at v6.7 39 kB view raw
1/* SPDX-License-Identifier: GPL-2.0+ */ 2/* 3 * Read-Copy Update mechanism for mutual exclusion 4 * 5 * Copyright IBM Corporation, 2001 6 * 7 * Author: Dipankar Sarma <dipankar@in.ibm.com> 8 * 9 * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com> 10 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 11 * Papers: 12 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf 13 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) 14 * 15 * For detailed explanation of Read-Copy Update mechanism see - 16 * http://lse.sourceforge.net/locking/rcupdate.html 17 * 18 */ 19 20#ifndef __LINUX_RCUPDATE_H 21#define __LINUX_RCUPDATE_H 22 23#include <linux/types.h> 24#include <linux/compiler.h> 25#include <linux/atomic.h> 26#include <linux/irqflags.h> 27#include <linux/preempt.h> 28#include <linux/bottom_half.h> 29#include <linux/lockdep.h> 30#include <linux/cleanup.h> 31#include <asm/processor.h> 32#include <linux/cpumask.h> 33#include <linux/context_tracking_irq.h> 34 35#define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b)) 36#define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b)) 37#define ulong2long(a) (*(long *)(&(a))) 38#define USHORT_CMP_GE(a, b) (USHRT_MAX / 2 >= (unsigned short)((a) - (b))) 39#define USHORT_CMP_LT(a, b) (USHRT_MAX / 2 < (unsigned short)((a) - (b))) 40 41/* Exported common interfaces */ 42void call_rcu(struct rcu_head *head, rcu_callback_t func); 43void rcu_barrier_tasks(void); 44void rcu_barrier_tasks_rude(void); 45void synchronize_rcu(void); 46 47struct rcu_gp_oldstate; 48unsigned long get_completed_synchronize_rcu(void); 49void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp); 50 51// Maximum number of unsigned long values corresponding to 52// not-yet-completed RCU grace periods. 53#define NUM_ACTIVE_RCU_POLL_OLDSTATE 2 54 55/** 56 * same_state_synchronize_rcu - Are two old-state values identical? 57 * @oldstate1: First old-state value. 58 * @oldstate2: Second old-state value. 59 * 60 * The two old-state values must have been obtained from either 61 * get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or 62 * get_completed_synchronize_rcu(). Returns @true if the two values are 63 * identical and @false otherwise. This allows structures whose lifetimes 64 * are tracked by old-state values to push these values to a list header, 65 * allowing those structures to be slightly smaller. 66 */ 67static inline bool same_state_synchronize_rcu(unsigned long oldstate1, unsigned long oldstate2) 68{ 69 return oldstate1 == oldstate2; 70} 71 72#ifdef CONFIG_PREEMPT_RCU 73 74void __rcu_read_lock(void); 75void __rcu_read_unlock(void); 76 77/* 78 * Defined as a macro as it is a very low level header included from 79 * areas that don't even know about current. This gives the rcu_read_lock() 80 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other 81 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable. 82 */ 83#define rcu_preempt_depth() READ_ONCE(current->rcu_read_lock_nesting) 84 85#else /* #ifdef CONFIG_PREEMPT_RCU */ 86 87#ifdef CONFIG_TINY_RCU 88#define rcu_read_unlock_strict() do { } while (0) 89#else 90void rcu_read_unlock_strict(void); 91#endif 92 93static inline void __rcu_read_lock(void) 94{ 95 preempt_disable(); 96} 97 98static inline void __rcu_read_unlock(void) 99{ 100 preempt_enable(); 101 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 102 rcu_read_unlock_strict(); 103} 104 105static inline int rcu_preempt_depth(void) 106{ 107 return 0; 108} 109 110#endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 111 112#ifdef CONFIG_RCU_LAZY 113void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func); 114#else 115static inline void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func) 116{ 117 call_rcu(head, func); 118} 119#endif 120 121/* Internal to kernel */ 122void rcu_init(void); 123extern int rcu_scheduler_active; 124void rcu_sched_clock_irq(int user); 125 126#ifdef CONFIG_TASKS_RCU_GENERIC 127void rcu_init_tasks_generic(void); 128#else 129static inline void rcu_init_tasks_generic(void) { } 130#endif 131 132#ifdef CONFIG_RCU_STALL_COMMON 133void rcu_sysrq_start(void); 134void rcu_sysrq_end(void); 135#else /* #ifdef CONFIG_RCU_STALL_COMMON */ 136static inline void rcu_sysrq_start(void) { } 137static inline void rcu_sysrq_end(void) { } 138#endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */ 139 140#if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) 141void rcu_irq_work_resched(void); 142#else 143static inline void rcu_irq_work_resched(void) { } 144#endif 145 146#ifdef CONFIG_RCU_NOCB_CPU 147void rcu_init_nohz(void); 148int rcu_nocb_cpu_offload(int cpu); 149int rcu_nocb_cpu_deoffload(int cpu); 150void rcu_nocb_flush_deferred_wakeup(void); 151#else /* #ifdef CONFIG_RCU_NOCB_CPU */ 152static inline void rcu_init_nohz(void) { } 153static inline int rcu_nocb_cpu_offload(int cpu) { return -EINVAL; } 154static inline int rcu_nocb_cpu_deoffload(int cpu) { return 0; } 155static inline void rcu_nocb_flush_deferred_wakeup(void) { } 156#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 157 158/* 159 * Note a quasi-voluntary context switch for RCU-tasks's benefit. 160 * This is a macro rather than an inline function to avoid #include hell. 161 */ 162#ifdef CONFIG_TASKS_RCU_GENERIC 163 164# ifdef CONFIG_TASKS_RCU 165# define rcu_tasks_classic_qs(t, preempt) \ 166 do { \ 167 if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout)) \ 168 WRITE_ONCE((t)->rcu_tasks_holdout, false); \ 169 } while (0) 170void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func); 171void synchronize_rcu_tasks(void); 172# else 173# define rcu_tasks_classic_qs(t, preempt) do { } while (0) 174# define call_rcu_tasks call_rcu 175# define synchronize_rcu_tasks synchronize_rcu 176# endif 177 178# ifdef CONFIG_TASKS_TRACE_RCU 179// Bits for ->trc_reader_special.b.need_qs field. 180#define TRC_NEED_QS 0x1 // Task needs a quiescent state. 181#define TRC_NEED_QS_CHECKED 0x2 // Task has been checked for needing quiescent state. 182 183u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new); 184void rcu_tasks_trace_qs_blkd(struct task_struct *t); 185 186# define rcu_tasks_trace_qs(t) \ 187 do { \ 188 int ___rttq_nesting = READ_ONCE((t)->trc_reader_nesting); \ 189 \ 190 if (likely(!READ_ONCE((t)->trc_reader_special.b.need_qs)) && \ 191 likely(!___rttq_nesting)) { \ 192 rcu_trc_cmpxchg_need_qs((t), 0, TRC_NEED_QS_CHECKED); \ 193 } else if (___rttq_nesting && ___rttq_nesting != INT_MIN && \ 194 !READ_ONCE((t)->trc_reader_special.b.blocked)) { \ 195 rcu_tasks_trace_qs_blkd(t); \ 196 } \ 197 } while (0) 198# else 199# define rcu_tasks_trace_qs(t) do { } while (0) 200# endif 201 202#define rcu_tasks_qs(t, preempt) \ 203do { \ 204 rcu_tasks_classic_qs((t), (preempt)); \ 205 rcu_tasks_trace_qs(t); \ 206} while (0) 207 208# ifdef CONFIG_TASKS_RUDE_RCU 209void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func); 210void synchronize_rcu_tasks_rude(void); 211# endif 212 213#define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false) 214void exit_tasks_rcu_start(void); 215void exit_tasks_rcu_stop(void); 216void exit_tasks_rcu_finish(void); 217#else /* #ifdef CONFIG_TASKS_RCU_GENERIC */ 218#define rcu_tasks_classic_qs(t, preempt) do { } while (0) 219#define rcu_tasks_qs(t, preempt) do { } while (0) 220#define rcu_note_voluntary_context_switch(t) do { } while (0) 221#define call_rcu_tasks call_rcu 222#define synchronize_rcu_tasks synchronize_rcu 223static inline void exit_tasks_rcu_start(void) { } 224static inline void exit_tasks_rcu_stop(void) { } 225static inline void exit_tasks_rcu_finish(void) { } 226#endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */ 227 228/** 229 * rcu_trace_implies_rcu_gp - does an RCU Tasks Trace grace period imply an RCU grace period? 230 * 231 * As an accident of implementation, an RCU Tasks Trace grace period also 232 * acts as an RCU grace period. However, this could change at any time. 233 * Code relying on this accident must call this function to verify that 234 * this accident is still happening. 235 * 236 * You have been warned! 237 */ 238static inline bool rcu_trace_implies_rcu_gp(void) { return true; } 239 240/** 241 * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU 242 * 243 * This macro resembles cond_resched(), except that it is defined to 244 * report potential quiescent states to RCU-tasks even if the cond_resched() 245 * machinery were to be shut off, as some advocate for PREEMPTION kernels. 246 */ 247#define cond_resched_tasks_rcu_qs() \ 248do { \ 249 rcu_tasks_qs(current, false); \ 250 cond_resched(); \ 251} while (0) 252 253/* 254 * Infrastructure to implement the synchronize_() primitives in 255 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU. 256 */ 257 258#if defined(CONFIG_TREE_RCU) 259#include <linux/rcutree.h> 260#elif defined(CONFIG_TINY_RCU) 261#include <linux/rcutiny.h> 262#else 263#error "Unknown RCU implementation specified to kernel configuration" 264#endif 265 266/* 267 * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls 268 * are needed for dynamic initialization and destruction of rcu_head 269 * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for 270 * dynamic initialization and destruction of statically allocated rcu_head 271 * structures. However, rcu_head structures allocated dynamically in the 272 * heap don't need any initialization. 273 */ 274#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 275void init_rcu_head(struct rcu_head *head); 276void destroy_rcu_head(struct rcu_head *head); 277void init_rcu_head_on_stack(struct rcu_head *head); 278void destroy_rcu_head_on_stack(struct rcu_head *head); 279#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 280static inline void init_rcu_head(struct rcu_head *head) { } 281static inline void destroy_rcu_head(struct rcu_head *head) { } 282static inline void init_rcu_head_on_stack(struct rcu_head *head) { } 283static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { } 284#endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 285 286#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) 287bool rcu_lockdep_current_cpu_online(void); 288#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 289static inline bool rcu_lockdep_current_cpu_online(void) { return true; } 290#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 291 292extern struct lockdep_map rcu_lock_map; 293extern struct lockdep_map rcu_bh_lock_map; 294extern struct lockdep_map rcu_sched_lock_map; 295extern struct lockdep_map rcu_callback_map; 296 297#ifdef CONFIG_DEBUG_LOCK_ALLOC 298 299static inline void rcu_lock_acquire(struct lockdep_map *map) 300{ 301 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_); 302} 303 304static inline void rcu_lock_release(struct lockdep_map *map) 305{ 306 lock_release(map, _THIS_IP_); 307} 308 309int debug_lockdep_rcu_enabled(void); 310int rcu_read_lock_held(void); 311int rcu_read_lock_bh_held(void); 312int rcu_read_lock_sched_held(void); 313int rcu_read_lock_any_held(void); 314 315#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 316 317# define rcu_lock_acquire(a) do { } while (0) 318# define rcu_lock_release(a) do { } while (0) 319 320static inline int rcu_read_lock_held(void) 321{ 322 return 1; 323} 324 325static inline int rcu_read_lock_bh_held(void) 326{ 327 return 1; 328} 329 330static inline int rcu_read_lock_sched_held(void) 331{ 332 return !preemptible(); 333} 334 335static inline int rcu_read_lock_any_held(void) 336{ 337 return !preemptible(); 338} 339 340static inline int debug_lockdep_rcu_enabled(void) 341{ 342 return 0; 343} 344 345#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 346 347#ifdef CONFIG_PROVE_RCU 348 349/** 350 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met 351 * @c: condition to check 352 * @s: informative message 353 * 354 * This checks debug_lockdep_rcu_enabled() before checking (c) to 355 * prevent early boot splats due to lockdep not yet being initialized, 356 * and rechecks it after checking (c) to prevent false-positive splats 357 * due to races with lockdep being disabled. See commit 3066820034b5dd 358 * ("rcu: Reject RCU_LOCKDEP_WARN() false positives") for more detail. 359 */ 360#define RCU_LOCKDEP_WARN(c, s) \ 361 do { \ 362 static bool __section(".data.unlikely") __warned; \ 363 if (debug_lockdep_rcu_enabled() && (c) && \ 364 debug_lockdep_rcu_enabled() && !__warned) { \ 365 __warned = true; \ 366 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \ 367 } \ 368 } while (0) 369 370#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU) 371static inline void rcu_preempt_sleep_check(void) 372{ 373 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map), 374 "Illegal context switch in RCU read-side critical section"); 375} 376#else /* #ifdef CONFIG_PROVE_RCU */ 377static inline void rcu_preempt_sleep_check(void) { } 378#endif /* #else #ifdef CONFIG_PROVE_RCU */ 379 380#define rcu_sleep_check() \ 381 do { \ 382 rcu_preempt_sleep_check(); \ 383 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \ 384 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \ 385 "Illegal context switch in RCU-bh read-side critical section"); \ 386 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \ 387 "Illegal context switch in RCU-sched read-side critical section"); \ 388 } while (0) 389 390#else /* #ifdef CONFIG_PROVE_RCU */ 391 392#define RCU_LOCKDEP_WARN(c, s) do { } while (0 && (c)) 393#define rcu_sleep_check() do { } while (0) 394 395#endif /* #else #ifdef CONFIG_PROVE_RCU */ 396 397/* 398 * Helper functions for rcu_dereference_check(), rcu_dereference_protected() 399 * and rcu_assign_pointer(). Some of these could be folded into their 400 * callers, but they are left separate in order to ease introduction of 401 * multiple pointers markings to match different RCU implementations 402 * (e.g., __srcu), should this make sense in the future. 403 */ 404 405#ifdef __CHECKER__ 406#define rcu_check_sparse(p, space) \ 407 ((void)(((typeof(*p) space *)p) == p)) 408#else /* #ifdef __CHECKER__ */ 409#define rcu_check_sparse(p, space) 410#endif /* #else #ifdef __CHECKER__ */ 411 412#define __unrcu_pointer(p, local) \ 413({ \ 414 typeof(*p) *local = (typeof(*p) *__force)(p); \ 415 rcu_check_sparse(p, __rcu); \ 416 ((typeof(*p) __force __kernel *)(local)); \ 417}) 418/** 419 * unrcu_pointer - mark a pointer as not being RCU protected 420 * @p: pointer needing to lose its __rcu property 421 * 422 * Converts @p from an __rcu pointer to a __kernel pointer. 423 * This allows an __rcu pointer to be used with xchg() and friends. 424 */ 425#define unrcu_pointer(p) __unrcu_pointer(p, __UNIQUE_ID(rcu)) 426 427#define __rcu_access_pointer(p, local, space) \ 428({ \ 429 typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \ 430 rcu_check_sparse(p, space); \ 431 ((typeof(*p) __force __kernel *)(local)); \ 432}) 433#define __rcu_dereference_check(p, local, c, space) \ 434({ \ 435 /* Dependency order vs. p above. */ \ 436 typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \ 437 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \ 438 rcu_check_sparse(p, space); \ 439 ((typeof(*p) __force __kernel *)(local)); \ 440}) 441#define __rcu_dereference_protected(p, local, c, space) \ 442({ \ 443 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \ 444 rcu_check_sparse(p, space); \ 445 ((typeof(*p) __force __kernel *)(p)); \ 446}) 447#define __rcu_dereference_raw(p, local) \ 448({ \ 449 /* Dependency order vs. p above. */ \ 450 typeof(p) local = READ_ONCE(p); \ 451 ((typeof(*p) __force __kernel *)(local)); \ 452}) 453#define rcu_dereference_raw(p) __rcu_dereference_raw(p, __UNIQUE_ID(rcu)) 454 455/** 456 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable 457 * @v: The value to statically initialize with. 458 */ 459#define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v) 460 461/** 462 * rcu_assign_pointer() - assign to RCU-protected pointer 463 * @p: pointer to assign to 464 * @v: value to assign (publish) 465 * 466 * Assigns the specified value to the specified RCU-protected 467 * pointer, ensuring that any concurrent RCU readers will see 468 * any prior initialization. 469 * 470 * Inserts memory barriers on architectures that require them 471 * (which is most of them), and also prevents the compiler from 472 * reordering the code that initializes the structure after the pointer 473 * assignment. More importantly, this call documents which pointers 474 * will be dereferenced by RCU read-side code. 475 * 476 * In some special cases, you may use RCU_INIT_POINTER() instead 477 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due 478 * to the fact that it does not constrain either the CPU or the compiler. 479 * That said, using RCU_INIT_POINTER() when you should have used 480 * rcu_assign_pointer() is a very bad thing that results in 481 * impossible-to-diagnose memory corruption. So please be careful. 482 * See the RCU_INIT_POINTER() comment header for details. 483 * 484 * Note that rcu_assign_pointer() evaluates each of its arguments only 485 * once, appearances notwithstanding. One of the "extra" evaluations 486 * is in typeof() and the other visible only to sparse (__CHECKER__), 487 * neither of which actually execute the argument. As with most cpp 488 * macros, this execute-arguments-only-once property is important, so 489 * please be careful when making changes to rcu_assign_pointer() and the 490 * other macros that it invokes. 491 */ 492#define rcu_assign_pointer(p, v) \ 493do { \ 494 uintptr_t _r_a_p__v = (uintptr_t)(v); \ 495 rcu_check_sparse(p, __rcu); \ 496 \ 497 if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \ 498 WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \ 499 else \ 500 smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \ 501} while (0) 502 503/** 504 * rcu_replace_pointer() - replace an RCU pointer, returning its old value 505 * @rcu_ptr: RCU pointer, whose old value is returned 506 * @ptr: regular pointer 507 * @c: the lockdep conditions under which the dereference will take place 508 * 509 * Perform a replacement, where @rcu_ptr is an RCU-annotated 510 * pointer and @c is the lockdep argument that is passed to the 511 * rcu_dereference_protected() call used to read that pointer. The old 512 * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr. 513 */ 514#define rcu_replace_pointer(rcu_ptr, ptr, c) \ 515({ \ 516 typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c)); \ 517 rcu_assign_pointer((rcu_ptr), (ptr)); \ 518 __tmp; \ 519}) 520 521/** 522 * rcu_access_pointer() - fetch RCU pointer with no dereferencing 523 * @p: The pointer to read 524 * 525 * Return the value of the specified RCU-protected pointer, but omit the 526 * lockdep checks for being in an RCU read-side critical section. This is 527 * useful when the value of this pointer is accessed, but the pointer is 528 * not dereferenced, for example, when testing an RCU-protected pointer 529 * against NULL. Although rcu_access_pointer() may also be used in cases 530 * where update-side locks prevent the value of the pointer from changing, 531 * you should instead use rcu_dereference_protected() for this use case. 532 * Within an RCU read-side critical section, there is little reason to 533 * use rcu_access_pointer(). 534 * 535 * It is usually best to test the rcu_access_pointer() return value 536 * directly in order to avoid accidental dereferences being introduced 537 * by later inattentive changes. In other words, assigning the 538 * rcu_access_pointer() return value to a local variable results in an 539 * accident waiting to happen. 540 * 541 * It is also permissible to use rcu_access_pointer() when read-side 542 * access to the pointer was removed at least one grace period ago, as is 543 * the case in the context of the RCU callback that is freeing up the data, 544 * or after a synchronize_rcu() returns. This can be useful when tearing 545 * down multi-linked structures after a grace period has elapsed. However, 546 * rcu_dereference_protected() is normally preferred for this use case. 547 */ 548#define rcu_access_pointer(p) __rcu_access_pointer((p), __UNIQUE_ID(rcu), __rcu) 549 550/** 551 * rcu_dereference_check() - rcu_dereference with debug checking 552 * @p: The pointer to read, prior to dereferencing 553 * @c: The conditions under which the dereference will take place 554 * 555 * Do an rcu_dereference(), but check that the conditions under which the 556 * dereference will take place are correct. Typically the conditions 557 * indicate the various locking conditions that should be held at that 558 * point. The check should return true if the conditions are satisfied. 559 * An implicit check for being in an RCU read-side critical section 560 * (rcu_read_lock()) is included. 561 * 562 * For example: 563 * 564 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock)); 565 * 566 * could be used to indicate to lockdep that foo->bar may only be dereferenced 567 * if either rcu_read_lock() is held, or that the lock required to replace 568 * the bar struct at foo->bar is held. 569 * 570 * Note that the list of conditions may also include indications of when a lock 571 * need not be held, for example during initialisation or destruction of the 572 * target struct: 573 * 574 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) || 575 * atomic_read(&foo->usage) == 0); 576 * 577 * Inserts memory barriers on architectures that require them 578 * (currently only the Alpha), prevents the compiler from refetching 579 * (and from merging fetches), and, more importantly, documents exactly 580 * which pointers are protected by RCU and checks that the pointer is 581 * annotated as __rcu. 582 */ 583#define rcu_dereference_check(p, c) \ 584 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \ 585 (c) || rcu_read_lock_held(), __rcu) 586 587/** 588 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking 589 * @p: The pointer to read, prior to dereferencing 590 * @c: The conditions under which the dereference will take place 591 * 592 * This is the RCU-bh counterpart to rcu_dereference_check(). However, 593 * please note that starting in v5.0 kernels, vanilla RCU grace periods 594 * wait for local_bh_disable() regions of code in addition to regions of 595 * code demarked by rcu_read_lock() and rcu_read_unlock(). This means 596 * that synchronize_rcu(), call_rcu, and friends all take not only 597 * rcu_read_lock() but also rcu_read_lock_bh() into account. 598 */ 599#define rcu_dereference_bh_check(p, c) \ 600 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \ 601 (c) || rcu_read_lock_bh_held(), __rcu) 602 603/** 604 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking 605 * @p: The pointer to read, prior to dereferencing 606 * @c: The conditions under which the dereference will take place 607 * 608 * This is the RCU-sched counterpart to rcu_dereference_check(). 609 * However, please note that starting in v5.0 kernels, vanilla RCU grace 610 * periods wait for preempt_disable() regions of code in addition to 611 * regions of code demarked by rcu_read_lock() and rcu_read_unlock(). 612 * This means that synchronize_rcu(), call_rcu, and friends all take not 613 * only rcu_read_lock() but also rcu_read_lock_sched() into account. 614 */ 615#define rcu_dereference_sched_check(p, c) \ 616 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \ 617 (c) || rcu_read_lock_sched_held(), \ 618 __rcu) 619 620/* 621 * The tracing infrastructure traces RCU (we want that), but unfortunately 622 * some of the RCU checks causes tracing to lock up the system. 623 * 624 * The no-tracing version of rcu_dereference_raw() must not call 625 * rcu_read_lock_held(). 626 */ 627#define rcu_dereference_raw_check(p) \ 628 __rcu_dereference_check((p), __UNIQUE_ID(rcu), 1, __rcu) 629 630/** 631 * rcu_dereference_protected() - fetch RCU pointer when updates prevented 632 * @p: The pointer to read, prior to dereferencing 633 * @c: The conditions under which the dereference will take place 634 * 635 * Return the value of the specified RCU-protected pointer, but omit 636 * the READ_ONCE(). This is useful in cases where update-side locks 637 * prevent the value of the pointer from changing. Please note that this 638 * primitive does *not* prevent the compiler from repeating this reference 639 * or combining it with other references, so it should not be used without 640 * protection of appropriate locks. 641 * 642 * This function is only for update-side use. Using this function 643 * when protected only by rcu_read_lock() will result in infrequent 644 * but very ugly failures. 645 */ 646#define rcu_dereference_protected(p, c) \ 647 __rcu_dereference_protected((p), __UNIQUE_ID(rcu), (c), __rcu) 648 649 650/** 651 * rcu_dereference() - fetch RCU-protected pointer for dereferencing 652 * @p: The pointer to read, prior to dereferencing 653 * 654 * This is a simple wrapper around rcu_dereference_check(). 655 */ 656#define rcu_dereference(p) rcu_dereference_check(p, 0) 657 658/** 659 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing 660 * @p: The pointer to read, prior to dereferencing 661 * 662 * Makes rcu_dereference_check() do the dirty work. 663 */ 664#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0) 665 666/** 667 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing 668 * @p: The pointer to read, prior to dereferencing 669 * 670 * Makes rcu_dereference_check() do the dirty work. 671 */ 672#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0) 673 674/** 675 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism 676 * @p: The pointer to hand off 677 * 678 * This is simply an identity function, but it documents where a pointer 679 * is handed off from RCU to some other synchronization mechanism, for 680 * example, reference counting or locking. In C11, it would map to 681 * kill_dependency(). It could be used as follows:: 682 * 683 * rcu_read_lock(); 684 * p = rcu_dereference(gp); 685 * long_lived = is_long_lived(p); 686 * if (long_lived) { 687 * if (!atomic_inc_not_zero(p->refcnt)) 688 * long_lived = false; 689 * else 690 * p = rcu_pointer_handoff(p); 691 * } 692 * rcu_read_unlock(); 693 */ 694#define rcu_pointer_handoff(p) (p) 695 696/** 697 * rcu_read_lock() - mark the beginning of an RCU read-side critical section 698 * 699 * When synchronize_rcu() is invoked on one CPU while other CPUs 700 * are within RCU read-side critical sections, then the 701 * synchronize_rcu() is guaranteed to block until after all the other 702 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked 703 * on one CPU while other CPUs are within RCU read-side critical 704 * sections, invocation of the corresponding RCU callback is deferred 705 * until after the all the other CPUs exit their critical sections. 706 * 707 * In v5.0 and later kernels, synchronize_rcu() and call_rcu() also 708 * wait for regions of code with preemption disabled, including regions of 709 * code with interrupts or softirqs disabled. In pre-v5.0 kernels, which 710 * define synchronize_sched(), only code enclosed within rcu_read_lock() 711 * and rcu_read_unlock() are guaranteed to be waited for. 712 * 713 * Note, however, that RCU callbacks are permitted to run concurrently 714 * with new RCU read-side critical sections. One way that this can happen 715 * is via the following sequence of events: (1) CPU 0 enters an RCU 716 * read-side critical section, (2) CPU 1 invokes call_rcu() to register 717 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section, 718 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU 719 * callback is invoked. This is legal, because the RCU read-side critical 720 * section that was running concurrently with the call_rcu() (and which 721 * therefore might be referencing something that the corresponding RCU 722 * callback would free up) has completed before the corresponding 723 * RCU callback is invoked. 724 * 725 * RCU read-side critical sections may be nested. Any deferred actions 726 * will be deferred until the outermost RCU read-side critical section 727 * completes. 728 * 729 * You can avoid reading and understanding the next paragraph by 730 * following this rule: don't put anything in an rcu_read_lock() RCU 731 * read-side critical section that would block in a !PREEMPTION kernel. 732 * But if you want the full story, read on! 733 * 734 * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU), 735 * it is illegal to block while in an RCU read-side critical section. 736 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION 737 * kernel builds, RCU read-side critical sections may be preempted, 738 * but explicit blocking is illegal. Finally, in preemptible RCU 739 * implementations in real-time (with -rt patchset) kernel builds, RCU 740 * read-side critical sections may be preempted and they may also block, but 741 * only when acquiring spinlocks that are subject to priority inheritance. 742 */ 743static __always_inline void rcu_read_lock(void) 744{ 745 __rcu_read_lock(); 746 __acquire(RCU); 747 rcu_lock_acquire(&rcu_lock_map); 748 RCU_LOCKDEP_WARN(!rcu_is_watching(), 749 "rcu_read_lock() used illegally while idle"); 750} 751 752/* 753 * So where is rcu_write_lock()? It does not exist, as there is no 754 * way for writers to lock out RCU readers. This is a feature, not 755 * a bug -- this property is what provides RCU's performance benefits. 756 * Of course, writers must coordinate with each other. The normal 757 * spinlock primitives work well for this, but any other technique may be 758 * used as well. RCU does not care how the writers keep out of each 759 * others' way, as long as they do so. 760 */ 761 762/** 763 * rcu_read_unlock() - marks the end of an RCU read-side critical section. 764 * 765 * In almost all situations, rcu_read_unlock() is immune from deadlock. 766 * In recent kernels that have consolidated synchronize_sched() and 767 * synchronize_rcu_bh() into synchronize_rcu(), this deadlock immunity 768 * also extends to the scheduler's runqueue and priority-inheritance 769 * spinlocks, courtesy of the quiescent-state deferral that is carried 770 * out when rcu_read_unlock() is invoked with interrupts disabled. 771 * 772 * See rcu_read_lock() for more information. 773 */ 774static inline void rcu_read_unlock(void) 775{ 776 RCU_LOCKDEP_WARN(!rcu_is_watching(), 777 "rcu_read_unlock() used illegally while idle"); 778 __release(RCU); 779 __rcu_read_unlock(); 780 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */ 781} 782 783/** 784 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section 785 * 786 * This is equivalent to rcu_read_lock(), but also disables softirqs. 787 * Note that anything else that disables softirqs can also serve as an RCU 788 * read-side critical section. However, please note that this equivalence 789 * applies only to v5.0 and later. Before v5.0, rcu_read_lock() and 790 * rcu_read_lock_bh() were unrelated. 791 * 792 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh() 793 * must occur in the same context, for example, it is illegal to invoke 794 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh() 795 * was invoked from some other task. 796 */ 797static inline void rcu_read_lock_bh(void) 798{ 799 local_bh_disable(); 800 __acquire(RCU_BH); 801 rcu_lock_acquire(&rcu_bh_lock_map); 802 RCU_LOCKDEP_WARN(!rcu_is_watching(), 803 "rcu_read_lock_bh() used illegally while idle"); 804} 805 806/** 807 * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section 808 * 809 * See rcu_read_lock_bh() for more information. 810 */ 811static inline void rcu_read_unlock_bh(void) 812{ 813 RCU_LOCKDEP_WARN(!rcu_is_watching(), 814 "rcu_read_unlock_bh() used illegally while idle"); 815 rcu_lock_release(&rcu_bh_lock_map); 816 __release(RCU_BH); 817 local_bh_enable(); 818} 819 820/** 821 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section 822 * 823 * This is equivalent to rcu_read_lock(), but also disables preemption. 824 * Read-side critical sections can also be introduced by anything else that 825 * disables preemption, including local_irq_disable() and friends. However, 826 * please note that the equivalence to rcu_read_lock() applies only to 827 * v5.0 and later. Before v5.0, rcu_read_lock() and rcu_read_lock_sched() 828 * were unrelated. 829 * 830 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched() 831 * must occur in the same context, for example, it is illegal to invoke 832 * rcu_read_unlock_sched() from process context if the matching 833 * rcu_read_lock_sched() was invoked from an NMI handler. 834 */ 835static inline void rcu_read_lock_sched(void) 836{ 837 preempt_disable(); 838 __acquire(RCU_SCHED); 839 rcu_lock_acquire(&rcu_sched_lock_map); 840 RCU_LOCKDEP_WARN(!rcu_is_watching(), 841 "rcu_read_lock_sched() used illegally while idle"); 842} 843 844/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 845static inline notrace void rcu_read_lock_sched_notrace(void) 846{ 847 preempt_disable_notrace(); 848 __acquire(RCU_SCHED); 849} 850 851/** 852 * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section 853 * 854 * See rcu_read_lock_sched() for more information. 855 */ 856static inline void rcu_read_unlock_sched(void) 857{ 858 RCU_LOCKDEP_WARN(!rcu_is_watching(), 859 "rcu_read_unlock_sched() used illegally while idle"); 860 rcu_lock_release(&rcu_sched_lock_map); 861 __release(RCU_SCHED); 862 preempt_enable(); 863} 864 865/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 866static inline notrace void rcu_read_unlock_sched_notrace(void) 867{ 868 __release(RCU_SCHED); 869 preempt_enable_notrace(); 870} 871 872/** 873 * RCU_INIT_POINTER() - initialize an RCU protected pointer 874 * @p: The pointer to be initialized. 875 * @v: The value to initialized the pointer to. 876 * 877 * Initialize an RCU-protected pointer in special cases where readers 878 * do not need ordering constraints on the CPU or the compiler. These 879 * special cases are: 880 * 881 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer *or* 882 * 2. The caller has taken whatever steps are required to prevent 883 * RCU readers from concurrently accessing this pointer *or* 884 * 3. The referenced data structure has already been exposed to 885 * readers either at compile time or via rcu_assign_pointer() *and* 886 * 887 * a. You have not made *any* reader-visible changes to 888 * this structure since then *or* 889 * b. It is OK for readers accessing this structure from its 890 * new location to see the old state of the structure. (For 891 * example, the changes were to statistical counters or to 892 * other state where exact synchronization is not required.) 893 * 894 * Failure to follow these rules governing use of RCU_INIT_POINTER() will 895 * result in impossible-to-diagnose memory corruption. As in the structures 896 * will look OK in crash dumps, but any concurrent RCU readers might 897 * see pre-initialized values of the referenced data structure. So 898 * please be very careful how you use RCU_INIT_POINTER()!!! 899 * 900 * If you are creating an RCU-protected linked structure that is accessed 901 * by a single external-to-structure RCU-protected pointer, then you may 902 * use RCU_INIT_POINTER() to initialize the internal RCU-protected 903 * pointers, but you must use rcu_assign_pointer() to initialize the 904 * external-to-structure pointer *after* you have completely initialized 905 * the reader-accessible portions of the linked structure. 906 * 907 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no 908 * ordering guarantees for either the CPU or the compiler. 909 */ 910#define RCU_INIT_POINTER(p, v) \ 911 do { \ 912 rcu_check_sparse(p, __rcu); \ 913 WRITE_ONCE(p, RCU_INITIALIZER(v)); \ 914 } while (0) 915 916/** 917 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer 918 * @p: The pointer to be initialized. 919 * @v: The value to initialized the pointer to. 920 * 921 * GCC-style initialization for an RCU-protected pointer in a structure field. 922 */ 923#define RCU_POINTER_INITIALIZER(p, v) \ 924 .p = RCU_INITIALIZER(v) 925 926/* 927 * Does the specified offset indicate that the corresponding rcu_head 928 * structure can be handled by kvfree_rcu()? 929 */ 930#define __is_kvfree_rcu_offset(offset) ((offset) < 4096) 931 932/** 933 * kfree_rcu() - kfree an object after a grace period. 934 * @ptr: pointer to kfree for double-argument invocations. 935 * @rhf: the name of the struct rcu_head within the type of @ptr. 936 * 937 * Many rcu callbacks functions just call kfree() on the base structure. 938 * These functions are trivial, but their size adds up, and furthermore 939 * when they are used in a kernel module, that module must invoke the 940 * high-latency rcu_barrier() function at module-unload time. 941 * 942 * The kfree_rcu() function handles this issue. Rather than encoding a 943 * function address in the embedded rcu_head structure, kfree_rcu() instead 944 * encodes the offset of the rcu_head structure within the base structure. 945 * Because the functions are not allowed in the low-order 4096 bytes of 946 * kernel virtual memory, offsets up to 4095 bytes can be accommodated. 947 * If the offset is larger than 4095 bytes, a compile-time error will 948 * be generated in kvfree_rcu_arg_2(). If this error is triggered, you can 949 * either fall back to use of call_rcu() or rearrange the structure to 950 * position the rcu_head structure into the first 4096 bytes. 951 * 952 * The object to be freed can be allocated either by kmalloc() or 953 * kmem_cache_alloc(). 954 * 955 * Note that the allowable offset might decrease in the future. 956 * 957 * The BUILD_BUG_ON check must not involve any function calls, hence the 958 * checks are done in macros here. 959 */ 960#define kfree_rcu(ptr, rhf) kvfree_rcu_arg_2(ptr, rhf) 961#define kvfree_rcu(ptr, rhf) kvfree_rcu_arg_2(ptr, rhf) 962 963/** 964 * kfree_rcu_mightsleep() - kfree an object after a grace period. 965 * @ptr: pointer to kfree for single-argument invocations. 966 * 967 * When it comes to head-less variant, only one argument 968 * is passed and that is just a pointer which has to be 969 * freed after a grace period. Therefore the semantic is 970 * 971 * kfree_rcu_mightsleep(ptr); 972 * 973 * where @ptr is the pointer to be freed by kvfree(). 974 * 975 * Please note, head-less way of freeing is permitted to 976 * use from a context that has to follow might_sleep() 977 * annotation. Otherwise, please switch and embed the 978 * rcu_head structure within the type of @ptr. 979 */ 980#define kfree_rcu_mightsleep(ptr) kvfree_rcu_arg_1(ptr) 981#define kvfree_rcu_mightsleep(ptr) kvfree_rcu_arg_1(ptr) 982 983#define kvfree_rcu_arg_2(ptr, rhf) \ 984do { \ 985 typeof (ptr) ___p = (ptr); \ 986 \ 987 if (___p) { \ 988 BUILD_BUG_ON(!__is_kvfree_rcu_offset(offsetof(typeof(*(ptr)), rhf))); \ 989 kvfree_call_rcu(&((___p)->rhf), (void *) (___p)); \ 990 } \ 991} while (0) 992 993#define kvfree_rcu_arg_1(ptr) \ 994do { \ 995 typeof(ptr) ___p = (ptr); \ 996 \ 997 if (___p) \ 998 kvfree_call_rcu(NULL, (void *) (___p)); \ 999} while (0) 1000 1001/* 1002 * Place this after a lock-acquisition primitive to guarantee that 1003 * an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies 1004 * if the UNLOCK and LOCK are executed by the same CPU or if the 1005 * UNLOCK and LOCK operate on the same lock variable. 1006 */ 1007#ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE 1008#define smp_mb__after_unlock_lock() smp_mb() /* Full ordering for lock. */ 1009#else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */ 1010#define smp_mb__after_unlock_lock() do { } while (0) 1011#endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */ 1012 1013 1014/* Has the specified rcu_head structure been handed to call_rcu()? */ 1015 1016/** 1017 * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu() 1018 * @rhp: The rcu_head structure to initialize. 1019 * 1020 * If you intend to invoke rcu_head_after_call_rcu() to test whether a 1021 * given rcu_head structure has already been passed to call_rcu(), then 1022 * you must also invoke this rcu_head_init() function on it just after 1023 * allocating that structure. Calls to this function must not race with 1024 * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation. 1025 */ 1026static inline void rcu_head_init(struct rcu_head *rhp) 1027{ 1028 rhp->func = (rcu_callback_t)~0L; 1029} 1030 1031/** 1032 * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()? 1033 * @rhp: The rcu_head structure to test. 1034 * @f: The function passed to call_rcu() along with @rhp. 1035 * 1036 * Returns @true if the @rhp has been passed to call_rcu() with @func, 1037 * and @false otherwise. Emits a warning in any other case, including 1038 * the case where @rhp has already been invoked after a grace period. 1039 * Calls to this function must not race with callback invocation. One way 1040 * to avoid such races is to enclose the call to rcu_head_after_call_rcu() 1041 * in an RCU read-side critical section that includes a read-side fetch 1042 * of the pointer to the structure containing @rhp. 1043 */ 1044static inline bool 1045rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f) 1046{ 1047 rcu_callback_t func = READ_ONCE(rhp->func); 1048 1049 if (func == f) 1050 return true; 1051 WARN_ON_ONCE(func != (rcu_callback_t)~0L); 1052 return false; 1053} 1054 1055/* kernel/ksysfs.c definitions */ 1056extern int rcu_expedited; 1057extern int rcu_normal; 1058 1059DEFINE_LOCK_GUARD_0(rcu, rcu_read_lock(), rcu_read_unlock()) 1060 1061#endif /* __LINUX_RCUPDATE_H */