Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/proc/base.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * proc base directory handling functions
8 *
9 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10 * Instead of using magical inumbers to determine the kind of object
11 * we allocate and fill in-core inodes upon lookup. They don't even
12 * go into icache. We cache the reference to task_struct upon lookup too.
13 * Eventually it should become a filesystem in its own. We don't use the
14 * rest of procfs anymore.
15 *
16 *
17 * Changelog:
18 * 17-Jan-2005
19 * Allan Bezerra
20 * Bruna Moreira <bruna.moreira@indt.org.br>
21 * Edjard Mota <edjard.mota@indt.org.br>
22 * Ilias Biris <ilias.biris@indt.org.br>
23 * Mauricio Lin <mauricio.lin@indt.org.br>
24 *
25 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26 *
27 * A new process specific entry (smaps) included in /proc. It shows the
28 * size of rss for each memory area. The maps entry lacks information
29 * about physical memory size (rss) for each mapped file, i.e.,
30 * rss information for executables and library files.
31 * This additional information is useful for any tools that need to know
32 * about physical memory consumption for a process specific library.
33 *
34 * Changelog:
35 * 21-Feb-2005
36 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37 * Pud inclusion in the page table walking.
38 *
39 * ChangeLog:
40 * 10-Mar-2005
41 * 10LE Instituto Nokia de Tecnologia - INdT:
42 * A better way to walks through the page table as suggested by Hugh Dickins.
43 *
44 * Simo Piiroinen <simo.piiroinen@nokia.com>:
45 * Smaps information related to shared, private, clean and dirty pages.
46 *
47 * Paul Mundt <paul.mundt@nokia.com>:
48 * Overall revision about smaps.
49 */
50
51#include <linux/uaccess.h>
52
53#include <linux/errno.h>
54#include <linux/time.h>
55#include <linux/proc_fs.h>
56#include <linux/stat.h>
57#include <linux/task_io_accounting_ops.h>
58#include <linux/init.h>
59#include <linux/capability.h>
60#include <linux/file.h>
61#include <linux/fdtable.h>
62#include <linux/generic-radix-tree.h>
63#include <linux/string.h>
64#include <linux/seq_file.h>
65#include <linux/namei.h>
66#include <linux/mnt_namespace.h>
67#include <linux/mm.h>
68#include <linux/swap.h>
69#include <linux/rcupdate.h>
70#include <linux/kallsyms.h>
71#include <linux/stacktrace.h>
72#include <linux/resource.h>
73#include <linux/module.h>
74#include <linux/mount.h>
75#include <linux/security.h>
76#include <linux/ptrace.h>
77#include <linux/printk.h>
78#include <linux/cache.h>
79#include <linux/cgroup.h>
80#include <linux/cpuset.h>
81#include <linux/audit.h>
82#include <linux/poll.h>
83#include <linux/nsproxy.h>
84#include <linux/oom.h>
85#include <linux/elf.h>
86#include <linux/pid_namespace.h>
87#include <linux/user_namespace.h>
88#include <linux/fs_struct.h>
89#include <linux/slab.h>
90#include <linux/sched/autogroup.h>
91#include <linux/sched/mm.h>
92#include <linux/sched/coredump.h>
93#include <linux/sched/debug.h>
94#include <linux/sched/stat.h>
95#include <linux/posix-timers.h>
96#include <linux/time_namespace.h>
97#include <linux/resctrl.h>
98#include <linux/cn_proc.h>
99#include <linux/ksm.h>
100#include <uapi/linux/lsm.h>
101#include <trace/events/oom.h>
102#include "internal.h"
103#include "fd.h"
104
105#include "../../lib/kstrtox.h"
106
107/* NOTE:
108 * Implementing inode permission operations in /proc is almost
109 * certainly an error. Permission checks need to happen during
110 * each system call not at open time. The reason is that most of
111 * what we wish to check for permissions in /proc varies at runtime.
112 *
113 * The classic example of a problem is opening file descriptors
114 * in /proc for a task before it execs a suid executable.
115 */
116
117static u8 nlink_tid __ro_after_init;
118static u8 nlink_tgid __ro_after_init;
119
120struct pid_entry {
121 const char *name;
122 unsigned int len;
123 umode_t mode;
124 const struct inode_operations *iop;
125 const struct file_operations *fop;
126 union proc_op op;
127};
128
129#define NOD(NAME, MODE, IOP, FOP, OP) { \
130 .name = (NAME), \
131 .len = sizeof(NAME) - 1, \
132 .mode = MODE, \
133 .iop = IOP, \
134 .fop = FOP, \
135 .op = OP, \
136}
137
138#define DIR(NAME, MODE, iops, fops) \
139 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
140#define LNK(NAME, get_link) \
141 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
142 &proc_pid_link_inode_operations, NULL, \
143 { .proc_get_link = get_link } )
144#define REG(NAME, MODE, fops) \
145 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
146#define ONE(NAME, MODE, show) \
147 NOD(NAME, (S_IFREG|(MODE)), \
148 NULL, &proc_single_file_operations, \
149 { .proc_show = show } )
150#define ATTR(LSMID, NAME, MODE) \
151 NOD(NAME, (S_IFREG|(MODE)), \
152 NULL, &proc_pid_attr_operations, \
153 { .lsmid = LSMID })
154
155/*
156 * Count the number of hardlinks for the pid_entry table, excluding the .
157 * and .. links.
158 */
159static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
160 unsigned int n)
161{
162 unsigned int i;
163 unsigned int count;
164
165 count = 2;
166 for (i = 0; i < n; ++i) {
167 if (S_ISDIR(entries[i].mode))
168 ++count;
169 }
170
171 return count;
172}
173
174static int get_task_root(struct task_struct *task, struct path *root)
175{
176 int result = -ENOENT;
177
178 task_lock(task);
179 if (task->fs) {
180 get_fs_root(task->fs, root);
181 result = 0;
182 }
183 task_unlock(task);
184 return result;
185}
186
187static int proc_cwd_link(struct dentry *dentry, struct path *path)
188{
189 struct task_struct *task = get_proc_task(d_inode(dentry));
190 int result = -ENOENT;
191
192 if (task) {
193 task_lock(task);
194 if (task->fs) {
195 get_fs_pwd(task->fs, path);
196 result = 0;
197 }
198 task_unlock(task);
199 put_task_struct(task);
200 }
201 return result;
202}
203
204static int proc_root_link(struct dentry *dentry, struct path *path)
205{
206 struct task_struct *task = get_proc_task(d_inode(dentry));
207 int result = -ENOENT;
208
209 if (task) {
210 result = get_task_root(task, path);
211 put_task_struct(task);
212 }
213 return result;
214}
215
216/*
217 * If the user used setproctitle(), we just get the string from
218 * user space at arg_start, and limit it to a maximum of one page.
219 */
220static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf,
221 size_t count, unsigned long pos,
222 unsigned long arg_start)
223{
224 char *page;
225 int ret, got;
226
227 if (pos >= PAGE_SIZE)
228 return 0;
229
230 page = (char *)__get_free_page(GFP_KERNEL);
231 if (!page)
232 return -ENOMEM;
233
234 ret = 0;
235 got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON);
236 if (got > 0) {
237 int len = strnlen(page, got);
238
239 /* Include the NUL character if it was found */
240 if (len < got)
241 len++;
242
243 if (len > pos) {
244 len -= pos;
245 if (len > count)
246 len = count;
247 len -= copy_to_user(buf, page+pos, len);
248 if (!len)
249 len = -EFAULT;
250 ret = len;
251 }
252 }
253 free_page((unsigned long)page);
254 return ret;
255}
256
257static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
258 size_t count, loff_t *ppos)
259{
260 unsigned long arg_start, arg_end, env_start, env_end;
261 unsigned long pos, len;
262 char *page, c;
263
264 /* Check if process spawned far enough to have cmdline. */
265 if (!mm->env_end)
266 return 0;
267
268 spin_lock(&mm->arg_lock);
269 arg_start = mm->arg_start;
270 arg_end = mm->arg_end;
271 env_start = mm->env_start;
272 env_end = mm->env_end;
273 spin_unlock(&mm->arg_lock);
274
275 if (arg_start >= arg_end)
276 return 0;
277
278 /*
279 * We allow setproctitle() to overwrite the argument
280 * strings, and overflow past the original end. But
281 * only when it overflows into the environment area.
282 */
283 if (env_start != arg_end || env_end < env_start)
284 env_start = env_end = arg_end;
285 len = env_end - arg_start;
286
287 /* We're not going to care if "*ppos" has high bits set */
288 pos = *ppos;
289 if (pos >= len)
290 return 0;
291 if (count > len - pos)
292 count = len - pos;
293 if (!count)
294 return 0;
295
296 /*
297 * Magical special case: if the argv[] end byte is not
298 * zero, the user has overwritten it with setproctitle(3).
299 *
300 * Possible future enhancement: do this only once when
301 * pos is 0, and set a flag in the 'struct file'.
302 */
303 if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c)
304 return get_mm_proctitle(mm, buf, count, pos, arg_start);
305
306 /*
307 * For the non-setproctitle() case we limit things strictly
308 * to the [arg_start, arg_end[ range.
309 */
310 pos += arg_start;
311 if (pos < arg_start || pos >= arg_end)
312 return 0;
313 if (count > arg_end - pos)
314 count = arg_end - pos;
315
316 page = (char *)__get_free_page(GFP_KERNEL);
317 if (!page)
318 return -ENOMEM;
319
320 len = 0;
321 while (count) {
322 int got;
323 size_t size = min_t(size_t, PAGE_SIZE, count);
324
325 got = access_remote_vm(mm, pos, page, size, FOLL_ANON);
326 if (got <= 0)
327 break;
328 got -= copy_to_user(buf, page, got);
329 if (unlikely(!got)) {
330 if (!len)
331 len = -EFAULT;
332 break;
333 }
334 pos += got;
335 buf += got;
336 len += got;
337 count -= got;
338 }
339
340 free_page((unsigned long)page);
341 return len;
342}
343
344static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
345 size_t count, loff_t *pos)
346{
347 struct mm_struct *mm;
348 ssize_t ret;
349
350 mm = get_task_mm(tsk);
351 if (!mm)
352 return 0;
353
354 ret = get_mm_cmdline(mm, buf, count, pos);
355 mmput(mm);
356 return ret;
357}
358
359static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
360 size_t count, loff_t *pos)
361{
362 struct task_struct *tsk;
363 ssize_t ret;
364
365 BUG_ON(*pos < 0);
366
367 tsk = get_proc_task(file_inode(file));
368 if (!tsk)
369 return -ESRCH;
370 ret = get_task_cmdline(tsk, buf, count, pos);
371 put_task_struct(tsk);
372 if (ret > 0)
373 *pos += ret;
374 return ret;
375}
376
377static const struct file_operations proc_pid_cmdline_ops = {
378 .read = proc_pid_cmdline_read,
379 .llseek = generic_file_llseek,
380};
381
382#ifdef CONFIG_KALLSYMS
383/*
384 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
385 * Returns the resolved symbol. If that fails, simply return the address.
386 */
387static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
388 struct pid *pid, struct task_struct *task)
389{
390 unsigned long wchan;
391 char symname[KSYM_NAME_LEN];
392
393 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
394 goto print0;
395
396 wchan = get_wchan(task);
397 if (wchan && !lookup_symbol_name(wchan, symname)) {
398 seq_puts(m, symname);
399 return 0;
400 }
401
402print0:
403 seq_putc(m, '0');
404 return 0;
405}
406#endif /* CONFIG_KALLSYMS */
407
408static int lock_trace(struct task_struct *task)
409{
410 int err = down_read_killable(&task->signal->exec_update_lock);
411 if (err)
412 return err;
413 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
414 up_read(&task->signal->exec_update_lock);
415 return -EPERM;
416 }
417 return 0;
418}
419
420static void unlock_trace(struct task_struct *task)
421{
422 up_read(&task->signal->exec_update_lock);
423}
424
425#ifdef CONFIG_STACKTRACE
426
427#define MAX_STACK_TRACE_DEPTH 64
428
429static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
430 struct pid *pid, struct task_struct *task)
431{
432 unsigned long *entries;
433 int err;
434
435 /*
436 * The ability to racily run the kernel stack unwinder on a running task
437 * and then observe the unwinder output is scary; while it is useful for
438 * debugging kernel issues, it can also allow an attacker to leak kernel
439 * stack contents.
440 * Doing this in a manner that is at least safe from races would require
441 * some work to ensure that the remote task can not be scheduled; and
442 * even then, this would still expose the unwinder as local attack
443 * surface.
444 * Therefore, this interface is restricted to root.
445 */
446 if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
447 return -EACCES;
448
449 entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
450 GFP_KERNEL);
451 if (!entries)
452 return -ENOMEM;
453
454 err = lock_trace(task);
455 if (!err) {
456 unsigned int i, nr_entries;
457
458 nr_entries = stack_trace_save_tsk(task, entries,
459 MAX_STACK_TRACE_DEPTH, 0);
460
461 for (i = 0; i < nr_entries; i++) {
462 seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
463 }
464
465 unlock_trace(task);
466 }
467 kfree(entries);
468
469 return err;
470}
471#endif
472
473#ifdef CONFIG_SCHED_INFO
474/*
475 * Provides /proc/PID/schedstat
476 */
477static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
478 struct pid *pid, struct task_struct *task)
479{
480 if (unlikely(!sched_info_on()))
481 seq_puts(m, "0 0 0\n");
482 else
483 seq_printf(m, "%llu %llu %lu\n",
484 (unsigned long long)task->se.sum_exec_runtime,
485 (unsigned long long)task->sched_info.run_delay,
486 task->sched_info.pcount);
487
488 return 0;
489}
490#endif
491
492#ifdef CONFIG_LATENCYTOP
493static int lstats_show_proc(struct seq_file *m, void *v)
494{
495 int i;
496 struct inode *inode = m->private;
497 struct task_struct *task = get_proc_task(inode);
498
499 if (!task)
500 return -ESRCH;
501 seq_puts(m, "Latency Top version : v0.1\n");
502 for (i = 0; i < LT_SAVECOUNT; i++) {
503 struct latency_record *lr = &task->latency_record[i];
504 if (lr->backtrace[0]) {
505 int q;
506 seq_printf(m, "%i %li %li",
507 lr->count, lr->time, lr->max);
508 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
509 unsigned long bt = lr->backtrace[q];
510
511 if (!bt)
512 break;
513 seq_printf(m, " %ps", (void *)bt);
514 }
515 seq_putc(m, '\n');
516 }
517
518 }
519 put_task_struct(task);
520 return 0;
521}
522
523static int lstats_open(struct inode *inode, struct file *file)
524{
525 return single_open(file, lstats_show_proc, inode);
526}
527
528static ssize_t lstats_write(struct file *file, const char __user *buf,
529 size_t count, loff_t *offs)
530{
531 struct task_struct *task = get_proc_task(file_inode(file));
532
533 if (!task)
534 return -ESRCH;
535 clear_tsk_latency_tracing(task);
536 put_task_struct(task);
537
538 return count;
539}
540
541static const struct file_operations proc_lstats_operations = {
542 .open = lstats_open,
543 .read = seq_read,
544 .write = lstats_write,
545 .llseek = seq_lseek,
546 .release = single_release,
547};
548
549#endif
550
551static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
552 struct pid *pid, struct task_struct *task)
553{
554 unsigned long totalpages = totalram_pages() + total_swap_pages;
555 unsigned long points = 0;
556 long badness;
557
558 badness = oom_badness(task, totalpages);
559 /*
560 * Special case OOM_SCORE_ADJ_MIN for all others scale the
561 * badness value into [0, 2000] range which we have been
562 * exporting for a long time so userspace might depend on it.
563 */
564 if (badness != LONG_MIN)
565 points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3;
566
567 seq_printf(m, "%lu\n", points);
568
569 return 0;
570}
571
572struct limit_names {
573 const char *name;
574 const char *unit;
575};
576
577static const struct limit_names lnames[RLIM_NLIMITS] = {
578 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
579 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
580 [RLIMIT_DATA] = {"Max data size", "bytes"},
581 [RLIMIT_STACK] = {"Max stack size", "bytes"},
582 [RLIMIT_CORE] = {"Max core file size", "bytes"},
583 [RLIMIT_RSS] = {"Max resident set", "bytes"},
584 [RLIMIT_NPROC] = {"Max processes", "processes"},
585 [RLIMIT_NOFILE] = {"Max open files", "files"},
586 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
587 [RLIMIT_AS] = {"Max address space", "bytes"},
588 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
589 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
590 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
591 [RLIMIT_NICE] = {"Max nice priority", NULL},
592 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
593 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
594};
595
596/* Display limits for a process */
597static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
598 struct pid *pid, struct task_struct *task)
599{
600 unsigned int i;
601 unsigned long flags;
602
603 struct rlimit rlim[RLIM_NLIMITS];
604
605 if (!lock_task_sighand(task, &flags))
606 return 0;
607 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
608 unlock_task_sighand(task, &flags);
609
610 /*
611 * print the file header
612 */
613 seq_puts(m, "Limit "
614 "Soft Limit "
615 "Hard Limit "
616 "Units \n");
617
618 for (i = 0; i < RLIM_NLIMITS; i++) {
619 if (rlim[i].rlim_cur == RLIM_INFINITY)
620 seq_printf(m, "%-25s %-20s ",
621 lnames[i].name, "unlimited");
622 else
623 seq_printf(m, "%-25s %-20lu ",
624 lnames[i].name, rlim[i].rlim_cur);
625
626 if (rlim[i].rlim_max == RLIM_INFINITY)
627 seq_printf(m, "%-20s ", "unlimited");
628 else
629 seq_printf(m, "%-20lu ", rlim[i].rlim_max);
630
631 if (lnames[i].unit)
632 seq_printf(m, "%-10s\n", lnames[i].unit);
633 else
634 seq_putc(m, '\n');
635 }
636
637 return 0;
638}
639
640#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
641static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
642 struct pid *pid, struct task_struct *task)
643{
644 struct syscall_info info;
645 u64 *args = &info.data.args[0];
646 int res;
647
648 res = lock_trace(task);
649 if (res)
650 return res;
651
652 if (task_current_syscall(task, &info))
653 seq_puts(m, "running\n");
654 else if (info.data.nr < 0)
655 seq_printf(m, "%d 0x%llx 0x%llx\n",
656 info.data.nr, info.sp, info.data.instruction_pointer);
657 else
658 seq_printf(m,
659 "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
660 info.data.nr,
661 args[0], args[1], args[2], args[3], args[4], args[5],
662 info.sp, info.data.instruction_pointer);
663 unlock_trace(task);
664
665 return 0;
666}
667#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
668
669/************************************************************************/
670/* Here the fs part begins */
671/************************************************************************/
672
673/* permission checks */
674static bool proc_fd_access_allowed(struct inode *inode)
675{
676 struct task_struct *task;
677 bool allowed = false;
678 /* Allow access to a task's file descriptors if it is us or we
679 * may use ptrace attach to the process and find out that
680 * information.
681 */
682 task = get_proc_task(inode);
683 if (task) {
684 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
685 put_task_struct(task);
686 }
687 return allowed;
688}
689
690int proc_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
691 struct iattr *attr)
692{
693 int error;
694 struct inode *inode = d_inode(dentry);
695
696 if (attr->ia_valid & ATTR_MODE)
697 return -EPERM;
698
699 error = setattr_prepare(&nop_mnt_idmap, dentry, attr);
700 if (error)
701 return error;
702
703 setattr_copy(&nop_mnt_idmap, inode, attr);
704 return 0;
705}
706
707/*
708 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
709 * or euid/egid (for hide_pid_min=2)?
710 */
711static bool has_pid_permissions(struct proc_fs_info *fs_info,
712 struct task_struct *task,
713 enum proc_hidepid hide_pid_min)
714{
715 /*
716 * If 'hidpid' mount option is set force a ptrace check,
717 * we indicate that we are using a filesystem syscall
718 * by passing PTRACE_MODE_READ_FSCREDS
719 */
720 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE)
721 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
722
723 if (fs_info->hide_pid < hide_pid_min)
724 return true;
725 if (in_group_p(fs_info->pid_gid))
726 return true;
727 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
728}
729
730
731static int proc_pid_permission(struct mnt_idmap *idmap,
732 struct inode *inode, int mask)
733{
734 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
735 struct task_struct *task;
736 bool has_perms;
737
738 task = get_proc_task(inode);
739 if (!task)
740 return -ESRCH;
741 has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS);
742 put_task_struct(task);
743
744 if (!has_perms) {
745 if (fs_info->hide_pid == HIDEPID_INVISIBLE) {
746 /*
747 * Let's make getdents(), stat(), and open()
748 * consistent with each other. If a process
749 * may not stat() a file, it shouldn't be seen
750 * in procfs at all.
751 */
752 return -ENOENT;
753 }
754
755 return -EPERM;
756 }
757 return generic_permission(&nop_mnt_idmap, inode, mask);
758}
759
760
761
762static const struct inode_operations proc_def_inode_operations = {
763 .setattr = proc_setattr,
764};
765
766static int proc_single_show(struct seq_file *m, void *v)
767{
768 struct inode *inode = m->private;
769 struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
770 struct pid *pid = proc_pid(inode);
771 struct task_struct *task;
772 int ret;
773
774 task = get_pid_task(pid, PIDTYPE_PID);
775 if (!task)
776 return -ESRCH;
777
778 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
779
780 put_task_struct(task);
781 return ret;
782}
783
784static int proc_single_open(struct inode *inode, struct file *filp)
785{
786 return single_open(filp, proc_single_show, inode);
787}
788
789static const struct file_operations proc_single_file_operations = {
790 .open = proc_single_open,
791 .read = seq_read,
792 .llseek = seq_lseek,
793 .release = single_release,
794};
795
796
797struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
798{
799 struct task_struct *task = get_proc_task(inode);
800 struct mm_struct *mm = ERR_PTR(-ESRCH);
801
802 if (task) {
803 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
804 put_task_struct(task);
805
806 if (!IS_ERR_OR_NULL(mm)) {
807 /* ensure this mm_struct can't be freed */
808 mmgrab(mm);
809 /* but do not pin its memory */
810 mmput(mm);
811 }
812 }
813
814 return mm;
815}
816
817static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
818{
819 struct mm_struct *mm = proc_mem_open(inode, mode);
820
821 if (IS_ERR(mm))
822 return PTR_ERR(mm);
823
824 file->private_data = mm;
825 return 0;
826}
827
828static int mem_open(struct inode *inode, struct file *file)
829{
830 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
831
832 /* OK to pass negative loff_t, we can catch out-of-range */
833 file->f_mode |= FMODE_UNSIGNED_OFFSET;
834
835 return ret;
836}
837
838static ssize_t mem_rw(struct file *file, char __user *buf,
839 size_t count, loff_t *ppos, int write)
840{
841 struct mm_struct *mm = file->private_data;
842 unsigned long addr = *ppos;
843 ssize_t copied;
844 char *page;
845 unsigned int flags;
846
847 if (!mm)
848 return 0;
849
850 page = (char *)__get_free_page(GFP_KERNEL);
851 if (!page)
852 return -ENOMEM;
853
854 copied = 0;
855 if (!mmget_not_zero(mm))
856 goto free;
857
858 flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
859
860 while (count > 0) {
861 size_t this_len = min_t(size_t, count, PAGE_SIZE);
862
863 if (write && copy_from_user(page, buf, this_len)) {
864 copied = -EFAULT;
865 break;
866 }
867
868 this_len = access_remote_vm(mm, addr, page, this_len, flags);
869 if (!this_len) {
870 if (!copied)
871 copied = -EIO;
872 break;
873 }
874
875 if (!write && copy_to_user(buf, page, this_len)) {
876 copied = -EFAULT;
877 break;
878 }
879
880 buf += this_len;
881 addr += this_len;
882 copied += this_len;
883 count -= this_len;
884 }
885 *ppos = addr;
886
887 mmput(mm);
888free:
889 free_page((unsigned long) page);
890 return copied;
891}
892
893static ssize_t mem_read(struct file *file, char __user *buf,
894 size_t count, loff_t *ppos)
895{
896 return mem_rw(file, buf, count, ppos, 0);
897}
898
899static ssize_t mem_write(struct file *file, const char __user *buf,
900 size_t count, loff_t *ppos)
901{
902 return mem_rw(file, (char __user*)buf, count, ppos, 1);
903}
904
905loff_t mem_lseek(struct file *file, loff_t offset, int orig)
906{
907 switch (orig) {
908 case 0:
909 file->f_pos = offset;
910 break;
911 case 1:
912 file->f_pos += offset;
913 break;
914 default:
915 return -EINVAL;
916 }
917 force_successful_syscall_return();
918 return file->f_pos;
919}
920
921static int mem_release(struct inode *inode, struct file *file)
922{
923 struct mm_struct *mm = file->private_data;
924 if (mm)
925 mmdrop(mm);
926 return 0;
927}
928
929static const struct file_operations proc_mem_operations = {
930 .llseek = mem_lseek,
931 .read = mem_read,
932 .write = mem_write,
933 .open = mem_open,
934 .release = mem_release,
935};
936
937static int environ_open(struct inode *inode, struct file *file)
938{
939 return __mem_open(inode, file, PTRACE_MODE_READ);
940}
941
942static ssize_t environ_read(struct file *file, char __user *buf,
943 size_t count, loff_t *ppos)
944{
945 char *page;
946 unsigned long src = *ppos;
947 int ret = 0;
948 struct mm_struct *mm = file->private_data;
949 unsigned long env_start, env_end;
950
951 /* Ensure the process spawned far enough to have an environment. */
952 if (!mm || !mm->env_end)
953 return 0;
954
955 page = (char *)__get_free_page(GFP_KERNEL);
956 if (!page)
957 return -ENOMEM;
958
959 ret = 0;
960 if (!mmget_not_zero(mm))
961 goto free;
962
963 spin_lock(&mm->arg_lock);
964 env_start = mm->env_start;
965 env_end = mm->env_end;
966 spin_unlock(&mm->arg_lock);
967
968 while (count > 0) {
969 size_t this_len, max_len;
970 int retval;
971
972 if (src >= (env_end - env_start))
973 break;
974
975 this_len = env_end - (env_start + src);
976
977 max_len = min_t(size_t, PAGE_SIZE, count);
978 this_len = min(max_len, this_len);
979
980 retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
981
982 if (retval <= 0) {
983 ret = retval;
984 break;
985 }
986
987 if (copy_to_user(buf, page, retval)) {
988 ret = -EFAULT;
989 break;
990 }
991
992 ret += retval;
993 src += retval;
994 buf += retval;
995 count -= retval;
996 }
997 *ppos = src;
998 mmput(mm);
999
1000free:
1001 free_page((unsigned long) page);
1002 return ret;
1003}
1004
1005static const struct file_operations proc_environ_operations = {
1006 .open = environ_open,
1007 .read = environ_read,
1008 .llseek = generic_file_llseek,
1009 .release = mem_release,
1010};
1011
1012static int auxv_open(struct inode *inode, struct file *file)
1013{
1014 return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
1015}
1016
1017static ssize_t auxv_read(struct file *file, char __user *buf,
1018 size_t count, loff_t *ppos)
1019{
1020 struct mm_struct *mm = file->private_data;
1021 unsigned int nwords = 0;
1022
1023 if (!mm)
1024 return 0;
1025 do {
1026 nwords += 2;
1027 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1028 return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1029 nwords * sizeof(mm->saved_auxv[0]));
1030}
1031
1032static const struct file_operations proc_auxv_operations = {
1033 .open = auxv_open,
1034 .read = auxv_read,
1035 .llseek = generic_file_llseek,
1036 .release = mem_release,
1037};
1038
1039static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1040 loff_t *ppos)
1041{
1042 struct task_struct *task = get_proc_task(file_inode(file));
1043 char buffer[PROC_NUMBUF];
1044 int oom_adj = OOM_ADJUST_MIN;
1045 size_t len;
1046
1047 if (!task)
1048 return -ESRCH;
1049 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1050 oom_adj = OOM_ADJUST_MAX;
1051 else
1052 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1053 OOM_SCORE_ADJ_MAX;
1054 put_task_struct(task);
1055 if (oom_adj > OOM_ADJUST_MAX)
1056 oom_adj = OOM_ADJUST_MAX;
1057 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1058 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1059}
1060
1061static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1062{
1063 struct mm_struct *mm = NULL;
1064 struct task_struct *task;
1065 int err = 0;
1066
1067 task = get_proc_task(file_inode(file));
1068 if (!task)
1069 return -ESRCH;
1070
1071 mutex_lock(&oom_adj_mutex);
1072 if (legacy) {
1073 if (oom_adj < task->signal->oom_score_adj &&
1074 !capable(CAP_SYS_RESOURCE)) {
1075 err = -EACCES;
1076 goto err_unlock;
1077 }
1078 /*
1079 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1080 * /proc/pid/oom_score_adj instead.
1081 */
1082 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1083 current->comm, task_pid_nr(current), task_pid_nr(task),
1084 task_pid_nr(task));
1085 } else {
1086 if ((short)oom_adj < task->signal->oom_score_adj_min &&
1087 !capable(CAP_SYS_RESOURCE)) {
1088 err = -EACCES;
1089 goto err_unlock;
1090 }
1091 }
1092
1093 /*
1094 * Make sure we will check other processes sharing the mm if this is
1095 * not vfrok which wants its own oom_score_adj.
1096 * pin the mm so it doesn't go away and get reused after task_unlock
1097 */
1098 if (!task->vfork_done) {
1099 struct task_struct *p = find_lock_task_mm(task);
1100
1101 if (p) {
1102 if (test_bit(MMF_MULTIPROCESS, &p->mm->flags)) {
1103 mm = p->mm;
1104 mmgrab(mm);
1105 }
1106 task_unlock(p);
1107 }
1108 }
1109
1110 task->signal->oom_score_adj = oom_adj;
1111 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1112 task->signal->oom_score_adj_min = (short)oom_adj;
1113 trace_oom_score_adj_update(task);
1114
1115 if (mm) {
1116 struct task_struct *p;
1117
1118 rcu_read_lock();
1119 for_each_process(p) {
1120 if (same_thread_group(task, p))
1121 continue;
1122
1123 /* do not touch kernel threads or the global init */
1124 if (p->flags & PF_KTHREAD || is_global_init(p))
1125 continue;
1126
1127 task_lock(p);
1128 if (!p->vfork_done && process_shares_mm(p, mm)) {
1129 p->signal->oom_score_adj = oom_adj;
1130 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1131 p->signal->oom_score_adj_min = (short)oom_adj;
1132 }
1133 task_unlock(p);
1134 }
1135 rcu_read_unlock();
1136 mmdrop(mm);
1137 }
1138err_unlock:
1139 mutex_unlock(&oom_adj_mutex);
1140 put_task_struct(task);
1141 return err;
1142}
1143
1144/*
1145 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1146 * kernels. The effective policy is defined by oom_score_adj, which has a
1147 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1148 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1149 * Processes that become oom disabled via oom_adj will still be oom disabled
1150 * with this implementation.
1151 *
1152 * oom_adj cannot be removed since existing userspace binaries use it.
1153 */
1154static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1155 size_t count, loff_t *ppos)
1156{
1157 char buffer[PROC_NUMBUF] = {};
1158 int oom_adj;
1159 int err;
1160
1161 if (count > sizeof(buffer) - 1)
1162 count = sizeof(buffer) - 1;
1163 if (copy_from_user(buffer, buf, count)) {
1164 err = -EFAULT;
1165 goto out;
1166 }
1167
1168 err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1169 if (err)
1170 goto out;
1171 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1172 oom_adj != OOM_DISABLE) {
1173 err = -EINVAL;
1174 goto out;
1175 }
1176
1177 /*
1178 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1179 * value is always attainable.
1180 */
1181 if (oom_adj == OOM_ADJUST_MAX)
1182 oom_adj = OOM_SCORE_ADJ_MAX;
1183 else
1184 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1185
1186 err = __set_oom_adj(file, oom_adj, true);
1187out:
1188 return err < 0 ? err : count;
1189}
1190
1191static const struct file_operations proc_oom_adj_operations = {
1192 .read = oom_adj_read,
1193 .write = oom_adj_write,
1194 .llseek = generic_file_llseek,
1195};
1196
1197static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1198 size_t count, loff_t *ppos)
1199{
1200 struct task_struct *task = get_proc_task(file_inode(file));
1201 char buffer[PROC_NUMBUF];
1202 short oom_score_adj = OOM_SCORE_ADJ_MIN;
1203 size_t len;
1204
1205 if (!task)
1206 return -ESRCH;
1207 oom_score_adj = task->signal->oom_score_adj;
1208 put_task_struct(task);
1209 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1210 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1211}
1212
1213static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1214 size_t count, loff_t *ppos)
1215{
1216 char buffer[PROC_NUMBUF] = {};
1217 int oom_score_adj;
1218 int err;
1219
1220 if (count > sizeof(buffer) - 1)
1221 count = sizeof(buffer) - 1;
1222 if (copy_from_user(buffer, buf, count)) {
1223 err = -EFAULT;
1224 goto out;
1225 }
1226
1227 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1228 if (err)
1229 goto out;
1230 if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1231 oom_score_adj > OOM_SCORE_ADJ_MAX) {
1232 err = -EINVAL;
1233 goto out;
1234 }
1235
1236 err = __set_oom_adj(file, oom_score_adj, false);
1237out:
1238 return err < 0 ? err : count;
1239}
1240
1241static const struct file_operations proc_oom_score_adj_operations = {
1242 .read = oom_score_adj_read,
1243 .write = oom_score_adj_write,
1244 .llseek = default_llseek,
1245};
1246
1247#ifdef CONFIG_AUDIT
1248#define TMPBUFLEN 11
1249static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1250 size_t count, loff_t *ppos)
1251{
1252 struct inode * inode = file_inode(file);
1253 struct task_struct *task = get_proc_task(inode);
1254 ssize_t length;
1255 char tmpbuf[TMPBUFLEN];
1256
1257 if (!task)
1258 return -ESRCH;
1259 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1260 from_kuid(file->f_cred->user_ns,
1261 audit_get_loginuid(task)));
1262 put_task_struct(task);
1263 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1264}
1265
1266static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1267 size_t count, loff_t *ppos)
1268{
1269 struct inode * inode = file_inode(file);
1270 uid_t loginuid;
1271 kuid_t kloginuid;
1272 int rv;
1273
1274 /* Don't let kthreads write their own loginuid */
1275 if (current->flags & PF_KTHREAD)
1276 return -EPERM;
1277
1278 rcu_read_lock();
1279 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1280 rcu_read_unlock();
1281 return -EPERM;
1282 }
1283 rcu_read_unlock();
1284
1285 if (*ppos != 0) {
1286 /* No partial writes. */
1287 return -EINVAL;
1288 }
1289
1290 rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1291 if (rv < 0)
1292 return rv;
1293
1294 /* is userspace tring to explicitly UNSET the loginuid? */
1295 if (loginuid == AUDIT_UID_UNSET) {
1296 kloginuid = INVALID_UID;
1297 } else {
1298 kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1299 if (!uid_valid(kloginuid))
1300 return -EINVAL;
1301 }
1302
1303 rv = audit_set_loginuid(kloginuid);
1304 if (rv < 0)
1305 return rv;
1306 return count;
1307}
1308
1309static const struct file_operations proc_loginuid_operations = {
1310 .read = proc_loginuid_read,
1311 .write = proc_loginuid_write,
1312 .llseek = generic_file_llseek,
1313};
1314
1315static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1316 size_t count, loff_t *ppos)
1317{
1318 struct inode * inode = file_inode(file);
1319 struct task_struct *task = get_proc_task(inode);
1320 ssize_t length;
1321 char tmpbuf[TMPBUFLEN];
1322
1323 if (!task)
1324 return -ESRCH;
1325 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1326 audit_get_sessionid(task));
1327 put_task_struct(task);
1328 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1329}
1330
1331static const struct file_operations proc_sessionid_operations = {
1332 .read = proc_sessionid_read,
1333 .llseek = generic_file_llseek,
1334};
1335#endif
1336
1337#ifdef CONFIG_FAULT_INJECTION
1338static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1339 size_t count, loff_t *ppos)
1340{
1341 struct task_struct *task = get_proc_task(file_inode(file));
1342 char buffer[PROC_NUMBUF];
1343 size_t len;
1344 int make_it_fail;
1345
1346 if (!task)
1347 return -ESRCH;
1348 make_it_fail = task->make_it_fail;
1349 put_task_struct(task);
1350
1351 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1352
1353 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1354}
1355
1356static ssize_t proc_fault_inject_write(struct file * file,
1357 const char __user * buf, size_t count, loff_t *ppos)
1358{
1359 struct task_struct *task;
1360 char buffer[PROC_NUMBUF] = {};
1361 int make_it_fail;
1362 int rv;
1363
1364 if (!capable(CAP_SYS_RESOURCE))
1365 return -EPERM;
1366
1367 if (count > sizeof(buffer) - 1)
1368 count = sizeof(buffer) - 1;
1369 if (copy_from_user(buffer, buf, count))
1370 return -EFAULT;
1371 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1372 if (rv < 0)
1373 return rv;
1374 if (make_it_fail < 0 || make_it_fail > 1)
1375 return -EINVAL;
1376
1377 task = get_proc_task(file_inode(file));
1378 if (!task)
1379 return -ESRCH;
1380 task->make_it_fail = make_it_fail;
1381 put_task_struct(task);
1382
1383 return count;
1384}
1385
1386static const struct file_operations proc_fault_inject_operations = {
1387 .read = proc_fault_inject_read,
1388 .write = proc_fault_inject_write,
1389 .llseek = generic_file_llseek,
1390};
1391
1392static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1393 size_t count, loff_t *ppos)
1394{
1395 struct task_struct *task;
1396 int err;
1397 unsigned int n;
1398
1399 err = kstrtouint_from_user(buf, count, 0, &n);
1400 if (err)
1401 return err;
1402
1403 task = get_proc_task(file_inode(file));
1404 if (!task)
1405 return -ESRCH;
1406 task->fail_nth = n;
1407 put_task_struct(task);
1408
1409 return count;
1410}
1411
1412static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1413 size_t count, loff_t *ppos)
1414{
1415 struct task_struct *task;
1416 char numbuf[PROC_NUMBUF];
1417 ssize_t len;
1418
1419 task = get_proc_task(file_inode(file));
1420 if (!task)
1421 return -ESRCH;
1422 len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1423 put_task_struct(task);
1424 return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1425}
1426
1427static const struct file_operations proc_fail_nth_operations = {
1428 .read = proc_fail_nth_read,
1429 .write = proc_fail_nth_write,
1430};
1431#endif
1432
1433
1434#ifdef CONFIG_SCHED_DEBUG
1435/*
1436 * Print out various scheduling related per-task fields:
1437 */
1438static int sched_show(struct seq_file *m, void *v)
1439{
1440 struct inode *inode = m->private;
1441 struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
1442 struct task_struct *p;
1443
1444 p = get_proc_task(inode);
1445 if (!p)
1446 return -ESRCH;
1447 proc_sched_show_task(p, ns, m);
1448
1449 put_task_struct(p);
1450
1451 return 0;
1452}
1453
1454static ssize_t
1455sched_write(struct file *file, const char __user *buf,
1456 size_t count, loff_t *offset)
1457{
1458 struct inode *inode = file_inode(file);
1459 struct task_struct *p;
1460
1461 p = get_proc_task(inode);
1462 if (!p)
1463 return -ESRCH;
1464 proc_sched_set_task(p);
1465
1466 put_task_struct(p);
1467
1468 return count;
1469}
1470
1471static int sched_open(struct inode *inode, struct file *filp)
1472{
1473 return single_open(filp, sched_show, inode);
1474}
1475
1476static const struct file_operations proc_pid_sched_operations = {
1477 .open = sched_open,
1478 .read = seq_read,
1479 .write = sched_write,
1480 .llseek = seq_lseek,
1481 .release = single_release,
1482};
1483
1484#endif
1485
1486#ifdef CONFIG_SCHED_AUTOGROUP
1487/*
1488 * Print out autogroup related information:
1489 */
1490static int sched_autogroup_show(struct seq_file *m, void *v)
1491{
1492 struct inode *inode = m->private;
1493 struct task_struct *p;
1494
1495 p = get_proc_task(inode);
1496 if (!p)
1497 return -ESRCH;
1498 proc_sched_autogroup_show_task(p, m);
1499
1500 put_task_struct(p);
1501
1502 return 0;
1503}
1504
1505static ssize_t
1506sched_autogroup_write(struct file *file, const char __user *buf,
1507 size_t count, loff_t *offset)
1508{
1509 struct inode *inode = file_inode(file);
1510 struct task_struct *p;
1511 char buffer[PROC_NUMBUF] = {};
1512 int nice;
1513 int err;
1514
1515 if (count > sizeof(buffer) - 1)
1516 count = sizeof(buffer) - 1;
1517 if (copy_from_user(buffer, buf, count))
1518 return -EFAULT;
1519
1520 err = kstrtoint(strstrip(buffer), 0, &nice);
1521 if (err < 0)
1522 return err;
1523
1524 p = get_proc_task(inode);
1525 if (!p)
1526 return -ESRCH;
1527
1528 err = proc_sched_autogroup_set_nice(p, nice);
1529 if (err)
1530 count = err;
1531
1532 put_task_struct(p);
1533
1534 return count;
1535}
1536
1537static int sched_autogroup_open(struct inode *inode, struct file *filp)
1538{
1539 int ret;
1540
1541 ret = single_open(filp, sched_autogroup_show, NULL);
1542 if (!ret) {
1543 struct seq_file *m = filp->private_data;
1544
1545 m->private = inode;
1546 }
1547 return ret;
1548}
1549
1550static const struct file_operations proc_pid_sched_autogroup_operations = {
1551 .open = sched_autogroup_open,
1552 .read = seq_read,
1553 .write = sched_autogroup_write,
1554 .llseek = seq_lseek,
1555 .release = single_release,
1556};
1557
1558#endif /* CONFIG_SCHED_AUTOGROUP */
1559
1560#ifdef CONFIG_TIME_NS
1561static int timens_offsets_show(struct seq_file *m, void *v)
1562{
1563 struct task_struct *p;
1564
1565 p = get_proc_task(file_inode(m->file));
1566 if (!p)
1567 return -ESRCH;
1568 proc_timens_show_offsets(p, m);
1569
1570 put_task_struct(p);
1571
1572 return 0;
1573}
1574
1575static ssize_t timens_offsets_write(struct file *file, const char __user *buf,
1576 size_t count, loff_t *ppos)
1577{
1578 struct inode *inode = file_inode(file);
1579 struct proc_timens_offset offsets[2];
1580 char *kbuf = NULL, *pos, *next_line;
1581 struct task_struct *p;
1582 int ret, noffsets;
1583
1584 /* Only allow < page size writes at the beginning of the file */
1585 if ((*ppos != 0) || (count >= PAGE_SIZE))
1586 return -EINVAL;
1587
1588 /* Slurp in the user data */
1589 kbuf = memdup_user_nul(buf, count);
1590 if (IS_ERR(kbuf))
1591 return PTR_ERR(kbuf);
1592
1593 /* Parse the user data */
1594 ret = -EINVAL;
1595 noffsets = 0;
1596 for (pos = kbuf; pos; pos = next_line) {
1597 struct proc_timens_offset *off = &offsets[noffsets];
1598 char clock[10];
1599 int err;
1600
1601 /* Find the end of line and ensure we don't look past it */
1602 next_line = strchr(pos, '\n');
1603 if (next_line) {
1604 *next_line = '\0';
1605 next_line++;
1606 if (*next_line == '\0')
1607 next_line = NULL;
1608 }
1609
1610 err = sscanf(pos, "%9s %lld %lu", clock,
1611 &off->val.tv_sec, &off->val.tv_nsec);
1612 if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC)
1613 goto out;
1614
1615 clock[sizeof(clock) - 1] = 0;
1616 if (strcmp(clock, "monotonic") == 0 ||
1617 strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0)
1618 off->clockid = CLOCK_MONOTONIC;
1619 else if (strcmp(clock, "boottime") == 0 ||
1620 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0)
1621 off->clockid = CLOCK_BOOTTIME;
1622 else
1623 goto out;
1624
1625 noffsets++;
1626 if (noffsets == ARRAY_SIZE(offsets)) {
1627 if (next_line)
1628 count = next_line - kbuf;
1629 break;
1630 }
1631 }
1632
1633 ret = -ESRCH;
1634 p = get_proc_task(inode);
1635 if (!p)
1636 goto out;
1637 ret = proc_timens_set_offset(file, p, offsets, noffsets);
1638 put_task_struct(p);
1639 if (ret)
1640 goto out;
1641
1642 ret = count;
1643out:
1644 kfree(kbuf);
1645 return ret;
1646}
1647
1648static int timens_offsets_open(struct inode *inode, struct file *filp)
1649{
1650 return single_open(filp, timens_offsets_show, inode);
1651}
1652
1653static const struct file_operations proc_timens_offsets_operations = {
1654 .open = timens_offsets_open,
1655 .read = seq_read,
1656 .write = timens_offsets_write,
1657 .llseek = seq_lseek,
1658 .release = single_release,
1659};
1660#endif /* CONFIG_TIME_NS */
1661
1662static ssize_t comm_write(struct file *file, const char __user *buf,
1663 size_t count, loff_t *offset)
1664{
1665 struct inode *inode = file_inode(file);
1666 struct task_struct *p;
1667 char buffer[TASK_COMM_LEN] = {};
1668 const size_t maxlen = sizeof(buffer) - 1;
1669
1670 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1671 return -EFAULT;
1672
1673 p = get_proc_task(inode);
1674 if (!p)
1675 return -ESRCH;
1676
1677 if (same_thread_group(current, p)) {
1678 set_task_comm(p, buffer);
1679 proc_comm_connector(p);
1680 }
1681 else
1682 count = -EINVAL;
1683
1684 put_task_struct(p);
1685
1686 return count;
1687}
1688
1689static int comm_show(struct seq_file *m, void *v)
1690{
1691 struct inode *inode = m->private;
1692 struct task_struct *p;
1693
1694 p = get_proc_task(inode);
1695 if (!p)
1696 return -ESRCH;
1697
1698 proc_task_name(m, p, false);
1699 seq_putc(m, '\n');
1700
1701 put_task_struct(p);
1702
1703 return 0;
1704}
1705
1706static int comm_open(struct inode *inode, struct file *filp)
1707{
1708 return single_open(filp, comm_show, inode);
1709}
1710
1711static const struct file_operations proc_pid_set_comm_operations = {
1712 .open = comm_open,
1713 .read = seq_read,
1714 .write = comm_write,
1715 .llseek = seq_lseek,
1716 .release = single_release,
1717};
1718
1719static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1720{
1721 struct task_struct *task;
1722 struct file *exe_file;
1723
1724 task = get_proc_task(d_inode(dentry));
1725 if (!task)
1726 return -ENOENT;
1727 exe_file = get_task_exe_file(task);
1728 put_task_struct(task);
1729 if (exe_file) {
1730 *exe_path = exe_file->f_path;
1731 path_get(&exe_file->f_path);
1732 fput(exe_file);
1733 return 0;
1734 } else
1735 return -ENOENT;
1736}
1737
1738static const char *proc_pid_get_link(struct dentry *dentry,
1739 struct inode *inode,
1740 struct delayed_call *done)
1741{
1742 struct path path;
1743 int error = -EACCES;
1744
1745 if (!dentry)
1746 return ERR_PTR(-ECHILD);
1747
1748 /* Are we allowed to snoop on the tasks file descriptors? */
1749 if (!proc_fd_access_allowed(inode))
1750 goto out;
1751
1752 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1753 if (error)
1754 goto out;
1755
1756 error = nd_jump_link(&path);
1757out:
1758 return ERR_PTR(error);
1759}
1760
1761static int do_proc_readlink(const struct path *path, char __user *buffer, int buflen)
1762{
1763 char *tmp = kmalloc(PATH_MAX, GFP_KERNEL);
1764 char *pathname;
1765 int len;
1766
1767 if (!tmp)
1768 return -ENOMEM;
1769
1770 pathname = d_path(path, tmp, PATH_MAX);
1771 len = PTR_ERR(pathname);
1772 if (IS_ERR(pathname))
1773 goto out;
1774 len = tmp + PATH_MAX - 1 - pathname;
1775
1776 if (len > buflen)
1777 len = buflen;
1778 if (copy_to_user(buffer, pathname, len))
1779 len = -EFAULT;
1780 out:
1781 kfree(tmp);
1782 return len;
1783}
1784
1785static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1786{
1787 int error = -EACCES;
1788 struct inode *inode = d_inode(dentry);
1789 struct path path;
1790
1791 /* Are we allowed to snoop on the tasks file descriptors? */
1792 if (!proc_fd_access_allowed(inode))
1793 goto out;
1794
1795 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1796 if (error)
1797 goto out;
1798
1799 error = do_proc_readlink(&path, buffer, buflen);
1800 path_put(&path);
1801out:
1802 return error;
1803}
1804
1805const struct inode_operations proc_pid_link_inode_operations = {
1806 .readlink = proc_pid_readlink,
1807 .get_link = proc_pid_get_link,
1808 .setattr = proc_setattr,
1809};
1810
1811
1812/* building an inode */
1813
1814void task_dump_owner(struct task_struct *task, umode_t mode,
1815 kuid_t *ruid, kgid_t *rgid)
1816{
1817 /* Depending on the state of dumpable compute who should own a
1818 * proc file for a task.
1819 */
1820 const struct cred *cred;
1821 kuid_t uid;
1822 kgid_t gid;
1823
1824 if (unlikely(task->flags & PF_KTHREAD)) {
1825 *ruid = GLOBAL_ROOT_UID;
1826 *rgid = GLOBAL_ROOT_GID;
1827 return;
1828 }
1829
1830 /* Default to the tasks effective ownership */
1831 rcu_read_lock();
1832 cred = __task_cred(task);
1833 uid = cred->euid;
1834 gid = cred->egid;
1835 rcu_read_unlock();
1836
1837 /*
1838 * Before the /proc/pid/status file was created the only way to read
1839 * the effective uid of a /process was to stat /proc/pid. Reading
1840 * /proc/pid/status is slow enough that procps and other packages
1841 * kept stating /proc/pid. To keep the rules in /proc simple I have
1842 * made this apply to all per process world readable and executable
1843 * directories.
1844 */
1845 if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1846 struct mm_struct *mm;
1847 task_lock(task);
1848 mm = task->mm;
1849 /* Make non-dumpable tasks owned by some root */
1850 if (mm) {
1851 if (get_dumpable(mm) != SUID_DUMP_USER) {
1852 struct user_namespace *user_ns = mm->user_ns;
1853
1854 uid = make_kuid(user_ns, 0);
1855 if (!uid_valid(uid))
1856 uid = GLOBAL_ROOT_UID;
1857
1858 gid = make_kgid(user_ns, 0);
1859 if (!gid_valid(gid))
1860 gid = GLOBAL_ROOT_GID;
1861 }
1862 } else {
1863 uid = GLOBAL_ROOT_UID;
1864 gid = GLOBAL_ROOT_GID;
1865 }
1866 task_unlock(task);
1867 }
1868 *ruid = uid;
1869 *rgid = gid;
1870}
1871
1872void proc_pid_evict_inode(struct proc_inode *ei)
1873{
1874 struct pid *pid = ei->pid;
1875
1876 if (S_ISDIR(ei->vfs_inode.i_mode)) {
1877 spin_lock(&pid->lock);
1878 hlist_del_init_rcu(&ei->sibling_inodes);
1879 spin_unlock(&pid->lock);
1880 }
1881
1882 put_pid(pid);
1883}
1884
1885struct inode *proc_pid_make_inode(struct super_block *sb,
1886 struct task_struct *task, umode_t mode)
1887{
1888 struct inode * inode;
1889 struct proc_inode *ei;
1890 struct pid *pid;
1891
1892 /* We need a new inode */
1893
1894 inode = new_inode(sb);
1895 if (!inode)
1896 goto out;
1897
1898 /* Common stuff */
1899 ei = PROC_I(inode);
1900 inode->i_mode = mode;
1901 inode->i_ino = get_next_ino();
1902 simple_inode_init_ts(inode);
1903 inode->i_op = &proc_def_inode_operations;
1904
1905 /*
1906 * grab the reference to task.
1907 */
1908 pid = get_task_pid(task, PIDTYPE_PID);
1909 if (!pid)
1910 goto out_unlock;
1911
1912 /* Let the pid remember us for quick removal */
1913 ei->pid = pid;
1914
1915 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1916 security_task_to_inode(task, inode);
1917
1918out:
1919 return inode;
1920
1921out_unlock:
1922 iput(inode);
1923 return NULL;
1924}
1925
1926/*
1927 * Generating an inode and adding it into @pid->inodes, so that task will
1928 * invalidate inode's dentry before being released.
1929 *
1930 * This helper is used for creating dir-type entries under '/proc' and
1931 * '/proc/<tgid>/task'. Other entries(eg. fd, stat) under '/proc/<tgid>'
1932 * can be released by invalidating '/proc/<tgid>' dentry.
1933 * In theory, dentries under '/proc/<tgid>/task' can also be released by
1934 * invalidating '/proc/<tgid>' dentry, we reserve it to handle single
1935 * thread exiting situation: Any one of threads should invalidate its
1936 * '/proc/<tgid>/task/<pid>' dentry before released.
1937 */
1938static struct inode *proc_pid_make_base_inode(struct super_block *sb,
1939 struct task_struct *task, umode_t mode)
1940{
1941 struct inode *inode;
1942 struct proc_inode *ei;
1943 struct pid *pid;
1944
1945 inode = proc_pid_make_inode(sb, task, mode);
1946 if (!inode)
1947 return NULL;
1948
1949 /* Let proc_flush_pid find this directory inode */
1950 ei = PROC_I(inode);
1951 pid = ei->pid;
1952 spin_lock(&pid->lock);
1953 hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes);
1954 spin_unlock(&pid->lock);
1955
1956 return inode;
1957}
1958
1959int pid_getattr(struct mnt_idmap *idmap, const struct path *path,
1960 struct kstat *stat, u32 request_mask, unsigned int query_flags)
1961{
1962 struct inode *inode = d_inode(path->dentry);
1963 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
1964 struct task_struct *task;
1965
1966 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
1967
1968 stat->uid = GLOBAL_ROOT_UID;
1969 stat->gid = GLOBAL_ROOT_GID;
1970 rcu_read_lock();
1971 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1972 if (task) {
1973 if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) {
1974 rcu_read_unlock();
1975 /*
1976 * This doesn't prevent learning whether PID exists,
1977 * it only makes getattr() consistent with readdir().
1978 */
1979 return -ENOENT;
1980 }
1981 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1982 }
1983 rcu_read_unlock();
1984 return 0;
1985}
1986
1987/* dentry stuff */
1988
1989/*
1990 * Set <pid>/... inode ownership (can change due to setuid(), etc.)
1991 */
1992void pid_update_inode(struct task_struct *task, struct inode *inode)
1993{
1994 task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1995
1996 inode->i_mode &= ~(S_ISUID | S_ISGID);
1997 security_task_to_inode(task, inode);
1998}
1999
2000/*
2001 * Rewrite the inode's ownerships here because the owning task may have
2002 * performed a setuid(), etc.
2003 *
2004 */
2005static int pid_revalidate(struct dentry *dentry, unsigned int flags)
2006{
2007 struct inode *inode;
2008 struct task_struct *task;
2009 int ret = 0;
2010
2011 rcu_read_lock();
2012 inode = d_inode_rcu(dentry);
2013 if (!inode)
2014 goto out;
2015 task = pid_task(proc_pid(inode), PIDTYPE_PID);
2016
2017 if (task) {
2018 pid_update_inode(task, inode);
2019 ret = 1;
2020 }
2021out:
2022 rcu_read_unlock();
2023 return ret;
2024}
2025
2026static inline bool proc_inode_is_dead(struct inode *inode)
2027{
2028 return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
2029}
2030
2031int pid_delete_dentry(const struct dentry *dentry)
2032{
2033 /* Is the task we represent dead?
2034 * If so, then don't put the dentry on the lru list,
2035 * kill it immediately.
2036 */
2037 return proc_inode_is_dead(d_inode(dentry));
2038}
2039
2040const struct dentry_operations pid_dentry_operations =
2041{
2042 .d_revalidate = pid_revalidate,
2043 .d_delete = pid_delete_dentry,
2044};
2045
2046/* Lookups */
2047
2048/*
2049 * Fill a directory entry.
2050 *
2051 * If possible create the dcache entry and derive our inode number and
2052 * file type from dcache entry.
2053 *
2054 * Since all of the proc inode numbers are dynamically generated, the inode
2055 * numbers do not exist until the inode is cache. This means creating
2056 * the dcache entry in readdir is necessary to keep the inode numbers
2057 * reported by readdir in sync with the inode numbers reported
2058 * by stat.
2059 */
2060bool proc_fill_cache(struct file *file, struct dir_context *ctx,
2061 const char *name, unsigned int len,
2062 instantiate_t instantiate, struct task_struct *task, const void *ptr)
2063{
2064 struct dentry *child, *dir = file->f_path.dentry;
2065 struct qstr qname = QSTR_INIT(name, len);
2066 struct inode *inode;
2067 unsigned type = DT_UNKNOWN;
2068 ino_t ino = 1;
2069
2070 child = d_hash_and_lookup(dir, &qname);
2071 if (!child) {
2072 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2073 child = d_alloc_parallel(dir, &qname, &wq);
2074 if (IS_ERR(child))
2075 goto end_instantiate;
2076 if (d_in_lookup(child)) {
2077 struct dentry *res;
2078 res = instantiate(child, task, ptr);
2079 d_lookup_done(child);
2080 if (unlikely(res)) {
2081 dput(child);
2082 child = res;
2083 if (IS_ERR(child))
2084 goto end_instantiate;
2085 }
2086 }
2087 }
2088 inode = d_inode(child);
2089 ino = inode->i_ino;
2090 type = inode->i_mode >> 12;
2091 dput(child);
2092end_instantiate:
2093 return dir_emit(ctx, name, len, ino, type);
2094}
2095
2096/*
2097 * dname_to_vma_addr - maps a dentry name into two unsigned longs
2098 * which represent vma start and end addresses.
2099 */
2100static int dname_to_vma_addr(struct dentry *dentry,
2101 unsigned long *start, unsigned long *end)
2102{
2103 const char *str = dentry->d_name.name;
2104 unsigned long long sval, eval;
2105 unsigned int len;
2106
2107 if (str[0] == '0' && str[1] != '-')
2108 return -EINVAL;
2109 len = _parse_integer(str, 16, &sval);
2110 if (len & KSTRTOX_OVERFLOW)
2111 return -EINVAL;
2112 if (sval != (unsigned long)sval)
2113 return -EINVAL;
2114 str += len;
2115
2116 if (*str != '-')
2117 return -EINVAL;
2118 str++;
2119
2120 if (str[0] == '0' && str[1])
2121 return -EINVAL;
2122 len = _parse_integer(str, 16, &eval);
2123 if (len & KSTRTOX_OVERFLOW)
2124 return -EINVAL;
2125 if (eval != (unsigned long)eval)
2126 return -EINVAL;
2127 str += len;
2128
2129 if (*str != '\0')
2130 return -EINVAL;
2131
2132 *start = sval;
2133 *end = eval;
2134
2135 return 0;
2136}
2137
2138static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
2139{
2140 unsigned long vm_start, vm_end;
2141 bool exact_vma_exists = false;
2142 struct mm_struct *mm = NULL;
2143 struct task_struct *task;
2144 struct inode *inode;
2145 int status = 0;
2146
2147 if (flags & LOOKUP_RCU)
2148 return -ECHILD;
2149
2150 inode = d_inode(dentry);
2151 task = get_proc_task(inode);
2152 if (!task)
2153 goto out_notask;
2154
2155 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
2156 if (IS_ERR_OR_NULL(mm))
2157 goto out;
2158
2159 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2160 status = mmap_read_lock_killable(mm);
2161 if (!status) {
2162 exact_vma_exists = !!find_exact_vma(mm, vm_start,
2163 vm_end);
2164 mmap_read_unlock(mm);
2165 }
2166 }
2167
2168 mmput(mm);
2169
2170 if (exact_vma_exists) {
2171 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
2172
2173 security_task_to_inode(task, inode);
2174 status = 1;
2175 }
2176
2177out:
2178 put_task_struct(task);
2179
2180out_notask:
2181 return status;
2182}
2183
2184static const struct dentry_operations tid_map_files_dentry_operations = {
2185 .d_revalidate = map_files_d_revalidate,
2186 .d_delete = pid_delete_dentry,
2187};
2188
2189static int map_files_get_link(struct dentry *dentry, struct path *path)
2190{
2191 unsigned long vm_start, vm_end;
2192 struct vm_area_struct *vma;
2193 struct task_struct *task;
2194 struct mm_struct *mm;
2195 int rc;
2196
2197 rc = -ENOENT;
2198 task = get_proc_task(d_inode(dentry));
2199 if (!task)
2200 goto out;
2201
2202 mm = get_task_mm(task);
2203 put_task_struct(task);
2204 if (!mm)
2205 goto out;
2206
2207 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2208 if (rc)
2209 goto out_mmput;
2210
2211 rc = mmap_read_lock_killable(mm);
2212 if (rc)
2213 goto out_mmput;
2214
2215 rc = -ENOENT;
2216 vma = find_exact_vma(mm, vm_start, vm_end);
2217 if (vma && vma->vm_file) {
2218 *path = *file_user_path(vma->vm_file);
2219 path_get(path);
2220 rc = 0;
2221 }
2222 mmap_read_unlock(mm);
2223
2224out_mmput:
2225 mmput(mm);
2226out:
2227 return rc;
2228}
2229
2230struct map_files_info {
2231 unsigned long start;
2232 unsigned long end;
2233 fmode_t mode;
2234};
2235
2236/*
2237 * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due
2238 * to concerns about how the symlinks may be used to bypass permissions on
2239 * ancestor directories in the path to the file in question.
2240 */
2241static const char *
2242proc_map_files_get_link(struct dentry *dentry,
2243 struct inode *inode,
2244 struct delayed_call *done)
2245{
2246 if (!checkpoint_restore_ns_capable(&init_user_ns))
2247 return ERR_PTR(-EPERM);
2248
2249 return proc_pid_get_link(dentry, inode, done);
2250}
2251
2252/*
2253 * Identical to proc_pid_link_inode_operations except for get_link()
2254 */
2255static const struct inode_operations proc_map_files_link_inode_operations = {
2256 .readlink = proc_pid_readlink,
2257 .get_link = proc_map_files_get_link,
2258 .setattr = proc_setattr,
2259};
2260
2261static struct dentry *
2262proc_map_files_instantiate(struct dentry *dentry,
2263 struct task_struct *task, const void *ptr)
2264{
2265 fmode_t mode = (fmode_t)(unsigned long)ptr;
2266 struct proc_inode *ei;
2267 struct inode *inode;
2268
2269 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2270 ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2271 ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2272 if (!inode)
2273 return ERR_PTR(-ENOENT);
2274
2275 ei = PROC_I(inode);
2276 ei->op.proc_get_link = map_files_get_link;
2277
2278 inode->i_op = &proc_map_files_link_inode_operations;
2279 inode->i_size = 64;
2280
2281 d_set_d_op(dentry, &tid_map_files_dentry_operations);
2282 return d_splice_alias(inode, dentry);
2283}
2284
2285static struct dentry *proc_map_files_lookup(struct inode *dir,
2286 struct dentry *dentry, unsigned int flags)
2287{
2288 unsigned long vm_start, vm_end;
2289 struct vm_area_struct *vma;
2290 struct task_struct *task;
2291 struct dentry *result;
2292 struct mm_struct *mm;
2293
2294 result = ERR_PTR(-ENOENT);
2295 task = get_proc_task(dir);
2296 if (!task)
2297 goto out;
2298
2299 result = ERR_PTR(-EACCES);
2300 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2301 goto out_put_task;
2302
2303 result = ERR_PTR(-ENOENT);
2304 if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2305 goto out_put_task;
2306
2307 mm = get_task_mm(task);
2308 if (!mm)
2309 goto out_put_task;
2310
2311 result = ERR_PTR(-EINTR);
2312 if (mmap_read_lock_killable(mm))
2313 goto out_put_mm;
2314
2315 result = ERR_PTR(-ENOENT);
2316 vma = find_exact_vma(mm, vm_start, vm_end);
2317 if (!vma)
2318 goto out_no_vma;
2319
2320 if (vma->vm_file)
2321 result = proc_map_files_instantiate(dentry, task,
2322 (void *)(unsigned long)vma->vm_file->f_mode);
2323
2324out_no_vma:
2325 mmap_read_unlock(mm);
2326out_put_mm:
2327 mmput(mm);
2328out_put_task:
2329 put_task_struct(task);
2330out:
2331 return result;
2332}
2333
2334static const struct inode_operations proc_map_files_inode_operations = {
2335 .lookup = proc_map_files_lookup,
2336 .permission = proc_fd_permission,
2337 .setattr = proc_setattr,
2338};
2339
2340static int
2341proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2342{
2343 struct vm_area_struct *vma;
2344 struct task_struct *task;
2345 struct mm_struct *mm;
2346 unsigned long nr_files, pos, i;
2347 GENRADIX(struct map_files_info) fa;
2348 struct map_files_info *p;
2349 int ret;
2350 struct vma_iterator vmi;
2351
2352 genradix_init(&fa);
2353
2354 ret = -ENOENT;
2355 task = get_proc_task(file_inode(file));
2356 if (!task)
2357 goto out;
2358
2359 ret = -EACCES;
2360 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2361 goto out_put_task;
2362
2363 ret = 0;
2364 if (!dir_emit_dots(file, ctx))
2365 goto out_put_task;
2366
2367 mm = get_task_mm(task);
2368 if (!mm)
2369 goto out_put_task;
2370
2371 ret = mmap_read_lock_killable(mm);
2372 if (ret) {
2373 mmput(mm);
2374 goto out_put_task;
2375 }
2376
2377 nr_files = 0;
2378
2379 /*
2380 * We need two passes here:
2381 *
2382 * 1) Collect vmas of mapped files with mmap_lock taken
2383 * 2) Release mmap_lock and instantiate entries
2384 *
2385 * otherwise we get lockdep complained, since filldir()
2386 * routine might require mmap_lock taken in might_fault().
2387 */
2388
2389 pos = 2;
2390 vma_iter_init(&vmi, mm, 0);
2391 for_each_vma(vmi, vma) {
2392 if (!vma->vm_file)
2393 continue;
2394 if (++pos <= ctx->pos)
2395 continue;
2396
2397 p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
2398 if (!p) {
2399 ret = -ENOMEM;
2400 mmap_read_unlock(mm);
2401 mmput(mm);
2402 goto out_put_task;
2403 }
2404
2405 p->start = vma->vm_start;
2406 p->end = vma->vm_end;
2407 p->mode = vma->vm_file->f_mode;
2408 }
2409 mmap_read_unlock(mm);
2410 mmput(mm);
2411
2412 for (i = 0; i < nr_files; i++) {
2413 char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */
2414 unsigned int len;
2415
2416 p = genradix_ptr(&fa, i);
2417 len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2418 if (!proc_fill_cache(file, ctx,
2419 buf, len,
2420 proc_map_files_instantiate,
2421 task,
2422 (void *)(unsigned long)p->mode))
2423 break;
2424 ctx->pos++;
2425 }
2426
2427out_put_task:
2428 put_task_struct(task);
2429out:
2430 genradix_free(&fa);
2431 return ret;
2432}
2433
2434static const struct file_operations proc_map_files_operations = {
2435 .read = generic_read_dir,
2436 .iterate_shared = proc_map_files_readdir,
2437 .llseek = generic_file_llseek,
2438};
2439
2440#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2441struct timers_private {
2442 struct pid *pid;
2443 struct task_struct *task;
2444 struct sighand_struct *sighand;
2445 struct pid_namespace *ns;
2446 unsigned long flags;
2447};
2448
2449static void *timers_start(struct seq_file *m, loff_t *pos)
2450{
2451 struct timers_private *tp = m->private;
2452
2453 tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2454 if (!tp->task)
2455 return ERR_PTR(-ESRCH);
2456
2457 tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2458 if (!tp->sighand)
2459 return ERR_PTR(-ESRCH);
2460
2461 return seq_list_start(&tp->task->signal->posix_timers, *pos);
2462}
2463
2464static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2465{
2466 struct timers_private *tp = m->private;
2467 return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2468}
2469
2470static void timers_stop(struct seq_file *m, void *v)
2471{
2472 struct timers_private *tp = m->private;
2473
2474 if (tp->sighand) {
2475 unlock_task_sighand(tp->task, &tp->flags);
2476 tp->sighand = NULL;
2477 }
2478
2479 if (tp->task) {
2480 put_task_struct(tp->task);
2481 tp->task = NULL;
2482 }
2483}
2484
2485static int show_timer(struct seq_file *m, void *v)
2486{
2487 struct k_itimer *timer;
2488 struct timers_private *tp = m->private;
2489 int notify;
2490 static const char * const nstr[] = {
2491 [SIGEV_SIGNAL] = "signal",
2492 [SIGEV_NONE] = "none",
2493 [SIGEV_THREAD] = "thread",
2494 };
2495
2496 timer = list_entry((struct list_head *)v, struct k_itimer, list);
2497 notify = timer->it_sigev_notify;
2498
2499 seq_printf(m, "ID: %d\n", timer->it_id);
2500 seq_printf(m, "signal: %d/%px\n",
2501 timer->sigq->info.si_signo,
2502 timer->sigq->info.si_value.sival_ptr);
2503 seq_printf(m, "notify: %s/%s.%d\n",
2504 nstr[notify & ~SIGEV_THREAD_ID],
2505 (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2506 pid_nr_ns(timer->it_pid, tp->ns));
2507 seq_printf(m, "ClockID: %d\n", timer->it_clock);
2508
2509 return 0;
2510}
2511
2512static const struct seq_operations proc_timers_seq_ops = {
2513 .start = timers_start,
2514 .next = timers_next,
2515 .stop = timers_stop,
2516 .show = show_timer,
2517};
2518
2519static int proc_timers_open(struct inode *inode, struct file *file)
2520{
2521 struct timers_private *tp;
2522
2523 tp = __seq_open_private(file, &proc_timers_seq_ops,
2524 sizeof(struct timers_private));
2525 if (!tp)
2526 return -ENOMEM;
2527
2528 tp->pid = proc_pid(inode);
2529 tp->ns = proc_pid_ns(inode->i_sb);
2530 return 0;
2531}
2532
2533static const struct file_operations proc_timers_operations = {
2534 .open = proc_timers_open,
2535 .read = seq_read,
2536 .llseek = seq_lseek,
2537 .release = seq_release_private,
2538};
2539#endif
2540
2541static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2542 size_t count, loff_t *offset)
2543{
2544 struct inode *inode = file_inode(file);
2545 struct task_struct *p;
2546 u64 slack_ns;
2547 int err;
2548
2549 err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2550 if (err < 0)
2551 return err;
2552
2553 p = get_proc_task(inode);
2554 if (!p)
2555 return -ESRCH;
2556
2557 if (p != current) {
2558 rcu_read_lock();
2559 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2560 rcu_read_unlock();
2561 count = -EPERM;
2562 goto out;
2563 }
2564 rcu_read_unlock();
2565
2566 err = security_task_setscheduler(p);
2567 if (err) {
2568 count = err;
2569 goto out;
2570 }
2571 }
2572
2573 task_lock(p);
2574 if (slack_ns == 0)
2575 p->timer_slack_ns = p->default_timer_slack_ns;
2576 else
2577 p->timer_slack_ns = slack_ns;
2578 task_unlock(p);
2579
2580out:
2581 put_task_struct(p);
2582
2583 return count;
2584}
2585
2586static int timerslack_ns_show(struct seq_file *m, void *v)
2587{
2588 struct inode *inode = m->private;
2589 struct task_struct *p;
2590 int err = 0;
2591
2592 p = get_proc_task(inode);
2593 if (!p)
2594 return -ESRCH;
2595
2596 if (p != current) {
2597 rcu_read_lock();
2598 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2599 rcu_read_unlock();
2600 err = -EPERM;
2601 goto out;
2602 }
2603 rcu_read_unlock();
2604
2605 err = security_task_getscheduler(p);
2606 if (err)
2607 goto out;
2608 }
2609
2610 task_lock(p);
2611 seq_printf(m, "%llu\n", p->timer_slack_ns);
2612 task_unlock(p);
2613
2614out:
2615 put_task_struct(p);
2616
2617 return err;
2618}
2619
2620static int timerslack_ns_open(struct inode *inode, struct file *filp)
2621{
2622 return single_open(filp, timerslack_ns_show, inode);
2623}
2624
2625static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2626 .open = timerslack_ns_open,
2627 .read = seq_read,
2628 .write = timerslack_ns_write,
2629 .llseek = seq_lseek,
2630 .release = single_release,
2631};
2632
2633static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2634 struct task_struct *task, const void *ptr)
2635{
2636 const struct pid_entry *p = ptr;
2637 struct inode *inode;
2638 struct proc_inode *ei;
2639
2640 inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2641 if (!inode)
2642 return ERR_PTR(-ENOENT);
2643
2644 ei = PROC_I(inode);
2645 if (S_ISDIR(inode->i_mode))
2646 set_nlink(inode, 2); /* Use getattr to fix if necessary */
2647 if (p->iop)
2648 inode->i_op = p->iop;
2649 if (p->fop)
2650 inode->i_fop = p->fop;
2651 ei->op = p->op;
2652 pid_update_inode(task, inode);
2653 d_set_d_op(dentry, &pid_dentry_operations);
2654 return d_splice_alias(inode, dentry);
2655}
2656
2657static struct dentry *proc_pident_lookup(struct inode *dir,
2658 struct dentry *dentry,
2659 const struct pid_entry *p,
2660 const struct pid_entry *end)
2661{
2662 struct task_struct *task = get_proc_task(dir);
2663 struct dentry *res = ERR_PTR(-ENOENT);
2664
2665 if (!task)
2666 goto out_no_task;
2667
2668 /*
2669 * Yes, it does not scale. And it should not. Don't add
2670 * new entries into /proc/<tgid>/ without very good reasons.
2671 */
2672 for (; p < end; p++) {
2673 if (p->len != dentry->d_name.len)
2674 continue;
2675 if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2676 res = proc_pident_instantiate(dentry, task, p);
2677 break;
2678 }
2679 }
2680 put_task_struct(task);
2681out_no_task:
2682 return res;
2683}
2684
2685static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2686 const struct pid_entry *ents, unsigned int nents)
2687{
2688 struct task_struct *task = get_proc_task(file_inode(file));
2689 const struct pid_entry *p;
2690
2691 if (!task)
2692 return -ENOENT;
2693
2694 if (!dir_emit_dots(file, ctx))
2695 goto out;
2696
2697 if (ctx->pos >= nents + 2)
2698 goto out;
2699
2700 for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2701 if (!proc_fill_cache(file, ctx, p->name, p->len,
2702 proc_pident_instantiate, task, p))
2703 break;
2704 ctx->pos++;
2705 }
2706out:
2707 put_task_struct(task);
2708 return 0;
2709}
2710
2711#ifdef CONFIG_SECURITY
2712static int proc_pid_attr_open(struct inode *inode, struct file *file)
2713{
2714 file->private_data = NULL;
2715 __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
2716 return 0;
2717}
2718
2719static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2720 size_t count, loff_t *ppos)
2721{
2722 struct inode * inode = file_inode(file);
2723 char *p = NULL;
2724 ssize_t length;
2725 struct task_struct *task = get_proc_task(inode);
2726
2727 if (!task)
2728 return -ESRCH;
2729
2730 length = security_getprocattr(task, PROC_I(inode)->op.lsmid,
2731 file->f_path.dentry->d_name.name,
2732 &p);
2733 put_task_struct(task);
2734 if (length > 0)
2735 length = simple_read_from_buffer(buf, count, ppos, p, length);
2736 kfree(p);
2737 return length;
2738}
2739
2740static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2741 size_t count, loff_t *ppos)
2742{
2743 struct inode * inode = file_inode(file);
2744 struct task_struct *task;
2745 void *page;
2746 int rv;
2747
2748 /* A task may only write when it was the opener. */
2749 if (file->private_data != current->mm)
2750 return -EPERM;
2751
2752 rcu_read_lock();
2753 task = pid_task(proc_pid(inode), PIDTYPE_PID);
2754 if (!task) {
2755 rcu_read_unlock();
2756 return -ESRCH;
2757 }
2758 /* A task may only write its own attributes. */
2759 if (current != task) {
2760 rcu_read_unlock();
2761 return -EACCES;
2762 }
2763 /* Prevent changes to overridden credentials. */
2764 if (current_cred() != current_real_cred()) {
2765 rcu_read_unlock();
2766 return -EBUSY;
2767 }
2768 rcu_read_unlock();
2769
2770 if (count > PAGE_SIZE)
2771 count = PAGE_SIZE;
2772
2773 /* No partial writes. */
2774 if (*ppos != 0)
2775 return -EINVAL;
2776
2777 page = memdup_user(buf, count);
2778 if (IS_ERR(page)) {
2779 rv = PTR_ERR(page);
2780 goto out;
2781 }
2782
2783 /* Guard against adverse ptrace interaction */
2784 rv = mutex_lock_interruptible(¤t->signal->cred_guard_mutex);
2785 if (rv < 0)
2786 goto out_free;
2787
2788 rv = security_setprocattr(PROC_I(inode)->op.lsmid,
2789 file->f_path.dentry->d_name.name, page,
2790 count);
2791 mutex_unlock(¤t->signal->cred_guard_mutex);
2792out_free:
2793 kfree(page);
2794out:
2795 return rv;
2796}
2797
2798static const struct file_operations proc_pid_attr_operations = {
2799 .open = proc_pid_attr_open,
2800 .read = proc_pid_attr_read,
2801 .write = proc_pid_attr_write,
2802 .llseek = generic_file_llseek,
2803 .release = mem_release,
2804};
2805
2806#define LSM_DIR_OPS(LSM) \
2807static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
2808 struct dir_context *ctx) \
2809{ \
2810 return proc_pident_readdir(filp, ctx, \
2811 LSM##_attr_dir_stuff, \
2812 ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2813} \
2814\
2815static const struct file_operations proc_##LSM##_attr_dir_ops = { \
2816 .read = generic_read_dir, \
2817 .iterate_shared = proc_##LSM##_attr_dir_iterate, \
2818 .llseek = default_llseek, \
2819}; \
2820\
2821static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
2822 struct dentry *dentry, unsigned int flags) \
2823{ \
2824 return proc_pident_lookup(dir, dentry, \
2825 LSM##_attr_dir_stuff, \
2826 LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2827} \
2828\
2829static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
2830 .lookup = proc_##LSM##_attr_dir_lookup, \
2831 .getattr = pid_getattr, \
2832 .setattr = proc_setattr, \
2833}
2834
2835#ifdef CONFIG_SECURITY_SMACK
2836static const struct pid_entry smack_attr_dir_stuff[] = {
2837 ATTR(LSM_ID_SMACK, "current", 0666),
2838};
2839LSM_DIR_OPS(smack);
2840#endif
2841
2842#ifdef CONFIG_SECURITY_APPARMOR
2843static const struct pid_entry apparmor_attr_dir_stuff[] = {
2844 ATTR(LSM_ID_APPARMOR, "current", 0666),
2845 ATTR(LSM_ID_APPARMOR, "prev", 0444),
2846 ATTR(LSM_ID_APPARMOR, "exec", 0666),
2847};
2848LSM_DIR_OPS(apparmor);
2849#endif
2850
2851static const struct pid_entry attr_dir_stuff[] = {
2852 ATTR(LSM_ID_UNDEF, "current", 0666),
2853 ATTR(LSM_ID_UNDEF, "prev", 0444),
2854 ATTR(LSM_ID_UNDEF, "exec", 0666),
2855 ATTR(LSM_ID_UNDEF, "fscreate", 0666),
2856 ATTR(LSM_ID_UNDEF, "keycreate", 0666),
2857 ATTR(LSM_ID_UNDEF, "sockcreate", 0666),
2858#ifdef CONFIG_SECURITY_SMACK
2859 DIR("smack", 0555,
2860 proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
2861#endif
2862#ifdef CONFIG_SECURITY_APPARMOR
2863 DIR("apparmor", 0555,
2864 proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops),
2865#endif
2866};
2867
2868static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2869{
2870 return proc_pident_readdir(file, ctx,
2871 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2872}
2873
2874static const struct file_operations proc_attr_dir_operations = {
2875 .read = generic_read_dir,
2876 .iterate_shared = proc_attr_dir_readdir,
2877 .llseek = generic_file_llseek,
2878};
2879
2880static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2881 struct dentry *dentry, unsigned int flags)
2882{
2883 return proc_pident_lookup(dir, dentry,
2884 attr_dir_stuff,
2885 attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
2886}
2887
2888static const struct inode_operations proc_attr_dir_inode_operations = {
2889 .lookup = proc_attr_dir_lookup,
2890 .getattr = pid_getattr,
2891 .setattr = proc_setattr,
2892};
2893
2894#endif
2895
2896#ifdef CONFIG_ELF_CORE
2897static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2898 size_t count, loff_t *ppos)
2899{
2900 struct task_struct *task = get_proc_task(file_inode(file));
2901 struct mm_struct *mm;
2902 char buffer[PROC_NUMBUF];
2903 size_t len;
2904 int ret;
2905
2906 if (!task)
2907 return -ESRCH;
2908
2909 ret = 0;
2910 mm = get_task_mm(task);
2911 if (mm) {
2912 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2913 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2914 MMF_DUMP_FILTER_SHIFT));
2915 mmput(mm);
2916 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2917 }
2918
2919 put_task_struct(task);
2920
2921 return ret;
2922}
2923
2924static ssize_t proc_coredump_filter_write(struct file *file,
2925 const char __user *buf,
2926 size_t count,
2927 loff_t *ppos)
2928{
2929 struct task_struct *task;
2930 struct mm_struct *mm;
2931 unsigned int val;
2932 int ret;
2933 int i;
2934 unsigned long mask;
2935
2936 ret = kstrtouint_from_user(buf, count, 0, &val);
2937 if (ret < 0)
2938 return ret;
2939
2940 ret = -ESRCH;
2941 task = get_proc_task(file_inode(file));
2942 if (!task)
2943 goto out_no_task;
2944
2945 mm = get_task_mm(task);
2946 if (!mm)
2947 goto out_no_mm;
2948 ret = 0;
2949
2950 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2951 if (val & mask)
2952 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2953 else
2954 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2955 }
2956
2957 mmput(mm);
2958 out_no_mm:
2959 put_task_struct(task);
2960 out_no_task:
2961 if (ret < 0)
2962 return ret;
2963 return count;
2964}
2965
2966static const struct file_operations proc_coredump_filter_operations = {
2967 .read = proc_coredump_filter_read,
2968 .write = proc_coredump_filter_write,
2969 .llseek = generic_file_llseek,
2970};
2971#endif
2972
2973#ifdef CONFIG_TASK_IO_ACCOUNTING
2974static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2975{
2976 struct task_io_accounting acct;
2977 int result;
2978
2979 result = down_read_killable(&task->signal->exec_update_lock);
2980 if (result)
2981 return result;
2982
2983 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2984 result = -EACCES;
2985 goto out_unlock;
2986 }
2987
2988 if (whole) {
2989 struct signal_struct *sig = task->signal;
2990 struct task_struct *t;
2991 unsigned int seq = 1;
2992 unsigned long flags;
2993
2994 rcu_read_lock();
2995 do {
2996 seq++; /* 2 on the 1st/lockless path, otherwise odd */
2997 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
2998
2999 acct = sig->ioac;
3000 __for_each_thread(sig, t)
3001 task_io_accounting_add(&acct, &t->ioac);
3002
3003 } while (need_seqretry(&sig->stats_lock, seq));
3004 done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
3005 rcu_read_unlock();
3006 } else {
3007 acct = task->ioac;
3008 }
3009
3010 seq_printf(m,
3011 "rchar: %llu\n"
3012 "wchar: %llu\n"
3013 "syscr: %llu\n"
3014 "syscw: %llu\n"
3015 "read_bytes: %llu\n"
3016 "write_bytes: %llu\n"
3017 "cancelled_write_bytes: %llu\n",
3018 (unsigned long long)acct.rchar,
3019 (unsigned long long)acct.wchar,
3020 (unsigned long long)acct.syscr,
3021 (unsigned long long)acct.syscw,
3022 (unsigned long long)acct.read_bytes,
3023 (unsigned long long)acct.write_bytes,
3024 (unsigned long long)acct.cancelled_write_bytes);
3025 result = 0;
3026
3027out_unlock:
3028 up_read(&task->signal->exec_update_lock);
3029 return result;
3030}
3031
3032static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
3033 struct pid *pid, struct task_struct *task)
3034{
3035 return do_io_accounting(task, m, 0);
3036}
3037
3038static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
3039 struct pid *pid, struct task_struct *task)
3040{
3041 return do_io_accounting(task, m, 1);
3042}
3043#endif /* CONFIG_TASK_IO_ACCOUNTING */
3044
3045#ifdef CONFIG_USER_NS
3046static int proc_id_map_open(struct inode *inode, struct file *file,
3047 const struct seq_operations *seq_ops)
3048{
3049 struct user_namespace *ns = NULL;
3050 struct task_struct *task;
3051 struct seq_file *seq;
3052 int ret = -EINVAL;
3053
3054 task = get_proc_task(inode);
3055 if (task) {
3056 rcu_read_lock();
3057 ns = get_user_ns(task_cred_xxx(task, user_ns));
3058 rcu_read_unlock();
3059 put_task_struct(task);
3060 }
3061 if (!ns)
3062 goto err;
3063
3064 ret = seq_open(file, seq_ops);
3065 if (ret)
3066 goto err_put_ns;
3067
3068 seq = file->private_data;
3069 seq->private = ns;
3070
3071 return 0;
3072err_put_ns:
3073 put_user_ns(ns);
3074err:
3075 return ret;
3076}
3077
3078static int proc_id_map_release(struct inode *inode, struct file *file)
3079{
3080 struct seq_file *seq = file->private_data;
3081 struct user_namespace *ns = seq->private;
3082 put_user_ns(ns);
3083 return seq_release(inode, file);
3084}
3085
3086static int proc_uid_map_open(struct inode *inode, struct file *file)
3087{
3088 return proc_id_map_open(inode, file, &proc_uid_seq_operations);
3089}
3090
3091static int proc_gid_map_open(struct inode *inode, struct file *file)
3092{
3093 return proc_id_map_open(inode, file, &proc_gid_seq_operations);
3094}
3095
3096static int proc_projid_map_open(struct inode *inode, struct file *file)
3097{
3098 return proc_id_map_open(inode, file, &proc_projid_seq_operations);
3099}
3100
3101static const struct file_operations proc_uid_map_operations = {
3102 .open = proc_uid_map_open,
3103 .write = proc_uid_map_write,
3104 .read = seq_read,
3105 .llseek = seq_lseek,
3106 .release = proc_id_map_release,
3107};
3108
3109static const struct file_operations proc_gid_map_operations = {
3110 .open = proc_gid_map_open,
3111 .write = proc_gid_map_write,
3112 .read = seq_read,
3113 .llseek = seq_lseek,
3114 .release = proc_id_map_release,
3115};
3116
3117static const struct file_operations proc_projid_map_operations = {
3118 .open = proc_projid_map_open,
3119 .write = proc_projid_map_write,
3120 .read = seq_read,
3121 .llseek = seq_lseek,
3122 .release = proc_id_map_release,
3123};
3124
3125static int proc_setgroups_open(struct inode *inode, struct file *file)
3126{
3127 struct user_namespace *ns = NULL;
3128 struct task_struct *task;
3129 int ret;
3130
3131 ret = -ESRCH;
3132 task = get_proc_task(inode);
3133 if (task) {
3134 rcu_read_lock();
3135 ns = get_user_ns(task_cred_xxx(task, user_ns));
3136 rcu_read_unlock();
3137 put_task_struct(task);
3138 }
3139 if (!ns)
3140 goto err;
3141
3142 if (file->f_mode & FMODE_WRITE) {
3143 ret = -EACCES;
3144 if (!ns_capable(ns, CAP_SYS_ADMIN))
3145 goto err_put_ns;
3146 }
3147
3148 ret = single_open(file, &proc_setgroups_show, ns);
3149 if (ret)
3150 goto err_put_ns;
3151
3152 return 0;
3153err_put_ns:
3154 put_user_ns(ns);
3155err:
3156 return ret;
3157}
3158
3159static int proc_setgroups_release(struct inode *inode, struct file *file)
3160{
3161 struct seq_file *seq = file->private_data;
3162 struct user_namespace *ns = seq->private;
3163 int ret = single_release(inode, file);
3164 put_user_ns(ns);
3165 return ret;
3166}
3167
3168static const struct file_operations proc_setgroups_operations = {
3169 .open = proc_setgroups_open,
3170 .write = proc_setgroups_write,
3171 .read = seq_read,
3172 .llseek = seq_lseek,
3173 .release = proc_setgroups_release,
3174};
3175#endif /* CONFIG_USER_NS */
3176
3177static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
3178 struct pid *pid, struct task_struct *task)
3179{
3180 int err = lock_trace(task);
3181 if (!err) {
3182 seq_printf(m, "%08x\n", task->personality);
3183 unlock_trace(task);
3184 }
3185 return err;
3186}
3187
3188#ifdef CONFIG_LIVEPATCH
3189static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
3190 struct pid *pid, struct task_struct *task)
3191{
3192 seq_printf(m, "%d\n", task->patch_state);
3193 return 0;
3194}
3195#endif /* CONFIG_LIVEPATCH */
3196
3197#ifdef CONFIG_KSM
3198static int proc_pid_ksm_merging_pages(struct seq_file *m, struct pid_namespace *ns,
3199 struct pid *pid, struct task_struct *task)
3200{
3201 struct mm_struct *mm;
3202
3203 mm = get_task_mm(task);
3204 if (mm) {
3205 seq_printf(m, "%lu\n", mm->ksm_merging_pages);
3206 mmput(mm);
3207 }
3208
3209 return 0;
3210}
3211static int proc_pid_ksm_stat(struct seq_file *m, struct pid_namespace *ns,
3212 struct pid *pid, struct task_struct *task)
3213{
3214 struct mm_struct *mm;
3215
3216 mm = get_task_mm(task);
3217 if (mm) {
3218 seq_printf(m, "ksm_rmap_items %lu\n", mm->ksm_rmap_items);
3219 seq_printf(m, "ksm_zero_pages %lu\n", mm->ksm_zero_pages);
3220 seq_printf(m, "ksm_merging_pages %lu\n", mm->ksm_merging_pages);
3221 seq_printf(m, "ksm_process_profit %ld\n", ksm_process_profit(mm));
3222 mmput(mm);
3223 }
3224
3225 return 0;
3226}
3227#endif /* CONFIG_KSM */
3228
3229#ifdef CONFIG_STACKLEAK_METRICS
3230static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
3231 struct pid *pid, struct task_struct *task)
3232{
3233 unsigned long prev_depth = THREAD_SIZE -
3234 (task->prev_lowest_stack & (THREAD_SIZE - 1));
3235 unsigned long depth = THREAD_SIZE -
3236 (task->lowest_stack & (THREAD_SIZE - 1));
3237
3238 seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
3239 prev_depth, depth);
3240 return 0;
3241}
3242#endif /* CONFIG_STACKLEAK_METRICS */
3243
3244/*
3245 * Thread groups
3246 */
3247static const struct file_operations proc_task_operations;
3248static const struct inode_operations proc_task_inode_operations;
3249
3250static const struct pid_entry tgid_base_stuff[] = {
3251 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3252 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3253 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3254 DIR("fdinfo", S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3255 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3256#ifdef CONFIG_NET
3257 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3258#endif
3259 REG("environ", S_IRUSR, proc_environ_operations),
3260 REG("auxv", S_IRUSR, proc_auxv_operations),
3261 ONE("status", S_IRUGO, proc_pid_status),
3262 ONE("personality", S_IRUSR, proc_pid_personality),
3263 ONE("limits", S_IRUGO, proc_pid_limits),
3264#ifdef CONFIG_SCHED_DEBUG
3265 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3266#endif
3267#ifdef CONFIG_SCHED_AUTOGROUP
3268 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3269#endif
3270#ifdef CONFIG_TIME_NS
3271 REG("timens_offsets", S_IRUGO|S_IWUSR, proc_timens_offsets_operations),
3272#endif
3273 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3274#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3275 ONE("syscall", S_IRUSR, proc_pid_syscall),
3276#endif
3277 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
3278 ONE("stat", S_IRUGO, proc_tgid_stat),
3279 ONE("statm", S_IRUGO, proc_pid_statm),
3280 REG("maps", S_IRUGO, proc_pid_maps_operations),
3281#ifdef CONFIG_NUMA
3282 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3283#endif
3284 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3285 LNK("cwd", proc_cwd_link),
3286 LNK("root", proc_root_link),
3287 LNK("exe", proc_exe_link),
3288 REG("mounts", S_IRUGO, proc_mounts_operations),
3289 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3290 REG("mountstats", S_IRUSR, proc_mountstats_operations),
3291#ifdef CONFIG_PROC_PAGE_MONITOR
3292 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3293 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
3294 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3295 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3296#endif
3297#ifdef CONFIG_SECURITY
3298 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3299#endif
3300#ifdef CONFIG_KALLSYMS
3301 ONE("wchan", S_IRUGO, proc_pid_wchan),
3302#endif
3303#ifdef CONFIG_STACKTRACE
3304 ONE("stack", S_IRUSR, proc_pid_stack),
3305#endif
3306#ifdef CONFIG_SCHED_INFO
3307 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3308#endif
3309#ifdef CONFIG_LATENCYTOP
3310 REG("latency", S_IRUGO, proc_lstats_operations),
3311#endif
3312#ifdef CONFIG_PROC_PID_CPUSET
3313 ONE("cpuset", S_IRUGO, proc_cpuset_show),
3314#endif
3315#ifdef CONFIG_CGROUPS
3316 ONE("cgroup", S_IRUGO, proc_cgroup_show),
3317#endif
3318#ifdef CONFIG_PROC_CPU_RESCTRL
3319 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3320#endif
3321 ONE("oom_score", S_IRUGO, proc_oom_score),
3322 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3323 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3324#ifdef CONFIG_AUDIT
3325 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3326 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3327#endif
3328#ifdef CONFIG_FAULT_INJECTION
3329 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3330 REG("fail-nth", 0644, proc_fail_nth_operations),
3331#endif
3332#ifdef CONFIG_ELF_CORE
3333 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3334#endif
3335#ifdef CONFIG_TASK_IO_ACCOUNTING
3336 ONE("io", S_IRUSR, proc_tgid_io_accounting),
3337#endif
3338#ifdef CONFIG_USER_NS
3339 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3340 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3341 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3342 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3343#endif
3344#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3345 REG("timers", S_IRUGO, proc_timers_operations),
3346#endif
3347 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3348#ifdef CONFIG_LIVEPATCH
3349 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3350#endif
3351#ifdef CONFIG_STACKLEAK_METRICS
3352 ONE("stack_depth", S_IRUGO, proc_stack_depth),
3353#endif
3354#ifdef CONFIG_PROC_PID_ARCH_STATUS
3355 ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3356#endif
3357#ifdef CONFIG_SECCOMP_CACHE_DEBUG
3358 ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3359#endif
3360#ifdef CONFIG_KSM
3361 ONE("ksm_merging_pages", S_IRUSR, proc_pid_ksm_merging_pages),
3362 ONE("ksm_stat", S_IRUSR, proc_pid_ksm_stat),
3363#endif
3364};
3365
3366static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3367{
3368 return proc_pident_readdir(file, ctx,
3369 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3370}
3371
3372static const struct file_operations proc_tgid_base_operations = {
3373 .read = generic_read_dir,
3374 .iterate_shared = proc_tgid_base_readdir,
3375 .llseek = generic_file_llseek,
3376};
3377
3378struct pid *tgid_pidfd_to_pid(const struct file *file)
3379{
3380 if (file->f_op != &proc_tgid_base_operations)
3381 return ERR_PTR(-EBADF);
3382
3383 return proc_pid(file_inode(file));
3384}
3385
3386static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3387{
3388 return proc_pident_lookup(dir, dentry,
3389 tgid_base_stuff,
3390 tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
3391}
3392
3393static const struct inode_operations proc_tgid_base_inode_operations = {
3394 .lookup = proc_tgid_base_lookup,
3395 .getattr = pid_getattr,
3396 .setattr = proc_setattr,
3397 .permission = proc_pid_permission,
3398};
3399
3400/**
3401 * proc_flush_pid - Remove dcache entries for @pid from the /proc dcache.
3402 * @pid: pid that should be flushed.
3403 *
3404 * This function walks a list of inodes (that belong to any proc
3405 * filesystem) that are attached to the pid and flushes them from
3406 * the dentry cache.
3407 *
3408 * It is safe and reasonable to cache /proc entries for a task until
3409 * that task exits. After that they just clog up the dcache with
3410 * useless entries, possibly causing useful dcache entries to be
3411 * flushed instead. This routine is provided to flush those useless
3412 * dcache entries when a process is reaped.
3413 *
3414 * NOTE: This routine is just an optimization so it does not guarantee
3415 * that no dcache entries will exist after a process is reaped
3416 * it just makes it very unlikely that any will persist.
3417 */
3418
3419void proc_flush_pid(struct pid *pid)
3420{
3421 proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock);
3422}
3423
3424static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3425 struct task_struct *task, const void *ptr)
3426{
3427 struct inode *inode;
3428
3429 inode = proc_pid_make_base_inode(dentry->d_sb, task,
3430 S_IFDIR | S_IRUGO | S_IXUGO);
3431 if (!inode)
3432 return ERR_PTR(-ENOENT);
3433
3434 inode->i_op = &proc_tgid_base_inode_operations;
3435 inode->i_fop = &proc_tgid_base_operations;
3436 inode->i_flags|=S_IMMUTABLE;
3437
3438 set_nlink(inode, nlink_tgid);
3439 pid_update_inode(task, inode);
3440
3441 d_set_d_op(dentry, &pid_dentry_operations);
3442 return d_splice_alias(inode, dentry);
3443}
3444
3445struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
3446{
3447 struct task_struct *task;
3448 unsigned tgid;
3449 struct proc_fs_info *fs_info;
3450 struct pid_namespace *ns;
3451 struct dentry *result = ERR_PTR(-ENOENT);
3452
3453 tgid = name_to_int(&dentry->d_name);
3454 if (tgid == ~0U)
3455 goto out;
3456
3457 fs_info = proc_sb_info(dentry->d_sb);
3458 ns = fs_info->pid_ns;
3459 rcu_read_lock();
3460 task = find_task_by_pid_ns(tgid, ns);
3461 if (task)
3462 get_task_struct(task);
3463 rcu_read_unlock();
3464 if (!task)
3465 goto out;
3466
3467 /* Limit procfs to only ptraceable tasks */
3468 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) {
3469 if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS))
3470 goto out_put_task;
3471 }
3472
3473 result = proc_pid_instantiate(dentry, task, NULL);
3474out_put_task:
3475 put_task_struct(task);
3476out:
3477 return result;
3478}
3479
3480/*
3481 * Find the first task with tgid >= tgid
3482 *
3483 */
3484struct tgid_iter {
3485 unsigned int tgid;
3486 struct task_struct *task;
3487};
3488static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3489{
3490 struct pid *pid;
3491
3492 if (iter.task)
3493 put_task_struct(iter.task);
3494 rcu_read_lock();
3495retry:
3496 iter.task = NULL;
3497 pid = find_ge_pid(iter.tgid, ns);
3498 if (pid) {
3499 iter.tgid = pid_nr_ns(pid, ns);
3500 iter.task = pid_task(pid, PIDTYPE_TGID);
3501 if (!iter.task) {
3502 iter.tgid += 1;
3503 goto retry;
3504 }
3505 get_task_struct(iter.task);
3506 }
3507 rcu_read_unlock();
3508 return iter;
3509}
3510
3511#define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3512
3513/* for the /proc/ directory itself, after non-process stuff has been done */
3514int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3515{
3516 struct tgid_iter iter;
3517 struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb);
3518 struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb);
3519 loff_t pos = ctx->pos;
3520
3521 if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3522 return 0;
3523
3524 if (pos == TGID_OFFSET - 2) {
3525 struct inode *inode = d_inode(fs_info->proc_self);
3526 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3527 return 0;
3528 ctx->pos = pos = pos + 1;
3529 }
3530 if (pos == TGID_OFFSET - 1) {
3531 struct inode *inode = d_inode(fs_info->proc_thread_self);
3532 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3533 return 0;
3534 ctx->pos = pos = pos + 1;
3535 }
3536 iter.tgid = pos - TGID_OFFSET;
3537 iter.task = NULL;
3538 for (iter = next_tgid(ns, iter);
3539 iter.task;
3540 iter.tgid += 1, iter = next_tgid(ns, iter)) {
3541 char name[10 + 1];
3542 unsigned int len;
3543
3544 cond_resched();
3545 if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE))
3546 continue;
3547
3548 len = snprintf(name, sizeof(name), "%u", iter.tgid);
3549 ctx->pos = iter.tgid + TGID_OFFSET;
3550 if (!proc_fill_cache(file, ctx, name, len,
3551 proc_pid_instantiate, iter.task, NULL)) {
3552 put_task_struct(iter.task);
3553 return 0;
3554 }
3555 }
3556 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3557 return 0;
3558}
3559
3560/*
3561 * proc_tid_comm_permission is a special permission function exclusively
3562 * used for the node /proc/<pid>/task/<tid>/comm.
3563 * It bypasses generic permission checks in the case where a task of the same
3564 * task group attempts to access the node.
3565 * The rationale behind this is that glibc and bionic access this node for
3566 * cross thread naming (pthread_set/getname_np(!self)). However, if
3567 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3568 * which locks out the cross thread naming implementation.
3569 * This function makes sure that the node is always accessible for members of
3570 * same thread group.
3571 */
3572static int proc_tid_comm_permission(struct mnt_idmap *idmap,
3573 struct inode *inode, int mask)
3574{
3575 bool is_same_tgroup;
3576 struct task_struct *task;
3577
3578 task = get_proc_task(inode);
3579 if (!task)
3580 return -ESRCH;
3581 is_same_tgroup = same_thread_group(current, task);
3582 put_task_struct(task);
3583
3584 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3585 /* This file (/proc/<pid>/task/<tid>/comm) can always be
3586 * read or written by the members of the corresponding
3587 * thread group.
3588 */
3589 return 0;
3590 }
3591
3592 return generic_permission(&nop_mnt_idmap, inode, mask);
3593}
3594
3595static const struct inode_operations proc_tid_comm_inode_operations = {
3596 .setattr = proc_setattr,
3597 .permission = proc_tid_comm_permission,
3598};
3599
3600/*
3601 * Tasks
3602 */
3603static const struct pid_entry tid_base_stuff[] = {
3604 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3605 DIR("fdinfo", S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3606 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3607#ifdef CONFIG_NET
3608 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3609#endif
3610 REG("environ", S_IRUSR, proc_environ_operations),
3611 REG("auxv", S_IRUSR, proc_auxv_operations),
3612 ONE("status", S_IRUGO, proc_pid_status),
3613 ONE("personality", S_IRUSR, proc_pid_personality),
3614 ONE("limits", S_IRUGO, proc_pid_limits),
3615#ifdef CONFIG_SCHED_DEBUG
3616 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3617#endif
3618 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR,
3619 &proc_tid_comm_inode_operations,
3620 &proc_pid_set_comm_operations, {}),
3621#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3622 ONE("syscall", S_IRUSR, proc_pid_syscall),
3623#endif
3624 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
3625 ONE("stat", S_IRUGO, proc_tid_stat),
3626 ONE("statm", S_IRUGO, proc_pid_statm),
3627 REG("maps", S_IRUGO, proc_pid_maps_operations),
3628#ifdef CONFIG_PROC_CHILDREN
3629 REG("children", S_IRUGO, proc_tid_children_operations),
3630#endif
3631#ifdef CONFIG_NUMA
3632 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3633#endif
3634 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3635 LNK("cwd", proc_cwd_link),
3636 LNK("root", proc_root_link),
3637 LNK("exe", proc_exe_link),
3638 REG("mounts", S_IRUGO, proc_mounts_operations),
3639 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3640#ifdef CONFIG_PROC_PAGE_MONITOR
3641 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3642 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
3643 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3644 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3645#endif
3646#ifdef CONFIG_SECURITY
3647 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3648#endif
3649#ifdef CONFIG_KALLSYMS
3650 ONE("wchan", S_IRUGO, proc_pid_wchan),
3651#endif
3652#ifdef CONFIG_STACKTRACE
3653 ONE("stack", S_IRUSR, proc_pid_stack),
3654#endif
3655#ifdef CONFIG_SCHED_INFO
3656 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3657#endif
3658#ifdef CONFIG_LATENCYTOP
3659 REG("latency", S_IRUGO, proc_lstats_operations),
3660#endif
3661#ifdef CONFIG_PROC_PID_CPUSET
3662 ONE("cpuset", S_IRUGO, proc_cpuset_show),
3663#endif
3664#ifdef CONFIG_CGROUPS
3665 ONE("cgroup", S_IRUGO, proc_cgroup_show),
3666#endif
3667#ifdef CONFIG_PROC_CPU_RESCTRL
3668 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3669#endif
3670 ONE("oom_score", S_IRUGO, proc_oom_score),
3671 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3672 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3673#ifdef CONFIG_AUDIT
3674 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3675 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3676#endif
3677#ifdef CONFIG_FAULT_INJECTION
3678 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3679 REG("fail-nth", 0644, proc_fail_nth_operations),
3680#endif
3681#ifdef CONFIG_TASK_IO_ACCOUNTING
3682 ONE("io", S_IRUSR, proc_tid_io_accounting),
3683#endif
3684#ifdef CONFIG_USER_NS
3685 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3686 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3687 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3688 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3689#endif
3690#ifdef CONFIG_LIVEPATCH
3691 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3692#endif
3693#ifdef CONFIG_PROC_PID_ARCH_STATUS
3694 ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3695#endif
3696#ifdef CONFIG_SECCOMP_CACHE_DEBUG
3697 ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3698#endif
3699#ifdef CONFIG_KSM
3700 ONE("ksm_merging_pages", S_IRUSR, proc_pid_ksm_merging_pages),
3701 ONE("ksm_stat", S_IRUSR, proc_pid_ksm_stat),
3702#endif
3703};
3704
3705static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3706{
3707 return proc_pident_readdir(file, ctx,
3708 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3709}
3710
3711static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3712{
3713 return proc_pident_lookup(dir, dentry,
3714 tid_base_stuff,
3715 tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
3716}
3717
3718static const struct file_operations proc_tid_base_operations = {
3719 .read = generic_read_dir,
3720 .iterate_shared = proc_tid_base_readdir,
3721 .llseek = generic_file_llseek,
3722};
3723
3724static const struct inode_operations proc_tid_base_inode_operations = {
3725 .lookup = proc_tid_base_lookup,
3726 .getattr = pid_getattr,
3727 .setattr = proc_setattr,
3728};
3729
3730static struct dentry *proc_task_instantiate(struct dentry *dentry,
3731 struct task_struct *task, const void *ptr)
3732{
3733 struct inode *inode;
3734 inode = proc_pid_make_base_inode(dentry->d_sb, task,
3735 S_IFDIR | S_IRUGO | S_IXUGO);
3736 if (!inode)
3737 return ERR_PTR(-ENOENT);
3738
3739 inode->i_op = &proc_tid_base_inode_operations;
3740 inode->i_fop = &proc_tid_base_operations;
3741 inode->i_flags |= S_IMMUTABLE;
3742
3743 set_nlink(inode, nlink_tid);
3744 pid_update_inode(task, inode);
3745
3746 d_set_d_op(dentry, &pid_dentry_operations);
3747 return d_splice_alias(inode, dentry);
3748}
3749
3750static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3751{
3752 struct task_struct *task;
3753 struct task_struct *leader = get_proc_task(dir);
3754 unsigned tid;
3755 struct proc_fs_info *fs_info;
3756 struct pid_namespace *ns;
3757 struct dentry *result = ERR_PTR(-ENOENT);
3758
3759 if (!leader)
3760 goto out_no_task;
3761
3762 tid = name_to_int(&dentry->d_name);
3763 if (tid == ~0U)
3764 goto out;
3765
3766 fs_info = proc_sb_info(dentry->d_sb);
3767 ns = fs_info->pid_ns;
3768 rcu_read_lock();
3769 task = find_task_by_pid_ns(tid, ns);
3770 if (task)
3771 get_task_struct(task);
3772 rcu_read_unlock();
3773 if (!task)
3774 goto out;
3775 if (!same_thread_group(leader, task))
3776 goto out_drop_task;
3777
3778 result = proc_task_instantiate(dentry, task, NULL);
3779out_drop_task:
3780 put_task_struct(task);
3781out:
3782 put_task_struct(leader);
3783out_no_task:
3784 return result;
3785}
3786
3787/*
3788 * Find the first tid of a thread group to return to user space.
3789 *
3790 * Usually this is just the thread group leader, but if the users
3791 * buffer was too small or there was a seek into the middle of the
3792 * directory we have more work todo.
3793 *
3794 * In the case of a short read we start with find_task_by_pid.
3795 *
3796 * In the case of a seek we start with the leader and walk nr
3797 * threads past it.
3798 */
3799static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3800 struct pid_namespace *ns)
3801{
3802 struct task_struct *pos, *task;
3803 unsigned long nr = f_pos;
3804
3805 if (nr != f_pos) /* 32bit overflow? */
3806 return NULL;
3807
3808 rcu_read_lock();
3809 task = pid_task(pid, PIDTYPE_PID);
3810 if (!task)
3811 goto fail;
3812
3813 /* Attempt to start with the tid of a thread */
3814 if (tid && nr) {
3815 pos = find_task_by_pid_ns(tid, ns);
3816 if (pos && same_thread_group(pos, task))
3817 goto found;
3818 }
3819
3820 /* If nr exceeds the number of threads there is nothing todo */
3821 if (nr >= get_nr_threads(task))
3822 goto fail;
3823
3824 /* If we haven't found our starting place yet start
3825 * with the leader and walk nr threads forward.
3826 */
3827 for_each_thread(task, pos) {
3828 if (!nr--)
3829 goto found;
3830 }
3831fail:
3832 pos = NULL;
3833 goto out;
3834found:
3835 get_task_struct(pos);
3836out:
3837 rcu_read_unlock();
3838 return pos;
3839}
3840
3841/*
3842 * Find the next thread in the thread list.
3843 * Return NULL if there is an error or no next thread.
3844 *
3845 * The reference to the input task_struct is released.
3846 */
3847static struct task_struct *next_tid(struct task_struct *start)
3848{
3849 struct task_struct *pos = NULL;
3850 rcu_read_lock();
3851 if (pid_alive(start)) {
3852 pos = __next_thread(start);
3853 if (pos)
3854 get_task_struct(pos);
3855 }
3856 rcu_read_unlock();
3857 put_task_struct(start);
3858 return pos;
3859}
3860
3861/* for the /proc/TGID/task/ directories */
3862static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3863{
3864 struct inode *inode = file_inode(file);
3865 struct task_struct *task;
3866 struct pid_namespace *ns;
3867 int tid;
3868
3869 if (proc_inode_is_dead(inode))
3870 return -ENOENT;
3871
3872 if (!dir_emit_dots(file, ctx))
3873 return 0;
3874
3875 /* f_version caches the tgid value that the last readdir call couldn't
3876 * return. lseek aka telldir automagically resets f_version to 0.
3877 */
3878 ns = proc_pid_ns(inode->i_sb);
3879 tid = (int)file->f_version;
3880 file->f_version = 0;
3881 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3882 task;
3883 task = next_tid(task), ctx->pos++) {
3884 char name[10 + 1];
3885 unsigned int len;
3886
3887 tid = task_pid_nr_ns(task, ns);
3888 if (!tid)
3889 continue; /* The task has just exited. */
3890 len = snprintf(name, sizeof(name), "%u", tid);
3891 if (!proc_fill_cache(file, ctx, name, len,
3892 proc_task_instantiate, task, NULL)) {
3893 /* returning this tgid failed, save it as the first
3894 * pid for the next readir call */
3895 file->f_version = (u64)tid;
3896 put_task_struct(task);
3897 break;
3898 }
3899 }
3900
3901 return 0;
3902}
3903
3904static int proc_task_getattr(struct mnt_idmap *idmap,
3905 const struct path *path, struct kstat *stat,
3906 u32 request_mask, unsigned int query_flags)
3907{
3908 struct inode *inode = d_inode(path->dentry);
3909 struct task_struct *p = get_proc_task(inode);
3910 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
3911
3912 if (p) {
3913 stat->nlink += get_nr_threads(p);
3914 put_task_struct(p);
3915 }
3916
3917 return 0;
3918}
3919
3920static const struct inode_operations proc_task_inode_operations = {
3921 .lookup = proc_task_lookup,
3922 .getattr = proc_task_getattr,
3923 .setattr = proc_setattr,
3924 .permission = proc_pid_permission,
3925};
3926
3927static const struct file_operations proc_task_operations = {
3928 .read = generic_read_dir,
3929 .iterate_shared = proc_task_readdir,
3930 .llseek = generic_file_llseek,
3931};
3932
3933void __init set_proc_pid_nlink(void)
3934{
3935 nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3936 nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3937}