Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Thunderbolt driver - switch/port utility functions
4 *
5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6 * Copyright (C) 2018, Intel Corporation
7 */
8
9#include <linux/delay.h>
10#include <linux/idr.h>
11#include <linux/module.h>
12#include <linux/nvmem-provider.h>
13#include <linux/pm_runtime.h>
14#include <linux/sched/signal.h>
15#include <linux/sizes.h>
16#include <linux/slab.h>
17#include <linux/string_helpers.h>
18
19#include "tb.h"
20
21/* Switch NVM support */
22
23struct nvm_auth_status {
24 struct list_head list;
25 uuid_t uuid;
26 u32 status;
27};
28
29/*
30 * Hold NVM authentication failure status per switch This information
31 * needs to stay around even when the switch gets power cycled so we
32 * keep it separately.
33 */
34static LIST_HEAD(nvm_auth_status_cache);
35static DEFINE_MUTEX(nvm_auth_status_lock);
36
37static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
38{
39 struct nvm_auth_status *st;
40
41 list_for_each_entry(st, &nvm_auth_status_cache, list) {
42 if (uuid_equal(&st->uuid, sw->uuid))
43 return st;
44 }
45
46 return NULL;
47}
48
49static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
50{
51 struct nvm_auth_status *st;
52
53 mutex_lock(&nvm_auth_status_lock);
54 st = __nvm_get_auth_status(sw);
55 mutex_unlock(&nvm_auth_status_lock);
56
57 *status = st ? st->status : 0;
58}
59
60static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
61{
62 struct nvm_auth_status *st;
63
64 if (WARN_ON(!sw->uuid))
65 return;
66
67 mutex_lock(&nvm_auth_status_lock);
68 st = __nvm_get_auth_status(sw);
69
70 if (!st) {
71 st = kzalloc(sizeof(*st), GFP_KERNEL);
72 if (!st)
73 goto unlock;
74
75 memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
76 INIT_LIST_HEAD(&st->list);
77 list_add_tail(&st->list, &nvm_auth_status_cache);
78 }
79
80 st->status = status;
81unlock:
82 mutex_unlock(&nvm_auth_status_lock);
83}
84
85static void nvm_clear_auth_status(const struct tb_switch *sw)
86{
87 struct nvm_auth_status *st;
88
89 mutex_lock(&nvm_auth_status_lock);
90 st = __nvm_get_auth_status(sw);
91 if (st) {
92 list_del(&st->list);
93 kfree(st);
94 }
95 mutex_unlock(&nvm_auth_status_lock);
96}
97
98static int nvm_validate_and_write(struct tb_switch *sw)
99{
100 unsigned int image_size;
101 const u8 *buf;
102 int ret;
103
104 ret = tb_nvm_validate(sw->nvm);
105 if (ret)
106 return ret;
107
108 ret = tb_nvm_write_headers(sw->nvm);
109 if (ret)
110 return ret;
111
112 buf = sw->nvm->buf_data_start;
113 image_size = sw->nvm->buf_data_size;
114
115 if (tb_switch_is_usb4(sw))
116 ret = usb4_switch_nvm_write(sw, 0, buf, image_size);
117 else
118 ret = dma_port_flash_write(sw->dma_port, 0, buf, image_size);
119 if (ret)
120 return ret;
121
122 sw->nvm->flushed = true;
123 return 0;
124}
125
126static int nvm_authenticate_host_dma_port(struct tb_switch *sw)
127{
128 int ret = 0;
129
130 /*
131 * Root switch NVM upgrade requires that we disconnect the
132 * existing paths first (in case it is not in safe mode
133 * already).
134 */
135 if (!sw->safe_mode) {
136 u32 status;
137
138 ret = tb_domain_disconnect_all_paths(sw->tb);
139 if (ret)
140 return ret;
141 /*
142 * The host controller goes away pretty soon after this if
143 * everything goes well so getting timeout is expected.
144 */
145 ret = dma_port_flash_update_auth(sw->dma_port);
146 if (!ret || ret == -ETIMEDOUT)
147 return 0;
148
149 /*
150 * Any error from update auth operation requires power
151 * cycling of the host router.
152 */
153 tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
154 if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
155 nvm_set_auth_status(sw, status);
156 }
157
158 /*
159 * From safe mode we can get out by just power cycling the
160 * switch.
161 */
162 dma_port_power_cycle(sw->dma_port);
163 return ret;
164}
165
166static int nvm_authenticate_device_dma_port(struct tb_switch *sw)
167{
168 int ret, retries = 10;
169
170 ret = dma_port_flash_update_auth(sw->dma_port);
171 switch (ret) {
172 case 0:
173 case -ETIMEDOUT:
174 case -EACCES:
175 case -EINVAL:
176 /* Power cycle is required */
177 break;
178 default:
179 return ret;
180 }
181
182 /*
183 * Poll here for the authentication status. It takes some time
184 * for the device to respond (we get timeout for a while). Once
185 * we get response the device needs to be power cycled in order
186 * to the new NVM to be taken into use.
187 */
188 do {
189 u32 status;
190
191 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
192 if (ret < 0 && ret != -ETIMEDOUT)
193 return ret;
194 if (ret > 0) {
195 if (status) {
196 tb_sw_warn(sw, "failed to authenticate NVM\n");
197 nvm_set_auth_status(sw, status);
198 }
199
200 tb_sw_info(sw, "power cycling the switch now\n");
201 dma_port_power_cycle(sw->dma_port);
202 return 0;
203 }
204
205 msleep(500);
206 } while (--retries);
207
208 return -ETIMEDOUT;
209}
210
211static void nvm_authenticate_start_dma_port(struct tb_switch *sw)
212{
213 struct pci_dev *root_port;
214
215 /*
216 * During host router NVM upgrade we should not allow root port to
217 * go into D3cold because some root ports cannot trigger PME
218 * itself. To be on the safe side keep the root port in D0 during
219 * the whole upgrade process.
220 */
221 root_port = pcie_find_root_port(sw->tb->nhi->pdev);
222 if (root_port)
223 pm_runtime_get_noresume(&root_port->dev);
224}
225
226static void nvm_authenticate_complete_dma_port(struct tb_switch *sw)
227{
228 struct pci_dev *root_port;
229
230 root_port = pcie_find_root_port(sw->tb->nhi->pdev);
231 if (root_port)
232 pm_runtime_put(&root_port->dev);
233}
234
235static inline bool nvm_readable(struct tb_switch *sw)
236{
237 if (tb_switch_is_usb4(sw)) {
238 /*
239 * USB4 devices must support NVM operations but it is
240 * optional for hosts. Therefore we query the NVM sector
241 * size here and if it is supported assume NVM
242 * operations are implemented.
243 */
244 return usb4_switch_nvm_sector_size(sw) > 0;
245 }
246
247 /* Thunderbolt 2 and 3 devices support NVM through DMA port */
248 return !!sw->dma_port;
249}
250
251static inline bool nvm_upgradeable(struct tb_switch *sw)
252{
253 if (sw->no_nvm_upgrade)
254 return false;
255 return nvm_readable(sw);
256}
257
258static int nvm_authenticate(struct tb_switch *sw, bool auth_only)
259{
260 int ret;
261
262 if (tb_switch_is_usb4(sw)) {
263 if (auth_only) {
264 ret = usb4_switch_nvm_set_offset(sw, 0);
265 if (ret)
266 return ret;
267 }
268 sw->nvm->authenticating = true;
269 return usb4_switch_nvm_authenticate(sw);
270 }
271 if (auth_only)
272 return -EOPNOTSUPP;
273
274 sw->nvm->authenticating = true;
275 if (!tb_route(sw)) {
276 nvm_authenticate_start_dma_port(sw);
277 ret = nvm_authenticate_host_dma_port(sw);
278 } else {
279 ret = nvm_authenticate_device_dma_port(sw);
280 }
281
282 return ret;
283}
284
285/**
286 * tb_switch_nvm_read() - Read router NVM
287 * @sw: Router whose NVM to read
288 * @address: Start address on the NVM
289 * @buf: Buffer where the read data is copied
290 * @size: Size of the buffer in bytes
291 *
292 * Reads from router NVM and returns the requested data in @buf. Locking
293 * is up to the caller. Returns %0 in success and negative errno in case
294 * of failure.
295 */
296int tb_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
297 size_t size)
298{
299 if (tb_switch_is_usb4(sw))
300 return usb4_switch_nvm_read(sw, address, buf, size);
301 return dma_port_flash_read(sw->dma_port, address, buf, size);
302}
303
304static int nvm_read(void *priv, unsigned int offset, void *val, size_t bytes)
305{
306 struct tb_nvm *nvm = priv;
307 struct tb_switch *sw = tb_to_switch(nvm->dev);
308 int ret;
309
310 pm_runtime_get_sync(&sw->dev);
311
312 if (!mutex_trylock(&sw->tb->lock)) {
313 ret = restart_syscall();
314 goto out;
315 }
316
317 ret = tb_switch_nvm_read(sw, offset, val, bytes);
318 mutex_unlock(&sw->tb->lock);
319
320out:
321 pm_runtime_mark_last_busy(&sw->dev);
322 pm_runtime_put_autosuspend(&sw->dev);
323
324 return ret;
325}
326
327static int nvm_write(void *priv, unsigned int offset, void *val, size_t bytes)
328{
329 struct tb_nvm *nvm = priv;
330 struct tb_switch *sw = tb_to_switch(nvm->dev);
331 int ret;
332
333 if (!mutex_trylock(&sw->tb->lock))
334 return restart_syscall();
335
336 /*
337 * Since writing the NVM image might require some special steps,
338 * for example when CSS headers are written, we cache the image
339 * locally here and handle the special cases when the user asks
340 * us to authenticate the image.
341 */
342 ret = tb_nvm_write_buf(nvm, offset, val, bytes);
343 mutex_unlock(&sw->tb->lock);
344
345 return ret;
346}
347
348static int tb_switch_nvm_add(struct tb_switch *sw)
349{
350 struct tb_nvm *nvm;
351 int ret;
352
353 if (!nvm_readable(sw))
354 return 0;
355
356 nvm = tb_nvm_alloc(&sw->dev);
357 if (IS_ERR(nvm)) {
358 ret = PTR_ERR(nvm) == -EOPNOTSUPP ? 0 : PTR_ERR(nvm);
359 goto err_nvm;
360 }
361
362 ret = tb_nvm_read_version(nvm);
363 if (ret)
364 goto err_nvm;
365
366 /*
367 * If the switch is in safe-mode the only accessible portion of
368 * the NVM is the non-active one where userspace is expected to
369 * write new functional NVM.
370 */
371 if (!sw->safe_mode) {
372 ret = tb_nvm_add_active(nvm, nvm_read);
373 if (ret)
374 goto err_nvm;
375 tb_sw_dbg(sw, "NVM version %x.%x\n", nvm->major, nvm->minor);
376 }
377
378 if (!sw->no_nvm_upgrade) {
379 ret = tb_nvm_add_non_active(nvm, nvm_write);
380 if (ret)
381 goto err_nvm;
382 }
383
384 sw->nvm = nvm;
385 return 0;
386
387err_nvm:
388 tb_sw_dbg(sw, "NVM upgrade disabled\n");
389 sw->no_nvm_upgrade = true;
390 if (!IS_ERR(nvm))
391 tb_nvm_free(nvm);
392
393 return ret;
394}
395
396static void tb_switch_nvm_remove(struct tb_switch *sw)
397{
398 struct tb_nvm *nvm;
399
400 nvm = sw->nvm;
401 sw->nvm = NULL;
402
403 if (!nvm)
404 return;
405
406 /* Remove authentication status in case the switch is unplugged */
407 if (!nvm->authenticating)
408 nvm_clear_auth_status(sw);
409
410 tb_nvm_free(nvm);
411}
412
413/* port utility functions */
414
415static const char *tb_port_type(const struct tb_regs_port_header *port)
416{
417 switch (port->type >> 16) {
418 case 0:
419 switch ((u8) port->type) {
420 case 0:
421 return "Inactive";
422 case 1:
423 return "Port";
424 case 2:
425 return "NHI";
426 default:
427 return "unknown";
428 }
429 case 0x2:
430 return "Ethernet";
431 case 0x8:
432 return "SATA";
433 case 0xe:
434 return "DP/HDMI";
435 case 0x10:
436 return "PCIe";
437 case 0x20:
438 return "USB";
439 default:
440 return "unknown";
441 }
442}
443
444static void tb_dump_port(struct tb *tb, const struct tb_port *port)
445{
446 const struct tb_regs_port_header *regs = &port->config;
447
448 tb_dbg(tb,
449 " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
450 regs->port_number, regs->vendor_id, regs->device_id,
451 regs->revision, regs->thunderbolt_version, tb_port_type(regs),
452 regs->type);
453 tb_dbg(tb, " Max hop id (in/out): %d/%d\n",
454 regs->max_in_hop_id, regs->max_out_hop_id);
455 tb_dbg(tb, " Max counters: %d\n", regs->max_counters);
456 tb_dbg(tb, " NFC Credits: %#x\n", regs->nfc_credits);
457 tb_dbg(tb, " Credits (total/control): %u/%u\n", port->total_credits,
458 port->ctl_credits);
459}
460
461/**
462 * tb_port_state() - get connectedness state of a port
463 * @port: the port to check
464 *
465 * The port must have a TB_CAP_PHY (i.e. it should be a real port).
466 *
467 * Return: Returns an enum tb_port_state on success or an error code on failure.
468 */
469int tb_port_state(struct tb_port *port)
470{
471 struct tb_cap_phy phy;
472 int res;
473 if (port->cap_phy == 0) {
474 tb_port_WARN(port, "does not have a PHY\n");
475 return -EINVAL;
476 }
477 res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
478 if (res)
479 return res;
480 return phy.state;
481}
482
483/**
484 * tb_wait_for_port() - wait for a port to become ready
485 * @port: Port to wait
486 * @wait_if_unplugged: Wait also when port is unplugged
487 *
488 * Wait up to 1 second for a port to reach state TB_PORT_UP. If
489 * wait_if_unplugged is set then we also wait if the port is in state
490 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
491 * switch resume). Otherwise we only wait if a device is registered but the link
492 * has not yet been established.
493 *
494 * Return: Returns an error code on failure. Returns 0 if the port is not
495 * connected or failed to reach state TB_PORT_UP within one second. Returns 1
496 * if the port is connected and in state TB_PORT_UP.
497 */
498int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
499{
500 int retries = 10;
501 int state;
502 if (!port->cap_phy) {
503 tb_port_WARN(port, "does not have PHY\n");
504 return -EINVAL;
505 }
506 if (tb_is_upstream_port(port)) {
507 tb_port_WARN(port, "is the upstream port\n");
508 return -EINVAL;
509 }
510
511 while (retries--) {
512 state = tb_port_state(port);
513 switch (state) {
514 case TB_PORT_DISABLED:
515 tb_port_dbg(port, "is disabled (state: 0)\n");
516 return 0;
517
518 case TB_PORT_UNPLUGGED:
519 if (wait_if_unplugged) {
520 /* used during resume */
521 tb_port_dbg(port,
522 "is unplugged (state: 7), retrying...\n");
523 msleep(100);
524 break;
525 }
526 tb_port_dbg(port, "is unplugged (state: 7)\n");
527 return 0;
528
529 case TB_PORT_UP:
530 case TB_PORT_TX_CL0S:
531 case TB_PORT_RX_CL0S:
532 case TB_PORT_CL1:
533 case TB_PORT_CL2:
534 tb_port_dbg(port, "is connected, link is up (state: %d)\n", state);
535 return 1;
536
537 default:
538 if (state < 0)
539 return state;
540
541 /*
542 * After plug-in the state is TB_PORT_CONNECTING. Give it some
543 * time.
544 */
545 tb_port_dbg(port,
546 "is connected, link is not up (state: %d), retrying...\n",
547 state);
548 msleep(100);
549 }
550
551 }
552 tb_port_warn(port,
553 "failed to reach state TB_PORT_UP. Ignoring port...\n");
554 return 0;
555}
556
557/**
558 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
559 * @port: Port to add/remove NFC credits
560 * @credits: Credits to add/remove
561 *
562 * Change the number of NFC credits allocated to @port by @credits. To remove
563 * NFC credits pass a negative amount of credits.
564 *
565 * Return: Returns 0 on success or an error code on failure.
566 */
567int tb_port_add_nfc_credits(struct tb_port *port, int credits)
568{
569 u32 nfc_credits;
570
571 if (credits == 0 || port->sw->is_unplugged)
572 return 0;
573
574 /*
575 * USB4 restricts programming NFC buffers to lane adapters only
576 * so skip other ports.
577 */
578 if (tb_switch_is_usb4(port->sw) && !tb_port_is_null(port))
579 return 0;
580
581 nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
582 if (credits < 0)
583 credits = max_t(int, -nfc_credits, credits);
584
585 nfc_credits += credits;
586
587 tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
588 port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
589
590 port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
591 port->config.nfc_credits |= nfc_credits;
592
593 return tb_port_write(port, &port->config.nfc_credits,
594 TB_CFG_PORT, ADP_CS_4, 1);
595}
596
597/**
598 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
599 * @port: Port whose counters to clear
600 * @counter: Counter index to clear
601 *
602 * Return: Returns 0 on success or an error code on failure.
603 */
604int tb_port_clear_counter(struct tb_port *port, int counter)
605{
606 u32 zero[3] = { 0, 0, 0 };
607 tb_port_dbg(port, "clearing counter %d\n", counter);
608 return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
609}
610
611/**
612 * tb_port_unlock() - Unlock downstream port
613 * @port: Port to unlock
614 *
615 * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
616 * downstream router accessible for CM.
617 */
618int tb_port_unlock(struct tb_port *port)
619{
620 if (tb_switch_is_icm(port->sw))
621 return 0;
622 if (!tb_port_is_null(port))
623 return -EINVAL;
624 if (tb_switch_is_usb4(port->sw))
625 return usb4_port_unlock(port);
626 return 0;
627}
628
629static int __tb_port_enable(struct tb_port *port, bool enable)
630{
631 int ret;
632 u32 phy;
633
634 if (!tb_port_is_null(port))
635 return -EINVAL;
636
637 ret = tb_port_read(port, &phy, TB_CFG_PORT,
638 port->cap_phy + LANE_ADP_CS_1, 1);
639 if (ret)
640 return ret;
641
642 if (enable)
643 phy &= ~LANE_ADP_CS_1_LD;
644 else
645 phy |= LANE_ADP_CS_1_LD;
646
647
648 ret = tb_port_write(port, &phy, TB_CFG_PORT,
649 port->cap_phy + LANE_ADP_CS_1, 1);
650 if (ret)
651 return ret;
652
653 tb_port_dbg(port, "lane %s\n", str_enabled_disabled(enable));
654 return 0;
655}
656
657/**
658 * tb_port_enable() - Enable lane adapter
659 * @port: Port to enable (can be %NULL)
660 *
661 * This is used for lane 0 and 1 adapters to enable it.
662 */
663int tb_port_enable(struct tb_port *port)
664{
665 return __tb_port_enable(port, true);
666}
667
668/**
669 * tb_port_disable() - Disable lane adapter
670 * @port: Port to disable (can be %NULL)
671 *
672 * This is used for lane 0 and 1 adapters to disable it.
673 */
674int tb_port_disable(struct tb_port *port)
675{
676 return __tb_port_enable(port, false);
677}
678
679/*
680 * tb_init_port() - initialize a port
681 *
682 * This is a helper method for tb_switch_alloc. Does not check or initialize
683 * any downstream switches.
684 *
685 * Return: Returns 0 on success or an error code on failure.
686 */
687static int tb_init_port(struct tb_port *port)
688{
689 int res;
690 int cap;
691
692 INIT_LIST_HEAD(&port->list);
693
694 /* Control adapter does not have configuration space */
695 if (!port->port)
696 return 0;
697
698 res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
699 if (res) {
700 if (res == -ENODEV) {
701 tb_dbg(port->sw->tb, " Port %d: not implemented\n",
702 port->port);
703 port->disabled = true;
704 return 0;
705 }
706 return res;
707 }
708
709 /* Port 0 is the switch itself and has no PHY. */
710 if (port->config.type == TB_TYPE_PORT) {
711 cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
712
713 if (cap > 0)
714 port->cap_phy = cap;
715 else
716 tb_port_WARN(port, "non switch port without a PHY\n");
717
718 cap = tb_port_find_cap(port, TB_PORT_CAP_USB4);
719 if (cap > 0)
720 port->cap_usb4 = cap;
721
722 /*
723 * USB4 ports the buffers allocated for the control path
724 * can be read from the path config space. Legacy
725 * devices we use hard-coded value.
726 */
727 if (port->cap_usb4) {
728 struct tb_regs_hop hop;
729
730 if (!tb_port_read(port, &hop, TB_CFG_HOPS, 0, 2))
731 port->ctl_credits = hop.initial_credits;
732 }
733 if (!port->ctl_credits)
734 port->ctl_credits = 2;
735
736 } else {
737 cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
738 if (cap > 0)
739 port->cap_adap = cap;
740 }
741
742 port->total_credits =
743 (port->config.nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
744 ADP_CS_4_TOTAL_BUFFERS_SHIFT;
745
746 tb_dump_port(port->sw->tb, port);
747 return 0;
748}
749
750static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
751 int max_hopid)
752{
753 int port_max_hopid;
754 struct ida *ida;
755
756 if (in) {
757 port_max_hopid = port->config.max_in_hop_id;
758 ida = &port->in_hopids;
759 } else {
760 port_max_hopid = port->config.max_out_hop_id;
761 ida = &port->out_hopids;
762 }
763
764 /*
765 * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are
766 * reserved.
767 */
768 if (!tb_port_is_nhi(port) && min_hopid < TB_PATH_MIN_HOPID)
769 min_hopid = TB_PATH_MIN_HOPID;
770
771 if (max_hopid < 0 || max_hopid > port_max_hopid)
772 max_hopid = port_max_hopid;
773
774 return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
775}
776
777/**
778 * tb_port_alloc_in_hopid() - Allocate input HopID from port
779 * @port: Port to allocate HopID for
780 * @min_hopid: Minimum acceptable input HopID
781 * @max_hopid: Maximum acceptable input HopID
782 *
783 * Return: HopID between @min_hopid and @max_hopid or negative errno in
784 * case of error.
785 */
786int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
787{
788 return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
789}
790
791/**
792 * tb_port_alloc_out_hopid() - Allocate output HopID from port
793 * @port: Port to allocate HopID for
794 * @min_hopid: Minimum acceptable output HopID
795 * @max_hopid: Maximum acceptable output HopID
796 *
797 * Return: HopID between @min_hopid and @max_hopid or negative errno in
798 * case of error.
799 */
800int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
801{
802 return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
803}
804
805/**
806 * tb_port_release_in_hopid() - Release allocated input HopID from port
807 * @port: Port whose HopID to release
808 * @hopid: HopID to release
809 */
810void tb_port_release_in_hopid(struct tb_port *port, int hopid)
811{
812 ida_simple_remove(&port->in_hopids, hopid);
813}
814
815/**
816 * tb_port_release_out_hopid() - Release allocated output HopID from port
817 * @port: Port whose HopID to release
818 * @hopid: HopID to release
819 */
820void tb_port_release_out_hopid(struct tb_port *port, int hopid)
821{
822 ida_simple_remove(&port->out_hopids, hopid);
823}
824
825static inline bool tb_switch_is_reachable(const struct tb_switch *parent,
826 const struct tb_switch *sw)
827{
828 u64 mask = (1ULL << parent->config.depth * 8) - 1;
829 return (tb_route(parent) & mask) == (tb_route(sw) & mask);
830}
831
832/**
833 * tb_next_port_on_path() - Return next port for given port on a path
834 * @start: Start port of the walk
835 * @end: End port of the walk
836 * @prev: Previous port (%NULL if this is the first)
837 *
838 * This function can be used to walk from one port to another if they
839 * are connected through zero or more switches. If the @prev is dual
840 * link port, the function follows that link and returns another end on
841 * that same link.
842 *
843 * If the @end port has been reached, return %NULL.
844 *
845 * Domain tb->lock must be held when this function is called.
846 */
847struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
848 struct tb_port *prev)
849{
850 struct tb_port *next;
851
852 if (!prev)
853 return start;
854
855 if (prev->sw == end->sw) {
856 if (prev == end)
857 return NULL;
858 return end;
859 }
860
861 if (tb_switch_is_reachable(prev->sw, end->sw)) {
862 next = tb_port_at(tb_route(end->sw), prev->sw);
863 /* Walk down the topology if next == prev */
864 if (prev->remote &&
865 (next == prev || next->dual_link_port == prev))
866 next = prev->remote;
867 } else {
868 if (tb_is_upstream_port(prev)) {
869 next = prev->remote;
870 } else {
871 next = tb_upstream_port(prev->sw);
872 /*
873 * Keep the same link if prev and next are both
874 * dual link ports.
875 */
876 if (next->dual_link_port &&
877 next->link_nr != prev->link_nr) {
878 next = next->dual_link_port;
879 }
880 }
881 }
882
883 return next != prev ? next : NULL;
884}
885
886/**
887 * tb_port_get_link_speed() - Get current link speed
888 * @port: Port to check (USB4 or CIO)
889 *
890 * Returns link speed in Gb/s or negative errno in case of failure.
891 */
892int tb_port_get_link_speed(struct tb_port *port)
893{
894 u32 val, speed;
895 int ret;
896
897 if (!port->cap_phy)
898 return -EINVAL;
899
900 ret = tb_port_read(port, &val, TB_CFG_PORT,
901 port->cap_phy + LANE_ADP_CS_1, 1);
902 if (ret)
903 return ret;
904
905 speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
906 LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
907
908 switch (speed) {
909 case LANE_ADP_CS_1_CURRENT_SPEED_GEN4:
910 return 40;
911 case LANE_ADP_CS_1_CURRENT_SPEED_GEN3:
912 return 20;
913 default:
914 return 10;
915 }
916}
917
918/**
919 * tb_port_get_link_generation() - Returns link generation
920 * @port: Lane adapter
921 *
922 * Returns link generation as number or negative errno in case of
923 * failure. Does not distinguish between Thunderbolt 1 and Thunderbolt 2
924 * links so for those always returns 2.
925 */
926int tb_port_get_link_generation(struct tb_port *port)
927{
928 int ret;
929
930 ret = tb_port_get_link_speed(port);
931 if (ret < 0)
932 return ret;
933
934 switch (ret) {
935 case 40:
936 return 4;
937 case 20:
938 return 3;
939 default:
940 return 2;
941 }
942}
943
944/**
945 * tb_port_get_link_width() - Get current link width
946 * @port: Port to check (USB4 or CIO)
947 *
948 * Returns link width. Return the link width as encoded in &enum
949 * tb_link_width or negative errno in case of failure.
950 */
951int tb_port_get_link_width(struct tb_port *port)
952{
953 u32 val;
954 int ret;
955
956 if (!port->cap_phy)
957 return -EINVAL;
958
959 ret = tb_port_read(port, &val, TB_CFG_PORT,
960 port->cap_phy + LANE_ADP_CS_1, 1);
961 if (ret)
962 return ret;
963
964 /* Matches the values in enum tb_link_width */
965 return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
966 LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
967}
968
969/**
970 * tb_port_width_supported() - Is the given link width supported
971 * @port: Port to check
972 * @width: Widths to check (bitmask)
973 *
974 * Can be called to any lane adapter. Checks if given @width is
975 * supported by the hardware and returns %true if it is.
976 */
977bool tb_port_width_supported(struct tb_port *port, unsigned int width)
978{
979 u32 phy, widths;
980 int ret;
981
982 if (!port->cap_phy)
983 return false;
984
985 if (width & (TB_LINK_WIDTH_ASYM_TX | TB_LINK_WIDTH_ASYM_RX)) {
986 if (tb_port_get_link_generation(port) < 4 ||
987 !usb4_port_asym_supported(port))
988 return false;
989 }
990
991 ret = tb_port_read(port, &phy, TB_CFG_PORT,
992 port->cap_phy + LANE_ADP_CS_0, 1);
993 if (ret)
994 return false;
995
996 /*
997 * The field encoding is the same as &enum tb_link_width (which is
998 * passed to @width).
999 */
1000 widths = FIELD_GET(LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK, phy);
1001 return widths & width;
1002}
1003
1004/**
1005 * tb_port_set_link_width() - Set target link width of the lane adapter
1006 * @port: Lane adapter
1007 * @width: Target link width
1008 *
1009 * Sets the target link width of the lane adapter to @width. Does not
1010 * enable/disable lane bonding. For that call tb_port_set_lane_bonding().
1011 *
1012 * Return: %0 in case of success and negative errno in case of error
1013 */
1014int tb_port_set_link_width(struct tb_port *port, enum tb_link_width width)
1015{
1016 u32 val;
1017 int ret;
1018
1019 if (!port->cap_phy)
1020 return -EINVAL;
1021
1022 ret = tb_port_read(port, &val, TB_CFG_PORT,
1023 port->cap_phy + LANE_ADP_CS_1, 1);
1024 if (ret)
1025 return ret;
1026
1027 val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
1028 switch (width) {
1029 case TB_LINK_WIDTH_SINGLE:
1030 /* Gen 4 link cannot be single */
1031 if (tb_port_get_link_generation(port) >= 4)
1032 return -EOPNOTSUPP;
1033 val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
1034 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
1035 break;
1036
1037 case TB_LINK_WIDTH_DUAL:
1038 if (tb_port_get_link_generation(port) >= 4)
1039 return usb4_port_asym_set_link_width(port, width);
1040 val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
1041 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
1042 break;
1043
1044 case TB_LINK_WIDTH_ASYM_TX:
1045 case TB_LINK_WIDTH_ASYM_RX:
1046 return usb4_port_asym_set_link_width(port, width);
1047
1048 default:
1049 return -EINVAL;
1050 }
1051
1052 return tb_port_write(port, &val, TB_CFG_PORT,
1053 port->cap_phy + LANE_ADP_CS_1, 1);
1054}
1055
1056/**
1057 * tb_port_set_lane_bonding() - Enable/disable lane bonding
1058 * @port: Lane adapter
1059 * @bonding: enable/disable bonding
1060 *
1061 * Enables or disables lane bonding. This should be called after target
1062 * link width has been set (tb_port_set_link_width()). Note in most
1063 * cases one should use tb_port_lane_bonding_enable() instead to enable
1064 * lane bonding.
1065 *
1066 * Return: %0 in case of success and negative errno in case of error
1067 */
1068static int tb_port_set_lane_bonding(struct tb_port *port, bool bonding)
1069{
1070 u32 val;
1071 int ret;
1072
1073 if (!port->cap_phy)
1074 return -EINVAL;
1075
1076 ret = tb_port_read(port, &val, TB_CFG_PORT,
1077 port->cap_phy + LANE_ADP_CS_1, 1);
1078 if (ret)
1079 return ret;
1080
1081 if (bonding)
1082 val |= LANE_ADP_CS_1_LB;
1083 else
1084 val &= ~LANE_ADP_CS_1_LB;
1085
1086 return tb_port_write(port, &val, TB_CFG_PORT,
1087 port->cap_phy + LANE_ADP_CS_1, 1);
1088}
1089
1090/**
1091 * tb_port_lane_bonding_enable() - Enable bonding on port
1092 * @port: port to enable
1093 *
1094 * Enable bonding by setting the link width of the port and the other
1095 * port in case of dual link port. Does not wait for the link to
1096 * actually reach the bonded state so caller needs to call
1097 * tb_port_wait_for_link_width() before enabling any paths through the
1098 * link to make sure the link is in expected state.
1099 *
1100 * Return: %0 in case of success and negative errno in case of error
1101 */
1102int tb_port_lane_bonding_enable(struct tb_port *port)
1103{
1104 enum tb_link_width width;
1105 int ret;
1106
1107 /*
1108 * Enable lane bonding for both links if not already enabled by
1109 * for example the boot firmware.
1110 */
1111 width = tb_port_get_link_width(port);
1112 if (width == TB_LINK_WIDTH_SINGLE) {
1113 ret = tb_port_set_link_width(port, TB_LINK_WIDTH_DUAL);
1114 if (ret)
1115 goto err_lane0;
1116 }
1117
1118 width = tb_port_get_link_width(port->dual_link_port);
1119 if (width == TB_LINK_WIDTH_SINGLE) {
1120 ret = tb_port_set_link_width(port->dual_link_port,
1121 TB_LINK_WIDTH_DUAL);
1122 if (ret)
1123 goto err_lane0;
1124 }
1125
1126 /*
1127 * Only set bonding if the link was not already bonded. This
1128 * avoids the lane adapter to re-enter bonding state.
1129 */
1130 if (width == TB_LINK_WIDTH_SINGLE && !tb_is_upstream_port(port)) {
1131 ret = tb_port_set_lane_bonding(port, true);
1132 if (ret)
1133 goto err_lane1;
1134 }
1135
1136 /*
1137 * When lane 0 bonding is set it will affect lane 1 too so
1138 * update both.
1139 */
1140 port->bonded = true;
1141 port->dual_link_port->bonded = true;
1142
1143 return 0;
1144
1145err_lane1:
1146 tb_port_set_link_width(port->dual_link_port, TB_LINK_WIDTH_SINGLE);
1147err_lane0:
1148 tb_port_set_link_width(port, TB_LINK_WIDTH_SINGLE);
1149
1150 return ret;
1151}
1152
1153/**
1154 * tb_port_lane_bonding_disable() - Disable bonding on port
1155 * @port: port to disable
1156 *
1157 * Disable bonding by setting the link width of the port and the
1158 * other port in case of dual link port.
1159 */
1160void tb_port_lane_bonding_disable(struct tb_port *port)
1161{
1162 tb_port_set_lane_bonding(port, false);
1163 tb_port_set_link_width(port->dual_link_port, TB_LINK_WIDTH_SINGLE);
1164 tb_port_set_link_width(port, TB_LINK_WIDTH_SINGLE);
1165 port->dual_link_port->bonded = false;
1166 port->bonded = false;
1167}
1168
1169/**
1170 * tb_port_wait_for_link_width() - Wait until link reaches specific width
1171 * @port: Port to wait for
1172 * @width: Expected link width (bitmask)
1173 * @timeout_msec: Timeout in ms how long to wait
1174 *
1175 * Should be used after both ends of the link have been bonded (or
1176 * bonding has been disabled) to wait until the link actually reaches
1177 * the expected state. Returns %-ETIMEDOUT if the width was not reached
1178 * within the given timeout, %0 if it did. Can be passed a mask of
1179 * expected widths and succeeds if any of the widths is reached.
1180 */
1181int tb_port_wait_for_link_width(struct tb_port *port, unsigned int width,
1182 int timeout_msec)
1183{
1184 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1185 int ret;
1186
1187 /* Gen 4 link does not support single lane */
1188 if ((width & TB_LINK_WIDTH_SINGLE) &&
1189 tb_port_get_link_generation(port) >= 4)
1190 return -EOPNOTSUPP;
1191
1192 do {
1193 ret = tb_port_get_link_width(port);
1194 if (ret < 0) {
1195 /*
1196 * Sometimes we get port locked error when
1197 * polling the lanes so we can ignore it and
1198 * retry.
1199 */
1200 if (ret != -EACCES)
1201 return ret;
1202 } else if (ret & width) {
1203 return 0;
1204 }
1205
1206 usleep_range(1000, 2000);
1207 } while (ktime_before(ktime_get(), timeout));
1208
1209 return -ETIMEDOUT;
1210}
1211
1212static int tb_port_do_update_credits(struct tb_port *port)
1213{
1214 u32 nfc_credits;
1215 int ret;
1216
1217 ret = tb_port_read(port, &nfc_credits, TB_CFG_PORT, ADP_CS_4, 1);
1218 if (ret)
1219 return ret;
1220
1221 if (nfc_credits != port->config.nfc_credits) {
1222 u32 total;
1223
1224 total = (nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
1225 ADP_CS_4_TOTAL_BUFFERS_SHIFT;
1226
1227 tb_port_dbg(port, "total credits changed %u -> %u\n",
1228 port->total_credits, total);
1229
1230 port->config.nfc_credits = nfc_credits;
1231 port->total_credits = total;
1232 }
1233
1234 return 0;
1235}
1236
1237/**
1238 * tb_port_update_credits() - Re-read port total credits
1239 * @port: Port to update
1240 *
1241 * After the link is bonded (or bonding was disabled) the port total
1242 * credits may change, so this function needs to be called to re-read
1243 * the credits. Updates also the second lane adapter.
1244 */
1245int tb_port_update_credits(struct tb_port *port)
1246{
1247 int ret;
1248
1249 ret = tb_port_do_update_credits(port);
1250 if (ret)
1251 return ret;
1252 return tb_port_do_update_credits(port->dual_link_port);
1253}
1254
1255static int tb_port_start_lane_initialization(struct tb_port *port)
1256{
1257 int ret;
1258
1259 if (tb_switch_is_usb4(port->sw))
1260 return 0;
1261
1262 ret = tb_lc_start_lane_initialization(port);
1263 return ret == -EINVAL ? 0 : ret;
1264}
1265
1266/*
1267 * Returns true if the port had something (router, XDomain) connected
1268 * before suspend.
1269 */
1270static bool tb_port_resume(struct tb_port *port)
1271{
1272 bool has_remote = tb_port_has_remote(port);
1273
1274 if (port->usb4) {
1275 usb4_port_device_resume(port->usb4);
1276 } else if (!has_remote) {
1277 /*
1278 * For disconnected downstream lane adapters start lane
1279 * initialization now so we detect future connects.
1280 *
1281 * For XDomain start the lane initialzation now so the
1282 * link gets re-established.
1283 *
1284 * This is only needed for non-USB4 ports.
1285 */
1286 if (!tb_is_upstream_port(port) || port->xdomain)
1287 tb_port_start_lane_initialization(port);
1288 }
1289
1290 return has_remote || port->xdomain;
1291}
1292
1293/**
1294 * tb_port_is_enabled() - Is the adapter port enabled
1295 * @port: Port to check
1296 */
1297bool tb_port_is_enabled(struct tb_port *port)
1298{
1299 switch (port->config.type) {
1300 case TB_TYPE_PCIE_UP:
1301 case TB_TYPE_PCIE_DOWN:
1302 return tb_pci_port_is_enabled(port);
1303
1304 case TB_TYPE_DP_HDMI_IN:
1305 case TB_TYPE_DP_HDMI_OUT:
1306 return tb_dp_port_is_enabled(port);
1307
1308 case TB_TYPE_USB3_UP:
1309 case TB_TYPE_USB3_DOWN:
1310 return tb_usb3_port_is_enabled(port);
1311
1312 default:
1313 return false;
1314 }
1315}
1316
1317/**
1318 * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
1319 * @port: USB3 adapter port to check
1320 */
1321bool tb_usb3_port_is_enabled(struct tb_port *port)
1322{
1323 u32 data;
1324
1325 if (tb_port_read(port, &data, TB_CFG_PORT,
1326 port->cap_adap + ADP_USB3_CS_0, 1))
1327 return false;
1328
1329 return !!(data & ADP_USB3_CS_0_PE);
1330}
1331
1332/**
1333 * tb_usb3_port_enable() - Enable USB3 adapter port
1334 * @port: USB3 adapter port to enable
1335 * @enable: Enable/disable the USB3 adapter
1336 */
1337int tb_usb3_port_enable(struct tb_port *port, bool enable)
1338{
1339 u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V)
1340 : ADP_USB3_CS_0_V;
1341
1342 if (!port->cap_adap)
1343 return -ENXIO;
1344 return tb_port_write(port, &word, TB_CFG_PORT,
1345 port->cap_adap + ADP_USB3_CS_0, 1);
1346}
1347
1348/**
1349 * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
1350 * @port: PCIe port to check
1351 */
1352bool tb_pci_port_is_enabled(struct tb_port *port)
1353{
1354 u32 data;
1355
1356 if (tb_port_read(port, &data, TB_CFG_PORT,
1357 port->cap_adap + ADP_PCIE_CS_0, 1))
1358 return false;
1359
1360 return !!(data & ADP_PCIE_CS_0_PE);
1361}
1362
1363/**
1364 * tb_pci_port_enable() - Enable PCIe adapter port
1365 * @port: PCIe port to enable
1366 * @enable: Enable/disable the PCIe adapter
1367 */
1368int tb_pci_port_enable(struct tb_port *port, bool enable)
1369{
1370 u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
1371 if (!port->cap_adap)
1372 return -ENXIO;
1373 return tb_port_write(port, &word, TB_CFG_PORT,
1374 port->cap_adap + ADP_PCIE_CS_0, 1);
1375}
1376
1377/**
1378 * tb_dp_port_hpd_is_active() - Is HPD already active
1379 * @port: DP out port to check
1380 *
1381 * Checks if the DP OUT adapter port has HPD bit already set.
1382 */
1383int tb_dp_port_hpd_is_active(struct tb_port *port)
1384{
1385 u32 data;
1386 int ret;
1387
1388 ret = tb_port_read(port, &data, TB_CFG_PORT,
1389 port->cap_adap + ADP_DP_CS_2, 1);
1390 if (ret)
1391 return ret;
1392
1393 return !!(data & ADP_DP_CS_2_HPD);
1394}
1395
1396/**
1397 * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
1398 * @port: Port to clear HPD
1399 *
1400 * If the DP IN port has HPD set, this function can be used to clear it.
1401 */
1402int tb_dp_port_hpd_clear(struct tb_port *port)
1403{
1404 u32 data;
1405 int ret;
1406
1407 ret = tb_port_read(port, &data, TB_CFG_PORT,
1408 port->cap_adap + ADP_DP_CS_3, 1);
1409 if (ret)
1410 return ret;
1411
1412 data |= ADP_DP_CS_3_HPDC;
1413 return tb_port_write(port, &data, TB_CFG_PORT,
1414 port->cap_adap + ADP_DP_CS_3, 1);
1415}
1416
1417/**
1418 * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
1419 * @port: DP IN/OUT port to set hops
1420 * @video: Video Hop ID
1421 * @aux_tx: AUX TX Hop ID
1422 * @aux_rx: AUX RX Hop ID
1423 *
1424 * Programs specified Hop IDs for DP IN/OUT port. Can be called for USB4
1425 * router DP adapters too but does not program the values as the fields
1426 * are read-only.
1427 */
1428int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
1429 unsigned int aux_tx, unsigned int aux_rx)
1430{
1431 u32 data[2];
1432 int ret;
1433
1434 if (tb_switch_is_usb4(port->sw))
1435 return 0;
1436
1437 ret = tb_port_read(port, data, TB_CFG_PORT,
1438 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1439 if (ret)
1440 return ret;
1441
1442 data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
1443 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1444 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1445
1446 data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
1447 ADP_DP_CS_0_VIDEO_HOPID_MASK;
1448 data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
1449 data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
1450 ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1451
1452 return tb_port_write(port, data, TB_CFG_PORT,
1453 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1454}
1455
1456/**
1457 * tb_dp_port_is_enabled() - Is DP adapter port enabled
1458 * @port: DP adapter port to check
1459 */
1460bool tb_dp_port_is_enabled(struct tb_port *port)
1461{
1462 u32 data[2];
1463
1464 if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
1465 ARRAY_SIZE(data)))
1466 return false;
1467
1468 return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
1469}
1470
1471/**
1472 * tb_dp_port_enable() - Enables/disables DP paths of a port
1473 * @port: DP IN/OUT port
1474 * @enable: Enable/disable DP path
1475 *
1476 * Once Hop IDs are programmed DP paths can be enabled or disabled by
1477 * calling this function.
1478 */
1479int tb_dp_port_enable(struct tb_port *port, bool enable)
1480{
1481 u32 data[2];
1482 int ret;
1483
1484 ret = tb_port_read(port, data, TB_CFG_PORT,
1485 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1486 if (ret)
1487 return ret;
1488
1489 if (enable)
1490 data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
1491 else
1492 data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
1493
1494 return tb_port_write(port, data, TB_CFG_PORT,
1495 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1496}
1497
1498/* switch utility functions */
1499
1500static const char *tb_switch_generation_name(const struct tb_switch *sw)
1501{
1502 switch (sw->generation) {
1503 case 1:
1504 return "Thunderbolt 1";
1505 case 2:
1506 return "Thunderbolt 2";
1507 case 3:
1508 return "Thunderbolt 3";
1509 case 4:
1510 return "USB4";
1511 default:
1512 return "Unknown";
1513 }
1514}
1515
1516static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw)
1517{
1518 const struct tb_regs_switch_header *regs = &sw->config;
1519
1520 tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
1521 tb_switch_generation_name(sw), regs->vendor_id, regs->device_id,
1522 regs->revision, regs->thunderbolt_version);
1523 tb_dbg(tb, " Max Port Number: %d\n", regs->max_port_number);
1524 tb_dbg(tb, " Config:\n");
1525 tb_dbg(tb,
1526 " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
1527 regs->upstream_port_number, regs->depth,
1528 (((u64) regs->route_hi) << 32) | regs->route_lo,
1529 regs->enabled, regs->plug_events_delay);
1530 tb_dbg(tb, " unknown1: %#x unknown4: %#x\n",
1531 regs->__unknown1, regs->__unknown4);
1532}
1533
1534/**
1535 * tb_switch_reset() - reconfigure route, enable and send TB_CFG_PKG_RESET
1536 * @sw: Switch to reset
1537 *
1538 * Return: Returns 0 on success or an error code on failure.
1539 */
1540int tb_switch_reset(struct tb_switch *sw)
1541{
1542 struct tb_cfg_result res;
1543
1544 if (sw->generation > 1)
1545 return 0;
1546
1547 tb_sw_dbg(sw, "resetting switch\n");
1548
1549 res.err = tb_sw_write(sw, ((u32 *) &sw->config) + 2,
1550 TB_CFG_SWITCH, 2, 2);
1551 if (res.err)
1552 return res.err;
1553 res = tb_cfg_reset(sw->tb->ctl, tb_route(sw));
1554 if (res.err > 0)
1555 return -EIO;
1556 return res.err;
1557}
1558
1559/**
1560 * tb_switch_wait_for_bit() - Wait for specified value of bits in offset
1561 * @sw: Router to read the offset value from
1562 * @offset: Offset in the router config space to read from
1563 * @bit: Bit mask in the offset to wait for
1564 * @value: Value of the bits to wait for
1565 * @timeout_msec: Timeout in ms how long to wait
1566 *
1567 * Wait till the specified bits in specified offset reach specified value.
1568 * Returns %0 in case of success, %-ETIMEDOUT if the @value was not reached
1569 * within the given timeout or a negative errno in case of failure.
1570 */
1571int tb_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit,
1572 u32 value, int timeout_msec)
1573{
1574 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1575
1576 do {
1577 u32 val;
1578 int ret;
1579
1580 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
1581 if (ret)
1582 return ret;
1583
1584 if ((val & bit) == value)
1585 return 0;
1586
1587 usleep_range(50, 100);
1588 } while (ktime_before(ktime_get(), timeout));
1589
1590 return -ETIMEDOUT;
1591}
1592
1593/*
1594 * tb_plug_events_active() - enable/disable plug events on a switch
1595 *
1596 * Also configures a sane plug_events_delay of 255ms.
1597 *
1598 * Return: Returns 0 on success or an error code on failure.
1599 */
1600static int tb_plug_events_active(struct tb_switch *sw, bool active)
1601{
1602 u32 data;
1603 int res;
1604
1605 if (tb_switch_is_icm(sw) || tb_switch_is_usb4(sw))
1606 return 0;
1607
1608 sw->config.plug_events_delay = 0xff;
1609 res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
1610 if (res)
1611 return res;
1612
1613 res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
1614 if (res)
1615 return res;
1616
1617 if (active) {
1618 data = data & 0xFFFFFF83;
1619 switch (sw->config.device_id) {
1620 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1621 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1622 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1623 break;
1624 default:
1625 /*
1626 * Skip Alpine Ridge, it needs to have vendor
1627 * specific USB hotplug event enabled for the
1628 * internal xHCI to work.
1629 */
1630 if (!tb_switch_is_alpine_ridge(sw))
1631 data |= TB_PLUG_EVENTS_USB_DISABLE;
1632 }
1633 } else {
1634 data = data | 0x7c;
1635 }
1636 return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1637 sw->cap_plug_events + 1, 1);
1638}
1639
1640static ssize_t authorized_show(struct device *dev,
1641 struct device_attribute *attr,
1642 char *buf)
1643{
1644 struct tb_switch *sw = tb_to_switch(dev);
1645
1646 return sysfs_emit(buf, "%u\n", sw->authorized);
1647}
1648
1649static int disapprove_switch(struct device *dev, void *not_used)
1650{
1651 char *envp[] = { "AUTHORIZED=0", NULL };
1652 struct tb_switch *sw;
1653
1654 sw = tb_to_switch(dev);
1655 if (sw && sw->authorized) {
1656 int ret;
1657
1658 /* First children */
1659 ret = device_for_each_child_reverse(&sw->dev, NULL, disapprove_switch);
1660 if (ret)
1661 return ret;
1662
1663 ret = tb_domain_disapprove_switch(sw->tb, sw);
1664 if (ret)
1665 return ret;
1666
1667 sw->authorized = 0;
1668 kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
1669 }
1670
1671 return 0;
1672}
1673
1674static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1675{
1676 char envp_string[13];
1677 int ret = -EINVAL;
1678 char *envp[] = { envp_string, NULL };
1679
1680 if (!mutex_trylock(&sw->tb->lock))
1681 return restart_syscall();
1682
1683 if (!!sw->authorized == !!val)
1684 goto unlock;
1685
1686 switch (val) {
1687 /* Disapprove switch */
1688 case 0:
1689 if (tb_route(sw)) {
1690 ret = disapprove_switch(&sw->dev, NULL);
1691 goto unlock;
1692 }
1693 break;
1694
1695 /* Approve switch */
1696 case 1:
1697 if (sw->key)
1698 ret = tb_domain_approve_switch_key(sw->tb, sw);
1699 else
1700 ret = tb_domain_approve_switch(sw->tb, sw);
1701 break;
1702
1703 /* Challenge switch */
1704 case 2:
1705 if (sw->key)
1706 ret = tb_domain_challenge_switch_key(sw->tb, sw);
1707 break;
1708
1709 default:
1710 break;
1711 }
1712
1713 if (!ret) {
1714 sw->authorized = val;
1715 /*
1716 * Notify status change to the userspace, informing the new
1717 * value of /sys/bus/thunderbolt/devices/.../authorized.
1718 */
1719 sprintf(envp_string, "AUTHORIZED=%u", sw->authorized);
1720 kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
1721 }
1722
1723unlock:
1724 mutex_unlock(&sw->tb->lock);
1725 return ret;
1726}
1727
1728static ssize_t authorized_store(struct device *dev,
1729 struct device_attribute *attr,
1730 const char *buf, size_t count)
1731{
1732 struct tb_switch *sw = tb_to_switch(dev);
1733 unsigned int val;
1734 ssize_t ret;
1735
1736 ret = kstrtouint(buf, 0, &val);
1737 if (ret)
1738 return ret;
1739 if (val > 2)
1740 return -EINVAL;
1741
1742 pm_runtime_get_sync(&sw->dev);
1743 ret = tb_switch_set_authorized(sw, val);
1744 pm_runtime_mark_last_busy(&sw->dev);
1745 pm_runtime_put_autosuspend(&sw->dev);
1746
1747 return ret ? ret : count;
1748}
1749static DEVICE_ATTR_RW(authorized);
1750
1751static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1752 char *buf)
1753{
1754 struct tb_switch *sw = tb_to_switch(dev);
1755
1756 return sysfs_emit(buf, "%u\n", sw->boot);
1757}
1758static DEVICE_ATTR_RO(boot);
1759
1760static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1761 char *buf)
1762{
1763 struct tb_switch *sw = tb_to_switch(dev);
1764
1765 return sysfs_emit(buf, "%#x\n", sw->device);
1766}
1767static DEVICE_ATTR_RO(device);
1768
1769static ssize_t
1770device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1771{
1772 struct tb_switch *sw = tb_to_switch(dev);
1773
1774 return sysfs_emit(buf, "%s\n", sw->device_name ?: "");
1775}
1776static DEVICE_ATTR_RO(device_name);
1777
1778static ssize_t
1779generation_show(struct device *dev, struct device_attribute *attr, char *buf)
1780{
1781 struct tb_switch *sw = tb_to_switch(dev);
1782
1783 return sysfs_emit(buf, "%u\n", sw->generation);
1784}
1785static DEVICE_ATTR_RO(generation);
1786
1787static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1788 char *buf)
1789{
1790 struct tb_switch *sw = tb_to_switch(dev);
1791 ssize_t ret;
1792
1793 if (!mutex_trylock(&sw->tb->lock))
1794 return restart_syscall();
1795
1796 if (sw->key)
1797 ret = sysfs_emit(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1798 else
1799 ret = sysfs_emit(buf, "\n");
1800
1801 mutex_unlock(&sw->tb->lock);
1802 return ret;
1803}
1804
1805static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1806 const char *buf, size_t count)
1807{
1808 struct tb_switch *sw = tb_to_switch(dev);
1809 u8 key[TB_SWITCH_KEY_SIZE];
1810 ssize_t ret = count;
1811 bool clear = false;
1812
1813 if (!strcmp(buf, "\n"))
1814 clear = true;
1815 else if (hex2bin(key, buf, sizeof(key)))
1816 return -EINVAL;
1817
1818 if (!mutex_trylock(&sw->tb->lock))
1819 return restart_syscall();
1820
1821 if (sw->authorized) {
1822 ret = -EBUSY;
1823 } else {
1824 kfree(sw->key);
1825 if (clear) {
1826 sw->key = NULL;
1827 } else {
1828 sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1829 if (!sw->key)
1830 ret = -ENOMEM;
1831 }
1832 }
1833
1834 mutex_unlock(&sw->tb->lock);
1835 return ret;
1836}
1837static DEVICE_ATTR(key, 0600, key_show, key_store);
1838
1839static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
1840 char *buf)
1841{
1842 struct tb_switch *sw = tb_to_switch(dev);
1843
1844 return sysfs_emit(buf, "%u.0 Gb/s\n", sw->link_speed);
1845}
1846
1847/*
1848 * Currently all lanes must run at the same speed but we expose here
1849 * both directions to allow possible asymmetric links in the future.
1850 */
1851static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
1852static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
1853
1854static ssize_t rx_lanes_show(struct device *dev, struct device_attribute *attr,
1855 char *buf)
1856{
1857 struct tb_switch *sw = tb_to_switch(dev);
1858 unsigned int width;
1859
1860 switch (sw->link_width) {
1861 case TB_LINK_WIDTH_SINGLE:
1862 case TB_LINK_WIDTH_ASYM_TX:
1863 width = 1;
1864 break;
1865 case TB_LINK_WIDTH_DUAL:
1866 width = 2;
1867 break;
1868 case TB_LINK_WIDTH_ASYM_RX:
1869 width = 3;
1870 break;
1871 default:
1872 WARN_ON_ONCE(1);
1873 return -EINVAL;
1874 }
1875
1876 return sysfs_emit(buf, "%u\n", width);
1877}
1878static DEVICE_ATTR(rx_lanes, 0444, rx_lanes_show, NULL);
1879
1880static ssize_t tx_lanes_show(struct device *dev, struct device_attribute *attr,
1881 char *buf)
1882{
1883 struct tb_switch *sw = tb_to_switch(dev);
1884 unsigned int width;
1885
1886 switch (sw->link_width) {
1887 case TB_LINK_WIDTH_SINGLE:
1888 case TB_LINK_WIDTH_ASYM_RX:
1889 width = 1;
1890 break;
1891 case TB_LINK_WIDTH_DUAL:
1892 width = 2;
1893 break;
1894 case TB_LINK_WIDTH_ASYM_TX:
1895 width = 3;
1896 break;
1897 default:
1898 WARN_ON_ONCE(1);
1899 return -EINVAL;
1900 }
1901
1902 return sysfs_emit(buf, "%u\n", width);
1903}
1904static DEVICE_ATTR(tx_lanes, 0444, tx_lanes_show, NULL);
1905
1906static ssize_t nvm_authenticate_show(struct device *dev,
1907 struct device_attribute *attr, char *buf)
1908{
1909 struct tb_switch *sw = tb_to_switch(dev);
1910 u32 status;
1911
1912 nvm_get_auth_status(sw, &status);
1913 return sysfs_emit(buf, "%#x\n", status);
1914}
1915
1916static ssize_t nvm_authenticate_sysfs(struct device *dev, const char *buf,
1917 bool disconnect)
1918{
1919 struct tb_switch *sw = tb_to_switch(dev);
1920 int val, ret;
1921
1922 pm_runtime_get_sync(&sw->dev);
1923
1924 if (!mutex_trylock(&sw->tb->lock)) {
1925 ret = restart_syscall();
1926 goto exit_rpm;
1927 }
1928
1929 if (sw->no_nvm_upgrade) {
1930 ret = -EOPNOTSUPP;
1931 goto exit_unlock;
1932 }
1933
1934 /* If NVMem devices are not yet added */
1935 if (!sw->nvm) {
1936 ret = -EAGAIN;
1937 goto exit_unlock;
1938 }
1939
1940 ret = kstrtoint(buf, 10, &val);
1941 if (ret)
1942 goto exit_unlock;
1943
1944 /* Always clear the authentication status */
1945 nvm_clear_auth_status(sw);
1946
1947 if (val > 0) {
1948 if (val == AUTHENTICATE_ONLY) {
1949 if (disconnect)
1950 ret = -EINVAL;
1951 else
1952 ret = nvm_authenticate(sw, true);
1953 } else {
1954 if (!sw->nvm->flushed) {
1955 if (!sw->nvm->buf) {
1956 ret = -EINVAL;
1957 goto exit_unlock;
1958 }
1959
1960 ret = nvm_validate_and_write(sw);
1961 if (ret || val == WRITE_ONLY)
1962 goto exit_unlock;
1963 }
1964 if (val == WRITE_AND_AUTHENTICATE) {
1965 if (disconnect)
1966 ret = tb_lc_force_power(sw);
1967 else
1968 ret = nvm_authenticate(sw, false);
1969 }
1970 }
1971 }
1972
1973exit_unlock:
1974 mutex_unlock(&sw->tb->lock);
1975exit_rpm:
1976 pm_runtime_mark_last_busy(&sw->dev);
1977 pm_runtime_put_autosuspend(&sw->dev);
1978
1979 return ret;
1980}
1981
1982static ssize_t nvm_authenticate_store(struct device *dev,
1983 struct device_attribute *attr, const char *buf, size_t count)
1984{
1985 int ret = nvm_authenticate_sysfs(dev, buf, false);
1986 if (ret)
1987 return ret;
1988 return count;
1989}
1990static DEVICE_ATTR_RW(nvm_authenticate);
1991
1992static ssize_t nvm_authenticate_on_disconnect_show(struct device *dev,
1993 struct device_attribute *attr, char *buf)
1994{
1995 return nvm_authenticate_show(dev, attr, buf);
1996}
1997
1998static ssize_t nvm_authenticate_on_disconnect_store(struct device *dev,
1999 struct device_attribute *attr, const char *buf, size_t count)
2000{
2001 int ret;
2002
2003 ret = nvm_authenticate_sysfs(dev, buf, true);
2004 return ret ? ret : count;
2005}
2006static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect);
2007
2008static ssize_t nvm_version_show(struct device *dev,
2009 struct device_attribute *attr, char *buf)
2010{
2011 struct tb_switch *sw = tb_to_switch(dev);
2012 int ret;
2013
2014 if (!mutex_trylock(&sw->tb->lock))
2015 return restart_syscall();
2016
2017 if (sw->safe_mode)
2018 ret = -ENODATA;
2019 else if (!sw->nvm)
2020 ret = -EAGAIN;
2021 else
2022 ret = sysfs_emit(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
2023
2024 mutex_unlock(&sw->tb->lock);
2025
2026 return ret;
2027}
2028static DEVICE_ATTR_RO(nvm_version);
2029
2030static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
2031 char *buf)
2032{
2033 struct tb_switch *sw = tb_to_switch(dev);
2034
2035 return sysfs_emit(buf, "%#x\n", sw->vendor);
2036}
2037static DEVICE_ATTR_RO(vendor);
2038
2039static ssize_t
2040vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
2041{
2042 struct tb_switch *sw = tb_to_switch(dev);
2043
2044 return sysfs_emit(buf, "%s\n", sw->vendor_name ?: "");
2045}
2046static DEVICE_ATTR_RO(vendor_name);
2047
2048static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
2049 char *buf)
2050{
2051 struct tb_switch *sw = tb_to_switch(dev);
2052
2053 return sysfs_emit(buf, "%pUb\n", sw->uuid);
2054}
2055static DEVICE_ATTR_RO(unique_id);
2056
2057static struct attribute *switch_attrs[] = {
2058 &dev_attr_authorized.attr,
2059 &dev_attr_boot.attr,
2060 &dev_attr_device.attr,
2061 &dev_attr_device_name.attr,
2062 &dev_attr_generation.attr,
2063 &dev_attr_key.attr,
2064 &dev_attr_nvm_authenticate.attr,
2065 &dev_attr_nvm_authenticate_on_disconnect.attr,
2066 &dev_attr_nvm_version.attr,
2067 &dev_attr_rx_speed.attr,
2068 &dev_attr_rx_lanes.attr,
2069 &dev_attr_tx_speed.attr,
2070 &dev_attr_tx_lanes.attr,
2071 &dev_attr_vendor.attr,
2072 &dev_attr_vendor_name.attr,
2073 &dev_attr_unique_id.attr,
2074 NULL,
2075};
2076
2077static umode_t switch_attr_is_visible(struct kobject *kobj,
2078 struct attribute *attr, int n)
2079{
2080 struct device *dev = kobj_to_dev(kobj);
2081 struct tb_switch *sw = tb_to_switch(dev);
2082
2083 if (attr == &dev_attr_authorized.attr) {
2084 if (sw->tb->security_level == TB_SECURITY_NOPCIE ||
2085 sw->tb->security_level == TB_SECURITY_DPONLY)
2086 return 0;
2087 } else if (attr == &dev_attr_device.attr) {
2088 if (!sw->device)
2089 return 0;
2090 } else if (attr == &dev_attr_device_name.attr) {
2091 if (!sw->device_name)
2092 return 0;
2093 } else if (attr == &dev_attr_vendor.attr) {
2094 if (!sw->vendor)
2095 return 0;
2096 } else if (attr == &dev_attr_vendor_name.attr) {
2097 if (!sw->vendor_name)
2098 return 0;
2099 } else if (attr == &dev_attr_key.attr) {
2100 if (tb_route(sw) &&
2101 sw->tb->security_level == TB_SECURITY_SECURE &&
2102 sw->security_level == TB_SECURITY_SECURE)
2103 return attr->mode;
2104 return 0;
2105 } else if (attr == &dev_attr_rx_speed.attr ||
2106 attr == &dev_attr_rx_lanes.attr ||
2107 attr == &dev_attr_tx_speed.attr ||
2108 attr == &dev_attr_tx_lanes.attr) {
2109 if (tb_route(sw))
2110 return attr->mode;
2111 return 0;
2112 } else if (attr == &dev_attr_nvm_authenticate.attr) {
2113 if (nvm_upgradeable(sw))
2114 return attr->mode;
2115 return 0;
2116 } else if (attr == &dev_attr_nvm_version.attr) {
2117 if (nvm_readable(sw))
2118 return attr->mode;
2119 return 0;
2120 } else if (attr == &dev_attr_boot.attr) {
2121 if (tb_route(sw))
2122 return attr->mode;
2123 return 0;
2124 } else if (attr == &dev_attr_nvm_authenticate_on_disconnect.attr) {
2125 if (sw->quirks & QUIRK_FORCE_POWER_LINK_CONTROLLER)
2126 return attr->mode;
2127 return 0;
2128 }
2129
2130 return sw->safe_mode ? 0 : attr->mode;
2131}
2132
2133static const struct attribute_group switch_group = {
2134 .is_visible = switch_attr_is_visible,
2135 .attrs = switch_attrs,
2136};
2137
2138static const struct attribute_group *switch_groups[] = {
2139 &switch_group,
2140 NULL,
2141};
2142
2143static void tb_switch_release(struct device *dev)
2144{
2145 struct tb_switch *sw = tb_to_switch(dev);
2146 struct tb_port *port;
2147
2148 dma_port_free(sw->dma_port);
2149
2150 tb_switch_for_each_port(sw, port) {
2151 ida_destroy(&port->in_hopids);
2152 ida_destroy(&port->out_hopids);
2153 }
2154
2155 kfree(sw->uuid);
2156 kfree(sw->device_name);
2157 kfree(sw->vendor_name);
2158 kfree(sw->ports);
2159 kfree(sw->drom);
2160 kfree(sw->key);
2161 kfree(sw);
2162}
2163
2164static int tb_switch_uevent(const struct device *dev, struct kobj_uevent_env *env)
2165{
2166 const struct tb_switch *sw = tb_to_switch(dev);
2167 const char *type;
2168
2169 if (tb_switch_is_usb4(sw)) {
2170 if (add_uevent_var(env, "USB4_VERSION=%u.0",
2171 usb4_switch_version(sw)))
2172 return -ENOMEM;
2173 }
2174
2175 if (!tb_route(sw)) {
2176 type = "host";
2177 } else {
2178 const struct tb_port *port;
2179 bool hub = false;
2180
2181 /* Device is hub if it has any downstream ports */
2182 tb_switch_for_each_port(sw, port) {
2183 if (!port->disabled && !tb_is_upstream_port(port) &&
2184 tb_port_is_null(port)) {
2185 hub = true;
2186 break;
2187 }
2188 }
2189
2190 type = hub ? "hub" : "device";
2191 }
2192
2193 if (add_uevent_var(env, "USB4_TYPE=%s", type))
2194 return -ENOMEM;
2195 return 0;
2196}
2197
2198/*
2199 * Currently only need to provide the callbacks. Everything else is handled
2200 * in the connection manager.
2201 */
2202static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
2203{
2204 struct tb_switch *sw = tb_to_switch(dev);
2205 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2206
2207 if (cm_ops->runtime_suspend_switch)
2208 return cm_ops->runtime_suspend_switch(sw);
2209
2210 return 0;
2211}
2212
2213static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
2214{
2215 struct tb_switch *sw = tb_to_switch(dev);
2216 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2217
2218 if (cm_ops->runtime_resume_switch)
2219 return cm_ops->runtime_resume_switch(sw);
2220 return 0;
2221}
2222
2223static const struct dev_pm_ops tb_switch_pm_ops = {
2224 SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
2225 NULL)
2226};
2227
2228struct device_type tb_switch_type = {
2229 .name = "thunderbolt_device",
2230 .release = tb_switch_release,
2231 .uevent = tb_switch_uevent,
2232 .pm = &tb_switch_pm_ops,
2233};
2234
2235static int tb_switch_get_generation(struct tb_switch *sw)
2236{
2237 if (tb_switch_is_usb4(sw))
2238 return 4;
2239
2240 if (sw->config.vendor_id == PCI_VENDOR_ID_INTEL) {
2241 switch (sw->config.device_id) {
2242 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
2243 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
2244 case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
2245 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
2246 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
2247 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
2248 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
2249 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
2250 return 1;
2251
2252 case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
2253 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
2254 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
2255 return 2;
2256
2257 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
2258 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
2259 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
2260 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
2261 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
2262 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
2263 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
2264 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
2265 case PCI_DEVICE_ID_INTEL_ICL_NHI0:
2266 case PCI_DEVICE_ID_INTEL_ICL_NHI1:
2267 return 3;
2268 }
2269 }
2270
2271 /*
2272 * For unknown switches assume generation to be 1 to be on the
2273 * safe side.
2274 */
2275 tb_sw_warn(sw, "unsupported switch device id %#x\n",
2276 sw->config.device_id);
2277 return 1;
2278}
2279
2280static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth)
2281{
2282 int max_depth;
2283
2284 if (tb_switch_is_usb4(sw) ||
2285 (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch)))
2286 max_depth = USB4_SWITCH_MAX_DEPTH;
2287 else
2288 max_depth = TB_SWITCH_MAX_DEPTH;
2289
2290 return depth > max_depth;
2291}
2292
2293/**
2294 * tb_switch_alloc() - allocate a switch
2295 * @tb: Pointer to the owning domain
2296 * @parent: Parent device for this switch
2297 * @route: Route string for this switch
2298 *
2299 * Allocates and initializes a switch. Will not upload configuration to
2300 * the switch. For that you need to call tb_switch_configure()
2301 * separately. The returned switch should be released by calling
2302 * tb_switch_put().
2303 *
2304 * Return: Pointer to the allocated switch or ERR_PTR() in case of
2305 * failure.
2306 */
2307struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
2308 u64 route)
2309{
2310 struct tb_switch *sw;
2311 int upstream_port;
2312 int i, ret, depth;
2313
2314 /* Unlock the downstream port so we can access the switch below */
2315 if (route) {
2316 struct tb_switch *parent_sw = tb_to_switch(parent);
2317 struct tb_port *down;
2318
2319 down = tb_port_at(route, parent_sw);
2320 tb_port_unlock(down);
2321 }
2322
2323 depth = tb_route_length(route);
2324
2325 upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
2326 if (upstream_port < 0)
2327 return ERR_PTR(upstream_port);
2328
2329 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2330 if (!sw)
2331 return ERR_PTR(-ENOMEM);
2332
2333 sw->tb = tb;
2334 ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
2335 if (ret)
2336 goto err_free_sw_ports;
2337
2338 sw->generation = tb_switch_get_generation(sw);
2339
2340 tb_dbg(tb, "current switch config:\n");
2341 tb_dump_switch(tb, sw);
2342
2343 /* configure switch */
2344 sw->config.upstream_port_number = upstream_port;
2345 sw->config.depth = depth;
2346 sw->config.route_hi = upper_32_bits(route);
2347 sw->config.route_lo = lower_32_bits(route);
2348 sw->config.enabled = 0;
2349
2350 /* Make sure we do not exceed maximum topology limit */
2351 if (tb_switch_exceeds_max_depth(sw, depth)) {
2352 ret = -EADDRNOTAVAIL;
2353 goto err_free_sw_ports;
2354 }
2355
2356 /* initialize ports */
2357 sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
2358 GFP_KERNEL);
2359 if (!sw->ports) {
2360 ret = -ENOMEM;
2361 goto err_free_sw_ports;
2362 }
2363
2364 for (i = 0; i <= sw->config.max_port_number; i++) {
2365 /* minimum setup for tb_find_cap and tb_drom_read to work */
2366 sw->ports[i].sw = sw;
2367 sw->ports[i].port = i;
2368
2369 /* Control port does not need HopID allocation */
2370 if (i) {
2371 ida_init(&sw->ports[i].in_hopids);
2372 ida_init(&sw->ports[i].out_hopids);
2373 }
2374 }
2375
2376 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
2377 if (ret > 0)
2378 sw->cap_plug_events = ret;
2379
2380 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_TIME2);
2381 if (ret > 0)
2382 sw->cap_vsec_tmu = ret;
2383
2384 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
2385 if (ret > 0)
2386 sw->cap_lc = ret;
2387
2388 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_CP_LP);
2389 if (ret > 0)
2390 sw->cap_lp = ret;
2391
2392 /* Root switch is always authorized */
2393 if (!route)
2394 sw->authorized = true;
2395
2396 device_initialize(&sw->dev);
2397 sw->dev.parent = parent;
2398 sw->dev.bus = &tb_bus_type;
2399 sw->dev.type = &tb_switch_type;
2400 sw->dev.groups = switch_groups;
2401 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2402
2403 return sw;
2404
2405err_free_sw_ports:
2406 kfree(sw->ports);
2407 kfree(sw);
2408
2409 return ERR_PTR(ret);
2410}
2411
2412/**
2413 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
2414 * @tb: Pointer to the owning domain
2415 * @parent: Parent device for this switch
2416 * @route: Route string for this switch
2417 *
2418 * This creates a switch in safe mode. This means the switch pretty much
2419 * lacks all capabilities except DMA configuration port before it is
2420 * flashed with a valid NVM firmware.
2421 *
2422 * The returned switch must be released by calling tb_switch_put().
2423 *
2424 * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
2425 */
2426struct tb_switch *
2427tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
2428{
2429 struct tb_switch *sw;
2430
2431 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2432 if (!sw)
2433 return ERR_PTR(-ENOMEM);
2434
2435 sw->tb = tb;
2436 sw->config.depth = tb_route_length(route);
2437 sw->config.route_hi = upper_32_bits(route);
2438 sw->config.route_lo = lower_32_bits(route);
2439 sw->safe_mode = true;
2440
2441 device_initialize(&sw->dev);
2442 sw->dev.parent = parent;
2443 sw->dev.bus = &tb_bus_type;
2444 sw->dev.type = &tb_switch_type;
2445 sw->dev.groups = switch_groups;
2446 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2447
2448 return sw;
2449}
2450
2451/**
2452 * tb_switch_configure() - Uploads configuration to the switch
2453 * @sw: Switch to configure
2454 *
2455 * Call this function before the switch is added to the system. It will
2456 * upload configuration to the switch and makes it available for the
2457 * connection manager to use. Can be called to the switch again after
2458 * resume from low power states to re-initialize it.
2459 *
2460 * Return: %0 in case of success and negative errno in case of failure
2461 */
2462int tb_switch_configure(struct tb_switch *sw)
2463{
2464 struct tb *tb = sw->tb;
2465 u64 route;
2466 int ret;
2467
2468 route = tb_route(sw);
2469
2470 tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n",
2471 sw->config.enabled ? "restoring" : "initializing", route,
2472 tb_route_length(route), sw->config.upstream_port_number);
2473
2474 sw->config.enabled = 1;
2475
2476 if (tb_switch_is_usb4(sw)) {
2477 /*
2478 * For USB4 devices, we need to program the CM version
2479 * accordingly so that it knows to expose all the
2480 * additional capabilities. Program it according to USB4
2481 * version to avoid changing existing (v1) routers behaviour.
2482 */
2483 if (usb4_switch_version(sw) < 2)
2484 sw->config.cmuv = ROUTER_CS_4_CMUV_V1;
2485 else
2486 sw->config.cmuv = ROUTER_CS_4_CMUV_V2;
2487 sw->config.plug_events_delay = 0xa;
2488
2489 /* Enumerate the switch */
2490 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2491 ROUTER_CS_1, 4);
2492 if (ret)
2493 return ret;
2494
2495 ret = usb4_switch_setup(sw);
2496 } else {
2497 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
2498 tb_sw_warn(sw, "unknown switch vendor id %#x\n",
2499 sw->config.vendor_id);
2500
2501 if (!sw->cap_plug_events) {
2502 tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
2503 return -ENODEV;
2504 }
2505
2506 /* Enumerate the switch */
2507 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2508 ROUTER_CS_1, 3);
2509 }
2510 if (ret)
2511 return ret;
2512
2513 return tb_plug_events_active(sw, true);
2514}
2515
2516/**
2517 * tb_switch_configuration_valid() - Set the tunneling configuration to be valid
2518 * @sw: Router to configure
2519 *
2520 * Needs to be called before any tunnels can be setup through the
2521 * router. Can be called to any router.
2522 *
2523 * Returns %0 in success and negative errno otherwise.
2524 */
2525int tb_switch_configuration_valid(struct tb_switch *sw)
2526{
2527 if (tb_switch_is_usb4(sw))
2528 return usb4_switch_configuration_valid(sw);
2529 return 0;
2530}
2531
2532static int tb_switch_set_uuid(struct tb_switch *sw)
2533{
2534 bool uid = false;
2535 u32 uuid[4];
2536 int ret;
2537
2538 if (sw->uuid)
2539 return 0;
2540
2541 if (tb_switch_is_usb4(sw)) {
2542 ret = usb4_switch_read_uid(sw, &sw->uid);
2543 if (ret)
2544 return ret;
2545 uid = true;
2546 } else {
2547 /*
2548 * The newer controllers include fused UUID as part of
2549 * link controller specific registers
2550 */
2551 ret = tb_lc_read_uuid(sw, uuid);
2552 if (ret) {
2553 if (ret != -EINVAL)
2554 return ret;
2555 uid = true;
2556 }
2557 }
2558
2559 if (uid) {
2560 /*
2561 * ICM generates UUID based on UID and fills the upper
2562 * two words with ones. This is not strictly following
2563 * UUID format but we want to be compatible with it so
2564 * we do the same here.
2565 */
2566 uuid[0] = sw->uid & 0xffffffff;
2567 uuid[1] = (sw->uid >> 32) & 0xffffffff;
2568 uuid[2] = 0xffffffff;
2569 uuid[3] = 0xffffffff;
2570 }
2571
2572 sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
2573 if (!sw->uuid)
2574 return -ENOMEM;
2575 return 0;
2576}
2577
2578static int tb_switch_add_dma_port(struct tb_switch *sw)
2579{
2580 u32 status;
2581 int ret;
2582
2583 switch (sw->generation) {
2584 case 2:
2585 /* Only root switch can be upgraded */
2586 if (tb_route(sw))
2587 return 0;
2588
2589 fallthrough;
2590 case 3:
2591 case 4:
2592 ret = tb_switch_set_uuid(sw);
2593 if (ret)
2594 return ret;
2595 break;
2596
2597 default:
2598 /*
2599 * DMA port is the only thing available when the switch
2600 * is in safe mode.
2601 */
2602 if (!sw->safe_mode)
2603 return 0;
2604 break;
2605 }
2606
2607 if (sw->no_nvm_upgrade)
2608 return 0;
2609
2610 if (tb_switch_is_usb4(sw)) {
2611 ret = usb4_switch_nvm_authenticate_status(sw, &status);
2612 if (ret)
2613 return ret;
2614
2615 if (status) {
2616 tb_sw_info(sw, "switch flash authentication failed\n");
2617 nvm_set_auth_status(sw, status);
2618 }
2619
2620 return 0;
2621 }
2622
2623 /* Root switch DMA port requires running firmware */
2624 if (!tb_route(sw) && !tb_switch_is_icm(sw))
2625 return 0;
2626
2627 sw->dma_port = dma_port_alloc(sw);
2628 if (!sw->dma_port)
2629 return 0;
2630
2631 /*
2632 * If there is status already set then authentication failed
2633 * when the dma_port_flash_update_auth() returned. Power cycling
2634 * is not needed (it was done already) so only thing we do here
2635 * is to unblock runtime PM of the root port.
2636 */
2637 nvm_get_auth_status(sw, &status);
2638 if (status) {
2639 if (!tb_route(sw))
2640 nvm_authenticate_complete_dma_port(sw);
2641 return 0;
2642 }
2643
2644 /*
2645 * Check status of the previous flash authentication. If there
2646 * is one we need to power cycle the switch in any case to make
2647 * it functional again.
2648 */
2649 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
2650 if (ret <= 0)
2651 return ret;
2652
2653 /* Now we can allow root port to suspend again */
2654 if (!tb_route(sw))
2655 nvm_authenticate_complete_dma_port(sw);
2656
2657 if (status) {
2658 tb_sw_info(sw, "switch flash authentication failed\n");
2659 nvm_set_auth_status(sw, status);
2660 }
2661
2662 tb_sw_info(sw, "power cycling the switch now\n");
2663 dma_port_power_cycle(sw->dma_port);
2664
2665 /*
2666 * We return error here which causes the switch adding failure.
2667 * It should appear back after power cycle is complete.
2668 */
2669 return -ESHUTDOWN;
2670}
2671
2672static void tb_switch_default_link_ports(struct tb_switch *sw)
2673{
2674 int i;
2675
2676 for (i = 1; i <= sw->config.max_port_number; i++) {
2677 struct tb_port *port = &sw->ports[i];
2678 struct tb_port *subordinate;
2679
2680 if (!tb_port_is_null(port))
2681 continue;
2682
2683 /* Check for the subordinate port */
2684 if (i == sw->config.max_port_number ||
2685 !tb_port_is_null(&sw->ports[i + 1]))
2686 continue;
2687
2688 /* Link them if not already done so (by DROM) */
2689 subordinate = &sw->ports[i + 1];
2690 if (!port->dual_link_port && !subordinate->dual_link_port) {
2691 port->link_nr = 0;
2692 port->dual_link_port = subordinate;
2693 subordinate->link_nr = 1;
2694 subordinate->dual_link_port = port;
2695
2696 tb_sw_dbg(sw, "linked ports %d <-> %d\n",
2697 port->port, subordinate->port);
2698 }
2699 }
2700}
2701
2702static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
2703{
2704 const struct tb_port *up = tb_upstream_port(sw);
2705
2706 if (!up->dual_link_port || !up->dual_link_port->remote)
2707 return false;
2708
2709 if (tb_switch_is_usb4(sw))
2710 return usb4_switch_lane_bonding_possible(sw);
2711 return tb_lc_lane_bonding_possible(sw);
2712}
2713
2714static int tb_switch_update_link_attributes(struct tb_switch *sw)
2715{
2716 struct tb_port *up;
2717 bool change = false;
2718 int ret;
2719
2720 if (!tb_route(sw) || tb_switch_is_icm(sw))
2721 return 0;
2722
2723 up = tb_upstream_port(sw);
2724
2725 ret = tb_port_get_link_speed(up);
2726 if (ret < 0)
2727 return ret;
2728 if (sw->link_speed != ret)
2729 change = true;
2730 sw->link_speed = ret;
2731
2732 ret = tb_port_get_link_width(up);
2733 if (ret < 0)
2734 return ret;
2735 if (sw->link_width != ret)
2736 change = true;
2737 sw->link_width = ret;
2738
2739 /* Notify userspace that there is possible link attribute change */
2740 if (device_is_registered(&sw->dev) && change)
2741 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
2742
2743 return 0;
2744}
2745
2746/* Must be called after tb_switch_update_link_attributes() */
2747static void tb_switch_link_init(struct tb_switch *sw)
2748{
2749 struct tb_port *up, *down;
2750 bool bonded;
2751
2752 if (!tb_route(sw) || tb_switch_is_icm(sw))
2753 return;
2754
2755 tb_sw_dbg(sw, "current link speed %u.0 Gb/s\n", sw->link_speed);
2756 tb_sw_dbg(sw, "current link width %s\n", tb_width_name(sw->link_width));
2757
2758 bonded = sw->link_width >= TB_LINK_WIDTH_DUAL;
2759
2760 /*
2761 * Gen 4 links come up as bonded so update the port structures
2762 * accordingly.
2763 */
2764 up = tb_upstream_port(sw);
2765 down = tb_switch_downstream_port(sw);
2766
2767 up->bonded = bonded;
2768 if (up->dual_link_port)
2769 up->dual_link_port->bonded = bonded;
2770 tb_port_update_credits(up);
2771
2772 down->bonded = bonded;
2773 if (down->dual_link_port)
2774 down->dual_link_port->bonded = bonded;
2775 tb_port_update_credits(down);
2776
2777 if (tb_port_get_link_generation(up) < 4)
2778 return;
2779
2780 /*
2781 * Set the Gen 4 preferred link width. This is what the router
2782 * prefers when the link is brought up. If the router does not
2783 * support asymmetric link configuration, this also will be set
2784 * to TB_LINK_WIDTH_DUAL.
2785 */
2786 sw->preferred_link_width = sw->link_width;
2787 tb_sw_dbg(sw, "preferred link width %s\n",
2788 tb_width_name(sw->preferred_link_width));
2789}
2790
2791/**
2792 * tb_switch_lane_bonding_enable() - Enable lane bonding
2793 * @sw: Switch to enable lane bonding
2794 *
2795 * Connection manager can call this function to enable lane bonding of a
2796 * switch. If conditions are correct and both switches support the feature,
2797 * lanes are bonded. It is safe to call this to any switch.
2798 */
2799static int tb_switch_lane_bonding_enable(struct tb_switch *sw)
2800{
2801 struct tb_port *up, *down;
2802 unsigned int width;
2803 int ret;
2804
2805 if (!tb_switch_lane_bonding_possible(sw))
2806 return 0;
2807
2808 up = tb_upstream_port(sw);
2809 down = tb_switch_downstream_port(sw);
2810
2811 if (!tb_port_width_supported(up, TB_LINK_WIDTH_DUAL) ||
2812 !tb_port_width_supported(down, TB_LINK_WIDTH_DUAL))
2813 return 0;
2814
2815 /*
2816 * Both lanes need to be in CL0. Here we assume lane 0 already be in
2817 * CL0 and check just for lane 1.
2818 */
2819 if (tb_wait_for_port(down->dual_link_port, false) <= 0)
2820 return -ENOTCONN;
2821
2822 ret = tb_port_lane_bonding_enable(up);
2823 if (ret) {
2824 tb_port_warn(up, "failed to enable lane bonding\n");
2825 return ret;
2826 }
2827
2828 ret = tb_port_lane_bonding_enable(down);
2829 if (ret) {
2830 tb_port_warn(down, "failed to enable lane bonding\n");
2831 tb_port_lane_bonding_disable(up);
2832 return ret;
2833 }
2834
2835 /* Any of the widths are all bonded */
2836 width = TB_LINK_WIDTH_DUAL | TB_LINK_WIDTH_ASYM_TX |
2837 TB_LINK_WIDTH_ASYM_RX;
2838
2839 return tb_port_wait_for_link_width(down, width, 100);
2840}
2841
2842/**
2843 * tb_switch_lane_bonding_disable() - Disable lane bonding
2844 * @sw: Switch whose lane bonding to disable
2845 *
2846 * Disables lane bonding between @sw and parent. This can be called even
2847 * if lanes were not bonded originally.
2848 */
2849static int tb_switch_lane_bonding_disable(struct tb_switch *sw)
2850{
2851 struct tb_port *up, *down;
2852 int ret;
2853
2854 up = tb_upstream_port(sw);
2855 if (!up->bonded)
2856 return 0;
2857
2858 /*
2859 * If the link is Gen 4 there is no way to switch the link to
2860 * two single lane links so avoid that here. Also don't bother
2861 * if the link is not up anymore (sw is unplugged).
2862 */
2863 ret = tb_port_get_link_generation(up);
2864 if (ret < 0)
2865 return ret;
2866 if (ret >= 4)
2867 return -EOPNOTSUPP;
2868
2869 down = tb_switch_downstream_port(sw);
2870 tb_port_lane_bonding_disable(up);
2871 tb_port_lane_bonding_disable(down);
2872
2873 /*
2874 * It is fine if we get other errors as the router might have
2875 * been unplugged.
2876 */
2877 return tb_port_wait_for_link_width(down, TB_LINK_WIDTH_SINGLE, 100);
2878}
2879
2880/* Note updating sw->link_width done in tb_switch_update_link_attributes() */
2881static int tb_switch_asym_enable(struct tb_switch *sw, enum tb_link_width width)
2882{
2883 struct tb_port *up, *down, *port;
2884 enum tb_link_width down_width;
2885 int ret;
2886
2887 up = tb_upstream_port(sw);
2888 down = tb_switch_downstream_port(sw);
2889
2890 if (width == TB_LINK_WIDTH_ASYM_TX) {
2891 down_width = TB_LINK_WIDTH_ASYM_RX;
2892 port = down;
2893 } else {
2894 down_width = TB_LINK_WIDTH_ASYM_TX;
2895 port = up;
2896 }
2897
2898 ret = tb_port_set_link_width(up, width);
2899 if (ret)
2900 return ret;
2901
2902 ret = tb_port_set_link_width(down, down_width);
2903 if (ret)
2904 return ret;
2905
2906 /*
2907 * Initiate the change in the router that one of its TX lanes is
2908 * changing to RX but do so only if there is an actual change.
2909 */
2910 if (sw->link_width != width) {
2911 ret = usb4_port_asym_start(port);
2912 if (ret)
2913 return ret;
2914
2915 ret = tb_port_wait_for_link_width(up, width, 100);
2916 if (ret)
2917 return ret;
2918 }
2919
2920 return 0;
2921}
2922
2923/* Note updating sw->link_width done in tb_switch_update_link_attributes() */
2924static int tb_switch_asym_disable(struct tb_switch *sw)
2925{
2926 struct tb_port *up, *down;
2927 int ret;
2928
2929 up = tb_upstream_port(sw);
2930 down = tb_switch_downstream_port(sw);
2931
2932 ret = tb_port_set_link_width(up, TB_LINK_WIDTH_DUAL);
2933 if (ret)
2934 return ret;
2935
2936 ret = tb_port_set_link_width(down, TB_LINK_WIDTH_DUAL);
2937 if (ret)
2938 return ret;
2939
2940 /*
2941 * Initiate the change in the router that has three TX lanes and
2942 * is changing one of its TX lanes to RX but only if there is a
2943 * change in the link width.
2944 */
2945 if (sw->link_width > TB_LINK_WIDTH_DUAL) {
2946 if (sw->link_width == TB_LINK_WIDTH_ASYM_TX)
2947 ret = usb4_port_asym_start(up);
2948 else
2949 ret = usb4_port_asym_start(down);
2950 if (ret)
2951 return ret;
2952
2953 ret = tb_port_wait_for_link_width(up, TB_LINK_WIDTH_DUAL, 100);
2954 if (ret)
2955 return ret;
2956 }
2957
2958 return 0;
2959}
2960
2961/**
2962 * tb_switch_set_link_width() - Configure router link width
2963 * @sw: Router to configure
2964 * @width: The new link width
2965 *
2966 * Set device router link width to @width from router upstream port
2967 * perspective. Supports also asymmetric links if the routers boths side
2968 * of the link supports it.
2969 *
2970 * Does nothing for host router.
2971 *
2972 * Returns %0 in case of success, negative errno otherwise.
2973 */
2974int tb_switch_set_link_width(struct tb_switch *sw, enum tb_link_width width)
2975{
2976 struct tb_port *up, *down;
2977 int ret = 0;
2978
2979 if (!tb_route(sw))
2980 return 0;
2981
2982 up = tb_upstream_port(sw);
2983 down = tb_switch_downstream_port(sw);
2984
2985 switch (width) {
2986 case TB_LINK_WIDTH_SINGLE:
2987 ret = tb_switch_lane_bonding_disable(sw);
2988 break;
2989
2990 case TB_LINK_WIDTH_DUAL:
2991 if (sw->link_width == TB_LINK_WIDTH_ASYM_TX ||
2992 sw->link_width == TB_LINK_WIDTH_ASYM_RX) {
2993 ret = tb_switch_asym_disable(sw);
2994 if (ret)
2995 break;
2996 }
2997 ret = tb_switch_lane_bonding_enable(sw);
2998 break;
2999
3000 case TB_LINK_WIDTH_ASYM_TX:
3001 case TB_LINK_WIDTH_ASYM_RX:
3002 ret = tb_switch_asym_enable(sw, width);
3003 break;
3004 }
3005
3006 switch (ret) {
3007 case 0:
3008 break;
3009
3010 case -ETIMEDOUT:
3011 tb_sw_warn(sw, "timeout changing link width\n");
3012 return ret;
3013
3014 case -ENOTCONN:
3015 case -EOPNOTSUPP:
3016 case -ENODEV:
3017 return ret;
3018
3019 default:
3020 tb_sw_dbg(sw, "failed to change link width: %d\n", ret);
3021 return ret;
3022 }
3023
3024 tb_port_update_credits(down);
3025 tb_port_update_credits(up);
3026
3027 tb_switch_update_link_attributes(sw);
3028
3029 tb_sw_dbg(sw, "link width set to %s\n", tb_width_name(width));
3030 return ret;
3031}
3032
3033/**
3034 * tb_switch_configure_link() - Set link configured
3035 * @sw: Switch whose link is configured
3036 *
3037 * Sets the link upstream from @sw configured (from both ends) so that
3038 * it will not be disconnected when the domain exits sleep. Can be
3039 * called for any switch.
3040 *
3041 * It is recommended that this is called after lane bonding is enabled.
3042 *
3043 * Returns %0 on success and negative errno in case of error.
3044 */
3045int tb_switch_configure_link(struct tb_switch *sw)
3046{
3047 struct tb_port *up, *down;
3048 int ret;
3049
3050 if (!tb_route(sw) || tb_switch_is_icm(sw))
3051 return 0;
3052
3053 up = tb_upstream_port(sw);
3054 if (tb_switch_is_usb4(up->sw))
3055 ret = usb4_port_configure(up);
3056 else
3057 ret = tb_lc_configure_port(up);
3058 if (ret)
3059 return ret;
3060
3061 down = up->remote;
3062 if (tb_switch_is_usb4(down->sw))
3063 return usb4_port_configure(down);
3064 return tb_lc_configure_port(down);
3065}
3066
3067/**
3068 * tb_switch_unconfigure_link() - Unconfigure link
3069 * @sw: Switch whose link is unconfigured
3070 *
3071 * Sets the link unconfigured so the @sw will be disconnected if the
3072 * domain exists sleep.
3073 */
3074void tb_switch_unconfigure_link(struct tb_switch *sw)
3075{
3076 struct tb_port *up, *down;
3077
3078 if (sw->is_unplugged)
3079 return;
3080 if (!tb_route(sw) || tb_switch_is_icm(sw))
3081 return;
3082
3083 up = tb_upstream_port(sw);
3084 if (tb_switch_is_usb4(up->sw))
3085 usb4_port_unconfigure(up);
3086 else
3087 tb_lc_unconfigure_port(up);
3088
3089 down = up->remote;
3090 if (tb_switch_is_usb4(down->sw))
3091 usb4_port_unconfigure(down);
3092 else
3093 tb_lc_unconfigure_port(down);
3094}
3095
3096static void tb_switch_credits_init(struct tb_switch *sw)
3097{
3098 if (tb_switch_is_icm(sw))
3099 return;
3100 if (!tb_switch_is_usb4(sw))
3101 return;
3102 if (usb4_switch_credits_init(sw))
3103 tb_sw_info(sw, "failed to determine preferred buffer allocation, using defaults\n");
3104}
3105
3106static int tb_switch_port_hotplug_enable(struct tb_switch *sw)
3107{
3108 struct tb_port *port;
3109
3110 if (tb_switch_is_icm(sw))
3111 return 0;
3112
3113 tb_switch_for_each_port(sw, port) {
3114 int res;
3115
3116 if (!port->cap_usb4)
3117 continue;
3118
3119 res = usb4_port_hotplug_enable(port);
3120 if (res)
3121 return res;
3122 }
3123 return 0;
3124}
3125
3126/**
3127 * tb_switch_add() - Add a switch to the domain
3128 * @sw: Switch to add
3129 *
3130 * This is the last step in adding switch to the domain. It will read
3131 * identification information from DROM and initializes ports so that
3132 * they can be used to connect other switches. The switch will be
3133 * exposed to the userspace when this function successfully returns. To
3134 * remove and release the switch, call tb_switch_remove().
3135 *
3136 * Return: %0 in case of success and negative errno in case of failure
3137 */
3138int tb_switch_add(struct tb_switch *sw)
3139{
3140 int i, ret;
3141
3142 /*
3143 * Initialize DMA control port now before we read DROM. Recent
3144 * host controllers have more complete DROM on NVM that includes
3145 * vendor and model identification strings which we then expose
3146 * to the userspace. NVM can be accessed through DMA
3147 * configuration based mailbox.
3148 */
3149 ret = tb_switch_add_dma_port(sw);
3150 if (ret) {
3151 dev_err(&sw->dev, "failed to add DMA port\n");
3152 return ret;
3153 }
3154
3155 if (!sw->safe_mode) {
3156 tb_switch_credits_init(sw);
3157
3158 /* read drom */
3159 ret = tb_drom_read(sw);
3160 if (ret)
3161 dev_warn(&sw->dev, "reading DROM failed: %d\n", ret);
3162 tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
3163
3164 ret = tb_switch_set_uuid(sw);
3165 if (ret) {
3166 dev_err(&sw->dev, "failed to set UUID\n");
3167 return ret;
3168 }
3169
3170 for (i = 0; i <= sw->config.max_port_number; i++) {
3171 if (sw->ports[i].disabled) {
3172 tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
3173 continue;
3174 }
3175 ret = tb_init_port(&sw->ports[i]);
3176 if (ret) {
3177 dev_err(&sw->dev, "failed to initialize port %d\n", i);
3178 return ret;
3179 }
3180 }
3181
3182 tb_check_quirks(sw);
3183
3184 tb_switch_default_link_ports(sw);
3185
3186 ret = tb_switch_update_link_attributes(sw);
3187 if (ret)
3188 return ret;
3189
3190 tb_switch_link_init(sw);
3191
3192 ret = tb_switch_clx_init(sw);
3193 if (ret)
3194 return ret;
3195
3196 ret = tb_switch_tmu_init(sw);
3197 if (ret)
3198 return ret;
3199 }
3200
3201 ret = tb_switch_port_hotplug_enable(sw);
3202 if (ret)
3203 return ret;
3204
3205 ret = device_add(&sw->dev);
3206 if (ret) {
3207 dev_err(&sw->dev, "failed to add device: %d\n", ret);
3208 return ret;
3209 }
3210
3211 if (tb_route(sw)) {
3212 dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
3213 sw->vendor, sw->device);
3214 if (sw->vendor_name && sw->device_name)
3215 dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
3216 sw->device_name);
3217 }
3218
3219 ret = usb4_switch_add_ports(sw);
3220 if (ret) {
3221 dev_err(&sw->dev, "failed to add USB4 ports\n");
3222 goto err_del;
3223 }
3224
3225 ret = tb_switch_nvm_add(sw);
3226 if (ret) {
3227 dev_err(&sw->dev, "failed to add NVM devices\n");
3228 goto err_ports;
3229 }
3230
3231 /*
3232 * Thunderbolt routers do not generate wakeups themselves but
3233 * they forward wakeups from tunneled protocols, so enable it
3234 * here.
3235 */
3236 device_init_wakeup(&sw->dev, true);
3237
3238 pm_runtime_set_active(&sw->dev);
3239 if (sw->rpm) {
3240 pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
3241 pm_runtime_use_autosuspend(&sw->dev);
3242 pm_runtime_mark_last_busy(&sw->dev);
3243 pm_runtime_enable(&sw->dev);
3244 pm_request_autosuspend(&sw->dev);
3245 }
3246
3247 tb_switch_debugfs_init(sw);
3248 return 0;
3249
3250err_ports:
3251 usb4_switch_remove_ports(sw);
3252err_del:
3253 device_del(&sw->dev);
3254
3255 return ret;
3256}
3257
3258/**
3259 * tb_switch_remove() - Remove and release a switch
3260 * @sw: Switch to remove
3261 *
3262 * This will remove the switch from the domain and release it after last
3263 * reference count drops to zero. If there are switches connected below
3264 * this switch, they will be removed as well.
3265 */
3266void tb_switch_remove(struct tb_switch *sw)
3267{
3268 struct tb_port *port;
3269
3270 tb_switch_debugfs_remove(sw);
3271
3272 if (sw->rpm) {
3273 pm_runtime_get_sync(&sw->dev);
3274 pm_runtime_disable(&sw->dev);
3275 }
3276
3277 /* port 0 is the switch itself and never has a remote */
3278 tb_switch_for_each_port(sw, port) {
3279 if (tb_port_has_remote(port)) {
3280 tb_switch_remove(port->remote->sw);
3281 port->remote = NULL;
3282 } else if (port->xdomain) {
3283 tb_xdomain_remove(port->xdomain);
3284 port->xdomain = NULL;
3285 }
3286
3287 /* Remove any downstream retimers */
3288 tb_retimer_remove_all(port);
3289 }
3290
3291 if (!sw->is_unplugged)
3292 tb_plug_events_active(sw, false);
3293
3294 tb_switch_nvm_remove(sw);
3295 usb4_switch_remove_ports(sw);
3296
3297 if (tb_route(sw))
3298 dev_info(&sw->dev, "device disconnected\n");
3299 device_unregister(&sw->dev);
3300}
3301
3302/**
3303 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
3304 * @sw: Router to mark unplugged
3305 */
3306void tb_sw_set_unplugged(struct tb_switch *sw)
3307{
3308 struct tb_port *port;
3309
3310 if (sw == sw->tb->root_switch) {
3311 tb_sw_WARN(sw, "cannot unplug root switch\n");
3312 return;
3313 }
3314 if (sw->is_unplugged) {
3315 tb_sw_WARN(sw, "is_unplugged already set\n");
3316 return;
3317 }
3318 sw->is_unplugged = true;
3319 tb_switch_for_each_port(sw, port) {
3320 if (tb_port_has_remote(port))
3321 tb_sw_set_unplugged(port->remote->sw);
3322 else if (port->xdomain)
3323 port->xdomain->is_unplugged = true;
3324 }
3325}
3326
3327static int tb_switch_set_wake(struct tb_switch *sw, unsigned int flags)
3328{
3329 if (flags)
3330 tb_sw_dbg(sw, "enabling wakeup: %#x\n", flags);
3331 else
3332 tb_sw_dbg(sw, "disabling wakeup\n");
3333
3334 if (tb_switch_is_usb4(sw))
3335 return usb4_switch_set_wake(sw, flags);
3336 return tb_lc_set_wake(sw, flags);
3337}
3338
3339int tb_switch_resume(struct tb_switch *sw)
3340{
3341 struct tb_port *port;
3342 int err;
3343
3344 tb_sw_dbg(sw, "resuming switch\n");
3345
3346 /*
3347 * Check for UID of the connected switches except for root
3348 * switch which we assume cannot be removed.
3349 */
3350 if (tb_route(sw)) {
3351 u64 uid;
3352
3353 /*
3354 * Check first that we can still read the switch config
3355 * space. It may be that there is now another domain
3356 * connected.
3357 */
3358 err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
3359 if (err < 0) {
3360 tb_sw_info(sw, "switch not present anymore\n");
3361 return err;
3362 }
3363
3364 /* We don't have any way to confirm this was the same device */
3365 if (!sw->uid)
3366 return -ENODEV;
3367
3368 if (tb_switch_is_usb4(sw))
3369 err = usb4_switch_read_uid(sw, &uid);
3370 else
3371 err = tb_drom_read_uid_only(sw, &uid);
3372 if (err) {
3373 tb_sw_warn(sw, "uid read failed\n");
3374 return err;
3375 }
3376 if (sw->uid != uid) {
3377 tb_sw_info(sw,
3378 "changed while suspended (uid %#llx -> %#llx)\n",
3379 sw->uid, uid);
3380 return -ENODEV;
3381 }
3382 }
3383
3384 err = tb_switch_configure(sw);
3385 if (err)
3386 return err;
3387
3388 /* Disable wakes */
3389 tb_switch_set_wake(sw, 0);
3390
3391 err = tb_switch_tmu_init(sw);
3392 if (err)
3393 return err;
3394
3395 /* check for surviving downstream switches */
3396 tb_switch_for_each_port(sw, port) {
3397 if (!tb_port_is_null(port))
3398 continue;
3399
3400 if (!tb_port_resume(port))
3401 continue;
3402
3403 if (tb_wait_for_port(port, true) <= 0) {
3404 tb_port_warn(port,
3405 "lost during suspend, disconnecting\n");
3406 if (tb_port_has_remote(port))
3407 tb_sw_set_unplugged(port->remote->sw);
3408 else if (port->xdomain)
3409 port->xdomain->is_unplugged = true;
3410 } else {
3411 /*
3412 * Always unlock the port so the downstream
3413 * switch/domain is accessible.
3414 */
3415 if (tb_port_unlock(port))
3416 tb_port_warn(port, "failed to unlock port\n");
3417 if (port->remote && tb_switch_resume(port->remote->sw)) {
3418 tb_port_warn(port,
3419 "lost during suspend, disconnecting\n");
3420 tb_sw_set_unplugged(port->remote->sw);
3421 }
3422 }
3423 }
3424 return 0;
3425}
3426
3427/**
3428 * tb_switch_suspend() - Put a switch to sleep
3429 * @sw: Switch to suspend
3430 * @runtime: Is this runtime suspend or system sleep
3431 *
3432 * Suspends router and all its children. Enables wakes according to
3433 * value of @runtime and then sets sleep bit for the router. If @sw is
3434 * host router the domain is ready to go to sleep once this function
3435 * returns.
3436 */
3437void tb_switch_suspend(struct tb_switch *sw, bool runtime)
3438{
3439 unsigned int flags = 0;
3440 struct tb_port *port;
3441 int err;
3442
3443 tb_sw_dbg(sw, "suspending switch\n");
3444
3445 /*
3446 * Actually only needed for Titan Ridge but for simplicity can be
3447 * done for USB4 device too as CLx is re-enabled at resume.
3448 */
3449 tb_switch_clx_disable(sw);
3450
3451 err = tb_plug_events_active(sw, false);
3452 if (err)
3453 return;
3454
3455 tb_switch_for_each_port(sw, port) {
3456 if (tb_port_has_remote(port))
3457 tb_switch_suspend(port->remote->sw, runtime);
3458 }
3459
3460 if (runtime) {
3461 /* Trigger wake when something is plugged in/out */
3462 flags |= TB_WAKE_ON_CONNECT | TB_WAKE_ON_DISCONNECT;
3463 flags |= TB_WAKE_ON_USB4;
3464 flags |= TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE | TB_WAKE_ON_DP;
3465 } else if (device_may_wakeup(&sw->dev)) {
3466 flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE;
3467 }
3468
3469 tb_switch_set_wake(sw, flags);
3470
3471 if (tb_switch_is_usb4(sw))
3472 usb4_switch_set_sleep(sw);
3473 else
3474 tb_lc_set_sleep(sw);
3475}
3476
3477/**
3478 * tb_switch_query_dp_resource() - Query availability of DP resource
3479 * @sw: Switch whose DP resource is queried
3480 * @in: DP IN port
3481 *
3482 * Queries availability of DP resource for DP tunneling using switch
3483 * specific means. Returns %true if resource is available.
3484 */
3485bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
3486{
3487 if (tb_switch_is_usb4(sw))
3488 return usb4_switch_query_dp_resource(sw, in);
3489 return tb_lc_dp_sink_query(sw, in);
3490}
3491
3492/**
3493 * tb_switch_alloc_dp_resource() - Allocate available DP resource
3494 * @sw: Switch whose DP resource is allocated
3495 * @in: DP IN port
3496 *
3497 * Allocates DP resource for DP tunneling. The resource must be
3498 * available for this to succeed (see tb_switch_query_dp_resource()).
3499 * Returns %0 in success and negative errno otherwise.
3500 */
3501int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3502{
3503 int ret;
3504
3505 if (tb_switch_is_usb4(sw))
3506 ret = usb4_switch_alloc_dp_resource(sw, in);
3507 else
3508 ret = tb_lc_dp_sink_alloc(sw, in);
3509
3510 if (ret)
3511 tb_sw_warn(sw, "failed to allocate DP resource for port %d\n",
3512 in->port);
3513 else
3514 tb_sw_dbg(sw, "allocated DP resource for port %d\n", in->port);
3515
3516 return ret;
3517}
3518
3519/**
3520 * tb_switch_dealloc_dp_resource() - De-allocate DP resource
3521 * @sw: Switch whose DP resource is de-allocated
3522 * @in: DP IN port
3523 *
3524 * De-allocates DP resource that was previously allocated for DP
3525 * tunneling.
3526 */
3527void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3528{
3529 int ret;
3530
3531 if (tb_switch_is_usb4(sw))
3532 ret = usb4_switch_dealloc_dp_resource(sw, in);
3533 else
3534 ret = tb_lc_dp_sink_dealloc(sw, in);
3535
3536 if (ret)
3537 tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
3538 in->port);
3539 else
3540 tb_sw_dbg(sw, "released DP resource for port %d\n", in->port);
3541}
3542
3543struct tb_sw_lookup {
3544 struct tb *tb;
3545 u8 link;
3546 u8 depth;
3547 const uuid_t *uuid;
3548 u64 route;
3549};
3550
3551static int tb_switch_match(struct device *dev, const void *data)
3552{
3553 struct tb_switch *sw = tb_to_switch(dev);
3554 const struct tb_sw_lookup *lookup = data;
3555
3556 if (!sw)
3557 return 0;
3558 if (sw->tb != lookup->tb)
3559 return 0;
3560
3561 if (lookup->uuid)
3562 return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
3563
3564 if (lookup->route) {
3565 return sw->config.route_lo == lower_32_bits(lookup->route) &&
3566 sw->config.route_hi == upper_32_bits(lookup->route);
3567 }
3568
3569 /* Root switch is matched only by depth */
3570 if (!lookup->depth)
3571 return !sw->depth;
3572
3573 return sw->link == lookup->link && sw->depth == lookup->depth;
3574}
3575
3576/**
3577 * tb_switch_find_by_link_depth() - Find switch by link and depth
3578 * @tb: Domain the switch belongs
3579 * @link: Link number the switch is connected
3580 * @depth: Depth of the switch in link
3581 *
3582 * Returned switch has reference count increased so the caller needs to
3583 * call tb_switch_put() when done with the switch.
3584 */
3585struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
3586{
3587 struct tb_sw_lookup lookup;
3588 struct device *dev;
3589
3590 memset(&lookup, 0, sizeof(lookup));
3591 lookup.tb = tb;
3592 lookup.link = link;
3593 lookup.depth = depth;
3594
3595 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3596 if (dev)
3597 return tb_to_switch(dev);
3598
3599 return NULL;
3600}
3601
3602/**
3603 * tb_switch_find_by_uuid() - Find switch by UUID
3604 * @tb: Domain the switch belongs
3605 * @uuid: UUID to look for
3606 *
3607 * Returned switch has reference count increased so the caller needs to
3608 * call tb_switch_put() when done with the switch.
3609 */
3610struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
3611{
3612 struct tb_sw_lookup lookup;
3613 struct device *dev;
3614
3615 memset(&lookup, 0, sizeof(lookup));
3616 lookup.tb = tb;
3617 lookup.uuid = uuid;
3618
3619 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3620 if (dev)
3621 return tb_to_switch(dev);
3622
3623 return NULL;
3624}
3625
3626/**
3627 * tb_switch_find_by_route() - Find switch by route string
3628 * @tb: Domain the switch belongs
3629 * @route: Route string to look for
3630 *
3631 * Returned switch has reference count increased so the caller needs to
3632 * call tb_switch_put() when done with the switch.
3633 */
3634struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
3635{
3636 struct tb_sw_lookup lookup;
3637 struct device *dev;
3638
3639 if (!route)
3640 return tb_switch_get(tb->root_switch);
3641
3642 memset(&lookup, 0, sizeof(lookup));
3643 lookup.tb = tb;
3644 lookup.route = route;
3645
3646 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3647 if (dev)
3648 return tb_to_switch(dev);
3649
3650 return NULL;
3651}
3652
3653/**
3654 * tb_switch_find_port() - return the first port of @type on @sw or NULL
3655 * @sw: Switch to find the port from
3656 * @type: Port type to look for
3657 */
3658struct tb_port *tb_switch_find_port(struct tb_switch *sw,
3659 enum tb_port_type type)
3660{
3661 struct tb_port *port;
3662
3663 tb_switch_for_each_port(sw, port) {
3664 if (port->config.type == type)
3665 return port;
3666 }
3667
3668 return NULL;
3669}
3670
3671/*
3672 * Can be used for read/write a specified PCIe bridge for any Thunderbolt 3
3673 * device. For now used only for Titan Ridge.
3674 */
3675static int tb_switch_pcie_bridge_write(struct tb_switch *sw, unsigned int bridge,
3676 unsigned int pcie_offset, u32 value)
3677{
3678 u32 offset, command, val;
3679 int ret;
3680
3681 if (sw->generation != 3)
3682 return -EOPNOTSUPP;
3683
3684 offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_WR_DATA;
3685 ret = tb_sw_write(sw, &value, TB_CFG_SWITCH, offset, 1);
3686 if (ret)
3687 return ret;
3688
3689 command = pcie_offset & TB_PLUG_EVENTS_PCIE_CMD_DW_OFFSET_MASK;
3690 command |= BIT(bridge + TB_PLUG_EVENTS_PCIE_CMD_BR_SHIFT);
3691 command |= TB_PLUG_EVENTS_PCIE_CMD_RD_WR_MASK;
3692 command |= TB_PLUG_EVENTS_PCIE_CMD_COMMAND_VAL
3693 << TB_PLUG_EVENTS_PCIE_CMD_COMMAND_SHIFT;
3694 command |= TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK;
3695
3696 offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_CMD;
3697
3698 ret = tb_sw_write(sw, &command, TB_CFG_SWITCH, offset, 1);
3699 if (ret)
3700 return ret;
3701
3702 ret = tb_switch_wait_for_bit(sw, offset,
3703 TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK, 0, 100);
3704 if (ret)
3705 return ret;
3706
3707 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
3708 if (ret)
3709 return ret;
3710
3711 if (val & TB_PLUG_EVENTS_PCIE_CMD_TIMEOUT_MASK)
3712 return -ETIMEDOUT;
3713
3714 return 0;
3715}
3716
3717/**
3718 * tb_switch_pcie_l1_enable() - Enable PCIe link to enter L1 state
3719 * @sw: Router to enable PCIe L1
3720 *
3721 * For Titan Ridge switch to enter CLx state, its PCIe bridges shall enable
3722 * entry to PCIe L1 state. Shall be called after the upstream PCIe tunnel
3723 * was configured. Due to Intel platforms limitation, shall be called only
3724 * for first hop switch.
3725 */
3726int tb_switch_pcie_l1_enable(struct tb_switch *sw)
3727{
3728 struct tb_switch *parent = tb_switch_parent(sw);
3729 int ret;
3730
3731 if (!tb_route(sw))
3732 return 0;
3733
3734 if (!tb_switch_is_titan_ridge(sw))
3735 return 0;
3736
3737 /* Enable PCIe L1 enable only for first hop router (depth = 1) */
3738 if (tb_route(parent))
3739 return 0;
3740
3741 /* Write to downstream PCIe bridge #5 aka Dn4 */
3742 ret = tb_switch_pcie_bridge_write(sw, 5, 0x143, 0x0c7806b1);
3743 if (ret)
3744 return ret;
3745
3746 /* Write to Upstream PCIe bridge #0 aka Up0 */
3747 return tb_switch_pcie_bridge_write(sw, 0, 0x143, 0x0c5806b1);
3748}
3749
3750/**
3751 * tb_switch_xhci_connect() - Connect internal xHCI
3752 * @sw: Router whose xHCI to connect
3753 *
3754 * Can be called to any router. For Alpine Ridge and Titan Ridge
3755 * performs special flows that bring the xHCI functional for any device
3756 * connected to the type-C port. Call only after PCIe tunnel has been
3757 * established. The function only does the connect if not done already
3758 * so can be called several times for the same router.
3759 */
3760int tb_switch_xhci_connect(struct tb_switch *sw)
3761{
3762 struct tb_port *port1, *port3;
3763 int ret;
3764
3765 if (sw->generation != 3)
3766 return 0;
3767
3768 port1 = &sw->ports[1];
3769 port3 = &sw->ports[3];
3770
3771 if (tb_switch_is_alpine_ridge(sw)) {
3772 bool usb_port1, usb_port3, xhci_port1, xhci_port3;
3773
3774 usb_port1 = tb_lc_is_usb_plugged(port1);
3775 usb_port3 = tb_lc_is_usb_plugged(port3);
3776 xhci_port1 = tb_lc_is_xhci_connected(port1);
3777 xhci_port3 = tb_lc_is_xhci_connected(port3);
3778
3779 /* Figure out correct USB port to connect */
3780 if (usb_port1 && !xhci_port1) {
3781 ret = tb_lc_xhci_connect(port1);
3782 if (ret)
3783 return ret;
3784 }
3785 if (usb_port3 && !xhci_port3)
3786 return tb_lc_xhci_connect(port3);
3787 } else if (tb_switch_is_titan_ridge(sw)) {
3788 ret = tb_lc_xhci_connect(port1);
3789 if (ret)
3790 return ret;
3791 return tb_lc_xhci_connect(port3);
3792 }
3793
3794 return 0;
3795}
3796
3797/**
3798 * tb_switch_xhci_disconnect() - Disconnect internal xHCI
3799 * @sw: Router whose xHCI to disconnect
3800 *
3801 * The opposite of tb_switch_xhci_connect(). Disconnects xHCI on both
3802 * ports.
3803 */
3804void tb_switch_xhci_disconnect(struct tb_switch *sw)
3805{
3806 if (sw->generation == 3) {
3807 struct tb_port *port1 = &sw->ports[1];
3808 struct tb_port *port3 = &sw->ports[3];
3809
3810 tb_lc_xhci_disconnect(port1);
3811 tb_port_dbg(port1, "disconnected xHCI\n");
3812 tb_lc_xhci_disconnect(port3);
3813 tb_port_dbg(port3, "disconnected xHCI\n");
3814 }
3815}