inode)->i_flags & S_NOSEC) 2239#define IS_DAX(inode) ((inode)->i_flags & S_DAX) 2240#define IS_ENCRYPTED(inode) ((inode)->i_flags & S_ENCRYPTED) 2241#define IS_CASEFOLDED(inode) ((inode)->i_flags & S_CASEFOLD) 2242#define IS_VERITY(inode) ((inode)->i_flags & S_VERITY) 2243 2244#define IS_WHITEOUT(inode) (S_ISCHR(inode->i_mode) && \ 2245 (inode)->i_rdev == WHITEOUT_DEV) 2246 2247static inline bool HAS_UNMAPPED_ID(struct mnt_idmap *idmap, 2248 struct inode *inode) 2249{ 2250 return !vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) || 2251 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)); 2252} 2253 2254static inline void init_sync_kiocb(struct kiocb *kiocb, struct file *filp) 2255{ 2256 *kiocb = (struct kiocb) { 2257 .ki_filp = filp, 2258 .ki_flags = filp->f_iocb_flags, 2259 .ki_ioprio = get_current_ioprio(), 2260 }; 2261} 2262 2263static inline void kiocb_clone(struct kiocb *kiocb, struct kiocb *kiocb_src, 2264 struct file *filp) 2265{ 2266 *kiocb = (struct kiocb) { 2267 .ki_filp = filp, 2268 .ki_flags = kiocb_src->ki_flags, 2269 .ki_ioprio = kiocb_src->ki_ioprio, 2270 .ki_pos = kiocb_src->ki_pos, 2271 }; 2272} 2273 2274/* 2275 * Inode state bits. Protected by inode->i_lock 2276 * 2277 * Four bits determine the dirty state of the inode: I_DIRTY_SYNC, 2278 * I_DIRTY_DATASYNC, I_DIRTY_PAGES, and I_DIRTY_TIME. 2279 * 2280 * Four bits define the lifetime of an inode. Initially, inodes are I_NEW, 2281 * until that flag is cleared. I_WILL_FREE, I_FREEING and I_CLEAR are set at 2282 * various stages of removing an inode. 2283 * 2284 * Two bits are used for locking and completion notification, I_NEW and I_SYNC. 2285 * 2286 * I_DIRTY_SYNC Inode is dirty, but doesn't have to be written on 2287 * fdatasync() (unless I_DIRTY_DATASYNC is also set). 2288 * Timestamp updates are the usual cause. 2289 * I_DIRTY_DATASYNC Data-related inode changes pending. We keep track of 2290 * these changes separately from I_DIRTY_SYNC so that we 2291 * don't have to write inode on fdatasync() when only 2292 * e.g. the timestamps have changed. 2293 * I_DIRTY_PAGES Inode has dirty pages. Inode itself may be clean. 2294 * I_DIRTY_TIME The inode itself has dirty timestamps, and the 2295 * lazytime mount option is enabled. We keep track of this 2296 * separately from I_DIRTY_SYNC in order to implement 2297 * lazytime. This gets cleared if I_DIRTY_INODE 2298 * (I_DIRTY_SYNC and/or I_DIRTY_DATASYNC) gets set. But 2299 * I_DIRTY_TIME can still be set if I_DIRTY_SYNC is already 2300 * in place because writeback might already be in progress 2301 * and we don't want to lose the time update 2302 * I_NEW Serves as both a mutex and completion notification. 2303 * New inodes set I_NEW. If two processes both create 2304 * the same inode, one of them will release its inode and 2305 * wait for I_NEW to be released before returning. 2306 * Inodes in I_WILL_FREE, I_FREEING or I_CLEAR state can 2307 * also cause waiting on I_NEW, without I_NEW actually 2308 * being set. find_inode() uses this to prevent returning 2309 * nearly-dead inodes. 2310 * I_WILL_FREE Must be set when calling write_inode_now() if i_count 2311 * is zero. I_FREEING must be set when I_WILL_FREE is 2312 * cleared. 2313 * I_FREEING Set when inode is about to be freed but still has dirty 2314 * pages or buffers attached or the inode itself is still 2315 * dirty. 2316 * I_CLEAR Added by clear_inode(). In this state the inode is 2317 * clean and can be destroyed. Inode keeps I_FREEING. 2318 * 2319 * Inodes that are I_WILL_FREE, I_FREEING or I_CLEAR are 2320 * prohibited for many purposes. iget() must wait for 2321 * the inode to be completely released, then create it 2322 * anew. Other functions will just ignore such inodes, 2323 * if appropriate. I_NEW is used for waiting. 2324 * 2325 * I_SYNC Writeback of inode is running. The bit is set during 2326 * data writeback, and cleared with a wakeup on the bit 2327 * address once it is done. The bit is also used to pin 2328 * the inode in memory for flusher thread. 2329 * 2330 * I_REFERENCED Marks the inode as recently references on the LRU list. 2331 * 2332 * I_DIO_WAKEUP Never set. Only used as a key for wait_on_bit(). 2333 * 2334 * I_WB_SWITCH Cgroup bdi_writeback switching in progress. Used to 2335 * synchronize competing switching instances and to tell 2336 * wb stat updates to grab the i_pages lock. See 2337 * inode_switch_wbs_work_fn() for details. 2338 * 2339 * I_OVL_INUSE Used by overlayfs to get exclusive ownership on upper 2340 * and work dirs among overlayfs mounts. 2341 * 2342 * I_CREATING New object's inode in the middle of setting up. 2343 * 2344 * I_DONTCACHE Evict inode as soon as it is not used anymore. 2345 * 2346 * I_SYNC_QUEUED Inode is queued in b_io or b_more_io writeback lists. 2347 * Used to detect that mark_inode_dirty() should not move 2348 * inode between dirty lists. 2349 * 2350 * I_PINNING_FSCACHE_WB Inode is pinning an fscache object for writeback. 2351 * 2352 * Q: What is the difference between I_WILL_FREE and I_FREEING? 2353 */ 2354#define I_DIRTY_SYNC (1 << 0) 2355#define I_DIRTY_DATASYNC (1 << 1) 2356#define I_DIRTY_PAGES (1 << 2) 2357#define __I_NEW 3 2358#define I_NEW (1 << __I_NEW) 2359#define I_WILL_FREE (1 << 4) 2360#define I_FREEING (1 << 5) 2361#define I_CLEAR (1 << 6) 2362#define __I_SYNC 7 2363#define I_SYNC (1 << __I_SYNC) 2364#define I_REFERENCED (1 << 8) 2365#define __I_DIO_WAKEUP 9 2366#define I_DIO_WAKEUP (1 << __I_DIO_WAKEUP) 2367#define I_LINKABLE (1 << 10) 2368#define I_DIRTY_TIME (1 << 11) 2369#define I_WB_SWITCH (1 << 13) 2370#define I_OVL_INUSE (1 << 14) 2371#define I_CREATING (1 << 15) 2372#define I_DONTCACHE (1 << 16) 2373#define I_SYNC_QUEUED (1 << 17) 2374#define I_PINNING_NETFS_WB (1 << 18) 2375 2376#define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC) 2377#define I_DIRTY (I_DIRTY_INODE | I_DIRTY_PAGES) 2378#define I_DIRTY_ALL (I_DIRTY | I_DIRTY_TIME) 2379 2380extern void __mark_inode_dirty(struct inode *, int); 2381static inline void mark_inode_dirty(struct inode *inode) 2382{ 2383 __mark_inode_dirty(inode, I_DIRTY); 2384} 2385 2386static inline void mark_inode_dirty_sync(struct inode *inode) 2387{ 2388 __mark_inode_dirty(inode, I_DIRTY_SYNC); 2389} 2390 2391/* 2392 * Returns true if the given inode itself only has dirty timestamps (its pages 2393 * may still be dirty) and isn't currently being allocated or freed. 2394 * Filesystems should call this if when writing an inode when lazytime is 2395 * enabled, they want to opportunistically write the timestamps of other inodes 2396 * located very nearby on-disk, e.g. in the same inode block. This returns true 2397 * if the given inode is in need of such an opportunistic update. Requires 2398 * i_lock, or at least later re-checking under i_lock. 2399 */ 2400static inline bool inode_is_dirtytime_only(struct inode *inode) 2401{ 2402 return (inode->i_state & (I_DIRTY_TIME | I_NEW | 2403 I_FREEING | I_WILL_FREE)) == I_DIRTY_TIME; 2404} 2405 2406extern void inc_nlink(struct inode *inode); 2407extern void drop_nlink(struct inode *inode); 2408extern void clear_nlink(struct inode *inode); 2409extern void set_nlink(struct inode *inode, unsigned int nlink); 2410 2411static inline void inode_inc_link_count(struct inode *inode) 2412{ 2413 inc_nlink(inode); 2414 mark_inode_dirty(inode); 2415} 2416 2417static inline void inode_dec_link_count(struct inode *inode) 2418{ 2419 drop_nlink(inode); 2420 mark_inode_dirty(inode); 2421} 2422 2423enum file_time_flags { 2424 S_ATIME = 1, 2425 S_MTIME = 2, 2426 S_CTIME = 4, 2427 S_VERSION = 8, 2428}; 2429 2430extern bool atime_needs_update(const struct path *, struct inode *); 2431extern void touch_atime(const struct path *); 2432int inode_update_time(struct inode *inode, int flags); 2433 2434static inline void file_accessed(struct file *file) 2435{ 2436 if (!(file->f_flags & O_NOATIME)) 2437 touch_atime(&file->f_path); 2438} 2439 2440extern int file_modified(struct file *file); 2441int kiocb_modified(struct kiocb *iocb); 2442 2443int sync_inode_metadata(struct inode *inode, int wait); 2444 2445struct file_system_type { 2446 const char *name; 2447 int fs_flags; 2448#define FS_REQUIRES_DEV 1 2449#define FS_BINARY_MOUNTDATA 2 2450#define FS_HAS_SUBTYPE 4 2451#define FS_USERNS_MOUNT 8 /* Can be mounted by userns root */ 2452#define FS_DISALLOW_NOTIFY_PERM 16 /* Disable fanotify permission events */ 2453#define FS_ALLOW_IDMAP 32 /* FS has been updated to handle vfs idmappings. */ 2454#define FS_RENAME_DOES_D_MOVE 32768 /* FS will handle d_move() during rename() internally. */ 2455 int (*init_fs_context)(struct fs_context *); 2456 const struct fs_parameter_spec *parameters; 2457 struct dentry *(*mount) (struct file_system_type *, int, 2458 const char *, void *); 2459 void (*kill_sb) (struct super_block *); 2460 struct module *owner; 2461 struct file_system_type * next; 2462 struct hlist_head fs_supers; 2463 2464 struct lock_class_key s_lock_key; 2465 struct lock_class_key s_umount_key; 2466 struct lock_class_key s_vfs_rename_key; 2467 struct lock_class_key s_writers_key[SB_FREEZE_LEVELS]; 2468 2469 struct lock_class_key i_lock_key; 2470 struct lock_class_key i_mutex_key; 2471 struct lock_class_key invalidate_lock_key; 2472 struct lock_class_key i_mutex_dir_key; 2473}; 2474 2475#define MODULE_ALIAS_FS(NAME) MODULE_ALIAS("fs-" NAME) 2476 2477extern struct dentry *mount_bdev(struct file_system_type *fs_type, 2478 int flags, const char *dev_name, void *data, 2479 int (*fill_super)(struct super_block *, void *, int)); 2480extern struct dentry *mount_single(struct file_system_type *fs_type, 2481 int flags, void *data, 2482 int (*fill_super)(struct super_block *, void *, int)); 2483extern struct dentry *mount_nodev(struct file_system_type *fs_type, 2484 int flags, void *data, 2485 int (*fill_super)(struct super_block *, void *, int)); 2486extern struct dentry *mount_subtree(struct vfsmount *mnt, const char *path); 2487void retire_super(struct super_block *sb); 2488void generic_shutdown_super(struct super_block *sb); 2489void kill_block_super(struct super_block *sb); 2490void kill_anon_super(struct super_block *sb); 2491void kill_litter_super(struct super_block *sb); 2492void deactivate_super(struct super_block *sb); 2493void deactivate_locked_super(struct super_block *sb); 2494int set_anon_super(struct super_block *s, void *data); 2495int set_anon_super_fc(struct super_block *s, struct fs_context *fc); 2496int get_anon_bdev(dev_t *); 2497void free_anon_bdev(dev_t); 2498struct super_block *sget_fc(struct fs_context *fc, 2499 int (*test)(struct super_block *, struct fs_context *), 2500 int (*set)(struct super_block *, struct fs_context *)); 2501struct super_block *sget(struct file_system_type *type, 2502 int (*test)(struct super_block *,void *), 2503 int (*set)(struct super_block *,void *), 2504 int flags, void *data); 2505struct super_block *sget_dev(struct fs_context *fc, dev_t dev); 2506 2507/* Alas, no aliases. Too much hassle with bringing module.h everywhere */ 2508#define fops_get(fops) \ 2509 (((fops) && try_module_get((fops)->owner) ? (fops) : NULL)) 2510#define fops_put(fops) \ 2511 do { if (fops) module_put((fops)->owner); } while(0) 2512/* 2513 * This one is to be used *ONLY* from ->open() instances. 2514 * fops must be non-NULL, pinned down *and* module dependencies 2515 * should be sufficient to pin the caller down as well. 2516 */ 2517#define replace_fops(f, fops) \ 2518 do { \ 2519 struct file *__file = (f); \ 2520 fops_put(__file->f_op); \ 2521 BUG_ON(!(__file->f_op = (fops))); \ 2522 } while(0) 2523 2524extern int register_filesystem(struct file_system_type *); 2525extern int unregister_filesystem(struct file_system_type *); 2526extern int vfs_statfs(const struct path *, struct kstatfs *); 2527extern int user_statfs(const char __user *, struct kstatfs *); 2528extern int fd_statfs(int, struct kstatfs *); 2529int freeze_super(struct super_block *super, enum freeze_holder who); 2530int thaw_super(struct super_block *super, enum freeze_holder who); 2531extern __printf(2, 3) 2532int super_setup_bdi_name(struct super_block *sb, char *fmt, ...); 2533extern int super_setup_bdi(struct super_block *sb); 2534 2535extern int current_umask(void); 2536 2537extern void ihold(struct inode * inode); 2538extern void iput(struct inode *); 2539int inode_update_timestamps(struct inode *inode, int flags); 2540int generic_update_time(struct inode *, int); 2541 2542/* /sys/fs */ 2543extern struct kobject *fs_kobj; 2544 2545#define MAX_RW_COUNT (INT_MAX & PAGE_MASK) 2546 2547/* fs/open.c */ 2548struct audit_names; 2549struct filename { 2550 const char *name; /* pointer to actual string */ 2551 const __user char *uptr; /* original userland pointer */ 2552 atomic_t refcnt; 2553 struct audit_names *aname; 2554 const char iname[]; 2555}; 2556static_assert(offsetof(struct filename, iname) % sizeof(long) == 0); 2557 2558static inline struct mnt_idmap *file_mnt_idmap(const struct file *file) 2559{ 2560 return mnt_idmap(file->f_path.mnt); 2561} 2562 2563/** 2564 * is_idmapped_mnt - check whether a mount is mapped 2565 * @mnt: the mount to check 2566 * 2567 * If @mnt has an non @nop_mnt_idmap attached to it then @mnt is mapped. 2568 * 2569 * Return: true if mount is mapped, false if not. 2570 */ 2571static inline bool is_idmapped_mnt(const struct vfsmount *mnt) 2572{ 2573 return mnt_idmap(mnt) != &nop_mnt_idmap; 2574} 2575 2576extern long vfs_truncate(const struct path *, loff_t); 2577int do_truncate(struct mnt_idmap *, struct dentry *, loff_t start, 2578 unsigned int time_attrs, struct file *filp); 2579extern int vfs_fallocate(struct file *file, int mode, loff_t offset, 2580 loff_t len); 2581extern long do_sys_open(int dfd, const char __user *filename, int flags, 2582 umode_t mode); 2583extern struct file *file_open_name(struct filename *, int, umode_t); 2584extern struct file *filp_open(const char *, int, umode_t); 2585extern struct file *file_open_root(const struct path *, 2586 const char *, int, umode_t); 2587static inline struct file *file_open_root_mnt(struct vfsmount *mnt, 2588 const char *name, int flags, umode_t mode) 2589{ 2590 return file_open_root(&(struct path){.mnt = mnt, .dentry = mnt->mnt_root}, 2591 name, flags, mode); 2592} 2593struct file *dentry_open(const struct path *path, int flags, 2594 const struct cred *creds); 2595struct file *dentry_create(const struct path *path, int flags, umode_t mode, 2596 const struct cred *cred); 2597struct path *backing_file_user_path(struct file *f); 2598 2599/* 2600 * When mmapping a file on a stackable filesystem (e.g., overlayfs), the file 2601 * stored in ->vm_file is a backing file whose f_inode is on the underlying 2602 * filesystem. When the mapped file path and inode number are displayed to 2603 * user (e.g. via /proc/<pid>/maps), these helpers should be used to get the 2604 * path and inode number to display to the user, which is the path of the fd 2605 * that user has requested to map and the inode number that would be returned 2606 * by fstat() on that same fd. 2607 */ 2608/* Get the path to display in /proc/<pid>/maps */ 2609static inline const struct path *file_user_path(struct file *f) 2610{ 2611 if (unlikely(f->f_mode & FMODE_BACKING)) 2612 return backing_file_user_path(f); 2613 return &f->f_path; 2614} 2615/* Get the inode whose inode number to display in /proc/<pid>/maps */ 2616static inline const struct inode *file_user_inode(struct file *f) 2617{ 2618 if (unlikely(f->f_mode & FMODE_BACKING)) 2619 return d_inode(backing_file_user_path(f)->dentry); 2620 return file_inode(f); 2621} 2622 2623static inline struct file *file_clone_open(struct file *file) 2624{ 2625 return dentry_open(&file->f_path, file->f_flags, file->f_cred); 2626} 2627extern int filp_close(struct file *, fl_owner_t id); 2628 2629extern struct filename *getname_flags(const char __user *, int, int *); 2630extern struct filename *getname_uflags(const char __user *, int); 2631extern struct filename *getname(const char __user *); 2632extern struct filename *getname_kernel(const char *); 2633extern void putname(struct filename *name); 2634 2635extern int finish_open(struct file *file, struct dentry *dentry, 2636 int (*open)(struct inode *, struct file *)); 2637extern int finish_no_open(struct file *file, struct dentry *dentry); 2638 2639/* Helper for the simple case when original dentry is used */ 2640static inline int finish_open_simple(struct file *file, int error) 2641{ 2642 if (error) 2643 return error; 2644 2645 return finish_open(file, file->f_path.dentry, NULL); 2646} 2647 2648/* fs/dcache.c */ 2649extern void __init vfs_caches_init_early(void); 2650extern void __init vfs_caches_init(void); 2651 2652extern struct kmem_cache *names_cachep; 2653 2654#define __getname() kmem_cache_alloc(names_cachep, GFP_KERNEL) 2655#define __putname(name) kmem_cache_free(names_cachep, (void *)(name)) 2656 2657extern struct super_block *blockdev_superblock; 2658static inline bool sb_is_blkdev_sb(struct super_block *sb) 2659{ 2660 return IS_ENABLED(CONFIG_BLOCK) && sb == blockdev_superblock; 2661} 2662 2663void emergency_thaw_all(void); 2664extern int sync_filesystem(struct super_block *); 2665extern const struct file_operations def_blk_fops; 2666extern const struct file_operations def_chr_fops; 2667 2668/* fs/char_dev.c */ 2669#define CHRDEV_MAJOR_MAX 512 2670/* Marks the bottom of the first segment of free char majors */ 2671#define CHRDEV_MAJOR_DYN_END 234 2672/* Marks the top and bottom of the second segment of free char majors */ 2673#define CHRDEV_MAJOR_DYN_EXT_START 511 2674#define CHRDEV_MAJOR_DYN_EXT_END 384 2675 2676extern int alloc_chrdev_region(dev_t *, unsigned, unsigned, const char *); 2677extern int register_chrdev_region(dev_t, unsigned, const char *); 2678extern int __register_chrdev(unsigned int major, unsigned int baseminor, 2679 unsigned int count, const char *name, 2680 const struct file_operations *fops); 2681extern void __unregister_chrdev(unsigned int major, unsigned int baseminor, 2682 unsigned int count, const char *name); 2683extern void unregister_chrdev_region(dev_t, unsigned); 2684extern void chrdev_show(struct seq_file *,off_t); 2685 2686static inline int register_chrdev(unsigned int major, const char *name, 2687 const struct file_operations *fops) 2688{ 2689 return __register_chrdev(major, 0, 256, name, fops); 2690} 2691 2692static inline void unregister_chrdev(unsigned int major, const char *name) 2693{ 2694 __unregister_chrdev(major, 0, 256, name); 2695} 2696 2697extern void init_special_inode(struct inode *, umode_t, dev_t); 2698 2699/* Invalid inode operations -- fs/bad_inode.c */ 2700extern void make_bad_inode(struct inode *); 2701extern bool is_bad_inode(struct inode *); 2702 2703extern int __must_check file_fdatawait_range(struct file *file, loff_t lstart, 2704 loff_t lend); 2705extern int __must_check file_check_and_advance_wb_err(struct file *file); 2706extern int __must_check file_write_and_wait_range(struct file *file, 2707 loff_t start, loff_t end); 2708 2709static inline int file_write_and_wait(struct file *file) 2710{ 2711 return file_write_and_wait_range(file, 0, LLONG_MAX); 2712} 2713 2714extern int vfs_fsync_range(struct file *file, loff_t start, loff_t end, 2715 int datasync); 2716extern int vfs_fsync(struct file *file, int datasync); 2717 2718extern int sync_file_range(struct file *file, loff_t offset, loff_t nbytes, 2719 unsigned int flags); 2720 2721static inline bool iocb_is_dsync(const struct kiocb *iocb) 2722{ 2723 return (iocb->ki_flags & IOCB_DSYNC) || 2724 IS_SYNC(iocb->ki_filp->f_mapping->host); 2725} 2726 2727/* 2728 * Sync the bytes written if this was a synchronous write. Expect ki_pos 2729 * to already be updated for the write, and will return either the amount 2730 * of bytes passed in, or an error if syncing the file failed. 2731 */ 2732static inline ssize_t generic_write_sync(struct kiocb *iocb, ssize_t count) 2733{ 2734 if (iocb_is_dsync(iocb)) { 2735 int ret = vfs_fsync_range(iocb->ki_filp, 2736 iocb->ki_pos - count, iocb->ki_pos - 1, 2737 (iocb->ki_flags & IOCB_SYNC) ? 0 : 1); 2738 if (ret) 2739 return ret; 2740 } 2741 2742 return count; 2743} 2744 2745extern void emergency_sync(void); 2746extern void emergency_remount(void); 2747 2748#ifdef CONFIG_BLOCK 2749extern int bmap(struct inode *inode, sector_t *block); 2750#else 2751static inline int bmap(struct inode *inode, sector_t *block) 2752{ 2753 return -EINVAL; 2754} 2755#endif 2756 2757int notify_change(struct mnt_idmap *, struct dentry *, 2758 struct iattr *, struct inode **); 2759int inode_permission(struct mnt_idmap *, struct inode *, int); 2760int generic_permission(struct mnt_idmap *, struct inode *, int); 2761static inline int file_permission(struct file *file, int mask) 2762{ 2763 return inode_permission(file_mnt_idmap(file), 2764 file_inode(file), mask); 2765} 2766static inline int path_permission(const struct path *path, int mask) 2767{ 2768 return inode_permission(mnt_idmap(path->mnt), 2769 d_inode(path->dentry), mask); 2770} 2771int __check_sticky(struct mnt_idmap *idmap, struct inode *dir, 2772 struct inode *inode); 2773 2774static inline bool execute_ok(struct inode *inode) 2775{ 2776 return (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode); 2777} 2778 2779static inline bool inode_wrong_type(const struct inode *inode, umode_t mode) 2780{ 2781 return (inode->i_mode ^ mode) & S_IFMT; 2782} 2783 2784/** 2785 * file_start_write - get write access to a superblock for regular file io 2786 * @file: the file we want to write to 2787 * 2788 * This is a variant of sb_start_write() which is a noop on non-regualr file. 2789 * Should be matched with a call to file_end_write(). 2790 */ 2791static inline void file_start_write(struct file *file) 2792{ 2793 if (!S_ISREG(file_inode(file)->i_mode)) 2794 return; 2795 sb_start_write(file_inode(file)->i_sb); 2796} 2797 2798static inline bool file_start_write_trylock(struct file *file) 2799{ 2800 if (!S_ISREG(file_inode(file)->i_mode)) 2801 return true; 2802 return sb_start_write_trylock(file_inode(file)->i_sb); 2803} 2804 2805/** 2806 * file_end_write - drop write access to a superblock of a regular file 2807 * @file: the file we wrote to 2808 * 2809 * Should be matched with a call to file_start_write(). 2810 */ 2811static inline void file_end_write(struct file *file) 2812{ 2813 if (!S_ISREG(file_inode(file)->i_mode)) 2814 return; 2815 sb_end_write(file_inode(file)->i_sb); 2816} 2817 2818/** 2819 * kiocb_start_write - get write access to a superblock for async file io 2820 * @iocb: the io context we want to submit the write with 2821 * 2822 * This is a variant of sb_start_write() for async io submission. 2823 * Should be matched with a call to kiocb_end_write(). 2824 */ 2825static inline void kiocb_start_write(struct kiocb *iocb) 2826{ 2827 struct inode *inode = file_inode(iocb->ki_filp); 2828 2829 sb_start_write(inode->i_sb); 2830 /* 2831 * Fool lockdep by telling it the lock got released so that it 2832 * doesn't complain about the held lock when we return to userspace. 2833 */ 2834 __sb_writers_release(inode->i_sb, SB_FREEZE_WRITE); 2835} 2836 2837/** 2838 * kiocb_end_write - drop write access to a superblock after async file io 2839 * @iocb: the io context we sumbitted the write with 2840 * 2841 * Should be matched with a call to kiocb_start_write(). 2842 */ 2843static inline void kiocb_end_write(struct kiocb *iocb) 2844{ 2845 struct inode *inode = file_inode(iocb->ki_filp); 2846 2847 /* 2848 * Tell lockdep we inherited freeze protection from submission thread. 2849 */ 2850 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE); 2851 sb_end_write(inode->i_sb); 2852} 2853 2854/* 2855 * This is used for regular files where some users -- especially the 2856 * currently executed binary in a process, previously handled via 2857 * VM_DENYWRITE -- cannot handle concurrent write (and maybe mmap 2858 * read-write shared) accesses. 2859 * 2860 * get_write_access() gets write permission for a file. 2861 * put_write_access() releases this write permission. 2862 * deny_write_access() denies write access to a file. 2863 * allow_write_access() re-enables write access to a file. 2864 * 2865 * The i_writecount field of an inode can have the following values: 2866 * 0: no write access, no denied write access 2867 * < 0: (-i_writecount) users that denied write access to the file. 2868 * > 0: (i_writecount) users that have write access to the file. 2869 * 2870 * Normally we operate on that counter with atomic_{inc,dec} and it's safe 2871 * except for the cases where we don't hold i_writecount yet. Then we need to 2872 * use {get,deny}_write_access() - these functions check the sign and refuse 2873 * to do the change if sign is wrong. 2874 */ 2875static inline int get_write_access(struct inode *inode) 2876{ 2877 return atomic_inc_unless_negative(&inode->i_writecount) ? 0 : -ETXTBSY; 2878} 2879static inline int deny_write_access(struct file *file) 2880{ 2881 struct inode *inode = file_inode(file); 2882 return atomic_dec_unless_positive(&inode->i_writecount) ? 0 : -ETXTBSY; 2883} 2884static inline void put_write_access(struct inode * inode) 2885{ 2886 atomic_dec(&inode->i_writecount); 2887} 2888static inline void allow_write_access(struct file *file) 2889{ 2890 if (file) 2891 atomic_inc(&file_inode(file)->i_writecount); 2892} 2893static inline bool inode_is_open_for_write(const struct inode *inode) 2894{ 2895 return atomic_read(&inode->i_writecount) > 0; 2896} 2897 2898#if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING) 2899static inline void i_readcount_dec(struct inode *inode) 2900{ 2901 BUG_ON(atomic_dec_return(&inode->i_readcount) < 0); 2902} 2903static inline void i_readcount_inc(struct inode *inode) 2904{ 2905 atomic_inc(&inode->i_readcount); 2906} 2907#else 2908static inline void i_readcount_dec(struct inode *inode) 2909{ 2910 return; 2911} 2912static inline void i_readcount_inc(struct inode *inode) 2913{ 2914 return; 2915} 2916#endif 2917extern int do_pipe_flags(int *, int); 2918 2919extern ssize_t kernel_read(struct file *, void *, size_t, loff_t *); 2920ssize_t __kernel_read(struct file *file, void *buf, size_t count, loff_t *pos); 2921extern ssize_t kernel_write(struct file *, const void *, size_t, loff_t *); 2922extern ssize_t __kernel_write(struct file *, const void *, size_t, loff_t *); 2923extern struct file * open_exec(const char *); 2924 2925/* fs/dcache.c -- generic fs support functions */ 2926extern bool is_subdir(struct dentry *, struct dentry *); 2927extern bool path_is_under(const struct path *, const struct path *); 2928 2929extern char *file_path(struct file *, char *, int); 2930 2931#include <linux/err.h> 2932 2933/* needed for stackable file system support */ 2934extern loff_t default_llseek(struct file *file, loff_t offset, int whence); 2935 2936extern loff_t vfs_llseek(struct file *file, loff_t offset, int whence); 2937 2938extern int inode_init_always(struct super_block *, struct inode *); 2939extern void inode_init_once(struct inode *); 2940extern void address_space_init_once(struct address_space *mapping); 2941extern struct inode * igrab(struct inode *); 2942extern ino_t iunique(struct super_block *, ino_t); 2943extern int inode_needs_sync(struct inode *inode); 2944extern int generic_delete_inode(struct inode *inode); 2945static inline int generic_drop_inode(struct inode *inode) 2946{ 2947 return !inode->i_nlink || inode_unhashed(inode); 2948} 2949extern void d_mark_dontcache(struct inode *inode); 2950 2951extern struct inode *ilookup5_nowait(struct super_block *sb, 2952 unsigned long hashval, int (*test)(struct inode *, void *), 2953 void *data); 2954extern struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 2955 int (*test)(struct inode *, void *), void *data); 2956extern struct inode *ilookup(struct super_block *sb, unsigned long ino); 2957 2958extern struct inode *inode_insert5(struct inode *inode, unsigned long hashval, 2959 int (*test)(struct inode *, void *), 2960 int (*set)(struct inode *, void *), 2961 void *data); 2962extern struct inode * iget5_locked(struct super_block *, unsigned long, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *); 2963extern struct inode * iget_locked(struct super_block *, unsigned long); 2964extern struct inode *find_inode_nowait(struct super_block *, 2965 unsigned long, 2966 int (*match)(struct inode *, 2967 unsigned long, void *), 2968 void *data); 2969extern struct inode *find_inode_rcu(struct super_block *, unsigned long, 2970 int (*)(struct inode *, void *), void *); 2971extern struct inode *find_inode_by_ino_rcu(struct super_block *, unsigned long); 2972extern int insert_inode_locked4(struct inode *, unsigned long, int (*test)(struct inode *, void *), void *); 2973extern int insert_inode_locked(struct inode *); 2974#ifdef CONFIG_DEBUG_LOCK_ALLOC 2975extern void lockdep_annotate_inode_mutex_key(struct inode *inode); 2976#else 2977static inline void lockdep_annotate_inode_mutex_key(struct inode *inode) { }; 2978#endif 2979extern void unlock_new_inode(struct inode *); 2980extern void discard_new_inode(struct inode *); 2981extern unsigned int get_next_ino(void); 2982extern void evict_inodes(struct super_block *sb); 2983void dump_mapping(const struct address_space *); 2984 2985/* 2986 * Userspace may rely on the inode number being non-zero. For example, glibc 2987 * simply ignores files with zero i_ino in unlink() and other places. 2988 * 2989 * As an additional complication, if userspace was compiled with 2990 * _FILE_OFFSET_BITS=32 on a 64-bit kernel we'll only end up reading out the 2991 * lower 32 bits, so we need to check that those aren't zero explicitly. With 2992 * _FILE_OFFSET_BITS=64, this may cause some harmless false-negatives, but 2993 * better safe than sorry. 2994 */ 2995static inline bool is_zero_ino(ino_t ino) 2996{ 2997 return (u32)ino == 0; 2998} 2999 3000extern void __iget(struct inode * inode); 3001extern void iget_failed(struct inode *); 3002extern void clear_inode(struct inode *); 3003extern void __destroy_inode(struct inode *); 3004extern struct inode *new_inode_pseudo(struct super_block *sb); 3005extern struct inode *new_inode(struct super_block *sb); 3006extern void free_inode_nonrcu(struct inode *inode); 3007extern int setattr_should_drop_suidgid(struct mnt_idmap *, struct inode *); 3008extern int file_remove_privs(struct file *); 3009int setattr_should_drop_sgid(struct mnt_idmap *idmap, 3010 const struct inode *inode); 3011 3012/* 3013 * This must be used for allocating filesystems specific inodes to set 3014 * up the inode reclaim context correctly. 3015 */ 3016static inline void * 3017alloc_inode_sb(struct super_block *sb, struct kmem_cache *cache, gfp_t gfp) 3018{ 3019 return kmem_cache_alloc_lru(cache, &sb->s_inode_lru, gfp); 3020} 3021 3022extern void __insert_inode_hash(struct inode *, unsigned long hashval); 3023static inline void insert_inode_hash(struct inode *inode) 3024{ 3025 __insert_inode_hash(inode, inode->i_ino); 3026} 3027 3028extern void __remove_inode_hash(struct inode *); 3029static inline void remove_inode_hash(struct inode *inode) 3030{ 3031 if (!inode_unhashed(inode) && !hlist_fake(&inode->i_hash)) 3032 __remove_inode_hash(inode); 3033} 3034 3035extern void inode_sb_list_add(struct inode *inode); 3036extern void inode_add_lru(struct inode *inode); 3037 3038extern int sb_set_blocksize(struct super_block *, int); 3039extern int sb_min_blocksize(struct super_block *, int); 3040 3041extern int generic_file_mmap(struct file *, struct vm_area_struct *); 3042extern int generic_file_readonly_mmap(struct file *, struct vm_area_struct *); 3043extern ssize_t generic_write_checks(struct kiocb *, struct iov_iter *); 3044int generic_write_checks_count(struct kiocb *iocb, loff_t *count); 3045extern int generic_write_check_limits(struct file *file, loff_t pos, 3046 loff_t *count); 3047extern int generic_file_rw_checks(struct file *file_in, struct file *file_out); 3048ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *to, 3049 ssize_t already_read); 3050extern ssize_t generic_file_read_iter(struct kiocb *, struct iov_iter *); 3051extern ssize_t __generic_file_write_iter(struct kiocb *, struct iov_iter *); 3052extern ssize_t generic_file_write_iter(struct kiocb *, struct iov_iter *); 3053extern ssize_t generic_file_direct_write(struct kiocb *, struct iov_iter *); 3054ssize_t generic_perform_write(struct kiocb *, struct iov_iter *); 3055ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter, 3056 ssize_t direct_written, ssize_t buffered_written); 3057 3058ssize_t vfs_iter_read(struct file *file, struct iov_iter *iter, loff_t *ppos, 3059 rwf_t flags); 3060ssize_t vfs_iter_write(struct file *file, struct iov_iter *iter, loff_t *ppos, 3061 rwf_t flags); 3062ssize_t vfs_iocb_iter_read(struct file *file, struct kiocb *iocb, 3063 struct iov_iter *iter); 3064ssize_t vfs_iocb_iter_write(struct file *file, struct kiocb *iocb, 3065 struct iov_iter *iter); 3066 3067/* fs/splice.c */ 3068ssize_t filemap_splice_read(struct file *in, loff_t *ppos, 3069 struct pipe_inode_info *pipe, 3070 size_t len, unsigned int flags); 3071ssize_t copy_splice_read(struct file *in, loff_t *ppos, 3072 struct pipe_inode_info *pipe, 3073 size_t len, unsigned int flags); 3074extern ssize_t iter_file_splice_write(struct pipe_inode_info *, 3075 struct file *, loff_t *, size_t, unsigned int); 3076 3077 3078extern void 3079file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping); 3080extern loff_t noop_llseek(struct file *file, loff_t offset, int whence); 3081#define no_llseek NULL 3082extern loff_t vfs_setpos(struct file *file, loff_t offset, loff_t maxsize); 3083extern loff_t generic_file_llseek(struct file *file, loff_t offset, int whence); 3084extern loff_t generic_file_llseek_size(struct file *file, loff_t offset, 3085 int whence, loff_t maxsize, loff_t eof); 3086extern loff_t fixed_size_llseek(struct file *file, loff_t offset, 3087 int whence, loff_t size); 3088extern loff_t no_seek_end_llseek_size(struct file *, loff_t, int, loff_t); 3089extern loff_t no_seek_end_llseek(struct file *, loff_t, int); 3090int rw_verify_area(int, struct file *, const loff_t *, size_t); 3091extern int generic_file_open(struct inode * inode, struct file * filp); 3092extern int nonseekable_open(struct inode * inode, struct file * filp); 3093extern int stream_open(struct inode * inode, struct file * filp); 3094 3095#ifdef CONFIG_BLOCK 3096typedef void (dio_submit_t)(struct bio *bio, struct inode *inode, 3097 loff_t file_offset); 3098 3099enum { 3100 /* need locking between buffered and direct access */ 3101 DIO_LOCKING = 0x01, 3102 3103 /* filesystem does not support filling holes */ 3104 DIO_SKIP_HOLES = 0x02, 3105}; 3106 3107ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 3108 struct block_device *bdev, struct iov_iter *iter, 3109 get_block_t get_block, 3110 dio_iodone_t end_io, 3111 int flags); 3112 3113static inline ssize_t blockdev_direct_IO(struct kiocb *iocb, 3114 struct inode *inode, 3115 struct iov_iter *iter, 3116 get_block_t get_block) 3117{ 3118 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter, 3119 get_block, NULL, DIO_LOCKING | DIO_SKIP_HOLES); 3120} 3121#endif 3122 3123void inode_dio_wait(struct inode *inode); 3124 3125/** 3126 * inode_dio_begin - signal start of a direct I/O requests 3127 * @inode: inode the direct I/O happens on 3128 * 3129 * This is called once we've finished processing a direct I/O request, 3130 * and is used to wake up callers waiting for direct I/O to be quiesced. 3131 */ 3132static inline void inode_dio_begin(struct inode *inode) 3133{ 3134 atomic_inc(&inode->i_dio_count); 3135} 3136 3137/** 3138 * inode_dio_end - signal finish of a direct I/O requests 3139 * @inode: inode the direct I/O happens on 3140 * 3141 * This is called once we've finished processing a direct I/O request, 3142 * and is used to wake up callers waiting for direct I/O to be quiesced. 3143 */ 3144static inline void inode_dio_end(struct inode *inode) 3145{ 3146 if (atomic_dec_and_test(&inode->i_dio_count)) 3147 wake_up_bit(&inode->i_state, __I_DIO_WAKEUP); 3148} 3149 3150extern void inode_set_flags(struct inode *inode, unsigned int flags, 3151 unsigned int mask); 3152 3153extern const struct file_operations generic_ro_fops; 3154 3155#define special_file(m) (S_ISCHR(m)||S_ISBLK(m)||S_ISFIFO(m)||S_ISSOCK(m)) 3156 3157extern int readlink_copy(char __user *, int, const char *); 3158extern int page_readlink(struct dentry *, char __user *, int); 3159extern const char *page_get_link(struct dentry *, struct inode *, 3160 struct delayed_call *); 3161extern void page_put_link(void *); 3162extern int page_symlink(struct inode *inode, const char *symname, int len); 3163extern const struct inode_operations page_symlink_inode_operations; 3164extern void kfree_link(void *); 3165void generic_fillattr(struct mnt_idmap *, u32, struct inode *, struct kstat *); 3166void generic_fill_statx_attr(struct inode *inode, struct kstat *stat); 3167extern int vfs_getattr_nosec(const struct path *, struct kstat *, u32, unsigned int); 3168extern int vfs_getattr(const struct path *, struct kstat *, u32, unsigned int); 3169void __inode_add_bytes(struct inode *inode, loff_t bytes); 3170void inode_add_bytes(struct inode *inode, loff_t bytes); 3171void __inode_sub_bytes(struct inode *inode, loff_t bytes); 3172void inode_sub_bytes(struct inode *inode, loff_t bytes); 3173static inline loff_t __inode_get_bytes(struct inode *inode) 3174{ 3175 return (((loff_t)inode->i_blocks) << 9) + inode->i_bytes; 3176} 3177loff_t inode_get_bytes(struct inode *inode); 3178void inode_set_bytes(struct inode *inode, loff_t bytes); 3179const char *simple_get_link(struct dentry *, struct inode *, 3180 struct delayed_call *); 3181extern const struct inode_operations simple_symlink_inode_operations; 3182 3183extern int iterate_dir(struct file *, struct dir_context *); 3184 3185int vfs_fstatat(int dfd, const char __user *filename, struct kstat *stat, 3186 int flags); 3187int vfs_fstat(int fd, struct kstat *stat); 3188 3189static inline int vfs_stat(const char __user *filename, struct kstat *stat) 3190{ 3191 return vfs_fstatat(AT_FDCWD, filename, stat, 0); 3192} 3193static inline int vfs_lstat(const char __user *name, struct kstat *stat) 3194{ 3195 return vfs_fstatat(AT_FDCWD, name, stat, AT_SYMLINK_NOFOLLOW); 3196} 3197 3198extern const char *vfs_get_link(struct dentry *, struct delayed_call *); 3199extern int vfs_readlink(struct dentry *, char __user *, int); 3200 3201extern struct file_system_type *get_filesystem(struct file_system_type *fs); 3202extern void put_filesystem(struct file_system_type *fs); 3203extern struct file_system_type *get_fs_type(const char *name); 3204extern void drop_super(struct super_block *sb); 3205extern void drop_super_exclusive(struct super_block *sb); 3206extern void iterate_supers(void (*)(struct super_block *, void *), void *); 3207extern void iterate_supers_type(struct file_system_type *, 3208 void (*)(struct super_block *, void *), void *); 3209 3210extern int dcache_dir_open(struct inode *, struct file *); 3211extern int dcache_dir_close(struct inode *, struct file *); 3212extern loff_t dcache_dir_lseek(struct file *, loff_t, int); 3213extern int dcache_readdir(struct file *, struct dir_context *); 3214extern int simple_setattr(struct mnt_idmap *, struct dentry *, 3215 struct iattr *); 3216extern int simple_getattr(struct mnt_idmap *, const struct path *, 3217 struct kstat *, u32, unsigned int); 3218extern int simple_statfs(struct dentry *, struct kstatfs *); 3219extern int simple_open(struct inode *inode, struct file *file); 3220extern int simple_link(struct dentry *, struct inode *, struct dentry *); 3221extern int simple_unlink(struct inode *, struct dentry *); 3222extern int simple_rmdir(struct inode *, struct dentry *); 3223void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry, 3224 struct inode *new_dir, struct dentry *new_dentry); 3225extern int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry, 3226 struct inode *new_dir, struct dentry *new_dentry); 3227extern int simple_rename(struct mnt_idmap *, struct inode *, 3228 struct dentry *, struct inode *, struct dentry *, 3229 unsigned int); 3230extern void simple_recursive_removal(struct dentry *, 3231 void (*callback)(struct dentry *)); 3232extern int noop_fsync(struct file *, loff_t, loff_t, int); 3233extern ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter); 3234extern int simple_empty(struct dentry *); 3235extern int simple_write_begin(struct file *file, struct address_space *mapping, 3236 loff_t pos, unsigned len, 3237 struct page **pagep, void **fsdata); 3238extern const struct address_space_operations ram_aops; 3239extern int always_delete_dentry(const struct dentry *); 3240extern struct inode *alloc_anon_inode(struct super_block *); 3241extern int simple_nosetlease(struct file *, int, struct file_lock **, void **); 3242extern const struct dentry_operations simple_dentry_operations; 3243 3244extern struct dentry *simple_lookup(struct inode *, struct dentry *, unsigned int flags); 3245extern ssize_t generic_read_dir(struct file *, char __user *, size_t, loff_t *); 3246extern const struct file_operations simple_dir_operations; 3247extern const struct inode_operations simple_dir_inode_operations; 3248extern void make_empty_dir_inode(struct inode *inode); 3249extern bool is_empty_dir_inode(struct inode *inode); 3250struct tree_descr { const char *name; const struct file_operations *ops; int mode; }; 3251struct dentry *d_alloc_name(struct dentry *, const char *); 3252extern int simple_fill_super(struct super_block *, unsigned long, 3253 const struct tree_descr *); 3254extern int simple_pin_fs(struct file_system_type *, struct vfsmount **mount, int *count); 3255extern void simple_release_fs(struct vfsmount **mount, int *count); 3256 3257extern ssize_t simple_read_from_buffer(void __user *to, size_t count, 3258 loff_t *ppos, const void *from, size_t available); 3259extern ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, 3260 const void __user *from, size_t count); 3261 3262struct offset_ctx { 3263 struct xarray xa; 3264 u32 next_offset; 3265}; 3266 3267void simple_offset_init(struct offset_ctx *octx); 3268int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry); 3269void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry); 3270int simple_offset_rename_exchange(struct inode *old_dir, 3271 struct dentry *old_dentry, 3272 struct inode *new_dir, 3273 struct dentry *new_dentry); 3274void simple_offset_destroy(struct offset_ctx *octx); 3275 3276extern const struct file_operations simple_offset_dir_operations; 3277 3278extern int __generic_file_fsync(struct file *, loff_t, loff_t, int); 3279extern int generic_file_fsync(struct file *, loff_t, loff_t, int); 3280 3281extern int generic_check_addressable(unsigned, u64); 3282 3283extern void generic_set_encrypted_ci_d_ops(struct dentry *dentry); 3284 3285int may_setattr(struct mnt_idmap *idmap, struct inode *inode, 3286 unsigned int ia_valid); 3287int setattr_prepare(struct mnt_idmap *, struct dentry *, struct iattr *); 3288extern int inode_newsize_ok(const struct inode *, loff_t offset); 3289void setattr_copy(struct mnt_idmap *, struct inode *inode, 3290 const struct iattr *attr); 3291 3292extern int file_update_time(struct file *file); 3293 3294static inline bool vma_is_dax(const struct vm_area_struct *vma) 3295{ 3296 return vma->vm_file && IS_DAX(vma->vm_file->f_mapping->host); 3297} 3298 3299static inline bool vma_is_fsdax(struct vm_area_struct *vma) 3300{ 3301 struct inode *inode; 3302 3303 if (!IS_ENABLED(CONFIG_FS_DAX) || !vma->vm_file) 3304 return false; 3305 if (!vma_is_dax(vma)) 3306 return false; 3307 inode = file_inode(vma->vm_file); 3308 if (S_ISCHR(inode->i_mode)) 3309 return false; /* device-dax */ 3310 return true; 3311} 3312 3313static inline int iocb_flags(struct file *file) 3314{ 3315 int res = 0; 3316 if (file->f_flags & O_APPEND) 3317 res |= IOCB_APPEND; 3318 if (file->f_flags & O_DIRECT) 3319 res |= IOCB_DIRECT; 3320 if (file->f_flags & O_DSYNC) 3321 res |= IOCB_DSYNC; 3322 if (file->f_flags & __O_SYNC) 3323 res |= IOCB_SYNC; 3324 return res; 3325} 3326 3327static inline int kiocb_set_rw_flags(struct kiocb *ki, rwf_t flags) 3328{ 3329 int kiocb_flags = 0; 3330 3331 /* make sure there's no overlap between RWF and private IOCB flags */ 3332 BUILD_BUG_ON((__force int) RWF_SUPPORTED & IOCB_EVENTFD); 3333 3334 if (!flags) 3335 return 0; 3336 if (unlikely(flags & ~RWF_SUPPORTED)) 3337 return -EOPNOTSUPP; 3338 3339 if (flags & RWF_NOWAIT) { 3340 if (!(ki->ki_filp->f_mode & FMODE_NOWAIT)) 3341 return -EOPNOTSUPP; 3342 kiocb_flags |= IOCB_NOIO; 3343 } 3344 kiocb_flags |= (__force int) (flags & RWF_SUPPORTED); 3345 if (flags & RWF_SYNC) 3346 kiocb_flags |= IOCB_DSYNC; 3347 3348 ki->ki_flags |= kiocb_flags; 3349 return 0; 3350} 3351 3352static inline ino_t parent_ino(struct dentry *dentry) 3353{ 3354 ino_t res; 3355 3356 /* 3357 * Don't strictly need d_lock here? If the parent ino could change 3358 * then surely we'd have a deeper race in the caller? 3359 */ 3360 spin_lock(&dentry->d_lock); 3361 res = dentry->d_parent->d_inode->i_ino; 3362 spin_unlock(&dentry->d_lock); 3363 return res; 3364} 3365 3366/* Transaction based IO helpers */ 3367 3368/* 3369 * An argresp is stored in an allocated page and holds the 3370 * size of the argument or response, along with its content 3371 */ 3372struct simple_transaction_argresp { 3373 ssize_t size; 3374 char data[]; 3375}; 3376 3377#define SIMPLE_TRANSACTION_LIMIT (PAGE_SIZE - sizeof(struct simple_transaction_argresp)) 3378 3379char *simple_transaction_get(struct file *file, const char __user *buf, 3380 size_t size); 3381ssize_t simple_transaction_read(struct file *file, char __user *buf, 3382 size_t size, loff_t *pos); 3383int simple_transaction_release(struct inode *inode, struct file *file); 3384 3385void simple_transaction_set(struct file *file, size_t n); 3386 3387/* 3388 * simple attribute files 3389 * 3390 * These attributes behave similar to those in sysfs: 3391 * 3392 * Writing to an attribute immediately sets a value, an open file can be 3393 * written to multiple times. 3394 * 3395 * Reading from an attribute creates a buffer from the value that might get 3396 * read with multiple read calls. When the attribute has been read 3397 * completely, no further read calls are possible until the file is opened 3398 * again. 3399 * 3400 * All attributes contain a text representation of a numeric value 3401 * that are accessed with the get() and set() functions. 3402 */ 3403#define DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, __is_signed) \ 3404static int __fops ## _open(struct inode *inode, struct file *file) \ 3405{ \ 3406 __simple_attr_check_format(__fmt, 0ull); \ 3407 return simple_attr_open(inode, file, __get, __set, __fmt); \ 3408} \ 3409static const struct file_operations __fops = { \ 3410 .owner = THIS_MODULE, \ 3411 .open = __fops ## _open, \ 3412 .release = simple_attr_release, \ 3413 .read = simple_attr_read, \ 3414 .write = (__is_signed) ? simple_attr_write_signed : simple_attr_write, \ 3415 .llseek = generic_file_llseek, \ 3416} 3417 3418#define DEFINE_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt) \ 3419 DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, false) 3420 3421#define DEFINE_SIMPLE_ATTRIBUTE_SIGNED(__fops, __get, __set, __fmt) \ 3422 DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, true) 3423 3424static inline __printf(1, 2) 3425void __simple_attr_check_format(const char *fmt, ...) 3426{ 3427 /* don't do anything, just let the compiler check the arguments; */ 3428} 3429 3430int simple_attr_open(struct inode *inode, struct file *file, 3431 int (*get)(void *, u64 *), int (*set)(void *, u64), 3432 const char *fmt); 3433int simple_attr_release(struct inode *inode, struct file *file); 3434ssize_t simple_attr_read(struct file *file, char __user *buf, 3435 size_t len, loff_t *ppos); 3436ssize_t simple_attr_write(struct file *file, const char __user *buf, 3437 size_t len, loff_t *ppos); 3438ssize_t simple_attr_write_signed(struct file *file, const char __user *buf, 3439 size_t len, loff_t *ppos); 3440 3441struct ctl_table; 3442int __init list_bdev_fs_names(char *buf, size_t size); 3443 3444#define __FMODE_EXEC ((__force int) FMODE_EXEC) 3445#define __FMODE_NONOTIFY ((__force int) FMODE_NONOTIFY) 3446 3447#define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE]) 3448#define OPEN_FMODE(flag) ((__force fmode_t)(((flag + 1) & O_ACCMODE) | \ 3449 (flag & __FMODE_NONOTIFY))) 3450 3451static inline bool is_sxid(umode_t mode) 3452{ 3453 return mode & (S_ISUID | S_ISGID); 3454} 3455 3456static inline int check_sticky(struct mnt_idmap *idmap, 3457 struct inode *dir, struct inode *inode) 3458{ 3459 if (!(dir->i_mode & S_ISVTX)) 3460 return 0; 3461 3462 return __check_sticky(idmap, dir, inode); 3463} 3464 3465static inline void inode_has_no_xattr(struct inode *inode) 3466{ 3467 if (!is_sxid(inode->i_mode) && (inode->i_sb->s_flags & SB_NOSEC)) 3468 inode->i_flags |= S_NOSEC; 3469} 3470 3471static inline bool is_root_inode(struct inode *inode) 3472{ 3473 return inode == inode->i_sb->s_root->d_inode; 3474} 3475 3476static inline bool dir_emit(struct dir_context *ctx, 3477 const char *name, int namelen, 3478 u64 ino, unsigned type) 3479{ 3480 return ctx->actor(ctx, name, namelen, ctx->pos, ino, type); 3481} 3482static inline bool dir_emit_dot(struct file *file, struct dir_context *ctx) 3483{ 3484 return ctx->actor(ctx, ".", 1, ctx->pos, 3485 file->f_path.dentry->d_inode->i_ino, DT_DIR); 3486} 3487static inline bool dir_emit_dotdot(struct file *file, struct dir_context *ctx) 3488{ 3489 return ctx->actor(ctx, "..", 2, ctx->pos, 3490 parent_ino(file->f_path.dentry), DT_DIR); 3491} 3492static inline bool dir_emit_dots(struct file *file, struct dir_context *ctx) 3493{ 3494 if (ctx->pos == 0) { 3495 if (!dir_emit_dot(file, ctx)) 3496 return false; 3497 ctx->pos = 1; 3498 } 3499 if (ctx->pos == 1) { 3500 if (!dir_emit_dotdot(file, ctx)) 3501 return false; 3502 ctx->pos = 2; 3503 } 3504 return true; 3505} 3506static inline bool dir_relax(struct inode *inode) 3507{ 3508 inode_unlock(inode); 3509 inode_lock(inode); 3510 return !IS_DEADDIR(inode); 3511} 3512 3513static inline bool dir_relax_shared(struct inode *inode) 3514{ 3515 inode_unlock_shared(inode); 3516 inode_lock_shared(inode); 3517 return !IS_DEADDIR(inode); 3518} 3519 3520extern bool path_noexec(const struct path *path); 3521extern void inode_nohighmem(struct inode *inode); 3522 3523/* mm/fadvise.c */ 3524extern int vfs_fadvise(struct file *file, loff_t offset, loff_t len, 3525 int advice); 3526extern int generic_fadvise(struct file *file, loff_t offset, loff_t len, 3527 int advice); 3528 3529#endif /* _LINUX_FS_H */